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Introduction by the Organisers

The workshop was organized by Randolph E. Bank (UCSD, La Jolla), Zhiqiang Cai
(Purdue, West Lafayette) and Rüdiger Verfürth (RUB, Bochum). Fifty scientists
from around the world attended the workshop, held 4–10 September, 2016.

Computer simulations of complex physical, biological, and human-engineered
systems exhibit a grand challenge in computational mathematics. Computational
difficulties for those systems include, but are not limited to, interface singularities,
discontinuities (in the form of shock-like fronts, and of interior and boundary lay-
ers), oscillations of various scales (multiscale phenomena), and high nonlinearity.
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(Problems exhibiting these phenomena are referred to as computationally chal-
lenging in this proposal.) Moreover, unlike simple systems, for complex systems,
there may be limited or nonexistent a priori knowledge of locations and proper-
ties of these phenomena that might be used for designing efficient and effective
numerical algorithms.

Self-adaptive numerical methods provide a powerful and automatic approach
to scientific computing. In particular, Adaptive Mesh Refinement (AMR) algo-
rithms have been widely used in computational science and engineering and have
become a necessary tool in computer simulations of complex natural and engineer-
ing problems. As identified by the US National Research Council, AMR is one of
two necessary tools for computationally grand challenge problems. The key ingre-
dient for success of AMR algorithms is a posteriori error estimates that are able to
accurately locate sources of global and local error in the current approximation.

Another challenge in computer simulations of complex systems is reliability of
computer predictions. Mathematically speaking, this means robust and accurate
estimates of the error in the computed numerical solution of the underlying prob-
lem. A priori error estimates, as provided, e.g., by the standard error analysis
for finite element, finite volume, or finite difference methods, are often insufficient
since they only yield information on the asymptotic error behavior. Moreover,
stability and regularity estimates needed for a priori error estimates typically are
not available for complex systems.

These considerations (error control, efficiency in AMR algorithms, etc.) demon-
strate the need for an error estimator that can a posteriori be extracted from the
computed numerical solution and the given data of the underlying problem. Such
an a posteriori error estimate ideally should provide an underlying rigorous math-
ematical theory for estimating and quantifying discretization error in terms of the
error’s magnitude and its spacial distribution.

Presentations covered a wide range of topics, among them

• Adaptive Multiscale Methods
• Adaptive Model Reduction
• Space-Time Adaptivity for Evolution Equations
• Parallel Adaptive Multigrid Solvers
• A Posteriori Error Estimation
• Optimality of Certain AFEM algorithms
• Adaptive Approaches for Applications of Scientific and Engineering Inter-
est
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in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Abstracts

An analysis of multiscale methods based on subspace decomposition

Harry Yserentant

(joint work with Ralf Kornhuber, based on results of Daniel Peterseim)

Numerical homogenization tries to approximate the solutions of elliptic partial dif-
ferential equations with strongly oscillating coefficients by functions from modified
finite element spaces. I presented in this talk a class of such methods that are very
closely related to the method of Målqvist and Peterseim [2], [3]. Like the method
of Målqvist and Peterseim, the new methods do not make explicit or implicit use
of a scale separation. Their comparatively simple analysis is based on the theory
of additive Schwarz or subspace decomposition methods.

The model problem under consideration is a linear second order differential
equation in weak form with homogeneous Dirichlet boundary conditions on a
polygonal domain Ω. Its solution space is the Sobolev space H1

0 (Ω) and the asso-
ciated bilinear form reads

(1) a(u, v) =

∫

Ω

∇u ·A∇v dx.

The matrix A is a function of the spatial variable x with measurable entries and
assumed to be symmetric positive definite. We assume that

(2) δ |η|2 ≤ η ·A(x)η ≤ M |η|2

holds for all η ∈ Rd and almost all x ∈ Ω, where |η| denotes the euclidian norm
of η and δ and M are positive constants. The Lax-Milgram theorem states under
this condition that the boundary value problem

(3) a(u, v) =

∫

Ω

fv dx, v ∈ H1
0 (Ω),

possesses for all f ∈ L2(Ω) a unique solution u ∈ H1
0 (Ω).

The key ingredient of the methods is a bounded local linear projection operator

(4) Π : H1
0 (Ω) → S : u → Πu

from the solution space to a first-order, conforming finite element space S, like that
defined as follows. At first, the given function u ∈ H1

0 (Ω) is locally, on the single
elements, approximated by its L2-orthogonal projection onto the space of linear
functions, without regard to the continuity across the boundaries of the elements.
In a second step, the values of these approximants at a vertex in the interior of the
domain are replaced by their arithmetic mean and their values at a vertex on the
boundary by the value zero. These values characterize and fix the projection Πu
of u onto S. For the functions u in the solution space H1

0 (Ω), then the estimates

(5) |Πu|1 ≤ c1|u |1, ‖h−1(u−Πu)‖0 ≤ c2|u |1
hold, where ‖ · ‖0 denotes the L2-norm, | · |1 the H1-seminorm, and h is an ele-
mentwise constant function whose value on the interior of a given element is its
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diameter. The first condition means that the projection operator (4) is stable with
respect to the H1-norm and therefore, by condition (2), also with respect to the
energy norm ‖ · ‖ induced by the bilinear form (1) underlying the boundary value
problem. The second condition is an approximation property.

The kernel V of Π is a closed subspace of H1
0 (Ω) and therefore itself a Hilbert

space. Thus we can introduce the a-orthogonal projection operator C from H1
0 (Ω)

onto the kernel of Π and moreover the finite dimensional subspace

(6) W = {v − Cv | v ∈ S}
of the a-orthogonal complement of the kernel of Π. The dimension of W and of
the finite element space S coincide as v ∈ S can be recovered from v − Cv via

(7) v = Π(v − Cv).

Målqvist and Peterseim [2], [3] discretize the equation (3) using W both as trial
and test space. Starting point of our theory is Peterseim’s observation that the
approximate solution w ∈ W , the a-orthogonal projection of the exact solution
u ∈ H1

0 (ω) of the equation onto W , possesses the representation

(8) w = Πu − CΠu

and that the error u−w = Cu is the a-orthogonal projection of the solution onto
the kernel V of Π. This implies the estimate

(9) ‖u− w‖ ≤ c ‖hf‖0
of the energy norm error [2]. Remarkably, neither the smoothness of the solution
nor the regularity properties of the equation enter into the constant. The size of
the error is determined by the local behavior of the right hand side f .

Let x1, x2, . . . , xn be the vertices of the elements in the triangulation underly-
ing the finite element space S and let ϕ1, ϕ2, . . . , ϕn be the piecewise linear hat
functions assigned to these nodes. The ϕi assigned to the nodes in the interior
of the domain Ω form then a basis of the finite element space S, and the corre-
sponding functions ϕi−Cϕi a basis of the trial space (6). Målqvist and Peterseim
[2] have shown that these basis functions decay exponentially with the distance to
the assigned nodes and can therefore be replaced by localized counterparts. We
utilize the theory of iterative methods to prove a result of similar kind [1]. Let ωi

be the union of the finite elements with vertex xi, the support of ϕi, and let

(10) Vi = {v −Πv | v ∈ H1
0 (ωi)}.

The functions in Vi vanish outside a small neighborhood of the vertex xi, depending
on the choice of Π. The Vi are closed subspaces of the kernel V of Π. Let Pi be
the a-orthogonal projection from H1

0 (Ω) to Vi, defined via the equation

(11) a(Piv, vi) = a(v, vi), vi ∈ Vi.

Introducing the operator

(12) T = P1 + P2 + · · ·+ Pn,
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the approximation spaces replacing W are built up with the help of the bounded
linear operators Fν from H1

0 (Ω) to V that are, starting from F0u = 0, defined via

(13) Fν+1u = Fνu+ T (u− Fνu).

The correction T (u− Fνu) is the sum of its components di = Pi(u − Fνu) in the
subspaces Vi of V , the solutions di ∈ Vi of the local equations

(14) a(di, vi) = a(u, vi)− a(Fνu, vi), vi ∈ Vi.

The new trial and test spaces are the spaces Wℓ spanned by the functions

(15) ϕi − Fνϕi, ν = 0, 1, . . . , ℓ,

attached to the nodes xi in the interior of the domain Ω. In contrast to their
counterparts ϕi − Cϕi spanning the original space W they have a local support,
which expands layer by layer with the number ν of iterations.

To study the approximation properties of these spaces Wℓ, we consider opti-
mally chosen fixed linear combinations

(16) Cℓ =

ℓ∑

ν=0

αℓνFν ,

ℓ∑

ν=0

αℓν = 1,

of the operators Fν as approximations of the a-orthogonal projection C. These
operators Cℓ serve solely as a tool and do not need to be explicitly accessible. Our
analysis starts from the observation that, for all v ∈ V , there is a with respect to
the energy norm stable decomposition v = v1 + · · · + vn of v into functions vi in
the local spaces Vi, such that

(17)

n∑

i=1

‖vi‖2 ≤ K1‖v‖2

holds. Moreover, there is a constant K2 such that

(18) ‖v‖2 ≤ K2

n∑

i=1

‖vi‖2

holds for all such decompositions of v into functions vi in the subspaces Vi of the
kernel. The proof of the first estimate utilizes the properties (5) of the projection
Π, and therefore in particular that the functions v in the kernel V of Π are rapidly
oscillating, and the assumption (2) on the coefficient functions. The constant in
the second estimate can be bounded in terms of the maximum number of the
parts vi that do not vanish on a given element.

The operator T maps the kernel V to itself and can be considered as a bounded,
symmetric operator from V to V . With the help of the estimates (17) and (18)
one can show that its spectrum is a compact subset of the interval with the two
endpoints 1/K1 and K2. Because I − Fν = (I − T )ν and FνC = Fν ,

(19) C − Cℓ =

{ ℓ∑

ν=0

αℓν(I − T )ν
}
C.
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Using the spectral mapping theorem and the fact that the norm of a bounded,
symmetric operator from a Hilbert space to itself is equal to its spectral radius,
one gets therefore, similarly to the finite dimensional case, the error estimate

(20) ‖Cu− Cℓu‖ ≤ 2 q ℓ

1 + q 2ℓ
‖Cu‖, u ∈ H1

0 (Ω),

where the convergence rate

(21) q =

√
κ− 1√
κ+ 1

is determined by the condition number κ ≤ K1K2 of the operator (12) seen as
bounded, symmetric operator from the subspace V of H1

0 (Ω) to itself. From there,
it is only a small step to our final result. Let w and wℓ be the best approximations
of the solution u of the original equation (3) in W and Wℓ, respectively, with
respect to the energy norm. As ‖u−wℓ‖ ≤ ‖u− (Πu−CℓΠu)‖ and because of the
representation (8) of the best approximation w in W , then

(22) ‖u− wℓ‖ ≤
(
1 +

2 q ℓ

1 + q 2ℓ

)
‖u− w‖ + 2 q ℓ

1 + q 2ℓ
‖u−Πu‖.

We conclude that logarithmically many iteration steps ν or even less, depending
on the behavior of the energy norm of u − Πu, suffice to reach the same level of
accuracy as with the original space W based on the exact projection C. Finally,
the infinite dimensional subspaces Vi of the kernel of the projection Π are replaced
by discrete counterparts to obtain a computationally feasible method.
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Adaptive Localized Model Reduction

Mario Ohlberger

(joint work with Stephan Rave, Felix Schindler)

Many physical, chemical, biological or technical processes can be described by
means of partial differential equations. Due to nonlinear dynamics, interacting
processes on different scales, and possible parametric or stochastic dependencies,
an analysis and prediction of the complex behavior is often only possible – if at all
– with severe simplifications. This is in particular true if not only single forward
problems are considered, but beyond that uncertainty quantification, parameter
estimation or optimization in engineering applications are investigated.
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It has been proven that modern algorithmic approaches such as higher order
adaptive modeling and model order reduction combined with efficient software
design for highly parallel environments outperforms the pure gain of increasing
compute power. Hence, there is a need for algorithmic improvement, both con-
cerning a reduction of the overall computational complexity and concerning new
parallelization paradigms in order to exploit the computational resources of nowa-
days computer architectures in an optimal manner.

A mathematical key ingredient to achieve ”optimal” numerical methods is er-
ror control via rigorous a posteriori error estimates. Such error estimates can
not only be used to certify approximate solutions, but rather are the essential
building block in the construction of problem adapted optimal solution spaces and
related adaptive numerical methods. Examples of such optimal methods are e.g.
particularly tuned mesh-adaptive finite element schemes for the approximation of
PDEs or reduced basis methods (weak greedy algorithms) for the approximation
of parameterized PDEs.

As a particular example we investigate model reduction for spatially resolved
Li-ion batteries [14] based on POD basis construction for the state space reduc-
tion and empirical interpolation [2, 4] to deal with the non-linear electrochemical
reaction kinetics. Numerical experiments demonstrate a speedup of the online
computational complexity with respect to the underlying finite volume approx-
imation by a factor of about 280. In that sense the reduced basis approach is
very efficient. On the other hand, this online efficiency comes with the price of
an enormous offline complexity, both with respect to CPU time and with respect
to storage requirements. These observations motivate the development of new
model reduction paradigms that overcome the classical offline/online splitting of
projection based model reduction technique. An attempt towards this goal is the
development of localized model reduction methods, such as e.g. the reduced basis
element method [11], the reduced basis hybrid method [7], the port reduced static
condensation reduced basis element method [17], or ArbiLoMod, a new approach
for handling problems with arbitrary local modifications [3].

In this contribution we focus on the localized reduced basis methods (LRBM),
which were first introduced in the context of elliptic heterogeneous multiscale
problems in [9] and later applied in the context of two phase flow in porous media in
[8]. As demonstrated in [1], such an approach has the potential to reduce the offline
cost at the price of a decreased online efficiency. It was also shown that depending
on the choice of the macro mesh for the localization, the resulting localized reduced
basis method can be seen as an interpolation of a classical reduced basis method
and a Discontinuous Galerkin approximation on the underlying fine grid. First
results for an application of LRBM to the fully non-linear Li-ion battery model
were given in [13]. Although this approach allowed for balancing of offline and
online complexity, it still maintained the paradigm of offline/online splitting.

In a more recent approach [16] we overcome this paradigm by allowing for local
basis enrichment in the online-phase. Within this new conceptual approach we do
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not aim at first constructing a reduced basis that has good approximation proper-
ties with respect to the whole solution manifold of the parameterized system and
then using it for fast online evaluations. We rather think of an iterative enrich-
ment procedure, where the reduced space is updated during the online phase in
an appropriate manner, while the user explores the solution manifold. To achieve
this goal we allow for carefully selected adaptive local problem solves in the online
phase, based on localized a posteriori error estimation. To this end, we derive
robust and efficient a posteriori error estimates for the localized reduced basis
approximation against the true solution of the underlying PDE. The a posteriori
error estimate is based on conservative flux reconstruction for elliptic equations,
following the approach in [5] and on the additional usage of elliptic reconstructions
in the case of parabolic problems [6, 15]. Several numerical experiments for elliptic
and parabolic applications demonstrate the applicability of the approach.

