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Abstract. Overwhelming empirical evidence in computational science and
engineering proved that self-adaptive mesh-generation is a must-do in real-
life problem computational partial differential equations. The mathemati-
cal understanding of corresponding algorithms concerns the overlap of two
traditional mathematical disciplines, numerical analysis and approximation
theory, with computational sciences. The half workshop was devoted to the
mathematics of optimal convergence rates and instance optimality of the
Dörfler marking or the maximum strategy in various versions of space dis-
cretisations and time-evolution problems with all kind of applications in the
efficient numerical treatment of partial differential equations.
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Introduction by the Organisers

The efficient numerical solution of PDEs requires an adaptive solution process in
the sense that the discretization that is employed should depend in a proper, or
rather optimal way on the solution. Since this solution is a priorily unknown, the
adaptive algorithm has to extract the information where to refine from a sequence
of increasingly more accurate computed numerical approximations, in a loop that
is commonly denoted as solve–estimate–mark–refine. This loop has already
been introduced by Babuska and co-workers in the seventies (eg. [1]), but is was
not before 1997 that in [5], for linear elliptic PDEs in more than one dimensions,
an adaptive finite element method (AFEM) was proven to converge to the exact
solution.
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Although this result meant an important step forward, it did not show that
adaptive methods provide advantages over non-adaptive methods. These advan-
tages are apparent from practical results, which often even show that adaptivity
is paramount to be able to solve certain classes of complicated problems. This
theoretical gap was closed some years later in [2, 6, 4], where it was shown that
asymptotically AFEM converges with the best possible rate among all possible
choices of the underlying partitions.

These initial results were restricted to model second order linear elliptic PDEs,
discretized with standard conforming finite elements of a fixed polynomial degree,
but they were a starting point for many researchers for proving similarly strong
results for much larger classes of problems and discretizations. An abstract frame-
work based on four assumptions (‘axioms’) (A1)-(A4), which identifies the basic
mechanisms that underly the convergence and rate optimality proofs, and with
that foster further applications was recently given in [3].

It was the purpose of this workshop to bring together experts that contributed
to the recent developments in this field in order to exchange ideas, to stimulate
further collaborations, and to identify or to make first steps in tackling remaining
open challenges as hp-adaptivity, and optimal adaptive methods for instationary
problems to name two important ones.

Moving to the contents of the in total 20 presentations, the aforementioned ax-
ioms do not not cover AFEMs with so-called separate marking for controlling data
oscillation, as required for mixed and least squares problems. In her talk, Hella
Rabus presented an even more general framework that applies to both collective
and separate marking strategies.

The AFEM convergence theory was initially developed for symmetric posi-
tive definite (elliptic) problems, whereas later it was shown that possibly non-
symmetric compact perturbations could be added. In his talk, Michael Feischl
presented his recent ideas about how the framework could be extended to include
strongly non-symmetric problems.

The application of the axioms for examples with non-conforming finite element
schemes was discussed for the discrete reliability (A3) by Dietmar Gallistl and for
boundary element schemes by Markus Melenk in terms of inverse estimates for the
stability (A1) and (A2).

The Simons-professor Jun Hu presented three recent results on mixed finite
element methods: an innovative class of novel mixed finite element methods with
pointwise symmetric stress approximations in elasticity, an abstract framework
for the convergence of adaptive algorithms, and preconditioners for the resulting
system. He pointed out that there exist no convergence results for the Hellinger-
Reissner formulation even in linear elasticity.

Joscha Gedicke presented the first robust a posteriori error estimators towards
such an adaptive strategy and some numerical illustrations, where –to the surprise
of the experienced audience– the bulk parameter in the Dörfler marking needed to
be significantly smaller than 1/2. This and the size of the crucial bulk parameter
in the framework of the aforementioned axioms showed the limitations of our
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current understanding. Theoretical estimates in a worst case scenario suggest
that it needs to be unrealistically small in comparison with the overall empirical
knowledge of the workshop’s participants. Speculations arose whether this implies
that the current understanding of the optimal convergence rates leave out some
undiscovered essentials. In the discussion, Carsten Carstensen also pointed out
some difficulties in the treatment of vertices at the traction boundary in elasticity
caused by the fact that the new and older symmetric stress approximations have
nodal degrees of freedom whose naive approximation leads to contradictions even
in simple benchmark examples and enforce a pre-asymptotic effect. The relaxed
atmosphere in Oberwolfach allowed discussions amongst the experts and indeed
sorted out this difficulty during the week, which will be visible in future research
e.g. in ongoing projects of the SPP 1748 of the German research foundation.

Using techniques developed in the context of AFEM for eigenvalue problems,
Alan Demlow demonstrated his proof of convergence and optimality of AFEM for
harmonic forms. A major technical difficulty was the non-nestedness of the trial
spaces under refinements. Another interesting class of non-standard problems is
that of linear operator equations posed on Banach spaces. For those problems,
Kris van der Zee presented a generalization of the Petrov-Galerkin methods with
optimal test spaces, which methods in the generalized setting become nonlinear.

The class optimality result proven for AFEM says that if a solution can be
approximated at a certain algebraic rate s, then the sequence of approximations
produced by AFEM converges with that rate. Gantumur Tsogtgerel spoke about
the question which functions can be approximated at rate s, characterized in terms
of their smoothness. He presented new subtle results on the relation between
approximation classes and classical smoothness spaces as Besov spaces.

Nearly all convergence results of AFEM are for bulk chasing, also known as
the Dörfler marking strategy. An exception is given by a recent paper of Diening,
Kreuzer and Stevenson in which, for the Poisson problem in two dimensions, even
instance optimality is proven for an AFEM with a modified maximum marking
strategy. In her talk, Mira Schedensack presented a generalization of this result
to both Poisson and Stokes problems discretized with nonconforming Crouzeix
Raviart finite elements.

Parameter dependent PDEs with a possibly infinite number of parameters are
nowadays studied intensively. They arise for example by replacing a random coef-
ficient field in a PDE by its Karhunen-Loeève expansion. In order to cope with the
curse of dimensionality, one considers sparse (polynomial) expansions, or low rank
approximations. In his talk, Wolfgang Dahmen presented an optimally converging
adaptive solver in either of both formats. He showed that depending on the model
either of the formats can realize the desired tolerance with the smallest number of
terms.

For linear elliptic PDEs, it is known that AFEM does not only converge opti-
mally in terms of the number of unknowns, but also in terms of the computational
cost. For the latter it is needed that the exact solution of the arising Galerkin
problems is replaced by an optimal iterative solution within a sufficiently small
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relative tolerance. Dirk Praetorius spoke about a generalization of this result to
nonlinear strongly monotone operators. As a first step he showed convergence of
an AFEM with an iterative solver based on a Picard iteration. A related topic was
discussed by Lars Diening. He presented a new algorithm of Kačanov type that
can be used as an iterative solver of the nonlinear Galerkin problems that arise
from the p-Laplacian.

So far most results about convergence of AFEM are for stationary (elliptic)
problems. It can be foreseen that convergence and perhaps optimality of adaptive
methods for time-dependent problems, in particular those of parabolic type, will
an important topic in the coming years. In his talk, Omar Lakkis presented a
posteriori error bounds for fully discrete Galerkin time-stepping methods using
elliptic and time reconstruction operators.

The solution of a nonlinear parabolic problem may blow up in finite time. Em-
manuil Georgoulis presented a conditional a posteriori bound for a fully-discrete
first order in time implicit-explicit interior penalty discontinuous Galerkin in space
discretization of a non self-adjoint semilinear parabolic PDE with quadratic non-
linearity. When used in a space-time adaptive algorithm to control the time step
lengths and the spatial mesh modifications, the method detects and converges to
the blow-up time without surpassing it.

Adaptive methods based on piecewise polynomial approximation of fixed de-
gree can give at best algebraic convergence rates. Spectral- or hp finite element
methods can yield even exponential convergence rates. Claudio Canuto showed
how a convergent hp-afem can be turned into an instance optimal hp-afem by the
addition of coarsening. An hp-adaptive tree algorithm that is perfectly suited for
this task was presented by Peter Binev.

Having a p-robust a posteriori estimator is instrumental for the design of an
hp-afem. In his talk, Martin Vohraĺık showed that the so-called equilibrated flux
estimator, that is known to p-robust in two dimensions, is also p-robust in three
dimensions. Serge Nicaise showed that this kind of error estimator is reliable and
efficient for a magnetodynamic harmonic formulation of Maxwell’s system.

Marco Verani considered adaptive spectral methods. He showed that exponen-
tial convergence rates can be achieved even without coarsening by the application
of an ‘aggressive’ dynamic marking strategy.
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Abstracts

A guaranteed equilibrated error estimator for the A − ϕ and T − Ω
magnetodynamic harmonic formulations of Maxwell’s system

Serge Nicaise

(joint work with E. Creusé, R. Tittarelli)

In this talk a guaranteed equilibrated error estimator for the harmonic magneto-
dynamic formulation of Maxwell’s system is proposed [Creusé, S. Nicaise and R.
Tittarelli, A guaranteed equilibrated error estimator for the A − ϕ and T − Ω
magnetodynamic harmonic formulations of the Maxwell system, IMA Journal of
Numerical Analysis, 2016]. First of all, since the estimator is based on two dual
problems, these two equivalent potential formulations of Maxwell’s system are
presented. Secondly, the proof of the two key properties for an a posteriori equi-
librated error estimator are proved: the reliability and efficiency results without
generic constants. Finally, two numerical simulations validate the applicability of
our estimator.

Let D be an open simply connected bounded polyhedral domain with a sim-
ply connected boundary Γ and let Dc ⊂ D be the conductor domain supposed
to be simply connected with a simply connected boundary Γc. The model of in-
terest is given by the quasi-static approximation of Maxwell’s equations in the
magnetoharmonic regime, completed by the constitutive laws:

B = µH in the whole domain D

and

Je = σ E in the conductor domain Dc .

HereB, H, Je and E represent respectively the magnetic flux density, the magnetic
field, the eddy current density and the electric field. Moreover, for the magnetic
permeability µ ∈ L∞(D) and the electrical conductivity σ ∈ L∞(D), we assume
that σ ≡ 0 on D\Dc and that there exist µ0 > 0 and σ0 > 0 such that µ > µ0 and
σ > σ0 in Dc.

The a posteriori error estimator is built starting from the numerical solutions
of two classical potential formulations. On one hand, the original system can be
rewritten by a magnetic vector potential A, defined in D, as well as an electrical
scalar potential ϕ, defined in Dc. The finite element method resolution of that
A−ϕ formulation, based on Nédélec and Lagrange elements, provides the following
numerical solutions:

Bh = curl Ah in D and Eh = −iωAh −∇ϕh in Dc .

On the other hand, the original system can be also rewritten by an electric vector
potential T, defined in Dc, as well as a magnetic scalar potential Ω, defined in
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D. The finite element method resolution of that T−Ω formulation, still based on
Nédélec and Lagrange elements, provides the numerical solutions:

Hh = Hs +Th −∇Ωh in D and Jh = curl Th in Dc ,

where Js = curl Hs denotes the source term.

We then design an error estimator η for the following energy norm of the error e

e = (||µ−1/2(B−Bh) ||2L2(D) + ||µ1/2(H−Hh) ||2L2(D)

+ || (ω σ)−1/2(J− Jh) ||2L2(Dc)
+ ||ω−1/2 σ1/2 (E−Eh) ||2L2(Dc)

)1/2.

The estimator η measures the non-verification of the constitutive laws of the nu-
merical fields. Indeed it is defined as

η2 =
∑

T∈Th

η2m,T +
∑

T∈Th,T⊂Dc

η2e,T ,

where Th represents a tetrahedral and regular mesh and the element estimator
contibutions are defined by

ηm,T = ||µ1/2(Hh − µ−1Bh)||T and ηe,T = || (ωσ)−1/2 (Jh − σEh) ||T .

The main result consists in proving the global equivalence between the error e and
the estimator η, that is

η2 = e2 + r ,

where r is a higher order term. The effort with respect to the magnetostatic case
stays on the estimation of the remainder r, which vanishes in the static case. Thus
it is estimated with the help of some functional analysis tools and using a sort of
Aubin-Nitsche’s trick. In addition, for adaptivity purposes, the local efficiency
property is also proved, namely we show that

ηT = (η2m,T + η2e,T )
1/2 ≤

√
2 e|T , ∀T ∈ Th.

Finally, two benchmark tests are exihibed: an analytical one that illustrates
the obtained theoretical results and a physical one that illustrates the estimator
performance in an adaptive mesh refinement context.
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Axioms of adaptivity for separate marking

Hella Rabus

(joint work with Carsten Carstensen)

The design of efficient numerical algorithms is one of the main challenges in compu-
tational mathematics. Various applications lead to boundary value problems with
partial differential equations, whose discrete weak version is solved with finite el-
ement methods on the computer. It is well known, that uniform mesh-refinement
eventually leads to suboptimal convergence rates. Thus, the design of optimal con-
vergent adaptive finite element methods and its analysis is of particular interest.

Mixed finite element methods with flux errors in H(div)-norms and div-least-
squares finite element methods require the separate marking strategy for data
approximation reduction in obligatory adaptive mesh-refining. The refinement
indicator σ2

ℓ (K) = η2ℓ (K)+µ2(K) of a finite element domain K in a triangulation
Tℓ on the level ℓ consists of some residual-based error estimator ηℓ with some
reduction property under local mesh-refining and some data approximation error
µℓ. Separate marking (Safem) means either Dörfler marking if µ2

ℓ ≤ κη2ℓ or
otherwise an optimal data approximation algorithm run with controlled accuracy
as established in [CR11, Rab15] and reads as follows

for ℓ = 0, 1, . . . do
Compute ηℓ(K), µ(K) for all K ∈ Tℓ
if µ2

ℓ := µ2(Tℓ) ≤ κη2ℓ (Tℓ, Tℓ) then
Tℓ+1 := Dörfler marking(θA, Tℓ(K) : K ∈ Tℓ)

else
Tℓ+1 := Tℓ ⊕ approx(ρBµ

2
ℓ , µ(K) : K ∈ Tℓ).

The enfolded set of axioms simplifies [CFPP14] for collective marking (with σ2 =
η2 + µ2 for Case A and µ2 ≡ 0 for Case B), treats separate marking established
for the first time in an abstract framework, generalizes [CP15] for least-squares
schemes, and extends [CR11] to the mixed FEM with flux error control in H(div).

