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Introduction by the Organisers

The workshop Diophantine approximation, fractal geometry and dynamics, organ-
ised by Victor Beresnevich (York) and Sanju Velani (York) was well attended with
over 50 participants and a nice blend of experts with backgrounds in metric num-
ber theory and flows on homogeneous spaces, as well as researchers from adjacent
fields, graduate students and postdocs. The workshop was well planned, aimed
both at newcomers, starting with a broad introduction to metric Diophantine ap-
proximation, and at experts, including informal discussions on the details of the
latest discoveries.

In 1983 W. M. Schmidt formulated a conjecture about the existence of points
in the Euclidean plane that are simultaneously badly approximable with weights
(13 ,

2
3 ) and (23 ,

1
3 ), that is Bad(13 ,

2
3 ) ∩Bad(23 ,

1
3 ) 6= ∅. Should this intersection be

empty, it would immediately prove a well known conjecture of Littlewood from the
1930s. Weighted badly approximable points are characterised by (non-)proximity
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by rational points in a metric ‘skewed’ by some weights of approximation, say, i
and j where i, j ≥ 0, i+ j = 1, which are ‘attached’ to coordinate directions.

The central goal of this workshop was to expose its participants to recent breath-
taking development regarding Schmidt’s conjecture stemming from its proof by
Badziahin, Pollington and Velani in 2011. We delved into the details of the proof
of the conjecture given in a subsequent work of Jinpeng An (2013) and also dis-
cussed the solution to Davenport’s problem, which boils down to the study of the
intersections of Bad(i, j) with planar curves. More generally we studied the recent
work of Beresnevich (2015) on badly approximable points on manifolds.

The workshop started with a discussion of the broader area of metric Dio-
phantine approximation: theorems of Khinchine and Jarńık, Ubiquity and Mass
Transference, the notions of Dirichlet improvable and singular points, dynamical
aspects of Diophantine approximation and the landmark results of Kleinbock and
Margulis. It then continued with a detailed account of the main ideas which led to
the recent achievements described above. There also has been a burst in the de-
velopment of new techniques, namely variants of Schmidt’s game and Generalised
Cantor sets constructions, which were also studied in some depth.

Acknowledgement: The MFO and the workshop organisers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

1-Dimensional Diophantine Approximation

Agamemnon Zafeiropoulos

In this talk we present some basic results in Diophantine approximation in the
real line. The most fundamental is Dirichlet’s theorem:

Theorem 1. (Dirichlet): Let x ∈ R, Q ∈ N. There exist p ∈ Z, 1 ≤ q ≤ Q such
that

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≤ 1

qQ
·

As an immediate corollary to Dirichlet’s theorem we get that for all irrationals
x there exist infinitely many rationals p/q such that |x− p/q| < 1/q2. In other
words we have a rate of approximation satisfied for all reals and it makes sense to
ask if this is the best possible for all reals. We define the set of badly approximable
numbers to be the set of irrationals for which this bound is the best possible, i.e.

Bad = {x ∈ (0, 1) : there exists c > 0 such that q‖qx‖ ≥ c for all q = 1, 2, . . .} ,
where ‖ · ‖ denotes the distance to the integers. We try to estimate the size of this
set in terms of the Lebesgue measure following a different way than the original
proof by Khinchine. First we present Khinchine’s theorem:

Theorem 2. Let ψ : N → (0,∞) be any monotonic function. Consider the set

W (ψ) =

{

x ∈ (0, 1) :

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≤ ψ(q)

q
for infinitely many p/q ∈ Q

}

.

Then

|W (ψ)| =
{

0, if
∑∞

q=1 ψ(q) <∞
1, if

∑∞
q=1 ψ(q) = ∞.

This gives the Lebesgue measure of any set of irrationals satisfying a specific
rate of approximation. For the proof of Khinchine’s theorem we introduce the
notion of ubiquitous systems.

Let I0 ⊆ R be an interval, R = (Rα)α∈J be a countable family of points, called
the resonant points, β : J → (0,∞) be a function which assigns a weight βα to
each resonant point Rα, u = (un)

∞
n=1 be a positive and increasing sequence with

un → ∞, ρ : (0,∞) → (0,∞) be a function with limt→+∞ ρ(t) = 0, called the
ubiquitous function. Assume that for all n = 1, 2, . . . the set Ju(n) = {α ∈ J :
βα ≤ un} is finite.

We say that the system (R, β) is locally ubiquitous in I0 relative to (ρ, u) if
there exists an absolute constant κ > 0 such that for any subinterval I ⊆ I0 the
set ∆u(ρ, n) =

⋃

α∈Ju(n)B(Rα, ρ(un)) satisfies

|∆u(ρ, n) ∩ I| ≥ κ|I|.
The main theorem regarding the apparatus of ubiquity is the following:
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Theorem 3. Suppose (R, β) is locally ubiquitous in I0 relative to (ρ, u) and Ψ :
(0,∞) → (0,∞) is a function such that Ψ(un+1) ≤ λΨ(un), n ≥ n0 for some
constant 0 < λ < 1. Consider the set

Λ(R, β,Ψ) = {x ∈ I0 : |x−Rα| < Ψ(βα) for infinitely many α ∈ J } .
Then |Λ(R, β,Ψ)| = |I0|, if

∑∞
n=1

Ψ(un)
ρ(un)

= +∞.

This is the theorem we use to prove Khinchine’s theorem, after showing that the
rationals are ubiquitous in the unit interval. In turn Khinchine’s theorem implies
that |Bad | = 1; it suffices to observe that the complement of Bad contains the
set W (ψ0), where ψ0(q) =

1
q log q , q = 2, 3, . . .
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Jarńık, Besicovitch and Mass Transference

Demi Allen

In Diophantine Approximation sets of interest often satisfy elegant “zero-one”
laws, a famous example being Khintchine’s Theorem (discussed in the talk Back-
ground: one-dimensional Diophantine approximation). While these zero-one laws
often provide simple criteria for determining whether the Lebesgue measure of a
set is zero or one they do have a drawback. Such zero-one laws involve “excep-
tional” sets of Lebesgue measure zero and provide no further information which
allows us to distinguish these sets even though, intuitively, one might not expect
the sizes of such sets to be the same.

With this motivation in mind, we recall the definitions of Hausdorff measure
and Hausdorff dimension (see, for example, [4]) and explain why we might be
interested in using these to study sets of interest in Diophantine approximation.
We then mention some relevant results of Jarńık and Besicovitch (see, for example,
[1, 2] and references therein).

Recall that given a function ψ : N → R+ the set of ψ-approximable numbers in
the unit interval, I, is

A(ψ) =

{

x ∈ I :

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
ψ(q)

q
for infinitely many (p, q) ∈ Z× N

}

.

For τ > 1, we will also use the notation A(τ) = A(q → q−τ ).



Diophantine Approximation, Fractal Geometry and Dynamics 2755

Jarńık and Besicovitch both independently proved:

Jarńık-Besicovitch Theorem. Let τ > 1. Then

dimH(A(τ)) =
2

τ + 1
.

For τ > 1 all we can infer from Khintchine’s Theorem is that |A(τ)| = 0 whereas
the Jarńık-Besicovitch Theorem allows us to further distinguish these sets.

In a further study, Jarńık actually proved the following more general result
which can be viewed as the Hausdorff measure analogue of Khintchine’s Theorem.

Jarńık’s Theorem. For s ∈ (0, 1) and ψ : N → R+,

Hs(A(ψ)) =











0 if
∑∞

q=1 q
1−sψ(q)s <∞,

∞ if
∑∞

q=1 q
1−sψ(q)s = ∞ and ψ is monotonic.

We show that, somewhat surprisingly, it actually turns out that Khintchine’s
Theorem implies (the seemingly more general) Jarńık’s Theorem.

That this is the case is a consequence of the Mass Transference Principle [3]
due to Beresnevich and Velani - a remarkable result which allows us to transfer
Lebesgue measure statements for lim sup sets arising from a sequence of balls in
Rk to Hausdorff measure statements.

Before we state this result we recall that if Ei is a sequence of sets

lim sup
i→∞

Ei = {x : x ∈ Ei for infinitely many i} =

∞
⋂

N=1

⋃

i≥N

Ei.

Also, if B = B(x, r) is a ball in Rk and s > 0 let

Bs = B(x, r
s
k ).

We then have the following:

Mass Transference Principle (Beresnevich, Velani [3] - 2006). Let {Bi}i∈N be
a sequence of balls in Rk with r(Bi) → 0 as i → ∞, let s > 0, and let Ω be a ball
in Rk. Suppose that

|Ω ∩ lim sup
i→∞

Bs
i | = |Ω|.

Then, for any ball B in Ω,

Hs
(

B ∩ lim sup
i→∞

Bi

)

= Hs(B) .

Remark. The above statement is a simplified version of the statement proved in
[3]. For simplicity, here we restrict ourselves to using Hausdorff s-measure whereas
a more general statement in terms of Hausdorff f -measures is proved in [3].

Two, perhaps unexpected, consequences of the Mass Transference Principle are:

Corollary 1. Khintchine’s Theorem implies Jarńık’s Theorem.

Corollary 2. Dirichlet’s Theorem implies the Jarńık-Besicovitch Theorem.
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In addition to some general discussion of the Mass Transference Principle we
show how it may be used to obtain Corollaries 1 and 2. Finally, we conclude by
giving an outline of the proof of the Mass Transference Principle.
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Bad and Dirichlet in Higher Dimensions

Anne-Maria Ernvall-Hytönen

The aim of the talk was to give an overview of the basic concepts in the theory
of badly approximable points in higher dimensions. The main sources are the
books by Cassels [4] and Schmidt [6], and the expository paper [3] by Beresnevich,
Ramı́rez and Velani.

