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developments in the field.
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Introduction by the Organisers

The perhaps most important development in operator algebras the last years is
the almost completion of the so-called Elliott program, that seeks to classify sim-
ple nuclear C∗-algebras by a simple invariant (called the Elliott invariant) that
foremost consists of K-theory. This program was implicity initiated in 1959 with
Glimm’s classification of matricial C∗-algebras (also called Uniformly Hyperfinite
C∗-algebras, abbreviated as UHF-algebras), and continued in the late 1960’s and
early 1970’s with the classification by Bratteli and Elliott of the larger class of
AF-algebras by their ordered K0-group. These important results were back then
considered to be very special and unlikely to admit any significant generalization,
until Elliott around 1990 proved that a much larger class of simple nuclear C∗-
algebras (the class of simple real rank zero AT-algebras) admits classification by
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the Elliott invariant, now also involving K1. Elliott suggested that a classifica-
tion should be possible for all simple nuclear separable C∗-algebras, thus formally
initiating the Elliott program. This problem has over the last 25 years been inves-
tigated by dozens of mathematicians, and has resulted in the publication of several
hundreds articles occuping thousands of pages.

In the mid 1990’s to the early 2000’s it was shown by Villadsen, Rørdam and
Toms that the classification conjecture, in its first optimistic form, cannot be true,
as certain C∗-algebras of “infinite dimensional” type refuse classification. The
complement of the class of “infinite dimensional” C∗-algebras was singled out in
the conjecture by Toms and Winter, stating that three seemingly very different
properties of a simple, separable, nuclear C∗-algebras are equivalent, one of them
being “finite nuclear dimension” introduced by Winter and Zacharias. The conjec-
ture by Toms and Winter is today confirmed (under some mild assumptions on the
trace simplex of the C∗-algebras). The (partial) confirmation of this conjecture
alone has been the topic of several articles, many of which have been published in
top journals including Inventiones Math. and Acta Math., and by several authors.

Last year, in 2015, Tikuisis, White and Winter proved that faithful traces on
separable nuclear C∗-algebras satisfying the so-called Universal Coefficient Theo-
rem (UCT) (aK-theoretical condition) are automatically quasidiagonal, and hence
that all stably finite, nuclear C∗-algebras in the UCT class are quasidiagonal.
Among many other things, this also settled in the positive the conjecture by Rosen-
berg that a group is amenable if and only if its group C∗-algebra is quasidiagonal.
This remarkable breakthrough in combination with a monumental work by Gong,
Lin and Niu (a 283 pages long paper from 2014) followed by a much shorter paper
by the same three authors and George Elliott from 2015, resulted in the complete
classification of all unital simple nuclear separable C∗-algebras in the UCT class
with finite nuclear dimension by the Elliott invariant. All these conditions are
also necessary, and only the assumption that it belongs to the UCT class may
automatically follow from the other conditions. This remains an important open
problem.

These results were the main topics of our workshop, and were explained in
several lectures, including ones given by Huaxin Lin, Wilhelm Winter and Stuart
White.

Another recent major breakthrough within the theory of C∗-algebras, which was
highligted at our workshop by a talk by Matt Kennedy, concerns the structure of
C∗-algebras associated with groups. To each (countable, discrete) group one can
associate a C∗-algebra arising from the left-regular representation of the group. It
was shown by Powers in 1975 that the C∗-algebra associated with the free group on
n ≥ 2 generators is simple and has unique trace. (This was the first step towards
verifying a conjecture by Kadison that this C∗-algebra is a simple C∗-algebra with
no non-trivial projections.) It also spurred the question as to which groups give
rise to simple C∗-algebras, respectively, C∗-algebras with a unique trace (e.g., to
C∗-simple groups and groups with the unique trace property, respectively).
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In the following decades it was shown that large classes of (non-amenable)
groups are C∗-simple and have the unique trace property. In all the cases consid-
ered it was shown that C∗-simplicity was equivalent to the unique trace property,
which again was equivalent to a property of the group: that it has no non-trivial
normal amenable subgroups. It is fairly easy to see that both of the former con-
ditions imply the latter, but no other relations between these three properties of
a group were known to hold in general. In 2013, Kalantar and Kennedy gave
a remarkable reformulation of the Furstenberg boundary of a group in terms of
injective envelopes, and they were able to show that a group is C∗-simple if and
only if it admits a (topologically) free boundary action (or, equivalently, that the
action of the group on its Furstenberg boundary is free). Using these results,
Breuillard, Kalantar, Kennedy and Ozawa proved that the unique trace property
is equivalent to the absence of non-trivial normal amenable subgroups, and that
C∗-simplicity implies the unique trace property. Le Boudec shortly after gave
examples showing that the reverse implication does not hold: there are groups
with the unique trace property that are not C∗-simple. Further examples of such
groups were subsequently given by Ivanov and Omland.

These results relate to the famous problem if the Thompson group F is amenable.
Indeed, as shown by Haagerup and Olesen, non-amenability of F is equivalent to
C∗-simplicity of the Thompson group T . It is known that the group T has the
unique trace property, but we do not know if it is also C∗-simple.

Among the many other highlights of the workshop, we would like to mention
the lecture of Dimitri Shlyakhtenko who proved, using methods of Voiculescu’s
free probability theory, that the group von Neumann algebra of a sofic group with
vanishing first L2-Betti number is never isomorphic to a free group factor. Other
highlights were the lecture of Cyril Houdayer on the classification of free Araki–
Woods factors and the one of Hiroshi Ando who gave a counterexample to Popa’s
question on the characterization of Polish groups of finite type. Finally, a series
of very short lectures on Thursday afternoon by young researchers demonstrated
how diverse and in good shape the current research in Operator Algebras is.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.





C*-Algebras 2273

Workshop: C*-Algebras

Table of Contents

Wilhelm Winter
Structure and Classification: Where next? . . . . . . . . . . . . . . . . . . . . . . . . . . 2275

Stuart White (joint with Aaron Tikuisis and Wilhelm Winter)
Quasidiagonality and amenability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2277

Sven Raum (joint with Cyril Houdayer)
Non-amenable von Neumann algebras of groups acting on trees . . . . . . . . 2281

Huaxin Lin
A brief visit to classification of simple C∗-algebras of finite rank . . . . . . . 2283

Sorin Popa
Constructing MASAs with prescribed properties . . . . . . . . . . . . . . . . . . . . . 2287

Remi Boutonnet (joint with C. Houdayer)
Amenability VS Amalgamated free products . . . . . . . . . . . . . . . . . . . . . . . . . 2289

Dimitri Shlyakhtenko
Free entropy dimension and the first L2 Betti number . . . . . . . . . . . . . . . . 2289

Marius Dadarlat (joint with Ulrich Pennig)
Connective C*-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2291

David Kerr
Actions of amenable groups on the Cantor set: Z-stability and
classifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2293
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Abstracts

Structure and Classification: Where next?

Wilhelm Winter

The classification programme for nuclear C∗-algebras has seen dramatic progress
in the simple and unital case. In this talk I review the current state of affairs,
highlight some loose ends that still need to be dealt with, and speculate about
where to go from here.

Let A denote the class of separable, unital, simple, nuclear and infinite dimen-
sional C∗-algebras. Let us denote subclasses with certain properties by appropriate
superscripts, e.g. Adimnuc stands for those C∗-algebras in A which have finite nu-
clear dimension, AZ for Z-stable ones, Acomparison for those with strict comparison
of positive elements and so on.

The regularity conjecture due to Andrew Toms and myself then says that the
latter classes agree,

Adimnuc = AZ = Acomparison.

Moreover, for (stably) finite C∗-algebras we expect finite nuclear dimension to
coincide with finite decomposition rank,

Adr = Afinite,dimnuc .

Much about the conjecture is known by now, in particular the implications

Adr ⊂ Adimnuc ⊂ AZ ⊂ Acomparison.

(of which only the first is trivial) hold in full generality. The reverse implications
have been verified in many cases, but the picture is not yet complete. In particular,
for the statements

Adimnuc ⊃ AZ ⊃ Acomparison

little is known beyond the case where the trace simplex has finite dimensional
and/or compact extreme boundary. The all-important test case to deal with seems
to be the Poulsen simplex. An intriguing partial result would be the statement

Acomparison = Aalmost divisible

or even just a forward or reverse inclusion. It seems very worthwhile to also
approach the problem from the opposite side: a major issue at this point is that
we still have relatively little information on “non-regular” nuclear C∗-algebras.
The known examples are essentially based on Villadsen’s ideas, which were very
successfully exploited further by Rørdam, Toms, and Kerr–Giol. However, in all
of these results nonregularity essentially originates from the same source—but
there might be entirely different ways of building non-Z-stable simple nuclear C∗-
algebras. (Of course, what I am really asking for here are systematic range results
for the Cuntz semigroup!)



2276 Oberwolfach Report 40/2016

Let us return to the relation between Adr and Afinite,dimnuc . The issue is now
completely settled for C∗-algebras satisfying the UCT: By last year’s result of
Tikuisis–White–Winter, faithful traces on nuclear UCT C∗-algebras are quasidi-
agonal, so in particular

Afinite,dimnuc,UCT = Afinite,dimnuc,UCT,T=Tqd .

And by last year’s work of Elliott–Gong–Lin–Niu, building on Gong–Lin–Niu, this
class is classified by the Elliott invariant. (Of course this is novel only in the
presence of traces; the infinite case is just Kirchberg–Phillips classification.)

This is clearly a very general and extremely satisfactory result—but at the same
time it opens up all sorts of follow-up questions:

Is the UCT really necessary in the quasidiagonality result of Tikuisis–White–
Winter?

Is there a chance to achieve classification in terms of the Elliott invariant in
conjunction with the Cuntz semigroup in the non-Z-stable case?

What about the non-simple case?
Or the non-unital case?

This last question essentially boils down to handling stably projectionless C∗-
algebras and for now seems the most tractable of this block of questions. Surpris-
ingly, it is also relevant to the unital case!

Let us start with a stably finite version of Kirchberg’s O2-absorption theorem.
LetW denote the simple, monotracial, K-trivial C∗-algebra first studied by Kishi-
moto and Kumjian, later by Razak and then by Jacelon. W is KK-equivalent to
the zero algebra; it can be described as a “deunitized” version of Z (as carried
out by Jacelon and myself), or as an inductive limit of nonunital dimension drop
intervals (due to Razak) or, as done originally by Kishimoto–Kumjian, as a corner
of a crossed product of O2 by an action of the reals.

One intriguing question around W is whether it is self-absorbing, i.e., whether
W ∼=W ⊗W .

Moreover, classification predicts that if A ∈ Amonotracial, then A ⊗ W ∼= W ,
and this statement would be a stably finite analogue of Kirchberg’s O2-absorption
theorem. With the results above at hand, this statement looks like a safe bet
(although by no means trivial) under the extra hypothesis of A satisfying the
UCT. Without the UCT, to me the problem seems to be essentially as hard as
the quasidiagonality problem for simple nuclear C∗-algebras. This point of view is
supported by the following, which is the only new (and not yet publicly available)
result of the talk:

Theorem. Let D be a strongly self-absorbing C∗-algebra. Then D ⊗W ∼=W if
and only if D is quasidiagonal.
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Quasidiagonality and amenability

Stuart White

(joint work with Aaron Tikuisis and Wilhelm Winter)

In recent years the analogies between the work of Connes, Haagerup and Popa on
injective factors, and progress on the structure and classification of simple nuclear
C∗-algebras have become apparent, and so looking again at others aspects of this
work, to find appropriate C∗-versions seems increasingly worthwhile. In particular,
a key step in Connes’ proof of injectivity implies hyperfiniteness is the observation
that a (separably acting) injective II1 factorM embedds intoRω (the ultraproduct
of the hyperfinite II1 factor). It is from such an embedding that Connes obtained
the finite dimensional algebras that are eventually used to witness hyperfiniteness
of an injective II1 factor M. The analogous condition for nuclear C∗-algebras is
quasidiagonality.

Definition. A C∗-algebra A is quasidiagonal if there exists a net of completely
positive and contractive1 (c.p.c.) maps φi : A→Mki such that:

• ‖φi(ab)− φi(a)φi(b)‖ → 0 for all a, b ∈ A;
• ‖φi(a)‖ → ‖a‖ for all a ∈ A.

When A is separable and unital, quasidiagonality gives rise to a unital embed-
ding of A into the ultraproduct2 Qω of the universal UHF algebra Q as a sequence
of maps witnessing quasidiagonality will induce an embedding A →֒ Qω, which is
liftable to a u.c.p. map A→ ℓ∞(Q). By the Choi-Effros lifiting theorem liftability
is automatic when A is nuclear, so for separable nuclear C∗-algebras quasidiagonl-
ity is equivalent to Qω-embeddibility.

Just as Connes used an Rω embedding to obtain local structure on an injective
II1 factor, quasidiagonality can be used to obtain powerful approximations in the
C∗-setting. This was first done by Popa in [9], and this appears again in the recent
striking developments of Elliott, Gong, Lin and Niu (described in Huaxin’s talk
during this meeting). They use Winter’s classification by embeddings technique
[12] to obtain classifiability of simple algebras of finite nuclear dimension in the
presence of enough quasidiagonality (‘quasidiagonality of all traces’ — see below)
[5]. That is they obtain good rational tracial approximations from quasidiagonal-
ity, so that they can appeal to [7].

Here I will discuss when we can obtain this quasidiagonality. There are two
fundamental obstructions. The first is essentially immediate: quasidiagonal C∗-
algebras must be stably finite (as Qω contains no infinite projections). The second
is more subtle: quasidiagonality entails some kind of amenability as first observed
by Rosenberg (in the appendix to [8]) in the context of groups.

1When A is unital, these maps can be taken unital; when A is separable one can of course
use a sequence.

2defined to be the quotient ℓ∞(Q)/{(xn) : limn→ω ‖xn‖ = 0}, for some fixed free ultrafilter
ω on N
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Proposition (Rosenberg). Let G be a countable discrete group such that C∗
r(G)

is quasidiagonal. Then G is amenable.

Sketch proof. 3 Let (φn)n : C∗
r (G) → Mkn witness the quasidiagonality of C∗

r(G)
and embedd eachMkn unitally into Q, so that the sequence (φn)n induces a unital
embedding Φ : C∗

r (G) → Qω. Consider C∗
r(G) ⊂ B(ℓ2(G)) in the canonical way.

Then the map Φ extends to a unital completely positive map Φ̃ : B(ℓ2(G))→ Qω.4
Define a state µ on B(ℓ2(G)) by µ = τQω ◦ Φ̃.

For T ∈ B(ℓ2(G)), and the canonical unitary ug ∈ C∗
r(G) coming from the

group element g ∈ G, a multiplicative domain argument (essentially Steinespring)

gives Φ̃(ugTu
∗
g) = Φ(ug)Φ̃(T )Φ(ug)

∗. Thus

µ(ugTu
∗
g) = τQω (Φ(ug)Φ̃(T )Φ(ug)

∗) = τQω (Φ̃(T )) = µ(T ).

Thus this state µ restricts to an invariant mean on ℓ∞(G) ⊂ B(ℓ2(G)). �

This argument goes through more generally and it shows that any unital quasidi-
agonal C∗-algebra has an amenable trace τ : i.e. when A is faithfully represented
on H, then there is a state µ on B(H) extending τ , with µ(uTu∗) = µ(T ) for
all T ∈ B(H) and unitaries u ∈ A.5 Equivalently6 one can characterise amenable
traces through an approximation property: τ is amenable if and only if there exists
completely positive and contractive maps φi : A→Mki such that

• ‖φi(ab)− φi(a)φi(b)‖2,trMki → 0 for all a, b ∈ A;
• trMki

(φi(a))→ τ(a) for all a ∈ A,
where trMki

is the normalised trace on Mki inducing the 2-norm ‖x‖2,trMki =

trMki
(x∗x)1/2. The presence of this amount of amenability is the second funda-

mental obstruction to quasidiagonality.
Given this characterisation of amenable traces, it is natural to cast quasidiag-

onality at the tracial level. This was done by Brown in his excellent monograph
[1]: a trace τ on A is quasidiagonal if and only if there exists completely positive
and contractive maps φi : A→Mki such that

• ‖φi(ab)− φi(a)φi(b)‖ → 0 for all a, b ∈ A;
• trMki

(φi(a))→ τ(a) for all a ∈ A.

3not Rosenberg’s original proof, and not due to me either. This is the folklore proof of this
fact that has evolved from Voiculescu’s observation that unital quasdiagonal C∗-algebras have
traces. I extracted it from Nate and Taka’s book.

4Here liftability is crucial; one uses Arveson’s extension theorem to extend each φn to φ̃n :

B(ℓ2(G)) → Mkn , then obtain Φ̃ as the map induced by (φ̃)n. Indeed liftability must be crucial
to this argument as a fabulous result of Haagerup and Thorbjørnsen shows that C∗

r(F2) is MF,
so also embedds in Qω. Of course this embedding is not liftable.

5This concept is independent of the choice of representation. Note too that these are essen-
tially the hypertraces appearing in Connes work (now set at the C∗-level).

6via the circle of ideas in Connes’ work with hypertraces; see the account in chapter 6 of Nate
and Taka’s book.
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Rosenberg’s proposition then holds at the level of traces (quasidiagonality =⇒
amenability) and from the approximation view point it is immediate from the
inequality ‖ · ‖2 ≤ ‖ · ‖.
Questions:

(1) (Rosenberg’s Conjecture) If G is discrete and amenable, must C∗
r(G) be

quasidiagonal?
(2) (The Blackadar-Kirchberg Problem) Are all stably finite nuclear C∗-alge-

bras quasidiagonal?
(3) (Brown) Are all amenable traces quasidiagonal?

Progress was recently made on Rosenberg’s conjecture by Ozawa, Sato and
Rørdam, who resolved it positively for elementary amenable groups via classifica-
tion techniques. Conceptually this is a bit of a miracle; one has no right a-priori to
prove things about group C∗-algebras of amenable groups (which are never simple)
in this way, but it turns out to be possible.

Theorem ([11]). Let A be a separable C∗-algebra in the UCT class. Then all
faithful traces on A are quasidiagonal.

This result has subsequently been extended by Jamie Gabe to faithful amenable
traces on separable exact C∗-algebras in the UCT class ([6]); to my mind this is
the right general framework for this method of obtaining quasidiagonality.

As a consequence of the main theorem we resolve Rosenberg’s conjecture posi-
tively (with thanks to Tu, Higson and Kasparov, for their work showing that C∗

r(G)
satisfies the UCT). Via Haagerup’s profound result that quasitraces are traces on
exact C∗-algebras, we obtain a positive answer to the Blackadar-Kirchberg ques-
tion for simple C∗-algebras with the UCT. Brown’s question also has a positive
answer for separable exact C∗-algebras in the UCT class.7 For the general version
of Brown’s question the key test case is the trace on the hyperfinite II1 factor R:
is R quasidiagonal as a C∗-algebra?

Some ingredients of the proof

A more extensive expository account of the proof can be found in [13] or the
introduction to [11].

Voiculescu famously showed that quasidiagonality is invariant under homotopy.
In particular for any C∗-algebra A the cone C0((0, 1]) ⊗ A is quasidiagonal as it
is homotopic to the zero C∗-algebra, which is quasidiagonal.8 With hindsight, our
starting point is an answer to Brown’s question on cones.