The axioms (A1)–(A4) involve ρ2 < 1,Λk <∞, estimators σ, η, µ and distances

0 ≤ δ(T , T̂ ) < ∞ for all ∈ T ∈ T and T̂ ∈ T(T ) and are sufficient for optimal

asymptotic convergence rates. There exists R(T , T̂ ) ⊂ T such that T \ T̂ ⊆
R(T , T̂ ) ∧ |R(T , T̂ )| ≤ Λ3|T \ T̂ | and

|η(T̂ , T ∩ T̂ )− η(T , T ∩ T̂ )| ≤ Λ1δ(T , T̂ ),(A1)

η(T̂ , T̂ \ T ) ≤ ρ2η(T , T \ T̂ ),+Λ2δ(T , T̂ )(A2)

δ(T , T̂ ) ≤ Λ3

(
η2(T ,R) + µ2(T )

)
+ Λ̂3η(T̂ ),(A3)

∞∑

k=ℓ

δ2(Tk, Tk+1) ≤ Λ4σ
2
ℓ for all ℓ ∈ N0,(A4)
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∀Tol > 0 TTol = data approx(Tol, µ(K) : K ∈ Tℓ) ∈ T satisfies µ2(TTol) ≤ Tol
and

|TTol| − |T0| ≤ Λ5 Tol
−1/(2s),(B1)

µ2(T̂ ) ≤ Λ6µ
2(T ).(B2)

Quasimonotonicity reads

σ2(T̂ ) ≤ Λ7σ
2(T ).(QM)

Remark. (Λ2
1+Λ2

1)Λ̂3 < 1 implies (QM) with Λ7 depending on Λ1, Λ2, Λ3, Λ̂3 and
Λ6.

Theorem. Suppose (A1)-(A4), (B1)-(B2) and (QM). Then, there exists κ0 > 0
(which is +∞ if Λ6 = 1), such that for any choice of κ, θA, 0 < ρB < 1 with

0 < θA < θ0 := (1 − κΛ2
1Λ3)/(1 + Λ2

1Λ3) and κ < κ1 := min
{

1−ρA

Λ6−1 ,Λ
−1
1 Λ−1

3

}
the

output (Tℓ)ℓ, (σℓ)ℓ of Safem satisfy

sup
N∈N0

(1 +N)s min
T ∈T(N)

σ(T ) ≈ sup
ℓ∈N0

(1 + |Tℓ| − |T0|)sσℓ.

In particular, if for some s > 0 the right-hand side is bounded and (B1) holds
with the same s, then the left-hand side is bounded.

Examples. Separate marking for data approximation reduction is necessary
for least-squares FEM and mixed FEM with convergence rates in H(div,Ω) ×
L2(Ω). Besides from natural a posteriori error control with residuals in least
squares functional, [CP15] establishes an a posteriori error estimator in H(div,Ω),

namely σ2(T ,K) := η2(T ,K) + µ2(K) for K ∈ T and µ2(K) := ‖f −Π0f‖2L2(K).

Since µ does not satisfy an estimator reduction Safem has to be applied instead
of collective marking.

Let (pLS , uLS) ∈ RTK(T ) × Sk
0 (T ) and (p̂LS , ûLS) ∈ RTK(T̂ ) × Sk

0 (T̂ ) be the

discrete solution on T̂ ∈ T (T ) and T ∈ T, respectively. The proof of discrete
reliability (A3) (for k = 0) still leaves the extra term

‖p̂LS − pLS −∇(ûLS − ûLS)‖2L2(Ω) + ‖div(p̂LS − pLS)‖2L2(Ω)

. η2(T \ T̂ ) + ‖(1−Π0) div p̂LS‖2L2(Ω) ,

which is not covered in [CFPP14]. The presented set of generalized axioms covers
this special application [CR15].

Another example, the general second-order linear elliptic problem solved with
MFEM with error estimation in H(div) is analyzed in [CDR16].

The benefit of the new set of axioms is, that it guarantees rate optimality for
AFEMs based on collective, as well as on separate marking. Thus, the existing
literature of rate optimality of adaptive FEM is covered – to prove optimal rates,
only the axioms (A1)-(A4), (B1)-(B2) and (QM) have to be verified.
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Adaptive and Multilevel Mixed Finite Element Methods

Jun Hu

This talk consists of three parts. In the first part, we developed a new framework
to design and analyze the mixed FEM for elasticity problems by establishing the
following three main results:

(1) A crucial structure of the discrete stress space: on simplicial grids, the dis-
crete stress space can be selected as the symmetric matrix-valued Lagrange
element space, enriched by a symmetric matrix-valued polynomial H(div)
bubble function space on each simplex; a corresponding choice applies to
product grids.

(2) Two basic algebraic results: (1) on each simplex, the symmetric matrices of
rank one produced by the tensor products of the unit tangent vectors of the
(n+1)n/2 edges of the simplex, form a basis of the space of the symmetric
matrices; (2) on each simplex, the divergence space of the above H(div)
bubble function space is equal to the orthogonal complement space of the
rigid motion space with respect to the corresponding discrete displacement
space (Asimilar result holds on a macroelement for the product grids).

These define a two-step stability analysis which is new and different from the
classic one in literature. As a result, on both simplicial and product grids, we were
able to define the first families of both symmetric and optimal mixed elements with
polynomial shape functions in any space dimension. Furthermore, the discrete
stress space has a simple basis which essentially consists of symmetric matrix-
valued Lagrange element basis functions.

On the simplicial grids, in order to avoid enriching H(div,Ω; S)-Pn+1 face-
bubble functions of piecewise polynomials or H(div)-Pk nonconforming face-
bubble spaces for each n − 1 dimensional simplex for the cases 1 ≤ k ≤ n, we
also designed two classes of stabilized mixed finite element methods. In the first
class of elements, we use H(div,Ω; S)-Pk and L2(Ω;Rn)-Pk−1 to approximate the
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stress and displacement spaces, respectively, for 1 ≤ k ≤ n, and employ a stabi-
lization technique in terms of the jump of the discrete displacement over the faces
of the triangulation under consideration; in the second class of elements, we use
H1

0 (Ω;R
n)-Pk to approximate the displacement space for 1 ≤ k ≤ n, and adopt

the stabilization technique suggested by Brezzi, Fortin, and Marini.
In the second part, we developed a block diagonal preconditioner with the min-

imal residual method and a block triangular preconditioner with the generalized
minimal residual method for the aforementioned mixed finite element methods of
linear elasticity. They are based on a new stability result of the saddle point system
in mesh-dependent norms. The mesh-dependent norm for the stress corresponds
to the mass matrix which is easy to invert while the displacement it is spectral
equivalent to Schur complement. A fast auxiliary space preconditioner based on
the H1 conforming linear element of the linear elasticity problem is then designed
for solving the Schur complement. For both diagonal and triangular precondition-
ers, it is proved that the conditioning numbers of the preconditioned systems are
bounded above by a constant independent of both the crucial Lamé constant and
the mesh-size. Numerical examples are presented to support theoretical results.

In the third part, we studied the convergence and optimality of adaptive mixed
finite element methods (AMFEMs) for the Poisson equations and Stokes equa-
tions in an abstract setting. We generalized 6 Hypotheses for the finite element
subspaces no matter the dimension d = 2 or 3. Under these hypotheses, the con-
vergence and optimality can be obtained. As an application, We showed that the
Raviart-Thomas elements and the Brezzi-Douglas-Martins elements satisfy these
hypotheses.
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On Adaptivity in Tree Approximation

Peter Binev

The tree approximation is a convenient way to describe an adaptive approximation
involving partitioning of a domain in which the next finer partition is formed
by subdividing some elements of the current partition into several subsets in a
prescribed way. In our considerations we replace ”several” by ”two” mentioning
that this does not restrict the generality since a subdivision into several elements
can be replaced by a sequence of binary subdivisions. The process of the adaptive
partitioning is then described by a full binary tree (a graph in which exactly one
node R, called root, has degree 2 and the other nodes have either degree 1 and are
called leaves, or degree 3 and are called internal nodes). Naturally, the domain
is related to the root R and the current partition is composed by the subsets
corresponding to the leaves L(T ) of the tree T . A subdivision of an element ∆ is
performed by adding two new leaf nodes, ∆′ and ∆′′, to the graph and connecting
them to ∆ which becomes an internal node. We call ∆′ and ∆′′ children of ∆ and
refer to ∆ as their parent. The set A(∆) of ancestors of ∆, including ∆ itself, is
composed of all nodes on the unique path connecting ∆ with the root R.

A generic adaptive approximation is defined via error functionals e(∆) related
to the nodes ∆ of a tree T . Each of these functionals represents (an estimate of)
the local error of approximation on the subset related to ∆. For example, if we
approximate a function f by piecewise polynomials in Lq, 0 < q < ∞ and P∆ is
the polynomial approximating f on the subset related to ∆, then one can choose
e(∆) =

∫
∆ |f − P∆|qdx.

We choose no particular form of the error functional but require that it satisfies
the following subadditivity property:

(1) e(∆) ≥ e(∆′) + e(∆′′) for each node ∆ with children ∆′ and ∆′′ .

It is easy to see that this property is satisfied by (the q-th power of) any integral
norm. However, in the case of local error indicators it should be replaced by its
weak variant discussed in [4]. Here we use (1) for simplicity and to derive results
with small constants.

The total error of approximation related to a given tree T is defined by E(T ) :=∑
∆∈L(T ) e(∆) . The property (1) guarantees that the process of growing the tree T

decreases the error E(T ). To assess how effective this process is, we should compare
E(T ) with the smallest possible such error for a tree with similar complexity.
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Designating the complexity n := #L(T ) as the number of elements in the partition
given by T , we define the best n-term approximation by

σn := min
T : #L(T )≤n

E(T ) .

The goal of the adaptive approximation is to design a course-to fine process of
making adaptive decisions based only on the information from the errors at the
nodes in the current tree. It was proven in [4] that for a particular algorithm, the
error of approximation is compatible to the best one given by σn. Here we present
the variant of this algorithm provided in [1, 3]. The direct greedy approach, namely
subdividing the leaf ∆ with the largest error e(∆), while being computationally
efficient, does not give an optimal performance. Instead, we define a modified
error ẽ(∆), setting ẽ(R) := e(R) and then inductively

(2) ẽ(∆) :=
ẽ(∆∗) + e(∆)

ẽ(∆∗)e(∆)
=




∑

∇∈A(∆)

1

e(∇)




−1

,

where ∆∗ is the parent of ∆. The adaptive algorithm is very simple:

subdivide the leaf ∆ with the largest ẽ(∆).

This type of algorithms are often referred to as h-adaptive since they use the same
fixed approximation tool at each node and the improvements come from decreasing
of the diameters of the elements of the partition sometimes denoted by h. The
following is the main result about the above algorithm [1, 3].

Theorem 1 Let the tree TN be received by applying a greedy refinement strategy
with respect to the quantities ẽ(∆) defined by (2). Then the tree TN provides a
near-best h-adaptive approximation

(3) E(TN ) ≤ N

N − n+ 1
σn

for any integer n ≤ N . The complexity of the algorithm for obtaining TN is O(N)
safe for the sorting of ẽ(∆) that requires O(N logN) operations.

The sorting can be avoided by binning the values of ẽ(∆) into binary bins and
choosing for subdivision any of the ∆ from the largest nonempty bin. This in-
creases the constant in (3) by 2 but the total complexity of the algorithm is O(N).

The approximation can be further adapted by varying the number of degrees of
freedom p = p(∆) used at each individual element ∆ of the partition. For every
p = 1, 2, ... we consider the corresponding error functional at ∆ denoted by ep(∆).
It is reasonable to assume that these errors decrease as p increases, namely

ep(∆) ≥ ep+1(∆) , p ≥ 1 .

In addition, we assume that the subadditivity property (1) also holds but only for
the error functionals e1(∆).

The process of adapting both the partition and the number of degrees of freedom
p(∆) at each element ∆ of the partition is known as hp-adaptivity. The approxima-
tion is described by the pair (T,P(T )), where P(T ) := {p(∇) : ∇ ∈ L(T )} is the
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list of the assigned degrees of freedom. We define |P(T )| :=∑∇∈L(T ) p(∇) and use

it as a measure of complexity of this approximation. The total error is calculated
as Ehp(T, P (T )) =

∑
∇∈L(T ) ep(∇) and the best hp-adaptive approximation is

σhp
n := min

T
min

P(T ) : |P(T )|≤n
Ehp(T, P (T )) .

An alternative description of the best approximation is using a ”ghost tree” G
with #L(G) = |P(T )| to distribute the degrees of freedom and for any node ∆ ∈ G
defines p(∆,G) := #{∇ ∈ L(G) : ∆ ∈ A(∇)} to match the assignments given by
P . In this way, the pair (G, T ) defines an hp-adaptive approximation and it is easy
to see that

σhp
n = min

G : #L(G)≤n
min
T⊂G

Ehp(G, T ) .

The following hp-adaptive algorithm describes how to find the ghost tree GN of
complexity N = Nmax and the corresponding tree TN :

(1) set G1 := {R}, T1 := {R}, ẽ(R) := e(R), E1(R) := e(R), Ẽ1(R) := ẽ(∇),
q(R) := ẽ(R), s(R) := R, p(R) := 1, and N = 2;

(2) set ∆ := s(R) and expand the current tree GN−1 to GN by subdividing ∆
and adding two children nodes ∆′

N and ∆′′
N to it;

(3) define TN as the minimal full binary tree containing TN−1, ∆
′
N , and ∆′′

N ;

(4) for ∇ = ∆′
N and ∇ = ∆′′

N calculate the quantities: ẽ(∇) := e(∇)ẽ(∆)
e(∇)+ẽ(∆) ,

E1(∇) := e(∇), Ẽ1(∇) := ẽ(∇), q(∇) := ẽ(∇), s(∇) := ∇, p(∇) := 1;
(5) set p(∆) := p(∆) + 1 and calculate ep(∆)(∆);
(6) set ∆′ and ∆′′ to be the children of ∆;
(7) set Ep(∆)(∆) := min{Ep(∆′)(∆

′) + Ep(∆′′)(∆
′′) , ep(∆)(∆)};

(8) if Ep(∆)(∆) = ep(∆)(∆), then trim T at ∆ making ∆ a leaf node of T ;

(9) set Ẽp(∆)(∆) :=
Ep(∆)(∆)Ẽp(∆)−1(∆)

Ep(∆)(∆)+Ẽp(∆)−1(∆)
;

(10) set D := argmax{q(∆′), q(∆′′)} and update

q(∆) := min
{
q(D), Ẽp(∆)(∆)

}
, s(∆) := s(D);

(11) if ∆ 6= R, then replace ∆ with its parent and go to (5)
(12) else set N := N + 1 and go to (2) or exit if N > Nmax

A near-best performance of the above algorithm is established in [2, 3].

