
Mathematisches Forschungsinstitut Oberwolfach

Report No. 46/2016

DOI: 10.4171/OWR/2016/46

Singularities

Organised by
François Loeser, Paris

András Némethi, Budapest

Duco van Straten, Mainz

25 September – 1 October 2016

Abstract. Singularity theory is a central part of contemporary mathemat-
ics. It is concerned with the local and global structure of maps and spaces
that occur in algebraic, analytic or differential geometric context. For its
study it uses methods from algebra, topology, algebraic geometry and com-
plex analysis.

Mathematics Subject Classification (2010): 14Bxx, 32Sxx, 58Kxx.

Introduction by the Organisers

The workshop Singularities that was held in September 2016 stands in a long
tradition of workshops on this subject that over the past decades took place at
Oberwolfach. It was organized by F. Loeser (Paris), A. Némethi (Budapest) and
D. van Straten (Mainz) and was attended by 49 regular participants. A novum
was the presence of 5 additional participants to the workshop, that were selected
by the organisers from the applicants of the Heidelberg Laureate Forum, but which
had no specific background in singularity theory. This brought the total number of
participants to the workshop up to 54: a very diverse group representing a broad
spectrum of interests, age and geographical origin. Two participants were sup-
ported as Oberwolfach Leibniz Graduate Students, one as US Junior Oberwolfach
Fellow.

The schedule of the meeting followed the more or less standard format of three
morning and two afternoon talks of one hour each. On Tuesday, Wednesday and
Thursday evening additional presentations and informal discussions took place, so
that a total of 25 talks were presented. Of course, in good Oberwolfach tradition,
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the wednesday afternoon was kept free for a hike, which on this occasion took us
to St. Roman. From the abstracts one gets a good idea of the broad scope of
present day singularity theory, and it shows that it is an active field with major
open problems.

During the last decades the categorical or non-commutative approach to singular-
ity theory has grown into an important new direction of research. The workshop
was opened by a talk by I. Burban that clearified the Krichever correspondence in
the higher rank case and used the Fourier-Mukai transform to elucidate its precise
relation to torsion free sheaves on the spectral curve. R. Buchweitz talked about
a recent result that gives a complete description of graded matrix-factorisations of
the polynomial xd−yd and more generally of all graded Cohen-Macaulay modules
over graded Gorenstein curve singularities. E. Faber reported on work describing
non-commutative resolutions of discriminants arising from reflection groups; the
resulting picture links the classical McKay correspondence to Chevalley’s theorem
on quotients by reflection groups.

The theory of singularities of curves and surfaces still occupies a central position
in the field, with strong ties to low dimensional topology. W. Neumann reported
on the recent progress made in the description of the outer Lipschitz geometry of
normal surface singularities. J. Wahl gave an overview of the recent developments
on rational homology disk smoothings of normal surface singularities, where now
an almost complete picture has emerged. B. Sigurðsson reported on results relat-
ing the Seiberg-Witten invariant and the geometric genus for the class of surface
singularities described by Newton-nondegenerate polynomials. The talk of S. Ras-
mussen described applications of Heegard-Floer homology to the link of normal
surface singularities, which led to a new characterisation of the class of rational
surface singularities. P. Popescu-Pampu introduced the notion of arborescent sin-
gularities and gave a nice ultra-metric interpretation of intersection numbers of
curves on surfaces.

Open problems in the classical theory of singularities of mappings were presented
in the talk of D. Mond. A very basic question relating the deformations of a
mapping to the vanishing topology of the image is still wide open, although it
has been verified in very non-trivial examples. In his talk, J. Bobadilla described
a new attempt for a general proof by introducing a new kind of Jacobi-algebra.
Attempts to construct hyperkähler manifolds have led to the study of symplectic
singularities. These have very special properties and Y. Namikawa described in his
talk a complete classification of a sub-class of them. M. Lehn formulated results
and conjectures concerning singularities arising from polar representations and
symplectic reductions. S. Gusein-Zade presented joint work with W. Ebeling on
orbifold invariants of hypersurface singularities, in particular for finer invariants
like the integral structure and Seifert form in the cohomology of the Milnor fibre.
L. Goettsche talked on his results on refined curve counting in linear systems on
surfaces.
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The theory of D-modules plays a fundamental role in the description of the vari-
ation of cohomology groups. The local theory of the Gauss-Manin connection
was introduced by E. Brieskorn to describe the cohomology of the Milnor fibre
and its monodromy. At his talk at the workshop, K. Saito returned to these
roots and formulated a general coherence theorem for the direct image of the rel-
ative de Rham complex in the non-proper situation. N. Budur presented results
on cohomology jump loci that can be seen as a generalisation of Brieskorns ap-
proach to the monodromy theorem. The Laplace transformed version of the local
Gauss-Manin system describes the behaviour of oscillatory integrals, objects of
key importance in many branches of mathematics. G. Compte described a con-
struction of a remarkable algebra of oscillatory functions, closed under integration.
A. Dimca presented results and conjectures on the algorithmic calculation of the
monodromy of projective curves, which were obtained partly in joint work with
M. Saito.

Three evening sessions with an informal character were held at the workshop. On
Tuesday, H. Hauser gave three interesting examples related to approximation theo-
rems and resolution of singularities in characteristic p. On Wednesday N. A’Campo
gave an Introduction to Singularities, aimed especially at the participants from the
Heidelberg Laureate Forum, who did not have a specific background in singular-
ity theory. On Thursday J. Rasmussen talked about the spectacular conjectural
relation between the HOMFLY-polynomial, Khovanov homology and the Hilbert
schemes of curve singularties. All three lectures attracted a large attendance and
led to lively discussions.

The remarkable properties of the space of arcs of a singular space are still under
intensive study, especially after the spectacular applications of motivic integration
were found. Various variants of the Grothendieck group of varieties played a role
in the talk of H. Đ. Nguyễn, that aimed at developping a theory of motivic
multiple zeta functions. In her talk at the workshop, A. Reguera gave new results
on the relation between Mather-discrepancy and the local embedding codimension
of arc-space. M. Pe Pereira presented a new approach based on arc-spaces to
the old problem of finding the adjacencies between plane curve singularities. V.
Batyrev described a new invariant for singular spaces, called the algebraic stringy
Euler number, whose invariance is most easily understood in terms of motivic
integration. His talk concluded the mathematical program of our workshop.

To summarize, we think the meeting was a great success: old and new conjectures
were presented by older and younger participants. Old and new friendships were
celebrated, old and new collaborations were started or continued. The organisers
thank the Oberwolfach staff for their efficient handling of the boundary conditions,
which helped to create the unique Oberwolfach atmosphere.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Fourier–Mukai transform on Weierstrass cubics and commuting
differential operators

Igor Burban

(joint work with Alexander Zheglov)

The study of commutative subalgebras of the algebra D = C[[z]][∂] of ordinary
differential operators has a long history, dating back to works of Schur [11] and
Burchnall & Chaundy [3]. The next two well–known theorems summarize basic
properties of such subalgebras.

Theorem. Let B ⊂ D be a commutative subalgebra containing an elliptic element
(i.e. an element of the form ∂n+a1∂

n−1+ · · ·+an with n ≥ 1). Then the following
statements are true.

(1) All elements of B are elliptic (such an algebra B itself will be called elliptic
in what follows).

(2) B is a finitely generated integral domain and kr.dim(B) = 1. In particular,
X0 = Spec(B) is an integral affine curve.

(3) Let Q = Quot(B) and r = rk(B) = gcd
{
ord(P )

∣∣P ∈ B
}

be the rank of
B. Consider the valuation

valp : Q −→ Z,
P

Q
7→

ord(Q)− ord(P )

r
.

Then X = X0 ∪ {p} is a projective curve (called spectral curve of B) and
p is a smooth point of X .

Theorem. Let B ⊂ D be an elliptic commutative subalgebra of rank r and
F = D/xD ∼= C[∂]. Then the following statements are true.

(1) F is a finitely generated torsion free module over B. Moreover, Q⊗BF ∼=
B⊕r, i.e. rkB(F ) = rk(B).

(2) For a point B
χ
−→ C of X0, consider the vector space

Sol
(
B, χ

)
:=

{
f ∈ C[[x]]

∣∣P ◦ f = χ(P )f for all P ∈ B
}
.

Then we have a B–linear map F
ηχ
−→ Sol

(
B, χ

)∗
, ∂i 7→

(
f 7→

1

i!
f (i)(0)

)
,

where Sol
(
B, χ

)∗
= HomC

(
Sol

(
B, χ

)
,C

)
. Moreover, the induced map

B/Ker(χ)⊗B F
η̄χ
−→ Sol

(
B, χ

)∗

is an isomorphism of B–modules, i.e. F
∣∣
χ
∼= Sol

(
B, χ

)∗
for all χ ∈ X0.

(3) There exists a pair (F , ϕ), where F is a torsion free sheaf on X and
ϕ : F

∣∣
X0
−→ F is a Γ(X0,O) ∼= B–linear map, inducing an isomorphism

of C–vector spaces Γ(X,F) −→ 〈1, ∂, . . . , ∂r−1〉. Moreover, such a pair is
unique up to an automorphism of F .



2632 Oberwolfach Report 46/2016

The B–module F is called spectral module of B, whereas the torsion free sheaf F
on the spectral curve X is called spectral sheaf of B.
The following result is essentially due to Krichever [5, 6]. Singular spectral curves
and torsion free sheaves on them were included in the picture by Mumford [9]. See
also a work of Mulase [8] for further elaboration.

Theorem [Krichever correspondence]. Consider the following two sets:

DiffOp =
{
B ⊂ D

∣∣ B is commutative and elliptic
}

and

SpecData =





(X, p,F)

∣∣∣∣∣∣∣∣

X is an integral projective curve
p ∈ X is a smooth point
F is torsion free, H1(X,F) = 0

Γ(X,F)
evp
−→ F

∣∣
p

is an isomorphism





.

Then the Krichever map DiffOp
K
−→ SpecData,B 7→ (X, p,F) is surjective. More-

over, its restriction DiffOp1
K
−→ SpecData1 on the set of commutative subalgebras

B ⊂ D of rank one, respectively the set of tuples (X, p,F) with F of rank one, is
essentially a bijection.

All elliptic subalgebras B ⊂ D of genus one and rank two were classified by
Krichever & Novikov [7] (when the spectral curve is smooth) and by Grünbaum
[4] in general. It is a natural problem to describe the spectral sheaf of a such
subalgebra. This problem was solved by Previato & Wilson [10] in the case the
spectral curve is smooth.

The main tool (and main novelty) in dealing with this problem is the tech-
nique of Fourier–Mukai transforms on Weierstraß cubics elaborated by Burban
and Kreußler in [1].

Proposition (Burban & Zheglov [2]). Let B = C[L, P ] ⊂ D be a genus one and
rank two commutative subalgebra. Then the spectral sheaf of B is indecomposable

and not locally free if and only if L =
(
∂2 + 1

2c2

)2

+
(
c1∂ + ∂c1) + c0 with





c0 = −f2 + ̺f −
̺2

6
c1 = f ′

c2 =
2̺f3 − ̺2f2 − f4 + f ′′2 − 2f ′f ′′′

2f ′2

and P = L
3
2
+. The equation of the spectral curve is y2 = 4x3 − 1

12̺
4x + 1

216̺
6.

Theorem (Burban & Zheglov [2]). Let B = C[L, P ] be a maximal genus one and

rank two commutative subalgebra of D, where L =
(
∂2 + 1

2c2

)2

+
(
c1∂+∂c1) + c0
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and P = L
3
2
+ with





c0 = −f2 + ̺1f + ̺2
c1 = f ′

c2 =
̺3 − 2̺0f + 6̺2f

2 + 2̺1f
3 − f4 + f ′′2 − 2f ′f ′′′

2f ′2

Then the following results are true.

(1) The spectral curve X is singular and the spectral sheaf F is decomposable
and not locally free if and only if ̺0 = (3̺2 + 1

2̺
2
1)̺1 and ̺3 = −(3̺2 +

1
2̺

2
1)2 6= 0. In this case, F ∼= S⊕O

(
[q]

)
, where q =

(
−2̺2−

1
4̺

2
1,−

1
2̺1(̺21+

6̺2)
)
∈ X and S is the direct image of OP1 under the normalization map

P1 → X .
(2) The spectral curve X is singular and the Fourier–Mukai transform of F

is supported at the singular point of X if and only if ̺0 = ̺3 = 0. The
spectral sheaf F is locally free if and only if 6̺2 + ̺21 6= 0. Moreover,
det(F) ∼= O

(
2[q]

)
with q =

(
1
4̺

2
1 + ̺2,

1
4̺1

(
6̺2 + ̺21

))
.
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[4] F. Grünbaum, Commuting pairs of linear ordinary differential operators of orders four and

six, Phys. D 31 (1988), 424–433.
[5] I. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Uspehi

Mat. Nauk 32 (1977), no. 6 (198), 183–208, 287.
[6] I. Krichever, Commutative rings of ordinary linear differential operators, Func. Anal.

Appl. 12, no. 3 (1978), 175–185.
[7] I. Krichever & S. Novikov, Holomorphic bundles over algebraic curves and nonlinear equa-

tions, Russian Math. Surveys, 35:6 (1980), 47–68.
[8] M. Mulase, Category of vector bundles on algebraic curves and infinite-dimensional Grass-

mannians, Internat. J. Math. 1 (1990), no. 3, 293–342.
[9] D. Mumford, An algebro–geometric construction of commuting operators and of solutions

to the Toda lattice equation, Korteweg deVries equation and related nonlinear equation,
Proceedings of the International Symposium on Algebraic Geometry, 115–153, Kinokuniya
Book Store, Tokyo (1978).

[10] E. Previato & G. Wilson, Differential operators and rank 2 bundles over elliptic curves,
Compositio Math. 81 (1992), 107–119.
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Graded Matrix Factorizations of yd
− x

d

Ragnar-Olaf Buchweitz

(joint work with Osamu Iyama, Kota Yamaura)

Introduction.

1. Recall that if W ∈ S is an element in a commutative ring S, then a matrix
factorization of W consists of a pair of square matrices A,B ∈ Matn×n(S), of size
n × n with n > 1 and entries from S, such that AB = W1n = BA, where 1n

denotes the identity matrix of the same size.
Set M = CokA, the R = S/(W )–module defined by the matrix factorization. If

W is a not a zerodivisor and S is regular, then M is a maximal Cohen–Macaulay
(MCM) module over the hypersurface ring R, and each MCM over R can be
obtained in this way when S is local by Eisenbud’s classical result [Eis80].

2. According to a suggestion by Kontsevich, sectors in Landau–Ginzburg models
in String Theory are parametrized by stable (and naturally triangulated) cate-
gories MF(W ) of matrix factorizations of “potentials” W , typically polynomials
or power series in a finite number of variables. Crossing a “defect line” between
a sector governed by W and another by W ′ corresponds then to an exact functor
from MF(W ) to MF(W ′) and the relevant functors should correspond to matrix
factorizations of W ′(y)−W (x), where the variable sets y, x are disjoint. That such
Fourier–Mukai kernels define indeed such functors goes back to Yoshino [Yos98],
see also [DM13].