Proposition (Kirchberg-Rørdam, Sato-W-Winter, TWW, Gabe). All amenable
traces on a cone C0((0, 1])⊗A are quasidiagonal.9

7Even in the nuclear case this isn’t immediate from the theorem, it is obtained from it using
additional techniques from Brown’s monograph.

8Surprisingly, the zero C∗-algebra and discussions of its properties appeared quite frequently
during this workshop!

9This precise statement can be found in [3], but it really comes from successive improvements
of statements by the authors listed.
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This result is quite specific to cones, using the duality between order zero maps
and cones over ∗-homomorphisms. Can one answer Brown’s question for more
general contractible C∗-algebras?

Given a trace τA on a separable unital and nuclear C∗-algebra A, we consider
the trace leb ⊗ τA on C0((0, 1] ⊗ A (where leb denotes Lebesgue measure). The

proposition then gives a ∗-homomorphism Φ́ : C0((0, 1]) ⊗ A → Qω inducing

leb⊗ τA, i.e. τQω ◦ Φ́ = leb⊗ τA. We can also flip the interval around and consider

the cone C0([0, 1])⊗A. Again there is a ∗-homomorhism Φ̀ : C0([0, 1))⊗A→ Qω
inducing leb⊗τA.10 Of course if we just use the proposition twice, we can’t expect
any form of compatibility between Φ́ and Φ̀. Instead Cuntz semigroup techniques
can be used to carefully construct Φ̀ from Φ́ so that they agree on the scalars (i.e.
they restrict the same map on C0((0, 1))⊗ 1A) and

Φ́({id[0,1] ⊗ 1A) + Φ̀((1− id[0,1])⊗ 1A) = 1Qω .

I view this as a kind of “2-coloured quasidiagonality”, as translating Φ̀ and Φ́ back
to order zero maps we would have two order zero maps A → Qω whose sum is
unital. Indeed, this is an ingredient in the arguments of [10] and [2] obtaining
finite nuclear dimension from Z-stability.

If it was possible to arrange for Φ̀ and Φ́ to agree on all of C0((0, 1)) ⊗ A we
would be done, as we could then use them to define a map from C([0, 1])⊗A→ Qω
inducing leb ⊗ τ , from which quasidiagonality of τ would follow. Obtaining this
directly seems highly implausible, so we must look for weaker conditions. In fact
one can prove:

τ is quasidiagonal⇐⇒ Φ̀ and Φ́ are unitarily equivalent.

The implication from left to right can be deduced from classification results for
cones, but isn’t needed to prove the theorem. The argument from right to left is
a ‘patching trick’ working in the additional space of M2(Qω) to give additional
room.

Proving the unitary equivalence of Φ̀ and Φ́ directly also looks highly implausi-
ble. But one can use stable uniqueness theorems appearing in the work of Dadar-
lat, Eilers, and Lin. The exact version we use is a modification of a result from
[4] which allows one to deduce approximate unitarily equivalence of these maps
after the addition of large summands of themselves. Precisely for a given finite
subset F of C0((0, 1)) ⊗ A and ε > 0, there exists n ∈ N such that Φ̀ ⊕ Φ́⊕n is

ε-approximately unitarily conjugate to Φ́⊕ Φ́⊕n on F (similarly for Φ̀⊕ Φ̀⊕n and

Φ́⊕ Φ̀⊕n). With considerable care, and the UCT, one can have the same replacing

Φ̀ and Φ́ with their restrictions to smaller subintervals.11

10The point of this strange notation is that the accents correspond to the appearance of
the canonical generating functions id[0,1] and 1 − id[0,1] of the cones C0((0, 1]) and C0([0, 1])

respectively.
11The resulting n is independent of the size of the subinterval (which is vital to the argument).

To make sense of this, one has to fix scalings of the subinterval back to [0, 1] so that one can set
this up with a fixed finite set F .
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This enables one to run the patching argument repeatedly along the interval
[0, 1], patching Φ́⊕(2n−i) ⊕ Φ̀⊕i to Φ́⊕(2n−(i+1)) ⊕ Φ̀⊕(i+1) across subintervals to

connect Φ́⊕2n at the left hand end to Φ̀⊕2n at the right hand end. The ‘patched’
maps then then be glued together to witness quasidiagonality of τ .
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Non-amenable von Neumann algebras of groups acting on trees

Sven Raum

(joint work with Cyril Houdayer)

Groups acting on locally finite trees form a particularly interesting class of locally
compact groups. Bruhat-Tits theory naturally links them to algebraic groups,
while Bass-Serre theory gives strong tools to reduce questions about general groups
acting on trees to amalgamated free products of groups. The following folklore type
I conjecture in topological group theory draws a parallel between the representation
theory of reductive algebraic groups over non-Archimedean fields and a large class
of groups acting on trees.

Conjecture. Let T be a locally finite tree and G ≤ Aut(T ) a closed subgroup
acting transitively on the boundary ∂T . Then G is a type I group.
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A locally compact group G is of type I if every unitary representation π of
G generates a type I von Neumann algebra π(G)′′. This notion steams from
representation theory, were it reduces questions about unitary representations to
the irreducible ones. Loosely speaking a group is type I if and only if all its
unitary representations can be uniquely written as an integral of irreducible unitary
representations

There are few instances in which the type I conjecture for groups acting on
trees could be verified, such as rank one reductive algebraic groups over non-
Archimedean fields or Burger-Mozes groups U(F ) introduced in [2]. In an attempt
to isolate the relevant structure for the type I conjecture, it is natural to ask
whether its formulation is sharp or not. However, the picture looks even less
complete and there are no results on non-type I groups available in the literature,
although recently some effort was undertaken to approach this question by classical
means [4].

It is well-known that a non-compact closed subgroup G ≤ Aut(T ) is boundary
transitive if and only if for every n ∈ N≥1 and every v ∈ V(T ) the vertex stabilisers
Gv ≤ G act transitively on geodesic paths of length n emerging from v. We say
that G ≤ Aut(T ) is locally 2-transitive, if this statement holds for n = 2. Clearly, a
boundary transitive group is locally 2-transitive. Further, the group von Neumann
algebra of every type I group is amenable, so that the following theorem gives a
converse to the type I conjecture for a large class of groups acting on trees.

Theorem. Let T be a locally finite tree and G ≤ Aut(T ) a closed subgroup acting
minimally on T . Assume that G is not virtually abelian. If G does not act locally
2-transitively on T , then the group von Neumann algbera L(G) is non-amenable.

While in general local 2-transitivity is strictly weaker than boundary transi-
tivity, in the class of Burger–Mozes groups, these are equivalent. In fact, U(F )
is boundary transitive if and only if U(F ) is locally 2-transitive if and only if
F is 2-transitive. Combining our work with the previously known type I result
for Burger–Mozes groups [1, 3] and the previously mentioned characterisation of
boundary transitivity, we hence obtain the following characterisation of Burger–
Mozes groups of type I.

Theorem. Let F ≤ Sn be a permutation group and U(F ) the associated Burger-
Mozes group. The following statements are equivalent.

• U(F ) is a type I group.
• U(F ) is boundary transitive.
• F is 2-transitive.

It is interesting to observe that in the case of Burger–Mozes groups our proof
of non-amenability for L(U(F )) does not make use of Bass-Serre theory but can
directly use an amalgamated free product decomposition, thereby making a par-
ticularly short proof possible.
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A brief visit to classification of simple C
∗-algebras of finite rank

Huaxin Lin

We begin with the a short discussion of the following theorem:

Theorem 1 (....., 2015–[6], [5], [23], ...., 2000—[7] and [19]). Let A and B be two
unital separable simple C∗-algebras with finite nuclear dimension which satisfy the
UCT. Then A ∼= B if and only if Ell(A) ∼= Ell(B).

This is a result of decades work by many people. We only discuss the finite
case.

Definition 1. Let F1 and F2 be two finite dimensional C∗-algebras let φ0, φ1 :
F1 → F2 be two unital homomorphisms. Define

C(F1, F2, φ0, φ1) = {f ∈ C([0, 1], F2)⊕ F1 : f(0) = φ0(a) and f(1) = φ1(a), a ∈ F1}.

These are called Elliott-Thomsen building blocks. These are also known as one-
dimensional non-commutative CW compleces (Eliers-Loring-Pedersen). Denote by
C0 the class of all such C∗-algebras.

Definition 2. Let A be a unital simple C∗-algebra. We say that A has generalized
tracial rank at most one, if the following holds. For any ǫ > 0 and finite subset
F ⊂ A and any a ∈ A+ \ {0}, there exists a projection p ∈ A and a C∗-subalgebra
B ∈ C0 with 1B = p such that

‖xp− px‖ < ǫ and pxp ∈ǫ B for all x ∈ F
1− p <∼ a.

If A has generalized tracial rank at most one, we write GTR(A) ≤ 1.

This is a modification of previous notions of tracial rank one (and zero, TAF,
TAI). Motivated by some earlier work as well as a Popa condition ([8], [9] , [20],
[10], [11]).

Theorem 2 (Gong–L –Niu [6]). Let A and B be two unital separable amenable
simple C∗-algebras with gTR(A), gTA(B) ≤ 1 whcih satisfy the UCT.Then A ∼= B
if and only if

Ell(A) ∼= Ell(B).
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Definition 3. Let N1 denote the class of all unital separable simple amenable
Z-stable C∗-algebras A with gTR(A ⊗ U) ≤ 1 which satisfies the UCT for some
UHF-algebra U of infinite type.

Theorem 3 ([6]). Let A and B be in N1. Then A ∼= B if and only if Ell(A) ∼=
Ell(B).

How large is N1? Which C∗-algebras are in N1?

Theorem 4 (Gong–L–Niu [5] and also [1]). Let (G,G+, u) be a countable abelian
weakly unperforated ordered group with order unit u, let F be a countable abelian
group, let ∆ be a Choquet simplex and let r : ∆ → Su(G) be a surjective affine
map. Then there exists a unital C∗-algebra A ∈ N1 such that

Ell(A) = ((G,G+, u), F,∆, r).

Corollary 1. Let B be a unital separable amenable simple stably finite C∗-algebra.
Then there exists a unital simple C∗-algebra A ∈ N1 such that Ell(B⊗Z) = Ell(A).

Theorem 5 ([16]). Let X be an infinite compact metric space and let σ : X → X
be a minimal homeomorphism. Suppose that (X,α) has mean dimension zero.
Then C(X)×α Z ∈ N1.

Note if X has finite covering dimension, then any minimal dynamical system
(X,α) has mean dimension zero. For infinite dimension cases, the proof also uses
an important result of Elliott and Niu that such crossed products are Z-stable.
Theorem 6 (Elliott–Gong–L–Niu [5]). Let A be a unital separable amenable C∗-
algebra which satisfies the UCT. Suppose that A has finite decomposition rank.
Then A ∈ N1.

What is actually proved is the following:

Theorem 7 ([5]). Let A be a unital separable C∗-algebra which has finite nuclear
dimension and satisfies the UCT. Suppose that every tracial state is quasidiagonal,
then gTR(A⊗Q) ≤ 1.

Then there is an amazing result:

Theorem 8 (Tikuisis, Whiter, and Winter–[23]). Every tracial state of a unital
simple separable amenable C∗-algebra which satisfies the UCT is quasi-diagonal.

Combining four of the above mentioned results, one has the following:

Theorem 9. Let A and B be two finite unital separable simple C∗-algebras with
finite nuclear dimension which satisfy the UCT. Then A ∼= B if and only if
Ell(A) ∼= Ell(B).

We will glance at the path from Theorem 2 to Theorem 3.

Definition 4. (Winter-[24]) Let A and B be two unital C∗-algebras. A C([0, 1])-
homomorphism

φ : A⊗ Zp,q → B ⊗ Zp,q.
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is said to be unitarily suspended, if there are 0 < t0 < t1 < 1, a continuous path
of unitaries {ut : t ∈ [t0, t1]} in B ⊗Mp ⊗Mq and homomorphisms

φp : A⊗Mp → B ⊗Mp and ψq : A⊗Mq → B ⊗Mq

such that φ(0) = φp, φ
(t) = φp ⊗ idMq

for all t ∈ (0, t0], φ
(t) = Ad ut ◦ (φp ⊗

idq) for all t ∈ [t0, t1] and φ
(t) = ψ

[1,3]
q ⊗ id

[2]
Mp

for all t ∈ [t1, 1), π1 ◦ φ = ψq.

Theorem 10 (Winter [24]). Suppose that A and B are two unital separable C∗-
algebras. If there is an isomorphism φ : A ⊗ Zp,q → B ⊗ Zp,q which is C([0, 1])-
isomorphism and is a unitarily suspended, then A⊗Z ∼= B ⊗Z.

Questions:
1. Suppose that Ell(A) = Ell(B). How to construct φ?
2. Suppose that there are isomorphisms φp : A⊗Mp → B⊗Mp and ψq : A⊗Mq →
B ⊗Mq. How to obtain φ?

We need the following theorems to answer both questions. Then applying The-
orem 2 to obtain 3 (see also [14] and [15]).

Theorem 11 ([6] and see also [13]). Let A be a unital separable amenable simple
C∗-algebra with GTR(A) ≤ 1 which satisfies the UCT and B be a unital C∗-
algebra. Suppose that φ1, φ2 : A→ B are two unital homomorphisms. Then there
exists a continuous path of unitaries {u(t) : t ∈ [0,∞)} ⊂ B such that

φ1(a) = lim
t→∞

u(t)∗φ2(a)u(t) for all a ∈ A

if and only if

(φ1)T = (φ2)T , φ
‡
1 = φ‡2, [φ1] = [φ2] in KK(A,B) and Rφ1,φ2

= 0.

Theorem 12 ([6]). Let A and B be two unital separable amenable simple C∗-
algebra with gTR(A), gTR(B) ≤ 1 and A satisfies the UCT. Suppose that x ∈
KKe(A,B)++, γ : T (B)→ T (A) is an affine continuous map and λ : U(A)/CU(A)
→ U(B)/CU(B) is a continuous homomorphism so that (κ, γ, λ) is compatible.
Then there exists a unital monomorphism φ : A→ B such that

[φ] = x, (φ)T = γ and φ‡ = λ.

It should be aware that there are examples that x ∈ KKe(A,B)++ but no
homomorphism φ exists so that [φ] = x (see [12]).

Theorem 13 ([6]). Let A and B be two unital separable amenable simple C∗-
algebras with gTR(A), gTR(B) ≤ 1, A satisfies the UCT and let φ : A → B be a
unital monomorphism. Suppose that ψ : A → B is another unital monomorphsm
such that

([φ], (φ)T , φ
‡) = ([ψ], (ψ)T , ψ

‡).(1)

Then Rφ,ψ ∈ Hom(K1(A), ρB(K0(B)))/R0. Conversely, for any η ∈ Hom(K1(A),

ρB(K0(B)))/R0, there exists a unital monomorphism ψ : A → B such that (1)
holds and Rφ,ψ = η.
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Constructing MASAs with prescribed properties

Sorin Popa

Given a separable II1 factor M , one can construct a maximal abelian ∗-subalgebra
(abbreviated hereafter as MASA) A in M as an inductive limit of finer and finer
partitions of 1 by projections in M . This iterative procedure pairs well with
properties of MASAs that can be characterized locally, allowing the construction
of A in a manner that makes “more and more” of the desired property be satisfied.

This technique has been initiated in [P81, P82] where it was used to show
that any separable II1 factor M contains a MASA A ⊂ M whose normalizer
NM (A) := {u ∈ U(M) | uAu∗ = A} generates a factor (A is semiregular in M ; see
[P81]), as well as a MASA A ⊂M whose normalizer is trivial, i.e. NM (A) = U(A)
(A is singular in M ; see [P82]).

In this talk, we discuss more refined applications of this method, by combin-
ing it with two additional ingredients: the intertwining by bimodule technique
([P01, P03]) and local properties of the ambient II1 factor M , such as existence
of non-trivial central sequences (i.e., property Gamma of [MvN43]) and s-thin
approximation, which we will define below.

Recall in this respect that if Q,P are von Neumann subalgebras in a II1 factor
M , then we write Q ≺M P if there exists a Hilbert Q−P sub-bimodule H ⊂ L2M
such that dimHP <∞. In certain cases (notably ifQ,P are MASAs) this condition
is equivalent to the existence of a non-zero partial isometry v ∈ M such that
v∗v ∈ Q and vQv∗ ⊂ P .

Our first result shows that any separable II1 factor M contains an uncountable
family of singular (respectively semiregular) MASAs {Ai}i such that Ai 6≺M Aj ,
∀i 6= j, with A containing non-trivial central sequences of M whenever M does.
This will in fact follow from the following stronger result.

Theorem 1. Let M be a separable II1 factor M and N ⊂M a subfactor with triv-
ial relative commutant, N ′ ∩M = C. Let Pn ⊂M be a sequence of von Neumann
subalgebras such that N 6≺M Pn, ∀n. Then N contains a singular (respectively
semiregular) maximal abelian ∗-subalgebra A of M such that A 6≺M Pn, ∀n. More-
over, if N ≃ R, then one can take A so that to satisfy NM (A)′′ = N , and if N
contains non-trivial central sequences of M , then A can be taken so that to contain
non-trivial central sequences of M as well.

We then consider the class of II1 factorsM which have an s-MASA, i.e., a MASA
A ⊂M such that the von Neumann algebra A∨JAJ ⊂ B(L2M), generated by left
and right multiplication by elements in A on the Hilbert space L2M , is a MASA
in B(L2M). We obtain a local characterization of factors in this class, by proving
that M has an s-MASA if and only if it satisfies the following approximation
property, that we call s-thin: for any finite partition {pi}i ⊂ M , any finite set
F ⊂ M and any ε > 0, there exist a partition {qj}j ⊂ M refining {pi}i and an
element ξ ∈ M such that any x ∈ F can be ε-approximated in the norm-‖ ‖2
by linear combinations of elements of the form qjξqk. We show that factors with
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s-MASAs are closed under amplifications and inductive limits and combine their
local characterization with the iterative procedure to prove the following:

Theorem 2. If M has an s-MASA, then there exist uncountably many non-
intertwinable s-MASAs in M , which in addition can be chosen singular (resp.
semiregular).

The typical example of s-MASAs in II1 factors are the Cartan (or regular)
MASAs, i.e., MASAs A ⊂ M for which NM (A)′′ = M (cf. [FM77]). Any group
measure space II1 factor M = L∞(X)⋊ Γ, obtained from a free ergodic measure
preserving action Γ y X of a countable group Γ on a probability measure space
(X,µ), hasA = L∞(X) as a Cartan subalgebra, which is thus also an s-MASA. The
above result shows that such factors necessarily have singular s-MASAs as well.
Note that when M is hyperfinite, this fact was already known since ([D54, Pu60]),
where the first concrete examples of singular s-MASAs were given.

By [OP07, PV11, PV12], there are large classes of group measure space II1
factors that have unique (up to unitary conjugacy) Cartan subalgebras (= reg-
ular MASAs), while by Theorem 2 above, such a factor always has “many” non
conjugate semiregular s-MASAs.