Theorem 2 The pair (GN , TN) provides a near-best hp-adaptive approximation

(4) Ehp(GN , TN) ≤ 2N − 1

N − n+ 1
σhp
n

for any integer n ≤ N .

The algorithm performs
∑

∆∈GN
p(∆,GN ) steps, a quantity that varies between

O(N logN) for well balanced trees to O(N2) for highly unbalanced ones. This
complexity can be significantly decreased if ep(∆) changes only at a lacunary
sequence of indices p, e.g. at p = 2k setting ep(∆) := e2k(∆) for 2k ≤ p < 2k+1.
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This hp-adaptive algorithm was used by Canuto, Nochetto, Stevenson, and
Verani in a recent paper [5] to find optimal convergence rates in the univariate
case for a model problem.
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Convergence and Optimality of hp-AFEM

Claudio Canuto

(joint work with Ricardo H. Nochetto, Rob Stevenson, and Marco Verani)

We describe a recently proposed adaptive hp-type finite element algorithm, termed
hp-AFEM, for the solution of operator equations such as, e.g., elliptic boundary
value problems; the details can be found in [4]. The algorithm produces a se-
quence of hp-partitions of the domain (i.e., conforming finite element partitions
equipped with a distribution of polynomial degrees over the elements) and corre-
sponding Galerkin discrete solutions, with the following properties: the error in
the energy norm decays at a fixed rate, and is instance optimal, meaning that it
is comparable to the best hp-approximation error that can be obtained using a
comparable number of degrees of freedom. In particular, if the solution admits
hp-type approximations for which the error decays exponentially fast in the num-
ber of activated degrees of freedom, the same exponential behavior occurs for the
Galerkin approximations built by our algorithm.

A result of this type (exponential convergence through a judicious selection of
h-refinements and p-enrichments) was first obtained by Gui and Babuška [7, 8] for
functions with localized singularities. However, these pioneering results implicitly
exploit the particular structure of the considered singularities, thus avoiding the
risk of making ‘wrong’ choices in the adaptive procedure. Unfortunately, this is
not the generic situation; indeed, it is not difficult to build examples of functions
(see again [4] for details) for which early choices between h-refinement and p-
enrichment, based on the currently available information, must be subsequently
corrected in order to stay close to the optimal hp-approximation. In other words,
an hp-adaptive algorithm which works for a large class of functions (solutions and
data) should incorporate the possibility of stepping-back, i.e., creating a new hp-
partition starting from the available information on the current one, in view of
guaranteeing optimality in the forthcoming steps. This stage is often referred to
as ‘coarsening’.
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Our algorithm hp-AFEM hinges on two routines, termed REDUCE and hp-
NEARBEST. The former, starting from the current hp-partition on which data
are already replaced by suitable polynomial approximations (thus in a situation
of no ‘data oscillation’) reduces the energy norm of the Galerkin error by a pre-
scribed amount. The latter performs the coarsening as indicated above, in order
to guarantee instance optimality of the coarsened approximations; it relies on the
adaptive hp-tree approximation routine recently introduced by Binev ([1, 2], see
also his contribution in this Report).

Our algorithm consists of a repetition of calls of hp-NEARBEST and RE-
DUCE with decreasing error tolerances. Each call of hp-NEARBEST takes in
input the data and the current Galerkin solution and produces a (nonconforming)
hp-partition and a piecewise polynomial approximation of the input functions on
this partition, in such a way that a specific error functional is less than a prescribed
tolerance. Such a coarsening procedure, however, may increase the energy norm
of the Galerkin error by up to a constant factor. This must be compensated by a
judicious choice of the reduction factor of REDUCE so that the concatenation of
the two routines produces a converging sequence.

The routine REDUCE is implemented as an AFEM consisting of the usual loop
over SOLVE, ESTIMATE, MARK, and REFINE. In dimension 1, we construct an
estimator that is reliable and discretely efficient, uniformly in p. Consequently, the
number of iterations to achieve some fixed error reduction is independent on the
maximal polynomial degree. In dimension 2, one may employ in ESTIMATE the
residual-based a posteriori error estimator analyzed by Melenk and Wohlmuth [9],
which however turns out to be p-sensitive. We show that with this choice, in order
to achieve a fixed error reduction, it suffices to grow the number of iterations more
than quadratically with respect to the maximal polynomial degree. This introduces
an optimality degradation at stages intermediate between two consecutive calls of
hp-NEARBEST.

As an alternative, one may resort to the equilibrated flux estimator, which
has been shown to be p-robust in [3] (see also [6]). We use this estimator to
mark stars for refinement, namely patches of elements around vertices, and to
execute p-refinements only. In [5], we provide numerical evidence that a uniform
saturation property holds provided the local polynomial degree p in each marked
star is increased by any quantity proportional to p. Under this choice, the number
of iterations in REFINE needed to reduce the Galerkin error by a fixed amount is
uniformly bounded in h and p, thus guaranteeing overall optimality.
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Robust residual-based a posteriori Arnold-Winther mixed finite
element analysis in elasticity

Joscha Gedicke

(joint work with Carsten Carstensen)

This talk presents a residual-based a posteriori error estimator for the Arnold-
Winther mixed finite element that utilises a post-processing for the skew-symmetric
part of the strain [1]. Numerical experiments verify the proven reliability and ef-
ficiency for suitable approximation of the skew-symmetric deformation gradient.
Numerical evidence supports that the L2-stress error estimator is robust in the
Poisson ratio and allows stable error control even in the incompressible limit.

The problem in linear elasticity considers the connected reference configuration
of the elastic body Ω ⊂ R2 with polygonal boundary ∂Ω = ΓD∪ΓN with closed and
connected ΓD of positive surface measure and ΓN = ∂Ω\ΓD for applied tractions.
Given a volume force f : Ω → R2, a displacement uD : ΓD → R2, and a traction
g : ΓN → R2, find a displacement u : Ω → R2 and a stress tensor σ : Ω → S :=
{τ ∈ R2×2 : τ = τT } such that

− div σ = f, σ = Cε(u) in Ω,

u = uD on ΓD, σν = g on ΓN ,

where, C denotes the bounded and positive definite fourth-order elasticity tensor
for isotropic linear elasticity.

The a posteriori error analysis for the symmetric Arnold-Winther mixed finite
element method [2] may follow the ideas of [3] to derive a stress error control

||σ − σAW ||2
C−1 ≤ min

v∈V
||C−1σAW − ε(uD + v)||2C

+ C1osc
2(f, T ) + C2osc

2(g, E(ΓN ))

for the stress error σ−σAW even with a rather explicit estimate of the constant in
front of the oscillations and the (unwritten) multiplicative constant 1 in front of the
first term that measures the quality of the approximation C−1σAW of symmetric
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gradients ε(v) := (Dv + DT v)/2 for v ∈ V . The space V consists of all square-
integrable displacements with homogeneous boundary conditions along ΓD and
with a square-integrable functional matrix Dv.

A severe additional difficulty of this approximation is that only the symmetric
part is approximated and not the full gradient Dv. Other mixed finite element
schemes like PEERS [4] involve some additional variable to approximate the asym-
metric part of the gradient. This talk presents an explicit error estimate which
involves an arbitrary asymmetric approximation γh and provides an abstract a pos-
teriori error control of the residual type, which is useful for adaptive mesh-refining
algorithms,

η2ℓ = osc2(f, T ) + osc2(g, E(ΓN ))

+
∑

T∈T

h2T ‖Curl(C−1σAW + γh)‖2L2(T )

+
∑

E∈E(Ω)

hE‖[C−1σAW + γh]τE |2L2(E)

+
∑

E∈E(ΓD)

hE‖(C−1σAW + γh −DuD)τ‖2L2(E).

For any (piecewise smooth) choice of γh, this a posteriori error estimator is reliable
in the sense that

‖σ − σAW‖C−1 ≤ Crelηℓ

with some λ-independent constant Crel ≈ 1. One opportunity to ensure efficiency
is a global minimisation over all piecewise polynomial γh of the error estimator ηℓ.
The bubble function technique shows that the particular choice of γh enters the
efficiency estimates with some λ-independent constant Ceff ≈ 1,

ηℓ ≤ Ceff

(
‖σ − σAW‖C−1+‖skew(Du)− γh‖L2(Ω)

)
.

Hence, one efficient choice for γh is to choose it as a sufficiently accurate poly-
nomial approximation of the asymmetric gradient skew(Du) := (Du − DTu)/2.
Since a global approximation or even minimisation may be too costly, this talk
proposes to apply a post-processing step to compute such a sufficiently accurate
approximation γh = skew(Du∗AW ) for the post-processed displacement u∗AW in
the spirit of Stenberg [5]. The approximation γh = skew(Du∗AW ) is proven to be
robust in the Poisson ratio ν → 1/2 for sufficiently smooth functions. For domains
with re-entrant corners or incompatible boundary conditions, numerical experi-
ments confirm that the proposed computation of γh leads empirically to reliable
and efficient a posteriori error control independent of the Poisson ratio ν → 1/2.
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Towards optimal adaptivity of strongly non-symmetric problems

Michael Feischl

Rate optimality of adaptive algorithms has been an active research field since the
seminal works [3, 4]. Initially, the research focused on simple symmetric PDEs like
the Poisson equation, but nowadays, many interesting positive definite problems
like (in general non-symmetric) second-order elliptic PDEs, non-local boundary
element formulations of PDEs, and even certain non-linear problems are under-
stood. For a good overview on the known results, we refer to [2]. In stark contrast
to this is the development of the theory for strongly non-symmetric problems, i.e.,
problems which are more than a compact perturbation of a symmetric equation.
The task of proving rate optimality of adaptive algorithms for positive definite
non-symmetric problems is equivalent to proving rate optimality of indefinite sym-
metric problems. Hence, the goal of this talk is to understand how non-symmetric
or indefinite problems fit into the theory of rate optimality.

1. Rate optimal adaptivity

Let X be a separable Hilbert space of functions on some domain Ω ⊆ Rd. Let
T0 denote a triangulation of Ω into compact simplices T ∈ T0. Given a strongly
positive definite and bounded linear operator A : X → X⋆, i.e., 〈Ax , x〉 ≥ c‖x‖2X
for all x ∈ X , we consider the equation

Ax = f ∈ X⋆.(1)

Moreover, given a refinement (e.g., generated by newest-vertex-bisection) Tℓ of T0,
let Xℓ ⊂ X denote the associated finite dimensional subspace of functions (e.g.,
piecewise polynomials on Tℓ). We consider the finite-dimensional system: Find
xℓ ∈ Xℓ such that

〈Axℓ , y〉 = 〈f , y〉 for all y ∈ Xℓ.(2)

With this, the adaptive algorithm reads:
Input: T0. For ℓ = 0, 1, 2, . . . do

a) solve (2),
b) compute error estimator to determine elements Mℓ ⊆ Tℓ,
c) refine at least the elements in Mℓ to design new triangulation Tℓ+1.
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By definition, an adaptive algorithm of the above structure is said to be rate
optimal, if the adaptively generated triangulations Tℓ satisfy

err(Tℓ) ≤ C(#Tℓ)−s for all ℓ ∈ N(3)

for all s > 0 which allow for a sequence T opt
ℓ of optimal triangulations (with

T opt
0 = T0), generated by the refinement rule of step (c) of the algorithm, such

that err(T opt
ℓ ) ≤ C(#T opt

ℓ )−s. This means that the adaptive algorithm performs
at least as good as any other algorithm using the same mesh-refinement. The
error term err(Tℓ) is usually an upper bound for the error ‖x−xℓ‖X . The work [2]
specifies four sufficient (and partly necessary) requirements of the different parts of
the adaptive algorithm to prove (3). For non-symmetric (or indefinite) problems,
the major difficulty appears to be the so called general quasi-orthogonality.

2. General quasi-orthogonality

The most simple form of general quasi-orthogonality reads

∞∑

k=ℓ

‖xk+1 − xk‖2X ≤ C‖x− xℓ‖2X for all ℓ ∈ N.(4)

There exist several generalizations of (4), e.g., for sufficiently small ε ≥ 0

∞∑

k=ℓ

‖xk+1 − xk‖2X − εχ2
ℓ ≤ Cerr(Tℓ)2 for all ℓ ∈ N,(5)

where χℓ ∈ {err(Tℓ), ‖x− xℓ‖X}. This general quasi-orthogonality is the key tool
to prove linear convergence of the error in the sense that there exist 0 < q < 1 and
C > 0 such that

err(Tℓ+k) ≤ Cqkerr(Tℓ) for all ℓ, k ∈ N.(6)

Furthermore, linear convergence is one of the key tools to prove optimality (3).
Moreover, with linear convergence, one can even improve the rate optimality to
optimal complexity in the sense that given some γ > 0, even

err(Tℓ) ≤ C(

ℓ∑

k=0

#T γ
k )−s for all ℓ ∈ N(7)

holds for all possible s > 0. Since
∑ℓ

k=0 #T γ
k is equivalent to the the overall cost

of the adaptive algorithm (for the right choice of γ, i.e., if each solve-step requires
solving one sparse linear system, we choose γ = 1), this shows that the algorithm is
optimal with respect to computational work. Finally, general quasi-orthogonality
is a direct consequence linear convergence [2, Proposition 4.11], and thus proves
to be a central concept of the theory.
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3. Towards a proof of general quasi-orthogonality

For symmetric operators A, general quasi-orthogonality (4) follows immediately
from the equivalence ‖ · ‖A := 〈A(·) , (·)〉1/2 ≃ ‖ · ‖X , Galerkin orthogonality

‖xk+1 − xk‖2A = ‖x− xk‖2A − ‖x− xk+1‖2A,(8)

and convergence limℓ→∞ xℓ = x. For strongly non-symmetric (or indefinite) prob-
lems, however, (8) does not hold and new ideas are required. The basic approach
can be sketched as follows. Assume that A ∈ RN×N is a lower triangular matrix
and let Xℓ = Rℓ ⊂ X := RN . Then, we have xℓ = (A|Rℓ×Rℓ)−1f |Rℓ for all ℓ ∈ N

and hence (up to identification of Rℓ as a subset of RN)

xk+1 − xk = (A|Rk+1×Rk+1)−1f |Rk+1 − (A|Rk×Rk)−1f |Rk = αk+1ek+1,

for the (k + 1)-st unit vector ek+1 ∈ RN and some αk+1 ∈ R. This shows general

quasi-orthogonality (4) by
∑N

k=ℓ ‖xk+1 − xk‖2X =
∑N

k=ℓ α
2
k+1 = ‖x− xℓ‖2X .

