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Introduction by the Organisers

The workshop ‘Measured group theory’ organized by Miklos Abert (Budapest),
Damien Gaboriau (Lyon) and Andreas Thom (Dresden) was held 28 August -
2 September 2016. The event was an important next stage for the recently emerg-
ing field of measured group theory.

As measured group theory is progressing, the participants of the meetings un-
derstand each other’s language better and better. Still, for a uniform random
participant and talk of the event, it was a first date with probability at least 1/2.

The organizers made an effort to keep the number of talks down (half-success-
fully) and ask young people for talks (quite successfully).

It is natural to arrange the workshop material along the following subtopics.
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Space of subgroups, invariant random subgroups and Benjamini–
Schramm convergence.
Mikolaj Fraczyk talked about his result that for a rank 1 simple Lie group, all
sequences of distinct congruence locally symmetric spaces Benjamini-Schramm
converge to the full symmetric space of the Lie group.

Vadim Alekseev talked about his joint with Miklos Abert, Andreas Thom and
Rahel Brugger on invariant random positive definite functions and disintegration
rigidity. An invariant random positive definite function is a generalization of a
character the same way an invariant random subgroup is a generalization of a
normal subgroup.

Gabor Kun talked about his result that any sofic approximation (a graph se-
quence that Benjamini–Schramm converges to a Cayley graph of the group) of a
property (T) group is close to a disjoint union of expander graphs.

Nicolas Matte Bon talked about his joint work with Adrien Le Boudec on sub-
group dynamics and C*-simplicity of groups of homeomorphisms. As a tool, they
use uniformly recurrent subgroups, a topological version of invariant random sub-
groups recently introduced by Eli Glasner and Benjy Weiss.

Emmanuel Breuillard talked about his joint work with Mehrdad Kalantar,
Matthew Kennedy and Narutaka Ozawa on C*-simplicity and the unique trace
property for discrete groups.

Growth of homology and torsion, L2 theory.
Roman Sauer talked about his joint with Uri Bader and Tsachik Gelander on
torsion homology growth in negative curvature. They show that for the family of
closed hyperbolic 3-manifolds, the volume-normalized log torsion can be arbitrarly
large, even when one assumes Benjamini-Schramm convergence to H3. However,
starting from dimension 4, the picture changes and they show that this invariant
stays bounded, in the spirit of Betti numbers in the Ballmann-Gromov-Schroeder
theorem.

Nikolay Nikolov talked about his joint with Miklos Abert and Tsachik Gelander.
They found a new vanishing condition on the first homology torsion growth for
finitely generated groups that applies to a large class of higher rank irreducible
lattices.

Wolfgang Lück talked about his joint work with Stefan Friedl on universal L2-
torsion, twisted L2-Euler characteristic, Thurston norm and polytopes.

Andrei Jaikin-Zapirain talked about the base change in the strong Atiyah con-
jecture and the Lück approximation conjecture, in which he extends the known
results on the strong Atiyah conjecture to complex coefficients.

Borel and p.m.p. actions of countable groups and their graphings.
Oleg Pikhurko talked about his joint recent breakthrough work with Lukasz
Grabowski and Andras Mathe on squaring the circle (disc) with measurable pieces.

Robin Tucker-Drob talked about ergodic hyperfinite subgraphs and primitive
subrelations. Among other things, he showed that every ergodic graphing contains
an ergodic hyperfinite subgraphing.
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Lukasz Grabowski talked about his joint work with Endre Csoka, Andras Mathe,
Oleg Pikhurko and Konstantinos Tyros on the Borel Local Lemma. The Lovasz
Local Lemma is a fundamental tool in discrete mathematics, and various Borel
(measurable) generalizations have been used successfully in measured group theory.

Anush Tserunyan talked about finite generating partitions for actions of count-
able groups. In particular, she proved that if a Borel action of a countable group
with a σ-compact realization admits no invariant measure, then it has a size 32
generating partition.

Clinton Conley talked about the measurable coloring theory of graphings, and
analyzed measurable chromatic numbers.

Andrew Marks talked about his joint work with Clinton Conley, Steve Jackson,
David Kerr, Brandon Seward, and Robin Tucker-Drob on measurable tilings of
free pmp actions of amenable groups.

Entropy theory of group actions.
Brandon Seward talked about his recent result that positive Rokhlin entropy ac-
tions of countable groups factor onto Bernoulli shifts. Note that his generalization
of Sinai’s theorem (that proves the same for Z) does not assume the soficity of the
group, as most of the known entropy results do.

Felix Pogorzelski talked about his joint work joint with Amos Nevo on subad-
ditive convergence and cocycle entropy, in which they define a new entropy notion
for invariant coloring processes on countable groups.

Ben Hayes talked about his work on Fuglede-Kadison determinants and sofic
entropy. His work completes the computation of both the topological and measure
entropy of algebraic actions in terms of spectral measure.

Probability on groups.
Lison Jacoboni talked about metabelian groups where the return probability is
asymptotically as large as possible, assuming the group has exponential growth.

Adam Timar talked about indistinguishability (or ergodicity) of infinite clus-
ters in random spanning forests. In particular, he showed that if pc < pu for a
Cayley graph, then the infinite clusters of the free minimal spanning forest are
indistinguishable.

Gady Kozma talked about his joint work with Gideon Amir, Itai Benjamini,
Hugo Duminil-Copin, Ariel Yadin and Tianyi Zheng on harmonic functions and
the log log law. They analyze the possible growth functions of harmonic functions
on Cayley graph in terms of the word metric, for various classes of groups.

The group of talks that can not be put in a group.
Uri Bader talked about his recent joint work with Pierre-Emmanuel Caprace and
Jean Lecureux on the non-linearity of Ã2-lattices. While the results are not inher-
ently measure theoretic, the proof uses ergodic theory in a surprising way.

Friedrich Martin Schneider talked about his joint with Andreas Thom, in which
they find a new Følner-type condition that is equivalent to amenability for Haus-
dorff topological groups.
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Adrien Le Boudec talked about his joint with Yves Cornulier on infinite pre-
sentability and the relation range of groups.

Damian Osajda talked about his construction of finitely generated groups with
isometrically embedded expanders. The construction, that uses a version of small
cancellation, has various applications, e.g. they do not coarsely embed into a
Hilbert space.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Positive entropy actions of countable groups factor onto Bernoulli
shifts

Brandon Seward

For a countably infinite group G and a standard probability space (L, λ), the
Bernoulli shift overG with base space (L, λ) is the product measure space (LG, λG)
together with the left shift-action of G: for g ∈ G and x ∈ LG, g · x is defined by
(g · x)(t) = x(g−1t) for t ∈ G. The Shannon entropy of the base space (L, λ) is
defined as

H(L, λ) =
∑

ℓ∈L

−λ(ℓ) logλ(ℓ),

if λ has countable support, and H(L, λ) = ∞ otherwise.
The Kolmogorov–Sinai entropy hKS

Z
(X,µ) of a probability-measure-preserving

action Z y (X,µ) was introduced by Kolmogorov in 1958 (and the definition
was improved by Sinai in 1959). Entropy provided a useful tool for studying dy-
namics of Z-actions, and it eventually provided powerful insight into the nature of
Bernoulli shifts over Z. One of the most well known results in entropy theory is the
following theorem of Sinai, which reveals a significant and unexpected structural
consequence of having positive entropy.

Theorem 1 (Sinai’s factor theorem, 1962 [7]). If Z y (X,µ) is an ergodic
probability-measure-preserving action and (L, λ) is a probability space with
H(L, λ) ≤ hKS

Z
(X,µ), then Z y (X,µ) factors onto the Bernoulli shift (LZ, λZ).

This theorem was extended to actions of countable amenable groups by Ornstein
and Weiss in 1987 [5].

In essence, this is a structure theorem which indicates that Bernoulli shifts are
the source of all positive entropy (this can be made precise using the language of
relative entropy). Sinai’s theorem also admits many applications, as it is relatively
easy to compute the entropy of a Z-action but extremely difficult to build a factor
which is Bernoulli. In fact, prior to this theorem it was not even known that
Bernoulli shifts over Z of large entropy factor onto all Bernoulli shifts of smaller
entropy.

Sinai’s theorem is also of historical importance, as it serves as a critical founda-
tion to the development of Ornstein theory. Ornstein theory is generally consid-
ered to be the deepest and greatest achievement of entropy theory. It began with
Ornstein’s famous isomorphism theorem [3, 4] (which states that two Bernoulli
shifts over Z are isomorphic if and only if they have equal entropy) but over time
evolved into a collection of necessary and sufficient conditions for a probability-
measure-preserving Z-action to be isomorphic to a Bernoulli shift. This led to the
surprising discovery that factors of Bernoulli shifts over Z are Bernoulli, inverse
limits of Bernoulli shifts over Z are Bernoulli, and that many interesting and natu-
ral actions of Z are isomorphic to Bernoulli shifts (such as ergodic automorphisms
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of compact metrizable groups, mixing Markov shifts, geodesic flows on surfaces
of negative curvature, Anosov flows with smooth measures, and two dimensional
billiards with a convex scatterer).

For a few decades the notion of entropy was restricted to the realm of ac-
tions of amenable groups. However, recent ground-breaking work of Bowen [1],
together with improvements by Kerr and Li [2], created the notion of sofic en-
tropy for probability-measure-preserving actions of sofic groups. The class of sofic
groups contains the countable amenable groups, and sofic entropy coincides with
Kolmogorov–Sinai entropy for actions of amenable groups. This has led to a surge
of new research into entropy theory where, for the first time, the acting groups are
non-amenable. We draw our motivation from this, but we work with an alternate
notion of entropy previously introduced by the speaker [6].

For any countable group G (not necessarily sofic) and any ergodic probability-
measure-preserving action G y (X,µ), we define the Rokhlin entropy of G y

(X,µ) as

hRok
G (X,µ) = inf

{
H(α) : α is a countable partition with σ-algG(α) = B(X)

}
.

Here H(α) =
∑

A∈α−µ(A) log µ(A) is the Shannon entropy of α, σ-algG(α) de-
notes the smallest G-invariant σ-algebra containing α, and B(X) denotes the Borel
σ-algebra of X . For free actions of countable amenable groups, Rokhlin entropy
coincides with Kolmogorov–Sinai entropy, and for free actions of sofic groups it
is greater than or equal to sofic entropy. For free actions of sofic groups, it is
unknown if Rokhlin entropy coincides with sofic entropy (when sofic entropy is
not minus infinity).

The following is the main theorem.

Theorem 2. Let G be a countably infinite group, let G y (X,µ) be a free er-
godic probability-measure-preserving action, and let (L, λ) be a probability space.
If H(L, λ) ≤ hRok

G (X,µ), then G y (X,µ) factors onto the Bernoulli shift G y

(LG, λG).

Since sofic entropy is bounded above by Rokhlin entropy, this theorem remains
true if Rokhlin entropy is replaced by sofic entropy.

As with the original Sinai thoerem, before obtaining this theorem it was not
known if each Bernoulli shift factors onto all smaller entropy Bernoulli shifts.

All prior proofs of Sinai’s theorem have relied critically upon special proper-
ties of actions of amenable groups (such as the Rokhlin lemma, the Shannon–
McMillan–Breiman theorem, and the monotonicity of Kolmogorov–Sinai entropy
under factor maps). The proof of the above theorem relies upon an entirely new
technique.