There are by now many classes of II1 factors known to have no Cartan sub-
algebras, obtained first by using free probability theory ([V96]), then by using
deformation-rigidity theory ([OP07, PV11, CS11, PV12, I12]). It is interesting to
note that in each case when one could prove absence of Cartan MASAs by using
free probability, absence of s-MASAs followed as well (notably for the free group
factors L(Fn), cf. [G97]).

It would be important to obtain an intrinsic, local characterization of II1 fac-
tors having Cartan subalgebras. Such characterization should allow to prove, for
instance, that the class of factors with Cartan MASAs is close to inductive limits.
Another problem that we leave open is to produce examples of II1 factors that
have s-MASAs but do not have Cartan subalgebras.
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Amenability VS Amalgamated free products

Remi Boutonnet

(joint work with C. Houdayer)

We investigate the position of certain amenable subalgebras of arbitrary amalga-
mated free product von Neumann algebras. Our main result roughly says that any
amenable subalgebra of A ∗C B with large enough intersection with A is actually
contained in A. This generalizes previous results of Houdayer-Ueda and Leary.

Free entropy dimension and the first L
2 Betti number

Dimitri Shlyakhtenko

In [Voi94, Voi96] Voiculescu introduced the notion of free entropy dimension. If
X = (X1, . . . , Xn) is an n-tuple of self-adjoint elements in a tracial von Neumann
algebra, the free entropy dimension is computed as

δ0(X) = n− lim sup
t↓0

χ(X + tS : S)

where S = (S1, . . . , Sn) is a free semicircular n-tuple, free from X , and χ is
Voiculescu’s (microstates) free entropy.

In [Jun07], Jung introduced the notion of a strongly 1-bounded n-tuple X . His
definition involves strengthening the inequality δ0(X) ≤ 1 (which entails χ(X +
tS) = (n− 1) log t+O(log t)) to requiring that

χ(X + tS) = (n− 1) log t+O(1).

A remarkable theorem due to Jung (see also recent work of Hayes [Hay15]) states
that under certain additional assumptions on X (such as that it contains an ele-
ment with finite entropy, or is a non-amenability set, orW ∗(X) is amenable), if for
some Y = (Y1, . . . , Ym), W ∗(X) =W ∗(Y ), then Y is again strongly 1-bounded. In
other words, strong 1-boundedness is a property of a finite von Neumann algebra
which can be checked on a generating set.
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Let Γ be a finitely generated discrete group and let X be a generating set for
the group algebra CΓ. We have previously shown [CS05] that the inequality

δ0(X) ≤ β(2)
1 (Γ)− β(2)

0 (Γ) + 1

always holds. Here β
(2)
j (Γ) are the L2-Betti numbers of Γ (cf. [Lüc02]). More

concretely, the quaitity β
(2)
1 (Γ) − β(2)

0 (Γ) + 1 is precisely dimLΓC(Γ; ℓ
2Γ), where

dim stands for Murray-von Neumann dimension and C(Γ; ℓ2Γ) is the set of group
cocycles, i.e. maps c : Γ → ℓ2Γ satisfying c(gh) = c(g) + ρ(g)c(h), ρ being the
right regular representation.

Equality δ0(X) = β
(2)
1 (Γ)−β(2)

0 (Γ)+1 holds for certain classes of groups [Shl09,
BDJ08].

In this talk we prove that in the case that Γ is a finitely presented infinite
finitely generated group which satisfies the determinant conjecture (cf. [Lüc02])

and β
(2)
1 (Γ) = 0, then there exists a set of generators for the group algebra of Γ

which is strongly 1-bounded. It follows that if LΓ = W ∗(Y ) for some m-tuple
Y , then Y must also be strongly 1-bounded. This implies, for example, that
LΓ cannot be a free product of two diffuse von Neumann algebras, in particular
LΓ 6∼= LFn for any n ≥ 2.

The proof of our result relies on estimating non-microstates free Fisher infor-
mation for semicircular perturbations of generating sets and using the results of
[BCG03] to deduce the corresponding inequality for microstates free entropy di-
mension (cf. [Shl16]).
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Connective C*-algebras

Marius Dadarlat

(joint work with Ulrich Pennig)

Connectivity is a homotopy invariant property of a separable C∗-algebra A which
has three important consequences: absence of nonzero projections, quasidiago-
nality and realization of the Kasparov group KK(A,B) as homotopy classes of
asymptotic morphisms from A to B ⊗K if A is nuclear.

We denote by CB = C0[0, 1) ⊗ B the cone over a C*-algebra B. Let L(H)
denote the bounded operators on a separable infinite dimensional Hilbert space
and let K = K(H) denote the compact operators.

Definition. A C*-algebra A is connective if there is a ∗-monomorphism

Φ: A→
∏

n

CL(H)/
⊕

n

CL(H)

which is liftable to a completely positive and contractive map ϕ : A→ ∏
n CL(H)

Let G be a countable discrete group and let I(G) be the augmentation ideal
defined as the kernel of the trivial representation ι : C∗(G)→ C.

Definition. A countable discrete group G is connective if the ideal I(G) is a
connective C*-algebra.

Connes and Higson [1] gave a realization of E-theory, the universal half-exact
C*-stable homotopy functor on separable C*-algebras in terms of homotopy classes
of asymptotic homomorphisms: E(A,B) = [[SA, SB ⊗ K]]. An asymptotic mor-
phism at the level of unsuspended C*-algebras A → B ⊗ K contains in principle
more geometric information. A full answer to the question of unsuspending in
E-theory was found in [3]. The suspension map [[A,B ⊗K]]→ E(A,B) is an iso-
morphism for all separable C∗-algebras B if and only if A is homotopy symmetric,
which means that [[idA]] ∈ [[A,A⊗K]] has an additive inverse or equivalently that
[[A,A ⊗ K]] is a group. Unfortunately, it can be quite hard to check homotopy
symmetry in practice. Addressing this point we showed that homotopy symmetry
is equivalent to connectivity, a property which is significantly easier to verify:

Theorem. [4] If A is separable and nuclear, the following conditions are equiva-
lent:

(i) A is homotopy-symmetric
(ii) A is connective.
(iii) KK(A,B) ∼= [[A,B ⊗K]] for any separable C*-algebra B.

The proof of this theorem relies crucially on results of Thomsen [9]. Since
connectivity is an embeddability condition, it passes to subalgebras and hence we
obtain a somewhat unexpected corollary:

Theorem. [4] Homotopy symmetry is inherited by separable nuclear subalgebras

Connectivity has a key permanence property which does not hold for quasidi-
agonality:
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Theorem. [5] The class of connective separable nuclear C*-algebras is closed un-
der extensions.

Using this and other permanence properties such as passage to inductive limits
and crossed products by compact groups, we were able to exhibit new classes of
homotopy symmetric C∗-algebras [4], [5].

Theorem. [4] If G is a countable torsion free nilpotent group, then G is connec-
tive.

We have also shown that the class of discrete amenable groups is closed under
generalized wreath products.

Let G and H be countable discrete groups and let J be a set with a left action
of H . The wreath product G ≀

J
H is defined as the following semidirect product:

G ≀
J
H = (

⊕
J G)⋊H.

Theorem. [6] If G and H are connective, so is the wreath product G ≀
J
H.

The Hantzsche-Wendt manifold is the only closed flat 3-dimensional manifold
with finite homology [2]. Its fundamental group G = 〈x, y : x2yx2 = y, y2xy2 =
x〉 is a torsion free crystallographic group (Bieberbach group) that fits into an
exact sequence

1→ Z3 → G −→ Z/2× Z/2→ 1.

We showed that Ĝ \ {ι} is compact-open and use a result from [10] to prove
that

Theorem. [5] The Hantzsche-Wendt group G is not connective.

In contrast we have proved that

Theorem. [5] Any Bieberbach group with cyclic holonomy is connective.

In other words we showed that if 1→ Zn → H → Z/mZ→ 1 is exact, then H
connective if and only if H is torsion free.

Reduced C*-algebras of Lie groups
Based on classic results of representation theory, [7], [8], [11], [12] we arrived the
following picture concerning connectivity for the reduced C*-algebras of Lie groups
[5]:

(a) Let G be a (real or complex) linear connected nilpotent Lie group. Then
C∗(G) is connective if and only if G is not compact.

(b) If G is a linear connected complex semisimple Lie group, then C∗
r (G) is

connective if and only if G is not compact.
(c) Let G be a linear connected real reductive Lie group. The following asser-

tions are equivalent

(i) C∗
r (G) is connective

(ii) G does not have a discrete series representations
(iii) G does not have a compact Cartan subgroup
(iv) There are no nonzero projections in C∗

r (G)
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Actions of amenable groups on the Cantor set: Z-stability and
classifiability

David Kerr

As a consequence of recent remarkable work of Elliott, Gong, Lin, and Niu [5, 3]
and Tikuisis, White, and Winter [10], we now know that the class of simple sep-
arable unital C∗-algebras satisfying the UCT (universal coefficient theorem) and
having finite nuclear dimension is classified by orderedK-theory paired with traces.
For C∗-crossed products of actions of amenable groups the UCT is automatic by a
result of Tu [11], and so in this case classifiability (i.e., falling within the scope of
the above classification theorem) boils down to the problem of determining when
the nuclear dimension is finite. While there are very effective methods for tackling
this problem that reimagine nuclear dimension in dynamical terms, as in the work
of Szabo [8], Szabo-Wu-Zacharias [9], and Guentner-Willett-Yu [6], for free actions
these methods all require that the group have finite asymptotic dimension, which
does not always hold in the amenable case.

Here we take a different approach by developing dynamical arguments for ver-
ifying Z-stability, which, for simple separable unital infinite-dimensional nuclear
C∗-algebras, is conjectured to be equivalent to finite nuclear dimension (Toms-
Winter) and is known to be so equivalent when the extreme boundary of the trace
simplex is compact (Bosa-Brown-Sato-Tikuisis-White-Winter [1]), a fact which
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was first proved in the unique trace case, under the hypothesis of quasidiagonality,
by Matui and Sato [7].

We begin with the following definition modeled on the notion of strict compar-
ison for C∗-algebras.

Definition 1. An action G y X on the Cantor set is said to have clopen
strict comparison if for all clopen sets A,B ⊆ X satisfying µ(A) < µ(B) for
all G-invariant Borel probability measures µ on X there exist a clopen partition
{A1, . . . , An} of A and s1, . . . , sn ∈ G such that the sets s1A1, . . . , snAn are pair-
wise disjoint and contained in B.

The following was observed by Glasner in Weiss in [4] using Kakutani-Rokhlin
towers. It is an open question whether the statement holds when Z is replaced by
an arbitrary countably infinite amenable group (or even just Z2).

Proposition 1. A minimal Z-action on the Cantor set has clopen strict compar-
ison.

An action on a compact metrizable space is said to be strictly ergodic if it is min-
imal and has a unique invariant Borel probability measure. Strict ergodicity and
freeness together imply that the crossed product is simple and has unique trace.
An application of the Ornstein-Weiss quasitower theorem and a characterization
of Z-stability observed by Winter yield:

Theorem 1. Let G y X be a free strictly ergodic action of a countably infi-
nite amenable group on the Cantor set. Suppose that the action has clopen strict
comparison. Then C(X)⋊G is Z-stable.

The following is a refinement of the Jewett-Krieger theorem [12]. The proof
relies on a recent tiling result of Downarowicz, Huczek, and Zhang for amenable
groups [2].

Theorem 2. Let G y (Y, µ) be a free probability-measure-preserving action of a
countable amenable group and let H be a subgroup of G isomorphic to Z such that
the restriction H y (Y, µ) is ergodic. Then there exists a free topological model
G y X for the action G y (Y, µ) such that the restriction H y X is strictly
ergodic.

Theorems 1 and 2 and Proposition 1, along with the results in classification
theory discussed at the outset, combine to produce many classifiable crossed prod-
ucts among actions of a given nontorsion countable amenable group on the Cantor
set:

Theorem 3. Let G be a nontorsion countable amenable group. Then there exist
uncountably many pairwise nonconjugate strictly ergodic free minimal actions Gy

X on the Cantor set such that C(X)⋊G is Z-stable and hence classifiable.
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Equivariant Kirchberg-Phillips-type absorption for amenable group
actions

Gábor Szabó

As we have seen in earlier talks, an important C∗-algebraic regularity property
is given by the tensorial absorption of some strongly self-absorbing C∗-algebra D
[11]. This ties into the Toms-Winter conjecture [1, 12, 14]. In a very influential
paper [13], the term of ‘localizing the Elliott conjecture at a strongly self-absorbing
C∗-algebra D’ was coined by Winter. The most general case concerns D = Z.
The earliest and perhaps most prominent case is Kirchberg-Phillips’ classification
[3, 8] of purely infinite C∗-algebras, where the Cuntz algebra O∞ played this role
[4]. Together with O2, which plays a reverse role to O∞, these two objects can be
regarded as the cornerstones of that classification theory.

The notion of a strongly self-absorbing C∗-algebra was generalized to the equi-
variant context and studied in [9, 10].

Definition. Let D be a separable, unital C∗-algebra and G a locally compact group.
An action γ : Gy D is called strongly self-absorbing, if there exists an equivariant
isomorphism ϕ : (D, γ)→ (D ⊗D, γ ⊗ γ) and unitaries vn ∈ U(D ⊗ D) satisfying

ϕ(x) = lim
n→∞

vn(x ⊗ 1)v∗n, x ∈ D



2296 Oberwolfach Report 40/2016

and
max
g∈K

‖vn − (γ ⊗ γ)g(vn)‖ n→∞−→ 0, K ⊆ G compact.

In analogy to the classical theory, the most important feature of strongly self-
absorbing actions is that their absorption can be characterized by a McDuff-type
condition. The variant cited below is a special case that has been folklore long
before the work in [9] was initiated.

Theorem 1 (generalizing Rørdam). Let G be a countable, discrete group. Let
α : G y A be an action on a separable, unital C∗-algebra. Let γ : G y D be a
strongly self-absorbing action. Then α is (strongly) cocycle conjugate to α ⊗ γ if
and only if there exists an equivariant and unital ∗-homomorphism from (D, γ) to(
A∞ ∩ A′, α∞

)
. (If this holds, we say that α is γ-absorbing.)

The basic question treated in this talk is whether the classical Kirchberg-Phillips
absorption theorem [4] has an equivariant analog, interpreted in the above sense,
for outer actions of amenable groups. Results of this kind are already known for
special classes of groups due to work of Izumi [5], Goldstein-Izumi [2], Izumi-Matui
[7, 6] and Phillips (in progress).

Example. Let G be discrete and exact. By Kirchberg’s O2-embedding theorem, we
find a faithful unitary representation v : G→ U(O2) via some inclusion C∗

r(G) ⊂
O2. Choose some embedding ι : O2 → O∞, and obtain u : G → U(O∞) via
ug = ι(vg) + 1− ι(1). Consider

δ =
⊗

N

Ad(v) : Gy
⊗

N

O2
∼= O2 , γ =

⊗

N

Ad(u) : Gy
⊗

N

O∞
∼= O∞.

Then both of these actions are faithful and strongly self-absorbing.

The main result of this talk is that an equivariant Kirchberg-Phillips-type ab-
sorption theorem holds for outer actions of all amenable group, with the model
actions above forming the common framework:

Theorem 2. Let G be a discrete, amenable group. Then up to (strong) cocycle
conjugacy, δ is the unique outer, equivariantly O2-absorbing G-action on O2. In
particular, α⊗ δ is (strongly) cocycle conjugate to δ for any action α : Gy A on
a unital Kirchberg algebra.

Theorem 3. Let G be a discrete, amenable group. Then every outer action α :
Gy A on a unital Kirchberg algebra is γ-absorbing.

Theorem 4. Let G be a discrete, amenable group. Let β : G y O∞ be an outer
action. Then β is strongly cocycle conjugate to γ if and only if β is approximately
representable and the inclusion C∗(G) ⊂ O∞ ⋊β G is a KK-equivalence.

A suitable variant of this holds for every strongly self-absorbing Kirchberg al-
gebra D in place of O∞.

We comment that the last condition must generally be assumed for groups
with torsion, as it may fail for G = Z2. It remains unclear whether approximate
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representability is always redundant in this context. For the torsion-free case, we
obtain the following more satisfactory uniqueness result:

Theorem 5. Let G be a discrete, amenable, torsion-free group and D a strongly
self-absorbing Kirchberg algebra. Then up to (strong) cocycle conjugacy, γ ⊗ idD
is the unique outer, approximately representable G-action on O∞ ⊗D ∼= D.
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C*-algebras of free minimal actions of amenable groups: a survey of
the nonclassifiable case

N. Christopher Phillips

Throughout, Γ will be an infinite countable amenable group.
We first contrast the von Neumann algebra and C*-algebra situations. In von

Neumann algebras, we take (X,µ) to be a standard probability space, with an
action of Γ on X which preserves µ and is free and ergodic. Then, by Connes,
the group measure space construction always gives the same algebra, namely the
(unique) hyperfinite factor of type II1, regardless of the group or the action.

For the C*-algebra situation, we instead let X be a compact metric space, we
assume that Γ acts freely on X (essential freeness should be good enough, but we
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don’t address this issue here), and we assume that the action is minimal. The C*-
algebra crossed product C∗(Γ, X) is then a simple separable nuclear stably finite
C*-algebra. Such algebras might be considered to be the C*-algebraic analogs of
the hyperfinite factor of type II1, but they are very far from unique. Here are some
of the complications which can arise, in roughly increasing order of distance from
what one might hope for by comparison with the hyperfinite factor of type II1:

(1) There might be inequivalent projections with the same trace.
(2) There might be more than one tracial state, and, given a projection, the

tracial states need not all take the same value on it.
(3) The algebra might not be approximable by finite dimensional subalgebras.

(It need not be AF.)
(4) The unitary group can fail to be connected.
(5) The algebra might have few or no nontrivial projections.
(6) Comparison can fail: there might be projections p and q such that τ(p) <

τ(q) for every tracial state τ , but p is not Murray-von Neumann equivalent
to a subprojection of q.

(7) The algebra can fail to have stable rank one, that is, the invertible elements
need not be (norm) dense.

All of these phenomena are known by example to actually occur in simple separable
nuclear stably finite C*-algebras. The phenomena (1)–(5) all occur in C*-algebras
which are classifiable in the sense of the Elliott program, while (6) and (7) rule
out classifiability, at least according to current knowledge.

Since we want to discuss comparison in a C*-algebra A, but there may be no
nontrivial projections, we compare positive elements inM∞(A). We therefore very
briefly summarize Cuntz comparison. See [1] for an extensive survey, and Sections
1 and 2 of [7] for some additional properties needed for the work reported here.

Definition 1. Let A be a C*-algebra, and let a, b ∈ M∞(A)+. We say that a is
Cuntz subequivalent to b, written a - b, if there is a sequence (vn)n∈N in M∞(A)+
such that limn→∞ v∗nbvn = a.

Definition 2. Let A be a unital C*-algebra. We write T(A) for the set of tracial
states on A. For τ ∈ T(A), we define a function dτ : M∞(A)+ → [0,∞) by
dτ (a) = limn→∞ τ(a1/n).

We think of the relation a - b as saying that “the open support of a is dominated
by the open support of b”. (This is actually correct if A = C(X) and a and b are
in A.) We think of dτ (a) as a measure of “the size of the open support of a”.