For a general operator A, the strategy is to find a suitable Riesz basis (wk)k∈N

such that Xℓ := span{w1, . . . , wNℓ
} for some Nℓ ∈ N and all ℓ ∈ N. Then, the

problems (1)–(2) are equivalent to

Ax = f and A|{1,...,Nℓ}×{1,...,Nℓ}xℓ = f |{1,...,Nℓ},

where A ∈ RN×N, Aij := 〈Awi , wj〉, xℓ ∈ RNℓ , and x,f ∈ RN. The Riesz
basis property guarantees that A : ℓ2 → ℓ2 is a bounded and strongly elliptic

operator. Moreover, there holds xℓ =
∑Nℓ

j=1 xℓ,jwj and x =
∑∞

j=1 xjwj . As
the above motivation for the finite dimensional case might suggest, general quasi-
orthogonality (4) holds for the original problem (1) if A is sufficiently close to a
triangular matrix.

Theorem 1. General quasi-orthogonality (5) holds if A admits a stable (block)
LU-factorization, that is, A = LU for matrices L,U ∈ RN×N which are (block)
lower resp. upper triangular

(
∃ℓ ∈ N, j > Nℓ ≥ i

)
=⇒ Lij = Uji = 0

and satisfy that for all ε > 0 there exists Uε ∈ RN×N such that Uε,U
−1
ε : ℓ2 → ℓ2

are bounded operators and ‖Uε −U‖ℓ2→ℓ∞ ≤ ε. �

This theorem leads to several interesting questions.

• When does an infinite matrix posses a stable LU-factorization in the above
sense? Little is known for non-symmetric matrices, see e.g. [1]. Numerical
evidence suggests that not every strongly positive definite matrix does
have a stable LU-factorization. Hence, this class of matrices might be too
big.

• How to characterize the closure L(ℓ2, ℓ2) ⊂ L(ℓ2, ℓ∞)? It is well-known
that the space of linear operators L(ℓ2, ℓ2) is not dense in L(ℓ2, ℓ∞).

• Can we find a Riesz basis such that A has a simple structure? Wavelet
techniques might allow to obtain quasi-sparse matrices A. This can help
to prove the existence of a stable LU-factorization.
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• What is a general characterization of matrices A which have a stable LU-
factorization? This would allow to characterize the class of operatorsA for
which linear convergence (6) and thus optimal complexity (7) is achievable.

So far, none of the above questions is completely solved. It is the author’s
opinion that answering one of those questions can significantly advance the theory
of rate optimality for adaptive algorithms.
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Rate optimal adaptive FEM with inexact solver
for strongly monotone operators

Dirk Praetorius

(joint work with Gregor Gantner, Alexander Haberl, and Bernhard Stiftner)

Meanwhile, the mathematical understanding of adaptive FEM has reached a ma-
ture state; see [9, 14, 3, 15, 6, 11] for some milestones for linear elliptic PDEs, [17,
8, 2, 13] for non-linear problems, and [4] for some general framework. Optimal
adaptive FEM with inexact solvers has already been addressed in [15, 1, 4] for
linear PDEs and in [5] for eigenvalue problems. However, for problems involv-
ing nonlinear operators, optimal adaptive FEM with inexact solvers has not been
analyzed yet. Our work [12] aims to close the gap between convergence analysis
(e.g. [4]) and empirical evidence (e.g. [10]) by analyzing an algorithm from [7].

Model problem. We follow [4] and present our results from [12] in an abstract
framework, while precise examples for our setting are given, e.g., in [2, 13]. Let H
be a separable Hilbert space over K ∈ {R,C} with norm ‖ · ‖ and scalar product
(·, ·)H. With the duality pairing 〈·, ·〉 between H and its dual H∗, let A : H → H∗

be a nonlinear operator which satisfies the following assumptions:

(O1) A is strongly monotone: There exists α > 0 such that

α ‖u− v‖2 ≤ Re 〈Au −Av, u− v〉 for all u, v ∈ H.
(O2) A is Lipschitz continuous: There exists L > 0 such that

‖Au−Av‖∗ := sup
w∈H\{0}

〈Au−Av,w〉
‖w‖ ≤ L ‖u− v‖ for all u, v ∈ H.
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(O3) A has a potential: There exists a Gâteaux differentiable function P :
H → K with Gâteaux derivative dP = A, i.e.,

〈Au, v〉 = lim
r→0

P (u+ rv)− P (u)

r
for all u, v ∈ H.

Let F ∈ H∗. According to the main theorem on strongly monotone opera-
tors [18], (O1)–(O2) imply the existence and uniqueness of u⋆ ∈ H such that

〈Au⋆, v〉 = 〈F, v〉 for all v ∈ H.(1)

To sketch the proof, let I : H → H∗ denote the Riesz mapping defined by 〈Iu, v〉 =
(u, v)H for all u, v ∈ H. Then, Φ : H → H, Φ(u) := u− α

L2 I−1(Au− F ) satisfies

‖Φ(u)− Φ(v)‖ ≤ q ‖u− v‖ for all u, v ∈ H, where q := (1− α2/L2)1/2 < 1.(2)

Hence, the Banach fixpoint theorem proves the existence and uniqueness of u⋆ ∈ H
with Φ(u⋆) = u⋆ which is equivalent to (1). In particular, the Picard iteration
un := Φ(un−1) with arbitrary initial guess u0 ∈ H converges to u⋆, and it holds

‖u⋆ − un‖ ≤ q

1− q
‖un − un−1‖ ≤ qn

1− q
‖u1 − u0‖ for all n ≥ 1.(3)

With (O3), (1) (resp. (4) below) is equivalent to energy minimization, and ‖v−u⋆‖2
is equivalent to the energy difference. This guarantees the quasi-orthogonality [4].

FEM with iterative solver based on Picard iteration. Let X• ⊂ H be a
discrete subspace. As in the continuous case, there is a unique u⋆• ∈ X• such that

〈Au⋆•, v•〉 = 〈F, v•〉 for all v• ∈ X•.(4)

According to (O1)–(O2), it holds the Céa-type quasi-optimality ‖u⋆ − u⋆•‖ ≤
L
α ‖u⋆ − v•‖ for all v• ∈ X•. To solve the nonlinear system (4), we use the Picard

iteration (applied in X•): Given un−1
• ∈ X•, we compute un• = Φ•(u

n−1
• ) as follows:

• Solve the linear system (w•, v•)H = 〈Aun−1
• − F, v•〉 for all v• ∈ X•.

• Define un• := un−1
• − α

L2 w•.

Applying (3) on the discrete level, we infer from [7] that

‖u⋆−un•‖ ≤ ‖u⋆−u⋆•‖+
q

1−q ‖u
n
•−un−1

• ‖ ≤ L

α
min
v•∈X•

‖u⋆−v•‖+
qn

1−q ‖u
1
•−u0•‖.(5)

A posteriori error estimator. We suppose that all considered discrete spaces
X• ⊂ H are associated with a conforming triangulation T• of a bounded Lipschitz
domain Ω ⊂ Rd, d ≥ 2. For all T ∈ T• and all v• ∈ X•, we suppose an a posteriori
computable refinement indicator η•(T, v•) ≥ 0. We then define

η•(v•) := η•(T•, v•) and η•(U•, v•)
2 :=

∑

T∈U•

η•(T, v•)
2 for U• ⊆ T•.(6)

We suppose that there exist constants Cax > 0 and 0 < ̺ax < 1 such that for all
T• and all refinements T◦ of T•, the following properties (A1)–(A3) from [4] hold:

(A1) Stability on non-refined element domains:

|η◦(T• ∩ T◦, v◦)− η•(T• ∩ T◦, v•)| ≤ Cax ‖v◦ − v•‖ for all v• ∈ X•, v◦ ∈ X◦.
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(A2) Reduction on refined element domains:

η◦(T◦\T•, v◦) ≤ ̺ax η•(T•\T◦, v•) + Cax ‖v◦ − v•‖ for all v• ∈ X•, v◦ ∈ X◦.

(A3) Discrete reliability:

‖u⋆◦ − u⋆•‖ ≤ Cax η•(T•\T◦, u⋆•).
Note that (A1)–(A2) are required for all discrete functions (and follow from inverse
estimates), while (A3) is only required for the discrete solutions u⋆◦ resp. u⋆• of (4).

Adaptive algorithm. With adaptivity parameters 0 < θ ≤ 1, λ > 0, and
Cmark ≥ 1, an initial conforming triangulation T0, and an initial guess u00 ∈ X0,
our adaptive algorithm iterates the following steps (i)–(iii) for all ℓ = 0, 1, 2, . . .

(i) Repeat (a)–(b) for all n = 1, 2, 3, . . . , until ‖unℓ − un−1
ℓ ‖ ≤ λ ηℓ(u

n
ℓ ).

(a) Compute discrete Picard iterate unℓ ∈ Xℓ.
(b) Compute refinement indicators ηℓ(T, u

n
ℓ ) for all T ∈ Tℓ

(ii) Define uℓ := unℓ and determine a set Mℓ ⊆ Tℓ of minimal cardinality, up
to the multiplicative factor Cmark, such that θ ηℓ(uℓ) ≤ ηℓ(Mℓ, uℓ).

(iii) Employ newest vertex bisection [16] to generate the coarsest conforming
refinement Tℓ+1 of Tℓ such that Mℓ ⊆ Tℓ\Tℓ+1 (i.e., all marked elements
have been refined) and define u0ℓ+1 := uℓ ∈ Xℓ ⊆ Xℓ+1.

In step (iii), we suppose that mesh-refinement leads to nested discrete spaces.
Lucky break-down of adaptive algorithm. First, if the repeat loop in

step (i) does not terminate, it holds u⋆ ∈ Xℓ. Moreover, there exists C > 0 with

‖u⋆ − unℓ ‖+ ηℓ(u
n
ℓ ) ≤ C qn

n→∞−−−−→ 0.(7)

Second, if the repeat loop in step (i) terminates with Mℓ = ∅ in step (ii), then
u⋆ = uk as well as Mk = ∅ for all k ≥ ℓ. Overall, we may thus suppose that the
repeat loop in step (i) terminates and that #Tℓ < #Tℓ+1 for all ℓ ≥ 0.

Bounded number of Picard iterations in step (i). There exists C > 0
such that nested iteration u0ℓ := uℓ−1 ∈ Xℓ−1 ⊆ Xℓ guarantees

uℓ = unℓ with n ≤ C
[
1 + log

(
max

{
1,
ηℓ−1(uℓ−1)

ηℓ(uℓ)

})]
for all ℓ ≥ 1.(8)

Linear convergence. For 0 < θ ≤ 1 and all sufficiently small λ > 0, there
exist constants 0 < ̺ < 1 and C > 0 such that

ηℓ+n(uℓ+n) ≤ C̺n ηℓ(uℓ) for all ℓ, n ≥ 0.(9)

In particular, there exists C′ > 0 such that

‖u⋆ − uℓ‖ ≤ C′ ηℓ(uℓ) ≤ C′C̺ℓη0(u0)
ℓ→∞−−−→ 0.(10)

Optimal algebraic convergence rates. For sufficiently small 0 < θ ≪ 1,
sufficiently small λ > 0, and all s > 0, there exists C > 0 such that

ηℓ(uℓ) ≤ C
(
#Tℓ −#T0 + 1)−s for all ℓ ≥ 0,(11)

provided that the rate s is possible with respect to certain nonlinear approximation
classes [4, 6].
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Optimal computational complexity. Currently, the proof of optimal com-
putational complexity is open, but it is observed in numerical experiments.
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Convergence and optimality of adaptive FEM for harmonic forms

Alan Demlow

Harmonic forms arise in computational electromagnetics. More broadly they are
an important part of the finite element exterior calculus (FEEC) framework for
approximating solutions to problems of Hodge-Laplace types posed on domains
possibly having nontrivial topology. In the three-dimensional setting, they consist
of curl- and divergence-free vector fields satisfying certain boundary conditions.
In this talk we prove convergence and rate optimality of adaptive FEM for con-
trolling L2 (equivalently, energy) errors in the approximation of harmonic forms.
Admissible finite element methods include standard mixed methods based on de
Rham complex-conforming finite element complexes in all space dimensions.

Proving AFEM convergence results for harmonic forms requires overcoming sev-
eral hurdles. The first is non-nestedness, that is, that is, there is no subset relation-
ship between spaces of harmonic forms on adjacent mesh levels even if the meshes
themselves are nested. We instead use properties of broader portions of the Hodge
decomposition, resulting in sufficient nestedness and orthogonality properties to
obtain AFEM convergence. A second challenge is nonalignment of bases for the
spaces of discrete harmonic forms on nested meshes. This is a technical problem
that occurs more generally when approximating multidimensional invariant-type
spaces. Typical computational methods do not produced fixed alignments of the
bases, so these alignments can change from mesh level to mesh level. We use re-
cent techniques developed in the context of eigenvalue AFEM in order to meet this
challenge [1]. Finally, computation of harmonic forms may be either a linear or
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mildly nonlinear problem, depending on the method used to compute them. The
most general viewpoint, which we take, views the problem as a mildly nonlinear
problem. The result is that some constants in our estimates depend on the degree
of overlap between the space of discrete harmonic forms on the initial mesh and
the (target) space of continuous harmonic forms. We however are able to show
that the dependence of these constants on the initial overlap disappears as the
mesh is refined.

We finally obtain rate optimality. First we prove a local discrete upper bound.
Using essentially standard techniques we then obtain rate optimality using a new
argument based on the commuting and locally defined projecting quasi-interpolant
of Falk and Winther [2]. As when proving that AFEM contracts, we also discuss
dependence of various constants on the initial overlap between the continuous and
discrete spaces of harmonic forms.
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Adaptivity and blowup detection for nonlinear parabolic problems

Emmanuil H. Georgoulis

(joint work with Andrea Cangiani, Irene Kyza, Stephen Metcalfe)

In this work, we derive a practical conditional a posteriori bound for a fully-
discrete first order in time implicit-explicit (IMEX) interior penalty discontinuous
Galerkin (dG) in space discretization of a non self-adjoint semilinear parabolic
PDE with quadratic nonlinearity. The choice of an IMEX discretization and,
in particular, the explicit treatment of the nonlinearity, offers advantages in the
context of finite time blow-up – this is highlighted below via the discretization of
the related ODE problem with various time-stepping schemes. The choice of a dG
method in space offers stability of the spatial operator in convection-dominated
regimes on coarse meshes; we stress, however, that the theory presented below
is directly applicable to the case of conforming finite element approximations in
space. The conditional a posteriori error bounds are derived in the L∞(L2) +
L2(H1)-type norm. The derivation is based on energy techniques combined with
the Gagliardo-Nirenberg inequality while retaining the key idea introduced in [6]
– judicious usage of Gronwall’s lemma. A key novelty of our approach is the
use of a local-in-time continuation argument in conjunction with a space-time
reconstruction. Global-in-time continuation arguments have been used to derive
conditional a posteriori error estimates for finite element discretizations of PDEs
with globally bounded solutions, cf. [1, 4, 5]. A useful by-product of the local
continuation argument used in this work is that it gives a natural stopping criterion
for approach towards the blow-up time. The use of space-time reconstruction,
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introduced in [7, 8] for conforming finite element methods and in [2, 3] for dG
methods, allows for the derivation of a posteriori bounds in norms weaker than
L2(H1) and offers great flexibility in treating general spatial operators and their
respective discretizations.