The development of an Ornstein theory for actions of non-amenable groups,
possibly based off of the above theorem and its proof, is a possible direction for
future research.
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Homology torsion growth in right angled lattices

Nikolay Nikolov

(joint work with Miklós Abért and Tsachik Gelander)

A group G is right angled if G can be generated by elements g1, . . . , gk of infinite
order such that [gi, gi+1] = 1 for i = 1, . . . , k − 1. Right angled groups were first
studied by D. Gaboriau who proved that they have fixed price 1. Building on his
argument and developing the theory of combinatorial cost initiated by G. Elek we
prove the following

Theorem 1 ([2]). Let (Hi) be a Farber sequence in a right angled group G. Then

limi
d(Hi)−1
[G:Hi]

= 0.

Here d(G) denotes the minimal size of a generating set of a groupG. A sequence
(Hi) of finite index subgroups of G is Farber if the Schreier graphs Sch(G/Hi, S)
(with respect to some fixed generating set S of G) form a sofic approximation to
the Cayley graph Cay(G,S).

We can apply our tools to the study of growth of torsion in homology. It is
easy to see that for a finitely presented group G with a finite index subgroup M
the torsion torH1(M,Z) of Hab ≃ H1(M,Z) is bounded above by an exponential
function of the index [G : M ].

Theorem 2 ([2]). Let G be a finitely presented right angled group and let (Mi) be

a Farber sequence in G. Then limi
log torH1(Mi,Z)

[G:Mi]
= 0.

Note that if G is not finitely presented then there is no general bound on
torH1(Mi,Z) in terms of [G : Mi] even for solvable groups G, see [3].

We apply these results to lattices in simple Lie groups. While some lattices
are right angled (for example SL(n,Z) with n ≥ 3), all known ones until now
were non-cocompact. We construct the first examples of cocompact right angled
lattices:
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Theorem 3 ([2]). Let G be SL(n,R), (n > 2) or SO(n, 2), (n ≥ 7). Then G has
cocompact right angled lattices.

By combining our methods with the results on invariant random subgroups of
lattices in higher rank Lie groups [1] we deduce the following:

Corollary 4 ([2]). Let G be a right angled lattice in a higher rank simple Lie
group with trivial center. Let (Mi) be any sequence of finite index subgroups of G
with [G : Mi] → ∞. Then

lim
i→∞

d(Mi) − 1

[G : Mi]
= lim

i→∞

log torH1(Mi,Z)

[G : Mi]
= 0.

We finish with the following ambitious conjecture:

Conjecture 5. Let G be a higher rank simple Lie group and let (Mi) be any

sequence of lattices of G with unbounded covolume. Then limi
d(Mi)−1
vol(G/Mi)

= 0.
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Torsion homology growth in negative curvature

Roman Sauer

(joint work with Uri Bader and Tsachik Gelander)

The topological complexity of Hadamard manifolds is controlled, to some extent,
by the volume. This phenomenon is most nicely illustrated in the case of surfaces
of constant negative curvature. Indeed, the Gauss–Bonnet theorem implies that
the volume coincides (up to a normalization) with the Euler characteristic, which
in turn determines the homeomorphism type of the manifold. In much greater
generality, a celebrated theorem of Ballmann, Gromov and Schroeder [1] says that
the Betti numbers of an negatively1 curved manifold are bounded by the volume.

By normalized bounded negative curvature we mean that the sectional curvature
is contained in a closed sub-interval of [−1, 0).

Theorem 1 (Ballmann–Gromov–Schroeder). For every d ∈ N there exists C =
Cd > 0 such that for every complete d-dimensional Riemannian manifold of nor-
malized bounded negative curvature and for every degree k,

rankHk(M ;Q) ≤ C vol(M).

1A more general version of this theorem holds for non-positively curved manifolds.
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That is, the abelian group Hk(M ;Z) is isomorphic to Zbk ⊕ torsk where bk ≤
C vol(M) and torsk denotes the torsion part. In recent years there has been a grow-
ing interest in the size of the torsion part torsk(M) motivated by number theory
and topology. However, torsk is much harder to control than bk. In dimension 6= 3
we can prove a universal upper bound in all degrees:

Theorem 2. For every d 6= 3, there exists C = Cd > 0 such that for every com-
plete d-dimensional Riemannian manifold of normalized bounded negative curva-
ture and for every degree k,

log | torsHk(M ;Z)| ≤ C vol(M).

The most complicated case in the above theorem is k = d − 2. This is also
manifested in dimension d = 3 where the above theorem drastically fails:

Theorem 3. There exists a sequence of closed hyperbolic 3-manifolds Mn that
converges in the Benjamini–Schramm topology to H3 such that

lim
n→∞

log | tors H1(Mn,Z)|

vol(Mn)
= ∞.

Furthermore, for any function f : (0,∞) → (0,∞) there is such a sequence Mn

with

log | tors H1(Mn,Z)| > f(vol(Mn)).
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Ergodic Hyperfinite Subgraphs and Primitive Subrelations

Robin Tucker-Drob

We show that every ergodic p.m.p. graph contains an ergodic hyperfinite subgraph.
This implies a conjecture of Bowen: every ergodic p.m.p. treeable equivalence
relation contains an ergodic hyperfinite primitive subrelation. We also obtain the
following strengthening of Hjorth’s Lemma on cost attained: every ergodic p.m.p.
treeable equivalence relation of cost n is generated by a free action of the free
group of rank n in which one of the generators acts ergodically.
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Finite generating partitions for actions of countable groups

Anush Tserunyan

In search of a concrete model for a given Borel action of a countable group G on
a standard Borel space X , one may wonder if it is Borel-embeddable into a finite
shift action of G. This is equivalent to the existence of a finite Borel generating
partition, i.e. a finite partition of X into Borel sets such that every point in X is
determined by its trajectory through the partition when acted upon by G.

For G ..= Z, or more generally, for any amenable group, the existence of such
a partition is obstructed by the existence of an invariant probability measure of
infinite entropy. First, I showed that the question of whether this is the only
obstruction boils down to proving the existence of a finite generating partition for
continuous actions on Polish spaces that do not admit any invariant probability
measure whatsoever. It was asked by B. Weiss [3] in the 80s whether this is true
for G ..= Z and it was asked again in [1] for arbitrary countable groups. I proved
in [2] that the answer is positive (in fact, there is a 32-generator) for continuous
actions of arbitrary countable groups on σ-compact Polish spaces.

I also showed in [2] that finite generating partitions always exist in the context
of Baire category, thus answering a question of A. Kechris asked in the 90s. The
precise statement is that any continuous aperiodic action of a countable group on
a Polish space admits a 4-generator on an invariant comeager set.
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Non-linearity of Ã2-lattices

Uri Bader

(joint work with Pierre-Emmanuel Caprace, Jean Lecureux)

Let X be a locally finite irreducible affine building of dimension ≥ 2 and Γ ≤
Aut(X) be a discrete group acting cocompactly. We address the following ques-
tion: When is Γ linear? More generally, when does Γ admit a finite-dimensional
representation with infinite image over a commutative unital ring? If X is the
Bruhat–Tits building of a simple algebraic group over a local field and if Γ is an
arithmetic lattice, then Γ is clearly linear. We prove that if X is of type Ã2,
then the converse holds. In particular, cocompact lattices in exotic Ã2-buildings
are non-linear. As an application, we obtain the first infinite family of lattices in
exotic Ã2-buildings of arbitrarily large thickness, providing also a partial answer
to a question of W. Kantor from 1986. We also show that if X is Bruhat–Tits of
arbitrary type, then the linearity of Γ implies that Γ is virtually contained in the
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linear part of the automorphism group of X ; in particular Γ is an arithmetic lat-
tice. The proofs are based on the machinery of algebraic representations of ergodic
systems recently developed by U. Bader and A. Furman. The implementation of
that tool in the present context requires the geometric construction of a suitable
ergodic Γ-space attached to the the building X , which we call the singular Cartan
flow.

References
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Fuglede-Kadison determinants and sofic entropy

Ben Hayes

I discussed my results in [6] computing the entropy of certain algebraic actions.
Given a countable, discrete, group G, an algebraic action is an action of G by
automorphisms on a compact, metrizable, abelian groupX. By Pontryagin duality,
every such action arises in the following manner: consider a countable Z(G)-
module A and let X be the group of homomorphisms from A into T = R/Z

(this is typically denoted by Â). One particular class of modules that one can
take are those of the form Af = Z(G)⊕n/Z(G)⊕kf for some f ∈ Mk,n(Z(G)). In
a certain sense this is the “generic” Z(G)-module, since every finitely presented
Z(G) module is of such a form, and so a general Z(G)-module is an increasing
union of inverse limits of such modules. The dual of Af is usually denoted by Xf

and many previous works have tackled the problem of computing the measure-
theoretic (or topological) entropy of G acting on Xf , equipping Xf with the Haar
measure mXf

(see e.g. [9],[4],[5],[7],[3]) with the amenable case only being recently
settled in 2014 by the work of Li-Thom [8].

In this talk, I presented my work which completes the computation of entropy
for these actions.

Theorem 1. Let f ∈Mk,n(Z(G)) and let G be a sofic group. Then

(1) The topological entropy of the action of G on Xf is finite if and only if f
is injective as a convolution operator ℓ2(G)⊕n → ℓ2(G)⊕k.

(2) If f is injective as a convolution operator on ℓ2(G)⊕n → ℓ2(G)⊕k, then
the topological entropy of the action of G on Xf is at most the logarithm
of the Fuglede-Kadison determinant of f.

(3) If k = n and f is injective as a convolution operator on ℓ2(G)⊕n →
ℓ2(G)⊕k, then the topological entropy of the action of G on Xf equals
the measure-theoretic entropy of the action of G on Xf and both are the
logarithm of the Fuglede-Kadison determinant of f.

Many of the previous works on this problem focused on the case k = n = 1
(such algebraic actions are called principal algebraic actions).
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In the talk I discussed the definition of a sofic group, as well as the definition of
sofic entropy (properly speaking what I defined is not the sofic entropy as defined
by Bowen in [2], but the model-measure entropy defined in [1]). Sofic groups are a
vastly larger class of groups than amenable groups and they include all free groups,
all residually finite groups, all linear groups, all amenable groups and are closed
under free products with amalgamation over amenable subgroups. Thus entropy
for actions of sofic groups may be considered to be a significant generalization of
entropy for actions of amenable groups. Afterwards, I defined the Fuglede-Kadison
determinant for elements in Mn(C(G)), using the intuition of finite-dimensional
linear algebra. I then stated the main theorem (described above). When G is
amenable, one can relate the L2-torsion of A to the entropy of the action of G

on Â. I discussed why, in the sofic case, such a connection is impossible e.g. it
necessarily fails when G is a cocompact lattice in SO(n, 1) and n ≡ 1 mod 4.
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Invariant random positive definite functions and disintegration rigidity

Vadim Alekseev

(joint work with Miklós Abért, Andreas Thom, Rahel Brugger)

The study of group representations had motivated a great amount of interest in
positive definite class functions (characters) on groups since the work of Godement
and Thoma. The main object of interest in this research are characters of discrete
groups:

Definition 1. Let Γ be a discrete group. A function ϕ : Γ → C with ϕ(e) = 1 is
called
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(1) positive definite, if the matrix [ϕ(g−1
j gi)]i,j is positive semidefinite for all

g1, . . . , gn ∈ Γ;
(2) conjugation invariant if ϕ(ghg−1) = ϕ(h) for all g, h ∈ Γ;
(3) a character, if it’s positive definite and conjugation invariant.