Definition 3 (Definition 6.1 of [10]). Let A be a unital C*-algebra and let r ∈
[0,∞). We say that A has r-comparison if whenever a, b ∈ M∞(A)+ satisfy
dτ (a) + r < dτ (b) for all τ ∈ T(A), then a - b. We further define the radius of
comparison rc(A) to be

rc(A) = inf
({
r ∈ [0,∞) : A has r-comparison

})
.

We have rc(A) = 0 if and only if A has strict comparison of positive elements,
which is the analog of comparablity of projections in factors of type II1. For simple
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separable nuclear stably finite C*-algebras A, this condition is conjectured to be
equivalent to classifiability in the sense of the Elliott program.

We now describe mean dimension, introduced in [6]. We first recall some defi-
nitions related to covering dimension.

Definition 4. Let X be a compact Hausdorff space.

(1) Let U be a finite open cover of X. The order of U is the least number n
such that the intersection of any n+ 2 distinct elements of U is empty.

(2) Let U and V be finite open covers of X. Then V refines U (written V ≺ U)
if for every V ∈ V there is U ∈ U such that V ⊂ U .

(3) Let U be a finite open cover of X. We let D(U) be the least possible order
of a finite open cover which refines U .

(4) The covering dimension dim(X) is the supremum of D(U) over all finite
open covers U of X.

(5) If U and V are finite open covers of X, their join is U ∨ V =
{
U ∩

V : U ∈ U and V ∈ V
}
.

Definition 5 ([6]). Let X be a compact metric space and let h : X → X be a
homeomorphism. Then the mean dimension of h is

mdim(h) = sup
U

lim
n→∞

D
(
U ∨ h−1(U) ∨ · · · ∨ h−n+1(U)

)

n
.

The supremum is over all finite open covers of X (as for dim(X)).

The mean dimension of an action of Γ is defined using Følner sets in Γ in place
of intervals in Z. See [6]. We write mdim(Γ, X). The definition is designed so that
if K is sufficiently nice (for example, a finite complex), then the shift on KΓ has
mean dimension dim(K).

Based on thin evidence, we hope for the following:

• rc
(
C∗(Γ, X)

)
= 1

2mdim(Γ, X).
• C∗(Γ, X) should always have stable rank 1.

When Γ = Z, the first is known as the “Phillips-Toms conjecture”, and the second
is an explicit conjecture in [2], of the authors of that paper and Niu. In partic-
ular, among algebras of the form C∗(Γ, X), phenomenon (6), the first on the list
above which is incompatible with classification, is supposed to occur (and does in
examples, as was first shown in [4]), but phenomenon (7) is not supposed to occur.

The following results are known. (For the last two, not all details have yet been
written, but they seem essentially certain to work.)

• For a class of actions of Z slightly generalizing the Giol-Kerr examples
(see [4]), and thus including actions with arbitrarily large mean dimension,
rc
(
C∗(Z, X)

)
= 1

2mdim(Z, X). (Joint work with Hines and Toms; see [5].)
• For Γ = Z and if X has infinitely many connected components, we have
rc
(
C∗(Z, X)

)
≤ 1

2mdim(Z, X). (Joint work with Hines and Toms; see [5].)

• For Γ = Z and X arbitrary, if mdim(Z, X) = 0 then rc
(
C∗(Z, X)

)
= 0.

(Elliott and Niu; see [3].)
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• For Γ = Z and X arbitrary, rc
(
C∗(Z, X)

)
≤ 1 + 2mdim(Z, X). (See [8].

The current version says rc
(
C∗(Z, X)

)
≤ 1+ 36mdim(Z, X); a revision in

preparation will give the improved bound.)
• For Γ = Z and if X has infinitely many connected components, C∗(Z, X)
has stable rank 1. (Joint work with Archey; see [2].)
• For Γ = Zd and if the action has a factor system which is a free minimal
action on the Cantor set, rc

(
C∗(Zd, X)

)
≤ 1

2mdim(Zd, X). (See [9].)

• Under the same hypotheses as in the previous item, C∗(Zd, X) has stable
rank 1. (See [9].)

In the last two items, there are free minimal actions of many other countable
amenable groups Γ on the Cantor set such that, if an action of Γ has one of these
systems as a factor, then rc

(
C∗(Γ, X)

)
≤ 1

2mdim(Γ, X) and C∗(Γ, X) has stable
rank 1.
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and F. Perera (eds.), Contemporary Mathematics vol. 534, Amer. Math. Soc., Providence
RI, 2011.

[2] D. Archey and N. C. Phillips, Permanence of stable rank one for centrally large subal-
gebras and crossed products by minimal homeomorphisms, preprint (arXiv: 1505.00725v1
[math.OA]).

[3] G. A. Elliott and Z. Niu, The C*-algebra of a minimal homeomorphism of zero mean
dimension, preprint 2014.

[4] J. Giol and D. Kerr, Subshifts and perforation, J. reine angew. Math. 639(2010), 107–119.
[5] T. Hines, N. C. Phillips, and A. S. Toms, in preparation.
[6] E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math. 115(2000),

1–24.
[7] N. C. Phillips, Large subalgebras, preprint (arXiv: 1408.5546v1 [math.OA]).
[8] N. C. Phillips, The C*-algebra of a minimal homeomorphism with finite mean dimension

has finite radius of comparison, preprint (arXiv: arXiv:1605.07976v1 [math.OA]).
[9] N. C. Phillips, Stable rank one for free minimal actions of Zd with Cantor factors, in

preparation.
[10] A. S. Toms, Flat dimension growth for C*-algebras, J. Funct. Anal. 238(2006), 678–708.

Classification of a family of non almost periodic free Araki-Woods
factors

Cyril Houdayer

(joint work with Dimitri Shlyakhtenko and Stefaan Vaes)

Following [7], to any finite symmetric Borel measure onR and any symmetric Borel
multiplicity function m : R→ N∪{+∞} (that we always assume to satisfy m ≥ 1
µ-almost everywhere), one associates the free Araki–Woods von Neumann algebra
Γ(µ,m)′′ which comes equipped with the free quasi-free state ϕµ,m. When µ is an
atomic measure that is not concentrated on {0}, the free quasi-free state is almost
periodic and the von Neumann algebras Γ(µ,m)′′ were completely classified in [7]:
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Γ(µ1,m1)
′′ ∼= Γ(µ2,m2)

′′ if and only if the sets of atoms of µ1 and µ2 generate the
same subgroup of (R,+).

It is a very intriguing open problem to classify the free Araki–Woods factors
Γ(µ,m)′′ beyond the almost periodic case and there is not even a conjectural
classification statement. So far, one could only distinguish between families of
non almost periodic free Araki–Woods factors by computing their invariants, like
Connes’ τ -invariant (see [8, 9]), or by structural properties of their continuous core
(see [9, 3, 2]). In this paper, we fully classify the free Araki–Woods factors in the
case where the atomic part µa is nonzero and not concentrated on {0} and where
the continuous part µc satisfies µc ∗ µc ≺ µc. We find in particular that in that
case, the free Araki–Woods factor does not depend on the multiplicity function m.

In order to state our main results, we first introduce some terminology. Let (X,X )
be any standard Borel space endowed with its σ-algebra of Borel sets. A measure
class on X is a subset C ⊂ X that contains the empty set ∅ and that is closed under
taking subsets and countable unions. For any (positive) σ-finite Borel measure µ
on X , denote by C(µ) the measure class consisting of all µ-null Borel subsets of X
and write µ = µc + µa where µc (resp. µa) is the continuous (resp. atomic) part
of µ. For any sequence (µk)k∈N of finite Borel measures on X , we define the joint
measure class of (µk)k∈N by C(∨k∈N µk) :=

⋂
k∈N C(µk).

We show that free Araki–Woods factors Γ(µ,m)′′ arising from finite symmetric
Borel measures µ on R whose atomic part µa is nonzero and not concentrated on
{0} have the joint measure class C(∨k≥1 µ

∗k) as an invariant. More precisely, we
obtain the following result.

Theorem 1. Let µ, ν be finite symmetric Borel measures on R and m,n : R →
N ∪ {+∞} any symmetric Borel multiplicity functions. Assume moreover that
νa 6= 0 and either supp(νa) 6= {0} or supp(νa) = {0} and n(0) ≥ 2.
If the free Araki–Woods factors Γ(µ,m)′′ and Γ(ν, n)′′ are ∗-isomorphic then there
exist nonzero projections p ∈ (Γ(µ,m)′′)ϕµ,m and q ∈ (Γ(ν, n)′′)ϕν,n and a state-
preserving surjective ∗-isomorphism

(pΓ(µ,m)′′ p, (ϕµ,m)p) ∼= (q Γ(ν, n)′′ q, (ϕν,n)q)

where (ϕµ,m)p =
ϕµ,m(p · p)
ϕµ,m(p) and (ϕν,n)q =

ϕν,n(q · q)
ϕν,n(q)

.

In particular, the joint measure classes C(∨k≥1 µ
∗k) and C(∨k≥1 ν

∗k) are equal.

Denote by S(R) the set of all finite symmetric Borel measures µ = µc + µa on R
satisfying the following two properties:

(i) µc ∗ µc ≺ µc and
(ii) µa 6= 0 and supp(µa) 6= {0}.

Denote by Λ(µa) the countable subgroup of R generated by the atoms of µa and
by δΛ(µa) a finite atomic measure on R whose support is Λ(µa).

We obtain a complete classification of the free Araki–Woods factors arising from
measures in S(R).
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Corollary 1. The set of free Araki–Woods factors Γ(µ,m)′′ where

• µ ∈ S(R) and
• m : R→ N ∪ {+∞} is a symmetric Borel multiplicity function

is exactly classified, up to ∗-isomorphism, by the countable subgroup Λ(µa) and the
measure class C(µc ∗ δΛ(µa)).

The family S(R) is large and provides many nonisomorphic free Araki–Woods
factors having the same Connes invariants and in particular the same τ -invariant.
Note that so far, only two non almost periodic free Araki–Woods factors having
the same τ -invariant could be distinguished, see [9, Theorem 5.6].

We then show that free Araki–Woods factors Γ(µ,m)′′ arising from continuous
finite symmetric Borel measures µ on R have all their centralizers amenable, i.e.
the centralizer of any faithful normal state is amenable. More generally, we obtain
the following result.

Corollary 2. Let µ be any finite symmetric Borel measure on R and m : R →
N∪{+∞} any symmetric Borel multiplicity function. The free Araki–Woods factor
Γ(µ,m)′′ has all its centralizers amenable if and only if the atomic part µa of µ is
either zero or concentrated on {0} with m(0) = 1.

In the setting of Corollary 2 and under the additional assumption that the Fourier
transform of the continuous finite symmetric Borel measure µc vanishes at infinity,
it was shown in [3, Theorem 1.2] that the continuous core of the corresponding
free Araki–Woods factor Γ(µ,m)′′ is solid (see [4]), meaning that the relative com-
mutant of any diffuse subalgebra that is the range of a faithful normal conditional
expectation is amenable. Any type III1 factor whose continuous core is solid has all
its centralizers amenable. Observe that there are many free Araki–Woods factors
arising in Corollary 2 whose Connes τ -invariant (see [1]) is not the usual topology
on R. In particular, these free Araki–Woods factors have a continuous core that
is not full (see [1, 9]) and hence not solid (see [4, Proposition 7] with N0 =M).
Therefore, Corollary 2 provides many new examples of type III1 factors whose
centralizers are all amenable.

Our main technical tool to prove the results mentioned so far is a deforma-
tion/rigidity criterion for the unitary conjugacy of two faithful normal states on
a von Neumann algebra M . We prove that a corner of the state ψ is unitarily
conjugate with a corner of the state ϕ if and only if in the continuous core c(M),
there is a Popa intertwining bimodule (in the sense of [5, 6]) between the canonical
subalgebras Lψ(R) and Lϕ(R) of c(M).
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A free monotone transport result for L(F∞)

Brent Nelson

(joint work with Qiang Zeng)

Originally defined by Bożejko and Speicher [1], mixed q-Gaussian algebras are the
von Neumann algebras generated by self-adjoint operators xi = ℓi + ℓ∗i , i ∈ I,
where {ℓi}i∈I are the Fock space representations of the commutation relations

ℓ∗i ℓj − qijℓjℓ∗i = δi,j i, j ∈ I,
corresponding to a symmetric array Q = (qij)i,j∈I ⊂ (−1, 1). These von Neumann
algebras, denoted ΓQ, come equipped with a faithful normal trace, namely the
vector state associated to the vacuum vector in the Fock space. In the case that
qij = q for all i, j ∈ I and some fixed parameter q ∈ (−1, 1), these von Neumann
algebras are simply the q-deformed free group factors Γq. Furthermore, when q = 0
one has Γ0

∼= L(F|I|).
When I is a finite set, Guionnet and Shlyakhtenko [3] showed that for suffi-

ciently small |q| (depending on |I|), Γq ∼= L(F|I|). Moreover, this isomorphism is
trace-preserving and even holds at the level of C∗-algebras. Their proof, which
relied on estimates of Dabrowski [2], was the first application of their free mono-
tone transport result. Free transport is the non-commutative analogue of classical
transport between probability spaces; that is, a measurable way to transform one
probability measure into another via a push-forward.

In the case of non-constant array Q = (qij)i,j∈I , in joint work with Zeng we
proved the analogous result: for I finite and sufficiently small maxi,j |qij | (depend-
ing on |I|) one has ΓQ ∼= L(F|I|) [5]. Later, by adapting Guionnet and Shlyakht-
enko’s free monotone transport result to handle an infinite number of generators,
we proved that a result in the I infinite case [4]. Namely, if I = N and loosely
speaking Q satisfies :

(i) supi,j |qij | sufficiently small; and
(ii) |qij | → 0 sufficiently rapidly as i+ j →∞,

then ΓQ ∼= L(F∞). Furthermore, these isomorphisms are all trace-preserving and
hold at the level of C∗-algebras.

The key observation is that the joint law of the generating variables {xn}n∈N

(i.e. the values of monomials under the trace) is a solution to a non-commutative
partial differential equation. In fact, the PDE belongs to a class parametrized by
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potentials : formal power series V ∈ C 〈tn : n ∈ N〉. For qij = 0 for all i, j ∈ N

(when the generators are freely independent semicircular variables) the associated
potential is quadratic:

V0 =
1

2

∞∑

n=1

t2n.

For Q satisfying (i) and (ii) above, the generators of ΓQ have a joint law with asso-
ciated potential VQ that is “close” to V0 as elements of a certain Banach algebra.
One consequence of this is that the solution to the PDE associated to VQ has a
unique solution. This closeness also allows one to construct invertible, convergent
power series in freely independent semicircular variables whose joint law is also a
solution to the PDE associated to VQ. The uniqueness of the solution combined
with the invertibility of the convergent power series yields the isomorphism result.
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Group actions on Banach spaces and a duality spaces/operators

Mikael de la Salle

The polar of a subset C of a locally convex topological vector space E is the set

C◦ = {x∗ ∈ E∗|〈x∗, x〉 ≥ −1}.
The very classical bipolar theorem [1, II §6] states that the bipolar of C (i.e. the
polar of C◦ in E∗ endowed with the weak-* topology) coincides with the closed
convex hull of C ∪ {0}. The inclusion of the closed convex hull of C ∪ {0} in the
bipolar of C is obvious; the content of the theorem is the other inclusion, which
follows from the Hahn-Banach theorem.

The aim of my talk was to present an analogous of the bipolar theorem, when
one replaces E (respectively E∗) by the class Ban of Banach spaces and E∗ (re-
spectively E) by the class Opp of bounded linear maps between subspaces of Lp
spaces. The first half of my talk was devoted to motivations for this question,
mainly from representation theory and operator algebras [8]. In this extended
abstract I proceed the other way around: I start by presenting the objects and
results involved in the polarity, and then I explain by some examples why I care
about such questions.

Here p is a fixed number in [1,∞), for example p = 2.



C*-Algebras 2305

Of course, neither Ban nor Opp has a linear structure, so we are not at all in
the setting of a pair of vector spaces in duality. The little structure that remains is
a way to assign, to each pair (X,T ) in Ban×Opp, a number ‖TX‖ ∈ [0,∞], the
(possibly infinite) norm of T⊗idX between the subspaces dom(T )⊗X and ran(T )⊗
X of Lp(Ωi,mi;X). This is enough to define the notion of polar, analogously to
the linear setting.

Definition. If A ⊂ Ban is a class of Banach spaces, we define its polar A◦ as
the class of operators T ∈ Opp such that ‖TX‖ ≤ 1 for every X in A.

Definition. If B ⊂ Opp, we define its polar B◦ as the class of Banach spaces
X ∈ Ban such that ‖TX‖ ≤ 1 for every T in B.

Actually most natural geometric properties of Banach spaces (uniform convexity
with a given modulus, UMD with a given UMD constant, type/cotype with a
given type/cotype constant etc) are defined as the polar of some set of operators
B between sub Lp spaces for the correct p. And so any question of the form “does
property P1 imply property P2?” can be reformulated as “is B◦

1 contained in
B◦

2?”, or equivalently as “is B2 contained in the bipolar of B1?”. This is a strong
motivation for obtaining a desctiption of the bipolar of a set of operators.

This duality is a variant of the one considered in [6], where Pisier restricts to
operators between Lp spaces (and not subspaces of Lp spaces). There is a form
of the bipolar theorem in this setting, which again takes informally the form of
“the bipolar of C contains no more elements than the obvious elements”, for the
correct notion of obvious. For the bipolar of a class of Banach spaces, this is due
to Hernandez.

Theorem. ([2]) The bipolar A◦◦ of a class of Banach spaces A ⊂ Ban is the class
of Banach spaces finitely representable in the class of all finite ℓp-direct sums of
elements in A.

To state our main result, the bipolar theorem for sets of operators, we have to
introduce some definition.

Definition. A spacial isometry between finite dimensional subspaces of Lp spaces
is a composition of isometries of the form:

• (Change of phase and measure) Restriction to a subspace of Lp(Ω,m) of
the multiplication by a nonvanishing measurable function h : Ω→ C∗, i.e.
f ∈ Lp(Ω,m) 7→ hf ∈ Lp(Ω, |h|−pm).
• (Equimeasurability outside of 0) Maps of the form T : dom(T ) ⊂ Lp(Ω,m)
→ Lp(Ω

′,m′) such that for every finite family f1, . . . , fn ∈ dom(T ) and
every Borel subset E ⊂ Cn \ {0},

m({x, (f1(x), . . . , fn(x)) ∈ E}) = m′({x, (Tf1(x), . . . , T fn(x)) ∈ E}).
It is important that we require 0 /∈ E, as we want for example that f ∈

Lp([0, 1]) 7→ f ⊕ 0 ∈ Lp([0, 1])⊕p Lp([0, 1]) to be a spacial isometry.
If p is not an even integer, it is known that every isometry between (separable)

susbpaces of Lp spaces is a spacial isometry ([5]).
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We can now state the version of the bipolar theorem for sets of operators, which
gives an answer to [6, Problem 4.1].