Minkowski’s theorem for systems of linear forms is a crucial tool in proving the
basic results in the higher dimensional Dirichlet theory. Minkowski’s theorem is
the following:

Theorem 1. Let βi,j ∈ R, where 1 ≤ i, j ≤ k, and let C1, . . . , Ck > 0. If

| det(βi,j)1≤i,j≤k| ≤
k
∏

i=1

Ci,

then there exists a non-zero integer point x = (x1, . . . , xk) such that
{

|x1βi,1 + · · ·+ xkβi,k| < Ci (1 ≤ i ≤ k − 1)

|x1βk,1 + · · ·+ xkβk,k| ≤ Ck

The proof of this relies on the Minkowski’s convex body theorem stating that
if B is a convex subset of Rn, which is symmetric about the origin (i.e., if x ∈ B
then −x ∈ B), and if the volume of B is greater than 2n (or equal to 2n in case B
is compact), then B contains a non-zero integer point.

Assume that 0 < i1, . . . in < 1 satisfy
∑n

j=1 ij = 1, and let α1, . . . , αn ∈ R.
Applying Minkowski’s linear forms theorem to the forms with coefficients βj,j = −1
when 1 ≤ j ≤ n. βn+1,n+1 = 1 and βj,n+1 = αj , and with parameters Cj = N−ij

when 1 ≤ j ≤ n and Cn+1 = N , we obtain that there are integers (p1, . . . pn, q)
such that the inequalities |qαj − pj | < N−ij for 1 ≤ j ≤ n and |q| ≤ N are
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satisfied. Hence, the points α1, α2, . . . , αn can be simultaneously approximated:
For any (α1, . . . , αn) ∈ Rn and N ∈ N, there exists q ∈ Z such that

max
{

||α1q||1/i1 , . . . , ||αnq||1/in
}

< N−1

and 1 ≤ q ≤ N . In particular, there are infinitely many integers q > 0 such that

max
{

||α1q||1/i1 , . . . , ||αnq||1/in
}

< q−1

The question that arises is: Can we replace the q−1 on the right side of the
inequality by something smaller, say εq−1? This leads to the definition of badly
approximable points:

Definition 2. Assume 0 < i1, ..., in < 1 and
∑n

j=1 ij = 1. The set Bad(i1, ..., in)

consists of badly approximable points, namely, points (α1, ..., αn) such that there
exists a constant c(α1, ..., αn) so that

max
{

||qα1||1/i1 , . . . , ||qαn||1/in
}

> c(α1, . . . , αn)q
−1.

for all q ∈ N.

For all n-tuples (i1, ..., in) with 0 < i1, ..., in and
∑n

j=1 ij, the set Bad(i1, ..., in)
is non-empty.

The claim

Bad(i1, j1) ∩Bad(i2, j2) 6= ∅
whenever 0 < i1, i2, j1, j2 < 1 and i1 + j1 = i2 + j2 = 1 is known as Schmidt’s
conjecture, although originally Schmidt conjectured the result for i1 = j2 = 1

3

and i2 = j1 = 2
3 . Even this weaker formulation resisted attacks until Badziahin,

Pollington and Velani [1] proved a much stronger statement:

Theorem 3. Let (i1, ji), . . . , (id, jd) be a finite number of pairs satisfying the con-
ditions 0 < it, jt < 1 and it + jt = 1 for 1 ≤ t ≤ d. Then

dim
(

∩d
t=1 Bad(it, jt)

)

= 2.

If Schmidt’s conjecture had not been true, Littlewood’s conjecture, which states
that

lim inf
q→∞

q||qx||||qy|| = 0

for any (x, y) ∈ R2, would have been true. Indeed, if (x, y) ∈ R2 and 0 < i, j < 1,
i+ j = 1 satisfy (x, y) 6∈ Bad(i, j), then for any constant c there exists an integer
q such that

max
(

||qx||1/i, ||qy||1/j
)

< cq−1.

By multiplying one gets that lim infq→∞ q||qx||||qy|| = 0. However, Littlewood’s
conjecture is still wide open.

Let us now briefly look at linear forms. Using Minkowski’s theorem for systems
of linear forms with β1,j = αj when 1 ≤ j ≤ n, β1,n+1 = −1 and βj+1,j = 1 for
1 ≤ j ≤ n, and with C1 = N−n and Cj = N when 2 ≤ j ≤ n+ 1 we obtain that
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for any (α1, . . . , αn) ∈ Rn and for any real N > 1, there exist q1, . . . , qn, p ∈ Z

such that

|q1α1 + · · ·+ qnαn − p| < N−n

and 1 ≤ max1≤j≤n[qj | ≤ N . More generally, for the system of linear forms

L(x) = (L1(x), . . . , Ln(x))

consisting of linear forms

Li(x) = αi1x1 + · · ·αimxm

with x = (x1, . . . , xm), there exists an integer point (x, y) = (x1, . . . , xm, y1, . . . , yn)
with x 6= 0 such that

max |L(x)− y|n < Cm,n
1

max |xi|
where

Cm,n =
mmnn

(m+ n)m+n
· (m+ n)!

m!n!
.

The system of linear forms L(x) = (L1(x), . . . Ln(x)) is called badly approximable
if the constant Cm,n above cannot be replaced by an arbitrarily small constant,
namely, if there is a constant γ(L1, . . . , Ln) such that

(max |xi|m) (max |L(x)− y|n) > γ

for every integer point (x, y), x 6= 0. The system of linear forms corresponding to a
matrix is badly approximable if and only if so is the system of linear forms coming
from the transpose of the matrix [5]. An elegant special case of this principle is
the following theorem [2]:

Theorem 4. Let the numbers i1, . . . , in satisfy the conditions 0 < i1, . . . , in < 1
and

∑n
j=1 ij, and let y = (y1, . . . , yn) ∈ Rn. Then the following statements are

equivalent:

(1) y ∈ Bad(i1, . . . , in)
(2) There exists c > 0such that for any Q ≥ 1, the only integer solution

(q, p1, . . . , pn) to the system

|q| < Q, |qyj − pj | < (cQ)ij (1 ≤ j ≤ n)

is q = p1 = · · · = pn = 0.
(3) There exists c > 0 such that for any H ≥ 1 the only integer solution

(a0, a1, . . . , an) to the system

|a0 + a1y1 + · · ·+ anyn| < cH−1, |aj | < Hij (1 ≤ j ≤ n)

is a0 = a1 = · · · = an = 0.
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Diophantine approximation and dynamics

Nattalie Tamam

The primary goal of this talk was to present the correspondence between approx-
imation properties and the behavior of certain orbits in the space of unimodular
lattices. We introduced the definition of unimodular lattices. Then presented
examples of such correspondence.

1. Lattices and Mahler’s Compactness Criterion

Definition 1. Λ ⊂ Rn is a lattice if we can find linearly independent vectors
v1, . . . vn ∈ Rn such that

Λ = Zv1 ⊕ · · · ⊕ Zvn.

The set {v1, . . . , vn} is the generating set of the lattice Λ. Lattices with covolume
(the n-dimensional volume of the parallelepiped created by the generating set) 1
are called unimodular and Ln denote the set of all unimodular lattices in Rn.

The group SLn (R) acts on Ln by

g (Zv1 ⊕ · · · ⊕ Zvn) = Zgv1 ⊕ · · · ⊕ Zgvn for g ∈ SLn (R) .

This group action is transitive, in particular any lattice in Ln is of the form gZn

for some g ∈ SLn (R). Since SLn (Z) is the stabilizer of Zn, we get

(1) Ln = SLn (R)Z
n ∼= SLn (R) /SLn (Z)

In order to discuss the behavior of orbits in Ln we need a topology. We may
use the quotient topology which arise from (1) and get the following.

Let |·| be the sup-norm and denote δ (Λ) = inf06=v∈Λ |v|.
Theorem 2 (Mahler’s compactness, [C, p. 137]). A subset X ⊂ Ln is precompact
if and only if there exists r > 0 such that all Λ ∈ X satisfy

δ (Λ) ≥ r.
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2. The Correspondence

2.1. Dani’s Correspondence.

Definition 3. Let A ∈ Mm,n (R), 0 < ǫ < 1.

• A is badly approximable if there exists a constant c > 0 such that for
every p ∈ Zm and q ∈ Zn \ {0}

|Aq+ p|m · |q|n > c.

• A is ǫ-Dirichlet improvable if there exists Q0 such that for all Q > Q0

there exist p ∈ Zm , q ∈ Zn such that

0 < |q|n ≤ ǫQ and |p+Aq|m < ǫQ−1.

• A is singular if it is ǫ-Dirichlet improvable for all 0 < ǫ < 1.

For A ∈ Mm,n (R) let

ΛA =

(

Im A
0 In

)

Zm+n and gt = diag
(

e
t
m , . . . , e

t
m , e−

t
n , . . . , e−

t
n

)

.

Theorem 4 ([D]). Let A ∈ Mm,n (R).

• A is badly approximable if and only if the trajectory {gtΛA : t ≥ 0} is
bounded.

• A is singular if and only if the trajectory {gtΛA : t ≥ 0} is divergent.

Let
Kǫ = {g ∈ Lm+n : δ (g) ≥ ǫ} .

Applying the proof of theorem 4, one can deduce:

Theorem 5. A ∈ Mm,n (R) is ǫ-Dirichlet improvable if and only if there exists
t0 > 0 such that {gtΛA : t ≥ 0} ∩Kǫ = ∅.
2.2. Kleinbock’s Generalization. Let r ∈ Rm

+ , s ∈ Rn
+ such that

∑m
i=1 ri =

∑n
j=1 sj = 1, the 1-parameter subgroup of SLm+n (R)

gt = diag
(

er1t, . . . , ermt, e−s1t, . . . , e−snt
)

What can we say about the elements L ∈ SLn (R) such that {gtLZm+n : t ∈ R}
is bounded?

Badly approximable is a notion which is inspired by Dirichlet’s theorem:

Corollary 6. For any A ∈ Mm,n (R), there exist infinitely many p ∈ Zm, q ∈
Zn \ {0} such that

|p+Aq|m |q|n < 1.