3. The simplest situation occurs when W = W ′ = xd ∈ C[x] for some positive
integer d. Now each matrix factorization of xd is a direct sum of the finitely
many (matrix) factorizations (xi, xd−i)i=0,...,d, with i = 0, d yielding zero objects
in the stable category. Thus, MF(xd) is of finite representation type, there are
only finitely many indecomposable objects.

4. However, as soon as d > 5, then yd−xd is a hypersurface of wild representation
type, there are indecomposable (graded) matrix factorizations of arbitrarily large
size and the dimension of the families of such factorizations grows exponentially
with the size. Mathematical Physicists asked already several years ago how to
construct any interesting families of matrix factorizations of this potential and
then to study the corresponding crossing of the default line. Note that already
the obvious 1 × 1 (matrix) factorizations here have interesting physical meaning,
see [DRCR14].

5. As Lenzing observed when we ran an evening session on this issue at the Casa
Matematica Oaxaca (CMO) in October 2015, the situation is (very) similar to
what we are used to from linear algebra: Morphisms between vector spaces of,
say, dimension d are classified by their rank that can range from 0 to d, while
endomorphisms of such a vector space are classified in terms of eigenvalues and
Jordan Normal Forms that are not discrete data, at least when the underlying
field is, say, C.
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Graded Gorenstein Rings of Dimesnion 1.
Our results pertain more generally to one–dimensional, positively graded Goren-
stein rings R = ⊕i>0Ri with R0 = k a field. The total graded ring of fractions of
R is K = N−1R, where N ⊂ R is the set of homogeneous non-zero-divisors of R.

Because R is Gorenstein, ExtiR(k,R) = 0 for i 6= 1 and Ext1R(k,R) = k(−a)[−1]
as graded R–modules. The occurring integer a = a(R) is the a–invariant of R.

Example 6. The ring R = k[x, y]/(y2) is Gorenstein and with arbitrarily assigned
weights or degrees deg x, deg y > 0 the ring is obviously graded. One has a(R) =
deg y − deg x, whence the a–invariant can take on any integer value.

For the purpose of this abstract we restrict to the case that k is algebraically
closed, that R is reduced, and that gcd{i | Ri contains a non-zero-divisor} = 1.
In this case, we have the following information.

Lemma 7. Under the assumptions made, K ∼=
∏r

j=1 k[tj , t
−1
j ] is a product of

graded rings of Laurent polynomials in one variable with deg tj = 1. The ring
K>0

∼=
∏r

j=1 k[tj ] is then the normalization of R.

If a(R) < 0, then R ∼= k[t] is a polynomial ring in one variable with deg t =
−a = 1. �

Example 8. For a quasi–homogeneous curve singularity R ∼= k[x, y]/(f(x, y)),
the a–invariant is a(R) = deg f − deg x−deg y, thus, for example, for f = yd− xd

with the standard grading deg x = deg y = 1, the a–invariant is d− 2.

Henceforth assuming a = a(R) > 0, consider the following graded R–modules

• Ti = R>i(i) = R(i)>0, for i = 1, ..., a, and

• Ti+j = k[tj ], for j = 1, ..., r, where K ∼=
∏r

j=1 k[tj , t
−1
j ] as above.

Proposition 9. The endomorphism ring of degree preserving endomorphisms of
T = ⊕a+r

i=1 Ti in the stable category of graded maximal Cohen–Macaulay (= torsion-
free) R–modules is the same as that in the category of all R–modules. In matrix
form, it is

EndR(T ) R>1(1) · · · R>j(j) · · · · · · R>a(a) k[t1] · · · k[tr]
R>1(1) k · · · 0 · · · · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

R>i(i) Ri−1 · · · Ri−j · · · · · · 0 0 · · · 0
...

...
...

...
...

...
R>a(a) Ra−1 · · · Ra−j · · · · · · k 0 · · · 0
k[t1] k · · · k · · · · · · k k · · · 0
...

...
...

...
...

. . .
...

k[tr] k · · · k · · · · · · k 0 · · · k

The strictly lower triangular matrices among these form the Jacobson radical of
EndR(T ).
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Our main result is then as follows.

Theorem 10. Let R and T be as above. The stable category of graded maximal
Cohen–Macaulay R–modules is exact equivalent to the category of perfect minimal
complexes over add(T ), such a complex being of the form

0→ Pb
∂
−→ Pb−1

∂
−→ · · ·

∂
−→ Pa+1

∂
−→ Pa → 0 ,

with b > a − 1 integers, Pi ∈ addT , and the components of the morphisms ∂ in
the radical of EndR(T ).

Moreover, that equivalence is constructive in that it sends the stalk complex
P [−n], for P ∈ addT and n ∈ Z an integer, to the nth R–syzygy of P , and maps
mapping cones to mapping cones.

Corollary 11. The Grothendieck group of the stable category of graded maximal
Cohen–Macaulay R–modules is isomorphic to Za+r.

Prescribing the “Betti table” of the classes of the Pi, for i = a, ..., b, in that
Grothendieck group, the corresponding representation space of perfect minimal
complexes over addT is a subvariety of a (large) affine space cut out by the qua-
dratic equations ∂2 = 0.

Graded Matrix Factorizations of yd − xd. Coming back to the singularity in
the title, assuming that the characteristic of k does not divide d, the summands
of T have the following simple description:

• Ti = R>i(i) = R(i)>0, for i = 1, ..., d− 2, is the first R–syzygy module of
k[x, y]/(x, y)i, with matrix factorization given essentially by the Hilbert–
Birch matrix of (x, y)i, and shifted so that the syzygy module is generated
in degree zero,
• Ti+j = k[tj ] ∼= k[x, y]/(y − ζjx), for j = 1, ..., d, where ζ is a primitive dth

root of unity.

The corresponding (1× 1) matrix factorization is

(
y − ζjx,

yd − xd

y − ζjx)

)
.

Moreover, for a matrix factorization (A,B), one has (A,B)[1] = (−B,−A(d)) and
so (A,B)[2] = (A,B)(d). Further, Ri−j

∼= K[x, y]i−j , for 1 6 i, j 6 a = d − 2, is
just the vector space of homogeneous polynomials of degree i− j in x and y. The
morphisms from R>i(i) to k[tj ] are scalar multiples of the shift of the natural map
R>i →֒ K>i ։ k[x, y]/(y − ζjx)>i

∼= k[tj ]t
i
j .

With this information it is now possible to write down all graded matrix fac-
torizations of yd − xd for any d.
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Outer Lipschitz geometry of normal complex surface singularities

Walter D. Neumann

(joint work with Anne Pichon)

A complex germ (X, 0) ⊂ (CN , 0) has two “natural” metrics: inner metric
dinn(x, y) measures minimal length of a path from x to y in X and outer metric
dout(x, y) := ||x − y|| in CN . Up to bilipschitz equivalence these metrics are well
defined and independent of embedding.

An attraction of bilipschitz geometry is that it gives discrete classifications,
as was first conjectured by Siebenmann and Sullivan [5] in 1997 and proved by
Mostowski [2] in 1985. In a 2014 Acta paper [1], Lev Birbrair, Anne Pichon and
I gave a complete classification of inner Lipschitz geometry of normal complex
surface germs. Then in a subsequent preprint [3] Pichon and I addressed outer
geometry, but without giving a full classification.

Nevertheless in [3] we showed that many analytic invariants of a complex normal
surface singularity are invariants of its outer geometry, for example, its multiplicity,
the minimal ideal cycle of its resolution, the geometry and topology of its polar
and discriminant curves for a generic plane projection, etc. In particular, it then
followed easily that constant outer Lipschitz geometry of an analytic family of
normal surface singularities implies Zariski equisingularity of the family. We also
proved the converse.

The new topic of the MFO talk was a complete classification of outer Lipschitz
geometry for normal complex surface germs, the full details of which we expect to
post on the arXiv soon.

The outer classification starts with a decomposition of the normal surface germ
(X, 0) into semi-algebraic pieces glued along their boundaries. After embedding
(X, 0) in some (Cn, 0), for small ǫ the link Lǫ = X ∩ S2n−1

ǫ of (X, 0) is a 3-
manifold, and the resulting decomposition of Lǫ is a refinement of the one used to
classify inner geometry in [1], which itself is a refinement of the JSJ decomposition
of Lǫ. We call the pieces of this decomposition A-pieces and B-pieces. Each of
the B-pieces Bi, i = 1, . . . , k is labeled by a rational number qi ≥ 1 as in [1],
representing the exponent of an exponential “rate of shrink” of Bi as ǫ → 0. We
write Bi = Bi(qi). The other data of the inner classification are also retained; they
can be captured as a cohomology class in H1(Bi(qi);Z) for each Bi(qi) with qi > 1.
As in [1], the A-pieces in Lǫ are toral annuli (i.e., homeomorphic to T 2 × [0, 1])
which are glued between B pieces, so they have pairs of exponents 1 ≤ q < q′

which are the exponents associated with the adjacent B-pieces (we write A(q, q′)).
Adding the data of the outer geometry starts by considering a generic projec-

tion of (X, 0) → (C2, 0). In fact, this projection is already used in determining
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the decomposition of (X, 0), using the geometry of the discriminant curve of the
projection to first build a decomposition of (C2, 0) and then lifting the pieces to
(X, 0) to get to the decomposition of (X, 0) (after amalgamating some “trivial
pieces”). The map (X, 0) → (C2, 0) is a branched covering and we show that to
understand the outer geometry it suffices to know the “vertical rates” between
sheets of the branched cover in addition to the the inner geometry. These vertical
rates are again rational numbers ≥ 1, now measuring exponential distance between
“vertically aligned points” as ǫ→ 0. We capture the information of these vertical
rates by choosing a “test curve” for each B-piece of the decomposition of (C2, 0);
the test curve is the lift to (X, 0) of a complex curve in the B-piece. The final
data of the classification are trees of rational numbers associated by means of the
test curve to each B-piece of the decomposition of (C2, 0) (the trees are related
to the trees of rational numbers used in the usual classification of the topology of
plane curves, e.g., the Eggers tree, or the tree described in [4]).

This final step took us a long time to complete. For an A(q, q′)-piece the
vertical rates vary between the two boundaries of the piece, and although we knew
a long time ago that this variation was piecewise linear, we were convinced that
it should actually be linear. With linearity the vertical data of A-pieces would
be determined by the data of the adjacent B-pieces, but piecewise linearity would
have necessitated extra data, which was aesthetically unpleasing. Very recently
we (mostly Anne Pichon) finally proved the linearity, thus avoiding extra data and
completing the classification.
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Refined curve counting on Surfaces

Lothar Göttsche

(joint work with V. Shende, F. Block, F. Schoeter, B. Kikwai)

We discuss refined versions of curve counting on surfaces. The most classical way
of counting curves are the Severi degrees. Let S be a complex projective surface
and L a line bundle on S. Denote |L| = P(H0(L)) the complete linear system. For
δ a nonnegative integer, the Severi degree n(S,L),δ is the number of δ-nodal curves



Singularities 2639

in |L| through dim|L|− δ general points on S. For S = P2 the number nd,δ counts
δ-nodal degree d plane curves through d(d + 3)/2− δ general points.

1. The refined invariants

Let S be a smooth complex surface. Let χ−y(X) :=
∑

p,q(−1)p+qyphp,q(X) be the

χ−y-genus. Let Pδ ⊂ |L| be the sub-linear system of curves through dim|L| − δ

general points, denote C ⊂ S × Pδ the universal curve, let S[n] the Hilbert scheme
of n points on S and C[n] ⊂ S[n] × Pδ the relative Hilbert scheme, parametrising
zero dimensional schemes on the curves in Pδ. Assume that C[n] is nonsingular
of the expected dimension for all n (e.g. L is δ-very ample). In [GS] we define
polynomials NC

l (y) via
∑

n≥0

χ−y(C[n])tn =
∑

l≥0

NC
l (y)

(
(1 − t)(1− yt)

)g(L)−l−1
.

Here g(L) is the arithmetic genus of curves in |L|. The refined invariant is
N (S,L),δ(y) := NC

δ (y)/yδ, a symmetric Laurent polynomial in y. As the χ−y genus
specialises to the Euler number at y = 1, this definition specializes to the formula
for the Severi degrees n(S,L),δ in terms of Euler number of relative Hilbert schemes
of points proven in [KST] in the course of their proof of a conjecture of [G] of
universal formulas for the Severi degrees. In particular, for L sufficiently ample,
N (S,L),δ(1) = n(S,L),δ, and N (S,L),δ(y) is given by universal generating functions.

For example for K3 surfaces S, we get that N (S,L),L2/2+1(y) (a refined count of

genus 0 curves in |L|) is the coefficient of qL
2/2 in 1

q
∏

n>0(1−qn)20(1−qny)2(1−qny−1)2 .

Below we relate the refined invariants to real and tropical enumerative geometry
of curves. First we review the Welschinger numbers. Let S be a real algebraic
surface, and L a real line bundle on S. Let P be a configuration of dim|L|− δ real
points on S. The Welschinger number is W(S,L),δ(P ) =

∑
C(−1)s(C). The count

is over real δ-nodal curves in |L| through P , and s(C) is the number of isolated
real nodes of C, i.e. the real points of C where two complex branches intersect.
These numbers depend in general on the point configuration P .

2. Tropical curve counting and refined Severi degree

Let S be a projective toric surface. Both the Severi degrees and the Welschinger
numbers of S can be computed via tropical geometry [Mi], which we will also use
to define the refined Severi degrees. For simplicity we restrict to the case S = P2,
but the results hold for all projective toric surfaces. A plane tropical curve of
degree d is a pair C = (Γ, f) with Γ a graph, f a linear immersion to R2 satisfying.

• the (images of) edges e have rational slope, let P (e) the corresponding
primitive integer vector, the edges have a weight w(e) ∈ Z>0,
• at every vertex v of C the balancing condition holds:

∑
ew(e)P (e) = 0,

where the sum is over all edges adjacent to v,
• the unbounded edges of f(Γ) are d in each direction (−1, 0), (0,−1), (1, 1).
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There are notions of genus g(C) and number of nodes of a tropical curve. Through
a configuration P of d(d + 3)/2− δ general points there are finitely many δ-nodal
degree d tropical curves, all trivalent as graphs. We count them with multiplicities.
We introduce 3 different counts, all based on the same principle. For a vertex v
of a tropical curve C introduce a vertex multiplicity µ(v). The multiplicity of
C is then µ(C) =

∏
v µ(v), where v runs through all vertices of C. Finally the

corresponding count is µd,δ =
∑

C µ(C), where the sum runs through all δ-nodal
degree d curves through P as above.

(1) The tropical Severi degree ntrop
d,δ is the count corresponding to the Mikhalkin

multiplicity m(v) as vertex multiplicity. For this choose two edges e1, e2 at
the trivalent vertex v. Then m(v) = w(e1)w(e2)| det(P (e1), P (e2))|. Here
(P (e1), P (e2)) is the 2 × 2 matrix with columns P (e1), P (e2). The other
two counts are defined in terms of the Mikhalkin multiplicity.