Theorem. The bipolar B◦◦ of a class B ⊂ Opp is the smallest class B′ ⊂ Opp

containing B and satisfying the following properties :

(1) B′ contains the convex combinations of spacial isometries.
(2) B′ is stable under finite ℓp-direct sums.
(3) Let T ∈ B′ such that T : dom(T ) ⊂ Lp(Ω1,m1)⊕Lp(Ω,m)→ Lp(Ω1,m1)⊕

Lp(Ω,m) is of the form (f, g) 7→ (Sf, g) for some S ∈ Opp with domain
equal to the image of dom(T ) by the first coordinate projection. Then
S ∈ B′.

(4) If T ∈ B′ and U, V are spacial isometries then U ◦ T ◦ V ∈ B′.
(5) If T ∈ Opp is an operator between subspaces of Lp(Ω,m) and Lp(Ω

′,m′)
and if, for every finite family f1, . . . , fn in the domain of T and every ε >
0, there is S ∈ B′ with domain contained in Lp(Ω,m) and range contained
in Lp(Ω

′,m′) and elements g1, . . . , gn ∈ dom(S) such that ‖fi − gi‖ ≤ ε
and ‖Tfi − Sgi‖ ≤ ε, then T ∈ B′.

We regard (3) as more subtle than the other properties defining B′, and as
responsible for the fact that in many concrete situations, the bipolar of a set of
operators is not explicitely understood.

Motivation. Given a group G and a Banach space X , we denote by C∗
X(G) the

completion of Cc(G) for the norm

sup{‖π(f)‖B(X)|πisometric representation of G on X}.
This is a Banach algebra that encodes the isometric representation theory of G.
There is also a reduced version, C∗

λ,X(G) the completion of Cc(G) for the norm of

the convolution by f on the space L2(G;X), i.e., with the previous notation, for
the norm ‖(λ(f))X‖. The relevance of this Banach algebra for the study of general
Banach space representations of G comes from the following generalization of the
fact that the full and reduced C∗-algebras of an amenable group coincide : if G is
amenable, then the formal identity extends to a contraction C∗

X(G)→ C∗
λ,X(G).

Let G be a locally compact group with a compact symmetric generating set S.
We say that G has (FX) if every action of G by affine isometries on X has a fixed
point. The case when X is a Hilbert space corresponds to Kazhdan’s property (T),
and in general it is a challenging problem to understand for which Banach spaces
a given group has property (FX). For example, despite several partial results the
following conjecture by Bader, Furman, Gelander and Monod is still open (the
analougous for groups over nonarchimedean local fields is known thanks to the
work of Lafforgue and Liao) : higher rank connected simple real Lie groups have
(FX) for every superreflexive Banach space X . The same should be true for spaces
of type > 1.

A consequence of [8] is that “property (FX) for every superreflexive space X”
can be expressed purely in terms of some variants of the Banach algebras C∗

X(G)
(formally it is equivalent to robust property (TX) for every superreflexive X).
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Moreover, the ideas introduced by Lafforgue and further developped by Liao, my-
self, de Laat and Mimura for the study of representations of higher rank connected
simple Lie groups G and their nonarchimedean counterparts rely on the maximal
compact subgroup K of G. In particular to obtain a good understanding of Ba-
nach space representations of G and to prove the conjecture above, all is needed
is to have a good understanding of C∗

λ,X(K). The question is really to understand

whether some very explicit convolution operators (see [7, 4, 3]) on L2(K) belong
to the bipolar of B, for B the class of operators defining the class of Banach spaces
we are interested in (eg the spaces of Banach space with a given type p constant).
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The C
∗-algebras of lamplighter groups over finite groups

Alain Valette

A celebrated theorem of Higson-Kasparov (1997) states that the Baum-Connes
conjecture (BC) holds for every countable, amenable group G. The general ma-
chinery used in the proof establishes that the assembly map µG : K∗(EG) →
K∗(C

∗
rG) is an isomorphism, without identifying any of the objects. It seems

interesting to try to establish BC by hand for specific classes of groups.
One class where this can be achieved is the class of lamplighter groupsG = F ≀Z,

with F a finite group. The existence of a 2-dimensional EG (resp. the Pimsner-
Voiculescu sequence) allows for computations on the left-hand side (resp. right-
hand side). As a result, K1 is infinite cyclic (and corresponds to the inclusion
Z →֒ G), while K0 is free abelian on countably many generators, with explicit
generators set into correspondence under µG. As an application, we get new
proofs of some results concerning full shifts in topological dynamics.

Varying the finite group F , we see that the C∗-algebras C∗L cannot be distin-
guished by K-theory; this raises the question of classifying the C∗L’s up to iso-
morphism. We show that, if F1, F2 are finite groups with F1 abelian, C∗(F1 ≀Z) ≃
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C∗(F2 ≀ Z) if and only if F2 is abelian and |F1| = |F2|. This is a joint project with
Ramon FLORES (Sevilla) and my PhD student Sanaz POOYA.

An intrinsic algebraic characterization of C*-simplicity

Matthew Kennedy

A group G is said to be C*-simple if its reduced C*-algebra C∗
λ(G) is simple, i.e.

has no proper non-trivial two-sided closed ideals. There has recently been a great
deal of progress in our understanding of groups with this property.

A dynamical characterization of discrete C*-simple groups was established in
[8]. Recall that a compact G-space is said to be a G-boundary if the G-action on
X is minimal and strongly proximal.

Theorem 1. A discrete group G is C*-simple if and only if it has a free boundary
action.

The following averaging property was introduced by Powers’ [9] in his proof
that the free group F2 on 2 generators is C*-simple.

Definition 1. A discrete group G is said to have Powers’ averaging property if for
every element a in the reduced C*-algebra C∗

λ(G) and ǫ > 0 there are g1, . . . , gn ∈ G
such that ∥∥∥∥∥

1

n

n∑

i=1

λgiaλ
−1
gi − τλ(a)1

∥∥∥∥∥ < ǫ,

where τλ denotes the canonical tracial state on C∗
λ(G).

It is straightforward to prove that a discrete group with Powers’ averaging
property is necessarily C*-simple. Recently, Haagerup [3] and the present author
[7] independently proved that the converse holds.

Theorem 2. A discrete group G is C*-simple if and only if it has Powers’ aver-
aging property.

For a large class of discrete groups, it is known that C*-simplicity is equivalent
to the intrinsically algebraic property of having no non-trivial normal amenable
subgroups. For some time it was thought that this might be true for all discrete
groups, however Le Boudec [5] and Ivanov and Omland [4] recently constructed
examples of non-C*-simple groups with trivial amenable radical.

In [7], we established an algebraic characterization of C*-simplicity. Before
stating this result, we state a characterization of C*-simplicity based on the notion
of a uniformly recurrent subgroup, introduced by Glasner and Weiss [2].

Let G be a discrete group and let S(G) denote the compact space of subgroups
of G equipped with the Chabauty topology, which coincides with the product
topology on {0, 1}G. Convergence in the Chabauty topology can be described in
the following way: a net of subgroups (Hi)i∈I < G converges in the Chabauty
topology to a subgroup H < G if

(1) every h ∈ H eventually belongs to Hi and
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(2) for every subnet (Hj)j∈J , ∩jHj ⊂ H .

The space S(G) is a G-space with respect to the conjugation action of G. Let
Sa(G) denote the (closed) G-invariant subspace of amenable subgroups of G.

Definition 2. A compact G-subspace X ⊂ S(G) is said to be a uniformly recurrent
subgroup of G if it is minimal, i.e. if {gHg−1 | g ∈ G} is dense in X for every
H ∈ X. If X ⊂ Sa(G), then X is said to be amenable. If X 6= {{e}}, where {e}
denotes the trivial subgroup of G, then X is said to be non-trivial.

Theorem 3. A discrete group G is C*-simple if and only if it has no non-trivial
amenable uniformly recurrent subgroups.

The characterization in Theorem 3 has a dynamical flavour. The algebraic char-
acterization of C*-simplicity is obtained by unwinding the definition of a uniformly
recurrent subgroup. Before stating this result, we require the notion of a recurrent
subgroup.

Definition 3. Let G be a countable discrete group. A subgroup H < G is said to
be recurrent if for every sequence (gn) ∈ G there is a subsequence (gnk) such that

⋂

k

gnkHg
−1
nk
6= {e}.

Theorem 4. A countable discrete group is C*-simple if and only if it has no
amenable recurrent subgroups.

The results stated above were recently utilized by Le Boudec and Matte Bon
[6] to prove that Thompson’s group F is non-amenable if and only if Thompson’s
group T is C*-simple.
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Roe algebras as relative commutants

Aaron Tikuisis

(joint work with J. Špakula)

Roe algebras are certain C∗-algebras constructed from (proper) metric spaces,
which encode coarse information about the spaces. A metric space is proper if
all its closed balls are compact. For concreteness, this talk focused on uniformly
discrete metric spaces, i.e., metric spaces (X, d) for which d(x, y) ≥ 1 whenever
x 6= y.

An extremely important example, which drives the study of metric spaces from
a coarse perspective, is a finitely generated group with the word metric.

Definition. Let (X, d) be a uniformly discrete metric space, let a ∈ B(l2(X)), and
let R, ǫ > 0.

(i) a has propogation at most R > 0 if faf ′ = 0 whenever f, f ′ ∈ l∞(X) such
that d(suppf, suppf ′) > R.

(ii) The uniform Roe algebra of X is

C∗
u(X) := {b ∈ B(l2(X)) : b has finite propogation}‖·‖.

(This is an algebra.)
(iii) a has ǫ-propogation at most R > 0 if ‖faf ′‖ = 0 whenever f, f ′ ∈ l∞(X)

such that d(suppf, suppf ′) > R and ‖f‖, ‖f ′‖ ≤ 1.

Straightforward analysis shows that if a ∈ C∗
u(X) then a has finite ǫ-propogation

for all ǫ > 0. Finite propogation operators have also been called band operators,
a name which is easily motivated by the picture of such an operator in the case
X = Z. When X is a finitely generated group G with the word metric, G acts on
l∞(G) by translation, and

C∗
u(G)

∼= l∞(G) ⋊r G.

Interestingly, the uniform Roe algebra captures a lot of information about the
space X .

Theorem (Špakula–Willett [3]). Let X,Y be metric spaces with property (A).
Then X and Y are coarsely equivalent if and only if C∗

u(X) and C∗
u(Y ) are Morita

equivalent.

Definition. Let (X, d) be a uniformly discrete metric space. A function f ∈
l∞(X) is a Higson function if for every L > 0, there exists a finite set K ⊂ X
such that f |X\K is L-Lipschitz. The set (C∗-algebra) of all Higson functions is
denoted Ch(X).

For example, when X is a finitely generated group G with the word metric,
Ch(X) is the preimage of (l∞(G)/c0(G))

G (the fixed point algebra of the action
induced by translation) under the quotient map l∞(G)→ l∞(G)/c0(G). When X
has bounded geometry, it is easy to see that for any a ∈ C∗

u(X) and f ∈ Ch(X),

[a, f ] ∈ K(l2(X)).
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Definition. Let (X, d) be a uniformly discrete metric space. A bounded sequence
(fn)

∞
n=1 ⊂ l∞(X) is very Lipschitz if for every L > 0, there exists n0 such that, if

n ≥ n0 then fn is L-Lipschitz. The set (C∗-algebra) of all very Lipschitz bounded
sequences is denoted VL(X), and VL∞(X) denotes its quotient in the sequence
algebra:

VL∞(X) := VL(X)/c0(N, l
∞(X)) ⊂ l∞(X)∞.

For example, when X is a finitely generated group G with the word metric,
VL∞(G) = (l∞(G)∞)G (the fixed point algebra of the action induced by transla-
tion). When X has bounded geometry, it is easy to see that for any a ∈ C∗

u(X)
and f = (fn)

∞
n=1 ∈ VL∞(X),

[a, f ] = 0, i.e., lim
n→∞

‖[a, fn]‖ = 0.

The main result presented in this talk is the following.

Theorem (Špakula-T). Let (X, d) be a uniformly discrete metric space and let
a ∈ B(l2(X)). The following are equivalent:

(i) a has finite ǫ-propogation for every ǫ > 0;
(ii) [a, f ] = 0 for every f ∈ VL∞(X);
(iii) [a, g] ∈ K(l2(X)) for every g ∈ Ch(X).

When X has finite asymptotic dimension (or even finite decomposition complexity,
as defined by Guentner, Tessera, and Yu [1]), these are also equivalent to:

(iv) a ∈ C∗
u(X).

The implication from the first three conditions to (iv) is the most important, as
it provides new ways of showing that operators are in the uniform Roe algebra. In
the case that X = Zd, the result (ii) ⇒ (iv) was proven by Lange and Rabinovich
using harmonic analysis [2].

Finite decomposition complexity is a property known to hold widely. It implies
property (A), and the converse (does property (A) imply finite decomposition
complexity?) is open.

It is an interesting question whether (i)–(iii) imply (iv) in the absence of finite
decomposition complexity.
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Controlled K-theory and dynamic asymptotic dimension

Rufus Willett

(joint work with Erik Guentner, Guoliang Yu)

Probably the most important tools to compute C∗-algebra K-theory are the six
term exact sequences arising from ideals in various ways. For example, if A is
a C∗-algebra and I and J are ideals of A such that A = I + J , then there is a
Mayer-Vietoris sequence

K0(I ∩ J) // K0(I) ⊕K0(J) // K0(A)

��
K1(A)

OO

K1(I) ⊕K1(J)oo K1(I ∩ J)oo

that allows information about K∗(A) to be deduced from information and K∗(I)
and K∗(J). When A is simple, such tools are of no use. The aim of my talk was
to describe techniques that give analogues of the above six-term exact sequence
even in the absence of non-trivial ideals, and discuss applications to the K-theory
of crossed product C∗-algebras. This is based on joint work with Erik Guentner
and Guoliang Yu: see [1].

To make precise the sort of ‘weak Mayer-Vietoris sequence’ one can construct,
we need controlled K-theory groups. Let A be a non-unital C∗-algebra, and let

E ⊆ A be a self-adjoint subspace. Let Ã be the unitization of A, and let Ẽ be the

subspace of Ã spanned by E and the unit. For each n, let Mn(Ẽ) denote those

n× n matrices over Ã that have entries coming from A. Fix ǫ ∈ (0, 1/4) and say

that p ∈ Mn(Ẽ) is an ǫ-quasi-projection if p = p∗ and ‖p2 − p‖ < ǫ. Note that
the spectrum of p misses 1/2, so that if κ = χ{x>1/2}, then there is a projection

κ(p) ∈ Mn(Ã) for any ǫ-quasi-projection p ∈ Mn(Ẽ). Define the rank of p to be
the rank of the image of κ(p) in Mn(C).

Set M∞(Ẽ) =
⋃∞
n=1Mn(Ẽ) where the union is defined via the usual inclusions

a 7→
(
a 0
0 0

)
. Define

Kǫ
0(E) := {(p, rank(p)) ∈Mn(Ẽ)× N | p an ǫ-quasi-projection}/ ∼,

where (p, rank(p)) ∼ (q, rank(q)) if there is k ∈ N so that the
(
p 0
0 1k+rank(q)

)
is homotopic to

(
q 0
0 1k+rank(p)

)

through quasi-projections in M∞(Ẽ).
One can similarly define Kǫ

1(E) by using ‘quasi-unitaries’: elements satisfying
‖uu∗ − 1‖ < ǫ and ‖u∗u − 1‖ < ǫ. Straightforward adaptations of the usual
proofs show that Kǫ

0(E) is an abelian group, Kǫ
1(E) is an abelian semigroup, and

that Kǫ
i (E) is isomorphic to Kǫ

i (A) whenever E is dense in A. See [3] for a full
development of closely related controlled K-theory groups.
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Now we discuss a Mayer-Vietoris sequence. Let A be a C∗-algebra, and let E, F
be arbitrary self-adjoint subspaces of A (these will play the role of ideals). Assume

that A is generated by self-adjoint subspace S, and let S̃ denote the subspace of

Ã spanned by S and the unit as before. For each n ∈ N, define

E(n) := span(Sn ·E · Sn),
and similarly for F (n). The pair E, F is uniformly excisive if for all ǫ > 0 and
n ∈ N there exists m ∈ N such that

E(n) ∩ F (n) ⊆ǫ (E ∩ F )(m),

where ‘⊆ǫ’ means ‘containment of the unit balls, up to ǫ error’. Then for any
ǫ, r > 0 there exists s > 0 and a sequence

· · · → Kǫ
i (E

(r))⊕Kǫ
i (F

(r))→ Kǫ
i (E

(r) + F (r))
∂→ Kǫ

i−1(E
(s) ∩ E(s))→ · · · .

It has exactness properties of the sort: for any r, ǫ there exists t ≥ r such that
if x ∈ Kǫ

i (E
(r) + F (r)) goes to zero under ∂, then there are y ∈ Kǫ

i (E
(t)) and

z ∈ Kǫ
i (F

(t)) such that x is equal to y + z in Kǫ
i (E

(t) + F (t)). Similar statements
hold at the other positions in the sequence. For applications, it is crucial that
the various constants appearing depend only on the constants appearing in the
definition of uniform excisiveness.

Now, in order to get any use out of this, one needs some interesting examples.
Let Γ be a finitely generated group equipped with the associated work length | · |,
and say Γ acts on some compact space X . The dynamic asymptotic dimension
(defined by the three current authors in earlier work [2]) is the smallest d ∈ N such
that for all r > 0 there exists s > 0 and an open cover {U0, ..., Ud} of X such that
if

x, g1x, g2g1x, ...., gn · · · g1x
are all elements of the same Ui with all |gk| ≤ r for all k, then |gn · · · g1| ≤ s. There
are many interesting actions with finite dynamic asymptotic dimension: perhaps
the most basic are minimal (free) Z actions, but there are many others: see [2].

Say now A is the (stabilized) crossed product associated to some action of a
finitely generated group Γ on a compact space X . Let S be the subspace of
A spanned by some finite symmetric generating set for Γ together with C(X)
(suitably stabilized). The above dynamic asymptotic dimension condition, plus an
induction on d is enough to use the controlled Mayer-Vietoris sequence discussed
above to get information on the K-theory of A. For example, we can use these
techniques to prove that if the action of Γ on X has finite dynamic asymptotic
dimension, then the Baum-Connes conjecture is true for Γ with coefficients in
C(X).

We should remark that this result is known: it follows from work of Tu on
the Baum-Connes conjecture for amenable groupoids [5]. Nonetheless, our proof
is rather more direct and elementary: in particular, it uses a new and concrete
model for the Baum-Connes conjecture with coefficients that uses no equivariant or
bivariant K-theory. It proceeds in quite a different way to Tu’s proof, amounting



2314 Oberwolfach Report 40/2016

in principle to a computation of K∗(A) that uses only the internal structure, and
does not replace A with a simpler KK-equivalent C∗-algebra.