More generally, one can use the following corollary of the Minkowski’s convex
body theorem:

Corollary 7. For any L = (L1, . . . , Lm+n) ∈ SLm+n (R), there exist infinitely
many x ∈ Zm+n \ {0} such that

(2) max
(

|L1x|
1
r1 , . . . , |Lmx| 1

rm

)

·max
(

|Lm+1x|
1
s1 , . . . , |Lm+nx|

1
sn

)

< 1.
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The terms in the left hand side of 2 are a generalization of a norm called quasi-

norm defined as follows. For a k-tuple w = (w1, . . . , wk) , wi > 0,
∑k

i=1 wi = 1

define the w-quasinorm |·|w on Rk by|x|w = max1≤i≤k |xi|
1
wi .

Definition 8 ([K]). A matrix L ∈ G is called (r, s)-loose if

inf
x∈Zm+n\{0}

|(L1x, . . . , Lmx)|r |(Lm+1x, . . . , Lm+nx)|s > 0.

Theorem 9 ([K]). L ∈ SLm+n (R) is (r, s)-loose if and only if the trajectory
{gtLZm+n : t ∈ R} is bounded.

2.3. Littlewood’s Conjecture. for x ∈ R let ‖x‖ denote the distance from x
to the nearest integer. The Littlewood’s conjecture concerns simultaneous
approximation of two numbers x, y by rationals. It asserts that:

(3) lim inf
n≥1

n · ‖nx‖ · ‖ny‖ = 0

for all x, y. I.e. x, y may be simultaneously approximated, moderately well, by
rationals with the same denominator.

For any (x, y) ∈ R2, define (A+ is a semigroup)

Λ(x,y) =





1 0 x
0 1 y
0 0 1



Z3, A+ =











er

es

e−r−s



 : for r, s ≥ 0







.

Theorem 10. The tuple (x, y) satisfies (3) if and only if the orbit A+Λ(x,y) is
unbounded.
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Quantitative nondivergence in the space of lattices

Arijit Ganguly

In the landmark work ([KM]), D. Y. Kleinbock and G. A. Margulis opened a
new horizon to metric Diophantine approximation while proving a longstanding
conjecture of V. Sprindžuk. Their approach is based on a correspondence between
approximation properties of vectors in Rn and orbit properties of certain flows
on the homogeneous space SL(n+ 1,R)/ SL(n+ 1,Z). This approach also proves
several related hypotheses of Baker and Sprindžuk formulated in 1970s. The core
of the proof is a theorem, providing a quantitative estimate, which generalizes
and sharpens earlier results on non-divergence of unipotent flows on the space of



2762 Oberwolfach Report 48/2016

lattices. That “Quantitative nondivergence estimate” is the topic of discussion in
this talk.

We begin with, to prepare the required background, the notion of (C,α)-good
functions, exterior algebra on Rn and how the ‘norm’ of a discrete subgroup of Rn

is defined using exterior products. Then we state the main quantitative nondiver-
gence result.

Afterwards I have given a sketch, mentioning each major steps, how the just
discussed nondivergence estimate applies to resolve the conjecture of V. Sprindžuk.
This completes the discussion.
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Schmidt (α, β) Games

Yotam Smilansky

Schmidt (α, β) games are used as a technique to show that sets which may be
small in the sense of measure or category, behave in fact like very large sets in
many other senses, such as Hausdorff dimension and rigidness under countable
intersection.

1. The Game

Given 0 < α, β < 1, Schmidt’s (α, β) game is played by two players, Alice and
Bob. They take turns and specify a nested sequence of closed balls in a complete
metric space (X, d). If B ⊂ X is a ball, we denote by ρ (B) the radius of the B,

and by A
c⊂ B a subset of B for which A is a ball of radius ρ (A) = c · ρ (B).

1.1. Playing the game. We can now play the game: Fix a target set S ⊂ X .

(1) First, Bob chooses a ball B0 of radius ρ (B0) = r0.

(2) On his nth turn, Alice chooses a ball An

α⊂ Bn−1, so ρ (An) = r0α (αβ)
n−1

.

(3) On her nth turn, Bob chooses a ball Bn

β
⊂ An, so ρ (Bn) = r0 (αβ)

n
.

(4) This produces a decreasing sequence of closed balls

B0

α⊃ A1

β
⊃ B1

α⊃ A2

β
⊃ ...

and since the space is complete there exist a single point

x∞ ∈
∞
⋂

n=1

An =

∞
⋂

n=0

Bn.

(5) If x∞ ∈ S then Alice wins, otherwise Bob wins.
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2. Strategy and Winning sets

A strategy for Alice is a guide for choosing his nth move, given the moves already
played by Bob. More formally, it is a sequence of functions fn such that for any
n ∈ N and any legal choices made by Bob until the nth turn B0, ..., Bn−1, the

function fn defines a ball An

α⊂ Bn−1. So if Alice is playing according to the
strategy he must choose An = fn (B0, ..., Bn−1). A winning strategy for Alice is
a strategy which guarantees a win for Alice, that is, no matter what moves Bob
plays, if Alice uses the strategy then x∞ ∈ S.

(1) A set S ⊂ X is called (α, β)-winning if there is a winning strategy for
Alice in the (α, β) game with a target set S.

(2) A set S ⊂ X is called α-winning if for every 0 < β < 1 the set S is
(α, β)-winning.

(3) A set S ⊂ X is called winning if there exists 0 < α < 1 for which S is
α-winning.

3. Elementary Properties of (α, β)-winning and α-winning Sets

The following properties are easily proven using elementary methods and translat-
ing strategies to show that a set which is winning in one game is in fact winning
in various other games. They tell us what can be expected of a winning set S, and
about the possible patterns we can expect to see in the (α, β) space for a given set
S.

(1) If S is (α, β)-winning for some α, β then S is dense in X .
(2) If S is (α, β)-winning for α, β such that 2α ≥ 1+αβ (α is big, β is small)

then S = X (only one winning set).
(3) The only α-winning set with α > 1

2 is X itself.
(4) For α, β such that 2β ≥ 1 + αβ (β is big, α is small) , every dense set S

is (α, β)-winning (“many” winning sets).
(5) If S is (α, β)-winning for some α, β and αβ = α′β′ with α′ ≤ α then S is

also (α′, β′)-winning.
(6) For 0 < α′ < α < 1 every α-winning set is α′-winning.

(7) If S is (α, β)-winning then it is
(

α (βα)
k
, β
)

-winning for any k ∈ N.

(8) If S is (α, β)-winning and α′β′ = (αβ)
k
for k ∈ N and β′ ≥ β then S is

(α′, β′)-winning.
(9) If S is (α, β)-winning for every 0 < β < ε then it is α-winning.
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4. The Main Properties

The following results tell us something about the size of winning sets:

Theorem 1. The intersection of countably many α−winning sets is α−winning.
The idea is to play simultaneous chess, that is use the following decomposition of

the natural numbers to a countable union of independent arithmetical progressions

N =
⋃

k=1

Pk = {1, 3, 5, 7, 9, ...} ∪ {2, 6, 10, 14, ...}∪ {4, 12, 20, 28, ...}∪ ...

and for any given β to define a strategy for Alice and the target set
⋂

Sn using
his winning strategies on Sk with βk, which we are free to choose since Sk are all
α-winning.

Theorem 2. Let (X, dX) , (Y, dY ) be two complete metric spaces and let f : X →
Y be a c-biLipschitz mapping. Let S ⊂ X be α-winning, then f (S) is α

c2 -winning.

In this case we translate our strategies back and forth, using the biLipschitz
property to show that balls of the required radii can be chosen at each turn, for

example if Bob picks B̃0 ⊂ Y of radius r̃0, then f
−1
(

B̃0

)

⊂ X contains a ball B0

of radius r0 = r̃0
c and Alice can choose a ball A1 ⊂ B0 of radius r̃0

c α in the (α, β)
game on X according to his winning strategy.

Theorem 3. Assume S is (α, β)-winning and t,m are integers such that given a
winning strategy and a ball Bn, after t steps in the game, there exist m different
choices for Bn+t of pairwise disjoint interiors. then

dimS ≥ 1

t

logm

|logαβ| .

If S is a winning set then S is of full dimension.

We use a mass distribution argument and the definition of the Hausdorff di-
mension.

5. An Example of a Winning Set - Badd is Winning

We show a very interesting example of a winning set, which is the set of badly
approximable vectors in Rn. More precisely we prove:

Theorem 4. Badd is α-winning for all 0 < α < 1
2 in Rd, where

Badd =

{

x ∈ Rd : ∃c > 0 : ∀p ∈ Zd, q ∈ N :

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≥ c

q1+
1
d

}

.

This is done using the structure of the rational vectors of bounded denominators,
which is evident from the so called simplex lemma which is discussed in another
talk. The idea is to show that Alice can play in such a way that forces Bob to
play such that for every n ∈ N, x ∈ Bn and p

q with 1 ≤ q < Rn

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≥ c

q1+
1
d
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for suitable c, R. Then, if x∞ ∈ ∩Bn, the above holds for every positive integer
q and x∞ is badly approximable. A very similar proof shows not only that Badd

is α-winning for all α < 1
2 , but also its image under any non singular linear

transformation is α-winning.

Bad(r) has full Hausdorff dimension

Ofir David

Dirichlet’s theorem implies that every x ∈ R has a lot of “good” rational approxi-
mations, namely there are infinitely many solutions to

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≤ c

q2
, p, q ∈ Z, q 6= 0

where c = 1. A similar result holds in higher dimension - given r = (r1, . . . , rd) such

that ri ≥ 0 for all 1 ≤ i ≤ d and
∑d

1 ri = 1, for any vector x = (x1, . . . , xd) ∈ Rd

there are infinitely many solutions to
∣

∣

∣

∣

xi −
pi
q

∣

∣

∣

∣

≤ c

q1+ri
, pi, q ∈ Z, q 6= 0

where c = 1. We say that a vector x is well approximable with respect to r if we can
take c > 0 to be as small as we want and still have a solution to the inequalities
above. The vectors for which this is impossible are called badly approximable
vectors and we denote them by Bad(r).

A generalization of Khintchine’s theorem shows that Bad(r) has zero Lebesgue
measure. The main goal of this lecture is to show that while it has zero measure,
the set Bad(r) is large in the sense that it has full Hausdorff dimension. This
proof is based on the paper [3] by Pollington and Velani.