The numerical results were obtained with the newly developed model reduction
algorithms implemented in the open-source Python software package pyMOR (see
http://pymor.org and [12]).
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Spectral Upscaling for Graph Laplacian Problems in Mixed Form with
Application to Finite Volume Schemes

Panayot S. Vassilevski

(joint work with Andrew T. Barker and Chak S. Lee)

Spectral coarsening procedures for graph Laplacian problems formulated in a
mixed saddle-point form are proposed in [3]. Here we give a brief (partial) sum-
mary of these results.

Given a set of positive weights {ke}e∈E and an undirected graph G with a set of
n vertices V and a set of edges E = {e = (i, j), i, j ∈ V } ⊂ V ×V , the (weighted)
graph Laplacian operator L is defined as

L =
∑

e∈E

keded
T
e ,

where the only nonzero entries of de ∈ Rn, e = (i, j), are 1 and −1, respectively
at positions i and j. For f ∈ R

n such that 1T f = 0, the problem Lu = f can
equivalently be formulated as

(1)

[
M DT

D 0

] [
σ

u

]
=

[
0
−f

]
.

where D = [. . . , ,de, . . . ], and M = diag (k−1
e )e∈E both act on edge-based vector

σ = (σe)e∈E . The goal is to systematically produce a low-dimensional coarse
model of (1) that approximates the original problem reasonably well.

The work in [3] extends the previously developed ([4]) aggregation-based coars-
ening procedures applied to both unknowns to allow here more than one coarse
vertex degree of freedom (dof) per aggregate. These coarse dofs are selected as
certain eigenvectors of local graph Laplacians associated with each aggregate. Ad-
ditionally, the edge dofs are coarsened by using traces of the discrete gradients of
the already constructed coarse vertex dofs. These traces are defined on the in-
terface edges that connect any two adjacent aggregates. The overall procedure is
a modification of the spectral upscaling procedure developed in [2] for the mixed
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finite element problems. Approximation property of the resulting coarse space
Uc for vertex dofs is established, and it is shown that there are two locally con-
structed projections πσ : Σ → Σc and πu : U → Uc, satisfying the important
commutativity relation

Dπσ = πuD.

The latter, as is well-known, implies the inf–sup stability of the coarse problem.
Several numerical examples on some general unstructured graphs are demon-

strated in [3]. In addition, as a main application, the proposed method is applied
to construct consistent and accurate coarse-scale models in reservoir simulation
problems by treating a finite volume discretization (two-point flux approximation)
as a graph Laplacian. In particular, the effectiveness of the proposed coarsen-
ing method on the top 35 layers of the SPE10 model [1] is illustrated below (see
Figure 1). The original 60 × 220 × 35 fine grid is partitioned uniformly into a

Figure 1. Top 35 layers of the SPE10 model.

6 × 11 × 7 coarse grid. From left to right, Figure 2 shows the pressure solution
of the fine-grid reference solution, the coarse-grid solutions produced by the pro-
posed coarsening method with number of local spectral basis m = 1 and 13. The
relative errors (measured in l2 norm) of the coarse-grid solutions are respectively
83.6% and 11.4%. Notice that the dimension of the fine-grid model is more than
70 times the dimension of the coarse-grid model. Both the solution plot and the
error measurement show that the enriched coarse-grid solution (m=13) is a reliable
approximation to the reference solution.

(a) Reference (dim=462000) (b) Coarse sol’n (dim=462) (c) Coarse sol’n (dim=6006)

Figure 2. Pressure solution plots.
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A Locally Conservative Enriched Galerkin Approximation for Flow
and Transport

Mary F. Wheeler

(joint work with Sanghyun Lee, Young-Ju Lee)

Miscible displacement of one fluid by another in a porous medium has attracted
considerable attention in subsurface modeling with emphasis on enhanced oil recov-
ery applications. Here flow instabilities arising when a fluid with higher mobility
displaces another fluid with lower mobility is referred to as viscous fingering. The
latter has been the topic of major physical and mathematical studies for over half a
century. Recently, viscous fingering has been applied for proppant-filled hydraulic
fracture propagation to efficiently transport the proppant to the tip of fractures.
The governing mathematical system that represents the displacement of the fluid
mixtures consists of pressure, velocity, and concentration.

Here we present a novel approach to the simulation of miscible displacement
by employing an adaptive enriched Galerkin finite element methods (EG) coupled
with entropy residual stabilization for transport. EG is formulated by enriching
the conforming continuous Galerkin finite element method (CG) with piecewise
constant functions. EG provides locally and globally conservative fluxes, which is
crucial for coupled flow and transport problems. Moreover, EG has fewer degrees
of freedom in comparison with discontinuous Galerkin (DG) and an efficient flow
solver has been derived which allows for higher order schemes. We have shown the-
oretically and computationally that a robust preconditioner can be achieved if one
adds pre- and post smoothings to a block preconditioner involving CG and jumps
in the discontinuous piecewise constants. Dynamic adaptive mesh refinement is
applied in treating geological material discontinuities.

An additional advantage of EG is that only those subdomains that require local
conservation need to be enriched with a treatment of high order non-matching
grids. Our high-order EG transport system is coupled with an entropy viscosity
residual stabilization method to avoid spurious oscillations near shocks. Instead
of using limiters and non-oscillatory reconstructions, this method employs the
local residual of an entropy equation to construct the numerical diffusion, which
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is added as a nonlinear dissipation to the numerical discretization of the system.
The amount of numerical diffusion added is proportional to the computed entropy
residual. This technique is independent of mesh and order of approximation and
has been shown to be efficient and stable in solving many physical problems with
CG. Finally, we note that it is crucial to have dynamic mesh adaptivity in order
to reduce computational costs for large-scale three-dimensional applications; both
for flow and transport. We employ the entropy residual for dynamic adaptive
mesh refinement to capture the moving interface between the miscible fluids. Our
computational results indicate that the entropy residual can be used as an efficient
posteriori error indicator.

For theoretical and computational details regarding EG for flow and transport
the reader is referred to the following papers [1, 2].
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A high order trace FEM for PDEs on (evolving) surfaces

Arnold Reusken

(joint work with J. Grande, C. Lehrenfeld, M. Olshanskii)

We consider two model PDEs, namely the Laplace-Beltrami equation on a sta-
tionary surface a parabolic transport equation on an evolving surface. Given
f ∈ H−1(Γ), with f(1) = 0 the Laplace–Beltrami problem is as follows: Find
u ∈ H1

∗ (Γ) := { v ∈ H1(Γ) |
∫
Γ
v ds = 0 } such that

(1) a(u, v) = f(v) for all v ∈ H1
∗ (Γ)

with

a(u, v) =

∫

Γ

∇Γu · ∇Γv ds.

The time-dependent model transport problem that we consider is as follows. As-
sume a surface Γ(t) passively advected by a given smooth velocity field w =
w(x, t), i.e. the normal velocity of Γ(t) is given by w · n, with n the unit normal
on Γ(t). We assume that for all t ∈ [0, T ], Γ(t) is a hypersurface that is closed
(∂Γ = ∅), connected, oriented, and contained in a fixed domain Ω ⊂ R

d, d = 2, 3.
The convection-diffusion equation on the surface that we consider is given by:

(2) u̇+ (divΓw)u− αd∆Γu = f on Γ(t), t ∈ (0, T ],

with a prescribed source term f = f(x, t) and homogeneous initial condition
u(x, 0) = u0(x) = 0 for x ∈ Γ0 := Γ(0). Here u̇ = ∂u

∂t + w · ∇u denotes the
material derivative, divΓ is the surface divergence and αd > 0 is the constant
diffusion coefficient.
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In the past decade several finite element techniques for the discretization of such
(elliptic and parabolic) PDEs on a smooth (evolving) surface have been developed.
For a recent overview we refer to [1]. These methods can be classified as follows.
Firstly, the (evolving) surface finite element method (SFEM), developed by Dziuk
and Elliott in a series of papers (cf. [1]), is based on an explicit triangulation Γh

of Γ. On this triangulation one uses a standard linear finite element space. In
case of an evolving surface the vertices of the triangulation are transported with
an interpolation of the surface velocity field. Thus this method is based on a
Lagrangian approach. A second class of methods is based on an extension of the
PDE (given on Γ) to a neighborhood of the surface. One then obtains a PDE in
the volume, which can be discretized by standard FE techniques. The third class
of methods consists of so-called trace FEM [3, 4, 5] in which one starts from a
standard finite element space on an outer fixed volume mesh and then takes the
trace on Γ of this space for the discretization of the surface PDE. This technique
can also be applied to an evolving surface and results in a purely Eulerian approach.
In this presentation we restrict to the latter class of FE trace techniques.

In the presentation, both for the case of a stationary and an evolving surface,
we explain these trace finite element techniques, discuss optimal theoretical error
bounds and present results of a few numerical experiments, which illustrate the
behavior of the methods. For the case of a stationary interface, a very recent new
result from [2] is presented. In that preprint we introduce a new higher order trace
FEM for the Laplace-Beltrami equation. We outline the main idea. We assume
that the smooth interface Γ is the zero level of a smooth level set function φ, i.e.,
Γ = { x ∈ Ω | φ(x) = 0 }. The key idea is to construct a suitable isoparametric
mapping Θh. For this we assume that we have available φh ∈ V k

h (degree k

standard FE space on volume triangulation) and φ̂h = I1φh (linear interpolation),
which are finite element approximations of φ (in a neighborhood of Γ). These
finite e lement functions are used as input for the isoparametric mapping Θh. The
piecewise linear surface approximation, which is easy to construct, is denoted by

Γlin = {φ̂h = 0}. The local volume triangulation is denoted by T Γ := {T ∈
T , T ∩ Γlin 6= ∅} and the correspondinding domain by ΩΓ. The standard affine
polynomial finite element space V k

h is restricted to T Γ, i.e., (V k
h )|ΩΓ . To this space

we apply the transformation Θh, resulting in the isoparametric space

(3) V k
h,Θ := { vh ◦Θ−1

h | vh ∈ (V k
h )|ΩΓ }.

The unfitted finite element space that we use is the trace of this space:

(4) V Γ
h,Θ := tr|Γh

(V k
h,Θ), V Γ,0

h,Θ := { vh ∈ V Γ
h,Θ |

∫

Γh

vh ds = 0 },

with Γh := Θh(Γ
lin). In the notation, we skip the polynomial degree k, and we

use Γ to indicate that we take the trace of the outer volume isoparametric space.
We introduce the bilinear form

ah(u, v) :=

∫

Γh

∇Γh
u · ∇Γh

v ds.(5)
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For the discrete problem we need a suitable extension of the data f to Γh, which

is denoted by fh. The discrete problem is as follows: Find uh ∈ V Γ,0
h,Θ such that

(6) ah(uh, vh) =

∫

Γh

fhvh dx for all vh ∈ V Γ,0
h,Θ .

For this discretization, which is easy to implement (requires quadrature only on
Γlin), optimal erorr bounds can be derived. An example of such a result is the
following, in which δf is a certain data error quantity that measures the quality
of the approximation fh ≈ f , and ue a natural extension of u:

Theorem. Let u ∈ Hk+1(Γ) be the solution of (1) and uh ∈ V Γ,0
h,Θ the solution of

(6). Assume that the data error satisfies ‖δf‖L2(Γh) ≤ chk+1‖f‖L2(Γ). Then the
following holds:

(7) ‖ue − uh‖H1(Γh) ≤ chk‖u‖Hk+1(Γ) + hk+1‖f‖L2(Γ).

Results of numerical experiments are presented which illustrate the higher order
convergence of this new method.

The results presented in this talk are based on [2, 3, 4, 5].
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An adaptive space-time discontinuous Galerkin method for linear
hyperbolic systems

Willy Dörfler

(joint work with Stefan Findeisen, Christian Wieners)

A space-time setting for linear hyperbolic operators. We consider linear
hyperbolic systems of conservation laws on a bounded domain Ω ⊂ R

d and for
some time T > 0,

Lu = f on Q := Ω× (0, T ) , u(·, 0) = u0 ,

where u : Q → RJ and

Lu := M∂tu+Au = M∂tu+∇ · F (u)
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for some bounded and positive symmetric matrix-valued function M ∈ R
J,J and

smooth F : RJ → RJ,d. We then let W := L2(Q)J with

‖w‖W := (Mw,w)
1/2

L2(Q)J
= ‖M1/2w‖L2(Q)J

and V := dom(L) ⊂ L2(Q)J with

‖v‖V :=
(
‖v‖2W + (M−1Lv, Lv)L2(Q)J

)1/2
.

A is assumed to be nonnegative, i. e., (Av, v)L2(Q)J ≥ 0 for all v ∈ V .
The variational problem on V ×W is easily treated with the standard Babushka

setting [2, Thm. III.3.6].

Theorem 1. [3, Thm. 2] For given f ∈ L2(Q)J there exists a unique solution
u ∈ V of

(Lu,w)L2(Q)J = (f, w)L2(Q)J for all w ∈ W(1)

satisfying the a priori bound ‖u‖V ≤
√
4T 2 + 1 ‖M−1/2f‖L2(Q)J .

A space-time discontinuous Galerkin discretisation. Let Ω be decomposed
into simplices K and [0, T ] into intervals I, we define a space-time discretisation
into prisms R = K × I by R = ∪{R} = ∪{K × I}. We let Vh be the space of
functions that are piecewise polynomials in (PpK

(K) ⊗ PqK (I))J on R = K × I,
discontinuous in space but continuous in time. Correspondingly, Wh is the space
of piecewise polynomials in (PpK

(K) ⊗ PqK−1(I))
J , discontinuous in space and

time.
We approximate the operator A using the nodal discontinuous Galerkin method

[4]. Choosing a numerical flux function F num we define Ahvh ∈ Wh for vh ∈ Vh by

(
Ahvh, wh

)
L2(Q)J

=
∑

R=K×I∈R

{(
∇ · F (vh,R), wh,R

)
L2(R)J

+
∑

f∈FK

(
nK · (F num

K (vh)− F (vh,R)), wh,R

)
L2(f×I)J

}

for all wh ∈ Wh. For any simplex K, nK denotes its exterior normal, FK the set
of its faces K, and vh,R, wh,R denotes restriction to R. We now define the discrete
space-time operator Lh by

(
Lhvh, wh

)
L2(Q)J

=
(
Mh∂tvh +Ahvh, wh

)
L2(Q)J

.