Characters form a closed convex set (in fact, a Choquet simplex) with respect
to the weak* topology on ℓ∞(Γ); in particular, the study of characters reduces
to the study of extreme points in the space of characters. Two basic examples of
characters are the trivial character τε mapping every group element to 1 and the
left regular character τλ mapping the identity to 1 and all other group elements
to zero. The terminology is justified by the following correspondence between
characters and representations into finite von Neumann algebras:

Theorem 2 (Thoma). Let Γ be a discrete group. There is a one-to-one corre-
spondence between

(1) characters ϕ : Γ → C and
(2) equivalence classes of representations πϕ : Γ → U(M), where (M, τ) is

finite von Neumann algebra such that πϕ(Γ)′′ = M .

This correspondence is given by ϕ = τ ◦ πϕ. Moreover, extreme characters corre-
spond to representations where M is a factor.

In the recent years, the phenomenon of character rigidity has received much
attention:

Definition 3. A discrete group Γ is character rigid if the only extreme characters
are the trivial one τε and the left regular one τλ.

It was shown by Bachir Bekka that PSL(n,Z) is character rigid for n > 3; later
on, these results were extended by Jesse Peterson and Andreas Thom to SL(2, k)
or SL(n,OK), n > 2, where k is an infinite field and OK is the ring of integers
of an algebraic number field K containing infinitely many units. Recently, Jesse
Peterson has used operator algebraic techniques to prove character rigidity for
arbitrary lattices in higher rank simple Lie groups.

The ongoing joint project with Miklós Abért, Andreas Thom and Rahel Brugger
is concerned with a refinement of character rigidity called decomposition rigidity
which stems from the question how a given character of the group (for instance,
the regular one) can be decomposed into a conjugation-invariant combination of
states (this realises the idea of “invariant random positive definite functions”).

Definition 4. Let Γ be a discrete group, let Γ y (Ω, ν) be a p.m.p. action. An
invariant random positive definite function is a Γ-equivariant map Φ: Ω → PD(Γ),
where PD(Γ) is the space of positive definite functions on Γ. It is called ergodic if
the action Γ y (Ω, ν) is ergodic.

Notice that if Φ is a random invariant positive definite function, then its con-
ditional expectation

ϕ = E(Φ) :=

∫

Ω

Φω dν(ω)
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is a character on Γ. Therefore we can think of a random invariant positive definite
function as of a disintegration of a given character. This motivates the following
definition.

Definition 5. A character ϕ : Γ → C is called disintegration rigid if for every
ergodic invariant random positive definite fucntion Φ with E(Φ) = ϕ we have
Φω = ϕ almost everywhere.

A discrete group Γ is called disintegration rigid if its left regular character is
disintegration rigid.

To study disintegration rigidity, we establish the correspondence between in-
variant random characters and representations π : Γ → NM (A), where A ⊂ M is
an inclusion of a (diffuse) abelian von Neumann algebra into a finite one:

Theorem 6. Let α : Γ y (Ω, ν) be an ergodic p.m.p. action and let A = L∞(Ω, ν).
There is a one-to-one correspondence between:

(1) invariant random positive definite functions ϕ : Ω → PD(Γ),
(2) Γ-equivariant positive definite functions ϕ : Γ → A:

ϕ(g−1hg) = αg(ϕ(h)), g, h ∈ Γ,

(3) equivalence classes of equivariant representations π : Γ → B (AH) into a
(left) Hilbert A-module H = AH with a distinguished cyclic vector ξ0 ∈

AH,
(4) equivalence classes of representations π : Γ → NM (A) for a trace-

preserving inclusion A ⊂ M into a tracial von Neumann algebra (M, τ)
such that (A ∪ π(Γ))′′ = M . Here NM (A) = {u ∈ U(M) |uAu∗ = A} is
the normaliser of A inside M .

This allows us to deduce another characterisation of disintegration rigidity: a
group Γ is disintegration rigid if and only if for any representation π : Γ → NM (A)
for a trace-preserving inclusion A ⊂M into a tracial von Neumann algebra (M, τ)
such that (A ∪ π(Γ))′′ = M and π(Γ)′′ = LΓ, we have that M = A⋊ Γ.

The results above open the way to generalise the techniques of Bachir Bekka
and Jesse Peterson to allow for disintegration rigidity results. In the joint ongoing
work with Miklós Abért and Andreas Thom we apply the techniques developed by
Bekka to prove disintegratio rigidity for PSL(n,Z), n > 3 as well as the techniques
by Peterson and Thom for SL(2, k) or SL(n,OK), n > 2, where k is an infinite
field and OK is the ring of integers of an algebraic number field K containing
infinitely many units. In the ongoing joint work with Rahel Brugger we apply
Peterson’s techniques to prove disintegration rigidity for lattices in higher rank
Lie groups.
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Measurable chromatic numbers

Clinton T. Conley

Since Kechris-Solecki-Todorcevic’s seminal paper [KST99], there has been consid-
erable investigation into Borel colorings of Borel graphs on standard Borel spaces.
In this talk we discuss analogs on standard probability spaces: the µ-measurable
chromatic number in which one is allowed to discuss a µ-null set before coloring in
a Borel fashion, and the µ-approximate chromatic number in which one is allowed
to discard sets of arbitrarily small measure. We discuss joint work with Kechris
and Tucker-Drob characterizing amenability, property (T), and the HAP in terms
of these chromatic numbers for Cayley graphings of bipartite groups.

We also pay special attention to the hyperfinite setting. Recall that a graph
is called hyperfinite when its connectedness relation may be realized by a Borel
action of the integers; if null sets may be discarded this aligns with amenability.
Joint work with B. Miller shows that such graphs have µ-measurable chromatic
number at most 2χ−1, where χ is the real chromatic number of the graph (without
definability constraints). On the other hand, recent work with Jackson, Marks,
Seward, and Tucker-Drob shows that no such uniform bound is possible for Borel
colorings.
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Equidecompositions with Lebesgue measurable pieces

Oleg Pikhurko

(joint work with  Lukasz Grabowski and András Máthé)

Two subsets A and B of Rk are (set-theoretically) equidecomposable if it is possible
to find a partition of A into finitely many pieces and rearrange these pieces using
isometries to form a partition of B. The most famous result about equidecom-
posable sets is known as the Banach-Tarski paradox : in R3, the unit ball and two
disjoint copies of the unit ball are equidecomposable. It is a special case of the
following theorem.

Theorem 1 (Banach and Tarski [1]). When k ≥ 3, any two bounded sets with
non-empty interiors in Rk are equidecomposable. When k ≤ 2, equidecomposable
sets which are (Lebesgue) measurable have the same measure.

http://www.math.vanderbilt.edu/~peters10/rigidity.pdf
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In view of this result, Tarski [9] formulated the following problem, known as
Tarski’s circle squaring: is the unit disk in R2 equidecomposable to a square of
the same area? Some 65 years later, Laczkovich [6] showed that Tarski’s circle
squaring is possible. In fact, his main result (coming from the papers [6, 7, 8]) is
much more general and stronger. In order to state it, we need some definitions.

We call two sets A,B ⊆ Rk equivalent (and denote this by A
Tr

∼ B) if they are
equidecomposable using translations, that is, there are partitions A = A1∪· · ·∪Am

and B = B1 ∪ · · · ∪ Bm, and vectors v1, . . . ,vm ∈ Rk such that Bi = Ai + vi for
each i ∈ {1, . . . ,m}. Let λ = λk denote the Lebesgue measure on Rk. The box (or
grid, or upper Minkowski) dimension of X ⊆ Rk is

∆(X) := k − lim inf
ǫ→0+

logλ
(
{x ∈ Rk | dist(x, X) ≤ ǫ}

)

log ǫ
,

where dist(x, X) means e.g. the L∞-distance from the point x to the set X . Let
∂X denote the topological boundary of X . It is easy to show that if A ⊆ Rk

satisfies ∆(∂A) < k, then A is measurable and, furthermore, λ(A) > 0 if and only
if A has non-empty interior. With these observations, the result of Laczkovich can
be formulated as follows.

Theorem 2 (Laczkovich [6, 7, 8]). Let k ≥ 1 and let A,B ⊆ Rk be bounded sets
with non-empty interior such that λ(A) = λ(B), ∆(∂A) < k, and ∆(∂B) < k.
Then A and B are equivalent.

In the same work Laczkovich asked whether Tarski’s circle squaring is possible
with measurable pieces. Similar questions have been asked about other classical
equidecomposition results. For example, the following “measurable version” of
Hilbert’s third problem has been asked by Wagon [10, Question 3.14]: is a regular
tetrahedron in R3 measurably equidecomposable to a cube of the same volume?

There are various results which imply the impossibility of measurable equide-
compositions when additional regularity of the pieces is requested. Examples in-
clude Dehn’s theorem [2] solving Hilbert’s third problem and the result of Dubins,
Hirsch and Karush [3] which shows that Tarski’s circle squaring is not possible
with Jordan domains.

On the other hand, until recently there have been very few general positive re-
sults on the existence of measurable equidecompositions, although a related prob-
lem of measurable equidecompositions with countably many parts was studied
already by Banach and Tarski [1, Théorème 42]. For more historical information
we recommend Wagon’s monograph [10].

In [4, 5] we give new criteria for the existence of a measurable equidecomposi-
tion. The first one states that under the same assumption as in Theorem 2 one
can additionally require that all parts are measurable.

Theorem 3 (Grabowski, Máthé and Pikhurko [4]). Let k ≥ 1 and let A,B ⊆ Rk

be bounded sets with non-empty interior such that λ(A) = λ(B), ∆(∂A) < k, and

∆(∂B) < k. Then A
Tr

∼ B with parts that are measurable.
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The above theorem implies that measurable Tarski’s circle squaring is possible,
and settles Wagon’s measurable version of Hilbert’s third problem.

In [5] we give an equidecomposability criterion for k ≥ 3. The most important
feature of it when compared to Theorem 3 is that for many sets A ⊆ Rk, k ≥ 3, we
are able to completely characterize sets B which are measurably equidecomposable
to A. Furthermore, we do not need to assume anything about the boundaries of
the sets.

We say that a set A ⊆ Rk covers another set B if B is contained in the union
of finitely many sets congruent to A.

Theorem 4 (Grabowski, Máthé and Pikhurko [5]). Let k ≥ 3, let A ⊆ Rk be a
bounded measurable set which covers a non-empty open set. Then a set B ⊆ Rk is
measurably equidecomposable to A if and only if A and B cover each other and B
is a measurable set of the same measure as A.

Note that both covering each other and having equal measures are obvious
necessary conditions for the existence of a measurable equidecomposition between
A and B.