In order to show full Hausdorff dimension, we construct Cantor-like sets con-
tained in Bad (r) which have large Hausdorff dimension. These sets are con-

structed recursively such that the condition ∃i
∣

∣

∣xi − pi

q

∣

∣

∣ > c
q1+ri

of being badly

approximable, i.e. x is not close to rational vectors, is satisfied for all rational
vectors p

q with bounded denominator q, and the bound increases in each step of

the recursion. The main idea in this construction is the Simplex Lemma which
states that for a fixed R, the rational points with denominator bounded by R in
any small enough d-dimensional box (as a function of R), lie on a d−1-dimensional
hyperplane (and hence most of the vectors in that box will be “far” from these
rational points).

Once we have this construction we will prove the following generalization:

(1) Inhomogeneous settings (Beresnevich and Velani) [1]: Given r̄ ∈ Rd as

above and a fixed vector λ = (λ1, ..., λd) ∈ Rd, we denote by Bad(λ, r)
the vectors x ∈ Rd for which there exists a constant c = c (x) such that

∣

∣

∣

∣

xi −
pi + λi
q

∣

∣

∣

∣

>
c

q1+ri
, ∀pi, q ∈ Z, q 6= 0.
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Similar to the construction in the homogeneous settings, we show that
Bad (λ, r) had full Hausdorff dimension.

(2) Bad (r) is almost winning (Kleinbock and Weiss) [2]: While Bad (r) is
winning in the one dimensional case, the standard proof generalizes in
higher dimensions only to the symmetric case, namely that Bad( 1d , ...,

1
d)

is winning. On the other hand, once we understand the reason why it has
full Hausdorff dimension, we can define a modified Schmidt game under
which Bad(r) is winning. These modified games have many of the proper-
ties of the standard Schmidt games, and in particular they imply the full
Hausdorff dimension property.
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Bad(i,j ) wins on a fibre: Rooted trees and the strategy

Faustin Adiceam

Given real numbers i, j ≥ 0 such that i + j = 1, denote by Bad(i, j) the set of
badly approximable vectors in dimension two with respect to the weights (i, j);
that is,

Bad(i, j) :=

{

(x, y) ∈ R2 : inf
q≥1

max{qi||qx||, qj ||qy||} > 0

}

.

Here and in what follows, ||x|| denotes the distance from a real number x to the
set of integers.

In 1983, W. Schmidt [1] formulated the claim that Bad
(

1
3 ,

2
3

)

∩Bad
(

2
3 ,

1
3

)

6= ∅.
A more general version of this claim has become known as Schmidt’s Conjecture :

Conjecture (Schmidt’s Conjecture, 1983). For any pair of weights (i1, j1) and
(i2, j2),

Bad (i1, j1) ∩Bad (i2, j2) 6= ∅.
The motivation behind this conjecture stems from the fact that a counter–

example to it would immediately provide a counter–example to the Littlewood
conjecture, which states that

lim inf
q→∞

q · ||qx|| · ||qy|| = 0

for all x, y ∈ R.
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In 2011, Badziahin, Pollington and Velani [2] established the validity of Schmidt’s
Conjecture in a stronger form. In order to state it, given weights (i, j) and a real
number θ, denote by

Bad(i, j, θ) := {y ∈ R : (θ, y) ∈ Bad(i, j)}

the set of weighted badly approximable vectors lying on the fibre {x = θ}.

Theorem 1 (Badziahin, Pollington & Velani, 2011). Let ((in, jn))n≥1 be a se-
quence of weights. Set

i := sup
n≥1

in

and assume that

(1) lim inf
n→∞

min{in, jn} > 0.

Then, for any θ ∈ R such that

(2) inf
q≥1

q1/i · ||qθ|| > 0,

the set ∩+∞
n=1Bad(in, jn, θ) is thick in R.

By thick, we mean that the intersection of the set under consideration with any
non–empty open set has full Hausdorff dimension.

The relevance of Assumption (2) in the theorem above is justfied in [2] by
noticing that, whenever it does not hold, Bad(i, j, θ) = ∅ (here, one has obviously
set j = 1− i). Assumption (1) appears however to be of a purely technical nature
and the authors of [2] make the comment that the result should hold without this
condition. In 2013, J.An [3] confirmed this fact by proving the following result :

Theorem 2 (An, 2013). Let (i, j) be weights and let θ ∈ R satisfying Assump-
tion (2). Then, the set Bad(i, j, θ) is 1/2–winning for Schmidt’s game.

As a winning set is thick and as a countable intersection of winning sets is
also winning, a corollary of this theorem is that the Badziahin–Pollington–Velani
Theorem indeed holds without Assumption (1), and with replacing Assumption (2)
by the weaker necessary condition:

inf
q∈N

q1/in ||qθ|| > 0, for every n ≥ 1.

The initial approach undertaken by Badziahin, Pollington and Velani did not
make use of Schmidt games but made use of a so–called dual formulation of the
condition that a vector (x, y) lies in Bad(i, j). An’s strategy, although following
key ideas from this first proof, deals directly with the inequality appearing in the
definition of the set Bad(i, j). It relies on a construction of nested intervals, which
construction is formulated in terms of rooted trees.
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Bad(s,t) wins on a fiber: Partitioning of intervals

David Simmons

In this talk I sketched the proof of a theorem of Jinpeng An [2]: for all s, t ≥ 0
with s+ t = 1 and for all θ ∈ R such that

inf
q∈N

q1/s‖qθ‖ > 0,

the set

Bad(s, t; θ) :=

{

y ∈ R : inf
q∈N

max(qs‖qθ‖, qt‖qy‖) > 0

}

is winning for Schmidt’s game. The proof involves looking at the quantitative set
Badc(s, t; θ) as the complement of the union of the “obstacles” ∆c(P ) (P ∈ P),
where

P = {P = (pq ,
r
q ) ∈ Q2 : qs|qθ − p| ≤ c}

∆c(
p
q ,

r
q ) = {y ∈ R : qt|qy − r| ≤ c}

and c > 0 is a fixed small number. The question is then how to play Schmidt’s
game to avoid these obstacles. It is helpful to draw an analogy to the proof of
the classical Jarńık–Schmidt theorem on the full dimension of the classical set of
badly approximable vectors. The classical proof proceeds by grouping obstacles
into “windows” and then applying the Simplex Lemma to show that all obstacles in
a given window can be avoided simultaneously. In An’s setup, it is not immediately
obvious how to group the obstacles, nor is it obvious how to show that all obstacles
in a given window can be avoided simultaneously.

Rather than describing the proof of An’s theorem in detail, I instead gave some
motivation for the method of grouping obstacles that An uses in his paper. The
motivation takes an “Ansatz” form in which we assume that we have a grouping,
and ask what properties it should have. If we assume that we have a grouping,
then the most relevant characteristics of any given obstacle are

• its “group size”, or the size of the union of the obstacles in the group the
obstacle is a part of, and

• its “visibility”, or the length threshold below which the obstacle and its
group become “visible” for the purposes of Schmidt’s game.
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It is possible to precisely define these characteristics in terms of the geometry of
the situation. If we then assume that we do not have access to a grouping but we
have access to these two characteristics, then we can group obstacles according to
these two characteristics. If we get back the grouping that we started with, then
we count it as a success. It turns out that An’s construction does exactly this.

It turns out that many problems in Diophantine approximation yield this same
basic structure upon analysis, and in general, the structure always yields a set
which is winning for Schmidt’s game. There are at least two different ways to
show this. Due to time constraints I presented the shorter method of [1], which
is essentially as follows: the strategy in Schmidt’s game is just to avoid as many
groups of obstacles as possible, with each group being “weighted” in proportion
to how big it is. Only groups which are visible by the current length threshold
are eligible for being avoided. An induction argument shows that the total weight
of the groups remains bounded by a uniform constant (relative to the current
length threshold) throughout the entire game, which implies that all obstacles are
eventually avoided.

The other method, which is the one appearing in [2], is to introduce the concept
of “rooted trees” to change Schmidt’s game into a combinatorial game. Then the
question of whether or not a set is winning can be reduced to the question of
whether or not certain infinite rooted trees have infinite intersection. It is possible
to prove by induction a lower bound on the cardinality of the intersection at any
given finite stage, which implies that the trees have infinite intersection and thus
that Bad(s, t; θ) is winning. However, this proof is more technical and also does
not give an explicit strategy for winning Schmidt’s game.
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Playing Schmidt’s game on fractals

Luca Marchese

We consider the set Bad
(

1
d , . . . ,

1
d

)

⊂ Rd of badly approximable vectors in Rd and
we explain Fishman’s result in [1], which establishes that any image of such set
under an affine non-singular map f : Rd → Rd is winning for the Schmidt’s game
played on any fractal which is the support of an ”absolutely friendly” measure.
Friendly measures on Rd were introduced by Kleinbock, Lindenstrauss and Weiss
in [3], and the term absolutely friendly was first used by Pollington and Velani [6].
It follows immediately that the same is true for any countable intersection of such
images, by a classical property of winning sets established by Schmidt in [7].
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We also explain that a set which is winning on the support of an Ahlfors regular
measure intersects the support in a set of full dimension, which was also proved in
[1] by Fishman, following the lines of the argument working in the euclidian space,
first given by Schmidt in [7].

Moreover we describe a category of measures for which both results apply,
namely self-similar measures arising from systems of contracting similitudes which
satisfy the open set condition and irreducibility. Ahlfors regularity was estab-
lished in [2] by Hutchinson assuming the open set condition. Then in [3] Klein-
bock, Lindenstrauss and Weiss proved that such measures are absolutely friendly
if irreducibility is also satisfied.

Finally, in dimension two, we discuss without proofs similar results for the set
Bad(i, j) of badly approximable vectors with weights. According to a result of
Nesharim-Weiss established in [5], any such set intersects the vertical line {α}×R

passing through a badly approximable horizontal coordinate in a set which is
winning for a new game introduced by McMullen in [4] and is known as the absolute
game. The great flexibility and stability of this second game enables to deduce
that, for the same α, any countable intersection of sets Bad(in, jn) intersects
{α} ×K in a set of full dimension, where K ⊂ R is the middle third cantor set.
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Bad(i,j ) is winning

Lifan Guan

The aim of my talk is to give a brief sketch of the colored rooted tree argument
An used in the proof of the following theorem:

Theorem 1 ([1]). Bad(i, j) is α0-winning for some α0 > 0 independent of weight
(i, j).