For the described space-time discretisation we can achieve existence and con-
vergence of discrete solutions.

Theorem 2. [3, Thm. 4] For given f ∈ L2(Q)J there exists a unique solution
uh ∈ Vh of

(Lhuh, wh)L2(Q)J = (f, wh)L2(Q)J for all wh ∈ Wh ,(2)

satisfying the a priori bound ‖uh‖Vh
≤

√
4T 2 + 1‖M−1

h Πhf‖W .
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Theorem 3. [3, Thm. 5] Let u ∈ V be the solution of (1) and uh ∈ Vh the solution
of (2). Then, we have

‖u− uh‖Vh
≤
(
1 +

√
4T 2 + 1

)
inf

vh∈Vh

‖u− vh‖Vh
.

If in addition the solution is sufficiently smooth, we obtain the a priori error
estimate

‖u− uh‖Vh
≤ C

(
△tq + △xp

)(
‖∂q+1

t u‖L2(Q)J + ‖Dp+1u‖L2(Q)J

)

for △t (maximal time step size), △x (maximal spatial step size) and 1 ≤ p :=
minK pK , 1 ≤ q := minK qK .

The space-time approach avoids a CFL-stability condition but will lead to a
huge linear system of equations that has to be solved. Thus we will try to reduce
the number of unknowns and develop fast solution techniques. The resulting
method has to run efficiently on a parallel computer.

Duality based goal-oriented error estimation. [3, Sect. 5] We assume that
our computational goal can be achieved by minimising the error e := u− uh with
respect to a given error functional E : V → R. Then we can use the dual problem

(
w,L∗u∗

)
L2(Q)J

= E ′[u](w) for all w ∈ W

defining the dual solution u∗ ∈ V ∗ to get the error representation

E(u)− E(uh) = −(Luh − f, u∗ − u∗
h)L2(Q)J +O(‖e‖2L2(Q)J )

with the discrete dual solution u∗
h [1]. From this the error can be estimated as

|E(u)− E(uh)| = |(Luh − f, u∗ − u∗
h)L2(Q)J |+ O(‖e‖2L2(Q)J )

≤
∑

R∈R

ηR +O(‖e‖2L2(Q)J )

with local residuals ηR depending on uh and u∗ − u∗
h. The unknown exact dual

solution u∗ is approximated from the computed solution u∗
h via a polynomial re-

covery u∗
r of higher polynomial order in space and time.

In the adaptive algorithm, the local quantities ηR are evaluated and a cell R is
marked if ηR ≥ θηmax for some θ ∈ (0, 1). On marked cells the polynomial degree
in space and time is increased by one.

Space-time multilevel preconditioner. [3, Sect. 6] The system of equations is
solved with GMRES and a multilevel preconditioner. The space-time hierarchy is
defined to first coarsen in space up to the macro level and then to coarse in time.
As a smoother in time we use the block-Jacobi method, in space we use the block
Gauss–Seidel method, and on the coarse grid the (still large) system is solved by
a parallel direct solver.

The method shows a convergence rate that depends on the CFL number △t/△x.
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Numerical Tests for space-time adaptivity. The method has been tested on
two examples [3, Sect. 7].

The first one is the linear transport equation ∂tu + ∇ · (qu) = 0 on Q =
[−10, 10]2× [0, 1] for given q(x) = 2π(−x2, x1) and compactly supported u0 (”Ro-
tating cone”). The error functional is given as E(v) = 1/2 (v, v)L2(Q). The adaptive
method saves 90% of the unknowns compared to a uniform mesh.

The second example is a transverse electromagnetic wave in R2 in 3 components
(H1, H2, E3) (E electric, H magnetic field) that passes a double slit and interferes.
The error functional is given as E(v) = 1/2 (v, v)L2(S)3 , where S ⊂ Q is a local
space-time domain at the screen near the first minimum of the interference pattern.
The adaptive method saves about 70% of the unknowns compared to a uniform
mesh.

Both examples have been computed on a parallel machine with 256 or 1024
processors.
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A two-energies principle for the biharmonic equation and an a
posteriori error bound for a discontinuous Galerkin method

Dietrich Braess

(joint work with Astrid Pechstein, Joachim Schöberl)

There are many methods for estimating the error of a finite element solution
a posteriori. We will use the two-energies principle, since it provides reliable
error bounds without generic constants. It is also found under the names the
‘hypercircle method by Prager and Synge’, ‘equilibrated error estimates’, and ‘error
computation by local Neuman problems’. The error bound is usually computed in
a postprocessing. The way of the computation depends on the considered elliptic
differential equation and also on the finite element discretization.

In this framework we consider the biharmonic equation as a system of two
equations of second order

∇2u = σ in Ω,

div div σ = f in Ω, u =
∂u

∂n
= 0 on ∂Ω,(1)

The investigation of the two-energies principle is here new, while the application
to differential equations of second order is now well known.
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The solution of (1) can be characterized by a minimum problem
∫

Ω

[1
2
∇2v : ∇2v − fv

]
dx −→ min

v∈H2
0
(Ω)

!

or by a maximum problem

− 1
2

∫
Ω
τ : τ dx −→ max

τ∈H(div2,Ω)
!

div div τ=f

As indicated the maximum problem is subject to the equilibration condition (2).
It is understood in the distributional sense

(2) 〈div div τ, w〉 := 〈f, w〉, w ∈ H2
0 (Ω);

Here 〈·, ·〉 is the H−2(Ω)×H2
0 (Ω) product. It will be given explicitly for the dou-

ble divergence operator and the finite elements of the Hellan–Herrmann–Johnson
(HHJ) method in (6).

There is no duality gap between the minimum problem and the maximum prob-
lem above. The result is the following theorem.

The two-energies principle for the biharmonic equation.
Let v ∈ H2

0 (Ω) and τ ∈ L2(Ω)
2×2
sym be equilibrated, i.e., (2) holds. If u is the

solution of the biharmonic equation, then

(3)

∫

Ω

(∇2(u − v)2dx +

∫

Ω

(∇2u− τ)2dx =

∫

Ω

(∇2v − τ)2dx.

Given an approximate solution v, the first term on the left-hand side of(3)
provides an a posteriori error bound without generic constant for the error v − u
when an equilibrated tensor τ has been constructed and the right-hand side is
known by assumption. As already mentioned, a postprocessing for this purpose is
individually designed for each differential equation and each discretization.

Now, nonconforming or mixed methods are preferred for the FE solution of the
biharmonic equation on a triangulation Th of Ω, since H2-conforming elements
lead to involved implementations. .Let k ≥ 2. In particular discontinuous Galerkin
methods with a space of piecewise polynomials,

Vh := {vh ∈ C0(Ω) | vh|T ∈ Pk(T ), T ∈ Th(Ω)}.

are now popular [2]. The fact Vh 6⊂ H2(Ω) is compensated by an internal penalty
(IP). The C0IPDG method penalizes the jumps of the derivatives on edges and
adds terms to the variational form in order to keep the consistency,

Ah(uh, vh) :=
∑

T∈Th(Ω)

∫

T

∇2uh : ∇2vh dx+
∑

E

∫

E

α

hE
[[∂nuh]] [[∂nvh]] ds

−
∑

E

∫

E

(
[[∂nuh]]{{∇2vh,nn}} + {{∇2uh,nn}}[[∂nvh]]

)
ds .
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The penalty parameter α has to be sufficiently large. The weak finite element
equations read

(4) Ah(uh, vh) = (f, vh)(0,Ω) ∀vh ∈ Vh .

In the framework of DG methods, the degrees of freedom of the C0 polynomials
in Vh are more involved than those for completely discontinuous ones; see [1, 4].

Next, we choose the spaces from the mixed method of Hellan–Herrmann–
Johnson for the construction of the equilibrated tensors; see [3],

Mh := {τh ∈ [L2(Ω)]
2×2
sym | τh|T ∈ [P k−1(T )]2×2

sym, T ∈ Th(Ω),
τnn is continuous at interelement boundaries}.

The spaces are not H(div div) conforming, but it is no drawback for the double
divergence operator in distributional form.

The postprocessing for the construction of an equilibrated flux σeq
h is done by

solving on each triangle T and its boundary ∂T an interpolation problem that is
well defined due to [3]. The normal-normal components of the tensors play an
important role for the interpolation

σeq
h,nn = −({{∇2uh,nn}}+ α

h [[∂nuh]]) ∈ P k−1(E), E ⊂ ∂T,

∫

T

σeq
h : q dx =

∫

T

∇2uh : q dx+
∑

E⊂∂T

∫

E

1
2 [[∂nuh]] qnn ds

∀q ∈ [P k−2(T )]2×2
sym.

By combining the variational equality (4) and the interpolation conditions above
we obtain

(5) 〈div div σeq
h , vh〉 = (f, vh)0,Ω ∀vh ∈ Vh

Now we are close to our aim. We need the equation (5) not only for all test
functions in Vh but also for all test functions inH2(Ω). Such a small deviation from
the aim is usually analyzed under the name data oscillation. We get the a posteriori
estimation for a right hand side fh that is an approximation of f . A formula for fh
is obtained from the representation of the operator div div : Mh → V ∗

h is obtained
by multiple partial integration,

〈div div σeq
h , v〉 =

∑

T∈Th

∫

T

div div σeq
h︸ ︷︷ ︸

∈Pk−3(T )

v dx(6)

+
∑

E

∫

E

[
[−∂tσ

eq
h,nt − (div σeq

h ) · nE

]
]

︸ ︷︷ ︸
∈Pk−2(E)

v ds

+
∑

V

∑

E⊃V

δ(E, V )[[σeq
h,nt(V )]]

︸ ︷︷ ︸
∈R

v(V ).
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The solution of the biharmonic equation for the right-hand side fh differs from
the correct one by a term of order O(h2) or higher. This deviation is consistent
with the results for other methods of estimating a posteriori error estimates. Only
a difference is worth to be noted. Here fh is not an L2 projection of f .

The analysis of the a posteriori error bounds for the discontinuous Galerkin
method is very close to that for the discretization by the mixed method of
Herrmann–Hellan–Johnson. The solution of the finite element method is already
equilibrated. In particular the equilibrated tensors are obtained by local con-
structions on each element separately. On the other hand, the postprocessing is
performed usually on larger patches of the triangulation in the case of conforming
elements.

Thus the discontinuous Galerkin methods turn out to be as favorable as mixed
methods. Roughly speaking the DG methods are located between the primal and
the mixed methods. This is an advantage that makes the methods so popular.
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Adaptive finite element methods for Stokes eigenvalue problems

Joscha Gedicke

(joint work with Arbaz Khan)

Over the last decade, the a posteriori error analysis of eigenvalue problems using
finite element approximations has been well developed. However, most results are
for the Laplace eigenvalue problem and only a few papers consider the a posteriori
error analysis for the Stokes eigenvalue problem. Lovadina et al. [1] present the a
posteriori error analysis based on residual error estimators for the finite element
discretization of the Stokes eigenvalue problem. In [2], Liu et al. propose the
finite element approximation of Stokes eigenvalue problems based on a projection
method, and derive some superconvergence results and related recovery type a
posteriori error estimators. A posteriori error estimates for stabilized low-order
mixed finite elements for the Stokes eigenvalue problem are presented by Armen-
tano et al. [3]. A new adaptive mixed finite element method based on residual
type a posterior error estimates for the Stokes eigenvalue problem is proposed by
Han et al. [4].

It is the aim of this talk to present the a posteriori error analysis for the Stokes
eigenvalue problem based on two additional finite element discretizations which
enable higher order approximations of Stokes eigenvalues.
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In the first part we study the Arnold-Winter mixed finite element formula-
tion for the two-dimensional Stokes eigenvalue problem using the stress-velocity
formulation. Arnold and Winther introduced a strongly symmetric mixed finite
element (MFEM) for linear elasticity in [5] and proved it to be stable for any ma-
terial parameters. Hence, the Arnold-Winther MFEM is also stable for the Stokes
problem as a limit case of linear elasticity. We present a priori error estimates
for eigenvalues and eigenfunctions for the Arnold-Winther MFEM discretization
of the Stokes eigenvalue problem. To improve the approximation for eigenvalues
and eigenfunctions, we use local postprocessing. For smooth data we prove higher
order convergence of the postprocessed eigenvalues. With the help of the higher
order local postprocessing, we develop a reliable a posteriori error estimator. We
discuss several numerical examples to validate the theoretical higher order con-
vergence of the postprocessing and the reliability and empirical efficiency of the
derived a posteriori error estimator.

In the second part we present the a posteriori error analysis of Hdiv-conforming
discontinuous Galerkin finite elements for Stokes eigenvalue problems based on
Cockburn et al. [6, 7]. For the velocity-pressure formulation we present a priori
error estimates for eigenvalues and eigenfunctions. We develop the a posteriori
error analysis of Hdiv-conforming discontinuous Galerkin finite elements for the
Stokes eigenvalue problem and prove upper and local lower bounds for the velocity-
pressure error which is measured in terms of a mesh-dependent energy norm. The
reliability and efficiency of the proposed a posteriori error estimator is verified by
numerical examples which include higher order discretizations with up to third
order polynomials.
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[7] B. Cockburn, G. Kanschat, and D. Schötzau, A note on discontinuous Galerkin divergence-
free solutions of the Navier-Stokes equations, Journal of Scientific Computing 31 (2007),
61–73.



2422 Oberwolfach Report 42/2016

A posteriori error estimators for hybrid finite element methods

JaEun Ku

(joint work with Young Ju Lee and Dongwoo Sheen)

We present a new numerical method for second order elliptic partial differential
equations in [KLS]. The method is a two–step method based on the hybridization
of mesh sizes in the traditional mixed finite element method. On a coarse mesh,
a crude approximation uG

H for the primary variable u is obtained by a standard
Galerkin method, whose computational cost is very low. Then, on a fine mesh, an
H(div) projection of the dual variable σ is sought as an accurate approximation
for the flux variable with the crude approximation uG

H as a part of problem, i.e.,
find σh ∈ Vh ⊂ H(div : Ω) such that

(∇ · σh,∇ · τh) + δ(σh, τh) = (f + δuG
H , τh), for all τh ∈ Vh.

We show that the finer mesh size h can be taken as the square of the coarse mesh
size H , or a higher order power with a proper choice of parameter δ. This means
that the computational cost for the coarse-grid solution is negligible compared to
that for the fine-grid solution. In fact, numerical experiments show an advantage
of using our strategy compared to the mixed finite element method.

Our method does not rely on the framework of traditional mixed formulations,
the choice of pair of finite element spaces is, therefore, free from the requirement of
the inf-sup stability condition. More precisely, our method is formulated in a fully
decoupled manner, still achieving an optimal error convergence order. This leads
to a computational strategy much easier and wider to implement than the mixed
finite element method. Additionally, the independently posed solution strategy
allows to use different meshes as well as different discretization schemes in the
calculation of the primary and flux variables.