(2) The tropical Welschinger number W trop
d,δ corresponds to the vertex multi-

plicity ω(v), which is 0 if m(v) is even and (−1)m(v)/2−1 if m(v) is odd.
(3) In [BG] we define the refined Severi degreeNd,δ(y) as the count correspond-

ing to the vertex multiplicity [m(v)]y , where the quantum number [n]y is

the Laurent polynomial in y1/2 defined by [n]y = yn/2−y−n/2

y1/2−y−1/2 . One can

show that Nd,δ(y) is a symmetric Laurent polynomial in y. Similarly one
defines refined Severi degrees N(S,L),δ(y) for all projective toric surfaces.

In [Mi] Mikhalkin shows that ntrop
d,δ = nd,δ, i.e. the tropical Severi degree is equal

to the classical one, and W trop
d,δ = Wd,δ(P ) for suitable point configurations P . It is

easy to see that Nd,δ(1) = ntrop
d,δ and Nd,δ(−1) = W trop

d,δ , thus, by the above results
of Mikhalkin, the refined Severi degree interpolates between the Severi degree
counting complex curves and the Welschinger number counting real curves. In [IM]
it is shown that the refined Severi degrees are tropical invariants, i.e. independent
of the choice of tropical point configuration. The following conjecture gives the
relation to the refined invariants of the first section.

Conjecture 1 For d ≥ δ/2 + 1 we have Nd,δ(y) = Nd,δ(y). More generally for S

nonsingular, projective and toric and L δ-very ample, N (S,L),δ(y) = N(S,L),δ(y).

3. Computations in terms of Heisenberg algebra

The results of this section appliy to a restricted class of pairs toric surface and line
bundle (given by h-transversal lattice polygons). These include P2, many weighted
projective planes and the rational ruled surfaces. For simplicity we again restrict
to P2. Let H be the Heisenberg algebra generated by elements an, bn, n ∈ Z with
the commutation relations

[an, am] = 0 = [bn, bm], [an, bm] = [n]yδn,−m.

The a−n, b−n with n > 0 are called creation operators, the others annihilation
operators. The Fock space F is the space of P ((a−i)i, (b−j)j)1, where P is a
polynomial in the creation operators and 1 is called the vacuum vector. F is a
module under H : concatenate with the element of H from the left, apply the
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commutation relations and impose that an1 = bn1 = 0 for n ≥ 0. An inner
product on F is defined by setting 〈1|1〉 = 1 and requiring that an is adjoint
to a−n and bn adjoint to b−n. For a partition µ = (1µ1 , 2µ2 , . . .) define aµ =
∏

i
a
µi
i

µi!
, a−µ =

∏
i

a
µi
−i

µi!
. Denote ‖µ‖ =

∑
i iµi the number partitioned by µ.

Theorem 2. Write H(t) :=
∑

k>0 bkb−k + t
∑

‖µ‖=‖ν‖−1 aνa−µ, where µ and ν

run through the partitions. Then

Nd,δ(y) =
〈
a(1d)1

∣∣ Coefftd [H(t)d(d+3)/2−δ]1
〉
.

For the proof we express the refined Severi degrees in terms of floor diagrams, a
schematic description of tropical curves, and express, via the commutation rela-
tions, the computation in the Heisenberg algebra in terms of Feynman diagrams.
Then we show that the floor diagrams are the same as the Feynman diagrams.

4. Further developments

I briefly mention other developments.

(1) With B. Kikwai [GK] we study universal generating functions for the re-
fined Severi degrees N(S,L),δ(y) also in case the surface S is singular. The
formulas will hold when L is sufficiently ample. They are the same as
for smooth surfaces, but with correction factors for the singularities, often
expressed in terms of modular forms.

(2) There are more general Welschinger invariants where the curves are re-
quired to pass through configurations of real points and pairs of com-
plex conjugated points. With F. Schroeter [GSc] we introduce and study
new tropical invariants, which interpolate between these more general
Welschinger invariants and descendent Gromov-Witten invariants.

(3) In [NPS] Nicaise, Payne and Schroeter give an interpretation of and an ap-
proach towards Conjecture 1, relating refined invariants and refined Severi
degrees, in terms of nonarchimedian geometry.

(4) In [Mi2] Mikhalkin defines under special assumptions quantum indices of
real plane curves, in terms of the signed area of the amoeba of the curve,
and relates the corresponding counts of curves to the refined Severi degrees.
This suggests that the refined Severi degrees are related to disk invariants.
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[GS] L. Göttsche and V. Shende, Refined curve counting on complex surfaces, Geom. Topol.

18 (2014), 2245–2307



2642 Oberwolfach Report 46/2016
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Mather discrepancy as an embedded dimension in the space of arcs

Ana J. Reguera

The space of arcs X∞ of a singular variety X over a perfect field k has finiteness
properties when we localize at its stable points. This allows to associate invariants
of X from its space of arcs. In the talk I have shown some general properties
of the stable points, pointing out our interest in computing the dimension of the

complete local ring ÔX∞,PE when PE is the stable point defined by a divisorial
valuation νE on X .

I have also presented our last result, together with H. Mourtada: “Assuming

char k = 0, we prove that embdim ÔX∞,PE = k̂E + 1 where k̂E is the Mather

discrepancy of X with respect to νE . We also obtain that dim ÔX∞,PE has as
lower bound the Mather-Jacobian log-discrepancy of X with respect to νE . For
X normal and complete intersection, we prove as a consequence that points PE of
codimension one in X∞ have discrepancy kE ≤ 0”.

Expressed in terms of cylinders, stable points are precisely the generic points
of the irreducible cylinders in X∞, and our result with H. Mourtada asserts

that the embedding dimension of ÔX∞,PE is equal to the codimesion as cylinder
of NE , being NE the closure of PE in X∞. But in general we have

dim ÔX∞,PE < embdim ÔX∞,PE .
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Coherence of the direct image of the relative De Rham complex

Kyoji Saito

We consider a flat holomorphic map Φ : Z → S between complex manifolds. We
show that the direct images of the relative De Rham complex Ω•

Z/S are coherent

on S under the assumptions that the critical set CΦ of the map is proper over S
and that the map satisfies a suitable topological boundary conditions.

The proof uses Forster-Knorr’s lemma which was used in a new proof of Grauert
proper mapping theorem. More precisely, we cover the manifold Z by relative
charts in the sense of Forster-Knorr. Then, on each relative chart, we introduce
the complex K•,⋆

Φ and the complex H•,s
Φ which has support only on the critical

set CΦ so that these two complexes together with the relative De Rham complex
form an exact triangle. Consider the long exact sequence of direct images of the
triangle, where the direct images are expressed by Cech-cohomology groups with
respect to the covering of Z by relative charts. Then, the direct images of K•,⋆

Φ are
coherent due to Forster-Knorr lemma and the direct images of H•,s

Φ are coherent
since CΦ is proper over S. Therefore, the third term: the direct images of the
relative De Rham complex are also coherent.

A characterization of nilpotent orbit closures among symplectic
singularities

Yoshinori Namikawa

Let 0 ∈ V be a germ of a normal variety over the complex number C. Denote by m
the maximal ideal of OV,0 corresponding to the origin 0. Assume that the smooth
locus Vreg admits a holomorphic symplectic 2-form ω. Then (V, ω) is a symplectic
singularity if ω extends to a holomorphic 2-form on a resolution µ : W → V . A
conjecture of Kaledin says that there would be a C∗-action on V such that m/m2

has only positive weights and ω is homogeneous symplectic 2-form (if necessary,
by replacing the original ω by a suitable one). If the conjecture holds, V can
be globalized to an affine variety X . Such a variety is called a conical symplectic
variety. More precisely, let X be a normal affine variety which admits a symplectic
2-form ω on the smooth locus Xreg. Then

Definition (X,ω) is a conical symplectic variety if

(1) the coordinate ring R of X is positively graded R = ⊕i≥0Ri,, R0 = C
(that is, X has a good C∗-action).

(2) ω is a homogeneous symplectic 2-form with respect to the C∗-action,
(3) ω extends to a holomorphic 2-form on a resolution Y of X .

The pair (Õ, ωKK) of the normalization Õ of a nilpotent orbit closure Ō of a
complex semisimple Lie algebra g and the Kirillov-Kostant form ωKK becomes a
conical symplectic variety. Another type of examples of conical symplectic varieties
is constructed by the holomorphic symplectic reduction for a Hamiltonian action
of a reductive group G on a complex symplectic manifold (M,ω). For examples,
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Nakajima quiver varieties and hypertoric varieties are among them. The Brieskorn-
Slodowy slices to a nilpotent orbit of a complex semisimple Lie algebra are also
conical symplectic varieties. As is well known, a Du Val singularity of type A, D
or E arises as such a slice to a subregular nilpotent orbit of the corresponding Lie
algebra.

Now let’s take a minimal homogeneous generator x0, ..., xn of the coordinate
ring R of a conical symplectic variety X . Put ai := wt(xi), i.e. xi ∈ Rai . Then
N := max{a0, ..., an} is called a maximal weight of X .

Recently I proved the following finiteness theorem for conical symplectic vari-
eties (Namikawa, Y: A finiteness theorem on symplectic singularities, Copositio
Math. 152, 1225–1236 (2016)).

Theorem. For fixed positive integers d and N , there are only finitely many conical
symplectic varieties of dimension 2d and with maximal weight N .

The main theorem of the talk is a complete classification of conical symplectic
varieties with maximal weight N = 1.

Main Theorem. Let (X,ω) be a conical symplectic variety with maximal weight
1. Then (X,ω) is isomorphic to one of the following

(1) an affine space (C2d, ωst) with a standard symplectic form ωst, or
(2) a normal nilpotent orbit closure (Ō, ωKK) of a complex semisimple Lie

algebra with the Kirillov-Kostant form ωKK .

The rough sketch of the proof is as follows. First of all, we prove that wt(ω) = 2
or wt(ω) = 1. In the first case (X,ω) is isomorphic to an affine space C2d together
with the standard symplectic form ωst. In the second case the Poisson bracket has
degree −1 and R1 has a natural Lie algebra structure. Then it is fairly easy to
show that X is a coadjoint orbit closure Ō of a complex Lie algebra g.

The essential part is proving that g is semisimple.
If X has a crepant resolution, we can prove that the crepant resolution can be

written as the cotangent bundle T ∗M of a flag variety M . In this case g coincides
with the Lie algebra of Aut(M). We can easily check that Aut(M) is semisimple
by the fact that M is projective. This is the method we employed in a previous
paper (Namikawa, Y.: On the stucture of homogeneous symplectic varieties of
complete intersection , Invent. Math. 193, 159-185 (2013)).

But X generally does not have such a resolution and we need a new method to
prove the semisimplicity. This is nothing but the following proposition.

Proposition. Let g be a complex Lie algebra with trivial center whose adjoint
group G is a linear algebraic group. Assume that the nilradical of g is non-trivial:
n 6= 0. Let O be a coadjoint orbit of g∗ with the following properties

(1) O is preserved by the scalar C∗-action on g∗;
(2) T0Ō = g∗, where T0Ō denotes the tangent space of the closure Ō of O at

the origin.

Then Ō − O contains infinitely many coadjoint orbits; in particular Ō has in-
finitely many symplectic leaves.
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We apply this proposition to our g and X = Ō (one can check that g has no
center and the adjoint group G is a linear algebraic group). If g is not semisim-
ple, it must have non-trivial nilradical n. But, then the proposition shows that
(Ō, ωKK) cannot have symplectic singularities. In fact, if (Ō, ωKK) has symplectic
singularities, it has only finitely many symplectic leaves by a result of Kaledin.

One can find more details in the preprint:
Namikawa, Y.: A characterization of nilpotent orbit closures among symplectic

singularities, arXiv:1603.06105

Orbifold Milnor lattice, orbifold Seifert and intersection forms

Sabir M. Gusein-Zade

(joint work with W. Ebeling)

For a germ of a quasihomogeneous function with an isolated critical point at the
origin invariant with respect to an appropriate action of a finite abelian group
(an admissible one), H.Fan, T.Jarvis, and Y.Ruan defined the so-called quantum
cohomology group. This group is defined in terms of the vanishing cohomology
groups of Milnor fibres of restrictions of the function to fixed point sets of elements
of the group. The quantum cohomology group is considered as the main object of
the so called quantum singularity theory or FJRW-theory. Fan, Jarvis, and Ruan
studied some structures on the quantum cohomology group which generalize sim-
ilar structures in the usual singularity theory. An important role in singularity
theory is played by such concepts as the (integral) Milnor lattice, the monodromy
operator, the Seifert form and the intersection form. Analogues of these concepts
have not yet been considered in the FJRW-theory. We define an orbifold version of
the monodromy operator on the quantum (co)homology group and a lattice which
is invariant with respect to the orbifold monodromy operator and is considered as
an orbifold version of the Milnor lattice. The action of the orbifold monodromy op-
erator on it can be considered as an analogue of the integral monodromy operator.
Moreover, we define orbifold versions of the Seifert form and of the intersection
form.

To define these concepts we use the language of group rings. An appropriate
change of the basis in the group ring allows to give a decomposition of a certain ex-
tension of the quantum (co)homology group into parts isomorphic to (co)homology
groups of certain suspensions of the restrictions of the function under considera-
tion to fixed point sets. This permits us to define analogues of the Seifert and
intersection form on this extension. We show that the intersection of this decom-
position with the quantum (co)homology group respects the relations between the
monodromy, the Seifert and the intersection form.



2646 Oberwolfach Report 46/2016

Vanishing homology of codimension 1 multi-germs of mappings from
n-space to n + 1-space

David Mond

We consider germs f : (Cn, S) → (Cn+1, 0) where |S| < ∞ with Ae-codimension
1. Infinitely many essentially different such germs exist, in sharp distinction to the
case of ICIS, where only the A1-singularity has τ = 1. All known A-finite germs
(Cn, 0)→ (Cn+1, 0) in Mather’s nice dimensions satisfy the conjectured relation

(1) µI ≥ Ae-codim

with equality if f is weighted homogeneous. Here µI is the image Milnor number,
the rank of the middle homology of the image of a stable perturbation ft, which
has the homotopy type of a wedge of n-spheres. When µI = 1, the image is a
homotopy sphere, but for different germs, the geometric origin of the vanishing
cycle is very different, as witness the three Reidemeister moves of elementary knot
theory. It can be described in terms of the Image Computing Spectral Sequence,
[GorMo93], [Gor95], which calculates the homology of the image of a finite map
f : X → Y from the alternating homology HAlt

∗ (Dk(f)) of the multiple point
spaces Dk(f) ⊂ Xk. Here

Dk(f) = closure{(x1, . . . , xk) ∈ Xk : xi 6= xj if i 6= j, f(xi) = f(xj) for all i, j},

and HAlt
j (Dk(f)) is the j’th homology of the subcomplex of the usual singular

chain complex on which the symmetric group Sk, permuting the copies of X , acts
by its sign representation. The ICSS has E1

p,q = HAlt
p−q+1(Dq(f)) and converges

to Hp+q(f(X)). K. Houston showed in [Hou97] that if |S| = 1 then Dk(ft) has
alternating homology only in middle dimension. This implies collapse of the ICSS
at E1, and the formula

µI(f) =

n+1∑

k=2

rankHAlt
n−k+1(Dk(ft)).