As well as the fact that the proof is more elementary, there are two other
motivations for our new proof: first, the techniques are likely to adapt to enable us
to say something about K-theory of more general classes of C∗-algebras (compare
for example [4]; second, the proofs avoid any of the inherently analytic material
in Tu’s proof, and thus adapt to the setting of the Farrell-Jones conjecture in
algebraic K-theory.
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Unitarizability, Maurey–Nikishin factorization and Polish groups of
finite type

Hiroshi Ando

(joint work with Yasumichi Matsuzawa, Andreas Thom and Asger Törnquist)

I report our recent work [AMTT16] on the characterization problem of Sorin Popa’s
class Ufin of finite type Polish groups. Here, a Polish group G is said to be
of finite type if it is embeddable into the the unitary group U(M) of a II1 factor
equipped with the strong operator topology. In [Po07] Popa showed the celebrated
cocycle superrigidity Theorem. The theorem treats measurable cocycles for a
certain class of probability measure preserving (pmp) actions with target groups
in the class Ufin. The theorem has many applications in the study of II1 factors
and ergodic theory. It is therefore of interest to understand the class Ufin. It is
clear that the class Ufin contains all countable discrete groups and all compact
Polish groups 1. But are there more groups that fall into this class? Interestingly,
very little has been known about the class Ufin. In particular, there is no abstract
characterization of finite type groups. In this situation, Popa pointed out that
there are two necessary conditions for a Polish groupG to be of finite type. Namely,

(i) G must be unitarily representable. That is, G must be embeddable into
the closed subgroup of U(ℓ2).

1take the left regular representation. Note that any tracial von Neumann algebra with sepa-
rable predual embeds into some II1 factor
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(ii) G is SIN. That is, G must admit a two-sided invariant metric d compatible
with the topology.

Indeed, if G ⊂ U(M) for a II1 factor M with the tracial state τ , then clearly
G →֒ U(ℓ2) and G admits a two-sided invariant metric d(u, v) := ‖u− v‖2, where
‖x‖2 := τ(x∗x)

1
2 . Popa asked whether the above two conditions are sufficient. I.e.,

whether the class USIN of all unitarily representable SIN Polish groups coincides
with Ufin. In [AM12-2], I and Matsuzawa showed a partial positive answer that if
G ∈ USIN is either (a) locally compact or (b) amenable (there exists a left-invariant
mean on the space RUCB(G) of all right-uniformly continuous bounded functions
on G), then G ∈ Ufin. However, the general case was left open. In [AMTT16],
we showed that USIN 6= Ufin. There we found an unexpected connection about
Popa’s question on Ufin and the theory of uniformly bounded representations of
countable discrete groups. The main result of [AMTT16] is as follows.

Theorem 1. Let Γ be a countable discrete group, and let π : Γ → GL(H) be a
group homomorphism of Γ into the group of all invertible operators on a separable
Hilbert space H.

(i) G is SIN, if and only if π is uniformly bounded: sups∈Γ ‖π(s)‖ <∞.
(ii) G is of finite type, if and only if π is unitarizable: there exists V ∈
GL(H) such that V −1π( · )V is a unitary representation of Γ.

A countable grouop Γ is said to be unitarizable if all its uniformly bounded
representations are unitarizable, and many non-amenable groups are known to be
non-unitarizable. There is even a question by Dixmier asking whether unitariz-
able groups are actually amenable. We will not go into the details of the history of
unitarizability question. For more details, see e.g., [Dix50, Oz06, Pi01, Pi05]. The
point here is that there are many non-unitarizable uniformly bounded represen-
tations and they give a family of unitarily representable Polish SIN groups which
fail to be in the class Ufin. As a byproduct of the main theorem, we also showed:

Theorem 2. Let π be a uniformly bounded representation of a countable discrete
group Γ on H. Then the following three conditions are equivalent.

(i) G = H ⋊π Γ is of finite type.
(ii) π is unitarizable.
(iii) There exists a continuous positive definite function f on H (regarded
as an additive group) which generates a neighborhood basis of 0 ∈ H, such
that f(π(s)ξ) = f(ξ) (s ∈ Γ, ξ ∈ H) holds.

Here, a positive definite function f : H → C is said to generate a neighborhood
basis of 0, if for every closed set A ⊂ H not containing 0, supξ∈A |f(ξ)| < f(0)
holds. The crucial point in the main theorem is to show that if G = H ⋊π Γ is in
Ufin, then π is unitarizable. The outline of the proof is as follows: by assumption we

have an embedding G
α→֒ U(M) for some II1 factorM . Then we use the Lie algebra

approach as in [AM12-1, AM12-2]: set α(s) := α(0, s) and α(ξ) := α(ξ, 1) (s ∈
Γ, ξ ∈ H) Then for each ξ ∈ H , R ∋ t 7→ α(tξ) ∈ U(M) is a strongly continuous
one-parameter subgroup of U(M), whence there exists a (possibly unbounded)
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self-adjoint operator T (ξ) affiliated with M such that α(tξ) = eiT (ξ) (t ∈ R).
Since α(s)α(ξ)α(s)∗ = α(π(s)ξ), one has

(1) α(s)T (ξ)α(s)∗ = T (π(s)ξ), s ∈ Γ, ξ ∈ H.
Denote by L0(M, τ) the space of all closed densely defined operators affiliated
with M equipped with the so-called τ -measure topology. One can show that
T : H → L0(M, τ) is a real-linear homeomorphism onto its range. Then since the
von Neumann subalgebra {α(ξ); ξ ∈ H}′′ is commutative and (1) holds, the group
Γ acts on A by Ad(α( · ) in a τ -preserving way. Therefore there exists a compact
metric spaceX with a Borel probability measurem, and anm-preseriving Γ action
such that

Γ
Ad(α( · ))

y A ∼= Γ y L∞(X,m).

Therefore we get a map T : H → L0(X,m) (the space of all measurable maps on
X). We then use a convexity argument to improve Maurey–Nikishin factorization
Theorem [Ni70, Ma72] (see also [GR85]) to show that there exists am-a.e. positive
Γ-invariant function ϕ ∈ L∞(X,m) such that

∫

X

ϕ(x)[Tξ](x) dm(x) <∞, ξ ∈ H.

Then T̃ : H → ξ 7→ ϕ
1
2 · Tξ ∈ L2(X,m) satisfies α(s)T̃ (ξ)α(s)∗ = T̃ (π(s)ξ) (s ∈

Γ, ξ ∈ H), so that the complexification (note that T is only real-linear) of

〈ξ, η〉π := 〈T̃ (ξ), T̃ (η)〉L2(M)

gives a Γ-invariant inner product on H . With an extra argument on the topology
of L2 and the τ -measure topology, one can show that the resulting inner-product is
equivalent to the original inner-product, which then shows that π is unitarizable.
The omitted details can be found in [AMTT16].
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A new bicommutant theorem

Ilijas Farah

Ultrapowers1 AU of separable operator algebras are, being subject to well-develop-
ed model-theoretic methods, reasonably well-understood. Ultraproducts of Banach
spaces, C∗-algebras, tracial von Neumann algebras, representations of C∗-algebras,
as well as ultrapowers of ‘metric structures’ can be construed as special cases of
the general ultraproduct construction ([1]; see also [6, Theorem 1.2] and [4]). Since
the early 1970s and the influential work of McDuff and Connes central sequence
algebrasA′∩AU play an even more important role than ultrapowers in classification
of II1 factors and (more recently) C∗-algebras. While they do not have a well-
studied abstract analogue, in [6, Theorem 1] it was shown that the central sequence
algebra of a strongly self-absorbing algebra ([9]) is isomorphic to its ultrapower
(this applies to both C∗-algebras and II1-factors; note that the hyperfinite II1
factor is the only strongly self-absorbing II1 factor). Relative commutants B′∩DU

of separable subalgebras of ultrapowers of strongly self-absorbing C∗-algebras play
an increasingly important role in classification program for separable C∗-algebras
([7, §3], [3]; see also [8], [11]).

C∗-algebra B is primitive if it has representation that is both faithful and
irreducible. Since B(H)U can be naturally identified with a subalgebra of B(HU)
We prove an analogue of the well-known consequence of Voiculescu’s theorem ([10,

Corollary 1.9]) and von Neumann’s bicommutant theorem ([2, §I.9.1.2]). AWOT

denotes the closure of A in the weak operator topology.

Theorem 1. Assume
∏

U Bj is an ultraproduct of unital, primitive C∗-algebras
and A is a separable unital C∗-subalgebra. Then (with the weak operator clo-

sure A
WOT

computed in the ultraproduct of faithful irreducible representations
of Bjs)

A =

(
A′ ∩

∏

U

Bj

)′

= A
WOT ∩

∏

U

Bj .

A slightly weaker version of the following corollary to Theorem 1 (stated here
with Aaron Tikuisis’s kind permission) was originally proved by using very different
methods (Z(A) denotes the center of A).

Corollary 1 (Farah–Tikuisis, 2015). Assume
∏

U Bj is an ultraproduct of simple
unital C∗-algebras and A is a separable unital subalgebra. Then Z(A′ ∩∏U Bj) =
Z(A). �

1Throughout U denotes a nonprincipal ultrafilter on N.



2318 Oberwolfach Report 40/2016

The proof of Theorem 1 combines model-theoretic methods with the application
of Hahn–Banach theorem known as the ‘method of Day’ used to transfer some first-
order statements between C∗-algebra B and its double dual B∗∗ (see [5] for the
details).
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Free subgroups of amenable (Polish) groups

Alessandro Carderi

(joint work with Andreas Thom)

The free group F2 is the prototipe of non-amenable group: any countable group
which contains F2 is not amenable and on the contrary it requires some work
to construct a non amenable group without free subgroups. Similarly any locally
compact group which contains a discrete free subgroup is not amenable. For Polish
groups this is no longer true and the situation is much more complicated. Andreas
Thom conjectured the following.

Conjecture (A. Thom). The unitary group of the hyperfinite II1 factor has no
uniformly discrete free non abelian subgroup (uniformly discrete with respect to the
2-norm).

In order to understand better this conjecture, we want to study Polish groups
which have similar properties to the above group. We will focus on the following
important facts.



C*-Algebras 2319

• The unitary group of the hyperfinite II1 factor is Polish and SIN with
respect to the 2-norm.
• The quotient by its center is simple, see [3].
• It is extremely amenable, see [2].

Our work is focused in describing a group which satisfies similar properties and
which is not one of its subgroups. For this we need to fix a finite field Fq with
q = ph elements and we let SLn(q) be the special linear group over Fq. We denote
by r(k) the rank of a matrix k ∈ Mn(Fq). We equip the groups SLn(q) with the
(normalized) rank-distance, dr(g, h) := 1

nr(g − h) ∈ [0, 1]. Note that dr is a bi-
invariant metric, which means that it is a metric such that dr(gh, gk) = dr(h, k) =
dr(hg, kg) for every g, h, k ∈ SLn(q). For every n ∈ N, we consider the diagonal
embedding

ϕn : SL2n(q)→ SL2n+1(q), defined by ϕn(g) :=

(
g 0
0 g

)
.

Observe that for every n, ϕn is an isometric homomorphism. We denote by A0(q)
the countable group arising as the inductive limit of the family {(SL2n(q), ϕn)}n
and observe that we can extend the rank-metric dr canonically to A0(q). Let A(q)
be the metric-completion of A0(q) with respect to dr, i.e., A(q) is a Polish group
and the natural extension of the rank-metric is complete and bi-invariant.

Our main result is the following theorem.

Theorem ([1]). The Polish group A(q) has the following properties:

• every strongly continuous unitary representation of A(q) on a Hilbert space
is trivial,
• the group A(q) is extremely amenable,
• the center of A(q) is isomorphic to F×

q and the quotient by its center is
topologically simple,
• A(q) contains every countable amenable group and, in case q is odd, the
free group on two generators as discrete subgroups.

The above theorem shows that if the conjecture is true, then it has to be true
for very specific reasons. Moreover we would like to add that the free subgroup
constructed in the above theorem is maximally discrete, that is the distance be-
tween any two distinct elements is 1. On the contrary it is well known that the
unitary group of the hyperfinite II1 factor cannot have maximally discrete free
subgroups.

It would be also very interesting to understand further properties of the group
A(q), for example it is unknown whether it is contractible, generated by involution
or if it acts by isometries on a reflexive Banach space.
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Cartan subalgebras in C*-algebras

Xin Li

(joint work with J. Renault)

In the first part of my talk, I explained the motivation to study Cartan subalgebras
in C*-algebras and continuous orbit equivalence for topological dynamics. The goal
is to develop a topological version of measured group theory [3].

Definition 1. A Cartan subalgebra B of a C*-algebra A is a maximal abelian
selfadjoint subalgebra of A which contains an approximate unit for A, satisfies
the condition that NA(B) := {n ∈ A : n∗ ⊆ B, n∗Bn ⊆ B} generates A as a C*-
algebra, and with the property that there is a faithful conditional expectation A։

B.

Two Cartan pairs (A1, B1) and (A2, B2) (a Cartan pair is a C*-algebra together
with a Cartan subalgebra) are equivalent if there exists a C*-algebra isomorphism
ϕ : A1 → A2 with ϕ(B1) = B2. Kumjian and Renault showed that every Cartan
subalgebra comes from a twisted groupoid [4, 8]. This justifies why we can think
of Definition 1 as the exact C*-algebraic analogue of Cartan subalgebras in von
Neumann algebras [1, 2].

At the moment, very little is known about C*-algebraic Cartan pairs, in partic-
ular concerning existence and uniqueness. We say that a C*-algebra A has unique
Cartan if any Cartan pairs (A,B1) and (A,B2) must be equivalent. A weaker
notion is given by distinguished Cartans within a certain class of C*-algebras.
This means that we can choose Cartan subalgebras for certain C*-algebras so that
whenever two C*-algebras from that class are isomorphic, the corresponding Car-
tan pairs will be equivalent. For instance, AF algebras have distinguished Cartan
subalgebras.

To explain the role Cartan subalgebras play for connections between C*-algebras
and topological dynamics, let us introduce the notion of continuous orbit equiva-
lence.

Definition 2. Gy X and H y Y are continuously orbit equivalent if there exists

a homeomorphism ϕ : X
∼=−→ Y together with continuous maps a : G ×X → H

and b : H×Y → G such that ϕ(g.x) = a(g, x).ϕ(x) and ϕ−1(h.y) = b(h, y).ϕ−1(y)
for all g ∈ G, x ∈ X, h ∈ H and y ∈ Y . Here G ×X → X, (g, x) 7→ g.x denotes
the G-action on X.

The connection between continuous orbit equivalence and Cartan pairs is pro-
vided by the following result (see [5] for details).

Theorem 1. Let Gy X and H y Y be topologically free systems. The following
are equivalent:
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• Gy X and H y Y are continuously orbit equivalent.
• The transformation groupoids G⋉X and H ⋉ Y are isomorphic as topo-
logical groupoids.
• (C0(X)⋊r G,C0(X)) and (C0(Y ) ⋊r H,C0(Y )) are equivalent as Cartan
pairs.

Cartan subalgebras and continuous orbit equivalence turn out to be closely
related to quasi-isometry, the fundamental notion of geometric group theory. The
following dynamical characterizations of quasi-isometry and bilipschitz equivalence
have been established in [7] and [6].

Theorem 2. Let G and H be finitely generated groups.

• G and H are bilipschitz equivalent if and only if there exist continuously
orbit equivalent topologically free dynamical systems G y X and H y Y
on totally disconnected compact spaces X and Y .
• G and H are quasi-isometric if and only if there exist stably continuously
orbit equivalent topologically free dynamical systems G y X and H y Y
on totally disconnected compact spaces X and Y .

Here, G y X and H y Y are called stably COE if Z × G y Z × X and
Z × H y Z × Y are continuously orbit equivalent. This notion corresponds to
stable isomorphism for the Cartan pairs, hence the name.

Theorems 1 and 2 show that the picture in the topological setting is very much
analogous to the measurable framework [3], and this forms the starting point for
our goal to develop a topological version of measured group theory.

Inspired by [9], I recently found the following alternative dynamical character-
ization of quasi-isometry and bilipschitz equivalence, which in contrast to Theo-
rem 2 provides concrete models of dynamical systems.

Theorem 3. Let G and H be finitely generated groups.

• G and H are bilipschitz equivalent if and only if G y βG and H y βH
are continuously orbit equivalent.
• G and H are quasi-isometric if and only if G y βG and H y βH are
stably continuously orbit equivalent.

Here Gy βG is the canonical action of G on its Stone-Cech compactification.
I then went on to present ongoing work with Jean Renault on Cartan subalge-

bras in C*-algebras.
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Howe-Moore type theorems for quantum groups and rigid C
∗-tensor

categories

Tim de Laat

(joint work with Yuki Arano and Jonas Wahl)

The Howe-Moore property is a property for locally compact groups that plays a
crucial role in the proofs of several important rigidity results. A locally compact
group is said to have the Howe-Moore property if for every unitary representation
without invariant vectors, the matrix coefficients vanish at infinity. This property
was first established by Howe and Moore [3] and Zimmer [8] for connected non-
compact simple Lie groups with finite center. Howe and Moore also proved the
property for certain subgroups of algebraic groups over non-Archimedean local
fields.

For Lie groups and algebraic groups over non-Archimedean local fields, much
more can be said about the asymptotic behaviour of matrix coefficients. A pow-
erful result of Veech [7] asserts that every weakly almost periodic function on a
connected non-compact simple Lie group with finite center has a limit at infin-
ity, and this limit is equal to the (unique invariant) mean of the weakly almost
periodic function. As a consequence, it follows that for every uniformly bounded
representation of such a Lie group on a reflexive Banach space that does not have
any invariant vectors, the matrix coefficients vanish at infinity. In a recent work of
Bader and Gelander [2], this was also shown to hold for connected simple algebraic
groups over non-Archimedean local fields.

In a recent article with Yuki Arano and Jonas Wahl [1], we initiated the study of
Howe-Moore type phenomena in the setting of quantum groups and rigid C∗-tensor
categories. The unitary representation theory for quantum groups has been studied
extensively. Recently, Popa and Vaes developed a theory of unitary representations
(called admissible ∗-representations) for “subfactor related group-like objects” [6]
(see also [5]). This representation theory is formulated in the setting of rigid
C∗-tensor categories. Two important notions in this theory are the notions of
completely positive and completely bounded multiplier. The completely positive
multipliers span an algebra that is the analogue in the setting of rigid C∗-tensor
categories of the Fourier-Stieltjes algebra. Indeed, this algebra can alternatively be
defined as the algebra of matrix coefficients of admissible ∗-representations of the
fusion algebra of the category. This naturally leads to the following formulation
of the Howe-Moore property in the setting of C∗-tensor categories.
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Definition 1. Let C be a rigid C∗-tensor category, and let Irr(C) denote the set
of equivalence classes of irreducible objects in C. Then C is said to have the Howe-
Moore property if every completely positive multiplier ω : Irr(C) → C has a limit
at infinity.

Our main result is a Howe-Moore type theorem for the representation cate-
gories of q-deformations of compact simple Lie groups, which are ubiquitous and
motivating examples of compact quantum groups. Recall that the representation
category Rep(G) of a compact quantum group G is the rigid C∗-tensor category
of finite-dimensional unitary representations of G.

Theorem 1. Let q ∈ (0, 1], and let Kq be a q-deformation of a connected compact
simple Lie group K with trivial center. Then every completely bounded multiplier
on Rep(Kq) has a limit at infinity. In particular, the representation category
Rep(Kq) has the Howe-Moore property.