The main motivation of our new method is obtaining an accurate and efficient
approximation for the flux variables. To estimate and control the error of the flux
variables, we present a posteriori error estimates that apply to Raviart-Thomas
and Brezzi-Douglas-Marini elements. The estimator has the same terms for the a
posteriori error estimators for the mixed Galerkin method presented in [A], and
additional higher order terms. We establish efficiency and reliability bounds for
the estimator. The convergence of adaptive procedure based on the error estimator
could be obtained using the technical tools developed in [CH]. This is still an open
problem.
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Recovery-based error estimation for stress-based mixed finite element
methods in elasticity and plasticity

Gerhard Starke

The stress-based mixed finite element formulation relies on suitable subspaces
Σh ⊂ H(div,Ω)d, Vh ⊂ L2(Ω)d and Rh ⊂ L2(Ω)d×d,as and consists in finding
(σh,uh,ρh) ∈ Σh ×Vh ×Rh such that

(Aσh, τh)L2(Ω) + (uh, div τ h)L2(Ω) + (ρh, as τh)L2(Ω) = 0 ,

(div σh + f ,vh)L2(Ω) = 0 ,

(as σh,ϑh)L2(Ω) = 0

holds for all (τ h,vh,ϑh) ∈ Σh×Vh×Rh. Here, L
2(Ω)d×d,as denotes the space of

antisymmetric matrix-valued functions, as stands for the antisymmetric part and
A abbreviates the stress-strain mapping

Aτ =
1

2µ

(
τ − λ

3λ+ 2µ
(tr τ ) I

)

from linear (small-strain) elasticity with Lamé parameters λ and µ. The displace-
ments uh and the rotations ρh take the role of Lagrange multipliers associated
with the constraints consisting of momentum balance and stress symmetry, re-
spectively. A possible combination of finite element spaces satisfying the inf-sup
condition is given by using next-to-lowest order Raviart-Thomas elements (RT1)
for Σh in connection with piecewise linears for Vh and piecewise linear continuous
functions for Rh, see [1].

For this formulation, an a posteriori error estimator based on reconstructed
H1-conforming displacements is investigated. Due to the relation

−(uh, div τh) = (Aσh, τh) + (ρh, as τh) = (Aσh + ρh, τh) ,

the discontinuous piecewise quadratic approximation gh = Aσh + ρh to ∇u may
be used as a starting point for the following gradient reconstruction algorithm (cf.
[3], [6], and also the earlier work [5]):
Step 1. For each T ∈ Th, determine u◦

h|T ∈ P2(T )
d such that

(∇u◦
h,∇vh)L2(T ) = (gh,∇vh)L2(T ) for all vh ∈ P2(T )

d ,

(u◦
h, ei)L2(T ) = (uh, ei)L2(T ) for 1 ≤ i ≤ d .

Step 2. Construct uR
h ∈ P2(Th)d ⊂ H1(Ω)d by averaging:

uR
h (x) =

1

#{T : x ∈ T }

(
∑

T :x∈T

u◦
h|T (x)

)
.

That the associated least-squares functional

η := ‖Aσh − ε(uR
h )‖L2(Ω) =

(
∑

T∈Th

‖Aσh − ε(uR
h )‖2L2(T )

)1/2

=:

(
∑

T∈Th

η2T

)1/2
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Figure 1. Convergence behavior (estimator η vs. degrees of freedom)

constitutes an a posteriori error estimator, uniformly in the incompressible limit
as λ → ∞, follows from [2]. The performance of the error estimator was tested
numerically in an adaptive framework using the following equilibration refinement

strategy: Mark a subset T̂h ⊂ Th for refinement such that


∑

T∈T̂h

η2T




1/2

≥ θ

(
∑

T∈Th

η2T

)1/2

(with θ = 0.8 in our computations). For the standard Cook’s membrane problem
with corners (0, 0), (0.48, 0.44), (0.48, 0.6) and (0, 0.44) and boundary conditions
u = 0 at the left, σ · n = 0 at the top and bottom, and σ · n = (0, 1) at the right
boundary component, the convergence behavior is shown in Figure 1.

During the course of 17 adaptive refinement steps, the solid curve shows the
convergence behavior using uR

h from the above averaging algorithm. The dashed
curve slightly below shows the results obtained if uR

h is replaced by u∗
h minimizing

the distance ∇u∗
h to gh with respect to the L2(Ω) norm (which involves a global

variational problem to be solved). The dash-dotted line below shows the behavior
of the antisymmetric part as σh.

The generalization to small-strain elastoplasticity of von Mises type is done
by introducing a third Lagrange multiplier associated with the yield criterion.
This Lagrange multiplier space is represented again by piecewise linear continuous
finite elements and involve an additional sign condition. The a posteriori error es-
timation can again be carried out using the corresponding least-squares functional
based on the analysis in [4].



Self-Adaptive Numerical Methods for Challenging Problems 2425

References

[1] D. Boffi, F. Brezzi, and M. Fortin. Reduced symmetry elements in linear elasticity. Commun.
Pure Appl. Anal., 8:95–121, 2009.

[2] Z. Cai and G. Starke. Least squares methods for linear elasticity. SIAM J. Numer. Anal.,
42:826–842, 2004.

[3] K.-Y. Kim. Guaranteed a posteriori error estimator for mixed finite element methods of
elliptic problems. Appl. Math. Comp., 218:11820–11831, 2012.

[4] G. Starke. An adaptive least-squares mixed finite element method for elasto-plasticity. SIAM
J. Numer. Anal., 45:371–388, 2007.

[5] R. Stenberg. Postprocessing schemes for some mixed finite elements. Math. Model. Numer.
Anal., 25:151–167, 1991.
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Mesh refinement for large, complex, realistic problems

Wolfgang Bangerth

Introduction. The techniques for estimating the error in finite element compu-
tations date back to work by Babuška et al. in the late 1970s and early 1980s
(see, for example, [1, 9, 8]). At the time, however, the software technology did not
exist to use error estimators as refinement criteria for adaptive mesh refinement,
and these papers initially had little practical impact. This all changed with the
advent of widely usable software packages in the mid-1990s and early 2000s that
encapsulated the complex data structures and algorithms necessary for adaptive
mesh refinement, and made them generically available for a broad class of finite
element solvers. This also coincided with the publication of the influential survey
of Verführt on error estimators and adaptive meshing techniques in 1996 [11], and
books such as [7] on computational meshes. Together, these books popularized
the methods necessary for practical use of error estimators and mesh adaptation.

Adaptive mesh refinement techniques are unquestioningly more efficient than
other methods in yielding highly accurate solutions of partial differential equations.
Conversely, they can yield the same accuracy with a fraction of the computational
cost. All major finite element packages, as well as many commercial codes today
offer and use adaptive mesh refinement. They are available for single machine
computations but have also been shown to scale to the largest available parallel
machines [3, 10, 2, 6].

On the other hand, the majority of adaptive mesh refinement applications today
do not seem to be driven by (“a posteriori”) error estimators that rigorously bound
the error by expressions that only involve the numerical solution computed on a
previous mesh. Rather, most practical applications seem to drive mesh refinement
through error indicators that suggest on which cells the error may be large. These
indicators are typically chosen heuristically, using analogies to simpler equations
for which they may have been derived as rigorous estimators, or simply because
they estimate the interpolation error, even though the relationship between the
interpolation error and the finite element projection error may not be clear.
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A common example for such error indicators is the widely used “Kelly indicator”
[9, 8] that is implemented in many finite element software packages. Originally
derived as an error estimator for the Laplace equation, it is widely employed as a
refinement criterion for any number of other equations that have little in common
with the elliptic Laplace equation with its smooth solutions. The success of the
method is typically attributed to the fact that it approximates the size of the
second derivatives of the solution, which is both an estimate of the finite element
error of the Laplace equation, as well as the interpolation error for the solution of
any, generic partial differential equation. It therefore often leads to meshes that
may not be optimal for a given equation, but that are still very good and vastly
better than global mesh refinement or refinement “by hand”.

Given the fact that rigorous error estimators are not widely used in actual prac-
tice, it is interesting to revisit what the obstacles are that prevent us from using
them for more applications. I will summarize my thoughts in the following six
subsections. I will prefix this discussion by stating that any method one can think
of will have to be able to solve realistic problems, i.e., problems that may be cou-
pled, nonlinear, time dependent, and that possibly require thousands of processors
to solve. These requirements separate such problems from model problems such as
the Laplace, Stokes, or advection equation for which methods based on rigorous
error estimates are widely available, but that are often only simplified building
blocks of models used in practice.

Obstacle 1: Realistic problems are coupled and nonlinear. The vast ma-
jority of published estimators are for relatively simple, linear model problems and
at one point or other rely on a stability estimate. However, practical applications
are typically nonlinear and may couple different effects – such as thermal diffusion
and advection coupled with flow problems where the viscosity depends on temper-
ature. For this kind of problem, rigorous estimates of stability – or of anything
else, in fact – are almost never available. These problems may not inherently lack
stability or other necessary ingredients for error estimators, but we lack the math-
ematical technology to prove these properties. Consequently, for most problems
of practical interest, no rigorously derived error estimators are available.

Duality-based estimators (see, e.g., [5, 4]) work around this by computing stabil-
ity and other properties. They can also incorporate a goal functional with respect
to which we may want to estimate the error. For many problems, including com-
plex nonlinear problems, duality-based error estimators have been shown to be
very efficient, but they yield other difficulties as discussed in the following.

Obstacle 2: Duality-based error estimates cannot be used for time de-
pendent problems. Duality-based error estimators require the solution of an
adjoint problem linearized around the forward solution. For time dependent prob-
lems, this means storing the forward solution at each time step, solving a dual
problem backward in time and storing the solution, and then computing estima-
tors for all time steps. Although there are some approaches to make this workflow
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more tractable (e.g., checkpointing), the amount of data handling necessary is of-
ten considered prohibitive, and duality-based methods have not found widespread
acceptance for time dependent problems.

Obstacle 3: Duality-based error estimates do not scale to large parallel
problems. Duality-based methods can not find the mesh for one time step by
adapting an already fine mesh from the previous time step. Rather, they need to
solve forward and backward problems on a sequence of relatively coarse meshes.
This cannot be done efficiently on large parallel meshes because of the limits of
strong scalability. Efficient implementations would therefore have to use succes-
sively larger numbers of processors, but adjusting the number of processors in not
an option with current management practices of shared parallel machines.

Obstacle 4: In complex applications, the choice of goal functional or
error norm is typically not clear. Traditional error estimators use a natural
norm of the problem to estimate the error in. Goal-oriented approaches replace
this by a single, scalar functional of the solution. However, in many practical
applications in which one wants to discover behavior of solutions, it is not at all
clear what scalar measure one should try to minimize the error in.

Obstacle 5: Residual-based indicators are difficult for coupled problems.
A common approach is therefore to refine simply based on a norm of the residual,
multiplied by some power of the mesh size. However, coupled problems have
multiple residuals, each with their own and separate physical units. It is therefore
not typically clear how to combine them into a single measure for each cell that
would suggest the size of the error.

Obstacle 6: What do we want to approximate anyway? In many appli-
cations, it is not clear whether minimizing the error in the solution is useful at
all. Rather than solution variables (e.g., velocity, pressure, and temperature in
thermally driven flow), one may be interested in nonlinear combinations (e.g., the
strain-rate and temperature dependent viscosity) or in non-local and ill-defined
quantities such as “how far do continents typically drift apart over 100 million
years”. For these quantities, the relationship to the error in the solution is often
difficult to assess, and minimizing an error norm may not be a useful strategy.
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tions. Birkhäuser Verlag, 2003.

[5] R. Becker and R. Rannacher. An optimal control approach to error estimation and mesh
adaptation in finite element methods. Acta Numerica, 10:1–102, 2001.

[6] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011.



2428 Oberwolfach Report 42/2016

[7] G. F. Carey. Computational Grids: Generation, Adaptation and Solution Strategies. Taylor
& Francis, 1997.

[8] J. P. d. S. R. Gago, D. W. Kelly, O. C. Zienkiewicz, and I. Babuška. A posteriori error
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Adaptivity in High-Order Finite Element ALE Simulations

Tzanio Kolev

(joint work with R. Anderson, Z. Cai, J. Cerveny, V. Dobrev, C. He, R. Rieben
and M. Stowell)

1 The Arbitrary Lagrangian-Eulerian (ALE) framework forms the basis of many
large-scale multi-physics codes, and in particular those centered around radiation
diffusion [2] and shock hydrodynamics. We are developing general high-order
finite element discretization framework that aims to improve the quality of current
ALE simulations, while also improving their performance on modern data-centric
computing architectures. We use the de Rham complex to guide the discretization
of different physics components. In particular, H1 finite elements are used to
discretize kinematic quantities (e.g. velocity, position), H(curl) finite elements are
employed for the electric field in magneto-hydrodynamics (MHD) modesl, H(div)
finite elements are used for the flux in radiation diffusion, and discontinuous L2

finite elements represent thermodynamic quantities (e.g. internal energy).
Adaptive mesh refinement (AMR) as oppose to uniform mesh refinement is an

important tool editing the mesh aiming to achieve the desired accuracy at the
minimal possible cost. One of the key components in AMR is the a posteriori
error estimation. A competent error estimation often features generality, accuracy
and cost-effectivity. Error estimation for linear conforming finite element on con-
forming triangular meshes has gained the vast majority of research interest in the
last four decades [4, 7]. Nevertheless, there has limited work on the error estima-
tion of high order finite element methods or of the nonconforming quadrilateral
mesh with hanging nodes[3, 6]. In contrast, nonconforming quadrilateral meshes
are broadly accepted and applied in the engineering and industry practice.

To address adaptivity in these settings, we have developed general capability by
applying a ZZ-like (anisotropic) recovery based error estimation[8, 7] that support
adaptive mesh refinement on triangular, quadrilateral and hexahedral curvilinear

1Work Performed under the auspices of the U.S. Department of Energy under Contract DE-
AC52-07NA27344 (LLNL-ABS-705907).
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Figure 1. Radial shock propagation in high-order unstructured
non-conforming mesh. Note the lack of mesh imprinting and shock
reflections due to hanging nodes.

meshes, at arbitrarily high order, for any finite element space, in both two and
three dimensions. We can as well handle complex 3D anisotropic refinements,
unlimited refinement levels of adjacent elements, and MPI parallelism with load
balancing [1]. In this talk we present the high-order AMR algorithms and demon-
strate their performance on model compressible hydrodynamics and computational
electromagnetic problems, see Fig1.
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Figure 2. Initial results with a local flux-recovery error estima-
tor for H1 problems, orders 1–4.
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One possible drawback of the ZZ-like (anisotropic) approach is its tendency to
solve global projection problem and hence cost expensive. Our ongoing efforts
on adaptivity focus on designing and developing a local ZZ-like error estimation
that preserves the generality and accuracy and at the same time achieves the
highly cost-effectivity[5]. This method has shown promising numerical results for
arbitrary high order H1 elements on any mesh, see Fig2. We are exploring its
extension to the rest of de Rham sequence.
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Optimality of Adaptive Methods

Lars Diening

In this talk we show how different marking strategies result in different optimality
concepts. Our model case is the Poisson equation and its variational formulation.
We will see that the Dörfler strategy is related to rate optimality and the maximum
strategy is related to energy optimality.