So when µI = 1, just one of these groups is non-zero.

Conjecture: In this case the non-zero group corresponds to the highest k for
which Dk(f) 6= ∅.

The conjecture is easy to check for map-germs of corank 1, using a normal form
and explicit equations for the Dk(f), which are all ICISs. Germs of corank > 1 are
harder, since the Dk(f) are no longer ICISs. The simplest germ of corank 2 and
Ae-codimension 1, mapping (C5, 0)→ (C6, 0), has µI = 1, in agreement with (1); it
has triple points but no quadruple points. A somewhat complex calculation shows
that the non-vanishing alternating homology group is Halt

3 (D3(ft)), in agreement
with the conjecture, see [Mo16]. We observe also that although D2(ft) has no
alternating homology outside its middle dimension, 4, it does have non-trivial
homology in dimension 2.
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Though not directly relevant to the main theme of the talk, but as evidence for
the earlier-mentioned conjecture (1), we mention a recent example found by Ayse
Sharland, [AS16],

f(x, y, z) = (x2 + yz, xy + z5 + x2z, x2y + yz4 + z7 + y2z, y2 + x3 + z6),

which has µI = Ae–codimension = 18, 967. Note that this germ is weighted
homogenous. Here µI is calculated in terms of weights and degrees using a recent
formula of T. Ohmoto in [O16] based on Thom polynomial techniques, and the
Ae–codimension is calculated by Sharland by means of an isomorphism described
in [Mo91],

θ(f)

TAef
≃

JhOCn,0

JhOD,0

where D = h−1(0) is the image of f .
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Intergration of subanalytic and oscillatory functions

Georges Comte

(joint work with Raf Cluckers, Dan Miller, Jean-Philippe Rolin, Tamara Servi)

The stability under integration of certain classes of real functions was already
considered in [3], [4], [6], [9], [11], but none of these classes allows oscillatory
behaviour, let alone stability under Fourier transforms.

I briefly summarize here reference [5], where the question of integration of os-
cillatory functions is investigated.

Let us recall that a globally subanalytic set X of Rn is a set definable in the ring
language with parameters from R and symbols for analytic functions restricted to
closed balls. A globally subanalytic map is a map with globally subanalytic graph.
For sake of brevity, in what follows, subanalytic means globally subanalytic.

The collection of subanalytic sets yields an o-minimal structure, that is a col-
lection of sets containing all real algebraic subsets, stable under basic geometrical
operations such as intersection, union, product, projection and complement, and
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such that a subset of R of this collection is the union of finitely many intervals
(see [7] or [15] for details).

Note that the functions sin : R → R, exp : R → R and log : R → R are
not subanalytic functions. The reason being that the first one of these functions
oscillates: its graph cuts the x-axis in an infinite number of points that cannot
define a subanalytic subset of R. For the exponential function, the reason is
somewhat less trivial: subanalytic functions are polynomially bounded 1, that is,
for any subanalytic function f : R → R, there exists an integer ν such that
∀x ∈ R, |f(x)| ≤ |x|ν . And finally, since subanalyticity is stable under linear
maps, the log function cannot be subanalytic (its graph being obtained from the
graph of exp through a symmetry). Nevertheless, the expansion Ran,exp of the
subanalytic structure by the graph of exp : R → R (or the graph of log) is still
o-minimal by [8].

When one deals with integration of subanalytic functions, one can fear that the
integration process will provide some perturbations with respect to the geometrical
tameness of the subanalytic structure, since this process is far from being a first
order logical process.

The results of [6] and [11] proves that the perturbation is enough to destroy
the subanalyticity of the integrand we start with, although not enough to rule out
o-minimality of the integral. Indeed, for f : X ×Rn → R a subanalytic function
defined on the subanalytic set X , the set

Int(f) := {x ∈ X ;

∫

Rn

|f(x, t)| dt <∞}

is subanalytic and

Int(f) ∋ x 7→

∫

Rn

f(x, t) dt,

is a function of the algebra

C := {P (h1, · · · , hr, log |h1|, · · · , log |hr|); r ∈ N, P ∈ R[X1, · · · , X2r]},

an algebra of functions definable in the o-minimal structure Ran,exp.
Then the natural question of the existence of an algebra of functions, all de-

finable in the same o-minimal structure, and stable under integration, has been
solved in [3] and [4]: the algebra C is such an algebra. Iterated integrations of
subanalytic functions does not create new functions after the first step and yield
functions definable in an o-minimal structure, namely Ran,exp.

The question treated in [5] allows, from the beginning, oscillatory functions as
integrands: what is the smallest C-algebra E of functions containing all subanalytic
functions, their complex exponential eih (h subanalytic), and that is stable under
integration? Of course this algebra has to contain C.

A motivation here for introducing oscillatory functions eih (with h subanalytic)
in the integrand is to initiate the study of the real counterpart of the theory of
complex singularities of (real) analytic phases in oscillatory integrals (see [1], [12],

1 In fact the converse is true: by [13], an o-minimal expansion of the real field is polynomially
bounded if and only if it contains the graph of the exponential function.
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[16]). One knows, in the analytic case, that exponents appearing in the asymptotic
expansion of oscillatory integrals give eigenvalues of the monodromy operator of
the (complexification of the) phase. Of course such striking interplay between
asymptotic analysis and complex singularity theory seems difficult to transfer to
the real setting, but nevertheless we do hope that a well-adapted real version
is possible. We give now the following answer to the stability question by fully
describing E .

Theorem 1. — The algebra E is the C-vector space E generated by the func-

tions of the form g(x, t)eih(x,t)
∫

R

eiuk(x, t, u) logℓ |u| du, where g ∈ C, h, k are

subanalytic, and ℓ ∈ N. More accurately, E is a C-algebra and for f ∈ E defined

on some subanalytic set X × Rn, there exist i, F ∈ E defined on X such that

Int(f) = i−1(0) and such that for any x ∈ Int(f), F (x) =

∫

Rn

f(x, t) dt.

In particular E is an algebra of functions containing all subanalytic functions
and stable under Fourier transform. Note that this algebra also contains special

functions like x 7→ e−x2

or Si : x 7→

∫ x

0

sin t

t
dt.

Moreover E is closed with respect to point-wise limit: for f ∈ E , the set Lim(f)
of points x such that limy→∞ f(x, y) exists is a zero level of a function of E and
there exists l ∈ E such that for any x ∈ Lim(f), limy→∞ f(x, y) = l(x). For any
integer number p ≥ 1, the algebra E is also closed with respect to the Lp-norm
and particular sequences of the form (f(·, k))k∈N, with f(·, k) ∈ Lp(Rn), f ∈ E :
any such sequence converging in Lp converges almost everywhere to a function of
E . As an application, for p = 2, we get the following result.

Theorem 2. — The L2-Fourier transform is an isometry from E ∩ L2 to itself.

Theorem 1 and 2 show that integration of functions of E does not delete the logi-
cal and geometrical properties of those functions; analytic tameness and oscillation
of functions of E are well-balanced from integration point of view.

To prove Theorem 1 and 2, starting from the Parusiński and Lion-Rolin sub-
analytic preparation theorem (see [10], [14]), we prove a preparation theorem for
functions of E that allows to understand the asymptotic behaviour of these func-
tions as well as the asymptotic behaviour of their integrals. Then, using the theory
of almost-periodic functions (see [2]) we have to prove that oscillatory terms com-
ing from this preparation cannot cancel. It roughly amounts showing that for

f(t) =

J∑

j=1

cje
ipj(t), cj ∈ C \ {0}, pj ∈ R[t], there exists ε, δ > 0 such that the

length of {t ∈ [1,∞); |f(t)| ≥ ε} is bigger than δ.
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[11] J.-M. Lion and J.-P. Rolin, Intégration des fonctions sous-analytiques et volumes des sous-
ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 755–767.
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Three (Counter)-Examples

Herwig Hauser

We present three examples, with quite different flavour:

(1) Gabrielov’s counterexample to a conjecture of Grothendieck remained mys-
terious over many years. He constructed in 1971 three analytic functions which
admit a formal but no analytic relation, thus disproving the conjecture that the
ideal of formal relations is generated by the analytic ones.

We explain the divergence phenomenon by constructing the relations via a gen-
eralized division algorithm, applied to echelons. These are a natural extension of
the concept of ideals in power series rings, by admitting in linear combinations of
the generators only coefficients depending on nested subsets of the variables. The
analysis allows us to construct many more counterexamples.

Joint work with Mariemi Alonso, Francisco Castro-Jiménez, Christoph Kou-
tschan.

(2) The Grinberg-Kazhdan-Drinfeld theorem asserts that the formal neighbor-
hood of a non-degenerate arc in an arc scheme is the cartesian product of the
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formal neighborhood of a scheme of finite type with countably many copies of the
formal disk. Here, non-degenerate means that the arc is not entirely contained in
the singular locus of the given scheme.

Bourqui and Sebag have shown by means of an example that this statement is
no longer true if one considers arcs inside the singular locus. We prove that this
happens always for constant arcs at singular points.

Joint work with Christopher Chiu.

(3) The standard resolution invariant in characteristic zero consists of a string
of integers, whose first component is the local order of the defining ideal of the
embedded singular scheme, and which is taken with respect to the lexicographic
ordering. The invariant is shown to be upper semicontinuous, and blowing up its
top locus (points of maximal value) makes the invariant drop.

In positive characteristic, it is well known that the second component of the
invariant, the residual order – provided that it is defined appropriately in a char-
acteristic free manner – may increase under permissible blowup in the case that
the first component remains constant. Moh gave a bound for the maximal increase
and there was hope that a suitabl modification of the residual order still allows
one to carry out the induction argument, since it was expected that it decreases
in the long run.

We exhibit an example, constructed by Stefan Perlega from the University of
Vienna, of a sequence of permissible blowups along which the residual order tends
to infinity. This is NOT a counter-example to resolution, since in the example
larger centers could be blown up, thus avoiding the indefinite increase. Never-
theless, the striking phenomenon disproves a theorem of Moh and tells us that,
in positive characteristic, we will have to review our standard way to select the
centers of the blowups.

Complex surface singularities with rational homology disk smoothings

Jonathan Wahl

Consider a complex normal surface singularity (V, 0) with a smoothing whose
Milnor number is 0, i.e., the Milnor fibre has no rational homology. Such a (V, 0)
must be a rational singularity, and all cyclic quotient singularities of type p2/pq−1
(0 < q < p, (p, q) = 1) have a unique such smoothing ([5], 9.2). In the 1980’s, we
discovered three triply-infinite and six singly-infinite families of such singularities,
all weighted homogeneous. Later work of Stipsicz, Szabó, Bhupal, and myself
([4], [1]) proved that these were the only weighted homogeneous examples. Our
PhD student Jacob Fowler has made substantial progress on remaining questions
[2], such as counting the number of distinct smoothings in each case; calculating
the fundamental group of the Milnor fibre (it is finite but can be non-abelian);
determining the analytic type when there is a modulus in the resolution graph.
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We conjectured that these were the only surface singularities, and gave some par-
tial results [6]. A recent preprint of Stipsicz, Park, and Shin [3] offers a proof of
this conjecture; the paper is quite difficult and is currently being refereed. We
shall discuss the main outstanding questions on these problems, and mention re-
lated symplectic/contact geometry issues (such as the relation to the existence of
symplectic fillings of the links.)
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Heegard Floer theory, semigroups, and a new characterization of
rational surface singularities

Sarah Dean Rasmussen

The search for relationships between complex analytic structure and topology
forms a recurrent theme in the study of complex singularities. This talk addresses
two topics, both of which lie in the overlap of analytic structure and topology:
a new point of view for singularity semigroups, and a new characterization of
rational normal surface singularities.

Near the turn of the millennium, Campillo, Delgado, and Gusein-Zade [1] built
on the classical theory of Milnor fiber monodromy of plane curve singularities to
show that for PC(t) the Poincaré series of the ring of germs of functions of an ir-
reducible plane curve singularity (C, 0) ⊂ (C2, 0), one has PC(t) = ∆C(t)/(1− t),
where ∆C(t) is the characteristic polynomial of the monodromy of the Milnor fiber
of the curve complement C2 \ C. This ∆C(t) also coincides with the Alexander
polynomial ∆(S3 \K) ∈ Z[H1(S3 \K)] of the link, S3 \K, of the curve comple-
ment. As all the coefficients of PC(t) lie in {0, 1}, PC(t) can be regarded as the
characteristic function of its support Γ ⊂ Z≥0. It follows that Γ is a semigroup,
called the singularity semigroup of C.

I have recently encountered semigroups in the seemingly disparate context of
Heegaard Floer homology, which is a gauge-theoretic closed 3-manifold invariant
developed by Oszváth and Szabó [11]. Oszváth and Szabó [10], and independently
J. Rasmussen [13] have also introduced a more refined invariant called knot Floer
homology, which to any knot K ⊂ M in a closed 3-manifold M , associates a
filtered chain complex HFK(M,K) which splits over relative Spinc-structures.
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There is a precise sense in which one can regard the Euler characteristic of the
“hat” version of HFK as residing in the group ring of H1(M \K;Z), so that

χ(ĤFK(M,K)) = (1− [µ])τ(M \K) ∈ Z[H1(M \K;Z)],

where µ ∈ H1(M \ K) is the class of the meridian of K, and [µ] indicates the
inclusion of µ into the group ring Z[H1(M \ K;Z)]. Here, τ is a more classical
3-manifold invariant called the Reidemeister-Turaev torsion [16], which, in par-
ticular, associates to any compact oriented 3-manifold Y with torus boundary a
Laurent series τ(Y ) in an appropriate extension of the group ring Z[H1(Y ;Z)]. For
example, for Y = S3 \K, one has τ(S3 \K) = ∆(S3 \K)/(1− t), where t = [µ].

For a compact oriented 3-manifold Y with torus boundary, the Reidemeister-
Turaev torsion τ(Y ) is a useful tool for studying how HF (Y (µ)) changes as one
varies the Dehn filling slope µ ∈ P(H1(∂Y ;Z)) ∼= Q∪{∞} for Dehn fillings {Y (µ)}
of Y . In joint work [14], J. Rasmussen and I show that for Floer simple Y and a
given L-space Dehn filling slope µl, the Reidemeister-Turaev torsion τ(Y ) deter-

mines the “hat” Heegaard Floer homology ĤF (Y (µ)) for any µ ∈ P(H1(∂Y ;Z)).
Here, the term Floer simple indicates that Y has more than one L-space Dehn
filling, and an L-space is a closed oriented 3-manifold with vanishing reduced Hee-
gaard Floer homology. We also show that for Floer simple Y , the space of L-space
Dehn fillings of Y forms an interval L(Y ) ⊂ P(H1(∂Y ;Z)), whose endpoints are

given by consecutive elements of the set P(ι−1
∗ D̃

τ (Y )) ⊂ P(H1(∂Y ;Z)), where

D̃τ (Y ) := {x− y|x /∈ S[τ(Y )], y ∈ S[τ(Y )]} ∩H1(Y ;Z)|≥0.