Basics on trees. We are going to define subtrees of type (I) and type (II)
here. To begin, we shall recall some basic notation. A rooted tree is a connected
graph T without cycles and with a distinguished vertex τ0. We identify a tree T
with its set of vertices. Any vertex τ ∈ T is connected to τ0 by a unique path,
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and the length of the path is called the height of τ . Then the set T is decomposed
into subsets Tn indexed by the height. A vertex τ ′ is called a successor of τ if
τ lies on the path connecting τ ′ and τ0, and the height of τ ′ equals the height
of τ plus one. The set of successors of τ is denoted as Tsuc(τ). Say a tree T is
N -regular if #Tsuc(τ) = N for all τ ∈ T . Let D|N . A D-colored N -regular tree
is a N -regular rooted tree T equipped with a map γ : T → {1, . . . , D} such that
#Tsuc(τ) ∩ γ−1(i) = N/D for all τ and all i. The set #Tsuc(τ) ∩ γ−1(i) is also

denoted simply as #T (i)
suc(τ).

Let T be an D-colored N -regular tree and let S a subtree of T .

• S is of type (I) if for any τ ∈ S and 1 ≤ i ≤ D, we have #Ssuc(τ)
(i) = 1.

• S is of type (II) if for any τ ∈ S, there exists 1 ≤ i(τ) ≤ D such that
Ssuc(τ) = Tsuc(τ)(i(τ)).

Parameterize squares using trees. Let B be a square in the plane with
its edges parallel to the coordinate lines. The side length ℓ(B) is denoted simply
as l. Let m ∈ N, R ∈ R be two positive numbers with R ≥ 2m. A map Φ from
a m2-colored m2[R/m]2-regular tree T to the set of sub-squares of B is called
admissible if it satisfies the following conditions:

• For any τ , edges of Φ(τ) are parallel to coordinate lines.
• For any n ≥ 0 and τ ∈ Tn, we have ℓ(Φ(τ)) = lR−n.
• If τ ′ is a successor of τ , then Φ(τ) ⊂ Φ(τ ′).
• For any n ≥ 1 and τ ∈ Tn−1, the interiors of the squares {Φ(τ ′) : τ ′ ∈
Tsuc(τ)} are mutually disjoint, the union

⋃

τ ′∈Tsuc(τ)
Φ(τ ′) is a square

of side length m[R/m]lR−n, and for any 1 ≤ i ≤ [R/m]2, the union
⋃

τ ′∈Tsuc(τ)(i)
Φ(τ ′) is a square of side length mlR−n.

Type (I) trees and winning. To begin, we quickly review the definition of
Schmidt’s (α, β)-game. Let α.β ∈ (0, 1) be two real numbers. Suppose two players,
say Alice and Bob, take turns choosing a nested sequence of closed squares

B0 ⊃ A0 ⊃ B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ . . .

in R2 satisfying ℓ(Ai) = αℓ(Bi) and ℓ(Bi+1) = βℓ(Ai). Say a set X is (α, β)-
winning if Alice can make sure that the outcome point x∞ = ∩∞

i=0Ai belongs to
X . And say a set X is α-winning if it is (α, β)-winning for all β ∈ (0, 1).

Let B ⊂ R2 a closed square. Say a set X is (α, β,B)-winning if Alice can make
sure that the outcome point x∞ belongs to X whenever Bob chooses B as his B0.
The following observation follows directly from these definitions.
(1)
X is (α, β,B)-winning for all β ∈ (0, 1) and all square B ⇐⇒ X is α-winning.

In view of (1), if we want to prove a subset X is α0-winning for α0 = (2m)−1

with m a large enough integer, it suffices to show that X is (α0, β, B)-winning for
all β ∈ (0, 1) and all square B. Hence we may fix a β ∈ (0, 1) and a square B from
now on.

Let R = 2mβ−1 and Φ be an admissible map from a m2-colored m2[R/m]2-
regular tree T to the set of sub-squares of B. Then we have
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Lemma 2. Let S be a subtree of type (I). Then the limit set of S defined as

limS =
⋂

n≥1

⋃

τ∈Sn

Φ(τ)

is (α0, β, B)-winning.

Lemma 3. Let S be a subtree that #(S ∩ S ′) = ∞ for any subtree S ′ of type
(II), then S contains a subtree of type (I).

In short, Lemma 2 says that if a set X contains the limit set of a type (I) tree,
then it is (α0, β, B)-winning, and Lemma 3 says that we can use trees of type (II)
to give a sufficient condition for a subtree to be of type (I).

Bad(i, j) is winning. To begin, we quickly review the definition of Bad(i, j).
For any ǫ > 0, set

Badǫ(i, j) = R2 \
⋃

P∈Q2

∆ǫ(P ), and Bad(i, j) =
⋃

ǫ>0

Badǫ(i, j),

where for P = (p/q, r/q) written in reduced form,

∆ǫ(P ) =

{

(x, y) ∈ R2 :

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

<
ǫ

q1+i
,

∣

∣

∣

∣

y − r

q

∣

∣

∣

∣

<
ǫ

q1+j

}

.

In view of (1), Theorem 1 can be deduced from the following

Lemma 4. For any β ∈ (0, 1) and any square B, there exists ǫ = ǫ(β,B) > 0 such
that Badǫ(i, j) is (α0, β, B)-winning.

The set Q2 is decomposed into a union of disjoint subsets Vn(n ≥ 1) using a
carefully chosen height function. Then based on this decomposition, for any ǫ > 0,
we can define a subtree Sǫ ⊂ T by

(2) Sǫ
n = {τ ∈ Tn : τ ∈ Tsuc(τ ′) with τ ′ ∈ Sǫ

n−1 and Φ(τ)∩∆ǫ(P ) = ∅, ∀P ∈ Vn}.

In view of Lemma 2 and Lemma 3, Lemma 4 can be deduced from the following

Lemma 5. For any β ∈ (0, 1) and any square B, there exists ǫ = ǫ(β,B) > 0 such
that if Sǫ is defined as in (2), then #(Sǫ ∩S ′) = ∞ for any subtree S ′ of type (II).

In conclusion, Theorem 1 is reduced to vertices-counting problems on some
particular colored rooted trees.
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Strong, Absolute, and Hyperplane Winning

Yu Yasufuku

In this talk, we discussed several recent variants of Schmidt’s game and highlight
the inter-relations and differences.

First, we introduced McMullen’s strong and absolute games [3]. Given α, β ∈
(0, 1), the (α, β)-strong game is played by Alice and Bob taking turns choosing
nested closed balls

B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ B3 ⊃ · · ·
in Rn, so that their radii satisfy

(1) r(Ai) ≥ α · r(Bi), r(Bi+1) ≥ β · r(Ai)

for all i ≥ 1. Note that in the Schmidt’s game, we assumed

r(Ai) = α · r(Bi), r(Bi+1) = β · r(Ai)

in place of (1). We say a set E is an (α, β)-strong winning set if Alice has
a strategy so that ∩Ai meets E, an α-strong winning set if it is (α, β)-strong
winning for all β ∈ (0, 1), and strong winning set if there exists an α ∈ (0, 1)
such that it is α-strong winning. A strong winning set is obviously a winning set.

McMullen proves that strong winning sets are stable under quasi-symmetric
homeomorphisms, in particular by bi-Lipschitz maps. He further explicitly con-
structs a set which is winning but not strong winning, by showing that it is winning
but its images under some quasi-symmetric homeomorphisms are not.

In the β-absolute game, the balls are no longer assumed to be nested. Instead,
closed balls satisfy

B1 ⊃ B1\A1 ⊃ B2 ⊃ B2\A2 ⊃ B3 ⊃ · · ·
and

r(Ai) ≤ β · r(Bi), r(Bi+1) ≥ β · r(Bi).

If Ai is of radius β · r(Bi) and is at the center of Bi, then the largest ball that

Bob can choose for Bi+1 has radius 1−β
2 · r(Bi), so we only consider β ∈ (0, 13 )

for the absolute game. We say E is β-absolute winning if Alice has a strategy
so that ∩Bi meets E, and absolute winning if it is absolute β-winning for all
β ∈ (0, 13 ). One can easily show that a β-absolute winning set is (1−β

2 , β
(1−β)/2 )-

strong winning. Since 1−β
2 goes upward to 1

2 and β
(1−β)/2 goes downward to 0 as

β goes to 0, it follows that an absolute winning set is strong winning. We can also
show that the countable intersection of strong-winning (resp. absolute winning)
sets is strong winning (resp. absolute winning), by the same argument as showing
the same property for winning sets.

Theorem 1. The set of badly approximable numbers is an absolute winning set.

In fact, McMullen [3] proves more generally that what he calls a Diophantine
set is absolute winning. A Diophantine set is

D(Γ) = {x ∈ Rn : π(γx(t)) remains bounded as t→ +∞},
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where Γ is a full lattice inside the group of isometries of the hyperbolic upper
half space Hn+1 such that Γ has a cusp at ∞, π : Hn+1 → Hn+1/Γ, and γx is
the “vertical geodesic” to x, that is, γx(t) = (x, e−t). The main ingredient in the
proof of this result is the structure theory of finite-volume hyperbolic manifolds.

The absolute winning sets are much too restrictive in certain situations, since
Alice can only remove just one of Bob’s possible moves. For example, the set of
badly approximable vectors in Rd for d ≥ 2 is not an absolute winning set. Indeed,
for any constant C and (x2, . . . , xd) ∈ Rd−1, (d−1)-dimensional Dirichlet’s theorem
shows that there exist p2, . . . , pd ∈ Z and a sufficiently large q ∈ N such that

max

(∣

∣

∣

∣

1− q

q

∣

∣

∣

∣

,

∣

∣

∣

∣

x2 −
p2
q

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

xd −
pd
q

∣

∣

∣

∣

)

= max

(∣

∣

∣

∣

x2 −
p2
q

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

xd −
pd
q

∣

∣

∣

∣

)

<
1

q1+
1

d−1

<
C

q1+
1
d

.