Furthermore, a space-time adaptive algorithm is proposed which uses the con-
ditional a posteriori bound to control the time step lengths and the spatial mesh
modifications. The adaptive algorithm is a non-trivial modification of typical
adaptive error control procedures for parabolic problems. In the proposed adap-
tive algorithm, the tolerances are adapted in the run up to blow-up time to allow
for larger absolute error in an effort to balance the relative error of the approxima-
tion. The space-time adaptive algorithm is tested on three numerical experiments,
two of which exhibit point blow-up and one which exhibits regional blow-up. Each
time the algorithm appears to detect and converge to the blow-up time without
surpassing it.
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Linearization of the p-Poisson equation

Lars Diening

(joint work with M. Wank, M. Fornasier, R. Tomasi)

The p-Poisson problem consists in finding the solution u ∈W 1,p
0 (Ω) of

− div
(
|∇u|p−2∇u

)
= f

for 1 < p <∞ and suitable f . The function umay be scalar or vectorial. For p = 2
this is the standard Poisson problem, but for p 6= 2 the problem is non-linear.

Our goal is to approximate the solution by means of the finite element method.
Many results have appeared in this direction. The a priori analysis goes back to
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[1, 7, 6]. In [8, 4] a first notion of error estimators has been introduced. In [9]
a convergence theorem for the adaptive finite element method has been proved
without any rates. Later in [2] rate optimality has been proved for new error
estimators. However, all of these results assume that the corresponding discrete
finite element solution can be calculated exactly. Since the problem is non-linear,
this is a serious obstacle. The purpose of this paper is to introduce an iterative
algorithm based on linear problems, that approximates the solutions of the p-
Poisson problem. The only result in this direction can be found in [3], where the
super-linear case p ≥ 2 has been studied using a wavelet stabilization. However,
no rates of convergence have been of obtained. In contrast, we study the sub-linear
case p ≤ 2 and we are able to derive rates of convergence. We are interested in
this paper in the outer non-linear loop, so the results apply to an iteration in the
space W 1,p

0 (Ω) as well for any conformal finite element approximation.

From now on let 1 < p ≤ 2. Starting from v0 ∈ W 1,p
0 (Ω) a first idea would be

to define vn+1 iteratively by

− div
(
|∇vn|p−2vn+1

)
= f.

Each of this problem is linear, but the weight |∇vn|p−2 may degenerate. This
cannot be avoided, since |∇vn| = 0 at any critical point of vn. This will gen-
erate matrices of arbitrary high stiffness. This problem can only be avoided by
truncation of the weight, so we could consider for 0 < ε− ≤ ε+ <∞ the problem

− div
(
(ε− ∨ |∇vn| ∧ ε+)p−2vn+1

)
= f.

Now the question arises how to adapt ε during the iteration to ensure that the
algorithm converges to the correct solution. This idea is only adhoc, but we will
derive a similar algorithm in the following by means of a variational problem.

The solution u of our p-Poisson problem is the minimizer of the energy

J (v) :=

∫
1
p |∇v|p dx−

∫
vf dx.

Now we relax the energy by an additional function a : Ω → (0,∞) and define

J (v, a) :=

∫
1
2 |a|p−2|∇v|2 + ( 1p − 1

2 )|a|p dx−
∫
vf dx.

The basic idea now is to minimize alternately with respect to v and a. While the
minimization w.r.t. to v is a linear problem, the minimization w.r.t. a is explicitly
given. To overcome the degeneracy we introduce εn = (εn,−, εn,+) and restrict
the minimization of a to the functions with values in (εn,−, εn,+). We propose the
following algorithm of Kačanov type.
Algorithm
Start with v0 ∈W 1,p

0 (Ω) and ε = (ε0,−, ε0,+) = (1, 1). Repeat

(1) Choose new truncation interval εn+1 ⊃ εn.
(2) an+1 := argmina∈(εn,−,εn,+) J (a, vn), i.e. an+1 = εn,− ∨ |∇vn| ∧ εn,+.
(3) vn+1 := argminv J (an+1, v), i.e. − div(ap−2

n+1∇vn+1) = f .
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We consider two questions: First, how does the minimizer uε of the energy
Jε(v) := J (v, ε− ∨ |∇v| ∧ ε+) converge to u? We show that Jε(uε) − J (u) ≤
c εp−+ε

−d/(p−1)
+ . The proof is based on the Lipschitz truncation technique, see [5].

Note that Jε is defined on W 1,2
0 (Ω) but J only on W 1,p

0 (Ω).
Second, how does the algorithm converge for fixed ε to uε. We prove that

Jε(vn) − Jε(uε) ≤ (1 − δ(ε))n(Jε(v0) − Jε(uε)). This is linear (exponential)
convergence, but the speed depends on the truncation ε, since δ(ε) h (ε−/ε+)

2−p.
Combining these two results, we obtain a convergence result with specific rates.

We can show that the choice ε = (n−α, nβ) with α, β > 0 ensures that the energy
error Jεn(vn)− J (u) decreases with O(n−γ) for some γ > 0.

We have also performed numerical experiments including adaptivity. We de-
veloped error estimators that indicate when to reduce εn,−, increase εn,+, refine
the grid, or just recalculate an and vn. These experimental results suggest that
our adaptive algorithm performs rate optimally in the sense of energy accuracy
vs. costs.
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Aposteriori analysis of discontinuous Galerkin timestepping methods

Omar Lakkis

(joint work with E.H. Georgoulis and T.P. Wihler)

1. Set-up

1.1. Time discontinuous Galerkin. We are interested in adaptive numerical
time-discontinuous Galerkin approximation of a function u : [0, T ] → X satisfying
the parabolic initial value problem

(1) u′ +Au = f and u(0) = u0,

whereA : X → X ′ is an elliptic operator, with respect to a Gelfand triple of Hilbert
spaces a partition of the time interval I := {In : n = 1, . . . , N}, In := (tn−1, tn]
and I0 := {0}, with t0 < · · · < tN . A discontinuous Galerkin method in time for
equation (1) consists in finding a function U : [0, T ] → X that is I-wise continuous
and such that

U(0) := Πn0u0,(2)
∫

In

[(U′,V)H + 〈AU |V〉] +
(
[[U]]n−1 ,V(t

+
n−1)

)
H

=

∫

In

〈f |V〉 ∀V ∈ Prn(In;Xn),

(3)

where for each n = 1, . . . , N , Xn is a finite dimensional subspace of X , Πnn
indicates the H-orthogonal projection from X ′ onto Xn, (φ, ψ)H is the H-inner
product of φ, ψ ∈ H and (l, φ)H is the duality action of l ∈ X ′ onto φ ∈ X .

The derivation of adaptive methods may be rigorously based on aposteriori
error bounds. Establishing such bounds is this work’s object, which we approach
using the following two main technical tools

(i) the elliptic reconstruction for conforming methods as described in [MN03,
LM06, GLM13],

(ii) the time lifting operator introduced and studied by [SW10, MN06], in the
context of time-discretizations of (1).

Our main contribution is the establishment of general aposteriori error bounds for
the fully discrete schemes of the form (2)–(3).

1.2. Elliptic reconstruction. For each n = 0, . . . , N , denoting the Ritz projector
by Rn : X → Xn, the elliptic reconstructor is defined as Rn := A−1

ΠnA (that is, a
preinverse of Rn, RnRn = idXn). We assume existence of aposteriori elliptic error
estimators EZ , Z ∈ {X ,H,X ′} such that

(4) ‖Rnw− w‖Z ≤ EZ [w,ARnw] ∀w ∈ Xn, n = 1, . . . , N.

The elliptic reconstruction of U is now defined as Ũ : [0, T ] → X such that

(5) Ũ(t) := RnU(t) for each t ∈ In and n = 0, . . . , N.
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1.3. Time reconstruction. To analyze the effects of time discretization, we use
a time reconstructor defined, for each Z ⊆ H Hilbert subspace, and each W ∈
Prn(In;Z), for n = 1, . . . , N with Ŵ defined from W by the weak initial value
problem

∫

In

(
Ŵ ′, V

)
H

=
(
[[W ]]n−1 , V (t+n−1)

)
H
+

∫

In

(W ′, V )H ∀V ∈ Prn(In;X ),(6)

Ŵ (t+n−1) =W (n− 1).(7)

Following [MN06, SW10] there hold the time-reconstruction error identities
∥∥∥W − Ŵ

∥∥∥
L∞(In;Z)

= ‖ [[W ]]n−1 ‖Z ,(8)

∥∥∥W − Ŵ
∥∥∥
L2(In;Z)

=

(
k(r + 1)

(2r + 1)(2r + 3)

)1/2

‖ [[W ]]n−1 ‖Z .(9)

2. Analysis

2.1. Splitting the error. Starting from U, we may therefore apply the elliptic
reconstructor to obtain Ũ and then the time reconstructor to obtain the space-time

reconstruction Û := ˆ̃U ∈ C0,1(0, T ;A). This allows the splitting of the full error
as follows

(10) e := U− u = U− Û + Ûu− u =: −ǫ+ ρ,

where the error ρ satisfies

(11) ρ′ +Aρ = ξ := ξ1 + ξ2, with ξi :=

N∑

n=1

1Inξ
i
n, i = 1, 2,

and 1A denoting the indicator function of a generic set A, where

(12)
ξ1n :=

(
Ũ ′ − U

′
)
+ χn

([[
Ũ − U

]]
n−1

)
+A

(
Û − Ũ

)
,

ξ2n := Πnf − f + χn

(
[[U− πnU]]n−1

)
.

The core part of the analysis consists in using energy techniques on (11) to bound
ρ and the elliptic error esimates (4) to bound ǫ. The following two results are
crucial to close the analysis.

2.2. Time reconstruction error estimate. We have the bound

(13)

∫

In

∥∥∥A(Û − Ũ)
∥∥∥
2

X ′

≤ (βηtime
n )2, with β := sup

w∈X
‖Aw‖X ′/‖w‖X

ηtime
n :=

(
k(r + 1)

(2r + 1)(2r + 3)

)1/2 (
(EX [[[U]]n−1 , [[AnU]]n−1])

2 +
∥∥[[U]]n−1

∥∥
X

)
.
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2.3. Elliptic reconstruction error. For t ∈ In, n = 1, . . . , N , we have

(14)

∥∥∥∥Ũ
′ + χn

[[
Ũ
]]

n−1
− U

′ − χn [[U]]n−1

∥∥∥∥
X ′

≤ ηspacen ,

with ηspacen := EX ′ [U′ + χn([[U]]n−1),AnU
′ + χn([[AnU]]n−1)].

3. Main results

Denote by α the coercivity of A and by CPF,X the Poincaré–Friedrichs constant
associated with H and X , λn := min{1, t−1

n }. The following are valid.

3.1. L2(X )-norm aposteriori bound. For each n = 1, . . . , N , we have the bound

(15) ‖u− U‖2L2(0,tn;X ) ≤
6

α
‖u0 − π0u0‖2H +

( 27

2α2
+ 3
) n∑

j=1

(ηtime
j )2

+ 3

n∑

j=1

(
EX [U,AnU]

)2
+ 3

n∑

j=1

∫

Ij

(
(βηspacej )2

)

+
27

α
λn

( n∑

j=1

∫

Ij

ηmesh
j

)2
+

27

2α2
C2

PF,X (1 − λn)
2

n∑

j=1

(ηmesh
j )2.

3.2. L∞(H)-norm aposteriori bound. For n = 1, . . . , N , we have the bound

(16) ‖u− U‖L∞(0,tn;H) ≤
(
2 ‖u0 − π0u0‖2H +

3

α

n∑

j=1

(
(ηtime

j )2 +

∫

Ij

(ηspacen )2
)

+ 2λn

( n∑

j=1

∫

Ij

ηmesh
j

)2
+

3

α
C2

PF,X (1− λn)
2

n∑

j=1

(ηmesh
j )2

) 1
2

+ max
j=1,...,n

(
EH[[[U]]n−1 , [[AnU]]n−1] +

∥∥[[U]]n−1

∥∥
H

)
+ max

0≤t≤tn
EH[U,AnU].
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Adaptive sparse and low-rank methods for parametric PDEs

Wolfgang Dahmen

(joint work with Markus Bachmayr, Albert Cohen)

Parameter dependent families of partial differential equations (PDEs) arise in a
diversity of contexts. For instance, Karhunen-Loève, polynomial chaos or other
types of expansions of random coefficient fields in a PDE, in principle, give rise
to even infinitely many parameters. Therefore, we consider a class of parametric
operator equations where the involved parameters could either be of deterministic
or stochastic nature. Specifically, we focus on scenarios involving a large number
of parameters in the context of elliptic boundary value problems of the type

(1) −div(a(y)∇u) = f in Ω, u = 0 on ∂Ω, y ∈ Y := [−1, 1]I,

where the coefficient field is given as an expansion

(2) a(x, y) = a0(x) +
∑

j∈I

yjθj(x)

subject to suitable conditions on the θj that ensure convergence of the expansion
as well as uniform ellipticity of the operator. Thus, (1) has a unique solution
(as a function of the spatial variables x as well as of the parametric variables
y ∈ Y = [−1, 1]I) in L2(Y, H1

0 (Ω)) = H1
0 (Ω) ⊗ L2(Y). As mentioned before,

#(I) = ∞ is permitted in which case u(y) = u(·, y) can be understood as the
limit of solutions to finitely parametrized problems obtained by truncating the
expansion (2). Hence, in this case the anisotropy of the parameter dependence,
induced by the decay conditions on the expansion (2), is essential.

From a practical point of view a typical “forward” simulation task concerns
the approximate computation of a quantity of interest such as the expectation
of the solution in the stochastic case or local spatial averages as functions of the
parameters. In either case one is confronted in one way or the other with what
is commonly referred to as “curse of dimensionality”. Therefore, understanding
the whole parameter-to-solution map y 7→ u(y) is of fundamental importance, see
e.g. [6, 7, 11] and the references therein. On the theoretical side the vast majority
of contributions to this problem area are concerned with sparse polynomial para-
metric expansions. One such strategy is based on performing sparse best n-term
approximations of the solution map in an a priori chosen system of tensor product
form in the parametric variables. This approach has been extensively analyzed in
the case of tensor product Legendre polynomial bases, for which approximation
rates have been established, see e.g. [3, 3]. On the practical side, a prominent ap-
proach is to combine such expansions with collocation, see e.g. [4]. The complexity
analysis of such methods is essentially based on a priori estimates.