Here, ι∗ is the homomorphism induced on homology by the inclusion ι : ∂Y → Y
of the boundary, and S[τ(Y )] indicates the support of τ(Y ) in H1(Y ;Z).

The complement ΓY := H1(Y ;Z)|≥0 \ D̃τ (Y ) is a semigroup. Moreover, if Y is
the link of the complement C2\C of an isolated irreducible planar curve singularity
(C, 0) ⊂ (C2, 0), then ΓY coincides with the singularity semigroup of C.

My claim is that even though ΓY can have torsion, it is the correct object to
generalize the singularity semigroup of irreducible planar curve singularities. If
Y is the link of an end curve complement X \ C in an isolated rational or good
quasihomogeneous surface singularity, I can show [15] that such Y is Floer simple,
and that the Heegaard Floer homology of any Dehn filling of Y is completely
determined by ΓY . On the other hand, in this case, τ(Y ) is the characteristic
function of ΓY and descends from the equivariant Poincaré series for X \ C or
from an appropriate zeta function for X \ C, (c.f. Némethi [9]).

For arbitrary Floer simple Y , J. Rasmussen and I also used the invariant D̃τ =
H1(Y ;Z)|≥0 \ΓY to prove a gluing theorem determining, in terms of the intervals
L(Yi) of L-space Dehn fillings for Floer simple Yi, whether a union Y1 ∪ Y2 is an
L-space [14]. In joint work with Hanselman and Watson [5], who had proved a
related gluing theorem [6], we combined an inductive argument with our gluing
results to show that a graph manifold is an L-space if and only if it fails to admit a
taut foliation. Némethi then exploited this result to prove that an isolated normal
surface singularity is rational if and only if its link is an L-space [7].
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In independent work [15], I have constructed a finite recursive formula which,
for any graph manifold Y with torus boundary, computes the space L(Y ) of L-
space Dehn filling slopes of Y in terms of the Seifert data and gluing maps in a JSJ
decomposition of Y . In particular, if Y is Floer simple, then one can express Y as

a union Y = Ŷ ∪ϕ
∐nG

i=1 Yi, with gluing maps ϕi : ∂Yi → −∂iŶ , where each Yi is a

Floer simple graph manifold, and where Ŷ = MS2(y1, . . . , yn) \
∐nG+1

i=1 (S1 ×{pi})

is Seifert fibered over the nG+1-times punctured two-sphere S2\
∐nG+1

i=1 {pi}, with

Seifert slopes yj = βj/αj . If we write y−i , y
+
i ∈ P(H1(∂iŶ )) for the left-hand and

right-hand endpoints of each L-space interval image ϕP
i∗(L(Yi)) ⊂ P(H1(∂iŶ )) ∼=

Q ∪ {∞}, in terms of the Seifert data basis, then L(Y ) is given by the interval
with left-hand and right-hand endpoints y− and y+, where

y− = max
k∈N
−

1

k


1 +

n∑

j=1

⌊kyj⌋+

nG∑

i=1

(⌈ky+i ⌉ − 1)


 ,

y+ = min
k∈N
−

1

k


−1 +

n∑

j=1

⌈kyj⌉+

nG∑

i=1

(⌊ky−i ⌋+ 1)


 .

In particular, the closed graph manifold Y (0) is an L-space if and only if the
L-space interval from y− to y+ contains 0. Thus, due to Némethi’s result that
normal suface singularities have L-space links if and only if they are rational, the
above formula provides a new characterization for rational surface singularities.

Note that if Y (0) is the link of an isolated good quasihomogenous surface sin-
gularity (X, 0), in which case nG = 0 and y− > 0, then Y (0) is an L-space if and
only if y+ ≥ 0, or equivalently, if and only if −1 +

∑n
j=1⌈kyj⌉ ≤ 0 for all k ∈ N.

This is consistent with the computation pa =
∑

k∈N max(0,−1 +
∑n

j=1⌈kyj⌉) of
the arithmetic genus of X implicit in the models of quasihomogeneous surface
singularities described by Pinkham [12] and Dolgachev [3].
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[4] W. Ebeling. Poincaré series and monodromy of the simple and unimodal boundary singu-
larities. Tr. Mat. Inst. Steklova, 267(Osobennosti i Prilozheniya):56–64, 2009.

[5] Jonathan Hanselman, Jacob Rasmussen, Sarah Dean Rasmussen, and Liam Watson. Taut
foliations on graph manifolds. arXiv:1508.05911, 2015.

[6] Jonathan Hanselman and Liam Watson. A calculus for bordered Floer homology. Preprint,
2015.

[7] András Némethi. Links of rational singularities, L-spaces and LO fundamental groups.
arXiv:1510.07128.
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Ultrametric spaces of branches on arborescent singularities

Patrick Popescu-Pampu

(joint work with Evelia R. Garćıa Barroso and Pedro D. González Pérez)

This work started from our intention to study in which measure a theorem of
P loski from [5] can be generalized from germs of smooth complex analytic surfaces
to other normal surface singularities. This theorem may be stated as follows:

Theorem. Fix a smooth complex analytic surface singularity (S,O). For each
pair of branches (that is, germs of irreducible formal curves) A,B drawn on (S,O),
consider:

U(A,B) :=





mO(A) ·mO(B)

A · B
, if A 6= B,

0, if A = B

where mO denotes the multiplicity at O and A ·B denotes the intersection number
of A and B at O. Then U is an ultrametric on the set of branches on (S,O).

We discovered that, slightly reformulated purely in terms of intersection num-
bers, the theorem may be extended to arborescent singularities. We call a normal
surface singularity arborescent if it has a simple normal crossings resolution whose
dual graph is a tree – in which case all such resolutions have this property. For
instance, the normal surface singularities with rational homology sphere links are
precisely the arborescent singularities such that all irreducible exceptional divisors
appearing in its resolutions are rational.
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Our generalization of P loski’s theorem is:

Theorem. Fix an arborescent singularity (S,O) and a branch L on it. For each
pair of branches A,B on (S,O) which are distinct from L, consider:

UL(A,B) :=





(L · A) · (L ·B)

A ·B
, if A 6= B,

0, if A = B

.

Then UL is an ultrametric on the set of branches on (S,O) distinct from L.

Here we work with Mumford’s notion of rational-valued intersection number of
Weil divisors drawn on normal surface singularities, introduced in [4].

The previous theorem generalizes P loski’s one. Indeed, each time a finite set F
of branches is fixed on a smooth germ of surface – the simplest kind of arborescent
singularity – one may choose a smooth branch L transversal to all of them, in
which case the functions U and UL coincide in restriction to F .

Consider now a finite set F of branches on an arbitrary arborescent singularity
(S,O). The restriction of the ultrametric UL to F allows to associate canonically a
rooted tree TL(F) to F . Its set of leaves is F , its set of vertices consists of the closed
balls defined by the ultrametric and its root may be seen as the union of F with
an infinitely distant supplementary point. We prove the following interpretation
of this rooted tree in terms of dual graphs:

Theorem. Fix an arborescent singularity (S,O), a branch L on it and a finite
set F of branches distinct from L. Consider an embedded resolution π with simple
normal crossings of the sum of L with the branches of F . Denote by DL,π(F) the
union of the geodesics joining the strict transforms of L and of the branches of
F inside the dual graph of their total transform by π, seen as a tree rooted at the
strict transform of L. Then the rooted trees TL(F) and DL,π(F) are canonically
isomorphic.

In the special case in which both (S,O) and the branch L are smooth, we recover
a theorem of Favre and Jonsson [2].

The tree DL,π(F) has also a valuative interpretation, generalizing the one given
by Favre and Jonsson [2] for the same case when both S and L are smooth.

As in [2], we work with valuations of the local ring O of (S,O) with values in
[0,+∞] and which are allowed to take the value +∞ on other elements of O than
the function 0. Their set is naturally partially ordered : ν1 ≤ ν2 if and only if
ν1(f) ≤ ν2(f) for all f ∈ O.

Every branch drawn on (S,O) defines a valuation – taking Mumford’s intersec-
tion number of the principal divisor of each element of O with the branch. Every
irreducible exceptional divisor on a resolution of (S,O) defines also a valuation –
taking the order of vanishing of each element of O along this divisor.

Mumford’s notion of intersection product allows moreover to define the value
of a valuation of O on an arbitrary branch L. A valuation ν is called normalized
relative to L if ν(L) = 1. We prove that:
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Theorem. Fix an arborescent singularity (S,O), a branch L on it and a finite
set F of branches distinct from L. Consider an embedded resolution with simple
normal crossings of the sum of L with the branches of F . Then the rooted tree
DL,π(F) is isomorphic to the Hasse diagram of the poset of valuations defined
by the irreducible curves represented by the vertices of DL,π(F), once they are
normalized relative to L.

All the theorems of P loski and Favre-Jonsson which we generalize were proved
either by working with Newton-Puiseux series or with sequences of blow-ups. We
work instead only with intersection products of relatively nef rational exceptional
divisors on a fixed embedded resolution of the sum of L and of the branches of F .
Our proofs are based in an essential way on the following fact:

Proposition. Fix an arborescent singularity (S,O) and a simple normal crossings
resolution of it. Denote by (Eu)u∈V the irreducible components of its exceptional
divisor and by (E∗

u)u∈V the dual exceptional divisors, in the sense that E∗
u·Ev = δuv

for any (u, v) ∈ V2, where δuv is Kronecker’s symbol. If Ew belongs to the segment
[EuEv] in the dual graph of the resolution, then:

(E∗
u ·E

∗
w) · (E∗

v ·E
∗
w) = (E∗

u ·E
∗
v ) · (E∗

w · E
∗
w).

In turn, this proposition is based on a formula proved by Eisenbud and Neumann
in [1], expressing the intersection numbers (E∗

u · E
∗
w) in terms of determinants of

subtrees of the dual tree of the resolution.
It is interesting to note that the previous proposition may be reinterpreted using

spherical geometry. Consider the real vector space freely generated by the divisors
(Eu)u∈V , endowed with the negative of the intersection product. It is a euclidean
vector space. Look at the unit vectors (Au)u∈V which are positively proportional
to the vectors (E∗

u)u∈V . Here is the announced interpretation: if Ew belongs to the
segment [EuEv] in the dual graph of the resolution, then the spherical triangle with
vertices Au, Av, Aw is right-angled at the vertex Aw. Indeed, the equality of the
previous proposition may be reformulated as the spherical Pythagorean equality:

cos(∠AuAw) · cos(∠AvAw) = cos(∠AuAv),

which characterizes right-angled triangles in spherical geometry.
Detailed proofs of our results may be found in [3].
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Introduction to Singularities

Norbert A’Campo

This evening talk is intended especially for those Young Researchers from the
Heidelberg Laureate Forum, september 18th–25th, this year, see www.heidelberg-
laureate-forum.org/event 2016/, who were invited to attend the Conference on
Singularities in Oberwolfach.

We start out with a very general approach to the term Singularity.
A singularity is an object in nature that does not fall in the realm of main

understanding. Here main understanding is very vague. It could mean under-
standing by the basic laws in Physics, Theorems in Mathematics, .... or by the
basic achievements of a theory.

In mathematical nature such an object or rather a feature could be the local
behavior near a given point or global behavior of a function, a vector field, a
differential form, a space, a representations of a group, etc..

Let us restrict to the case of the local behavior near a point p of differentiable
functions that are defined on numerical real or complex spaces Rn or Cn. So we
study locally near p ∈ Rn or p ∈ Cn differentiable functions f : Rn → R with
derivatives of any order or holomorphic functions f : Cn → C.

The first step is the three term expansion

f(p + h) = f(p) + A(h) + Restf (p, h)

where A : Rn → R is a linear function and where the third term Restf (p, h) is
relatively small compared to h, meaning

lim
h→0

Restf (p, h)

||h||
= 0

The linear map A is called the differential of f at p and is denoted by (Df)p.
Examples of functions on Rn are the differentiable coordinate functions xi :

Rn → R, i = 1, · · · , n, on R2 also denoted by x, y. A general function f can be
expressed using a system of coordinate functions. For example f = x5 +y3 : R2 →
R. Other examples are g = x5 + y3 + x2y2 and k = x4 + y4 + x2y2.

Functions with least complicated expressions are the coordinate functions. In
fact, how complicated a given function f is depends heavily on the system of
coordinate functions.

A natural question Q1 is to ask which functions f can be expressed near a given
point p as first coordinate function of a local coordinate system of functions.

The following main theorem gives the answer:
The answer to the question Q1 is YES if and only if (Df)p 6= 0.
Indeed, let f : Rn → R be a differentiable function, p ∈ Rn such that the

differential (Df)p : Rn → R at p does not vanish. The kernel X = (Df)−1
p (0) is

a linear subspace of dimension n − 1 in Rn. Let Y be a 1-dimensional subspace
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such that X and Y span the ambiant space Rn. The inverse mapping theorem
of differential mappings tells us that any system of functions f, x1, x2, · · · , xn−1

where the functions x1, x2, · · · , xn−1 : Rn → R are linear, linearly independent,
and vanishing on Y , is locally near p a system of differential coordinate functions.

Consequently, according to the above explanation, the local behavior at a point
of a function on numerical space is a singularity if its differential at this point
vanishes.

The next natural question Q2 is as follows. Let a function f on numerical
space be singular at a point p, i.e. the above main theorem does not apply. Does
some higher order differential quantity attached to f at p by its non-vanishing
guarantee the existence of a local coordinate system y1, y2, · · · , yn near p for which
the expression of f is not very complicated.

The next main theorem, the so called Morse lemma, of the theory of singularities
of functions gives a YES answer.

The answer to the question Q2 is YES if the determinant of the Hessian of f at p
does not vanish, i.e. Determinant((Hf)p) 6= 0. More precisely, if
Determinant((Hf)p) 6= 0, there exists a local coordinate system y1, y2, · · · , yn with
y1(p) = y2(p) = · · · = yn(p) = 0 and f = f(p)± y21 ± y22 ± · · · ± y2n near p.

What means complicated expression? The above polynomial functions f, g, k
on R2 are singular at 0, none of the two main theorems applies. Fact is that the
expression for f has two monomials, expressions for g and k have three. Can one
express the functions g or k in some local coordinate system as polynomials with
two monomials? The answer is YES for g and NO for k. The theory of Singularities
of mappings gives explanations and answers for these kind of questions.

Let us agree to measure how complicated a polynomial is by counting its mono-
mials of total degree ≥ 3 and to call this count the complexity. The above map f
is of complexity 2 as all its ”cousins” f = x5

1 +x3
2 +x2

3 + · · ·+x2
n, n > 2. The maps

h and k are of complexity > 2. Maps like xk
1 + x2

2 + x2
3 + · · ·+ x2

n, n > 1, k ≥ 3,
are of complexity 1.