To keep the setup as simple as possible, we consider the standard Poisson equa-
tion −∆u = f on a polyhedral domain Ω ⊂ R2 combined with zero boundary
values for u and f ∈ L2. Then the unique solution u ∈ W 1,2

0 (Ω) is also the unique

minimizer of the Dirichlet energy J : W 1,2
0 (Ω) → R given by

J (v) :=

∫

Ω

1

2
|∇v|2 dx−

∫

Ω

vf dx.

Starting from a macro triangulation T0 we consider triangulations T generated by
newest vertex bisection. By V (T ) we denote the subspace of W 1,2

0 (Ω) of piecewise
linear functions.

We assume that our sequence of triangulations Tk is generated by the usual
AFEM loop (Solve-Estimate-Mark-Refine). By uTk

∈ V (Tk) we denote the corre-
sponding discrete solution, which is just the minimizer of J on V (Tk). Since our
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triangulations and our spaces V (Tk) are nested, the energies J (uTk
) decrease. To

steer the refinement we need suitable local error estimators E2
T depending on uTk

.
So far two marking strategies are known to provide optimal convergence of the

AFEM algorithm in terms of accuracy versus degrees of freedom:

(a) Dörfler strategy: Mark the (almost) smallest set that contains at least a
θ∗-fraction of the total error estimator, i.e. E2

T (marked) ≥ θ∗E2
T (Ω).

(b) Maximum strategy: Refine where the error estimator is comparable to the
maximal one, i.e. mark those edges S with E2

T (S) ≥ 1
2 max E2

T .

Numerous article have appeared on the optimality of the Dörfler strategy, which
are based on the seminal articles [1, 4]. See [2] for an axiomatic summary. The
optimality of the maximum strategy goes back to [3]. Although both marking
strategies provide optimality, the underlying optimality concepts differ which is
the focus of this talk.

To gain more insight we have to look closer at the variational structure. Our
algorithm is clearly driven by an energy minimization. For a refinement T∗ of T we
have 1

2‖∇uT −∇uT∗
‖22 = J (uT )−J (uT∗

). Hence, we can replace the usual gradient
error by the simpler concept of energy differences. It is well known that the error
estimators do not control the error but the total error, which is the sum of the error
plus data oscillations. By considering the relaxed energy G(T ) := J (uT )+osc2(T )
as in [3] it is possible to pass to an equivalent minimization problem, which takes
care of this oscillation problem. Overall, our relaxed energy and our estimators
are linked by the following optimal estimate.

‖∇uT −∇uT∗
‖22 + osc2(refined) h E2

T (refined) h G(T )− G(T∗).(1)

At this the oscillation and the estimators are only evaluated on the refined parts.
For both marking strategies the algorithm reduced in each step the energy G(Tk)

converging to the minimal energy G(T∞) := J (u). This is illustrated in the
following pictures by the line from T0 to Tk+1.
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Figure M: Maximum strategy
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The important point is how the optimality enters the picture. For this let T opt
m

denote the triangulation with m extra degrees of freedom (compared to T0) that
has the smallest energy G.

Let us consider the Dörfler strategy: The marking E2
T (marked) ≥ θ∗E2

T (Ω)
and (1) imply a linear energy reduction, i.e. G(Tk+1)−G(T∞) ≤ λ(G(Tk)−G(T∞))
with some λ ∈ (0, 1). This allows essentially to reduce the complexity analysis
of the sequence to the analysis of the step from Tk to Tk+1. Now, let us choose
for k fixed the smallest triangulation T opt

m such that G(T opt
m ) − G(T∞) is much

smaller than G(Tk)− G(T∞). Then also G(Tk)−G(T∨) is much smaller and hence
G(Tk)− G(T∨) & G(Tk)− G(T∞). Now the fundamental observation of [4] is that
this implies (non-optimal) Dörfler marking due to (1). Since the Dörfler strategy
chooses the smallest set for refinement, this is the access to optimality: we can
estimate the complexity of the marked set in our algorithm from above by m,
the additional complexity of T opt

m ! This implies together with the linear energy
reduction and mesh refinement estimates that for s > 0

(#Tk −#T0)s
(
G(Tk)− G(T∞)

)
≤ c sup

m

(
ms(G(T opt

m )− G(T∞))
)
.

Depending on s the right-hand side determines (if it is finite) the best possible
rate of degrees of freedom vs. accuracy. Therefore, Dörfler marking corresponds
to rate optimality.

Now, let us consider the maximum strategy. In principle, it would be possible
that only a single bisection is performed in each AFEM iteration. This situation
turns out to be the critical one in the analysis. It is clear that a single bisection
cannot reduce the energy by a fixed factor. Instead, let m denote the smallest
number, such that G(Tk) is still above the optimal energy G(T opt

m ), see Figure M.
Then the crucial observation in [3] is that the single bisection reduces the energy by
a fixed fraction of the energy gap G(T opt

m−1)− (T opt
m ). Hence, it only takes a finite

number of bisection such that the energy of our algorithm falls below the next
optimal energy level G(T opt

m ). Overall, the algorithm marches through the optimal
energy levels. In particular, if #Tk−#T0 ≥ cm, then G(Tk) ≤ G(T opt

m ). This is also
called energy optimality. By equivalence of the energy differences with the total
error, this implies instance optimality of the total error, i.e. if #Tk −#T0 ≥ cm,
then ‖∇uTk

−∇u‖22 + osc2(Tk) ≤ c2 ‖∇uT opt
m

−∇u‖2 + osc2(T opt
m ).

The crucial observation of [3] itself is based on (1), mesh refinement properties,
but also on an important extra property of our variational problem: the lower
diamond estimate. The error indicator estimate (1) implies that the reduction
of the energy when refining multiple (disjoint) areas is comparable to the sum of
those reductions, if only one of those areas is refined. The lower diamond estimate
states that the same is true for the coarsening of multiple (disjoint) areas. Note
that the lower diamond estimate is not used in the analysis of the Dörfler strategy.
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The role of oscillation in a posteriori error analysis

Christian Kreuzer

(joint work with Andreas Veeser)

A posteriori error estimators are a key tool for the quality assessment of finite el-
ement approximations as well as for the application of adaptive techniques. They
aim at a precise quantification of the dicretisation error in a computable manner.
Unfortunately, all a posteriori estimators are equivalent to the error only up to
some extra additive term – the so-called oscillation – which bounds the distance
between non-discrete and discrete data. It can therefore be construed as an indi-
cator for the estimator quality. In fact, oscillation can be significantly larger than
the error which interferes with the objectives of a posteriori error analysis.

We shall first illustrated the shortcomings of the classical oscillation before pre-
senting a new approach to a posteriori analysis which leads to an error-dominated
oscillation thereby overcoming the shortcomings of the classical approach.

For the sake of a clear presentation, we restrict ourselves to the simplest case
where u ∈ H1

0 (Ω) is the solution of Poisson’s problem

−∆u = f in Ω, u = 0 on ∂Ω

and the finite element approximation U is the Galerkin solution in the space V(M)
of continuous and piecewise affine functions over some exact and shape regular
simplicial partition M of Ω.

1. Shortcomings of the classical oscillation

If f ∈ L2(Ω), then e.g. the standard residual based estimator is given by

ER(U, f,M) :=

(
∑

K∈M

hK‖J(U)‖2L2(∂K) + h2
K‖f‖2L2(K)

)1/2

and satisfies

‖u− U‖H1
0
(Ω) . ER(U, f,M) and ER(U, f,M) . ‖u− U‖H1

0
(Ω) + osc0(f,M)

with oscillation

osc0(f,M)2 :=
∑

K∈M

h2
K‖f − P0,Mf‖2L2(K) with P0,Mf|K :=

1

|K|

∫

K

f ;
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see e.g. [1, 3]. If f ∈ H1(Ω) then

osc0(f,M)2 .
∑

K∈M

h4
K‖∇f‖2L2(K).(1)

This observation is widely used to motivate that the oscillation is a negligible
higher order perturbation of the estimator. However, on any fixed mesh M the
oscillation can be arbitrarily larger than the error. This is a consequence of the
fact that L2(Ω) is dense in H−1(Ω) and that the L2-norm is strictly stronger than
the H−1 norm, i.e., there exist f ∈ L2(Ω), such that

osc0(f,M)2 =
∑

K∈M

h2
K‖f − P0,Mf‖2L2(K) ≫ ‖f‖2H−1(Ω) ≥ ‖u− U‖2H1

0
(Ω).

The use of the scaled L2-norm in the oscillation origins from its use in the element
residual h2

K‖f‖L2(K) and can be motivated by the request for the computability of

the estimator, i.e., the evaluation of local H−1-norms is reduced to the (approx-
imative) evaluation of local integrals. However, Cohen, DeVore, and Nochetto
observed in [2] that this is not the sole reason for possible overestimation. In fact,
based on the generalised a posteriori bounds

‖u− U‖2H1
0
(Ω) h

∑

z∈V

‖∆U + f‖2H−1(ωz)
.
∑

z∈V

‖∆U‖2H−1(ωz)
+ ‖f‖2H−1(ωz)

(2)

they proved that for certain right-hand sides f , the term
∑

z∈V ‖f‖2H−1(ωz)
vanishes

slightly slower than the error. Here V denotes the vertices of M and ωz :=
⋃{K ∈

M : z ∈ K}. Note that the same phenomenon appears for e.g. osc−1(f,M)2 :=∑
z∈V minfz∈R ‖f − fz‖2H−1(ωz)

. The reason for this effect is the splitting

‖Res(U)‖H−1(ωz) ≤ ‖∆U‖H−1(ωz) + ‖f‖H−1(ωz)

of the residual Res(U) = ∆U+f . Note that ∆U is discrete and thus is equivalent to
the jump residual whereas ‖f‖H−1(ωz) is not computable in general. The splitting,

however, may cause loss of cancellations: Assume that f = −∆V ∈ H−1(Ω) for
some 0 6= V ∈ V(M), then U = V and thus Res(U) = 0 in contrast to

∑

z∈V

‖∆U‖2H−1(ωz)
=
∑

z∈V

‖f‖2H−1(ωz)
6= 0.

2. A posteriori estimators with error dominated oscillation

In order to gain some insight into our new approach we start with a formal splitting
of the residual

Res(U) = f +∆U = PMf +∆U + f − PMf.

into an approximate oscillation free residual and data oscillation. From the first
relation in (2) and a triangle inequality, we have reliability

‖u− U‖H1
0
(Ω) . E(U, f,M) + osc(f,M)
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of the estimator E(U, f,M)2 :=
∑

z∈V ‖PMf + ∆U‖2H−1(ωz)
up to oscillation

osc(f,M)2 :=
∑

z∈V ‖f − PMf‖2H−1(ωz)
. We suppose that PM : H−1(Ω) →

H−1(Ω) is linear and make the following demands:

• Error dominated oscillation: For all V ∈ V(M) we have

‖f − PMf‖H−1(ωz) . ‖u− V ‖H1
0
(ωz).(3)

We first note that an error dominated oscillation implies local efficiency

‖PMf +∆V ‖H−1(ωz) ≤ ‖f +∆V ‖H−1(ωz) + ‖f − PMf‖H−1(ωz)

. ‖u− V ‖H1
0
(ωz).

If we choose V ≡ 0 in (3) then we have from the local efficiency that

‖PMf‖H−1(ωz) . ‖u‖H1
0
(ωz) = ‖f‖H−1(ωz),(4)

i.e. PM is locally stable. Moreover, for f = −∆V , V ∈ V(M), we have u = V
and thus

‖f − PMf‖H−1(ωz) . 0 ⇒ ∆V = PM∆V,(5)

i.e. PM is locally invariant. Stability and invariance are in fact equivalent to
the error domination (3), as can be seen from

‖f − PMf‖H−1(ωz) ≤ ‖f +∆V ‖H−1(ωz) + ‖PM(∆V + f)‖H−1(ωz)

. ‖f +∆V ‖H−1(ωz) . ‖u− V ‖H1
0
(ωz).

• Computability: We need to have that PMf is computable and discrete, i.e.
E(U, f,M) can be estimated from below and above in a computable manner.
We say that PMf is computable if it can be determined from the information
available in the linear systems for finite element approximations. To be more
precise, for Φ denoting the span of all finite products of nodal basis functions,
we assume that the evaluations

〈f, φ〉, φ ∈ Φ, are known exactly.

In order to have that the oscillation is potentially of higher order, we additionally
demand that PM is invariant on piecewise constant functions; compare with (1).

Because of shortage of space, we cannot present our new approach satisfying
all above demands here in detail. In a nutshell, its construction is based on the
representation

〈PMf, v〉 =
∑

K∈M

∫

K

fKv +
∑

F∈F

∫

F

fFv,

where F is the set of all d−1 dimensional interelement faces ofM. The coefficients
fK , fF ∈ R,K ∈ M, F ∈ F are determined by testing f with suitable locally
supported element respective face bubble functions from Φ. Concluding, we have

∑

z∈V

‖PMf +∆U‖2H−1(ωz)
+ ‖f − PMf‖2H−1(ωz)

h ‖u− U‖2H1
0
(Ω).
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H−1-approximation with piecewise polynomials

Francesca Tantardini

(joint work with Andreas Veeser, Rüdiger Verfürth)

We consider approximation in the H−1-norm with continuous and discontinuous
piecewise polynomials over a conforming triangulation of the domain Ω ⊂ Rd.

On the one hand, we aim at error estimates in terms of the local mesh-size
and with minimal regularity assumptions, that can be used, for example, in the
error estimation in the context of parabolic problems, where the error for the time
derivative is often measured in a negative norm. On the other hand, we would
like to prepare the basis for the application of the adaptive tree approximation
algorithm of Binev and DeVore [2], which provides near-best approximations in
the H−1-norm.

To this end, we follow the ideas of [5], where it was proved that the global
best error in the H1-seminorm is equivalent to the ℓ2-sum of local best errors
on elements, when approximating with functions from a space S consisting of
continuous piecewise polynomials:

(1) inf
v∈S

‖∇(f − v)‖2 ≈
∑

K∈T

inf
vK∈S|K

‖∇(f − vK)‖2K .