A result analogous to Theorem 4 is proved in [5] for equidecompositions of sets
on the unit sphere Sk−1, k ≥ 3, and in R2, but in the latter case only when we allow
moving the pieces by arbitrary measure-preserving affine transformations. These
results follow from a more general theorem, in which the space Rk is replaced by
a general measure space Ω on which a group Γ acts in a measure-preserving way.
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Benjamini-Schramm convergence of sequences of arithmetic
3-manifolds

Mikolaj Fraczyk

Let G be a semisimple real Lie group and K its maximal compact subgroup. Write
X for the symmetric space G/K. A (finite volume) locally symmetric space is an
orbifold of the form Γ\X where Γ is a lattice in G. For a real number R > 0
the R-thin part of a locally symmetric space Γ\X is denoted by (Γ\X)≤R and
defined as the set of points x ∈ Γ\X such that the ball of radius R around x is not
isometric to the ball of radius R in X . We say that a sequence of finite volume
locally symmetric spaces (Γi\X) converges Benjamini-Schramm (B-S) to X if for
every R > 0

lim
i→∞

Vol((Γi\X)<R)

Vol(Γi\X)
= 0.

The notion of Benjamini-Schramm convergence for locally symmetric spaces was
studied in [1] where it was shown ([1, Theorem 1.5]) that if G is a higher rank
group with property (T ) then for every sequence of pairwise non-conjugate lattices
(Γi) the orbifolds Γi\X converge B-S to X .

In my talk we take a closer look at sequences of arithmetic lattices, with par-
ticular focus on the case G = SL(2,R) or SL(2,C). One can ask what are the
reasonable conditions that we should impose on a sequence of arithmetic lattices
(Γi) in order to guarantee that Γi\X converge B-S to X . The example of cyclic
covers of a compact arithmetic hyperbolic surface shows that, in general, arith-
meticity is not enough. On the other hand [1, Theorem 1.12] tells us that if (Γi)
is a sequence of pairwise nonconjugate congruence lattices contained in a single
arithmetic lattice Γ0 then (Γi\X) converges to X . This suggests the following
conjecture

Conjecture 1. Let G be a semisimple real Lie group and let (Γi) be a sequence
of pairwise nonconjugate congruence arithmetic lattices in G. Then the sequence
(Γi\X) converges Benjamini-Schramm to X.

Similar statement was conjectured by Jean Raimbault in [2] but only for lat-
tices defined over number fields of uniformly bounded degrees. In this direction
he proved ([2, Theorem A]) that the Conjecture 1 holds for every sequence of con-
gruence arithmetic latices in SL(2,C) defined over a quadratic or cubic extension
of Q. It follows in particular that for G = SL(2,C) Conjecture 1 holds for non
uniform lattices, because every such lattice is defined over a quadratic extension
of Q. For G = SL(2,R) or SL(2,C) I have shown the following:

Theorem 2. Fix a positive real R. Let G = SL(2,R) or G = SL(2,C). Write X
for H2 in the first and for H3 in the second case. Then, for any uniform, torsion
free congruence arithmetic lattice Γ in G

Vol((Γ\X)<R) ≤ CRVol(Γ\X)1−δ,

where δ is an absolute positive constant and CR depends only on R.
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It is known that for any N > 0 there are only finitely many arithmetic lattices of
covolume bounded by N so we deduce from Theorem 2 that the Conjecture 1 holds
for G = SL(2,R), SL(2,C) and sequences of torsion free, congruence arithmetic
lattices.
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Measurable tilings of free pmp actions of amenable groups

Andrew Marks

(joint work with Clinton Conley, Steve Jackson, David Kerr, Brandon Seward,
and Robin Tucker-Drob)

As part of their development of the ergodic theory of amenable groups, Ornstein
and Weiss proved that every free pmp action of an amenable group can be qu-
asitiled [3]. In their paper, they pose the problem of whether these quasitilings
can be improved to tilings. Indeed, even the purely algebraic question of whether
every amenable group admits a Følner sequence all of whose elements can tile the
group remains open.

It was recently shown by Downarowicz, Huczek, and Zhang that if Γ is a finitely
generated amenable group, and ǫ > 0, then Γ admits a partition into ǫ-Følner sets
such that up to translation, only finitely many distinct parts appear [1]. We estab-
lish a strengthening of this result for measurable tilings of free measure preserving
actions of amenable groups. Our proof uses a measurable matching lemma of
Lyons and Nazarov [2] that we adapt to an asymmetric context.
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Universal L2-torsion, Twisted L
2-Euler characteristic, Thurston norm

and polytopes

Wolfgang Lück

(joint work with Stefan Friedl)

We want to investigate and compare the following four invariants of 3-manifolds
which are of rather different nature: the Thurston norm and polytope, see [10]
the degree of higher order Alexander polynomials in the sense of Cochrane and
Harvey, see [1, 6], the degree of the L2-torsion function, see [2, 3, 9], and a version
of the L2-Euler characteristic, see [4]. We explain that the L2-Euler characteristic
encompasses the degree of higher order Alexander polynomials. We relate all these
invariants by inequalities and equalities. In particular we show that they agree
for the universal coverings and (for many other coverings) of a compact connected
irreducibel orientable 3-manifold with infinite fundamental group and empty or
toroidal boundary. We will explain universal L2-torsion which encompasses all the
invariants above and is based on localizations techniques applied to group rings
and K1. Some of these results have been conjectured in [2]. For basic introduction
to L2-invarians we refer to [8].

Behind all these invariants is the universal L2-torsion ρ2u(M ;N (G)) ∈ Whw(G)
of a G-covering X → X of a finite connected CW -complex X such that all its L2-

Betti numbers b
(2)
n (X;N (G)) vanish, see [5]. Here Whw(G) is a variation of the

classical Whitehead group, where one considers instead of matrices A ∈Mn,n(ZG),
which are invertible, those ones, for which the induced G-operator rA : L2(G)n →
L2(G)n is a weak isomorphism.

In the sequel we assume that the torsionfree group G satisfies the Atiyah Con-
jecture about the integrality of L2-Betti numbers. This is for instance the case if
G is residually torsionfree elementary amenable or the fundamental group of an
irreducible 3-manifold which is not a closed graph manifold.

If D(G) is the division closure of ZG in the algebra U(G) of operators affiliated
to the group von Neumann algebra N (G), then D(G) is a skewfield and there is
an isomorphism, see [7],

Whw(G) ∼= Wh(D(G)) = K1(D(G))/{±g | g ∈ G}.

The Dieudonne determinant yields an isomorphism

Whw(D(G)) ∼= D(G)×/[D(G)×,D(G)×] · {±g | g ∈ G}.

Let P(H1(G;R)) be the Grothendieck group of the abelian monoid of polytopes
in H1(G;R) under the Minkowski sum. We define a group homomorphism

P ′ : D(G)× → P(H1(G;R)).

From these data we obtain a homomorphism

P : Whw(G) → P(H1(G;R)).

Hence we can consider P (ρ
(2)
u (X)) ∈ P(H1(G;R)).

One of our main theorems says
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Theorem. Let M be a compact connected orientable irreducible 3-manifold
with infinite fundamental group π and empty or incompressible torus boundary
which is not a closed graph manifold.

Then there is a virtually finitely generated free abelian group Γ, and a factoriza-

tion π1(M)
α
−→ Γ

β
−→ H1(M)f := H1(M)/ tors(H1(M)) of the canonical projection

into epimorphisms such that the following holds:

For any factorization of α : π → Γ into group homomorphisms π
µ
−→ G

ν
−→ Γ for

a torsionfree group G satisfying the Atiyah Conjecture the composite

Whw(G)
P
−→ P(H1(G;R))

P(H1(β◦ν;R)
−−−−−−−−→ P(H1(M ;R))

sends ρ
(2)
u (M ;N (G)) to the class of the Thurston polytope of M .

Notice that it applies in particular to the universal covering, i.e., G = π1(M),

µ = id and M = M̃ .
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Metabelian groups with large return probability

Lison Jacoboni

Let G be a finitely generated group and µ be a symmetric probability measure on
G with generating support. We study the return probability to the origin of the
random walk on G, driven by µ. The simple random walk on a Cayley graph of
G provides a fundamental example.

A theorem of Pittet and Saloff-Coste ([5]) asserts that any two symmetric and
finitely supported probability measures with generating support give rise to equiv-
alent return probabilities. Let p2n denote this invariant of the group. Here, we
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say that two monotone functions ϕ, ψ are equivalent, denoted by ϕ ∼ ψ, if there
exists positive constants c and C such that Cϕ(Ct) ≤ ψ(t) ≤ cϕ(ct).

Understanding how the random walk behaves allows to have insight into the
large-scale geometry of the group. Indeed, Kesten ([4]) proved that non-amenable
groups are characterized by the fact that they behave the worst, for their return
probability decays exponentially fast. From another side, a nilpotent group, which
has polynomial growth, behaves like Zd, where d is the degree of the growth
(Varopoulos [6]). Hebisch and Saloff-Coste ([2]) proved that if G has exponential
growth, then

p2n - exp(−n
1
3 ).

Lamplighter groups F ≀ Z, with F finite, polycyclic groups, discrete solvable
subgroups of Lie groups, solvable Baumslag-Solitar and solvable groups of finite
Prüfer rank (a group has finite Prüfer rank if there exists an integer r such that
any finitely generated subgroup can be generated by at most r elements) achieve
this bound whenever they have exponential growth.

From another side, there are examples of amenable groups with a smaller re-
turn probability. For example, if F is finite, the wreath product F ≀ Zd satisfies

pF ≀Zd

2n ∼ exp(−n
d

d+2 ). This example illustrates the fact that among the simplest
solvable groups, namely the metabelian ones, there exist groups whose return prob-
ability exponent is as close as one may want to 1, the return probability exponent
of non amenable groups.

Question 1. Which finitely generated amenable groups of exponential growth sat-

isfies p2n ∼ exp(−n
1
3 )?

In [3], we answer this question in the case of metabelian groups. Let Bd be

the free metabelian group of rank d and B
(p)
2 = Bd/[Bd, Bd]p denote the free

p−metabelian group of rank d. We prove :

Theorem 2. Let G be a finitely generated metabelian group. Then, either

pG2n % exp(−n
1
3 ),

or G contains one of the three following groups

Z ≀ Z, (Z/pZ) ≀ Z2, or B
(p)
2 , for some prime p.

A metabelian group G is an extension of an abelian group Q by another abelian
group A :

A →֒ G։ Q.

The subgroup A carries a natural structure of ZQ−module, coming from the action
by conjugation. We show that the Krull dimension of this module, when non-zero,
does not depend on the exact sequence representing G. We call it the Krull
dimension of G, denoted Krull(G).

It is a special case of the definition of Krull dimension for groups, introduced
in [3], by generalizing the usual Krull dimension for modules. We define Krull(G)
to be the deviation of the poset of normal subgroups of G. Note that it can be
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an ordinal number and even that this poset may not have a deviation : in this
last case, we say that the group does not admit a Krull dimension. A necesary
condition for a group to admit a Krull dimension is to satisfy the maximal property
on normal subgroups.

For metabelian groups, Krull(G), satisfies the following characterization :

i) If the Krull dimension of the ZGab−module [G,G] is positive, then

Krull(G) = KrullZGab
([G,G])).

ii) Otherwise, when the module [G,G] has Krull dimension zero, G has di-
mension 0 as well if it is finite, and has dimension 1 if it is infinite.