A natural question Q3 is to classify up to a local coordinate change all sin-
gularities of polynomial mappings f on numerical space, complex or real, with
f(0) = 0, (Df)q 6= 0, q 6= 0, locally near 0 and (Df)0 = 0. This is out of reach,
but becomes the assertion of a theorem if we moreover assume, that for every
deformation ft, t ∈ [0, 1], with ft(0) = 0, (Dft)0 = 0 and (Dft)q 6= 0 for q 6= 0,
near 0, the complexity of ft at 0 for some local coordinate system is ≤ 2. These
are the so called ADE singularities. Those singularities have a long history dating
back to Felix Klein (1884). Underlying geometric objects are the platonic solids
with long histories in different civilisations.

The list of ADE singularities, omitting quadratic terms like x2
i , is:

Type A: xn, n ≥ 2.
Type D: x(y2 + xn), n ≥ 2.
Type E: x4 + y3, y(y2 + x3), x5 + y3.

The natural question Q3 also gets answered by a theorem if we moreover assume,
that for every small deformation ft, t ∈ [0, 1],, the existence of local coordinates
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at 0 such that ft is a polynomial having only the numbers −1, 0, 1 as coefficients.
Again this characterizes the ADE singularities.

The ADE singularities do not allow a continuous variation of parameters, they
are rigid, and show up in many situations dealing with rigid objects of some kind.
For example it was a suggestion of Alexandre Grothendieck to search for ADE
singularities inside the simple Lie groups. This search was so fruitful that their
name changed from Kleinian to ADE singularities.

Not only local behavior matters. A monomial function fn = xn : C → C is
singular at 0 ∈ C for n > 1 and its Hessian vanishes if n > 2. It is natural to deform
fn as a polynomial function g = xn + an−1x

n−1 + · · · + a0 with leading term xn

keeping the following constraints. First we keep a symmetry: g(p) = (−1)ng(−p).
Second, the singularities of g are of Morse type. Third, the value of g at a singular
point of g is +t or −t, t ∈ [0, 1]. It is Remarkable is that there exists exactly
one such deformation family f t

n with f0
n = xn, namely the family with f1

n being
the Chebyshev polynomial Tn : C→ C. Chebyshev polynomials are of interest in
many mathematical fields due to properties that they share with monomials.

Compositions as mappings of the monomial functions are again monomial: fn ◦
fm = fnm. The same holds for the Chebyshev polynomials: Tn ◦ Tm = Tnm.

The cartesian doubling

TTn = Tn × Tn : C× C→ C

(p, q) ∈ C2 7→ TTn(p, q) = Tn(p) + Tn(q) ∈ C

share a factorization property with the real or complex functions xn+yn : C2 → C
or xn + yn : R2 → R, namely that xn + yn factors as product in n/2 quadratic
functions if n even, in (n− 1)/2 quadratic and one linear function if n odd.

The cartesian double TTnm(p, q) = Tn(p)+Tm(q) : R2 → R are Morse functions
with three critical values −2, 0,+2.

All of the features that one observes in the case of Chebyshev polynomials are
initial instances of further developments. For instance, deforming semi-locally or
globally functions on numerical space of higher dimension into a function with
only Morse singularities has turned out to be an important tool. The functions
TTnm provided the building tools for semi-local controlled real morsifications of
of real polynomials with an isolated singularity. The property of having a Morse
deformation with only two critical values turned out to give one of numerous car-
acterisations of the ADE singularities. The composition property is an instance of
so called matrix factorisations. Chebyshev polynomials have rational coefficients,
so the absolut Galois group GQ of the field Q acts trivially on Chebyshev poly-
nomials. This is in contrast to the space of generalized Chebyshev polynomials
P : C → C with as only critical values 0, 1 but without restriction on its sin-
gularities. After an appropriate coordinate change z 7→ az + b in the source the
coefficients will belong to a number field. The absolute Galois group GQ acts faith-
fully on generalized Chebyshev polynomials. The inverse image P−1([0, 1]) ⊂ C is
a bicollared tree with as many edges as the degree of P . Its isotopy class deter-
mines the polynomial P up to a coordinate change z 7→ az + b in the source. The
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corresponding tree for a Chebyshev polynomial is a tree with non-terminal vertices
all of valency 2. Amazingly, the absolute Galois group GQ acts now faithfully on
the set of isotopy classes of finite planar bicollared trees. Please note that the set
of isotopy classes of finite planar bicollared trees has moreover a combinatorial
description and hence one gets a very promising combinatorial approach to the
absolute Galois group GQ.

Back to the singularity of x5 + y3 + z2 : C3 → C which Felix Klein has in-
troduced. The vertices, edges and faces of the icosahedron can be drawn on the
spaces P 1(C) of complex lines through the origin of C2 in such a way that the
group I of orientation preserving symmetries of the ikosahedron can be realized
by holomorphic motions of the Riemann sphere P 1(C) = C∪{∞}. The group I is
isomorphic to the alternating group A5 of order 60 and is important for the study
of equations of degree 5. Let Ĩ be the subgroup of order 120 in the linear group
SL(2,C) that projects via SL(2,C)→ PSL(2,C) = Aut(P 1(C) to the group I. Fe-

lix Klein introduced the in 0 punctured quotient space C2/Ĩ as the moduli space
for the general equation of degree 5 and henceforth needed to study this space. A
main step was to identify the quotient space C2/Ĩ as being the complement of 0
in the 0-level of the function x5 + y3 + z2. The first so-called Kleinian singularity
at 0 of the complex surface x5 + y3 + z2 = 0 in C3 was born.

The intersection of x5 + y3 + z2 = 0 with the unit sphere in C3 is a 3-manifold
Σ5,3,2, called the Poincaré sphere. It is the counterexample discovered by Henri
Poincaré to the homological Poincaré conjecture.

The intersection of the hypersurface x5 + y3 + z2 + u2 + v2 = 0 with the unit
sphere in C5 is a 7-dimensional manifold Σ5,3,2,2,2 studied by Egbert Brieskorn,
who proved that it is diffeomorphic to the exotic sphere Σ7, previously discovered
by John Milnor. The exotic sphere Σ7 is homeomorphic to the standard sphere
S7 but not diffeomorphic, so it is a counter example to the differentiable Poincaré
conjecture in dimension 7.

We jump to more recent times, omitting many interactions of singularity the-
ory and sciences, and mention that recently a first geometric interpretation of
the HOMFLY-PT polynomial was obtained. In 1985 Vaughan Jones made the
discovery of a new knot invariant, now called Jones polynomial. Soon after the
more classical Alexander polynomial and the Jones polynomial merged into a
stronger invariant, the HOMFLY-PT polynomial. The definitions of these invari-
ants have hidden very well the geometric meaning of these new knot invariants,
until a first geometric interpretation was obtained 4 years ago by the work of
Shende-Oblomkov-Maulik who have proved for the local knots of plane singu-
larities f(x, y) = 0 in C2, that the HOMFLY-PT polynomial can be computed
geometrically from the singularity by motivic integration.

The theory of singularities of mappings is very rich in remarkable objects, in
results and even more rich in natural questions which are still unanswered. The
same holds for the theory of singularities of other mathematical objects. In fact
most mathematical, physical, biological and other objects in science develop sin-
gularities.
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Symplectic reductions associated to polar representations

Manfred Lehn

(joint work with M. Bulois, C. Lehn, and R. Terpereau)

Polar representations were introduced and studied by Dadok and Kac [3] in an
attempt to axiomatise the properties of so-called θ-representations that had previ-
ously been studied by Vinberg [10] and that share many properties of the adjoint
representation of a reductive group. So let G denote a reductive group with Lie
algebra g and V a finite dimensional rational representation of G. An element
v ∈ V is called semi-simple if its G-orbit in V is closed; it is regular semi-simple if
in addition the dimension of its orbit is maximal among all semi-simple orbits. For
such an element v consider the linear subspace c = {v′ ∈ V | gv′ ⊂ gv}. Dadok
and Kac show that c consists of semi-simple elements only and that its dimension
is bounded by dim(c) ≤ dim(V//G). A representation (V,G) is called polar if
dim(c) = dim(V//G), in which case c is called a Cartan subspace. Dadok and Kac
prove that all Cartan subspaces in a polar representation are conjugate; that the
quotient W := N/H of the normaliser subgroup N = {g ∈ G | g(c) = c} by the
centraliser H = {g ∈ G | g|c = idc} is a finite reflection group, the so-called Weyl
group of the representation; and that the natural morphism c→ V induces an iso-
morphism c/W → V//G. This generalises the Chevalley isomorphism h/W → g//G
for the action of the Weyl group of reductive Lie group on the Cartan subalgebra
h.

Further examples besides the already mentioned adjoint representations are the
following:
1. SL2 acts on the space of binary quartics S4C2 = 〈x4, . . . , y4〉. The subspace
c = 〈x4 + y4, x2y2〉 is a Cartan subspace with Weyl group S3.
2. SL3 acts on the space of ternary cubics S3C3 = 〈x3, x2y . . . , z3〉. The Hesse
pencil c = 〈x3 + y3 + z3, xyz〉 is a Cartan subspace with Weyl group the binary
tetrahedral group T ∗.
3. The standard representations (G2,C

7) and (F4,C
26) are polar representations

with Weyl group Z/2.
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4. A large class of examples of polar representations is provided by Vinbergs’s
θ-representations: Let θ denote an automorphism of order m of a reductive group
G, and let g =

⊕
i mod m gi be an eigenspace decomposition for the action of θ

on the Lie algebra of G. Then g0 is a reductive Lie algebra, and each gi is g0-
representation. Let G0 ⊂ G be the connected subgroup corresponding to g0. Then
(G0, g1) is a polar representation.

Given a polar representation (G, V ) we are interested in the properties of the
symplectic reduction V ⊕ V ∗///G.

A holomorphic 2-form on a smooth complex variety is said to be symplectic

if it is closed and non-degenerated, i.e. dω = 0 and ω : T
∼=
−→ Ω. Following

Beauville, a complex variety X with a symplectic form ω on its regular part is
said to be symplectic, if X is normal and if for any (all) resolution(s) π : X ′ → X
there exists a 2-form ω′ on X ′ with ω′|π−1(Xreg) = π∗ω. Finally, π is called a
symplectic resolution if the extended form ω′ is again symplectic. This condition
is equivalent to π being crepant. Though there are many examples of symplectic
singularities, comparatively few of them admit symplectic resolutions. For finite
subgroups Γ ⊂ Sp(V, ω) a necessary condition due to Verbitsky, that is far from
being sufficient, states that Γ must be generated by symplectic reflections, i.e.
elements γ with codim(V γ) = 2. Any finite group Γ ⊂ GL(V ) gives rise to
a symplectic action of Γ on the canonical symplectic double V ⊕ V ∗, and for
such actions Verbitsky’s criterion reduces to Kaledin’s criterion that V/Γ must be
smooth, that is that Γ be a reflection group. (This is one of the reasons for our
interest in polar representations.) Symplectic reflection groups have been classified
by A. Cohen, and his list has been skimmed for actions admitting symplectic
resolutions by Ginzburg, Kaledin, Bellamy and Schedler. The results are not yet
complete but indicate that only very, very few such groups exist.

The symplectic analogue of a finite group quotient for reductive groups G ⊂
Sp(V ) is the Marsden-Weinstein- or symplectic reduction: The linear action of G
on V is always Hamiltonian, i.e. there is G-equivariant morphism µ : V → g∗ such
that dxµ(ξ)(A) = ωx(ξ, Ax) for every tangent vector ξ ∈ TxV and every A ∈ g,
in fact it is given by the quadratic map µx(A) = 1

2ω(x,Ax). The symplectic

reduction is defined as V///G := µ−1(0)//G. Despite its name it is by no means
true that V///G is a symplectic singularity in the sense of Beauville’s definition
above, though it always carries a natural Poisson structure.

Starting with a polar representation (G, V ), say with Cartan space (W, c), we
show that the dual representation V ∗ is again polar, that c∗ naturally embeds into
V ∗ as a Cartan subspace with Weyl group W , and that there is natural morphism
c ⊕ c∗/W → V ⊕ V ∗///G of Poisson schemes. We conjecture that this map is an
isomorphism under the additional hypothesis that (G, V ) be visible, which means
that fibres of the quotient map V → V//G contain only finitely many orbits, if
one ignores nilpotent functions in the target, i.e. passes to the underlying reduced
space.
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This conjecture is known to hold in many cases, among them adjoint repre-
sentations (Richardson, Hunziger, Joseph), θ-representations of order m = 2 (Pa-
nyushev, Tevelev), and various special examples (Terpereau). We prove it [1] for
visible stable locally free polar representations, where a representation is stable,
if the orbits of regular semi-simple elements have maximal dimension among all
orbits, and is locally free if the stabilisers of generic elements are finite.

In cases when the isomorphism holds, the question of existence of symplectic
resolutions of symplectic reductions is of course reduced to the same problem for
finite group quotients. However, in general even the question which symplectic
reductions are symplectic singularities in the sense of Beauville, is widely open.
For certain types of symplectic reductions arising from quiver varieties normality
has been shown by Crawley-Boevey [2], and local factoriality by Kaledin, Lehn
and Sorger [5].
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Motivic nearby cycle of the sum of two regular functions

Hồng Đức Nguyễn

(joint work with Lê, Quý Thường)

We first introduce a new notion of �-product of two integrable series with coef-
ficients in distinct Grothendieck rings of algebraic varieties ([5]), preserving the
integrability and commuting with the limit map of rational series. Furthermore
we show that the �-product is associative in the class of motivic multiple zeta
functions, which are proved to be integrable and are defined as follows. For a
family of regular functions fi : Xi → A1

k with i = 1, . . . , r, we define

ζf1,...,fr (T1, . . . , Tr) =
∑

[Dn1,...,nr ]L−(
∑

dimXi)(
∑

ni) T n1
1 · · ·T

nr
r ,



Singularities 2665

where the sum is taken over the set of elements (n1, . . . , nr) in Nr
>0 such that

1 ≤ n1 < · · · < nr, and Dn1,...,nr is the set of arcs ϕ ∈ L∑
ni

(X1 × . . .×Xr) such
that ord f1(ϕ1) = n1 and ord fi(ϕi) > ni for all i ≥ 2. This new notation still
covers classical motivic zeta functions Zf1(T1) defined by Denef-Loeser [1]. We
prove a version of the Euler reflexion formula for motivic zeta functions stating
that the following identity

ζf1(T1) � ζf2(T2) = ζf1,f2(T1, T2) + ζf2,f1(T2, T1) + ι∗ζf1⊕f2(T1T2)

holds in MG
X0(f1)×X0(f2)×G

[[T, U ]], where f1 ⊕ f2 is a regular function on X1 ×X2

defined as (x1, x2) 7→ f1(x1) + f2(x2), X0(f1) and X0(f1) are the zero locus of f1,
f2, respectively, and ι is the embedding of X0(f1) × X0(f2) in the zero locus of
f1⊕f2. As an application, taking the limit for the motivic Euler reflexion formula
we recover the well known motivic Thom-Sebastiani theorem ([2]).