An alternative strategy for addressing the challenges posed by high dimension-
ality is to use low-rank approximations of solutions based on a separation of spatial
and parametric variables. In this respect we review here some recent results from
[2] which, in particular, ask what can be gained by exploiting further low rank
structures, in particular using optimized systems of basis functions obtained by
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singular value decomposition techniques. Based on the concepts from [1], a generic
adaptive solver is proposed that is guaranteed to achieve a given target accuracy
after finitely many steps without requiring any a priori knowledge about the solu-
tion. Moreover, it can be specified so as to produce approximate solutions to (1)
in each of the following approximation formats: (a) sparse n-term approximation
with respect a fixed background basis for H1

0 (Ω)⊗L2(Y), (b) Hilbert-Schmidt type
low-rank approximations separating spatial and parametric variables, as well as (c)
approximate solutions in hierarchical tensor formats separating also all paramet-
ric variables. The latter variant is suited best for a possibly large but fixed finite
number of parametric variables with “equal importance“. Although it involves
a similar format as [10] it is conceptually different and can be shown to exhibit
near-optimal performance with respect to relevant approximation classes, see [2].
Therefore, we confine the subsequent discussion to the two former variants (a), (b)
focusing on the case of ininitely many parameters of “anisotropic importance”, re-
marking that for variant (a) the scheme agrees in essence with the one proposed
in [5] in the wavelet context and extended to parametric PDEs in [12, 13].

On the theoretical side, inspired by the findings in [3], several model scenarios
are presented which show that optimized low-rank expansions can either bring
significant or no improvement over sparse polynomial expansions, regarding the
number of terms needed to realize a given target accuracy. On the computational
side, the complexity of the adaptive solver is analyzed for its respective specifica-
tion to (b) low-rank structure as well as (a) sparse background basis expansions.
First, guided by the above mentioned model scenarios, benchmark classes are
introduced which quantifiy the expceted approximability properties of solutions
with respect to the decay of singular values, sparsity of the (lower-dimensional)
Hilbert-Schmidt factors, or of expansions in terms of the fixed background basis
for H1

0 (Ω) ⊗ L2(Y). Moreover, it is indicated that specific types of parametric
expansions (2) have a significant effect on the performance on algorithms based on
a posteriori residual evaluations. Specifically, in contrast to Karhunen-Loève type
representations, expansion functions θj of multilevel or wavelet type allow one to
fully exploit the approximability properties given in the benchmark classes. In
fact, the algorithm is shown to realize then near-best convergence and complexity
rates for both variants (a) and (b) improving somewhat on the results in [13] with
regard to (a). Adaptive solvers based on finite element discretizations in the spa-
tial variable have been proposed also in [8, 9] where, however, the complexity with
respect to the parametric components does not seem to be controled. An essential
difference between the algorithm discussed here from those in [10, 8, 9] lies in: (i) a
new adaptive operator application scheme using a posteriori information through
a judicious decomposition of the current aproximation and a careful compressibil-
ity analysis of the operator components; (ii) threshold based tensor-recompression
and coarsening schemes in the spirit of [5, 1]. Some numerical experiments quan-
tify the theoretical findings and support the predictions derived from the above
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mentioned model scenarios. On the other hand, the price for the obtained near-
optimal performance is a high level of intrusiveness, i.e., standard numerical tools
cannot easily be incorporated.
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On the discrete reliability for nonconforming finite element methods

Dietmar Gallistl

(joint work with Carsten Carstensen, Mira Schedensack)

Let T be a simplicial partition of the bounded Lipschitz polytope Ω ⊆ Rn, n ≥ 2.
Classical a posteriori error estimates for finite element discretizations of elliptic
partial differential equations (PDEs) posed in the Sobolev space H1

0 (Ω) (for in-
stance Poisson’s equation) usually take the form

‖∇(u− uT )‖2L2(Ω) ≤ Crel

∑

T∈T

η2T (uT )

where u is the solution to the PDE and uT is its finite element approximation with
respect to the mesh T . The bound on the right hand side consists of the sum of
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computable a posteriori error estimator contributions η2T (uT ) for each cell T ∈ T .
Such an error estimate is referred to as reliability estimate. It was observed in [4]
that, for conforming finite elements, the comparison of uT with the finite element

solution uT̂ with respect to a refinement T̂ of T leads to the so-called discrete
reliability

‖∇(uT̂ − uT )‖2L2(Ω) ≤ Cdrel

∑

T∈T \T̂

η2T (uT ).

Only the error estimator contributions on those elements of T that are refined

and therefore not contained in T̂ enter the upper bound. The constant Cdrel

is universal and only depends on the shape-regularity of the triangulations. It

does not depend on the mesh-size or the grade of refinement from T to T̂ . This
localization argument is a key argument in the proof of optimal convergence rates
of adaptive finite element methods [4].

In the case of nonconforming finite element methods, proofs of the discrete
reliability are not obvious because the discrete spaces on refined triangulations are
not nested. This contribution presents a proof of the discrete reliability [1] for the
nonconforming P1 finite element method (Crouzeix-Raviart method). For a given
triangulation T , the discrete space V (T ) consists of piecewise affine functions that
are continuous in the midpoints of the interior (n−1)-dimensional hyper-faces and
vanish in the midpoints of the (n−1)-dimensional hyper-faces on the boundary ∂Ω.
Existing results in the literature were based on discrete Helmholtz decompositions
and, thus, restricted to simply-connected planar domains. The new result is valid
in general Lipschitz polytopes in Rn. The crucial estimate is the discrete distance
control

inf
v
T̂
∈V (T̂ )

‖vT − vT̂ ‖2L2(Ω) ≤ Cddc

∑

F∈F(T \T̂ )

h−1
F ‖[vT ]F ‖

2
L2(F )

for any vT ∈ V (T ). Here, F(T \T̂ ) is the set of all (n−1)-dimensional hyper-faces

that belong to the simplices of T but not to those of T̂ . For any hyper-face F , its
diameter is denoted by hF and the bracket [·]F denotes the jump across F (if F
belongs to ∂Ω, it denotes the trace). The stated version was presented in [3] and
is slightly sharper than the result of [1]. The proof of discrete distance control is
based on fine properties [2] of the employed mesh-refinement procedure (Newest
Vertex Bisection).
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Instance optimal Crouzeix-Raviart adaptive FEM for the Poisson and
Stokes problems

Mira Schedensack

(joint work with C. Kreuzer)

Recently, the seminal contribution [5] proved instance optimality for an adaptive
algorithm based on a (modified) maximum marking strategy. The considered
problem is the Poisson problem in R2 approximated with P1 conforming finite
elements.

This talk is based on [7] and considers an adaptive algorithm with the same
modified maximum marking strategy for the Poisson problem and the Stokes equa-
tions in R2 approximated with P1 nonconforming finite elements, also named after
Crouzeix and Raviart [4]. Let IT denote the nonconforming interpolation operator
which satisfies [2]

1

Λ
‖h−1

T (v − IT v)‖L2(T ) ≤ ‖∇NC(v − IT v)‖L2(T ) ≤ ‖∇NCv‖L2(T ),

where ∇NC denotes the piecewise gradient and hT denotes the piecewise constant
mesh-size function which equals

√
area(T ) on each triangle T . For a fixed γ >

2Λ2 > 0, we define the energy

G(T ) := −
∫

Ω

(
1
2 |∇NCuT |2 − fuT

)
dx+ γ‖hT f‖2L2(Ω).

Then we have for any admissible refinement T⋆ of T the equivalence of discrete
errors and energy differences in the sense that

G(T )− G(T⋆) ≈ ‖∇NC(uT⋆ − uT )‖2L2(Ω) + ‖hT f‖2L2(Ω(T \T⋆))
,(1)

where Ω(T \T⋆) denotes the union of all triangles that are refined in T⋆ and A ≈ B
abbreviates that there exist constants C1 and C2 that are independent of the mesh
size such that C1A ≤ B ≤ C2A. This in particular implies that the sequence of
energies is monotonically decreasing on a sequence of refined triangulations. Define
the local error estimator on each side S of T by

E2
T (S) := ‖hT f‖2L2(ωS)

+ hS‖[∇NCuT · τ ]S‖2L2(S),

where ωS denotes the patch around S, [•]S denotes the jump across S and τ
denotes the tangent of S. Let S(T ) denote the set of sides of T and define for any

subset S̃ ⊆ S(T )

E2
T (S̃) :=

∑

S∈S̃

E2
T (S).

Then we have for any admissible refinement T⋆ of T discrete efficiency and discrete
reliability in the sense that

E2
T (S(T ) \ S(T⋆)) ≈ ‖∇NC(uT⋆ − uT )‖2L2(Ω) + ‖hT f‖2L2(Ω(T \T⋆))

.(2)

The proof of the discrete reliability employs a transfer operator from [1].
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The third important property is the lower diamond estimate. A lower diamond
(T ∧, T∨; T1, . . . , Tm) consists of regular triangulations T ∧, T∨, T1, . . . , Tm such that
T ∧ is the finest common coarsening of T1, . . . , Tm, and T∨ is the coarsest common
refinement of T1, . . . , Tm and the areas of coarsening Ω(Tj \ T∨) are pairwise dis-
joint [5]. Then the lower diamond estimate holds

G(T ∧)− G(T∨) ≈
m∑

j=1

(
G(Tj)− G(T∨)

)
.(3)

A similar assertion follows directly from the definition of a lower diamond for the
difference of the discrete solution on the finest triangulation T∨ and its noncon-
forming interpolant on the triangulations T ∧ and T1, . . . , Tm. Then a discrete
best-approximation result, which can be regarded as a discrete version of the re-
sults from [6, 3] and which is not immediate due to the nonconformity of the
method, allows to conclude the lower diamond estimate in terms of the energy
differences (3).

The three ingredients (1)–(3) allow for the proof of instance optimality of the
adaptive algorithm up to data oscillations in the following sense. There exist
constants C, C̃ ≥ 1 such that the sequence of triangulations (Tk)k∈N created by
the adaptive algorithm satisfies

‖∇NC(u − uTk
)‖L2(Ω) + osc(f, Tk) ≤ C̃

(
‖∇NC(u− uT )‖L2(Ω) + osc(f, T )

)

for all admissible refinements T of the initial triangulation T0 with

C#(T \ T0) ≤ #(Tk \ T0).
This instance optimality can be generalised to the nonconforming P1 discreti-

sation of the Stokes equations. The key ingredients for this generalisation are the
two conservation properties

divNC IT vT⋆ = 0 for all vT⋆ ∈ CR1
0(T⋆) with divNC vT⋆ = 0,

∫

T

divNC(KT⋆vT ) dx = 0 for all vT ∈ CR1
0(T ) with divNC vT = 0,

where T⋆ is an admissible refinement of T and KT⋆ maps P1 nonconforming func-
tions on the coarse triangulation to P1 nonconforming functions on the refinement
T⋆.
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On Adaptive Spectral Galerkin Methods with Dynamic Marking

Marco Verani

(joint work with Claudio Canuto, Ricardo H. Nochetto and Rob Stevenson)

The convergence and optimality theory of adaptive Galerkin methods for linear
elliptic PDEs is almost exclusively based on the Dörfler marking. This entails a
fixed marking parameter and leads to a contraction constant bounded below away
from zero. More precisely, the convergence is proven to be linear, i.e., a certain
expression controlling the error (a norm, or a combination of norm and estimator)
contracts with some fixed parameter ρ < 1 from one iteration to the next one,
e.g., ‖u− uk+1‖ ≤ ρ‖u− uk‖. This is typically achieved if the adaptation strategy
is based on some form of Dörfler marking (or bulk chasing) with fixed parameter
θ < 1: assuming that

∑
i∈I η

2
i is some additive error estimator at iteration k, one

identifies a minimal subset I ′ ⊂ I such that
∑

i∈I′ η2i ≥ θ2
∑

i∈I η
2
i and utilizes

I ′ for the construction of the new discretization at iteration k + 1. For wavelet
or h-type fem discretizations, optimality is guaranteed by performing cautious
successive adaptations, i.e., by choosing a moderate value of θ, say 0 < θ ≤
θmax < 1 [4]. This avoids the need of cleaning-up the discrete solution from time
to time, by subjecting it to a coarsening stage.

On the other hand, the resulting contraction factor ρ = ρ(θ) turns out to be
bounded from below by a positive constant, say 0 < ρmin ≤ ρ < 1 (related to the
‘condition number’ of the exact problem), regardless of the choice of θ. This is
not restrictive for fixed-order methods [4, 3], but for spectral Galerkin methods
it is a severe limitation which affects performance. Indeed, when a method of
spectral type is used, one expects a fast (possibly, exponentially fast) decay of the
discretization error for smooth solutions. In such a situation, a slow convergence
of the iterations of the adaptive algorithm would spoil the overall performance of
the method; from this perspective, it is useful to be able to make the contraction
factor as close to 0 as desired.

Yet, linear convergence of the adaptive iterations is not enough to guarantee the
optimality of the method. In order for the marking strategy to guarantee super-
linear convergence, one needs to adopt a dynamic choice of Dörfler’s parameter θ,
which pushes its value towards 1 as the iterations proceed. We accomplish this
requirement by equating the quantity 1 − θ2k to some function of the dual norm
of the residual rk, which is monotonically increasing and vanishing at the origin.
This defines our dynamic marking strategy introduced in [2]. The order of the root
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at the origin dictates the exponent q in the super-linear convergence estimate of
our adaptive algorithm.

In the following, using an idealized setting for the ease of presentation, we
explain why linear convergence does not guarantee the optimality of the algorithm,
and why a super-linear convergence is preferable. We refer to [2] for more details.

As customary in Nonlinear Approximation, we consider the best N -term ap-
proximation error EN (u) of the exact solution u, in a suitable norm, using com-
binations of at most N functions taken from a chosen basis. We prescribe a decay
law of EN (u) as N increases, which classically for fixed-order approximations is
algebraic and reads

(1) sup
N
NsEN (u) <∞,

for some positive s. However, for infinite-order methods such as spectral approxi-
mations an exponential law is relevant that reads

(2) sup
N

eηN
α

EN (u) <∞

for some η > 0 and α ∈ (0, 1], where α < 1 accommodates the inclusion of
C∞-functions that are not analytic. This defines corresponding algebraic and
exponential sparsity classes for the exact solution u. These classes are related to
Besov and Gevrey regularity of u respectively.