Another important source of rigid C∗-tensor categories comes from Jones’s the-
ory of subfactors. From an inclusion N ⊂ M of II1-factors with finite index
[M : N ] < ∞, we can construct its Jones tower M−1 ⊂ M0 ⊂ M1 ⊂ M2 ⊂ . . .
of II1-factors, where M−1 = N and M0 = M (see [4] for details). The standard
invariant of N ⊂M is the lattice of relative commutants M ′

i ∩Mj , with i ≤ j. A
crucial example of a standard invariant is the Temperley-Lieb-Jones standard in-
variant TLJ(λ), which is an initial object for the category of standard invariants.
Given the Jones tower of a subfactor N ⊂ M with standard invariant TLJ(λ)
with λ−1 ≥ 4, we can consider the rigid C∗-tensor category CM consisting of all
M -bimodules that are isomorphic to a finite direct sum of M -subbimodules of

ML
2(Mi)M , with i ≥ 0. Such a category CM is equivalent to the representation

category of the compact quantum group PSUq(2), where q is the unique number

0 < q ≤ 1 such that q + 1
q = λ−

1
2 . Hence, the following theorem is a direct

consequence of Theorem 1.

Theorem 2. Let N ⊂ M be an inclusion of II1 factors with index [M : N ] =
λ−1 ≥ 4 and Temperley-Lieb-Jones standard invariant TLJ(λ) (and hence princi-
pal graph A∞). The rigid C∗-tensor category CM of M -bimodules associated with
the Jones tower of N ⊂M has the Howe-Moore property.

Theorem 1 and Theorem 2 follow from a more general result on the convergence
of completely bounded multipliers on certain rigid C∗-tensor categories. This more
general result also holds for the representation categories of the free orthogonal
quantum groups and for the Kazhdan-Wenzl categories. We refer to [1] for the
details.
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Bounded Normal Generation

Philip Dowerk

(joint work with Andreas Thom)

Let G be a group and for g ∈ G denote the conjugacy class of g by gG := {hgh−1 |
h ∈ G}, similarly g−G := (g−1)G. We say that G has the bounded normal gener-
ation property (BNG) if for every nontrivial element g ∈ G, the conjugacy classes
of g and g−1 generate the whole group in finitely many steps, i.e., there exists
k ∈ N such that

G = (gG ∪ g−G)k.
A function f : G \ {1G} → R giving an upper bound on the number of steps that
are required is called normal generation function for G.

Obviously, any group with property (BNG) is simple, however the converse is
not true in general – even though many naturally occuring simple groups do have
property (BNG). For example, a Baire category argument (see [2, Proposition
2.2]) implies that any compact simple group has property (BNG). Already in this
case it is much harder to provide explicit normal generating functions. Informally,
we say that a normal generating function is optimal if it is best possible up to a
multiplicative constant for some family of groups.

For finite simple groups an optimal normal generation function can be found in
seminal work of Liebeck and Shalev [6, Theorem 1.1] – leading to many fruitful
applications. For compact connected simple Lie groups, an explicit (non-optimal)
normal generation function was given in work of Nikolov-Segal [7, Proposition
5.11].

We show that the projective unitary group PU(M) has property (BNG) when-
everM is a factor of type In, II1 or III. Our proof does not use simplicity, which
was proven by de la Harpe [5]. However, in the II1 case, we need a modified version
of a result by Broise [1]. Note that the projective unitary group of a type I∞ or
II∞ factor does not have property (BNG), because it contains finite and infinite
rank perturbations of the identity.
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We present optimal normal generation functions for PU(n) [2, Corollary 5.11]
and for the projective unitary group of a type III factor [3, Theorem 1.3], given by

f(g) = c/ inf
λ∈S1

‖1− λg‖, g 6= 1,

for some universal constant c ∈ N, where ‖ · ‖ denotes the operator norm.
In the case of the projective unitary group of the connected component of the

identity of the Calkin algebra, we prove property (BNG) and obtain as a normal
generation function

f(g) = c/ inf
λ∈S1

‖1− λg‖ess, g 6= 1,

where ‖ · ‖ess denotes the essential operator norm and c ∈ N a universal constant,
see [3, Theorem 1.2].

For the projective unitary group of a type II1 factor with trace τ we provide
a concrete (close to optimal) normal generation function in [2, Theorem 1.3]: let
ℓ(g) = infλ∈S1 ‖1− λg‖1, where ‖ · ‖ = τ(| · |) denotes the 1-norm. Then

f(g) = c · | log ℓ(g)|/ℓ(g)
defines a normal generation function for some universal constant c ∈ N.

As an application of our results on bounded normal generation, we show that
every homomorphism from the projective unitary group PU(M) of a type In or
II1 factorM, equipped with the strong operator topology, into any separable SIN
group is continuous. This requires some modification of the setting in [8].

Another application of our techniques combined with a result from Gartside
and Pejić [4] is the uniqueness of the Polish group topology of PU(M).
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ε-representations

Marcus De Chiffre

(joint work with Andreas Thom)

Let ε > 0, let G be a group and let M be a von Neumann algebra with unitary
group U(M). An ε-representation of G (with respect to ‖ · ‖) is a map ϕ : G →
U(M) such that ‖ϕ(gh)−ϕ(g)ϕ(h)‖ < ε for all g, h ∈ G. Here, ‖ · ‖ is some norm
onM, e.g. the operator norm or, ifM has a tracial state, the 2-norm.

A natural question, which is the topic of this 15 minutes talk, is the following:
Given an ε-representation as above, is there an honest representation π : G →
U(M) such that ‖ϕ(g)− π(g)‖ is small for all g ∈ G (depending on ε)?

Kazhdan proved in [2] that in the case where G is amenable andM is equipped
with the operator norm ‖ · ‖op the question has a very satisfying answer: For
every 0 < ε < 1

200 and for every ε-representation ϕ : G → U(M) there exists a
representation π : G→ U(M) such that ‖ϕ(g)− π(g)‖op < 2ε for every g ∈ G.

In the tracial case, whereM is equipped with the 2-norm, the situation becomes
more subtle, even in finite dimensions ifM =Mn is a In-factor. Of course, since
‖ · ‖2 ≤ ‖ · ‖op ≤

√
n‖ · ‖2, Kaszdan’s result implies that if ϕ is an ε-representation

into Un the unitary group on an n-dimensional Hilbert space, then there is a
representation π : G → Un such that ‖ϕ(g) − π(g)‖2 < 2

√
nε, but this estimate

depends on the dimension n.
Recently, Gowers and Hatami [1] managed to avoid the dimension dependence

in a certain sense, at least when G is finite. They proved that if 0 < ε < 1
16 and

G is finite and M = Mn for some natural number n, then for any ϕ : G → Un
there exists m ∈ {0, . . . , ⌊3ε2n⌋} and a representation π : G → Un+m such that
‖ϕ(g)⊕Im−π(g)‖2 < 31ε. As it turns out, the addition of the m extra dimensions
is necessary in order to get a dimension independent result, even if G is finite.

In a work in progress, we generalize the result of Gowers and Hatami to the
case where G is amenable andM is a finite von Neumann algebra equipped with
the 2-norm coming from a trace.
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Dynamical characterizations of paradoxicality for groups

Eduardo Scarparo

Consider the following conditions on a group G:

(1) G is not equidecomposable with two disjoint subsets;
(2) No non-empty subset of G is equidecomposable with two disjoint subsets

of itself;
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(3) G is not equidecomposable with a proper subset. Equivalently, no subset
of G is equidecomposable with a proper subset of itself.

By Tarski’s theorem, the first condition is equivalent to amenability, and the
second one to supramenability.

If a group has subexponential growth, then it is supramenable. It is not known
if the converse holds. Also, given G and H supramenable groups, it is unknown if
G×H is supramenable, even if one of the groups is Z.

In [3], Kellerhals, Monod and Rrdam showed that a group G is supramenable
if and only if ℓ∞(G)⋊r G has no properly infinite projections, if and only if every
co-compact action of G on a locally compact, Hausdorff space admits a non-zero,
invariant, regular measure.

In [5], we showed that the class of supramenable groups, in a certain way, plays
the role of amenable groups in the context of partial actions:

Theorem 1. A group G is supramenable if and only if whenever it partially acts
on a unital C∗-algebra A which has a tracial state, then A⋊G has a tracial state.

Kellerhals, Monod and Rrdam also showed in [3] that if a group is locally
finally, then ℓ∞(G) ⋊r G is finite, and asked if the converse holds. In [6], we gave
an affirmative answer for their question:

Theorem 2 (Kellerhals-Monod-Rrdam, Scarparo). Let G be a group. The follow-
ing conditions are equivalent:

(1) G is locally finite;
(2) ℓ∞(G)⋊r G is finite;
(3) G is not equidecomposable with a proper subset of itself;

If G is a countable, locally finite group, then C∗(G) is clearly AF. It is not
known if the converse holds. For nilpotent groups, it does, by a result of Kaniuth
in [2].

We presented a proof that, for finitely generated, elementary amenable groups,
also C∗(G) being AF implies that G is (locally) finite.

Lemma 1. If G is an infinite, finitely generated, elementary amenable group, then
there is a subgroup of finite index of G which admits a homomorphism onto Z.

Proof. Let A be the class of all finite groups, all non-finitely generated groups,
and all groups containing a finite index subgroup which maps onto Z.

We claim that A contains the class of elementary amenable groups. Obviously,
A contains all finite groups, it contains Z, and it is closed under taking inductive
limits (with injective connecting maps), and extensions by Z.

Let us check that A is also closed under taking extensions by finite groups. Let
H ∈ A, F be a finite group, and G a group which fits into the short exact sequence

1→ H → G→ F → 1.

If G is infinite and finitely generated, then also H is infinite and finitely gener-
ated. Hence, H contains a finite index subgroup H ′ which maps onto Z. Since F
is finite, also H ′ has finite index in G. Therefore, G ∈ A.
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By [4, Corollary 2.1], it follows thatA contains the elementary amenable groups.
�

Theorem 3. If G is a finitely generated, elementary amenable group and C∗(G)
is AF, then G is finite.

Proof. Suppose G is infinite. By Lemma 1, there is a subgroup H of G with
finite index n, and which admits a homomorphism onto Z. This gives rise to
a ∗-homomorphism ϕ : C∗(G) → Mn(C

∗(H)), and a surjective ∗-homomorphism
ψ : Mn(C

∗(H))→Mn(C
∗(Z)), such that the image of ψ◦ϕ is infinite-dimensional.

Since Mn(C
∗(Z)) ≃ Mn(C(S

1)) does not contain any infinite-dimensional AF
algebra, we get a contradiction. Hence, G is finite. �

If there exists an elementary amenable, non-locally finite group G such that
C∗(G) is AF, then, by Theorem 3, C∗(G) can be written as an inductive limit of
group C∗-algebras which are not AF. There are many examples in the literature
of AF algebras which are naturally given by inductive limits of non-AF algebras
(see [1] for various references).
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Bernoulli crossed products of type III

Peter Verraedt

(joint work with Stefaan Vaes)

Crossed products with noncommutative Bernoulli actions were introduced by
Connes as the first examples of full factors of type III. In this talk, we provide
a complete classification of the factors (P, φ)Fn ⋊ Fn, where Fn is the free group
and P is an amenable factor with a normal faithful state φ that either is almost
periodic, or has a weakly mixing modular automorphism group. We show that the
family of factors (P, φ)Fn ⋊ Fn with φ almost periodic, is completely classified by
the rank n of the free group Fn and Connes’s Sd-invariant; and that the family
of factors (P, φ)Fn ⋊ Fn with φ a weakly mixing state, is classified by n and the
action Fn y (P, φ)Fn , up to state-preserving conjugation of the action.
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The complete classification of unital graph C
∗-algebras

Søren Eilers

(joint work with Gunnar Restorff, Efren Ruiz, Adam Sørensen)

We report on a classification result for all unital graph C∗-algebras – prominently
containing the complete family of Cuntz-Krieger algebras – by K-theoretical in-
variants. The invariant used, the so-called filtered K-theory, has its origins in
classification of symbolic dynamical systems ([3], [15]) and was conjectured to be
complete in the real rank zero case for quite some time, but the generality of the
result as well as the method of proof contains a number of surprises.

Indeed, the classification result applies also to graph C∗-algebras of real rank
one, including those Cuntz-Krieger algebras that come about as iterated extensions
of (stabilized) circle algebras and hence are postliminal. That the Elliott program
is successful there is rather astonishing, and has interesting applications to a class
of quantum lens spaces ([13]) which may be thus presented. And the method of
proof allows the classification to be interpreted geometrically, in the sense that
when two graphs E and F yield the same stabilized graph C∗-algebra, one may
transform E into F by a finite number of moves resembling the role of Reidemeister
moves in knot theory. Indeed, a key component of the proof is the definition of
a new such move and the proof that it leaves the graph C∗-algebras invariant up
to Morita equivalence. This combines with earlier work of the authors ([11], [10])
to allow the conclusion that the list of such moves is now complete in the sense
described above.

Using [5], the classification results in full generality allow versions that are
strong in the sense that any given isomorphism at the level of the invariant lifts
to a ∗-isomorphism. This in turn leads to exact isomorphism by augmenting the
K-theoretical invariant by the class of the unit.

As noted already by Cuntz and Krieger ([7]), the classical moves originating
essentially in symbolic dynamics induce isomorphisms that preserve the canonical
diagonal subalgebra, and combining recent work of Matsumoto and Matui with an
observation of Sørensen ([14], [17]) one may in fact prove in the simple case that
one graph may be transformed into another using only these moves (avoiding the
Cuntz splice ([6], [16]) and the new move described above) if and only if the graph
C∗-algebras are stably isomorphic in a diagonal-reserving way. We conjecture that
this is true for all unital graph C∗-algebras and have confirmed this in the case
of Cuntz-Krieger algebras. This last observation draws on forthcoming work with
Arklint, Carlsen and Ortega ([1], [4]).
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In conclusion, let us briefly discuss the status of the classification problem for
general (not necessarily unital) graph C∗-algebras with finitely many ideals. Since
we see no obvious way to reduce to the unital case solved here, nor to mimic the
geometric approach which is essential for our proof, it stands to reason that entirely
different methods are going to be necessary. It is worth noting that complete
classification results exist in the case where all simple subquotients are of the
same type — either AF (solved in [12]) or purely infinite (solved in [2]) — and the
early general results obtained by three of the authors ([8], [9]) similarly require
restrictions on the amount of “mixing”, so we predict that the key will be to
resolve how such issues influence the general KK-theoretic machinery which we in
the unital case may replace with a geometric aproach.
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C
∗-completions of Hecke algebras and property (T)

Nadia S. Larsen

(joint work with Rui Palma)

The problem of identifying C∗-algebra completions of the ∗-algebra H(Γ,Γ0) as-
sociated to a Hecke pair (Γ,Γ0) received a good deal of attention starting with
the construction by Bost and Connes of a quantum statistical dynamical system
whose underlying C∗-algebra CQ is a reduced C∗-algebra associated to a Hecke
pair coming from the inclusion of Z in Q, [1].

A group-subgroup pair (Γ,Γ0) is a Hecke pair if each double coset Γ0gΓ0 con-
tains finitely many left cosets as g ∈ Γ. The space of complex-valued functions on
Γ0\Γ/Γ0 whose support is finite admits a convolution product and an involution
operation that turn it into a ∗-algebra H(Γ,Γ0). The particular example giving
rise to CQ was a discrete pair, but not long afterwards a systematic study was
undertaken by Hall with the goal of identifying whether the category of nonde-
generate ∗-representations of the Hecke algebra was equivalent with the category
of unitary representations of Γ generated by their Γ0-fixed vectors [2]. In her
approach, an important role was played by a pair formed of a compact open sub-
group of a locally compact (totally disconnected) group. Hall proposed a positiv-
ity condition for a certain bilinear form under which the above equivalence would
be valid. She proved, however, that this positivity condition failed for the pair
(SL2(Qp), SL2(Zp)). Closely related to this, she also proved that the ∗-algebra
H
(
SL2(Qp), SL2(Zp)

)
did not admit a universal C∗-completion due to the fact

that certain generators are unbounded in every ∗-representation.
The study of C∗-completions of a (discrete) Hecke pair (Γ,Γ0) was put firmly

into the framework of harmonic analysis by Tzanev, [6], who used work of Schlicht-
ing to associate an essentially unique topological pair consisting of a totally discon-
nected group G with a compact open subgroup H containing dense embeddings
of the original pair. In this setting, H(Γ,Γ0) becomes the corner of Cc(G) deter-
mined by the self-adjoint projection p0 equal to the characteristic function of H .
Thus, immediately, two new C∗-completions are available, with p0C

∗(G)p0 being
a natural quotient of C∗(L1(G,H)). Kaliszewski, Landstad and Quigg studied
these completions further and gave a new and streamlined proof of Hall’s equiva-
lence using the theory of Fell-Rieffel imprimitivity bimodules for ∗-algebras [3]. In
[3], the question was raised whether the canonical surjection from C∗(G,H) onto
p0C

∗(G)p0 was injective for the pair (SLn(Qp), SLn(Zp)) at n = 2. They also
acknowledged a private communication from Tzanev asserting that the map was
not injective at n = 3.

In [5], Palma answered the question raised by Kaliszewski, Landstad and Quigg
by showing that the canonical surjection was not injective for n = 2. We then
looked to find a proof for the non-injectivity claim in case n = 3. We establish that
the canonical surjection is not injective by showing that the trivial representation
of p0C

∗(G)p0 is isolated in its natural hull-kernel topology, due to property (T) of
SLn(Qp), while the trivial representation of C∗(L1(G,H)) is not isolated in the
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hull-kernel topology, for all n ≥ 3. Indeed, the same result holds for a larger class
of simple algebraic groups of rank at least 2, taken with a suitable compact open
subgroup [4]. We also show that for Gelfand pairs, injectivity of the canonical
surjection and existence of a universal C∗-completion can be characterised by
positive definiteness and/or boundedness of so-called ∗-spherical functions [4].
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Classification results for C∗-algebras associated to Smale spaces

Karen R. Strung

(joint work with Robin J. Deeley)

A Smale space is a dynamical system (X,ϕ) whereX is a compact metric space and
ϕ is a homeomorphism with a particularly tractable local structure: at each point
x ∈ X there is a small neighbourhood which splits into two sets, which we think
of as local coordinates. Along one coordinate, the systems is expanding; along the
other it is contracting. Ruelle defined Smale spaces in [3] to model the restriction
of an Axiom A diffeomorphism to its nonwandering set or one of its basic sets. As
such this class of dynamical systems is quite diverse: it includes subshifts of finite
type, William’s attractors (for example solenoids), Anosov diffeomorphisms (for
example hyperbolic toral automorphisms), among many others.

When considering a Smale space, we are interested in the asymptotic behaviour
of expansion and contraction. From this point of view, there are three naturally as-
sociated groupoids called the stable, unstable, and homoclinic groupoids. Suitably
defined these are all amenable étale groupoids and, using the groupoid C∗-algebra
construction, results in separable, nuclear C∗-algebras. Each of these algebras is
stably finite and nuclear, and the homoclinic C∗-algebra is unital.