This means that (1, x2, . . . , xd) is never badly approximable, so Alice loses if Bob
chooses the centers of Bi’s to lie on 1× Rd−1.

This example leads to the hyperplane absolute game, introduced by Broder-
ick, Fishman, Kleinbock, Reich, andWeiss [1]. More generally, in the k-dimensional
β-absolute game, Alice chooses as Ai an ǫi-neighborhood of a k-dimensional affine
subspace (a translation of a k-dimensional linear subspace of Rd), where ǫi is less
than or equal to β · r(Bi). Bob then has to choose Bi+1 to sit inside Bi\Ai. A
set is a k-dimensional β-absolute winning if Alice has a strategy so that ∩Bi

meets this set, and it is k-dimensional absolute winning if it is k-dimensional
β-absolute winning for all β ∈ (0, 13 ). In particular, a set is called hyperplane
absolute winning if it is (d− 1)-dimensional absolute winning.

The k-dimensional absolute winning sets are (k+ 1)-dimensional absolute win-
ning sets, and 0-dimensional absolute winning sets are precisely absolute winning
sets. Further, a hyperplane absolute winning set is α-strong winning for α ∈ (0, 12 ).
We also have:

Theorem 2. The set of badly approximable vectors in Rd is a hyperplane absolute
winning set.

This is a straight-forward application of a Schmidt-Davenport type lemma.
Another key feature of a hyperplane absolute winning set is the following:

Theorem 3. A hyperplane absolute winning set is stable under C 1-diffeomor-
phisms.

In fact, [1] shows much more generally that
∞
⋂

i=1

f−1
i (E) ∩K

has positive Hausdorff dimension, where E is hyperplane absolute winning, fi :
U → Rd is a C 1-diffeomorphism from an open set U of Rd onto its image, and K
is what they call hyperplane-diffuse set with K ∩ U 6= ∅.

As a generalization of Theorem 2, Nesharim and Simmons [4] prove:
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Theorem 4. Bad(s, t) is a hyperplane absolute winning set.

The proof of this result goes through hyperplane potential games in which
Alice gets to remove a suitable countable union of tubular neighborhoods of affine
hyperplanes at each stage. The hyperplane potential winning sets are proved to
be equivalent to hyperplane absolute winning sets in [2].
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Potential winning and weighted Bad in higher dimensions

Victoria Zhuravleva

The main purpose of this talk is to discuss recent results concerning Schmidt’s
problem about the intersections of the sets of weighted badly approximable points.
Particularly, we discuss results that were obtained using a new modification of
Schmidt’s (α, β)-game

For d ∈ N we consider a set of weights

Rd := {r = (r1, . . . , rd) : ri ≥ 0,

d
∑

i=1

ri = 1}.

Set for any c > 0

Badc(r) = {(x1, . . . , xd) : inf
q∈N

max
1≤i≤d

qri ||qxi|| ≥ c},

where || · || means the distance of a real number to its nearest integer.
The set

Bad(r) =
⋃

c>0

Badc(r)

is called the set of r-badly approximable vectors in Rd.
Two following problems have remained open in dimensions d ≥ 3.

Conjecture 1. For any d ≥ 2, let S be a countable subset of Rd. Then

dimH

⋂

r∈S

Bad(r) = d.

One of the ways to obtain this result is to prove the following:
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Conjecture 2. For any d ≥ 2, r ∈ Rd,Bad(r) is α-winning in the sense of
(α, β)-Schmidt’s game.

In this talk we discuss results related to Conjecture 2.
In [5] Schmidt proved that Bad

(

1
d , . . . ,

1
d

)

is 1
2 -winning for any d ∈ N. In this

paper you can also find the definition of (α, β)-game and the explanation why
winning sets have full Hausdorff dimension.

In [1] An showed that for any r ∈ R2, Bad(r) is (24
√
2)−1-winning. He invented

a special partition lemma. Nesharim and Simmons in [4] used this lemma to show
that for any r ∈ R2, Bad(r) is 1

2 -winning. Also they used a new modification of
(α, β)-Schmidt’s game.

This new game is called hyperplane potential game. It was introduced by Fish-
man, Simmons and Urbanski in [2]. The main difference from the previous games
is that Alice is allowed to delete not only one but countably many objects (here
we have hyperplane neighbourhoods).

Guan and Yu in [3] used this game and modified An’s partition to prove that
for d ≥ 2 the set of badly approximable vectors is hyperplane potential winning,
but only for some special weights. Instead of Rd they take weights from the set

R′
d := {r = (r1, . . . , rd) ∈ Rd : #{i : ri = max

1≤j≤d
rj} ≥ d− 1}.

Their proof consists of the following steps:

• Constructing a partition of all allowed balls
• Attaching a hyperplane to any rational point
• Dividing all rational points into groups according to their heights and
denominators

• Proving that if two balls belong to the same part of this partition then
they belong to one hyperplane

• According to this partition giving Alice a strategy to win

This proof demands one special condition called admissibility which doesn’t
allow authors to give a proof in general case.
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Generalised Cantor sets

Simon Baker

Within Diophantine approximation we often say that an element of Euclidean
space is badly approximable if it fails to satisfy some system of inequalities. We
emphasise that badly approximable is meant in a general sense and should not
be interpreted as the classical notion of badly approximable. Given a notion of
badly approximable we denote the set of badly approximable vectors by Bad. Two
problems we are particularly interested in are:

(1) Determining whether Bad has full Hausdorff dimension.
(2) Given a countable collection of bad sets {Badi}∞i=1, can one determine the

size of the set
∞
⋂

i=1

Badi .

For some notions of badly approximable one can show that Bad is winning in the
sense of Schmidt games. It is a consequence of the winning property that Bad is
of full Hausdorff dimension, and moreover the countable intersection also has full
Hausdorff dimension. For more general notions of badly approximable it is not
clear whether Bad is winning and we have to resort to other techniques. In my
lecture I spoke about generalised Cantor sets which are one such technique.

A traditional Cantor set is generated by firstly taking some cube. We have some
splitting procedure that splits this cube into some finite collection of subcubes all
of the same size. We then have a removal rule which states that a certain configu-
ration of subcubes is removed from this collection. We repeat this procedure with
what remains and so on to infinity. The Cantor set associated to this construction
is the intersection of all of these collections. A generalised Cantor set construc-
tion differs from a traditional Cantor set construction in three ways. Firstly, the
splitting procedure is allowed to depend on what stage of the construction we are
in. Secondly, the removal rule is no longer local, i.e., whether a subcube remains
after step (n+1) depends not only on the level n cube it is contained in, but also
on the subcubes of level (n− 1), level (n− 2),... level 1 it is contained in. Thirdly,
the removal rule states that at most a certain number of cubes are removed. It
doesn’t guarantee any are removed. What is more, we don’t know the configura-
tion of those cubes that are being removed. This general approach means that a
generalised Cantor set is not uniquely determined by its splitting procedure and
removal rule.

Generalised Cantor sets were introduced in [1] by Badziahin and Velani where
they were used to determine the Hausdorff dimension of some Bad set that nat-
urally arises from the mixed Littlewood conjecture. In this paper it is also shown
that if Bad contains a sufficiently large generalised Cantor set then it is of full
Hausdorff dimension. Thus generalised Cantor sets can be used as a tool for
proving full dimension results for general Bad sets. Often they allow us to solve
problem (1) above.
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To make progress with problem (2) one can again use the theory of generalised
Cantor sets. Loosely speaking, given a countable collection of bad sets {Badi}∞i=1,
they can be shown to have a large nonempty intersection if they each contain
a generalised Cantor set for which we can either put strong restrictions on the
number of subcubes that can be thrown away at each step in our construction, or
strong restrictions on the number of cubes that appear in the splitting part of our
construction. This approach was successfully applied firstly by Beresnevich in [3],
and then by Badziahin and Harrap in [2]. In particular, Beresnevich introduced
the notion of a Cantor rich set and Badziahin and Harrap introduced the notion
of a Cantor winning set. These properties effectively quantify what is outlined
above. Both of these properties allow one to prove that the countable intersection
of certain bad sets is not only nonempty but also of full Hausdorff dimension. Note
that the approach of Badziahin and Harrap applies to general metric spaces that
satisfy some minor technical conditions.

References

[1] D. Badziahin, S. Velani, Multiplicatively badly approximable numbers and generalised Can-
tor sets, Advances in Mathematics 228(5): 2766–2796.

[2] D. Badziahin, S. Harrap, Cantor-winning sets and their applications, arXiv:1503.04738
[math.NT].

[3] V. Beresnevich, Badly approximable points on manifolds, Invent. math. (to appear).

What could be ‘badly approximable’ in multiplicative sense?