We now assume the ideal situation that at each iteration of our adaptive algo-
rithm 1

(3) ‖u− uk‖ h N−s
k or ‖u− uk‖ h e−ηNα

k ,

where Nk is the cardinality of the discrete solution uk, i.e., the dimension of the
approximation space activated at iteration k. We assume in addition that the
error decays linearly from one iteration to the next, i.e., it satisfies precisely

(4) ‖u− uk+1‖ = ρ ‖u− uk‖.
If u belongs to a sparsity class of algebraic type, then one easily getsNk h ρ−k/s,

i.e., cardinalities grow exponentially fast and

∆Nk := Nk+1 −Nk h Nk h ‖u− uk‖−1/s,

i.e., the increment of cardinality between consecutive iterations is proportional
to the current cardinality as well as to the error raised to the power −1/s. The
important message stemming from this ideal setting is that for a practical adaptive
algorithm one should be able to derive the estimates ‖u− uk+1‖ ≤ ρ ‖u−uk‖ and
∆Nk . ‖u− uk‖−1/s, because they yield, employing a geometric-series argument,

Nn =

n−1∑

k=0

∆Nk .

n−1∑

k=0

‖u− uk‖−1/s ≤ ‖u− un‖−1/s
n−1∑

k=0

ρ(n−k)/s . ‖u− un‖−1/s.

1We write Ak . Bk to indicate that Ak can be bounded by a multiple of Bk, independently
of the iteration counter k and other parameters which Ak and Bk may depend on; Ak h Bk

means Ak . Bk and Bk . Ak.
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The performance of a practical adaptive algorithm is thus quasi-optimal.
If u belongs to a sparsity class of exponential type, instead, the situation changes

radically. In fact, assuming (3) and (4), one has e−ηNα
k h ρk, and so

lim
k→∞

k−1/αNk =
(
| log ρ|/η

)1/α
,

i.e., the cardinality Nk grows polynomially. One of the key points of [2] is the
observation that if the convergence of the adaptive algorithm is super-linear, then
one is back to the simpler case of exponential growth of cardinalities which is
ameanable to a sharper performance analysis. To see this, let us assume a super-
linear relation between consecutive errors:

(5) ‖u− uk+1‖ = ‖u− uk‖q

for some q > 1. If additionally uk satisfies (3), then one infers that e−ηNα
k+1 h

e−ηqNα
k , whence

lim
k→∞

∆Nk

Nk
= q1/α − 1, lim

k→∞

| log ‖u− uk‖|1/α
Nk

= η1/α,

the latter being just a consequence of (3). This suggests that the geometric-
series argument may be invoked again in the optimality analysis of the adaptive
algorithm.

This ideal setting does not apply directly to a practical adaptive algorithm.
Indeed, in [2] we prove estimates that are consistent with the preceding derivation
to some extent, namely

‖u− uk+1‖ ≤ ‖u− uk‖q, ∆Nk ≤ Q| log ‖u− uk‖|1/ᾱ,

with constants Q > 0 and ᾱ ∈ (0, α]. Invoking ‖u− un‖ ≤ ‖u− uk‖q
n−k

, we then
realize that

Nn =
n−1∑

k=0

∆Nk ≤ Q
n−1∑

k=0

∣∣ log ‖u− uk‖
∣∣1/ᾱ ≤ Qq1/ᾱ

q1/ᾱ − 1

∣∣ log ‖u− un‖
∣∣1/ᾱ.

Setting η̄ :=
(

Qq1/ᾱ

q1/ᾱ−1

)−ᾱ
, we deduce the estimate

sup
n

eη̄N
ᾱ
n ‖u− un‖ ≤ 1,

which is similar to (2), albeit with different class parameters. The most important
parameter is ᾱ. Its possible degradation relative to α is mainly caused by the
fact that the residual, the only computable quantity accessible to our practical
algorithm, belongs to a sparsity class with a main parameter generally smaller
than that of the solution u. This perhaps unexpected property is typical of the
exponential class and has been elucidated in [1].
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Stable broken H1 and H(div) polynomial extensions

Martin Vohraĺık

(joint work with Alexandre Ern)

Braess et al. showed in [1] that equilibrated flux a posteriori error estimates lead
to local efficiency and polynomial-degree robustness. This means that the estima-
tors give local lower bounds for the error, up to a generic constant independent
of the polynomial degree of the approximate solution. These results apply to con-
forming finite element methods in two space dimensions and require solving local
homogeneous Neumann hat-function-weighted residual problems posed on vertex-
centered patches of elements via the mixed finite element method. The proof of
the p-robustness relies on two key components: uniform stability with respect to
the polynomial degree of the right inverse of the divergence operator of Costabel
and McIntosh [2, Corollary 3.4], and uniform stability with respect to the poly-
nomial degree of the right inverse of the normal trace of Demkowicz et al. [4,
Theorem 7.1]. In our contribution [5], we extended p-robustness to any numerical
method satisfying a couple of clearly identified assumptions, including various non-
conforming, discontinuous Galerkin, and mixed finite elements. Here one is led to
solve additionally local homogeneous Dirichlet conforming finite element problem
on each vertex-centered patch, with a hat-function-weighted piecewise continu-
ous datum. The results of [5] still only hold in two space dimensions, and their
proof proceeds through the same stability arguments as in [1], i.e. those of [2, 4].
In particular, advantage of the two-dimensional setting is taken to formulate the
local conforming Dirichlet problems using rotated Raviart–Thomas mixed finite
elements. We present in this contribution the extension of these results to three
space dimensions, with necessarily a different concept for the local Dirichlet prob-
lems. We do so in an abstract setting not necessarily linked to a posteriori error
analysis.

Let a shape-regular patch of simplicial elements sharing the given vertex (we
treat both interior patches and patches around a vertex on the boundary of a com-
putational domain) be given, together with a p-degree polynomial rF associated
with each interior face F of the patch in the H1 setting. In the H(div) setting,
let the data be a p-degree polynomial rF per face F and a p-degree polynomial
rK per element K of the patch. These data need to satisfy some compatibility
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conditions. We want to extend them to a piecewise polynomial of degree p over
the patch such that the jumps over the interior faces are prescribed by rF in the
H1 setting. In the H(div) setting, we want to find a piecewise Raviart–Thomas–
Nédélec function of degree p such that its normal component jumps are given by
rF and its piecewise divergence is given by rK . The goal is to show that these
extensions are, up to a constant only depending on the patch shape regularity, sub-
ordinate in the broken energy norm to the best possible (minimizing the broken
energy norm) extensions in the whole broken H1 or H(div) spaces. This result
can also equivalently be reformulated as the statement that 1) best-approximation
of a discontinuous piecewise scalar polynomial is as good by continuous piecewise
polynomials of the same degree as it is by all H1

0 Sobolev functions on the patch; 2)
best-approximation of a normal-trace-discontinuous piecewise vector polynomial
is as good by H(div)-conforming Raviart–Thomas–Nédélec functions of the same
degree as it is by all H(div) functions on the patch.

In contrast to [1], where the work with dual norms was essential, our proofs only
work with the (broken) energy norms. They are constructive and also indicate a
possible practical replacement of the local Neumann mixed finite element / local
Dirichlet conforming finite element problems by a single explicit run through the
patch, with possibly a solve on each element only. The key ingredients on a
single element are still the right inverse of the divergence [2, Corollary 3.4] and
the right inverse of the normal trace [4, Theorem 7.1] in the H(div) setting, but
this becomes the right inverse of the trace of Demkowicz et al. [3, Theorem 6.1]
in the H1 setting. Gluing the elemental contributions together turns out to be
a rather involved ingredient of the proofs in three space dimensions, since the
two-dimensional argument of turning around a vertex can no longer be invoked.
To achieve a suitable enumeration of the mesh cells composing the vertex-centered
patch in three dimensions, we crucially rely on the notion of shelling for polytopes,
as presented in, e.g., [7]. Finally, parts of the proofs additionally rely on a graph
result concerning the existence of two- and three-coloring of the vertices in the
patch or a suitable sub-patch. All the details can be found in [6].
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I, SIAM J. Numer. Anal. 46 (2008), 3006–3031.

[4] , Polynomial extension operators. Part III, Math. Comp. 81 (2012), 1289–1326.
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On approximation classes of adaptive methods

Gantumur Tsogtgerel

A crucial notion in the theory of adaptive finite element methods is that of approx-
imation classes, which we discuss here in a simple but very paradigmatic setting.
Given a polygonal domain Ω ∈ R2, a conforming triangulation P0 of Ω, and a
number s > 0, we say that a function u ∈ H1(Ω) belongs to the approximation
class A s if

min
{P∈P:#P≤N}

inf
v∈SP

‖u− v‖H1 ≤ cN−s,

for all N ≥ #P0 and for some constant c, where P is the set of conforming
triangulations of Ω that are obtained by a sequence of newest vertex bisections
from P0, and SP is the space of continuous piecewise affine functions subordinate
to the triangulation P . In a certain sense, A s is the collection of all functions that
can be approximated with the error ∼ N−s given the budget of N triangles.

When u ∈ A s is the solution of a boundary value problem, a natural question
is if the convergence rate N−s can be achieved by any practical algorithm, and
it was answered in the seminal works [1, 6]: These papers established that the
convergence rates of certain adaptive finite element methods are optimal, in the
sense that if u ∈ A s for some s > 0, then the method converges with the rate not
slower than s. This approach was greatly clarified and improved upon in [3].

Having established that the smallest approximation class A s in which the solu-
tion u belongs to essentially determines how fast adaptive finite element methods
converge, the next issue is to determine how large these classes are and if the solu-
tion to a typical boundary value problem would belong to an A s with large s. A
first step towards addressing this issue is to characterize the approximation classes
in terms of classical smoothness spaces, and the main work in this direction so far
appeared is [2], which, upon tailoring to our situation and a slight simplification,
tells that Bα

p,p ⊂ A s ⊂ Bσ
p,p for 2

p = σ < 1 + 1
p and σ < α < max{2, 1 + 1

p}
with s = α−1

2 . Here Bα
p,q are the standard Besov spaces defined on Ω. This result

has recently been generalized to higher order Lagrange finite elements by [5]. In
particular, they show that the direct embedding Bα

p,p ⊂ A s holds in the larger

range σ < α < m + max{1, 1p}, where m is the polynomial degree of the finite

element space, see Figure 1(a). However, the restriction σ < 1 + 1
p on the inverse

embedding A s ⊂ Bσ
p,p cannot be removed, since for instance, any finite element

function whose derivative is discontinuous cannot be in Bσ
p,p if σ ≥ 1 + 1

p and

p < ∞. To get around this problem, Gaspoz and Morin proposed to replace the
Besov space Bσ

p,p by the approximation space Aσ
p,p associated to uniform refine-

ments. We call the spaces Aσ
p,p multilevel approximation spaces. For the purposes

of this abstract, and roughly speaking, the space Aσ
p,p is the collection of functions

u ∈ Lp for which

inf
v∈SPk

‖u− v‖Lp ≤ chσk ,
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where {Pk} ⊂ P is a sequence of triangulations such that Pk+1 is the uniform re-
finement of Pk, and hk is the diameter of a typical triangle in Pk. Note for instance
that finite element functions are in every Aσ

p,p. With the multilevel approximation

spaces at hand, the inverse embedding A s ⊂ Aσ
p,p is recovered for all σ = 2

p > 0.

In the recent paper [4], we prove the direct embedding Aα
p,p ⊂ A

s, so that the
existing situation Bα

p,p ⊂ A s ⊂ Aσ
p,p is improved to Aα

p,p ⊂ A s ⊂ Aσ
p,p. It is a

genuine improvement, since Aα
p,p(Ω) ) Bα

p,p(Ω) for α ≥ 1 + 1
p . Moreover, as one

stays entirely within an approximation theory framework, one can argue that the
link between A s and Aα

p,p is more natural than the link between A s and Bα
p,p.

Once the link between A
s and Aα

p,p has been established, one can then invoke
the well known relationships between Aα

p,p and Bα
p,p. It seems that this two step

process offers more insight into the underlying phenomenon.

(a) If the space B
α
p,p is located above

the solid line and below the dashed line,
then B

α
p,p ⊂ A

s with s = α−1

2
. The

inverse embeddings A
s+ε

⊂ B
α
p,p hold

on the solid line and below the (slanted)
dotted line.

(b) If the space B
α
p,p is located above

or on the solid line, and if u ∈ A
s and

∆u ∈ B
α
p,p with s = α+1

2
, then u ∈ A

s
∗
.

It is as if the approximation of ∆u is
taking place in H

−1, with the proviso
that the shaded area is excluded from
all considerations.

Figure 1. Illustration of various embeddings. The point ( 1p , α)

represents the Besov space Bα
p,p.

The approximation classes A s are associated to measuring the error of an ap-
proximation in the H1-norm. Of course, this can be generalized to other function
space norms, such as Lp and Bα

p,p, which we consider in [4]. However, we do
not stop there, and consider more general approximation classes corresponding to
ways of measuring the error between a general function u and a discrete function
v ∈ SP by a quantity ρ(u, v, P ) that may depend on the triangulation P and is
required to make sense merely for discrete functions v ∈ SP . An example of such



Adaptive Algorithms 2561

an error measure is

ρ(u, v, P ) =

(
‖u− v‖2H1 +

∑

τ∈P

(diam τ)2‖f −Πτf‖2L2(τ)

) 1
2

,

where f = ∆u, and Πτ : L2(τ) → Pd is the L2(τ)-orthogonal projection onto Pd,
the space of polynomials of degree not exceeding d. It has been shown in [3] that
if the solution u of the boundary value problem

∆u = f in Ω and u|Ω = 0,

satisfies
min

{P∈P:#P≤N}
inf

v∈SP

ρ(u, v, P ) ≤ cN−s,

for all N ≥ #P0 and for some constants c and s > 0, then a typical adaptive
finite element method converges with the rate not slower than s. Moreover, there
are good reasons to consider that the approximation classes A s

∗ defined by the
preceding equation are more attuned to certain practical adaptive finite element
methods than the standard approximation classes. Obviously, we have A s

∗ ⊂ A s

but we cannot expect the inclusion A s ⊂ A s
∗ to hold in general. In [3], an effective

characterization of A
s
∗ was announced as an important pending issue.