Studying the impact of dimension on the structure of the group allows one to
find interesting subgroups.

Proposition 3. Let G be a metabelian group of Krull dimension k.

If k ≥ 2, then G contains either Z ≀ Z or Z/pZ ≀ Z2 or B
(p)
2 , for some prime p.

Theorem 2 now rephrases as :

Theorem 4. Let G be a finitely generated metabelian group. Then,

Krull(G) ≤ 1 ⇔ pG2n % exp(−n
1
3 ).

One implication is given by the previous proposition. To produce lower bounds
for the return probability, we construct sequences of Følner pairs so as to use [1].
This is possible once we can reduce to the split case. To this end, we prove a
variation of a theorem by Kaloujinine and Krasner.

Theorem 5. Every finitely generated metabelian group, which is the extension of
a finitely generated group Q by another abelian group, can be embedded inside a
finitely generated split metabelian group B⋊Q, of the same Krull dimension, with
B abelian.

More precisely, the construction of Følner pairs runs in every dimension and we
prove :

Theorem 6. Let G be a metabelian group of Krull dimension k. Assume that
[G,G] is torsion. Then,

pG2n % exp(−n
k

k+2 ).

If the group splits, pG2n ∼ exp(−n
k

k+2 ).
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On Følner sets in topological groups

Friedrich Martin Schneider

(joint work with Andreas Thom)

The study of amenable (discrete) groups benefits from a vast variety of possible
viewpoints – ranging from analytic to combinatorial – that allow for numerous
approaches to problems and give rise to many surprising applications. Among
the most important and fundamental amenability criteria is Følner’s theorem [1],
which characterizes amenability by the existence of almost invariant finite subsets.
In [4] we extend Følner’s insight to the realm of topological groups and in turn
develop a new, more combinatorial perspective on topological amenability.

Our topological version of Følner’s criterion is in terms of topological matchings.
To be more precise, let B = (X,Y,R) be a bipartite graph, i.e., a triple consisting
of two finite sets X and Y and a relation R ⊆ X × Y . A matching in B is an
injective map ϕ : D → Y with D ⊆ X and (x, ϕ(x)) ∈ R for all x ∈ D. We denote
by µ(B) the maximum cardinality of (the domain of) a matching in B, i.e.,

µ(B) := sup{|dom(ϕ)| | ϕ matching in B}.

Given an identity neighborhood U in a topological group G along with finite
subsets E,F ⊆ G, let us consider the bipartite graph

B(E,F, U) := (E,F,R(E,F, U))

with the relation defined by

R(E,F, U) := {(x, y) ∈ E × F | yx−1 ∈ U},

and let µ(E,F, U) := µ(B(E,F, U)).
The following theorem from [4] may be regarded as a topological version of

Følner’s amenability criterion for discrete groups [1]. Recall that a topological
group G is amenable if every continuous action of G by affine homeomorphisms
on a non-void compact convex subset of a locally convex topological vector space
has a fixed point, or equivalently, if the space of bounded uniformly continuous
real-valued functions on G admits a left-invariant mean.

Theorem 1 (Theorem 4.5 in [4]). Let G be a Hausdorff topological group. The
following are equivalent.

(1) G is amenable.
(2) For every θ ∈ (0, 1), every finite subset E ⊆ G, and every identity neigh-

borhood U in G, there exists a finite non-empty subset F ⊆ G such that

∀g ∈ E : µ(F, gF, U) ≥ θ|F |.
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This result has a number of non-trivial consequences: as applications, we obtain
a topological version [4, Corollary 5.12] of Whyte’s geometric solution to von
Neumann’s problem [5] and provide an affirmative answer [4, Theorem 6.1] to a
question posed by Rosendal [2, Problem 40] concerning the coarse geometry of
amenable topological groups. The theorem above also improves on some of our
earlier work [3, Theorem 6.1].
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Infinite presentability and relation range of groups

Adrien Le Boudec

(joint work with Yves Cornulier)

If G is a group and S a generating subset, a relation in G is an element of the
kernel of the natural map FS → G, where FS is the free group over S. The relation
range of a finitely generated group, introduced by Bowditch in order to distinguish
a continuum of quasi-isometry classes of small cancellation groups [1], is the set
of lengths of new relations in the group. Here new relations means relations that
are not consequences of relations of smaller length. Up to a natural equivalence
relation, the relation range does not depend on the choice of a finite generating
subset, and is actually a quasi-isometry invariant.

In joint work with Yves Cornulier, we investigate the class of groups whose
relation range is as large as possible, called densely related groups. These are
groups satisfying a strong negation of finite presentability, in the sense that new
relations appear at all scales. Any non-trivial standard wreath product is densely
related. The Grigorchuk group of intermediate growth also is an example of densely
related group. A group that is not densely related is called lacunary presented.

Theorem 1. If G has (at least) one simply connected asymptotic cone, then G is
lacunary presented.

For example any lacunary hyperbolic group (group with one asymptotic cone a
real tree) is lacunary presented. The class of lacunary presented groups is therefore
much larger than the class of finitely presented groups, and enjoys various stability
properties. For instance it is stable under taking direct products with finitely
presented groups.
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For several classes of finitely generated groups, we show that a group that is
not finitely presented must be densely related.

Theorem 2. Let G be a finitely generated group. Assume that G is metabelian; or
that G is nilpotent-by-cyclic. Then G is either finitely presented or densely related.

Recall that it follows from Bieri-Strebel theorem that a (non virtually cyclic)
finitely generated group G that is (locally finite)-by-cyclic is infinitely presented
[3]. There is no hope to obtain any restriction on the relation range of a (locally
finite)-by-cyclic group in full generality. Nevertheless, we show that under the
additional assumption that the group satisfies a law, the relation range is forced
to be as large as possible.

Theorem 3. Let G be a finitely generated group that is (infinite locally finite)-
by-cyclic. If G satisfies a law, then G is densely related. In particular G has no
simply connected asymptotic cone.

This contrasts with a construction due to Olshanskii-Osin-Sapir, who gave ex-
amples of lacunary hyperbolic groups which are (locally finite)-by-cyclic [2].
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C∗-simplicity for discrete groups

Emmanuel Breuillard

(joint work with Mehrdad Kalantar, Matthew Kennedy and Narutaka Ozawa)

A discrete group is said to be C∗-simple if the reduced C∗-algebra of the group is
simple, and is said to have the unique trace property if the reduced C∗-algebra has
a unique trace. The problem of which groups have these properties captured the
interest of mathematicians in 1975 with Powers’ proof [8] that the free group on
two generators is both C∗-simple and has the unique trace property. Since then
the problem has received a great deal of attention, and many more examples of
groups with these properties have been found.

The following theorem gives a necessary and sufficient condition for the C∗-
simplicity of a group.

Theorem 1 ([6]). A discrete group is C∗-simple if and only if it has a topologically
free boundary action.

This theorem was established using Hamana’s theory of injective envelopes of
G-operator systems. In the talk we presented a new, more direct, proof of this
result.
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It turns out that it is often possible to prove the existence of a topologically
free boundary action for a given group without actually having to construct one.
This makes Theorem 1 useful in practice for establishing C∗-simplicity.

Day ([2], Lemma 4.1) showed that every discrete groupG has a largest amenable
normal subgroup, called the amenable radical of G, that contains every amenable
normal subgroup of G.

Our results show the C∗-simplicity of a large class of groups.

Theorem 2 ([1]). A discrete group with trivial amenable radical having either
non-trivial bounded cohomology or non-vanishing ℓ2-Betti numbers is C∗-simple.

The next result implies the C∗-simplicity of (torsion-free) Tarski monster groups
and free Burnside groups B(m,n) for m ≥ 2 and n odd and sufficiently large ([7]).

Theorem 3 ([1]). A discrete group with only countably many amenable subgroups
is C∗-simple if and only if its amenable radical is trivial.

The next result provides a negative answer to [5], Question (Q).

Theorem 4 ([1]). Let G be a discrete group and let N < G be a normal subgroup.
Then G is C∗-simple if and only if both N and CG(N) are C∗-simple, where
CG(N) denotes the centralizer of N in G. In particular, C∗-simplicity is closed
under extension.

The methods typically used to establish the C∗-simplicity of a group often also
imply that the group has the unique trace property. However, it has been an
open problem for some time to determine if this is true in general. We prove that
this question has an affirmative answer and, more generally, completely settle the
problem of which groups have the unique trace property.

Theorem 5 ([1]). A discrete group has the unique trace property if and only if
its amenable radical is trivial. In particular, every C∗-simple group has the unique
trace property.

It is well known that if G is C∗-simple, then the amenable radical of G is
necessarily trivial. Le Boudec [3] has recently constructed the first examples of
groups showing that the converse is not true, thus settling a longstanding problem.
His proof utilizes some of the results presented above.
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Subgroup dynamics and C∗-simplicity of groups of homeomorphisms

Nicolás Matte Bon

(joint work with Adrien Le Boudec)

The talk was based on the preprint [4] joint with Adrien Le Boudec, in which we
study the dynamics if the conjugation action on the Chabauty space of a class of
groups of homeomorphisms, and give applications to C∗-simplicity.

A countable group G is said to be C∗-simple if its reduced C∗-algebra is simple.
There is a considerable literature on the problem of deciding which groups have
this property. Recently Kalantar and Kennedy [2] showed the following topological
dynamical characterisation of C∗-simplicity.

Theorem 1 (Kalantar–Kennedy). A group G is C∗-simple if and only if there
exists a topologically free G-boundary. Equivalently if G acts freely on its universal
Furstenberg boundary.

In some cases, a topologically free boundary action may be difficult to identify
concretely. For this reason it is useful to have indirect criteria to establish its
existence. To this end, consider the space Sub(G) of all subgroups of G, endowed
with the Chabauty topology. This topology makes Sub(G) a compact space, on
which G acts continuously by conjugation. A uniformly recurrent subgroup (URS
for short) is a closed mimimal G-invariant subset of Sub(G). Kennedy showed the
following criterion in [3]

Theorem 2 (Kennedy). A countable group is C∗-simple if and only if it admits
no non-trivial amenable URS.

After outlining a short argument to deduce this theorem directly from Theorem
1, I explained the following theorem, which gives a way to study URS’s in a class
of groups of homeomorphisms.

Theorem 3 (LB–MB). Let G be a countable group acting faithfully by homeo-
morphisms on a Hausdorff space X. For every open set U ⊂ X denote by GU

its rigid stabiliser in G, i.e. the point-wise fixator of X \ U . For every subgroup
H ≤ G, one of the following possibilities holds.

(1) The closure of the conjugacy class of H in Sub(G) contains the trivial
subgroup {1}.

(2) There exists a non-empty open set U ⊂ X such that H admits a finite
index subgroup of GU as a subquotient.

In particular this provides a new sufficient condition for C∗-simplicity.
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Corollary 4 (LB–MB). Under the same assumptions, assume that for every non-
empty open set U ⊂ X the rigid stabilizer GU is non-amenable. Then G is C∗-
simple.

This criterion implies the C∗-simplicity of many groups that are naturally de-
fined by an action by homeomorphisms, for which previously known criteria failed.
Among its applications I mentioned the C∗-simplicity of Thompson’s group V is
C∗, of a class of groups of piecewise-projective homeomorphisms, and of non-
amenable branch groups.