In this talk, I reported on the results in [1] as well as forthcoming work (also
joint with Deeley) that examines group actions on Smale spaces and properties
of the resulting C∗-algebraic crossed products [2]. Our main result in [1] is that
the homoclinic algebras of mixing Smale spaces can be classified by their Elliott
invariant which consists of K-theory data paired with tracial states. This required
using Guentner, Willet and Yu’s dynamic asymptotic dimension for groupoids [4]
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so that we might determine finiteness of the nuclear dimension of the Smale space
C∗-algebras.

Let (X,ϕ) be a Smale space. For a finite set of ϕ-invariant periodic points,
the groupoid GS(P ) consists of stable equivalence classes of points in X that are
unstably equivalent to some point in P . Similarly, GU (P ) will be the groupoid
consisting of unstable equivalence classes of points in X that are stably equivalent
to a point in P . The homoclinic groupoid, GH , consists of all points (x, y) ∈ X×X
such that x and y are both stably and unstably equivalent.

Theorem 1. Let (X,ϕ) be a mixing Smale space and P a finite set of ϕ-invariant
periodic points. Then GH(P ) and GU (P ) have finite dynamic dimension.

As a consequence of hyperbolicity, one cannot define a Smale space structure
unless X has finite covering dimension. Because of this, we can pass to finite
nuclear dimension of the C∗-algebras.

Theorem 2. With (X,ϕ) and P as above, the groupoid C∗-algebras GS(P ) and
GU (P ) have finite nuclear dimension. Moreover, since C∗(GH) is stably isomor-
phic to GS(P )⊗GU (P ), it also has finite nuclear dimension.

As a consequence, C∗(GH) is in the Elliott class of C∗-algebras, that is, those
C∗-algebras which can be distinguished by Elliott invariants.

Theorem 3. With (X,ϕ) as above, if A is any simple separable unital C∗-algebra
in the UCT class that in addition has finite nuclear dimension, then A ∼= C∗(GH)
if and only if their Elliot invariants are isomorphic. We can therefore deduce that
C∗(GH) ⊗ U is tracially approximately finite in the sense of Lin for any UHF
algebra U and hence CG(H) is approximately subhomogeneous.

Note in particular that the above holds within the class of homoclinic algebras
of mixing Smale spaces. This raises the question: now that we can distiguish these
C∗-algebras by a computable invariant, can we in turn use this invariant to show
some sort of equivalence of the underlying Smale spaces? This is an open question.

I finished the talk by discussing work in preparation on group actions on Smale
spaces, by which we mean a group acting by ϕ-equivariant homeomorphisms on X .
There are many interesting actions. For example, the automorphsims group of the
full 2-shift contains every finite group. It is also natural to consider symmetries
of aperiodic substitution tiling systems. The main theorem that appeared in the
talk (further results will appear in [2]) was the following:

Theorem 4. If Γ is a discrete elementary amenable group which acts effectively
on a mixing Smale space (X,ϕ), then the induced action by Γ on C ∗ (GH) is
strongly outer. It follows that the crossed product by Γ with respect to this action,
C∗(GH) ⋊ Γ, is simple and has finite nuclear dimension. Since C∗(GH) ⋊ Γ is
moreover simple and unital, it is classified by its Elliott invariant.
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Tail algebras, amalgamated free products and KMS states

Ken Dykema

(joint work with Yoann Dabrowski, Claus Köstler, Kunal Mukherjee and John
Williams)

A classical theorem of B. de Finetti [6] shows that an infinite sequence of clas-
sical random variables is exchangeable (namely, has distribution invariant under
arbitrary permutations of the variables) if and only if the random variables are
conditionally independent over the tail σ-algebra. Hewitt and Savage [7] used
this to prove that the set of symmetric Borel probability measures on an infi-
nite product space

∏∞
1 Z, where Z is compact Hausdorff, is a Choquet simplex,

whose extreme points are the product measures of the form
∏∞

1 µ, for µ a Borel
probability measure on Z. Here “symmetric” means invariant under the obvious
permutation action of S∞ on the above product space.

E. Størmer [10] extended the purview of the classical de Finetti theorem to the
realm of C∗-algebras, showing the symmetric states on the infinite tensor product⊗∞

1 A of a unital C∗-algebra A with itself, form a Choquet simplex and that the
extreme points of this simplex are the infinite tensor product states ⊗∞

1 φ, of states
φ on A. Here “symmetric” means invariant under the obvious permutation action
of S∞ on the above tensor product algebra.

In the paper [4], we investigate the symmetric states on the universal unital
free product ∗∞1 A of a C∗-algebra A with itself infinitely many times, these being
those that are invariant under the obvious action of S∞ that permutes the copies
of A. We let SS(A) denote the set of all symmetric states on ∗∞1 A. For ψ ∈ SS(A),
let πψ be the GNS representation of it, letMψ denote the von Neumann algebra

generated by the image of πψ, and let ψ̂ denote the normal state onMψ so that

ψ̂ ◦ πψ = ψ. The tail algebra of ψ is the von Neumann subalgebra

Tψ =

∞⋂

n=1

W ∗
( ⋃

j≥n

πψ(Aj)
)
,

of Mψ, where Aj is the j-th copy of A in A. An example of Weihua Liu [9]

(described in [4]) shows that there need not be a normal, ψ̂-preserving conditional
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expectation from Mψ onto Tψ. However, we show that there is a ψ̂-preserving,
S∞-invariant conditional expectation from the C∗-algebra

Qψ := C∗(Tψ ∪ πψ(A))
onto Tψ , and we define the tail C∗-algebra Dψ to be the the smallest unital C∗-
subalgebra of Tψ containing Eψ(C

∗(Dψ ∪ πψ(A))). We ask two open questions
about tail algebras of symmetric states:

Question 1. Do we always have Dψ ⊆ πψ(A)?
Question 2. Is Tψ generated as a von Neumann algebra by Dψ?

Theorem 3 ([4]). If the restriction of ψ̂ to Dψ is a pure state, then ψ is an
extreme point of SS(A), while the converse holds if we also assume Dψ ⊆ πψ(A).
Definition 4. A state ψ on ∗∞1 A is said to be quantum symmetric if it is invariant
under the natural actions of the quantum permutation groups of S. Wang [11].
(See [4]) for more details.)

We let QSS(A) denote the set of such quantum symmetric states. It is easy to
see QSS(A) ⊆ SS(A).

Here is a noncommutative de Finetti theorem, whose proof is patterned after
the proof Köstler and Speicher’s original noncommutative de Finetti theorem [8],
which is about quantum exchangeable random variables. Also, S. Curran has a
version [2] that requires faithfulness of states.

Theorem 5 ([4]). If ψ ∈ QSS(A), then the family
(
C∗(πψ(Aj) ∪Dψ)

)∞
j=1

is free with amalgamation over Dψ with respect to Eψ. Moreover, we have

(1) Dψ ⊆ πψ(∗∞1 A).
Thus, the C∗-algebra πψ(∗∞1 A) is isomorphic to the C∗-algebra arising in the re-
duced amalgamated free product (∗Dψ )∞1 (B,E), where B = C∗(πψ(Aj) ∪Dψ) and
E is the restriction of Eψ.

The proof of (1) uses an amalgamated version of the Haagerup inequality, found
in [1].

Clearly, the set QSS(A) is a convex set that is compact in the weak∗-topology,
but it is easy to see that it is not a Choquet simplex. However, we now consider
several special sets of quantum symmetric states that are Choquet simplices.

Definition 6. Given ψ ∈ QSS(A), we say that ψ is central if the tail algebra
Tψ lies in the center Z(Mψ) of Mψ. We let ZQSS(A) be the set of all central
quantum symmetric states.

Theorem 7 ([4]). ZQSS(A) is a Choquet simplex, and ψ is in the extreme bound-
ary of ZQSS(A) if and only if ψ = ∗∞1 φ is the free product of a state φ ∈ S(A) of
A.
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From the above theorem and the one of Størmer mentioned above, we see that
the Choquet simplex ZQSS(A) is the same as the Choquet simplex of all symmetric
states on

⊗∞
1 A; namely, it is the Bauer simplex with extreme boundary equal to

the state space of A.

Definition 8. The set of tracial quantum symmetric states of A is

TQSS(A) = QSS(A) ∩ T (∗∞1 A).
Theorem 9 ([3]). If A has a tracial state, then TQSS(A) is nonempty. Moreover,
it is a Choquet simplex and a face of T (∗∞1 A). If A is separable, then it is the
Poulsen simplex, namely, the metrizable simplex whose extreme points are dense.

Suppose σ = (σt)t∈R be a one-parameter automorphism group of A (pointwise
norm continuous). Recall that the set of entire analytic elements of A is

A = {a ∈ A | ∃ a holomorphic extension C ∋ z 7→ σz(a) ∈ A}
and forms a dense ∗-subalgebra of A. Recall that a state φ is σ-KMS (at inverse
temperature −1) if for all a ∈ A and all b ∈ A, we have

φ(aσ−i(b)) = φ(ba).

Let ∗∞1 σ denote the one-parameter automorphism group of ∗∞1 A whose value at
parameter t is the free product automorphism ∗∞1 σt of ∗∞1 A.
Definition 10.

QSSσ(A) = {ψ ∈ QSS(A) | ψ is (∗∞1 )-KMS}.
Theorem 11 ([5]). If A has a σ-KMS state, then QSSσ(A) is nonempty; it is,
moreover, a Choquet simplex and a face of the simplex of all (∗∞1 σ)-KMS states
of ∗∞1 A.
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[8] C. Köstler, R. Speicher, A noncommutative de Finetti theorem: invariance under quantum
permutations is equivalent to freeness with amalgamation, Comm. Math. Phys. 291, (2009),
473–490.

[9] W. Liu, private communication, (2014).



C*-Algebras 2337

[10] E. Størmer, Symmetric states of infinite tensor products of C∗-algebras, J. Funct. Anal. 3,
(1969), 48–68.

[11] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195, (1998),
195–211.

Cantor minimal Zd-actions and cohomology

Thierry Giordano

(joint work with I.F. Putnam and C.F. Skau)

1. The cohomology of free minimal actions of Zd on the Cantor set

.

Let us review some properties of the cohomology of a free minimal action (X,ϕ)
of Zd on the Cantor set. Recall (see for example [HF]) that we consider this
cohomology as the group cohomology of Zd with coefficient module C(X,Z) but
with no preferred choice of projective resolution.

We then have:

1) H0(X,ϕ) = {f ∈ C(X,Z) ; f = f ◦ ϕ } = Z, as the system is minimal.

2) Hd(X,ϕ) = C(X,Z)/{f − f ◦ϕ ; f ∈ C(X,Z) } is the group of co-invariants of
(X,ϕ). Note that d > 1, this group may have torsion .

3) H1(X,ϕ) = Z1(X,ϕ)/B1(X,ϕ), where Z1(X,ϕ) denotes the set of continuous
cocycles Θ : X × Zd → Z and the coboundaries B1(X,ϕ) given by Θ(x, n) =
h(ϕ(n)(x) − h(x), for h ∈ C(X,Z).
Let us state some properties of the first group of cohomology:

a) H1(X,ϕ) is a torsion free group. Moreover, for d = 1, H1(X,ϕ) is a simple
dimension group, and as a direct consequence of [HPS], for any simple dimension
group G, there is a minimal homeomorphism on the Cantor set whose first group
of cohomology is G.

b) Let {ei ; 1 ≤ i ≤ d } be the canonical basis of Zd. The group Zd, realized as
the subgroup generated by the cocycles Θj : X × Zd → Z , 1 ≤ j ≤ d, given by
Θj(x, ei) = δj(i) is canonically imbedded in H1(X,ϕ).

Definition. For an invariant probability measure µ of a free, minimal Zd-action
(X,ϕ) on the Cantor set, let τ1µ : H1(X,ϕ)→ Hom (Zd,R) and τdµ : Hd(X,ϕ)→ R

denote the two group homomorphisms given by:

τ1µ([Θ])(n) =

∫

X

Θ(x, n)dµ(x) and τdµ([f ]) =

∫

X

fdµ .

By [GPS], for any dense countable subgroup H of R containing Z, there ex-
ists a uniquely ergodic, minimal homeomorphism ϕ of the Cantor set such that
τ1µ(H

1(X,ϕ)) = H .
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More precisely, if H ⊂ Q, then (X,ϕ) is a Z-odometer. Recall that a Denjoy
homeomorphism is an aperiodic homeomorphism of the circle which is not conju-
gate to a pure rotation. By a Denjoy system we mean a Denjoy homeomorphism
restricted to its unique invariant Cantor set (See [PSS]). Then there exists a
Denjoy system (X,ϕ) such that τ1µ(H

1(X,ϕ)) = H if H is not contained in Q.
Note that (see [GPS]) that any uniquely ergodic, minimal homeomorphism of the
Cantor set is orbit equivalent to an odometer or a Denjoy system.

These results for a minimal homeomorphism on the Cantor set lead to the
following question:

For d ≥ 1, what is the class of countable subgroups H of Rd containing Zd which
can be realized dynamically, i.e. for which there exists a free minimal action (X,ϕ)
of Zd on the Cantor set such that τ1µ(H

1(X,ϕ)) = H?

Remark: In [CS], A. Clark and L. Sadun constructed recently an example of a
uniquely ergodic, free and minimal action (X,ϕ) of Z2 on the Cantor set such that
τ1µ(H

1(X,ϕ)) = Z2.

2. First case: Zd ⊂ H ⊂ Qd , H dense.

These subgroups will be realized using Zd-odometers. These Zd-actions were in-
troduced by M.-I. Cortez in [C]. With S. Petite in [CP], she then extended the
definition to any residually finite G. Let us recall the definition for Zd.

If Z is any subgroup of Zd, let ϕZ denote the Zd-action on Zd/Z given by

ϕZ(k)(l + Z) = k + l + Z , k, l ∈ Zd .

Let G denote a decreasing sequence (Zn)n≥1 of finite index subgroups of Zd

whose intersection is trivial, and (XG , ϕG) the inverse limit of the systems

(Zd/Z1, ϕZ1
)← (Zd/Z2, ϕZ2

)← · · ·
Definition. A Zd-odometer is any system (XG , ϕG), where G is as above.

Then XG is a Cantor set and (XG , ϕG) is a free, minimal action of Zd, which is
equicontinuous and therefore uniquely ergodic.

Recall that if Z is a finite index subgroup of Zd, then it is a lattice in Rd and its
dual lattice Z∗ is a subgroup of Qd containing Zd as a finite index subgroup. Then
to a decreasing sequence (Zn)n≥1 of finite index subgroups of Zd we associate the
increasing sequence (Z∗

n)n≥1 of subgroups of Qd containing Zd and we denote by
H its union. It is easy to verify that H is dense in Rd if and only if the intersection
of the sequence (Zn)n≥1 is {0}. We then have

Theorem. 1) Two Zd-odometers are conjugate if and only if their subgroups H
of Qd are equal.

2) Any subgroup H of Qd containing Zd and dense (in Rd) is associated to a
Zd-odometer.
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For a subgroup H of Qd containing Zd and dense (in Rd), we will denote by
Zd-odometer (H), the unique, up to conjugation, Zd-odometer associated to H .

Before stating the next theorem, let us recall some notions of equivalences
between Zd-dynamical systems.

Definition. Let (X,ϕ) and (X ′, ϕ′) be Cantor Zd- and Zd
′

-dynamical systems.
Then the two systems are:

1) conjugate if there exists a homeomorphism F : X1 → X2 intertwining ϕ1

and ϕ2.

2) isomorphic if there exists an automorphism α of Zd such that (X1, ϕ1 ◦ α)
and (X2, ϕ2) are conjugate.

3) orbit equivalent (OE) if there exists a homeomorphism F : X1 → X2 such
that F (Orbitϕ1

(x)) = Orbitϕ2
(Fx) for all x ∈ X1.

4) continuous orbit equivalent (COE) if they are OE and the associated orbit
cocyles are continuous.

Remarks: i) Conjugacy and isomorphism naturally imply that d = d′.
ii) The notion of continuous orbit equivalence for a countable discrete group

action was introduced by X. Li in [L]. For d = 1 and Cantor minimal systems, it
is equivalent to the notion of isomorphism or flip conjugacy (see [GPS]).

iii) Conjugacy implies isomorphism, which implies COE and COE implies OE.

Then we have:

Theorem. Let H and H ′ be two subgroups of Qd containing Zd and dense (in
Rd). Then the two corresponding Zd-odometers are isomorphic if and only if there
exists α ∈ GLd(Z) such that α(H) = H ′.

Theorem. Let H (resp. H ′) be a subgroup of Qd (resp. Qd
′

) containing Zd

(resp. Zd
′

) and dense. Then the two corresponding odometers are COE if and
only if d = d′ and there exists α ∈ GLd(Q) with det (α2) = 1 and α(H) = H ′.

Theorem. For any dense subgroup Zd ⊂ H ⊂ Qd, the first cohomology group of
the Zd-odometer (H) is isomorphic to H.

Recall that Zd-odometer (H) is uniquely ergodic; let µ denote its unique invari-
ant measure. Identifying Hom (Zd,R) with Rd, then τ1µ is a homomorphism from

H1(Zd-odometer (H)) to Rd. We then have

Theorem. For any dense subgroup Zd ⊂ H ⊂ Qd, then the map

τ1µ : H1(Zd-odometer (H))→ H

is an isomorphism.

In the next theorem, we investigate orbit equivalence for Zd-odometers. Let us
first introduce the following definition we will need.

Definition. Let Zd ⊂ H ⊂ Qd. Then the superindex of Zd in H is given by

[[H : Zd]] = {[H ′ : Zd] ; Zd ⊂ H ′ , [H ′ : Zd] <∞} .
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Recall that for a free, minimal Zd-Cantor system (X,ϕ), the cohomology group
Hd(X,ϕ) is the group D(X,ϕ) of co-invariants of (X,ϕ).

Theorem. For any dense subgroup Zd ⊂ H ⊂ Qd, then the map

τdµ : Hd(Zd-odometer (H))→ ∪m∈[[H:Zd]]m
−1Z

is an isomorphism of ordered abelian group with order units.

Using [GMPS], we then get

Corollary. Let H (resp. H ′) be a subgroup of Qd (resp. Qd
′

) containing Zd (resp.

Zd
′

) and dense. Then the two corresponding odometers are orbit equivalent if and
only if their superindex are equal.

These results lead to the following striking results. The examples for (b) and
(c) already appear in [CP] and [L].

Corollary. a) Two Z-odometers are conjugate if and only if they are orbit equiv-
alent.

b) There are pairs of Z2-odometers which are conjugate, without being isomor-
phic.

c) There are pairs of Z2-odometers which are isomorphic, without being COE.
d) There are pairs of Z2-odometers which are COE, without being OE.

3. Second case: Zd ⊂ H ⊂ Rd , H dense.

Recall that if (X,ϕ) is a Cantor minimal Z-system, then its first cohomology group
is is the group D(X,ϕ) of co-invariants of (X,ϕ). Then Hermann, Putnam and
Skau’s result [HPS] and Effros, Handelman and Shen’s characterization of dimen-
sion groups [EHS] show that any simple dimension group is the first cohomology
group of a Cantor minimal system.

Recently, we have shown (but still need to be carefully checked) that

Theorem. For any dense subgroup H of R2 containing Z2, there exists a uniquely
ergodic, free, minimal Z2-action (X,ϕ) on the Cantor set such that H1(X,ϕ) ∼= H.
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