We also study the motivic nearby cycle of the sum of two regular functions f, g
having variables in common, that is, f, g are regular functions on the same variety
X . Let f |X0(g) and g|X0(f) be the restriction of f (resp. of g) to the zero locus
X0(g) of g (resp. X0(f) of f). We show that the identity

ι∗Sf+g = Ψ(Sf,g) + Sf |X0(g)
+ Sg|X0(f)

holds in MG
X0×G, where Sf,g is the motivic nearby cycle of the map to A2

k defined

as x 7→ (f(x), g(x)). The convolution map Ψ from MG
X0×G2 to MG

X0×G, was intro-

duced by Guibert-Loeser-Merle in [3] and generalized in [4] to study the motivic
nearby cycles of composition functions.
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Computing the Milnor fiber monodromy

Alexandru Dimca

(joint work with Morihiko Saito, Gabriel Sticlaru)

Let C : f = 0 be a reduced plane curve of degree d ≥ 3 in the complex projective
plane P2, defined by a homogeneous polynomial f ∈ S = C[x, y, z]. Consider the
corresponding complement U = P2 \ C, and the global Milnor fiber F defined by
f(x, y, z) = 1 in C3 with monodromy action h : F → F , h(x) = exp(2πi/d) ·
(x, y, z). To determine the eigenvalues of the monodromy operators

(1) hm : Hm(F,C)→ Hm(F,C)
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for m = 1, 2 starting from C or f is a rather difficult problem, going back to O.
Zariski and attracting an extensive literature, see for instance [1], [2], [3], [10],
[11], [12], [13], [16], [6]. When the curve C : f = 0 is either free or nearly
free, we have presented in [8] an efficient algorithm for listing the eigenvalues
of the monodromy operator h1, which in many cases determines completely the
corresponding Alexander polynomial ∆C(t).

In this talk we explained an approach working in the general case. This time
the results of our computation give not only the dimensions of the eigenspaces
Hm(F,C)λ of the Milnor monodromy, but also the dimensions of the graded pieces
GrpPH

m(F,C)λ, where P denotes the pole order filtration on Hm(F,C), see section
2 below for the definition. More precisely, the algorithm described here gives the
following.

(1) the dimensions of the eigenspaces Hm(F,C)λ for m = 1, 2, and for any
reduced curve C : f = 0.

(2) the dimensions of the graded pieces GrpPH
1(F,C)λ, for any reduced curve

C : f = 0. Moreover, we conjecture that the P p filtration coincides to the
Hodge filtration F p on H1(F,C).

(3) the dimensions of the graded pieces GrpPH
2(F,C)λ, for a reduced curve

C : f = 0 having only weighted homogeneous singularities. To achieve
this efficiently one has to use a recent result by M. Saito. A less efficient
approach can be based on the weaker result, obtained in [7].

(4) the dimensions of the graded pieces GrpPH
2(F,C)λ, for any reduced curve

C : f = 0 under the assumption that two basic facts, stated as Conjectures,
hold. These conjectures seem to hold in all the examples we have computed
so far.

The new information on the pole order filtration P can be applied to describe
the set of roots of bf (−s), where bf(s) is the Bernstein-Sato polynomial of f , see
for details [14], [15]. In fact, using [14, Theorem 2], this comes down to checking
whether GrpPH

2(F,C)λ 6= 0,.
For full statements of results and proofs see [9]. The computations were made

using the computer algebra system Singular [4]. The corresponding codes are
available on request.
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The geometric genus and Seiberg–Witten invariants of Newton
nondegenerate surface singularities

Baldur Sigurðsson

(joint work with András Némethi)

In this talk, we present results obtained by the autor during his PhD program
at Central European University in collaboration with—and under the supervision
of—Némethi András. The thesis can be found on the arxiv [14]. We will as-
sume throughout that (X, 0) ⊂ (C3, 0) is a Newton nondegenerate hypersurface
singularity with a rational homology sphere link.

Our first result, published in [11], is a topological identification of the geometric
genus using computation sequences. This can be formulated in terms of path
lattice cohomology [7] which has a strong relationship with our identification of
the Seiberg–Witten invariant, but we will not discuss this here.

The second result identifies the Seiberg–Witten invariant, suitably normalized,
with the same topological invariant. In particular, we prove the Seiberg–Witten
invariant conjecture of Némethi and Nicolaescu in this case.

1. History

The problem is motivated by several results and conjectures. The following conjec-
ture from 1990, the Casson invariant conjecture, has been proved in several cases,
but it is still open.
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Conjecture 1.1 (Neumann–Wahl, [12]). Let (X, 0) be an isolated complete inter-
section singularity with link M and assume that H1(M,Z) = 0. Then

λ(M) =
1

8
σ(F )

where λ is the Casson invariant and σ(F ) is the signature of the Milnor fiber.

Under the weaker assumption that the link M satisfy H1(M,Q) = 0, the Casson
invariant can be extended to the Casson–Walker invariant [15]. Furthermore, the
signature σ(F ) can be calculated in terms of a resolution graph and the geometric
genus pg. The conjecture, however, is not generalized by directly replacing the
Casson invariant with the Casson–Walker invariant, but the normalized Seiberg–
Witten invariant associated with the canonical spinc structure of the link.

Conjecture 1.2 (Némethi–Nicolaescu, [10]). Let (X, 0) be a surface singularity
with link M satisfying H1(M,Q) = 0. Then

sw0
M (σcan)−

K2 + s

8
≥ pg

where K and s are the canonical cycle and the number of irreducible component
of the exceptional divisor of a resolution X̃ → X, sw0

M (σcan) is the Seiberg–

Witten invariant of the canonical spinc structure on M and pg = h1(X̃,OX̃) is
the geometric genus. Under suitable analytic conditions on (X, 0), equality holds.

The conjecture has been proved in several instances. Nonetheless, superisolated
singularities have been found to provide conterexamples [5]. It is an intriguing
question to ask, when the conjecture holds, and why does it fail in this case?
We remark that in [11], we use recent developments in low dimensional topology
[1] to prove the same topological identification of pg for Newton nondegenerate
singularities and for superisolated singularities. In the former case, we later prove
this to coincide with the prediction of conjecture 1.2, whereas in the latter case it
is false.

2. Computation sequences

Let (X, 0) be a normal surface singularity with link M , assume that M is a rational

homology sphere, that is H1(M,Q) = 0. Fix a good resolution (X̃, E) → (X, 0)

with exceptional divisor E = ∪v∈VEv. For an effective divisor Z on X̃ , supported
on E, we define

hZ = dimC

H0(X̃,OX̃)

H0(X̃,OX̃(−Z))
.

A computation sequence for Z is a sequence (Zi)
k
i=0 of divisors on X̃ satisfy-

ing Z0 = 0, Zk = Z, and for each 0 ≤ i < k there is a v(i) ∈ V so that
Zi+1 = Zi + Ev(i). By our assumptions, Ev is a rational curve for all v, and

so we have h0(Ev(i),OEv(i)
(−Zi)) = max{0, (−Zi, Ev(i)) + 1} for all i. The short
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exact sequence 0 → OX̃(−Zi+1) → OX̃(−Zi) → OEv(i)
(−Zi) → 0 therefore pro-

vides the bound

(1) hZ =

k−1∑

i=0

hZi+1 − hZi ≤
k−1∑

i=0

max{0, (−Zi, Ev(i)) + 1}.

In the case when (X, 0) is Gorenstein, we have pg = hZK , where ZK is the anti-
canonical cycle, that is, the unique divisor supported on E satisfying (ZK , Ev) =
E2

v + 2 for all v ∈ V.

Definition 2.1. With the notation as above, assume further that (X, 0) is Goren-
stein. The minimal path lattice cohomology is the smallest number realized by any
computation sequence for ZK on the right hand side of (1).

3. Statement for Newton nondegenerate singularities

Theorem 3.1. Assume that (X, 0) ⊂ (C3, 0) is a Newton nondegenerate isolated
hypersurface singularity with a rational homology sphere link M . Then there exists
a computation sequence (Zi)

k
i=0 satisfying

(2) pg =

k−1∑

i=0

max{0, (−Zi, Ev(i)) + 1} = sw0
M (σcan)−

K2 + s

8
.

Furthermore, this sequence can be calculated directly from a minimal good resolu-
tion graph of X.

In the proof, we show that hZi+1 − hZi = max{0, (−Zi, Ev(i)) + 1} for all i.
The numbers hZ for any Z supported on E are coefficients of the Hilbert series
H(t) =

∑
l hlt

l. A “topological candidate” Q(t) =
∑

l qlt
l for this highly analytic

invariant has been studied by Némethi and László [8, 9, 4]. In particular, qZK

equals the left hand side of (2). To prove the second equality in (2) we prove that
qZi+1 − qZi = max{0, (−Zi, Ev(i)) + 1} for all i.

4. Newton diagrams and Oka’s algorithm

Assume that f : (C3, 0) → (C, 0) is a germ defining a hypersurface singularity
(C3, 0). The concept of Newton diagram and nondegeneracy are described in e.g.
[3, 2] We denote by Γ(f) the Newton diagram of f and write Γ(f) = ∪n∈NFn,
where (Fn) is the family of two dimensional faces of Γ(f). In [13], Oka describes
a combinatorial algorithm which gives the dual graph G of a resolution in terms
of the Newton diagram. In particular, there is a correspondence n↔ En between
the set N indexing the two dimensional faces of Γ(f) and a subset of V. In fact,
the dual graph G can be seen as dual to the two-skeleton of the Newton diagram
Γ(f), taken as a planar graph drawn on the boundary of the Newton polyhedron.
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5. Plan of the proof

It is known [6] that pg equals the number of integral points with positive coordi-
nates under the Newton diagram. To prove theorem 3.1, we use the computation
sequence to count these points, in particular, we reprove this statement.

Let P be the set of integral points with nonnegative coordinates, under the
shifted diagram Γ(f) − (1, 1, 1). From the result stated above, it is clear that we
have pg = |P |. Any face Fn ⊂ Γ(f) has a unique primitive linear support function
ℓn : R3 → R, taking nonnegative values on Γ(f). Using a well known formula for
ZK on Oka’s resolution graph G [13, 6], we find

P =
{
p ∈ Z3

≥0

∣∣∃n ∈ N : ℓn(p) ≤ mn(ZK)
}

where mn(ZK) is the multiplicity of ZK along En. Given any computation se-

quence we can define a partitioning (Pi)
k−1
i=0 as follows (we can in fact assume that

v(i) ∈ N for all i, if this is not so, the corresponding contribution on the right
hand side of (1) can be proved to be 0)

Pi =
{
p ∈ Z3

≥0

∣∣∀n ∈ N : ℓn(p) ≥ mn(Zi), ℓv(i)(p) = mn(Zi)
}
.

The computation sequence (Zi) is now defined in such a way that for each i, the
sets Pi can be realized as the set of integral points in a dilated integral polygon in
an affine hyperplane in R3. An elementary, but nontrivial, formula for counting
such points is related with the intersection number (−Zi, Ev(i)) to prove that
|Pi| = max{0, (−Zi, Ev(i)) + 1}. Finally, the monomials xp, p ∈ Pi are shown to
induce a linearly independent family in the space

H0(X̃,OX̃(−Zi))

H0(X̃,OX̃(−Zi+1))

whose dimension is hZi+1 − hZi . These results show that in this case we have
equality in (1) for all i, proving the formula for the geometric genus.
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Noncommutative desingularizations of discriminants of reflection
groups

Eleonore Faber

(joint work with Ragnar-Olaf Buchweitz, Colin Ingalls)

Let G be a finite subgroup of GL(n,K) for a field K, whose characteristic does
not divide the order of G. For this talk we assume that K = C. The group G
acts linearly on a vectorspace V ∼= Kn, and thus on the ring S = SymK(V ) ∼=
K[x1, . . . , xn]. When G is generated by reflections, then the discriminant ∆ of the
group action of G on S is a hypersurface with a singular locus of codimension 1,
in particular, ∆ is a so-called free divisor.
In this talk we give a natural construction of a noncommutative resolution of
singularities of the coordinate ring of ∆ as a quotient of the skew group ring
A = S ∗ G. The study of such discriminants of finite reflection groups is in var-
ious ways complementary to J. McKay’s observations about the correspondence
between the irreducible representations of finite groups Γ ⊆ SL(2,K) not contain-
ing any (pseudo-)reflections and irreducible components of the exceptional divisor
of the minimal resolution of singularities of the quotients V/Γ (or, the algebraic
version: indecomposable maximal Cohen–Macaulay (MCM)-modules over the in-
variant ring SΓ of Γ).

Noncommutative resolutions of a commutative ring R are certain noncommuta-
tive R-algebras of finite global dimension which can in turn be viewed as a potential
analogue of a resolution of singularities of Spec(R). A particular highlight is van
den Bergh’s introduction of noncommutative crepant resolutions (=NCCRs) to in-
terpret Bridgeland’s solution to the conjecture by Bondal and Orlov on the derived
invariance of flops in 2004. A noncommutative resolution of singularities (NCR)
of a commutative noetherian ring R (or the scheme Spec(R)) is defined to be an
associative R-algebra A = EndRM , where M is a finitely generated R-module of
full support and A has finite global dimension. This notion was introduced 2015
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by Dao–Iyama–Takahashi–Vial. For A to be crepant, that is, a NCCR, one needs
additionally that M is torsion-free and A is a non-singular order.

The first examples of noncommutative resolutions of singularities were described
by the McKay correspondence. This began in 1979, when J. McKay observed
a connection between the representations of finite subgroups Γ of SL(2,K) and
resolutions of the quotient singularities V/Γ = Spec(SΓ), where S = SymK(V ) as
above. Here a NCR is provided by the skew group ring A = S ∗Γ ∼= EndSΓ(S), as
noted by M. Auslander [1].

We are interested in the case that G is a complex reflection group, i.e., a finite
subgroup of GL(n,K) = GL(V ) generated by pseudo-reflections. By the theorem
of Chevalley–Shephard–Todd the invariant ring SG under a finite group G ⊆
GL(V ) is isomorphic to a polynomial ring if and only if G is generated by pseudo-
reflections. In this case T := SG is of the form K[f1, . . . , fn] where the fi are
polynomials in S. The arrangement of reflecting hyperplanes in V is given by
the Jacobian J = det( ∂fi

∂xj
). Note that J factors as a product of linear forms

whose multiplicities are equal to the order of the corresponding reflection minus
1. Thus, in the case when G is generated by order 2 reflections, J equals the
reduced polynomial defining the hyperplane arrangement, which is usually denoted
by z. The discriminant ∆ is defined by zJ = ∆2 (or in the real reflection case:
z2 = ∆) and its coordinate ring is T/(∆). Geometrically, J defines the reflection
arrangement in V and ∆ is its image under the natural projection π : V → V/G.
In the following we assume that G is a real reflection group, that is, generated by
order 2 reflections. We construct a noncommutative resolution of T/(∆) starting
from the skew group ring A = S ∗ G. Therefore we also consider the group
Γ = G∩SL(V ), with invariant ring R = SΓ. There is an exact sequence of groups
1→ Γ→ G→ H → 1, with quotient H ∼= µ2 = 〈σ〉. Using ideas from J. Bilodeau
[3] and H. Knörrer [8] we can show:

Theorem 1. With notation introduced in the paragraph above, there is an iso-
morphism of rings

EndR∗H(S ∗ Γ) ∼= S ∗G.