Assume that one is given a G-boundary X which is not topologically free.
What can be said on the C∗-simplicity of G? Breuillard–Kalantar–Kennedy–
Ozawa [1] showed that if point-stabilisers are amenable, then G is not C∗-simple.
The converse does not hold. I explained how Corollary 4 implies that the converse
does hold under the additional assumptions.

Corollary 5. Let X be a faithful extreme G-boundary (i.e. the action is minimal
and extremely proximal). Then G is C∗-simple if and only if either the action on
X is topologically free, or its the point-stabilisers are non-amenable.

As an example of an extreme boundary action, consider Thompson’s group T
acting on the circle. Then the above corollary shows that T is C∗-simple if and
only if Thompson’s group F is non-amenable, in which case it is also C∗ simple
by Corollary 4 (one implication was already obtained by Haagerup and Olesen).

To conclude the talk, I mentioned how using Theorem 3 as a key tool, we
obtained a complete classification of URS’s of Thompson’s groups:

Theorem 6 (LB–MB). Consider Thompson’s groups F < T < V . Then

(1) the only URS’s of the group F are its normal subgroups;
(2) the only URS’s of the group T are {1}, {T } and the stabiliser URS arising

from its standard action on the circle;
(3) the only URS’s of the group V are {1}, {V } and the stabiliser URS arising

from its standard action on the Cantor set.

This yelds a rigidity property for their minimal actions on compact spaces:

Corollary 7 (LB–MB). (1) Every faithful, minimal action of the group F on
a compact space is topologically free.

(2) A minimal action of the group T on a compact space is either topologically
free or factors onto its standard action on the circle.

(3) A minimal action of the group V on a compact space is either topologically
free or factors onto its standard action on the Cantor set.
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On sofic approximations of Property (T) groups

Gábor Kun

A sequence of graphs is locally convergent if for every r the isomorphism class
of a rooted r-ball centered at a vertex chosen uniformly at random converges in
distribution. Our main result is the proof of Bowen’s following conjecture [2].

Theorem 1. Let Γ be a countably infinite Property (T) group and {Gn}∞n=1 a
sequence of finite, bounded degree graphs that locally converges to a Cayley graph
of Γ. Then there exists a γ > 0 and a sequence of finite d-regular graphs {G′

n}
∞
n=1

such that

(1) V (Gn) = V (G′
n)

(2) limn→∞
|E(Gn)∆E(G′

n)|
|V (Gn)|

= 0

(3) For every n the graph G′
n is a vertex-disjoint union of γ-expander graphs.

A group is called sofic if any of its labeled Cayley graphs admits a local approx-
imation by finite labeled graphs. Sofic groups were introduced by Gromov [6], see
also Weiss [8]. Many classical conjectures are proved for sofic groups: Gottschalk’s
conjecture (Gromov [6]), Kaplansky’s direct finiteness conjecture (Elek, Szabó [3])
and Connes’ embedding conjecture (Elek, Szabó [4]). It is not known if every
group is sofic, but it is generally believed that non-sofic groups exist.

Our theorem is the first one for sparse graphs that implies quasirandom global
structure under local conditions. The notion of quasirandomness is at the heart of
Szemerédi’s regularity lemma and the limit theory of dense graphs: These rely on
the fact that quasirandomness of dense graphs can be implied by local conditions.
See the book of Lovász for the details [7].

Graphs with large girth may or may not be close to a vertex-disjoint union
of expanders. Hence graphs close to a vertex-disjoint union of expanders (or an
expander) can not be characterized by local conditions. However, we can give a
characterization in terms of the Markov operator. M denotes the Markov operator,
and ‖∗‖ denotes the L2 norm with respect to the uniform probability distribution.

Theorem 2. Let {Gn}∞n=1 be a sequence of d-regular graphs. Then the following
are equivalent:

(1) There exists an ε > 0 such that for every δ > 0 for all, but finitely many n
and for every function f : V (Gn) → [0; 1] the inequality ‖M2f −Mf‖ ≤
(1 − ε)‖Mf − f‖ + δ holds.

(2) There exists a γ > 0 and a sequence of d-regular graphs {G′
n}

∞
n=1 such that

V (Gn) = V (G′
n), limn→∞

|E(Gn)∆E(G′

n)|
|V (Gn)|

= 0 and every G′
n is a vertex-

disjoint union of γ-expanders.
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Note that if we had no δ in (1) then Gn would be a vertex-disjoint union of
expander graphs with second eigenvalue less than (1 − ε).

Decompositions of graphs into graphs with good expansion properties is one
of the main directions to attack Khot’s Unique Games Conjecture, see [1] for
the best known algorithm. Sequences of graphs that are essentially disjoint union
of expanders have a much better decomposition, but this holds for special graphs
only.

The first theorem gives an ergodic decomposition theorem for certain non-
separable probability measure spaces with an invariant group action: Given a
sequence of finite labeled graphs that locally approximates the labeled Cayley
graph of Γ, the ultraproduct of these graphs will admit an almost free, measure-
preserving Γ-action. The support of almost every ergodic measure in the decom-
position of the ultraproduct space will be almost an ultraproduct of expanders.
Hence these supports can be disjoint in the decomposition. See [2, 5] on ultra-
products of graphs.
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The base change in the strong Atiyah and the Lück approximation
conjectures

Andrei Jaikin-Zapirain

The strong Atiyah conjecture arised from a question of M. F. Atiyah [1, page 72]
about whether L2-Betti numbers of a manifold Y with a cocompact proper G-
action can be irrational. In [2] J. Dodziuk reformulated the Atiyah question in a
question about CW -complexes of finite type and this problem received the name
of the Atiyah conjecture. The formulation of the strong Atiyah conjecture, that
refined the previous one, is due to W. Lück and T. Schick.

Let F be a free finitely generated group, freely generated by a finite set S, and
N is its normal subgroup. We denote the quotient group F/N by G. Let K be
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a subfield of C. For a countable set X , let l2(X) denote the Hilbert space with
Hilbert basis the elements of X ; thus l2(X) consists of all square summable formal
sums

∑
x∈X axx with ax ∈ C and inner product

〈
∑

x∈X

axx,
∑

y∈X

byy〉 =
∑

x∈X

axbx.

The group G (and so F ) acts by the multiplications on the left and right sides
on l2(G). The right action of G on l2(G) extends to an action of C[G] on l2(G)
and so we obtain that the group algebra C[G] acts faithfully as bounded linear
operators on l2(G).

A finitely generated Hilbert G-module is a closed subspace V ≤ (l2(G))n,
invariant by the left action of G. We put

dimG V :=

n∑

i=1

〈projV 1i,1i〉(l2(G))n ,

where 1i is the element of (l2(G))n having 1 in the ith entry and 0 in the rest of
the entries. The number dimG V is the von Neumann dimension of V .

Let A ∈ Matn×m(C[F ]) be a matrix over C[F ]. By right multiplication, A
induces a bounded linear operator φAG : (l2(G))n → (l2(G))m. Our aim is to
understand properties of kerG φ

A
G. Our first motivation is the strong Atiyah con-

jecture.

Conjecture 1 (The strong Atiyah conjecture with coefficients in K for a group
G). Assume that there exists an upper bound for the orders of finite subgroups of
G and let lcm(G) be the least common multiple of these orders. Then for every
A ∈ Matn×m(K[F ]), we have that

dimG kerφAG ∈
1

lcm(G)
Z.

In particular, the conjecture predicts that ifG is torsion free, then dimGk
kerφAGk

is an integer. This is known to imply the Kaplansky zero-divisor conjecture for
K[G].

J. Dodziuk at al. [3] proved Conjecture 1 for groups from the class D with
coefficients in Q̄, the field of algebraic numbers. The class D is the smallest non-
empty class of groups such that:

(1) If G is torsion-free and A is elementary amenable, and we have a projection
p : G → A such that p−1(E) ∈ D for every finite subgroup E of A, then
G ∈ D.

(2) D is subgroup closed.
(3) Let Gi ∈ D be a directed system of groups and G its (direct or inverse)

limit. Then G ∈ D.

The class D contains, for example, residually torsion-free solvable groups. The
proof of [3] uses the Lück approximation that we will introduce below.

It is a standard fact that if G satisfies the strong Atiyah conjecture, then a
subgroup H of G, satisfying lcm(H) = lcm(G), does. The question whether the
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strong Atiyah Conjectures holds for a group G if it holds for a subgroup of finite
index is a very delicate question. Some partial results were obtained in [8, 10].
Using these results the strong Atiyah conjectures with coefficients in Q̄ is proved
for Artin’s braid groups [8] and for finite extensions of fundamental groups of
compact special cube complexes [10].

In our first result we prove the strong Atiyah conjecture with arbitrary coeffi-
cients in all the cases that we have described above.

Theorem 2. Let G be a group belonging to on the following families

(1) the class D;
(2) Artin’s braid groups;
(3) finite extensions of fundamental groups of compact special cube complexes.

Then G satisfies the strong Atiyah conjecture with coefficients in C.

Now we introduce the Lück approximation conjecture.

Conjecture 3 (The Lück approxmation conjecture with coefficients in K for a
group G). Let F > N1 > N2 > . . . be a chain of normal subgroups of F with
the intersection N = ∩Ni. Put Gi = F/Ni and G = F/N . Then for every
A ∈ Matn×m(K[F ]),

lim
k→∞

dimGk
kerφAGk

= dimG kerφAG.

W. Lück gave a proof of the conjecture in the case when {Gk} are finite groups
and A ∈ Matn×m(Q[F ]) ([9]). G. Elek and E. Szabó [5] observed that Lück’s
method can be applied in a more general situation when the groups {Gk} are
sofic. In [3] Dodziuk at al. developed a method that allowed to prove the Lück
approximation conjecture with coefficients in Q̄ when {Gk} are in D. Combining
the ideas of [5] and [3] one can unify the results of these papers and show that the
conjecture holds when {Gk} are sofic and the coefficients of A are in Q̄.

At this moment there are only two cases for which the Lück approximation
conjecture is known to be true in full generality when the coefficients are arbitrary:
when G is amenable by a result of G. Elek [4], and when G is free by a result of
A. Jaikin-Zapirain [6].

Our second theorem is the following.

Theorem 4. The Lück approxmation conjecture with arbitrary coefficients holds
if G belongs to the class D and Gi are sofic.

Our main tool is the theory of epic ∗-regular R-rings. This new tool allows us to
reformulate Conjecture 3 in a pure algebraic way and use the algebraic methods in
the proofs of Theorems 2 and 4. The details of the proofs of the presented results
can be found in [7].
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Subadditive convergence and cocycle entropy

Felix Pogorzelski

(joint work with Amos Nevo)

The classical entropy theory for point measure preserving (p.m.p.) Z-actions on
probability spaces goes back to groundbreaking work of Kolomogorov and Sinai
from the late 50ies, cf. [Ko58, Ko59, Si59]. There, the notion of measure en-
tropy was defined via subadditive convergence lemmas along suitable averaging
sequences. This method can be applied in higher generality for p.m.p. actions of
countable, amenable groups. However, there is no immediate extension to the non-
amenable world. In fact, due to some phenomena which are absent for amenable
groups it was a long-standing question in the community whether a meaningful
entropy theory for actions of non-amenable groups can exist. The fundamental de-
velopments of sofic entropy [Bo10, KL11, KL13, Ke13] for sofic groups and Rokhlin
entropy [Se15, Se16] for general countable groups show that in fact, the answer to
this question is positive.