This provides a better understanding of the approximation properties of the dis-
crete space, allowing in particular to derive error estimates of optimal order in
terms of piecewise regularity and to derive suitable indicators for the tree approx-
imation algorithm.

A simple example shows that (1) cannot hold if the H1-seminorm is replaced
by the H−1-norm. In fact, consider the functional δF ∈ H−1(Ω) that takes the
average of every test function ϕ ∈ H1

0 (Ω) over a face F of the triangulation, i.e.
〈δF , ϕ〉 =

∫
F
ϕ. Every local best error on the right-hand side vanishes, but the

global best error does not. This holds even if we approximate with discontinuous
piecewise polynomials. In fact, although the discrete space decouples, the global
nature of the norm couples the approximations. There is indeed no set-additivity
in the background of the H−1-norm, and the norm on the union of two sets is in
general not bounded by the norms on each set separately. Another counterexample
shows that it is not possible to localize the best error in the H−1-norm either on
pairs of adjacent elements; one therefore has to consider bigger subdomains.
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In the context of a posteriori error estimation, it has been proven that the
H−1-norm of the residual is equivalent to the ℓ2-sum of the H−1-norms on finite
element stars, i.e. the set of elements that share a vertex. Key ingredients are the
fact that the basis functions of the conforming finite element space of lowest order
form a partition of unity and have support on the stars around the vertices, and
the orthogonality of the residual with respect to these functions.

In a similar fashion we exploit the same partition of unity to show that the inter-
polation error with respect to a suitable interpolation operator is bounded by the
ℓ2-sum of the local H−1-norms on stars around the vertices V of the triangulation

(2) ‖f −Πlocf‖2−1 ≤ C
∑

z∈V

‖f‖2−1;ωz
.

The constant C > 0 depends only on the dimension d and on the shape-parameter
of the mesh. The localization operator may map onto various spaces, e.g., onto
piecewise affine, globally continuous functions or onto piecewise constant functions.
The adjoint operator maps however always onto piecewise affine and globally con-
tinuous functions, is locally invariant onto constants and allows for local Poincaré
inequalities, property that leads to (2).

We apply this result to f − Πf , where Π is an invariant and locally stable
interpolation operator, whose local features permit to bound the interpolation
error on a star by means of the best errors on the stars in the neighborhood. We
therefore prove that the best error can be localized to the stars around the vertices:

(3) inf
v∈S

‖f − v‖2−1 ≈
∑

z∈V

inf
vz∈S|ωz

‖f − vz‖2−1,ωz
.

Here S may be the space of continuous or discontinuous piecewise polynomials
of arbitrary order. Moreover, we can prove the same result also for the space of
functionals in H−1(Ω) \ L2(Ω) that average over the faces of the triangulation.

As an application, we derive a priori error estimates of optimal order in terms of
the local mesh-size and local regularity. The additional regularity is measured with
a scale of Hilbert spaces: Integer regularity is measured in the standard Sobolev
spaces Hr(ωz), while fractional regularity is measured with a suitably weighted
interpolation norm, see [3]. In this way the result is robust with respect to the
parameter that measures the intermediate regularity between two integer orders.

The localization result in the form (3) is not yet useful for deriving local in-
dicators for the tree approximation algorithm. In fact, for every element K, the
indicator related to K has to depend only on K, and not on the neighboring ele-
ments. A combination of the local best errors on the stars around the vertices ofK
does not satisfy this property. Therefore, we need a modification of (3), involving
e.g. minimal stars in the spirit of minimal pairs or minimal rings as in [1, 4].
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Adventures in Adaptivity

Chris Deotte

(joint work with Randolph E. Bank)

1. Introduction

Let H(Ω) denote a Sobolev space of interest, equipped with norm ||·||Ω, and let
Sh ⊂ H denote a finite element space, associated with a tessellation Th of Ω. In
[3], it was shown that under weak assumptions

||u− Iu||Ω ≤ C||u− v||Ω(1)

||u − Iu||t ≤ C||u− v||t(2)

for all v ∈ Sh. Here u ∈ H , Iu ∈ Sh is the usual interpolant of u, t ∈ Th, and
||·||t is the norm restricted to element t. In finite element analysis, interpolation
error u−Iu is often used as an upper bound for the error in various finite element
approximations, here denoted uh ∈ Sh. Estimates (1)-(2) provide lower bounds
for the error for any finite element approximation. Thus these bounds can be
combined with the usual a priori estimates for uh to see that

C1||u− Iu||Ω ≤ ||u − uh||Ω ≤ C2||u − Iu||Ω(3)

C3‖|u− Iu||t ≤ ||u − uh||t(4)

In this work, we explore the practical implications of (3)-(4) in the context of
adaptive finite element methods, and in particular h-adaptive and hp-adaptive
feedback loops.

Inequalities (3)-(4) show that interpolation error is both efficient and reliable
[4, 5] for controlling an adaptive feedback loop of the type commonly employed in
adaptive finite element calculations for solving partial differential equations. While
interpolation error cannot in general be used for an a posteriori error estimate,
in this work we create an environment based on interpolation error that allows
us to study and evaluate various adaptive approaches independently of the PDE.
Aspects such as approximate solution of linear and nonlinear systems, unknown
exact solutions, and the a posteriori error estimation procedure make it difficult
to focus exclusively on the adaptive procedure itself. Using interpolation error,
we construct idealized “reference” adaptive procedures. We then employ these
reference procedures to compare and evaluate various approaches. Indeed, during
the course of our investigations, we analyzed and improved the adaptive approach
used in the PLTMG software package [1]. The version described in this summary
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work is not the procedure in the currently available version of PLTMG (although
it is quite similar), but it or its descendant will appear in future versions of the
package.

We are also able to study the effectiveness of certain a posteriori error estimates
within this environment. In particular, we compare the behavior of some fixed
adaptive algorithm using interpolation error for the local error indicators with the
same adaptive algorithm using some computable a posteriori error estimate for the
the local error indicators. In this case, the observed differences can be attributed
to the a posteriori error estimate.

While we think the results for various adaptive approaches are by themselves
quite interesting, and reveal the advantages and disadvantages of the given ap-
proaches, we also believe that our general methodology for evaluating the different
approaches is an equally important contribution.

2. Methodology

We ran experiments on three different problems, chosen to exhibit typical chal-
lenges encountered by adaptive methods. In these experiments we enriched the
finite element subspace using several h and hp adaptive strategies. The local error
indicators used in these adaptive methods were either the interpolation error for
the exact solution or error indicators generated by recovering derivatives using
the interpolant as a proxy for the finite element solution. The recovery procedure
is described in detail in [2]. In all experiments we started from an initial mesh
of eight elements and refined the mesh to one containing approximately 250,000
degrees of freedom.

Adaptive refinement is implemented by an iterative process with a three step
feedback inner loop

(5) solve → estimate → refine

In our methodology, the “solve” steps are skipped and we use the interpolant in
place of the finite element solution. For each experiment we provide many data
items. After each iteration, we compute the error

error =
||∇(u− Ipu)||Ω

||∇u||Ω
and we approximate the cumulative computational effort with

effort1.5 =
L∑

k=1

N1.5
k

where L is the number of iterations completed and Nk is the number of degrees of
freedom at step k. We also provide the order of convergence for each experiment.

3. Conclusion

Our general methodology proves effective in evaluating adaptive strategies and
a posteriori error estimators. The various data items provide insights that help
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Figure 1. Log effort versus log error. PLTMG hp method (large
squares), PLTMG h method for p = 1, 2, 4 (medium squares),
Common marking method θ = .5 for p = 1, 2, 4 (small squares).

improve refinement strategies and error estimators. Our effort indicator allows
us to compare the efficiency of different adaptive strategies. From the plots of
log10(effort1.5) versus log10(error), we observe three interesting conclusions. First,
on all three problems, the PLTMG refinement scheme is more efficient than the
common marking scheme. This is most likely because PLTMG allows a single
element to be refined multiple times during one adaptive inner loop. Second, hp-
refinement is more efficient than h-refinement for all problems. Third, when using
hp-refinement, the test to decide whether to refine in h or p is very important for
the overall efficiency.
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A posteriori estimates for the Laplace-Beltrami operator on C2

surfaces

Alan Demlow

(joint work with Andrea Bonito)

In this talk we discuss construction of practical and computationally efficient al-
gorithms for solving the Laplace-Beltrami problem on a C2 surface γ. Such a
surface may be represented as the level set of a distance function which gives rise
to a closest-point projection onto γ. Well-known a priori error estimate indicate
that when a finite element method of polynomial degree r is defined on a ap-
proximation to γ of polynomial degree k, the resulting energy error is of order
hr + hk+1. The former O(hk) error term is a standard Galerkin error. The latter
O(hk+1) term arises from the consistency error due to the surface approximation
and is often called a geometric error. It is in effect superconvergent by one order
due to special orgthogonality properties of the closest point projection. A pos-
teriori error estimates for this setting were given in [2]. These similarly measure
the Galerkin error using residual a posteriori error estimators and the geometric
consistency error using computable information. A major drawback of the geomet-
ric consistency a posteriori error estimators in this approach is that they require
computation of the closest point projection and corresponding information, which
is often not conveniently available in practice.

A more recent approach to a posteriori error estimation for the Laplace-Beltrami
problem was given in [1]. This approach allows for more general parametric sur-
face representations as well as C1,α surfaces. Both of these generalizations are
desirable in practical situations. However, the geometric error estimators used in
this approach are only of order hk and thus do not take advantage of the super-
convergence properties of the closest point projection when γ is C2.

In our work we construct new geometric a posteriori error estimators for C2 sur-
faces which allow for reasonably generic parametric surface representations while
taking advantage of the closest point projection in order to preserve the O(hk+1)
order of the geometric error. Computational examples demonstrate that they
sometimes yield large efficiency gains compared with the approach of [1] when im-
plemented in AFEM, and that less surface regularity is required to achieve optimal
convergence rates so long as γ is at least C2.
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A new trace inequality and its applications in robust error estimates
for discontinuous finite element approximations

Shun Zhang

(joint work with Zhiqiang Cai, Cuiyu He, Purdue University)

In this talk, we present robust a priori and a posteriori error estimates of various
discontinuous finite element approximations to the interface problem:

(1) −∇ · (α(x)∇u) = f in Ω, u = 0 on ∂Ω.

Here, f ∈ L2(Ω) is a given function; and the diffusion coefficient α(x) > 0 is piece-
wise constant with possible large jumps across subdomain boundaries (interfaces).
It is well-known that the solution of problem (1) is only in H1+s(Ω) with possible
very small s > 0.

For the conforming finite element approximation to problem (1), it is proved
(see, e.g., [2]) that the a priori error estimate in the energy norm is robust with
respect to the diffusion coefficient, i.e., the constant in the error bound is indepen-
dent of the jump of the diffusion coefficient. Moreover, under an assumption on
the distribution of the diffusion coefficient, i.e., the so-called Quasi-Monotonicity
Assumption (QMA), it is shown (see, e.g., [2, 6]) that the residual a posteriori
error estimate is robust as well. However, the QMA is restrictive, and numerical
results by many researchers suggest that it is not needed.

For the Crouzeix-Raviart (CR) nonconforming and the discontinuous Galerkin
finite element approximations to problem (1) in both two and three dimensions,
we are able to show in [4] that both the a priori and the residual a posteriori
error estimates are robust with respect to the diffusion coefficient and that the a
priori estimates are also optimal with respect to local regularity of the solution.
Moreover, these estimates are obtained without the QMA. The robust and local
optimal a priori estimates are established through proving a robust Céa’s Lemma
type of results for the CR nonconforming and the discontinuous elements. The
robust reliability bound of the residual a posteriori error estimator without the
QMA is obtained through a new and direct analysis developed in [3]. Unlike the
standard approach, our analysis does not require the Helmholtz decomposition.
Additional and critical tool needed for the above mentioned results is our recently
proved trace inequality stated below.

Let T be a regular triangulation of the domain Ω, K be an element in T , F
be a face of the element K, and s > 0 be a fixed real number. Assume that v is
a given function in H1+s(K) and that ∆ v is in L2(K), where ∆ is the Laplace
operator. Then there exists a small 0 < δ < min{s, 1/2}, depending on v, and a
positive constant C independent of δ such that the following trace inequality:

‖∇v · n‖δ−1/2,F ≤ C (‖∇v‖0,K + hK‖∆v‖0,K)

holds. This inequality improves the following inequality derived in [1, 5].

‖∇v · n‖δ−1/2,F ≤ C
(
‖∇v‖δ,K + h1−δ

K ‖∆v‖0,K
)
.
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Two-sided bounds on eigenvalues of elliptic operators

Tomáš Vejchodský

The standard conforming approximations of Galerkin type provide natural upper
bounds on eigenvalues of symmetric elliptic operators. In this talk we address the
problem of computing the corresponding lower bounds. This problem has been
studied for many decades, see for example [11, 12, 13, 18, 20]. Recent successful
approaches to compute guaranteed lower bounds include methods based on both
nonconforming [5, 6, 8, 9, 10] and conforming [2, 14, 17] finite elements.

Several classical approaches, see for example a review in [16], provide lower
bounds on eigenvalues for an abstract operator A defined on a Hilbert space H .
Straightforward practical implementation of these methods requires to evaluate Au
for some u ∈ H . If A is a second-order elliptic partial differential operator defined
on a domain Ω then Au corresponds to its evaluation in the strong (pointwise)
sense and, hence, it requires the corresponding Sobolev regularity u ∈ H2(Ω).
This regularity is, however, higher than the natural H1(Ω) regularity of the weak
solution and the standard finite element trial functions.

In this contribution, we consider the classical Weinstein’s [20] and Kato’s [11]
bounds and show how to modify them to obtain the lower bounds on eigenvalues
for the natural H1(Ω) regularity of trial functions.

The presented method can be applied to eigenvalue problems for general sym-
metric elliptic second-order partial differential operators. However, for the sim-
plicity of presentation, we consider here only the Laplace eigenvalue problem

−∆ui = λiui in Ω, ui = 0 on ∂Ω,

where the domain Ω ⊂ R2 is assumed to be Lipschitz. Introducing the space
V = H1

0 (Ω), the weak formulation reads: find ui ∈ V \ {0} and λi ∈ R such that

(1) a(ui, v) = λib(ui, v) ∀v ∈ V,

where a(u, v) = (∇u,∇v), b(ui, v) = (u, v) and (·, ·) denotes the L2(Ω) inner
product. It is well known that there exist a countable sequence of eigenvalues
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0 < λ1 ≤ λ2 ≤ · · · and the corresponding eigenfunctions can be normalized such
that b(ui, uj) = δij .

The generalization of the classical Weinstein’s bound to the weak setting is
formulated as follows.