Or Landesberg

In the classical setup of Diophantine approximation the set of badly approximable
numbers is defined as:

Bad = {α | lim inf
q→∞

q · ‖qα‖ > 0}

Although this set is of zero Lebesgue measure it is quite large in the sense that it
has full Hausdorff dimension. In the multiplicative setup one may consider the set

Mad0 = {(α, β) ∈ R2 | lim inf
q→∞

q · ‖qα‖ · ‖qβ‖ > 0}

as a candidate for the set of ’badly approximable’ points in R2. This might not
be the best choice as this set is conjectured to be empty (Littlewood’s conjecture)
and was proven in [5] to have zero Hausdorff dimension.
Similarly in the p-adic multiplicative setup, the set:

Mad0p = {α ∈ R | lim inf
q→∞

q · |q|p · ‖qα‖ > 0}

is also conjectured to be empty, where |q|p is the p-adic norm of q, and was proven
in [6] to have zero Hausdorff dimension.
Consider the sets:

Madλ = {(α, β) ∈ R2 | lim inf
q→∞

q · (log q)λ · ‖qα‖ · ‖qβ‖ > 0}
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A Khinchine type theorem of Gallagher implies Leb(Madλ ∩ [0, 1]) is zero for all
λ ≤ 2 and one otherwise. Badziahin and velani conjectured in [1] that Madλ has
full Hausdorff dimension for all λ ≥ 1 and is empty otherwise. Accordingly it
was suggested that Mad1 is the proper analogue for ’badly approximable’ in the
multiplicative sense. A similar conjecture was formulated for the family Madλp in
the p-adic setup.
In this talk we survey relevant results regarding the multiplicative and p-adic
multiplicative setups (e.g. [2],[3],[4],[7],[8],[9]) and describe the analogues of Bad
as suggested in [1]. We then sketch a proof from [1], using generalized Cantor sets,
of the fact that:

{(α, β) ∈ R2 | lim inf
q→∞

q · log q · log log q · |q|p · ‖qα‖ > 0}

is of full Hausdorff dimension. Denoting:

Madλp = {α ∈ R | lim inf
q→∞

q · (log q)λ · |q|p · ‖qα‖ > 0}

this theorem implies:

dimMadλp = 1 ∀λ > 1
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Davenport’s problem: an overview

Hanna Husakova

The aim of this talk is to describe Davenport’s problem and to make an overview
of the results on the problem obtained for curves and manifolds. In [1] Davenport
proved the following result:
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Theorem 1. Given a finite collection F = {Fi, 1 ≤ i ≤ r} of continuously dif-
ferentiable maps Fi : R

m → Rni such that for some point x0 ∈ Rm the Jacobians
of Fi at x0 has rank ni, 1 ≤ i ≤ r. Then the set of points x ∈ Rm such that

Fi(x) ∈ Bad
(

1
ni
, . . . , 1

ni

)

for all Fi ∈ F is uncountable.

It is clear that the Jacobian condition which is a necessary for Davenport’s
proof implies that m ≥ ni, 1 ≤ i ≤ r and therefore Davenport writes that the
much more difficult problem arises when the number of independent parameters
is less than the dimension of simultaneous approximation. In particular, given the
some planar curve C we have the following question:

Problem 1 (Davenport). Is the set C ∩Bad(i, j) uncountable?

The first result on this problem has been obtained in case of vertical lines [2, 3].
Let Lθ denote the vertical line parallel to y-axis passing through the point (θ, 0).
It is easily verified that for any θ ∈ R satisfying lim inf

q→∞
q1/i ‖qθ‖ = 0 we have

that Lθ ∩Bad(i, j) = ∅, which means that the answer to the question mentioned
above is negative. Otherwise we obtain dim (Lθ ∩Bad(i, j)) = 1 and the answer
is positive.

The general case of straight lines in R2 is somewhat less understood. Given
real a, b ∈ R let La,b denote the line defined by the equation f(x) = ax + b. The
following result were proved in the papers [4, 3]: For any a, bR such that there
exists ǫ > 0 satisfying

(1) lim inf
q→∞

q1/σ−ǫ max {‖qa‖ , ‖qb‖} > 0,

where σ := min{i, j}, we have dim (Bad(i, j) ∩ La,b) = 1. Whether or not condi-
tion (1) may be relaxed to ǫ = 0 remains an open problem.

It was only a special case of vertical lines. Now assume that Cf is given as a
graph for some smooth function f defined on an interval I ⊂ R. This case was
considered in papers [4, 3]. Since there exist lines which don’t contain points from
the set Bad(i, j) we need some additional restriction on the curvature of Cf .
Definition 1. We will say that Cf is a C(2) non-degenerate planar curve if f is
two times continuously differentiable on the interval I and there exists at least one
point x0 ∈ I such that f ′′(x0) 6= 0.

Then for any C(2) non-degenerate planar curve Cf we have [4, 3]:

dim (Bad(i, j) ∩ Cf) = 1.

In particular, the answer to the Davenport’s question in this case is positive.
That was results on the problem obtained in two-dimensional case. The original

results of Davenport were formulated in case of arbitrary dimensions, namely for
a finite collection Fi = (fi,1, . . . , fi,m) : Rm → Rni of continuously differentiable
maps. The Jacobian condition implies that m ≥ ni and the problem arises when
m < ni and Fi lies on a sub-manifold of Rni . Hence, Davenport’s problem boils
down to investigate badly approximable points restricted to sub-manifoldsM ⊂ Rn

of Euclidean spaces.
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Let F = (f1, . . . , fn) : B → Rn be an analytic map defined on a ball B ⊂ Rm.

Definition 2. The map F will be called non-degenerate if the functions 1, f1, . . . ,
fn are linearly independent over R.

Given an integer n ≥ 2, Fn(B) will denote a family of maps F with common
domain B. Every map F ∈ Fn(B) defines some non-degenerate manifold M :=
F (B) of dimension m embedded in Rn. Define also the collection Rn of weights

of approximation (r1, . . . , rn), ri ≥ 0,
n
∑

i=1

ri = 1.

Now we are ready to formulate the recent result of Beresnevich [5] which gives
the solution of Davenport’s problem in case of arbitrary dimension.

Theorem 2. Let m,n ∈ N, 1 ≤ m ≤ n, B be an open ball in Rm and Fn(B) be a
finite family of analytic non-degenerate maps. Let W be a countable subset of Rn

such that inf{min{ri : ri > 0} : (r1, . . . , rn) ∈W} > 0. Then we have

dim





⋂

F∈Fn(B)

⋂

r∈W

F−1 Bad(r1, . . . , rn)



 = m.
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Badly approximable points on manifolds, I

Felipe A. Raḿırez

We discuss the main result of Victor Beresnevich’s paper Badly approximable
points on manifolds [1]. Namely, suppose n ∈ N, n ≥ 2, I ⊂ R is an open interval,
and Fn(I) is a finite family of maps I → Rn, all of which are nondegenerate at
some common point x0 ∈ I. Let W be a finite or countable subset of

Rn := {r = (r1, . . . , rn) : ri ≥ 0, r1 + · · ·+ rn = 1},
and suppose that inf{τ(r) : r ∈W} > 0, where τ(r) is the minimal non-zero entry
of r. Then

(1) dim
⋂

f∈Fn(I)

⋂

r∈W

f−1(Bad(r)) = 1.

This result, which answers a problem of Davenport [2], has many consequences.
The first is a higher-dimensional version, where we replace I by a ball B ⊂ Rm.
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In this case, the intersection corresponding to (1) has dimension m. (For this
higher-dimensional version, one requires that the maps f are analytic as well as
nondegenerate, but this is only because of the “slicing” and “fibering” argument
used to deduce it. It is expected that the result remains true without analyt-
icity.) If we consider the function f as parametrizing an analytic nongenerate
m-dimensional submanifold M of Rn, then the result states that the set of badly
approximable points lying on M has dimension m. If m = n, the case of the
inclusion map B →֒ Rn answers (newly) Schmidt’s Conjecture about intersections
of sets of badly approximable points of different weights.

The proof of (1) proceeds by showing that the set
⋂

f∈Fn(I)

⋂

r∈W

f−1(Bad(r))

is Cantor rich. Roughly speaking, this means that the set contains an abundance
of generalized Cantor sets having dimension arbitrarily close to 1. One of the
nice features of Cantor richness is that a countable intersection of Cantor rich
sets is also Cantor rich, which reduces the problem to treating f−1(Bad(r)) for
a single choice of f , r. One constructs generalized Cantor sets in f−1(Bad(r))
by repeatedly partitioning the interval into a number of equal sub-intervals, and
at each step discarding some of those sub-intervals. The discarded sub-intervals
are those that intersect so-called dangerous intervals. These are intervals where
“bad approximability” may be violated for a given set of possible denominators.
That is, they are intervals of points x where |q · f(x) − p| can be made small, for
some q ∈ Zn in some |·|∞-ball, by choosing p ∈ Z. (Here, we think of the “dual”
definition of bad approximablity.) Since we would like to construct generalized
Cantor sets of large dimension, the challenge is to bound the number and length
of these dangerous intervals. For this, it is beneficial to have a good control over
the sizes of derivatives of f , since these will tell us how many zeros q · f(x)− p has
(which contributes to the number of dangerous intervals), and for how long the
expression remains small near a zero (which contributes to the lengths of dangerous
intervals). Such control on derivatives is afforded by nondegeneracy of f .
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Badly approximable points on manifolds, II

Oleg German

The talk continues the story Felipe Ramı́rez began. The aim is to show the main
ideas the proof of Beresnevich’s theorem is based upon. The strategy is to con-
struct a Cantor rich Cantor type set with parameter R responsible for the number
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of equal subintervals each interval under consideration is divided into. In the pro-
cess, some of those subinterval get discarded, namely those that have a nonempty
intersection with so called dangerous intervals.

Given a map f(x) = (f1(x), . . . , fn(x)) nondegenerate at x0 and an n-tuple of
weights r = (r1, . . . , rn), ri > 0, r1 + . . .+ rn = 1, upon setting F(x) = (−1, f(x))
we have to deal with intervals arising from the systems similar to

(1)

{

|a ·F(x)| ≪ b−t

|ai| < brit, i = 1, . . . , n,

where b is an appropriately chosen base and a = (a0, a1, . . . , an) ∈ Zn+1. For each
fixed x the above system determines a one-parametric family of parallelepipeds
centered at the origin, and we want those parallelepipeds to contain no nonzero
integer points. If this is the case, x gives us a badly approximable point. Otherwise,
x is dangerous and should be avoided. Controlling the whole parallelepiped is
difficult, so we cut it into slices with the derivative linear form F′(x). This gives
us two types of slices: the ones separated from the origin obtained by completing
(1) with

bγt−(1+γ)l
6 |a ·F′(x)| < bγt−(1+γ)(l−1), 0 6 l 6 lt,

where γ = max(r1, . . . , rn), and the corresponding inner slice which is contained
in a larger domain obtained by completing (1) with

|a ·F′(x)| ≪ b(γ−ε)t.