In a project with Amos Nevo [NP16], we put forward a new notion of entropy,
called cocycle entropy, for p.m.p. actions of arbitrary countable groups. Using cer-
tain cocycles defined via hyperfinite, p.m.p. measurable equivalence relations, we
obtain entropy values via subadditive convergence theorems. This and the valid-
ity of a corresponding Shannon-McMillan-Breiman theorem indicate that cocycle
entropy is the natural extension of the Kolmogorov-Sinai approach.

The first part of the talk aims at explicating the situation for the free group
F2 on two generators. The action of this group on its Gromov boundary (∂F2, ν),
endowed with a suitable probability measure gives rise to the so-called synchronous
tail relation R ⊂ ∂F2 × ∂F2. The latter equivalence relation is measurable with
countable fibers. Further, it is p.m.p. and hyperfinite in the sense of [CFW81], i.e.
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the fibers of equivalent points are exhausted by an increasing sequence (Rn) of
finite equivalence classes which are uniformly bounded in size for every n ∈ N. We
write R =

⊔∞
n=1 Rn. These observations for the free group motivate the following

generalized set (A) of assumptions.

(A) Let Γ be a countable group. Assume further that there is a measurable,
countable fiber, hyperfinite, p.m.p. equivalence relation R =

⊔∞
n=1 Rn over

some probability space (Y, ν) such that supy |Rn(y)| <∞ for each n ∈ N.
Suppose that Γ and R are linked via a measurable, class injective cocycle
α : R → Γ.

The assumptions (A) can be guaranteed to hold for vast classes of countable
groups such as hyperbolic groups or even Markov groups. For a probability space
(X,B, µ) and a partition P over X , we define the Shannon entropy as H(P) :=
−
∑

P∈P µ(P ) logµ(P ). Now cocycle entropy values for partitions are obtained
by the following theorem.

Theorem 1 (Nevo, P.). Assume (A). If Γ y (X,B, µ) is p.m.p., then for all
partitions P with H(P) <∞, the limit

hcocP = lim
n→∞

∫

Y

H
(∨

z∈Rn(y)
α(z, y)−1P

)

|Rn(y)|
dν(y)

exists and is independent of the choice of the sequence (Rn).

We state the theorem in the talk and give a rough outline of the proof. It is
based on a new Ornstein-Weiss lemma for subadditive functions defined on finite
subequivalence relations of R. Corresponding results for functions defined on finite
subsets in amenable groups can for example be found in [Gr99, LW00]. Given the
above theorem, we can define cocycle entropy for p.m.p. actions.

Definition 2 (Cocycle entropy). Given a class injective cocycle α : R → Γ satis-
fying (A), the cocycle entropy for a p.m.p. action Γ y X is defined as

hcocΓyX := inf
{
hcocP | P generating partition

}
.

It will be shown that in generic cases, cocycle entropy coincides with Rokhlin
entropy. In those situations, the dependence on the cocycle vanishes. The proof
of the following theorem is based on a nice theorem by Seward, cf. Theorem 1.5
in [Se16].

Theorem 3 (Nevo, P.). If Γ y (X,B, µ) is p.m.p. and free, then for all class
injective cocycles α : R → Γ satisfying (A), we have

hcocΓyX = hRok
ΓyX .

Under additional ergodicity assumptions, one also obtains a Shannon-McMillan-
Breiman theorem. The latter is concerned with the so-called information function
which is defined as follows. Given a finite partition P and x ∈ X , set J

(
P(x)

)
=
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− logµ(P ), where P ∈ P is the unique element such that P ∋ x. It is easily
verified that ∫

X

J
(
P(x)

)
dµ(x) = H(P).

We state the following theorem.

Theorem 4 (Nevo, P.). Assume (A) and suppose that Γ y (X,B, µ) is p.m.p. If
the extended equivalence relation R∗ ⊂ (X × Y )× (X × Y ) induced by the cocycle
α is ergodic and limn |Rn|/ log n = ∞, then for all finite partitions P, we have

lim
n→∞

J
(∨

z∈Rn(y)
α(z, y)−1P

)
(x)

|Rn(y)|
= hcocP , (µ⊗ ν)-a.e. (x, y).

The overall strategy of the proof is an extension of Lindenstrauss’ line of argu-
mentation in [Li01]. In the latter paper, the Shannon-McMillan-Breiman theorem
is proven for tempered Følner sequences in countable amenable groups.
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Indistinguishable clusters in random spanning forests

Adam Timar

It was proved by Lyons and Schramm that the infinite components of Bernoulli
percolation on a Cayley graph are indistinguishable. This means that any invari-
antly defined property either holds for every infinite component or for none of
them. Indistinguishability of clusters is the same as the ergodicity of the clus-
ter equivalence relation. The perhaps most important invariant random spanning
forests of a Cayley graph are the Uniform Spanning Forest (USF) and the Mini-
mal Spanning Forest (MSF). Benjamini, Lyons, Peres and Schramm asked whether
these forests satisfy indistinguishability.

We prove indistinguishability and 1-infinity laws for the components (clusters)
of random spanning forests of Cayley graphs, given that the forest has a property
that we call weak insertion tolerance, and it has a tree with infinitely many ends.

We say that a random forest of a unimodular quasitransitive graph G is weakly
insertion tolerant if for any {x, y} = e ∈ E(G), r nonnegative integer, and
configuration ω such that x and y are in different components, there exists an
f = f(ω, e, x, r) ∈ E(G) with dist(x, f) = r such that the following holds.
Fixing e, x, r and looking at f as a function of ω, it is measurable. If A is
such that P(A) > 0 and for almost every configuration in A, Cx 6= Cy , then
P(ω ∪ {e} \ {f} : ω ∈ A) > 0. Furthermore, an endpoint of f is in the same
component of ω ∩B(x, r) as x for almost every ω ∈ A.

We show that the Free and the Wired Uniform Spanning Forest (FUSF and
WUSF) and the Free and the Wired Minimal Spanning Forest (FMSF and WMSF)
satisfy weak insertion tolerance. See [3] for the definitions as well as the importance
and some main properties of these forests.

Theorem 1. Suppose that the FUSF and WUSF are different for some unimodular
quasitransitive graph G. Then the following hold:

(1) The FUSF has either 1 or infinitely many components.
(2) Every component of the FUSF has infinitely many ends.
(3) More generally, no two components of the FUSF can be distinguished by

any invariantly defined property.

The condition FUSF6=WUSF is equivalent to that there exist nonconstant har-
monic Dirichlet functions on G, or, in different terms, that the first L2 Betti
number is nonzero. This was shown by Benjamini, Lyons, Peres and Schramm,
see [1]. The previous theorem was proved, without any condition on the FUSF
and WUSF, by Hutchcroft and Nachmias, [2].

Theorem 2. Suppose that the FMSF and WMSF are different for some unimod-
ular quasitransitive graph G. Then the following hold:

(1) The FMSF has either 1 or infinitely many components.
(2) Every component of the FMSF has infinitely many ends.
(3) More generally, no two components of the FMSF can be distinguished by

any invariantly defined property.
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The condition FMSF6=WMSF is equivalent to pc < pu, as shown by Lyons,
Peres and Schramm. Here pc and pu are respectively the critical probability and
uniqueness critical probability for Bernoulli percolation on G. The condition pc <
pu is conjecturally equivalent to G being nonamenable, and is known to hold for
some Cayley graph of every nonamenable group. See [4] for more details.
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Harmonic functions and the log log law

Gady Kozma

(joint work with Gideon Amir, Itai Benjamini, Hugo Duminil-Copin, Ariel Yadin,
Tianyi Zheng)

For a finitely-generated groupG, a symmetric set of generators S and an increasing
function ω : N → R we say that hg(G) = ω (this might depend on S, but we
suppress it in the notation) if the following two conditions hold:

(1) Any function f : G → R which is harmonic and satisfies f(x) = o(ω(|x|))
is constant.

(2) There exists an f : G→ R harmonic, non-constant with f(x) = O(ω(|x|)).

Here and below, a function is harmonic with respect to a symmetric set of genera-
tors S if f(x) = 1

|S |
∑

s∈S f(xs). The notation |x| is the word length with respect

to the generators S.
We discussed the following results. hg((Z/2) ≀ Z) = x, hg((Z/2) ≀ Z2) = log x,

hg(Z ≀ Z) = x2/3(log log x)1/3 and versions for iterated wreath products. Further,
we discussed the structure of the space of harmonic function of minimal growth
and analogous results for positive harmonic functions.
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Borel Local Lemma

 Lukasz Grabowski

(joint work with Endre Csóka, András Máthé, Oleg Pikhurko,
Konstantinos Tyros)

We prove a Borel version of the local lemma, i.e. we show that, under suitable
assumptions, if the set of variables in the local lemma has a structure of a Borel
space, then there exists a satisfying assignment which is a Borel function. The
main tool which we develop for the proof, which is of independent interest, is a
parallel version of the Moser-Tardos algorithm which uses the same random bits
to resample clauses that are far enough in the dependency graph.

Let us start by recalling a version of the local lemma. The first version of the
local lemma was proved by Erdős and Lovász [3]. The version we present follows
from the subsequent improvement of Lovász (published by Spencer [9]). For more
historical context we refer to the classical exposition in [1].

Let G be a graph and let b be a natural number greater than 1. The elements
of the vertex set V (G) should be thought of as variables which can take values in
the set b = {0, 1, 2, . . . , b − 1}. Let R be a function whose domain is V (G) and
such that for x ∈ V (G) we have that R(x) is a set of b-valued functions defined
on the neighbourhood of x. Such a function R is an example of a local rule on G.
We say that f : V (G) → b satisfies R if for every x ∈ V (G) the restriction of f to
the neighbourhood of x belongs to R(x).

The local lemma gives a condition under which a satisfying assignment exists.

For x ∈ V (G) let p(x) be the probability of failure at x, i.e. p(x) := 1 − |R(x)|
bdeg(x) ,

where deg(x) is the degree of x. Let Rel(G) be the graph whose vertex set is V (G)
and such that there is an edge between x and y if and only if the neighbourhoods
of x and y are not disjoint (we allow x and y to be equal). Finally, let ∆ be the
maximal vertex degree in Rel(G).

Theorem 1 (Lovász’s Local Lemma [9]). If for all x ∈ V (G) we have p(x) < 1
e∆

then there exists f : V (G) → b which satisfies R.

In order to motivate our Borel version of Theorem 1, let us recall a classical
application of the local lemma to colorings of Euclidean spaces from [3]. A b-
coloring of Rn is a function f : Rn → b. We say that a set U ⊂ Rn is multicolored
with respect to a b-coloring if U contains points of all b colors.

Corollary 2 ([3]). Let T ⊂ Rn be a finite set of vectors and let b ∈ N be such
that b(1 − 1

b )|T | < 1
e·|T |2 . Then there exists a b-coloring of Rn such that for every

x ∈ Rn the set x+ T is multicolored.