Theorem 4. Let u∗ ∈ V \ {0} and λ∗ ∈ R be arbitrary and let the closeness
condition

(2)
√
λn−1λn ≤ λ∗ ≤

√
λnλn+1

hold. Let w ∈ V be given by

(3) a(w, v) = a(u∗, v)− λ∗b(u∗, v) ∀v ∈ V.

and let there exist η > 0 such that ‖w‖a ≤ η. Then

(4) ℓn ≤ λn, where ℓn =
1

4‖u∗‖2b

(
−η +

√
η2 + 4λ∗‖u∗‖2b

)2

.

Lower bound (4) is quite robust and general, but its speed of convergence is
linear in terms of η, which is suboptimal. However, using a more involved tech-
nique, we can generalize the classical Kato’s bound to the weak setting and obtain
a quadratically convergent lower bound.

Theorem 5. Let u∗ ∈ V \ {0} be arbitrary and let λ∗ = ‖u∗‖2a/‖u∗‖2b. Let there
be ν > 0 such that

(5) λn−1 < λ∗ < ν ≤ λn+1

for a fixed index n. If w is given by (3) and ‖w‖a ≤ η then

(6) Ln ≤ λn, where Ln = λ∗

(
1 +

ν

λ∗(ν − λ∗)

η2

‖u∗‖2b

)−1

.

Practically, we solve the eigenvalue problem (1) numerically using the standard
conforming finite element method. We introduce the standard finite element tri-
angulation Th of Ω, the space Vh = {vh ∈ V : Vh|K ∈ P1(K) ∀K ∈ Th}, and look
for λh,i > 0 and uh,i ∈ Vh \ {0} such that

a(uh,i, vh) = λh,ib(uh,i, vh) ∀vh ∈ Vh.

It is well known that λh,i provide upper bounds on λi. To evaluate lower bounds
(4) and (6), we need to find a tight bound η on the energy norm ‖w‖a. This we
do by using the complementarity (or two-energy) principle, see e.g. [3].

Theorem 6. If q ∈ H(div,Ω) satisfies − div q = λ∗u∗ and if η = ‖∇u∗−q‖ then
‖w‖a ≤ η.

The flux reconstruction q can be in practice constructed in various ways, see
e.g. [1, 7, 19]. We employ the local and efficient approach introduced in [4].

The presented lower bounds on eigenvalues are suitable for a wide class of sym-
metric elliptic eigenvalue problems with mixed Dirichlet, Neumann, and Robin
boundary conditions. They utilize the standard conforming finite element technol-
ogy and the computed error estimator η can be straightforwardly used in adaptive
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algorithms for both local mesh refinement and reliable stopping criterion. Both
(4) and (6) are given by simple formulas. We proposed to compute both of them
and use the more accurate one. The bound (6) is quadratically convergent and
provides more accurate values on fine meshes, but numerical experiments confirm
that the linearly convergent bound (4) is often more accurate on rougher meshes.

The bound (6) requires the quantity ν satisfying (5). This condition however
cannot be verified unless a lower bound on λn+1 is known. In [15] a homotopy
method to compute a (rough) lower bound on λn+1 is proposed. However, if the
lower bound (6) is not required to be guaranteed (in the mathematical sense) then
it is natural to set ν = ℓn+1 computed by (4). Numerical experiments indicate that

as soon as λh,n < ℓn+1 ≤ λh,n+1 < ℓn+2 and λh,n+1 ≤
√
ℓn+1ℓn+2 then we can

have a high confidence that hypotheses of Theorem 4 are satisfied and ℓn+1 ≤ λn+1.
Consequently, we can be confident about condition (5) for λ∗ = λh,n and ν = ℓn+1

and, hence, about the bound (6).
Practically, the performance of the bound (6) is limited by the spectral gap

λn+1 −λn due to the factor ν−λ∗. To solve this issue, we will concentrate on the
case of tightly clustered and multiple eigenvalues in our future work.
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Auxiliary subspace techniques as a general-purpose approach for a
posteriori error estimation

Jeffrey S. Ovall

(joint work with Harri Hakula, Michael Nielan)

The auxiliary subspace approach for estimating finite element discretization error
is based on the solution of a global residual equation in a properly-chosen auxil-
iary space of functions, involving the same bilinear form used for computing the
finite element approximation. The original variational problem, the finite element
approximation problem, and error approximation problem have the general forms:

• Find u ∈ H such that B(u, v) = F (v) for all v ∈ H,
• Find û ∈ V such that B(û, v) = F (v) for all v ∈ V ,
• Find ε ∈ W such that B(ε, v) = F (v)−B(û, v)︸ ︷︷ ︸

B(u−û,v)

for all v ∈ W ,

where the bilinear form B and the linear functional F are derived from some
second-order linear elliptic boundary value problem on a bounded domain Ω ⊂ R

d,
and H is some appropriate closed subspace of H1(Ω). The spaces V and W are
finite dimensional subspaces of H, with V being a standard finite element approx-
imation space—say continuous piecewise-polynomial functions on a conforming
partition of Ω into simplicial and/or tensorial cells—and V ∩ W = {0}. If B
happens to be an inner-product, then ε is clearly the corresponding orthogonal
projection of the error u− û onto the space W . If B is merely coercive, it is trivial
to see that ‖ε‖H provides, up to a constant, a lower bound on ‖u− û‖H.

In traditional hierarchical basis-type schemes (cf. [1]) and references therein),
the space W is chosen so that V ⊕W is a standard approximation space that is
“richer” than V in terms of its ability to approximate the solution u. We take a
different view of the role of W , namely that it should have degrees of freedom that
allow it to adequately “capture” the two key components of the approximation
error,
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• The volumetric residuals RT that express how the finite element function
û fails to satisfy the strong form of the PDE on the cell T ,

• The face residuals rF that express how the finite element function fails to
have a continuous flux across interfaces F between cells, or how it fails to
satisfy natural boundary conditions on boundary faces F .

For problems in 2D, the approach we advocate is typically the same as the tra-
ditional hierarchical basis approach, but the two approaches differ in three (or
higher) dimensions. In brief, we propose that W should be spanned by “cell bub-
bles” and “face bubbles” that provide the new degrees of freedom we seek. Our
analysis shows that ‖ε‖H provides an upper-bound on ‖u − û‖H, up to a con-
stant and a residual oscillation term that is designed to be of higher order, and
is thus typically ignored in practical computations, but is nonetheless explicitly
computable, and so can be incorporated if desired. We also argue that the matrix
for computing ε is much better behaved than its counterpart for computing û,
with a diagonal rescaling of the former being all that is necessary to resolve the
system using a fixed small number of iterations of a simple scheme like conjugate
gradients or GMRES.

Extensive experiments on a wide range of problems, including those having dis-
continuous and high-contrast diffusion coefficients, and those for which convection
is dominant, demonstrate the robustness of h, p and hp-versions of the method,
both as a driver of automatic refinement, and as an estimate of the actual error.
In all of these experiments, the ratio of error and error estimates remained stable
regardless of which version of refinement was used, and the error estimate was
nearly always within a factor of two of the actual error, indicating robustness for
many realistic problems. Some theoretical issues that remain open at this stage
are:

• The analysis for the upper bound on the error allows that the constant
appearing in this bound could depend on the degree of polynomials used
in the discretization. Experiments indicate that this is probably not the
case.

• The constants that establish the equivalence of error and error estimate
(in an appropriate energy norm) could potentially depend on the contrast
between the diffusion and convection coefficients for convection-dominated
problems. The performance of the estimator in the moderate convection
dominance, where it is not necessary to resort to alternate discretization
schemes, is much better than can be explained by the current analysis.

• Even for basic problems like the Poisson problem in 2D, there is no proof
that typical refinement schemes will lead to convergent adaptive algorithms
when this class of estimator is used to mark cells for refinement. The
empirical evidence is strongly suggests that this approach will perform at
least as well those for which proofs have been given.

The theoretical results, and experiments using h-refinement with polynomials
of degree ≥ 1, p-refinement and hp-refinement are taken from [2]. The lowest-order
experiments in 3D are taken from [3]. The experiments demonstrating asymptotic
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exactness in the lowest order case, as well as effectivities in other norms, have
not appeared in the presented form in any publication; theoretical justification of
these results can be found in [5, 4].
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An adaptive FEM for linear elliptic equations in nondivergence form
with Cordes coefficients

Dietmar Gallistl

Let Ω ⊆ Rd be an open, bounded, convex polytope for d ∈ {2, 3}. The numerical
approximation of strong solutions u ∈ H1

0 (Ω) ∩H2(Ω) to the second-order elliptic
partial differential equation

d∑

j,k=1

Ajk∂
2
jku = f in Ω u = 0 on ∂Ω

(where f ∈ L2(Ω) is a given square-integrable function) with conventional schemes
suffers from the difficulty that the problem is not posed in divergence form. In the
case that the coefficient A ∈ L∞(Ω;Rd×d) satisfies the Cordes condition, unique
existence of strong solutions was established in [3]. This contribution, which is
based on the work [2], discusses an equivalent reformulation of the PDE as a
variational fourth-order problem, namely

div div
( d∑

j,k=1

Ajk∂
2
jkuA

)
= div div(fA) in H−2(Ω)

subject to the boundary conditions

u = 0 and
( d∑

j,k=1

Ajk∂
2
jkuA

)
nn

= 0 on ∂Ω

(n denoting the outer unit normal). This problem resembles the model of the
simply supported Kirchhoff-Love plate from linear elasticity theory, and known
standard finite element techniques for variational problems in subspaces of H2

can be utilized for its numerical approximation. Alternatively, mixed finite ele-
ment methods [1] can be employed. Besides immediate quasi-optimal a priori error
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bounds, the variational setting allows for a posteriori error control with explicit
constants and adaptive mesh-refinement. The convergence of an adaptive algo-
rithm can be proved and empirical observations in numerical experiments suggest
that its convergence rate may be of optimal order.
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Regularized adaptive finite element methods for nonmonotone
quasilinear PDE

Sara Pollock

The numerical approximation of quasilinear partial differential equations of the
form −div(κ(u)∇u) = f , in domain Ω, can pose unique challenges not encountered
in the analogous linear or semilinear diffusion problems, or even in quasilinear
problems of monotone type. In particular, thin internal layers and steep gradients
in the a priori unknown diffusion coefficient κ(u), may need to be uncovered
as the solution process progresses. Starting the simulation on a coarse mesh,
nonuniform recovery of this coefficient can cause the divergence; or, the failure
of convergence to physical solutions, of standard sequences of linearized problems
used to approximate the solution of a suitably posed discrete nonlinear problem.

In this talk we first discuss applications of the stationary diffusion problem,
and motivate its efficient and accurate solution. We then discuss the current state
of the theory; namely, local well posedness and approximation properties of the
adaptive finite element solution, as in [1, 2], assuming a fine-enough intial mesh
condition and a close enough initial guess to start the iterative process on each
mesh partition. We then discuss how these assumptions make the solution process
computationally infeasible, even for simple model problems.

An auto-adaptive regularization technique is then introduced, combining the
techniques of Tikhonov regularization and pseudo-time stepping, as described by
the author in [3]; a generalized Newmark time-integration strategy, as discussed
in [4]; and an inexact regularization technique, as in [5].

Finally, we discuss some particular assignments of regularization parameters
based on computable quantities at each iteration of the method. An adaptive
algorithm is introduced to assign udpates to regularization parameters and de-
fine criteria for inexact solves, while adaptively refining the mesh. The ideas are
illustrated with numerical examples of a model problem.
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An optimal AFEM for higher-order problems

Mira Schedensack

This talk considers new mixed finite element methods (FEMs) for problems of the
form: Seek u ∈ Hm

0 (Ω) with

(−1)m∆mu = f

for arbitrary m = 1, 2, 3, . . . The mixed FEMs are based on a new mixed formu-
lation, which decomposes a function ϕ ∈ H(div,Ω) with (−1)m divm ϕ = f in
the mth derivative Dmu of the solution u and a symmetric part of a Curl of a
tensor-valued H1 function. The new mixed FEMs approximate directly the mth
derivative σ = Dmu of the solution u and therefore allow for lowest-order approx-
imations, i.e., piecewise constants for the approximation of Dmu and piecewise
affine functions for the approximation of the Lagrange multiplier.

The discrete problem seeks (σh, αh) ∈ Pk(T ; S(m)) × Y (T ) with

(σh, τh)L2(Ω) + (τh, symCurlαh)L2(Ω) = (ϕ, τh)L2(Ω) for all τh ∈ Pk(T ; S(m))

(σh, symCurlβh)L2(Ω) = 0 for all βh ∈ Y (T ),

where Pk(T ; S(m)) denotes the space of piecewise polynomials of degree ≤ k with
values in the symmetric tensors and Y (T ) ⊆ Pk+1(T ; S(m− 1))∩H1(Ω; S(m− 1))
consists of piecewise polynomials of degree ≤ k + 1 which are globally continuous
and satisfy some constraints to ensure uniqueness of the solution.

For m = 2 and k = 0, a discrete Helmholtz decomposition of [1] proves that the
space of discrete gradients defined by

W (T ) := {τh ∈ Pk(T ; S(m)) | ∀βh ∈ Y (T ) : (τh, symCurlβh)L2(Ω) = 0}(1)

equals the space of non-conforming Hessians of Morley finite element functions [3].
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Let ΠPk(T ;S(m)) denote the L2 projection onto Pk(T ; S(m)) and E(T ) denote
the set of edges of a triangle T ∈ T . The residual based error estimators

λ2(T ) := ‖hT curlNC σh‖2L2(T ) + hT

∑

E∈E(T )

‖[σh · τE ]E‖2L2(E),

µ2(T ) :=
∥∥sym(ϕ)−ΠPk(T ;S(m)) sym(ϕ)

∥∥2
L2(T )

,

η2 :=
∑

T∈T

(λ2(T ) + µ2(T ))

are reliable and efficient in the sense that there exist constants Ceff and Crel with

C−2
eff η2 ≤ ‖σ − σh‖2L2(Ω) + ‖symCurl(α − αh)‖2L2(Ω) ≤ C2

relη
2.

An adaptive algorithm based on separate marking and driven by the error estima-
tors λ and µ yields optimal convergence rates in the sense that the output of the
adaptive algorithm (Tℓ, σℓ, αℓ) satisfies

(2)

(card(Tℓ)− card(T0))s
(
‖σ − σℓ‖L2(Ω) + ‖ symCurl(α− αℓ)‖L2(Ω)

)

≤ C sup
N∈N0

Ns inf
T ∈T(N)

(
‖σ −ΠPk(T ;S(m))σ‖L2(Ω)

+ inf
βT ∈Y (T )

‖ symCurl(α− βT )‖L2(Ω) + ‖ϕ−ΠPk(T ;S(m))ϕ‖L2(Ω)

)
.