Then, for each nonzero a ∈ Zn+1 the measure of the set consisting of x which have
a in their l-th slice can be estimated from above. In case of the inner slice such an
estimate is obtained by applying a deep result of Bernik, Kleinbok, Margulis. As
for the slices separated from the origin, it can be shown that if Ip is an interval
from level p, then the set S(Ip) of integer points a contained in the l-th slice of
some points of Ip spans a sublattice of Zn+1 of lower rank. This allows applying
Blichfeldt’s theorem to show that the cardinality of S(Ip) is rather small, which
eventually leads us to the desired estimates.

Problem session

Sam Chow

Problem 1 (V. Beresnevich) Prove that for any nondegenerate submanifold
M ⊆ Rn and any r ∈ Rn

≥0 with
∑

i ri = 1 we have

dim(Bad(r) ∩M) = dimM.

One might wish to read [16]. The result is known for curves, and if M is analytic
then fibering is successful. Without this assumption one may need to develop a
direct approach.
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Problem 2 (V. Beresnevich) Now consider the case n = 2. Let i, j ≥ 0 with
i+ j = 1. Let L be a line in R2. Prove that

dim(Bad(i, j) ∩ L) = 1

if and only if Bad(i, j) ∩ L = ∅. This is known for C2 curves. It’s also known if
the line has rational slope.

Problem 3 (V. Beresnevich) Given any countable collection of weights W ⊆
Rn, and any nondegenerate analytic manifold M ⊆ Rn, prove that

∩r∈W Bad(r) ∩M 6= ∅.
This is known if we impose an additional technical condition. It’s also known in
the case n = 2. One could hope for more; winning would be ideal.

Problem 4 (V. Beresnevich) Let θ = (θ1, . . . , θn) ∈ Rn, and let r ∈ Rn
≥0

with
∑

i ri = 1. Write Bad(r; θ) for the set of y ∈ Rn such that there exists
C = C(y, θ) for which

max
1≤i≤n

‖qyi − θi‖1/ri ≥ Cq−1 (q ∈ N).

Let M be a nondegenerate analytic manifold in Rn. Prove that

Bad(r; θ) ∩M 6= ∅.
The set is likely to be of full dimension. The result is known for n = 2, using the
dual form of approximation (ref: Schmidt’s conjecture).

Problem 5 (V. Beresnevich) Write B∗
n for the set of x ∈ R such that

|x− α| ≥ cx,nH(α)−n−1 (α ∈ C : deg α = n).

Prove that ∩∞
n=1B

∗
n 6= ∅. This is known for ∩N

n=1B
∗
n. In a way, Problem 3 implies

Problem 5 — see [7, §2.3]. One can also consider the problem with α ∈ R instead
of α ∈ C.

Problem 6 (V. Beresnevich) Let d, n ∈ N with d ≤ n. Write B∗
n,d for the set

of x ∈ Rd such that

max
1≤i≤d

|xi − αi| ≥ cx,nH(α1)
−(n+1)/d

for all conjugate algebraic numbers α1, . . . , αd of degree at most n. Prove that B∗
n,d

is uncountable. We believe that the problem of showing that B∗
n,d is nonempty is

also open. It’s known that the measure is zero.

Problem 7 (S. Chow) Recall the dream theorem for manifolds:

Conjecture. Let M be a nondegenerate submanifold of Rn, and let ψ : N → R≥0

be a monotonic function. Then

|M ∩W (n, ψ)|M =

{

0, if
∑

q ψ(q)
n <∞

FULL, if
∑

q ψ(q)
n = ∞.
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The result is known when n = 2. The divergence case is known when M
is analytic. Under an additional curvature hypothesis, the convergence case is
known [9] for d ≥ 2. The convergence case has recently been solved [8] under a
mild assumption on M whenever d > (n + 1)/2. Prove the convergence case for
curves in R3, under suitable conditions on M . Can the hypothesis d > (n + 1)/2
from [8] be slightly relaxed?

Problem 8 (D. Simmons) For M ⊆ Rd a nondegenerate submanifold, consider
the intrinsic Dirichlet exponent

ω(M) = inf
x∈M

lim sup
p/q∈M

− log |x− p/q|
log q

.

Let ω(k, d) be the supremum of ω(M) over nondegenerate submanifolds M ⊆ Rd

of dimension k. From [12], we have

ω(d, d) =
d+ 1

d
, ω(d− 1, d) = 1,

ω

(

k,

(

k + n− 1

k − 1

)

− 1

)

=
k + 1

kn
,

and also an explicit upper bound for ω(k, d). Can the upper bound be improved?
Can ω(k, d) be computed exactly for more values of k and d? What if we con-
sider ω′(M), wherein infx∈M is replaced by the essential infimum? Is it true that
ω′(k, d) = ω(k, d)?

Problem 9 (E. Nesharim) For subsets of the reals, we know that ε-Cantor
winning sets are M -Cantor rich whenever M > 41/(1−ε). Is there a converse? Can
the result above be strengthened?

Problem 10 (E. Nesharim) Let θ1, θ2, . . . ∈ Fq. Show that if ℓ ≥ 0 then there
exist h, k ≥ 1 such that

rank







θk+1 . . . θk+h

...
...

θk+h+ℓ . . . θk+2h+ℓ−1






< h.

This is mixed Littlewood in the function field setting.

Problem 11 (E. Zorin)Write Sp for the set of counterexamples to the p-adic Lit-
tlewood conjecture. Let H be the Hausdorff measure determined by the dimension
function f : r 7→ (log | log r|)−1, i.e. take the infimum of

∑

i

f(r(Bi))

over ρ-covers of your set, then take ρ to zero. It’s known that if Sp is nonempty
then Hf (Sp) > 0. Prove that if Sp is nonempty then Hg(Sp) > 0, where g(r) =
| log r|−1. Read [10], and use it to prove that Hg <∞. Then do it in the classical
Littlewood setting.
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Problem 12 (S. Baker) Let φ1, . . . , φN be contractions of Rn. Let F be the
attractor, which is the unique set defined by

F = ∪iφi(F ).

Pick x ∈ F , and an approximating function

ψ : ∪∞
k=1{1, 2, . . . , n}k → R≥0.

We ask when the set

W (x, ψ) =
{

y ∈ F : y ∈ B(φs1 ◦ · · · ◦ φsk , ψ(s1, . . . , sk)) i.o.
}

is large; ideally we’d like to classify the ψ for which this holds. It’s known that

dimH F ≤ min(s, n),

where s is the similarity dimension of the iterated function system. How about
a Khintchine theory when this inequality is an equality? (This is known for the
Cantor set.) One may wish to consult [5, 6, 17].

Problem 13 (D. Simmons) We count rationals in the Cantor set C, up to given
height. This has an application to the convergence case of the Khintchine theory
of intrinsic diophantine approximation in the Cantor set — see [13]. Define

NC(Q) = #{p/q ∈ C : q ≤ Q}.
The contribution from when the denominator is a power of 3 is at least 2k, so

NC(3
K) ≥ 2k.

A heuristic provided in [13] tells us not to expect many more rationals in total.
Prove that

NC(Q) ≪ε Q
log 2
log 3+ε.

We know that at least a logarithmic factor must be present. To give a feel for this
problem, recall that x ∈ C if and only if the base 3 expansion uses only 0s and 2s,
and that x ∈ Q if and only if this expansion is preperiodic. For example

0.[a1 . . . ak]3 =
[a1 . . . ak]3
3k − 1

∈ C ∩Q,

where the notation refers to the base 3 expansion.

Problem 14 (E. Nesharim) Is the quantity

inf
i+j=1

inf
x,y

sup
α,β

inf
q
max(qi‖qx− α‖, qj‖qy − β‖)

positive? We can also ask the question with lim infq→∞ in place of infq. In
dimension 1, Khintchine [15] showed that if x ∈ R then there exists α ∈ R such
that

inf
q
q‖qx− α‖ > 0.

This can be made uniform: on the right hand side we could replace 0 by an absolute
constant c. Formally, we have

c = inf
x
sup
α

inf
q
q‖qx− α‖.
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It’s known that

1/10 < c < 1/7;

the best lower bound is by Godwin [14] in 1953. Determine the value of c.

Problem 15 (S. Velani, via S. Baker) We know [2, 4] that the sets
{

(α, β) : lim inf
q→∞

(q log q log log q)‖qα‖ · ‖qβ‖ > 0

}

and
{

α : lim inf
q→∞

(q log q log log q)|q|p‖qα‖ > 0
}

have full Hausdorff dimension. Can the log log q be dropped? Are the sets winning?
How about intersecting with a planar curve?

Problem 16 (S. Velani, via S. Baker) For all α, β, we know from Hurwitz’s
theorem that

lim inf
q→∞

q‖qα‖ · ‖qβ‖ ≤ 1

2
√
5
.

What improvement can we make on the RHS? One may attempt this using contin-
ued fractions. Of course we expect this quantity to be zero (Littlewood conjecture).
Editor: Note that Badziahin [3] obtains 1/19.

Problem 17 (S. Velani, via S. Baker) Let γ ∈ R, and let ψ : N → R≥0. Put

Wγ(ψ) = {α ∈ [0, 1] : ‖qα− γ‖ ≤ ψ(q) i.o.}
and

W ′
γ(ψ) = {α ∈ [0, 1] : |qα− γ − p| ≤ ψ(q) i.o. with (p, q) = 1}

When γ = 0 we have the homogeneous 0-1 laws of Cassels and Gallagher. Prove
it for arbitrary γ. (The scenario in which α ∈ R \ Q is fixed and the problem is
metric in γ was solved by Kurzweil.)

Problem 18 (A. Pollington, via S. Chow) Recall the Duffin–Schaeffer con-
jecture, which states that if

(1)
∑

q

ψ(q)ϕ(q)

q
= ∞

then W ′(ψ) has full Lebesgue measure. Erdős [11] established this under the
assumption that ψ(q) = q−1 on its support. Vaaler [18] subsequently extended
Erdős’s work to handle ψ(q) ≪ q−1. A recent paper by Aistleitner [1] settles DS
whenever

(2)

22
h+1

∑

n=22h+1

ψ(q)φ(q)

q
≪ 1

h
.

If (1) holds but (2) does not then the support of ψ must be particularly uneven.
Using this, can one prove DS when ψ(q) = q−1/2 on its support? One may wish
to consult [1, Lemma 3].
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