Proof. See [1] �

Our Borel version of the local lemma allows to deduce that the b-coloring in
Corollary 2 can be demanded to be a Borel function.
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1. Borel Local Lemma.

Let G be a graph as before, but let us additionally assume that V (G) is a standard
Borel space and that R is a Borel local rule. Since it is notationally involved to
precisely define what it means for a local rule to be Borel, in this abstract we only
assure the reader that in all naturally occurring applications of the local lemma
the local rules are in fact Borel.

We say that a graph G is of uniformly subexponential growth if for every ε > 0
there exists r such that for all R > r and all vertices v ∈ V (G) the set of vertices
of G at distance at most R from v has cardinality less than (1 + ε)R.

Theorem 3 (Borel Local Lemma). Let G be a graph such that V (G) is a standard
Borel space and let R be a Borel local rule on G. Furthermore let us assume that
the graph Rel(G) is of uniformly subexponential growth, and let ∆ be the maximal
degree in Rel(G).

If for all x ∈ V (G) we have p(x) < 1
e∆ then there exists a Borel function

f : V (G) → b which satisfies R.

Repeating the proof of Corollary 2 from [1] we obtain the following corollary.

Corollary 4. In Corollary 2 we can additionally demand the b-coloring of Rn to
be a Borel function.

Remarks 5. (i) One can weaken the assumption on p(x) in the local lemma to

p(x) < (∆−1)∆−1

∆∆ , and this is best possible [7]. The same is true in the case of
Theorem 3.

(ii) If the set V (G) of vertices is countable, it can be regarded as a standard
Borel space when we equip it with the discrete Borel structure. As will turn out,
in this situation all local rules on G are Borel. If V (G) is finite then Rel(G) is also
finite, and hence of uniformly subexponential growth. Thus Theorem 3 includes
Theorem 1 as a special case when V (G) is a finite set.

1.1. The Moser-Tardos algorithm with limited randomness. The tech-
nique we use to prove Theorem 3 is a modified Moser-Tardos algorithm, and it is
of independent interest.

The Moser-Tardos algorithm (MTA) is a randomized algorithm for finding the
satisfying assignment under the assumptions of the local lemma. A version of it
has been first described by Moser [5], and a modified version has been described
by Moser and Tardos [6]. We refer to the introduction of [6] for the history of
attempts to find a constructive version of the local lemma.

To motivate our modified MTA let us recall the parallel version of the MTA.
Let us assume that the set V (G) of vertices is finite. We start by “sampling”
each point of V (G) at random, i.e. we choose uniformly at random a function
f0 ∈ bV (G). Now we choose a subset W0 ⊂ V (G) which is maximal among the
subsets of V (G) satisfying the following two properties:

(1) The function f0 violates the local rule at all points of W0.
(2) W0 is an independent set in the graph Rel(G).
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We define f1 by “resampling f0 at variables in W0”. More precisely, we start
by defining X0 to be the union of neighbourhoods of points in W0, and we let
Y0 := V (G) \X0. Now, we define f1 to be equal to f0 on Y0. Finally, we choose
uniformly at random a function in bX0 , and we define f1 to be equal to that
function on X0.

We repeat this procedure with f1 in place of f0, and so on, until we end up with
a satisfying assignment. With overwhelming probability a satisfying assignment
will be found in a time which is linear in log(|V (G)|).

Let us informally describe how we modify the MTA. We partition V (G) into p
disjoint parts V0, . . . , Vp−1 with the property that for every i ∈ p and all distinct
x, y ∈ Vi we have that x and y are at least r far away from each other in the graph
Rel(G), where the choice of r depends only on the growth of the balls in Rel(G),
but not on |V (G)|. Now we assign to each part Vi a “source of randomness”, i.e. an
element rnd of bN, and we use this single sequence for resamplings of all points x
which are in Vi.

Thus in our modified version of the MTA, the points which lie in the same parts
are no longer resampled independently from each other.

1.2. Previous results and open questions. To our best knowledge, there is no
previous work which establishes any Borel variants of the local lemma.

However, measurable variants of the local lemma have been studied by Kun [4]
and very recently by Bernshteyn [2]. Let us discuss those of the results of [4]
and [2] which are related to the present work.

We warn the reader that the following definition is not equivalent to the similar
notion in [2].

Definition 6. Let Γ be a countable group, let X be a standard Borel space, let
ν be a probability measure on X and let ρ : Γ y X be an action by measure-
preserving Borel bijections. For a sequence γ0, . . . , γk−1 of elements of Γ we define
G = G(γ0, . . . , γk−1) to be the graph with V (G) := X and (x, y)∈E(G) if for
some i∈ k we have γi.x = y.

We say that the measurable local lemma holds for the action ρ if for all sequences
γ0, . . . , γk−1 and all Borel local rules on G(γ0, . . . , γk−1) such that p(x) < 1

e∆ for
all x ∈ X , there exists a measurable function f : X → b which satisfies R.

The methods which we use to prove Theorem 3 can be rather easily modified
to prove the following theorem.

Theorem 7 (Measurable Local Lemma). Let Γ be a countable amenable group, let
X be a standard Borel space, let ν be a probability measure on X and let ρ : Γ y X
be an action by measure-preserving Borel bijections which is essentially free, i.e. for
ν-almost all x∈X we have that the map Γ → X given by γ 7→ γ.x is a bijection.
Then the measurable local lemma holds for ρ.

In [4] it is shown that the standard Moser-Tardos algorithm can be applied in
the setting of an infinite countable graph. As a corollary, the measurable local
lemma holds for the Bernoulli action Γ y [0, 1]Γ, where Γ is an arbitrary (not
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necessarily amenable) group . In [2] it is shown that the meaurable local lemma
holds for any action Γ y X for which there exists a Γ-equivariant Borel surjection
onto [0, 1]Γ.

In particular, if Γ is an amenable group then the results of [4] and [2] imply the
measurable local lemma only for the actions Γ y X which have infinite entropy.
This is a rather large constrain - many natural actions of amenable groups which
are covered by Theorems 3 and Theorems 7 do not have infinte entropy. For
example, as far as we know, it is impossible to deduce the measurable, let alone
Borel, version of Corollary 2 from [4] or [2].

On the other hand, the results in [4] and [2] do not require the group Γ to be
amenable. It is very interesting open problem to determine whether the measurable
local lemma holds for all probability measure preserving actions of all groups.

Very recently Andrew Marks and Alexander S. Kechris (private communica-
tion) observed that the Borel version of the local lemma does not hold for arbi-
trary Borel actions of the free group on two generators. It would be interesting
to determine whether the Borel version of the local lemma holds for actions of
arbitrary amenable groups.
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60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10. North-
Holland, Amsterdam, 1975.

[4] G. Kun. Expanders have a spanning lipschitz subgraph with large girth. Mar 2013. Available
at http://arxiv.org/abs/1303.4982v2.

[5] R. A. Moser. A constructive proof of the Lovász local lemma. In STOC’09—Proceedings of
the 2009 ACM International Symposium on Theory of Computing, pages 343–350. ACM,
New York, 2009.

[6] R. A. Moser and G. Tardos. A constructive proof of the general Lovász local lemma. J.
ACM, 57(2):Art. 11, 15, 2010.

[7] J. B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.
[8] J. H. Spencer. Robin moser makes Lovsz Local Lemma Algorithmic! Notes of Joel Spencer.

Available at https://www.cs.nyu.edu/spencer/moserlovasz1.pdf.
[9] J. H. Spencer. Asymptotic lower bounds for Ramsey functions. Discrete Math., 20(1):69–76,

1977/78.

http://arxiv.org/abs/1604.07349v2
http://arxiv.org/abs/1303.4982v2
https://www.cs.nyu.edu/spencer/moserlovasz1.pdf


Measured Group Theory 2391

A construction of finitely generated groups with isometrically
embedded expanders

Damian Osajda

I describe here a construction of finitely generated groups containing an infinite
family of finite connected graphs of bounded degree [10]. It provides first examples
of groups containing isometric copies of expanding families of graphs, and other
exotic finitely generated groups.

Let Θ = (Θn)n∈N be a family of disjoint finite connected graphs of bounded
degree. We assume that there exists a constant A > 0 such that diam Θn ≤
A girth Θn, where diam denotes the diameter, and girth is the length of the short-
est simple cycle. We fix a small cancellation constant λ ∈ (0, 1/6], and we assume
that 1 < ⌊λ girth Θn⌋ < ⌊λ girth Θn+1⌋.

Theorem 1. There exists a C′(λ)–small cancellation labeling of (Θn)n∈N over a
finite set S of labels.

With such labelled graph family Θ we associate a graphical small cancellation
presentation:

P = 〈S | Θ〉.(1)

Theorem 2. For every n, the graph Θn embeds isometrically into the Cayley
graph Cay(G,S) of the group G defined by the presentation (1).

For Θ being an expander family, as an immediate corollary we obtain the fol-
lowing.

Corollary 3. There exist finitely generated groups with expanders embedded iso-
metrically into Cayley graphs.

These are the first examples of such groups. In particular, they are not coarsely
embeddable into a Hilbert space and do not satisfy the Baum-Connes conjec-
ture with coefficients. The only other groups with such properties are the Gro-
mov monsters [7] (see [1] for an explanation of the construction). The Gromov
construction uses a graphical presentation with much weaker ‘small cancellation’
properties. Consequently, only a weak embedding of expanders is established for
those examples. The isometric embedding of expanders for the groups from Corol-
lary 3 is useful for analyses of the failure of the Baum-Connes conjecture – see e.g.
[14],[5],[6],[8].

Using Sapir’s [13] version of Higman embedding we obtain the first examples of
groups as follows.

Corollary 4. There exist closed aspherical manifolds with expanders embedded
quasi-isometrically into their fundamental groups.

The group G defined by the presentation (1) is the limit of finitely presented
groups Gi defined by presentations 〈S | (Θn)in=1〉. For Θ being a family of d–
regular graphs with d > 2, we obtain the first examples of groups as follows.



2392 Oberwolfach Report 41/2016

Corollary 5. There exists a sequence G1 ։ G2 ։ G3 ։ · · · of finitely presented
groups with the following properties. For all i, asdim(Gi) = 2, and the asymptotic
dimension of the limit group G is infinite.

Note that despite the group G above has infinite asymptotic dimension, it be-
haves in many ways as a two-dimensional group – see e.g. [11].

Using the construction of the small cancellation presentation (1) provided by
Theorem 1, and the method of constructing walls for small cancellation groups
developed in [15], [16], [3], and [4], we obtain the following.

Theorem 6. There exist finitely generated groups acting properly on CAT(0)
cubical complexes and not having property A.

In particular, such groups have the Haagerup property, and thus admit an
equivariant coarse embedding into a Hilbert space. This answers in the negative
the well known question whether, for groups, Yu’s property A (equivalent e.g. to
the exactness of the reduced C∗–algebra of the group) implies coarse embedding
into a Hilbert space. For spaces, the answer to the corresponding question was
already known by [9] and [2], [12].
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Applications

École Normale Superieure
45, rue d’Ulm
75005 Paris Cedex
FRANCE

Samuel Mellick

Aradi Utca, 38 A I/4
1062 Budapest
HUNGARY

Dr. Andras Meszaros

Institute of Mathematics
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