Here, T(N) denotes the set of all conforming triangulations with at most N addi-
tional elements that can be created from the initial triangulation by newest-vertex
bisection. The proof employs the abstract framework of [2]. To this end, dis-
crete reliability and quasi-orthogonality have to be proved. The main ingredient
in these proofs is the following projection property: Given a refinement T⋆ of T
and a discrete gradient τ⋆ ∈ W (T⋆), where W (T⋆) is defined in (1), the L2 pro-
jection onto Pk(T ; S(m)) is a discrete gradient on the coarse triangulation T , i.e.,
ΠPk(T ;S(m))τ⋆ ∈ W (T ). Therefore, the solution σT⋆

on a fine triangulation T⋆
can be used as a test function on a coarser triangulation T without getting an
additional Lagrange multiplier, but only with a modified right-hand side, i.e.,

(σT , σT⋆
)L2(Ω) = (ΠPk(T ;S(m))ϕ, σT⋆

)L2(Ω).

The complete proof of the optimal convergence rates in (2) can be found in [4].
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Some New Robust A Posteriori Error Estimators for
Singularly Perturbed Problems

Zhimin Zhang

(joint work with Shaohong Du)

This report includes three results.
1) A new robust residual type a posteriori error estimator is developed and an-

alyzed for convection-diffusion equations. A novel dual norm is introduced, under
which the error estimator is proved to be robust with respect to the singularly
perturbed parameter ǫ. Both theoretical and numerical results showed that the
estimator performs better than the existing ones in literature.

2) We develop robust recovery-based a posteriori error estimators for streamline
up-wind/Petrov Galerkin (SUPG) method for singularly perturbed convection-
diffusion-reaction equations in a weak norm presented in 1). The flux is recov-
ered by either local averaging in conforming H(div) spaces or weighted global
L2-projection onto conforming H(div) spaces. Moreover, based on the recovered
H(div) flux, we introduce a recovery stabilization procedure, and develop com-
pletely robust a posteriori error estimators with respect to the singular perturba-
tion parameter. Numerical experiments are reported to support our theoretical
results and to show the efficiency of the proposed estimators.

3) We consider mixed finite element approximation of a singularly perturbed
fourth-order elliptic problem with two different boundary conditions, and present
a new measure of the error, whose components are balanced with respect to the
singular perturbation parameter. Robust residual-based a posteriori estimators for
the new measure are obtained. This is achieved via a novel analytical technique
based on an approximation result. Numerical experiments support our theory.
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Adaptive aggregation on graphs

Ludmil Zikatanov

(joint work with Wenfang Xu, Jinchao Xu)

Introduction

We generalize some of the functional (hyper-circle) a posteriori estimates from
finite element settings to general graphs and Hilbert space settings. We provide
several theoretical results in regard to the generalized a posteriori error estima-
tors. We use these estimates to construct aggregation based coarse spaces and
multilevel solvers for graph Laplacians. The estimator is used to assess the quality
of an aggregation adaptively. Furthermore, a reshaping algorithm based on this
estimator is tested on several numerical examples.

Given a combinatorial graph G = (V , E), let V = R|V| and W = R|E| be the
vertex and edge spaces of G, respectively. We consider A ∈ Rn×n defined via

(Au, v) =
∑

(i,j)∈E

−aij(ui − uj)(vi − vj), ∀u, v ∈ V,

where the sum runs over all edges e = (i, j) ∈ E . The resulting matrix is known
as the weighted Graph Laplacian of G. In this talk we are interested in good
approximations of the above bilinear form on a smaller subspace.

Define G : V → W and D : W → W as follows: for v ∈ V , τ ∈ W we set
(Gv)e = vhead − vtail, (Dτ)e = aeτe, ae = −aij . The graph Laplacian then is
(Au, v) = (DGu,Gv). If D = I we the so called standard graph Laplacian.

An aggregation of G is a splitting of the vertices into clusters, each cluster called
an aggregate. We denote an aggregate by A, its set of vertices by VA and the set
of interior edges by EA. For any two aggregates A and A′, denote by IA,A′ the
set of interface edges between them.

An aggregation of G defines the subspace VH of V consisting of “functions”
taking constant value on every aggregate. This admits a multilevel hierarchy:
solution of the variational problem Au = f can be approximated by uH from VH

which solves (AuH , vH) = (f, vH) for all vH ∈ VH . In this talk we assess the
quality of an aggregation by measuring how well uH approximates the solution u.
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Assessing aggregation quality via a posteriori estimation

We now give generalizations of two well known results that can be used in func-
tional (hyper-circle) a posteriori estimates on graphs, or, in general Hilbert space
settings. Let us set W (g) = {τ ∈ W | (τ, Gφ) = g(φ), ∀φ ∈ V }.
Lemma 1. [Prager-Synge [1]] Let u be the solution to Au = f , where A is a
(graph) Laplacian. For any τ ∈ W (f) and any v ∈ V , the following identity
holds.

‖u− v‖2A + ‖DGu− τ‖2D−1 = ‖DGv − τ‖2D−1 .

Lemma 2. [S. Repin [2]] Let u be the solution to Au = f and λ be the smallest
positive eigenvalue of A. Assume that φ ∈ W is arbitrary. Then for all v ∈ V :

‖u− v‖A ≤ ‖DGv −φ‖D−1 + λ−1‖G∗φ+ f‖.
If v = uH , then we get the following error estimator

‖u− uH‖A ≤ η(φ), η(φ) = ‖GuH −φ‖+ C−1
P ‖G∗φ+ f‖

To get a reliable lower bound of η(φ) we are free in the choice of φ ∈ W , so we
can inimize η(φ) with respect to φ. This could be time consuming (computing a
global minimizer on W ), and we do this on a subspace WH . For each interface
IA,A′ , fix aggregate A and define a basis function ϕI = QIG1A, where QI is the
l2 projection onto I. We then define WH = SpanI {ϕI} .

Aggregation reshaping algorithm and numerical examples

We use the estimator η(φ) to devise an algorithm for forming aggregations adapted
to the right-hand side. For given right-hand side f and any aggregation we denote
the minimum of η(φ) overWH by η(f). Then the estimator is localized as follows:
Define

η̃A :=
1

2

∑

A′

∑

e∈IAA′

‖GuH −φ‖2e +
∑

e∈EA

‖GuH −φ‖2e + C−2
P ‖G∗φ+ f‖2VA

.

It can be shown that η2(f) ≤ 2
∑

A η̃A. Our reshaping algorithm then splits the
aggregates on which η̃A is large, with the aim to reduce the value of the estimator.

Algorithm 0.1 Reshaping of an aggregation

1: Given graph G, aggregation {Ak}nc

k=1

2: (Init) Compute uH and φ, minimizing η(f,A)

3: (Split) Split all Ak such that η̃Ak
>

∑
nc

i=1
η̃Ai

nc
,

4: stop if criterion is met (e.g. nc larger than a threshold N), else go to step Init.

We perform experiment with reshaping starting from a coarse aggregation
formed by matching. By matching we mean an algorithm that aggregates graphs
by grouping two neighboring vertices (or aggregates) together at a time.

Let Vh and VH be the subspaces of V obtained after k0 and k1 iterations of
matching, respectively, k0 < k1 so that Vh is finer than VH . We solve for uh on
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Aggregation nc eff ‖uh − u‖A / ‖u‖A
k0 = 3 1798 1.9465 0.8456
k1 = 7 then reshape 742 1.1667 0.8223
k0 = 4 837 1.7117 0.9020
k1 = 7 then reshape 354 1.1532 0.8939
k0 = 5 395 1.5754 0.9335
k1 = 7 then reshape 250 1.1587 0.9195
k0 = 6 190 1.4575 0.9586
k1 = 7 then reshape 143 1.1468 0.9499

Table 1. Results for aggregations with and without reshaping

Figure 1. Adaptive aggregations. Left: k0 = 6, nc = 190; Right:
k1 = 7 with reshaping, nc = 129. Graph barth5 from University
of Florida Sparse Matrix Collection:
http://www.cise.ufl.edu/research/sparse/matrices/

Vh for a smooth (global) f and compute the error eh = ‖u − uh‖A. Then the
reshaping algorithm is performed on VH , starting from the coarsest grid, and then
the aggregates are split in exactly the same way they were formed in matching.
We do this recursively until the error eH on VH becomes smaller than eh.

The numerical results are shown in table 1. We can see that to achieve the same
approximation error, reshaping significantly reduces the number of aggregates.
Figure 1 plots the aggregations formed by matching (k0 = 6) and by reshaping
(started from k1 = 7 with nc = 92).
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Parallel multigrid reduction in time (MGRIT) with space-time
adaptivity

Robert D. Falgout

(joint work with Veselin Dobrev, Tzanio Kolev, Matthieu Lecouvez, Ben O’Neill,
Jacob Schroder, Ben Southworth, Ulrike Yang)

Since clock speeds are no longer increasing, time integration is becoming a se-
quential bottleneck. The multigrid reduction in time (MGRIT) algorithm is an
approach for exploiting parallelism in the time dimension that is designed to build
on existing codes and time integration techniques. The XBraid library is an open
source implementation of MGRIT. One important technique used by current sim-
ulation codes is adaptivity in both space and time. In this talk, we discuss ap-
proaches taken in XBraid to support adaptivity by exploring several application
problems that employ a combination of mesh refinement, mesh motion, and tem-
poral refinement. For more details on MGRIT and XBraid, and their use in various
application settings, see [1, 2, 3, 4, 5, 6, 7].
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(Ideas about) Adaptive FEM for problems with time-dependent
domains

Alfred Schmidt

(joint work with Carsten Niebuhr)

Due to thermomechanical distortions during a milling process, the shape of the
produced workpiece is typically not correct. In order to estimate the shape error
and as a prerequisite for an optimization of the process, a numerical model was
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set up. It consists of a process model, giving heat flux and forces at the cutting
boundary, and a workpiece model handling the material removal (giving the time-
dependent domain) and a finite element model for thermomechanics on this time-
dependent domain.

The system of equations for temperature θ and deformation u on the time-
dependent domain Ω(t) is given by

θ̇ − div(κ∇θ) = 0 in Ω(t),

n · κ∇θ = q on Γ(t),

−divσ(u) = 0 in Ω(t),

n · σ(u) = g on ΓN (t),

u = 0 on ΓD,

where Γ(t) = ∂Ω(t) with subsets of clamped boundary ΓD and mechanically free
boundary ΓN (t). q(x, t) denotes the heat flux into the material and g(x, t) the
external forces, both produced by the milling process. σ(u) denotes the usual
linear stress tensor. Let’s assume here that the current domain Ω(t) is given. In the
application, the shape of the domain is part of the unknowns, as the cutting tool
path is typically prescribed (or subject to optimization) and workpiece deformation
leads to incorrect material removal.

The interesting part of this model is the treatment of the time-dependent
(shrinking) domain due to material removal. We present and discuss several ap-
proaches for handling this in a finite element method. In a finite element context,
our approach uses a discrete approximation of the domain Ω(tk) by the union of
all elements of the triangulation Tk, which intersect the current domain,

Ωh(tk) := {T ∈ Tk : T ∩ Ω(tk) 6= ∅}.
This results in a quite coarse approximation of orderO(h), but is easy to implement
as the approach doesn’t need to cut mesh elements or move vertices to the current
boundary Γ(tk). A local mesh refinement near the moving boundary is used for
better approximation, see Figure 1 for a 2D sketch.

Figure 1. Approximation of the domain with continuous and
discrete boundaries.
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The Neumann boundary condition, namely

Q(v) :=

∫

Γ(t)

q(x, t)v(x)dx

in the weak form with test function v ∈ H1(Ω(t)), has to be transfered to the
discrete problem. The standard approach is to define a Neumann condition on the
approximate boundary Γh(t) = ∂Ωh(t),

Qh(vh) :=

∫

Γh(t)

qh(x, t)vh(x)dx

where qh is a modification of q which has to account for the different surface size
of Γ(t) and Γh(t), in order to keep the total heat flux into the workpiece correct
[3] (typically, the discrete boundary Γh consisting of mesh element boundaries is
larger than a smooth given boundary Γ). The same is done for the Neumann
forces in the elasticity equation. Using this approach together with a dexel model
for computing the time-dependent domain and an appropriate process model for
generating heat flux and forces from the path of the milling tool, we are able
to simulate the thermal distortion of a workpiece during the milling process, see
Figure 2, which compares well with experiments [2].

Figure 2. Simulation of the material removal and thermome-
chanics of a milling process: temperature and deformation during
the process.

A special approach, namely interpreting the Neumann condition as an H−1-
functional, is discussed. Here, we use the correct functional even in the discrete
case,

Q(vh) :=

∫

Γ(t)

q(x, t)vh(x)dx.

In the situation described above, the discrete domain is always larger than the
continuous domain, Γ(tk) ⊂ Ω̄h(tk), and the integral is well defined. Additionally,
when Γ(tk) and q are given as piecewise (bi-) linear data, e.g., the integral can be
evaluated exactly. Using the correct functional might lead to an appropriate error
estimate with a-posteriori indicators.

The project is in cooperation with Jost Vehmeyer, Iwona Piotrowska, and Peter
Maaß from ZeTeM, University of Bremen as well as Daniel Niederwestberg and
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Berend Denkena from IFW, University of Hannover [1]. We gratefully acknowl-
edge the support of DFG via Priority Program 1480 ‘Modeling, Simulation and
Compensation of thermal effects for complex machining processes (CutSim)’.

References

[1] B. Denkena, P. Maaß, A. Schmidt, D. Niederwestberg, J. Vehmeyer, C. Niebuhr, and P.
Gralla, Thermomechanical Deformation of Complex Workpieces in Milling and Drilling
Processes, to appear in SPP 1480 Abschlussband, Springer Lecture Notes in Production
Engineering.

[2] B. Denkena, A. Schmidt, P. Maaß, D. Niederwestberg, C. Niebuhr, and J. Vehmeyer, Pre-
diction of Temperature Induced Shape Deviations in dry Milling, Procedia CIRP 31 (2015),
340–345.

[3] C. Niebuhr, D. Niederwestberg, and A. Schmidt, Finite Element Simulation of Macroscopic
Machining Processes - Implementation of time-dependent Domain and Boundary Condi-
tions, ZeTeM Report 14-01 (2014), University of Bremen, 14 p.

Reporter: Zhiqiang Cai



2460 Oberwolfach Report 42/2016

Participants

Prof. Dr. Wolfgang Bangerth

Department of Mathematics
Colorado State University
Fort Collins, CO 80523-1874
UNITED STATES

Prof. Dr. Randolph E. Bank

Department of Mathematics
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0112
UNITED STATES

Prof. Dr. Eberhard Bänsch
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