The general results in [4] imply a characterization of A s
∗ in terms of member-

ships of u and f = ∆u into suitable approximation spaces, which in turn are
related to Besov spaces. For instance, we show that if u ∈ A s and f ∈ Bα

p,p

with α
2 ≥ 1

p − 1
2 and s = α+1

2 , then u ∈ A s
∗ , see Figure 1(b). Note that the

approximation rate s = α+1
2 is as if we were approximating f in the H−1-norm,

which is illustrated by the arrow downwards. However, the parameters must sat-
isfy α

2 ≥ 1
p − 1

2 (above or on the solid line), which is more restrictive compared

to α+1
2 > 1

p − 1
2 (above the dashed line), the latter being the condition we would

expect if the approximation was indeed taking place in H−1. This situation cannot
be improved in the sense that if α

2 <
1
p − 1

2 then Bα
p,p 6⊂ L2, hence the quantity ρ

would be infinite in general for f ∈ Bα
p,p.

References

[1] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence
rates, Numer. Math. 97 (2004), 219–268.

[2] P. Binev, W. Dahmen, R. DeVore, and P. Petrushev, Approximation classes for adaptive
methods, Serdica Math. J., 28 (2002), 391–416.

[3] J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal convergence
rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), 2524–2550.

[4] T. Gantumur, Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Ap-
proximation, Found. Comp. Math., (2016), 1–40.

[5] F. D. Gaspoz and P. Morin, Approximation classes for adaptive higher order finite element
approximation, Math. Comp., 83 (2014), 2127–2160.

[6] R. P. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput.

Math., 7 (2007), 245–269.



2562 Oberwolfach Report 44/2016

Adaptive discretization in Banach spaces with the nonlinear
Petrov–Galerkin method

Kristoffer G. van der Zee

(joint work with Ignacio Muga)

This short note reviews some initial results and open problems for the adaptive dis-
cretization of linear problems in Banach-space settings with the nonlinear Petrov–
Galerkin method. This is relevant to, for example, PDEs with rough data or
nonsmooth solutions.

1. The nonlinear Petrov–Galerkin method

In the setting of Banach spaces, consider the linear problem:

Find u ∈ U :
〈
Bu, v

〉
V∗,V

=
〈
f, v
〉
V∗,V

∀v ∈ V ,

where B ∈ L(U;V∗) is a linear continuous operator, f ∈ V∗, U is a Banach space
and V is a strictly-convex reflexive Banach space with strictly-convex dual V∗.1 In
typical examples, U and V are distinct reflexive Sobolev spaces (e.g., Lp or W 1,p,
1 < p <∞).

To ensure well-posedness of the above problem (by the Banach closed-range
theorem and open-mapping theorem), we assume that B is bounded below, i.e.,

‖Bw‖V∗ ≥ γ‖w‖U ∀w ∈ U ,

for some γ > 0, and that its dual operator has a trivial kernel, i.e., Ker(B∗) = {0}.
Given a discrete subspace Un ⊂ U, the nonlinear Petrov–Galerkin (NPG) dis-

cretization, proposed in [11], is given by:

(1) Find un ∈ Un :
〈
Bwn , J

−1
Vm

(
f −Bun

)〉
V∗,V

= 0 ∀wn ∈ Un ,

where Vm ⊆ V is a subspace, and JVm : Vm → V∗
m is the bijective duality map

for Vm. The duality map for a Banach space X with strictly convex X∗ is a
(generally nonlinear) map defined by ‖JX(x)‖X∗ = ‖x‖X and

〈
JX(x), x

〉
X∗,X

=

‖x‖2
X
for all x ∈ X. It is a linear map only in Hilbert spaces, in which case it

coincides with the (linear) Riesz map.

2. Connections and tractability

The NPG method builds on recent ideas in Petrov–Galerkin and residual mini-
mization methods: It extends the seminal optimal Petrov–Galerkin methodology
of Demkowicz and Gopalakrishnan [7] to Banach spaces; it provides for a (mono-
tone) nonlinear extension of the corresponding mixed formulation, cf. Dahmen et
al [6]; and it extends the Lp residual-minimization method of Guermond [10] to
arbitrary dual Banach spaces.

1A normed space X is strictly convex iff ‖θx+ (1 − θ)y‖X < 1 for all θ ∈ (0, 1), where x 6= y,
and ‖x‖X = ‖y‖X = 1.
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The case Vm = V corresponds to the ideal setting, and delivers the best ap-
proximation in Un as measured in the norm ‖B(·)‖V∗ . The NPG method becomes
tractable however for discrete Vm. In that case, the (discrete) well-posedness
and the quasi-optimality of the NPG method are guaranteed under the follow-
ing Fortin compatibility condition for the pair (Un,Vm): There exists a bounded
projection Π : V → Vm such that

(2)
〈
Bwn, v −Π(v)

〉
V∗,V

= 0 ∀wn ∈ Un ,

for all v ∈ V. Hence, the NPGmethod needs, in particular, that dimVm ≥ dimUn.
Another generalization provided by the NPG method is the following: Upon

choosing a special compatible pair (Un,Vm) for which dimVm = dimUn, one
recovers the standard (linear) Petrov–Galerkin method! See [11] for more details.

3. Adaptive discretization: Challenges

The NPG method is a general discretization method which aims to deliver, with
guaranteed stability, near-best approximations to problems in functional settings
beyond Hilbert spaces, thereby opening up the possibility to address a range of
new applications. From a theoretical point of view, further research is required,
e.g., to clarify how to tackle the Fortin condition (which is likely to be problem
dependent), and to devise good solvers for the nonlinear system contained in (1).

Significant research is also needed to develop and understand adaptive dis-
cretization strategies with the NPG method. The key ingredient in the efficient
adaptive generation of (nested) subspaces {Un} are a posteriori error estimates.
Coincidentally, the NPG method has a natural a posteriori error analysis, which
can be employed, in standard manners, to generate adaptively-refined subspaces
(as in, e.g., adaptive finite element methods):

Theorem (A posteriori error analysis) Assume that the Fortin condi-
tion (2) holds. Let un ∈ Un denote the (well-defined) approximation given by the
NPG method (1), and let rm := J−1

Vm
(f −Bun) ∈ Vm denote its discrete residual

representation. Then

1

‖B‖‖rm‖V ≤ ‖u− un‖U ≤ ‖Π‖
γ

‖rm‖V +
1

γ
osc(f) ,

where the data oscillation is defined by osc(f) :=
∥∥f ◦ (I −Π)

∥∥
V∗ . �

The proof of this result can be found [11]. It is perhaps striking that the
a posteriori result is exactly the same as the one in Hilbert-space settings [4, 1];
this is not true for the a priori error analysis, which simplifies in Hilbert spaces
because of linearity and Kato’s identity for projectors.

The above theorem is a first result that is needed to understand adaptiv-
ity. However, since the NPG method is a nonstandard, nonlinear discretization
methodology, the established theories for the analysis of adaptive methods do not
seem to apply. There are many open problems that need to be addressed; we close
this note by mentioning some exciting questions:
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• Can one guarantee that a sequence of adaptively-computed approxima-
tions {un} converges to the solution u, and if so, is this convergence optimal
with respect to a suitable adaptive-approximation class (cf. [12, 3, 2])?

• Is it possible to avoid the (intractable) computation of osc(f), e.g., by
resorting to suitable (adaptive) data approximation (cf. [5]) or adaptive
computation of Vm (cf. [6])?

• Can one design optimally-convergent goal-oriented adaptive NPG algo-
rithms that aim to efficiently resolve output-quantities of interest (cf. [9])?

• How should one include linearization errors which results from the solution
of the nonlinear discrete system (cf. [8])?
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Local error analysis of the boundary element method for
polygonal/polyhedral domains

Jens Markus Melenk

(joint work with Markus Faustmann)

Energy projection methods such as many finite element methods (FEM) or bound-
ary element methods (BEM) minimize the error in some global norm. Locally, i.e.,
on fixed subdomains, the convergence may be better, especially, if the sought so-
lution is smoother there. In the context of the FEM, the numerical analyses of
this setting goes back at least to [4]; subsequent generalizations include [9, 1] and
the references there. These estimates take the following form: The error in the
local H1-norm is estimated by a local best approximation error in H1 and an er-
ror in a weaker norm (L2-norm or negative norm). Significantly fewer works are
concerned with local error estimates for the BEM. The case of smooth curves is
studied in [5, 8], and [7] analyze screen domains. For the case of piecewise smooth
geometries, sharp local error estimates that exploit the maximum local regularity
of the solution do not seem to be available. Additionally, the local estimates in
[5, 8, 7] focus on the energy norm and do not provide sharp estimates in stronger
norms. For the case of Symm’s integral equation, Theorem 1 below presents sharp
estimates in the local L2-norm, which is stronger than the local energy norm. Our
numerics illustrate the sharpness of these a priori bounds. Full proofs are given in
the forthcoming paper [3].

Main results. We study polygonal (d = 2) or polyhedral (d = 3) Lipschitz do-
main Ω ⊂ Rd with boundary Γ := ∂Ω. An important fact is that for such domains
an elliptic shift theorem for the interior and exterior Dirichlet problem holds in
an extended range, which we denote by a parameter αD ∈ (0, 1/2). Specifically,
let the ball BRΩ(0) be so large that Ω ⊂ BRΩ(0). Then we require for every

0 < ǫ ≤ αD and both Ω̂ = Ω and Ω̂ = BRΩ(0) \Ω the validity of the shift theorem

(1) ‖u‖H3/2+ǫ(Ω̂) ≤ Cε ‖f‖H−1/2+ǫ(Ω̂) ,

where u denotes the solution of −∆u = f in Ω̂, u = 0 on ∂Ω̂. We mention that
for d = 2 the parameter αD can be determined explicitly terms of the largest
interior and exterior angles of the polygon, viz., any αD with 1/2 < αD + 1/2 <
mini{π/ωi, π/(2π − ωi)}, where the ωi are the internal angles of the polygon.

We consider Symm’s integral equation of finding φ ∈ H−1/2(Γ) such that V φ =
g, where g ∈ H1/2(Γ) is given and V : H−1/2(Γ) → H1/2(Γ) denotes the single-
layer boundary integral operator (see [6, p. 119]).

On a regular quasi-uniform triangulation Th of Γ with mesh size h, we consider
a lowest order Galerkin discretization in the space of piecewise constant functions
on Th, which we denote by S0,0(Th).
Theorem 1. Let (1) hold. Let φ ∈ H−1/2(Γ) and φh ∈ S0,0(Th) satisfy the
Galerkin orthogonality condition

〈V (φ− φh), ψh〉 = 0 ∀ψh ∈ S0,0(Th).
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Let Γ0, Γ̂ be open subsets of Γ with Γ0 ⊂ Γ̂ ( Γ and R := dist(Γ0, ∂Γ̂) > 0.

Assume φ ∈ L2(Γ̂). Then,

‖φ− φh‖L2(Γ0)
≤ C

(
inf

χh∈S0,0(Th)
‖φ− χh‖L2(Γ̂) + ‖φ− φh‖H−1−αD (Γ)

)
,

where C > 0 depends only on Γ, Γ0, d, R, and the γ-shape regularity of Th.
The norm ‖ · ‖H−1−αD (Γ) is the dual norm of ‖ · ‖H1+αD (Γ), which is defined as

‖w‖H1+αD (Γ) := inf{‖W‖H3/2+αD (Ω) : W |Γ = w}.
The key step of the local error analysis of the FEM [4, 9, 1] is a Caccioppoli-

type inequality for discrete harmonic functions. The corresponding estimate for
the BEM is likewise key and stated in the following proposition:

Proposition 1 ([2, Lemma 3.9]). Let ζh ∈ S0,0(Th) and define the potential u :=

Ṽ ζh ∈ H1
ℓoc(R

d). Let B1 ⊂ B2 be two concentric balls with radii R1 < R2. Then
there is C > 0 (depending only on R1, R2, and Γ) such that for h sufficiently small
the following holds: If 〈V ζh, ψh〉 = 0 for all ψh ∈ S0,0(Th) with suppψh ⊂ B2,
then

‖∇u‖L2(B1) ≤ C
[
h‖∇u‖L2(B2) + ‖u‖L2(B2)

]
.

By assuming the solution φ of V φ = g to be in the Sobolev space H−1/2+α(Γ),
α > 0, and to have locally even better Sobolev regularity Hβ , β ∈ [0, 1], we can
be explicit in the local convergence rates:

Corollary 1. Let the assumptions of Theorem 1 be fulfilled. Let Γ̃ ⊂ Γ be a subset

with Γ̂ ( Γ̃ and dist(Γ̂, ∂Γ̃) = R > 0. Additionally, assume φ ∈ H−1/2+α(Γ) ∩
Hβ(Γ̃) with α ≥ 0, β ∈ [0, 1]. Then, with a constant C > 0 depending only on

Γ, Γ̃, d, R, α, β, and the γ-shape regularity of Th,
‖φ− φh‖L2(Γ0)

≤ Chmin{1/2+α+αD ,β}.

The error term ‖φ − φh‖H−1−αD (Γ) in Theorem 1 is treated with a duality ar-
gument that utilizes the maximum amount of regularity provided by the shift
theorem given in (1). Therefore, one does not expect that replacing the contribu-
tion ‖φ−φh‖H−1−αD (Γ) in Theorem 1 with an even weaker norm (which is possible)
leads to improvements in the convergence rate. Indeed, the numerics below show
that our estimates are sharp.

Numerical Example. In order to underline that our local estimates are opti-
mal, we study the behavior of the local error on the L-shaped domain in the L2(Γ0)-

norm and theH−1/2(Γ0)-norm, computed by ‖φ‖2H−1/2(Γ0)
∼ 〈V (χ0φ), χ0φ〉, where

χ0 is the characteristic function for Γ0 ⊂ Γ. Here, Γ0 is fixed and a union of
elements away from the reentrant corner at the origin. For the L-shaped do-
main, we may choose αD = 1/6 − ǫ for any ǫ > 0. We prescribe the solution
u(r, θ) = rα cos(αθ) of Poisson’s equation in polar coordinates. Then, the normal
derivative φ = ∂nu solves V φ = (K + 1/2)γ0u with the double layer operator K.
We have φ ∈ H−1/2+α(Γ) ∩ H1(Γ0), and with the choice α = 1/6, Corollary 1
leads to an expected local rate of O(hα+1/2+αD ) = O(h5/6−ǫ).
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Figure 1. Local and global convergence of Galerkin-BEM for
Symm’s equation, L-shaped domain, α = 1/6.

Figure 1 shows that the theoretical local rate is indeed obtained in the L2(Γ0)-
norm. In the weaker H−1/2(Γ0)-norm we observe no improvement of the rate.
This is a reflection of the fact that the global error term ‖φ − φh‖H−1−αD (Γ) in
Theorem 1 is the limiting factor for the convergence in both norms.
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