For convenience set B = R ∗H . Now interpreting B as the path algebra of a
quiver with idempotents e± = 1

2 (1± σ) and using the functor

mod(B/Be−B)
i∗(−)=−⊗BB/Be−B
←−−−−−−−−−−−−−− mod(B)

from the standard recollement we obtain the following result:

Theorem 2. The functor i∗ induces an equivalence of categories

CM(B)/〈e−B〉 ≃ CM(T/(∆)),

where 〈e−B〉 denotes the ideal in the category CM(B), the category of MCM-
modules over B, generated by the object e−B.

Putting all of this together and moreover using results of Stanley about the
structure of the ring R as T -module [9], and Auslander–Platzeck–Todorov [2] about
global dimension of quotients, we can prove the following
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Theorem 3. Denote by e = 1
|G|

∑
g∈G g ∈ A the idempotent corresponding to the

trivial representation of G. Then

Ā := A/AeA ∼= EndT/(∆)(S/(J)),

and gl. dim Ā <∞. Thus Ā yields a NCR of the free divisor T/∆. In particular,
if dimT = 1, that is, T/(∆) is an ADE-curve singularity, we obtain that S/(J)
is a generator of the category of MCM-modules over the discriminant, that is,
add(S/(J)) = CM(T/(∆)).
Moreover, the indecomposable projective modules over Ā are in bijection with the
non-trivial representations of G and also with certain MCM-modules over the dis-
criminant, namely the T/(∆)-direct summands of S/(J).

Thus we obtain a McKay correspondence for reflection groups G. However,
we are still missing a conceptual explanation for the T/(∆)-direct summands of
S/(J): if T/(∆) is 1-dimensional, then S/(J) provides a compact description of
a representation generator of the discriminant (this was not known before our
investigations). But in higher dimensions T/(∆) is not of finite MCM type and
we can only determine the decomposition of S/(J) in few examples (the normal
crossing divisor, as studied in Dao–Faber–Ingalls [5] or the swallowtail, that is,
the discriminant of S4, where we can describe the T/(∆)-direct summands using
Hovinen’s classification of graded rank 1 MCM-modules [7]). For the geometric
interpretation of the direct summands of S/(J) we wish to obtain a similar cor-
respondence as in [6], or even to realize geometric resolutions as moduli spaces of
isomorphism classes of representations of certain algebras as in [4].
On the other hand, we can describe the structure of Ā as an S/(J)-module: Ā is
isomorphic to the cokernel of the map ϕ given by left multiplication on G, that
is, the matrix of ϕ corresponds to the multiplication table of the group G. By
work of Frobenius and Dedekind in the 1890’s it is well-known how this matrix
decomposes into blocks. In the near future we plan to flesh out this astounding
discovery.
Moreover, looking at the quiver of Ā, the exact form of the generating (necessarily
quadratic) relations remains mysterious and will be the subject of further work.
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Sheaves on flag Hilbert schemes and the HOMFLY-PT homology

Jacob Rasmussen

(joint work with Eugene Gorsky and Andrei Negut)

In my talk, I reported on some developments in a conjectural picture relating
invariants coming from knot theory with algebraic geometry. This story began with
a conjecture of Oblomkov and Shende [10] (since proved by Maulik [8]) relating
the punctual Hilbert scheme of a plane curve singularity with the HOMFLY-PT
polynomial of its link. To be more precise, let (X, 0) be the germ of a unibranch
plane curve singularity with Milnor number µ, and let K ⊂ S3 be its link. Finally,
let X [n] denote the nth Hilbert scheme of X . In its simplest form, the Oblomkov-
Shende conjecture states:

Theorem 1 ([8]).

∞∑

i=1

q2nχ(X [n]) = [(q/a)µ−1P (K)]a=0.

where the HOMFLY-PT polynomial P (K) is normalized so that P of the unknot
is (a− a−1)/(q − q−1).

The HOMFLY-PT polynomial has been categorified by Khovanov and Rozan-
sky [7]. The conjecture can naturally be extended to describe this invariant by
replacing the Euler characteristic χ(Xn) with the Poincaré polynomial P(X [n]):

Conjecture 2 ([9]).

∞∑

i=1

q2nP(X [n]) = [(q/a)µ−1P(K)]a=0.

where P(K) is the Poincaré polynomial of the unreduced HOMFLY-PT homology
H(K).

A proof of this conjecture seems much difficult than that Theorem 1, since we
know much less aboutH(K) than we do about P (K). At present, the most feasible
means of attacking it seems to be to reformulate it in terms of Hilbert schemes of
C2, an idea which was first suggested by Gorsky in [2]. Coarsely speaking, the goal
is to associate to a closed n-strand braid σ in S1 ×D2 a T = C∗ ×C∗ equivariant
sheaf F(σ) on Hilbn(C2) with the property that

H(σ) = H∗
T (F(σ)⊗ Λ∗(T ∗)),

where T is the tautological sheaf on Hilbn(C2). This sheaf should be supported
on the subvariety Hilbn(C) of ideals whose support lies in C× 0. If σ′ is the braid
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obtained by adding a positive full twist to σ, we should have F(σ′) = F(σ)⊗O(1),
where O(1) is the ample line bundle on Hilbn(C2) defined by Haiman [6].

This new formulation has the advantage that it should apply to all knots in
S3, not just algebraic knots. When σ is a torus knot T (n,m), its relation to
Conjecture 2 above is discussed in [4]. When σ = T (n, nk + 1), the sheaf F(σ)
should be OHilbn(0) ⊗ O(k), where Hilbn(0) is the subvariety of ideals supported
at the point (0, 0). More generally, the sheaf which should correspond to a torus
knot T (n,m) was identified by Gorsky and Negut in [3]. Their approach is to
construct a sheaf on the flag Hilbert scheme

FHilbn(C2) = {In ⊂ In−1 ⊂ · · · ⊂ I0 = C[x, y] | Ik is an ideal, dim Ik/Ik+1 = 1}

and push it forward to Hilbn(C2). Although the pushforward may be complicated,
the sheaf upstairs on FHilbn(C2) is relatively easy to describe. There are natural
line bundles Lk over FHilbn(C2) whose fibres are Ik/Ik+1. The sheaf constructed
by Gorsky and Negut is of the form

OFHilbn(0) ⊗
n−1∏

k=1

Lnk

k

where the integers nk are determined from the pair (n,m).
In [3], we describe a scheme for constructing F(σ) ∈ Db(CohT (Hilbn(C))) for

arbitrary σ. The idea is as follows. There is a category SBimn of bimodules over
R = C[x1, . . . , xn] known as Soergel bimodules, which categorify the Hecke algebra
of type An−1. Given an open n-strand braid σ, its Rouquier complex C(σ) is a
complex over SBimn. The HOMFLY-PT homology of σ is obtained by applying
the Hochschild homology functor to C(σ) to obtain a complex of R-modules, and
then taking homology.

Conjecture 3. There are adjoint functors

ι∗ :Kb(SBimn)→ Db (CohT (FHilbn(C)))

ι∗ :Db (CohT (FHilbn(C)))→ Kb(SBimn)

which satisfy the additional properties that ι∗ is monoidal and

ι∗(L1 ⊗ · · · ⊗ Lk−1) = C(FTk)

where FTk is the full twist on the first k strands.

Assuming that such functors exist, we define F(σ) = π∗(ι∗(C(σ))), where π :
FHilbn(C)→ Hilbn(C) is the projection. It can be shown that

H(σ) = H∗
T (F(σ)⊗ Λ∗(T ∗))

as desired. The functors ι∗, ι
∗ should be constructed inductively on n. In [3] we

use Elias and Hogancamp’s method of categorical diagonalization [1] to show that
Conjecture 3 would follow from another conjecture which can be phrased purely
in terms of the categories SBimn.
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A Jacobian module for disentanglements and applications to Mond’s
conjecture

Javier Fernández de Bobadilla

(joint work with J. J. Nuño-Ballesteros, G. Peñafort-Sanchis)

For any hypersurface with isolated singularity (X, 0), we have τ(X, 0) ≤ µ(X, 0),
with equality if (X, 0) is weighted homogeneous. Here, τ(X, 0) is the Tjurina
number, that is, the minimal number of parameters in a versal deformation of
(X, 0) and µ(X, 0) is the Milnor number, which is the number of spheres in the
Milnor fibre of (X, 0). If g : (Cn+1, 0) → (C, 0) is a function such that g = 0 is a
reduced equation of (X, 0), then we can compute both numbers in terms of g:

τ(X, 0) = dimC

On+1

J(g) + 〈g〉
, µ(X, 0) = dimC

On+1

J(g)
,

where On+1 is the local ring of holomorphic germs from (Cn+1, 0) to C and J(g)
denotes the Jacobian ideal generated by the partial derivatives of g. Thus, the
initial statement about τ and µ becomes evident. The Jacobian algebra deforms
flatly over the parameter space of any deformation gt of g, it is known to encode
crucial properties of the vanishing cohomology and its monodromy by its relation
with the Brieskorn lattice and it is crucial in the construction of Frobenius manifold
structures in the bases of versal unfoldings. See the works of Brieskorn, Varchenko,
Steenbrink, Scherk, Hertling and others. Inspired by the previous inequality, D.
Mond tried to obtain a result of the same nature in the context of singularities of
mappings. He considered a hypersurface (X, 0) given by the image of a map germ
f : (Cn, S)→ (Cn+1, 0), with S ⊂ Cn a finite set and which has isolated instability
under the action of the Mather group A of biholomorphisms in the source and the
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target. The Tjurina number has to be substituted by the Ae-codimension, which
is equal to the minimal number of parameters in an A-versal deformation of f .
Instead of the Milnor fibre, one considers the disentanglement, that is, the image
Xu of a stabilisation fu of f . Then, Xu has the homotopy type of a wedge of
spheres and Mond defined the image Milnor number µI(f) as the number of such
spheres. Note that, outside the range of Mather’s dimensions, some germs do not
admit a stabilisation. Then, he stated the following conjecture:

Conjecture 1. Let f : (Cn, S)→ (Cn+1, 0) be an A-finite map germ, with (n, n+
1) nice dimensions. Then,

Ae- codim(f) ≤ µI(f),

with equality if f is weighted homogeneous.

The conjecture is known to be true for n = 1, 2 but it remains open until now
for n ≥ 3. There is a related result for map germs f : (Cn, S)→ (Cp, 0) with n ≥ p,
where one considers ∆ the discriminant of f instead of its image and defines the
discriminant Milnor number µ∆(f) in the same way. Damon and Mond showed
that if (n, p) are nice dimensions, then Ae-codim(f) ≤ µ∆(f) with equality if f
is weighted homogeneous. There are many papers in the literature with related
results, partial proofs and examples in which the conjecture has been checked.

Going back to hypersurface singularities g, but now with non-isolated singu-
larities, it is not anymore clear the relation of the Jacobian algebra of g with the
vanishing cohomology. Moreover it is apparent in easy examples that the Jacobian
algebra does not deform flatly in unfoldings. In fact the possibility of studying
the vanishing cohomology via deformations that simplify the critical set (in the
same vein that Morsifications do for isolated singularities) does not exist in gen-
eral. However, for restricted classes of singularities Siersma, Pellikaan, Zaharia,
Nemethi, Marco-Buzunáriz and the first author have developed methods that al-
low to split the vanishing cohomology of a non-isolated singularity in two direct
summands according with the geometric properties of a deformation gu of g which
plays the role of a Morsification. The first is a free vector space contributing to
the middle dimension cohomology of the Milnor fibre, with as much dimension as
the number of Morse points that appear away from the zero set of gu (u 6= 0), the
second is determined by the non-isolated singularities of the zero-set of gu (u 6= 0).

Given f : (Cn, S) → (Cn+1, 0), an A-finite map germ, we consider a generic
1-parameter deformation fu of it (a stabilisation). Let gu be the equation defining
the image of fu. It turns out that the deformation gu is suitable to split the
vanishing cohomology of g in two direct summands, as explained in the paragraph
above, and that the first summand corresponds with the cohomology of the image
Xu, whose rank is the image Milnor number. The main novelty of this paper is
the definition of an Artinian On+1 -module M(f), which satisfies

dimC M(f) = Ae- codim(f) + dimC((g) + J(g)/J(g))

and, in the nice dimensions, this dimension upper bounds the image Milnor num-
ber. Moreover we define a relative version My(F ) of the module for unfoldings
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F of f , and we prove that when we specialise the parameter the relative module
specialises to the original M(f).

The first main result of the talk implies that the dimension of M(f) equals the
image Milnor number if and only if My(F ) is flat over the base of the unfolding. We
also proved that this is equivalent to the flatness of the Jacobian algebra over the
base of the unfolding. Thus, under the flatness condition, M(f) is expected to play
the role of the Milnor algebra for isolated singularities, in the sense of encoding the
first direct summand of the vanishing cohomology, which is the only one present
for isolated singularities. It is very interesting to investigate whether the relation
of the vanishing cohomology of isolated singularities with the Jacobian algebra
explained admit a generalisation to a relation between the first direct summand
of the vanishing cohomology of g and the module M(f).

The second main result says that the flatness of My(F ) implies Mond’s conjec-
ture for f , and it is equivalent to it if f is weighted homogeneous. We also derived
the surprising consequence that in order to settle Mond’s conjecture in complete
generality it is enough to prove it for a series of examples of increasing multiplicity.

The arcspace of C2 and adjacencies of plane curves.

Maŕıa Pe Pereira

(joint work with J. Fernández de Bobadilla, P. Popescu-Pampu)

Let (X,O) be a germ of a normal surface singularity. A model over X is a proper
birational map π : S −→ X . A prime divisor E over O is a divisor in a model S
such that π(E) = O.

An arc in (X,O) centered at O is a parametrization α(t) of curve germ contained
in X with α(0) = 0. The Nash set NE associated with a prime divisor E is the
Zariski closure in the space of arcs of (X,O) of the set of arcs whose lifting (to a
model where E appears) hit E. A Nash adjacency is an inclusion NF ⊂ NE .

Given a normal surface singularity (X,O) and given two different prime divisors
E,F appearing on its minimal resolution, Nash conjectured in [11] that none of
the spaces NE , NF is included in the other one. This conjecture, which was proved
in [7], can be generalized in the form of charaterizing when NF ⊂ NE for E and
F be prime divisors over O ∈ X . This problem was first stated in [9] for X an
irreducible germ of arbitrary dimension.

This problem is wide open even for the smooth germ (C2, O) and we focus
on this case here. Then, the problem turns to be related to classical adjacency
problems of plane curves. We recall that the adjacency problem of plane curves
ask about what topological types may happen in a deformation (fs)s∈(C,0) of plane
curves for the special and generic curve.

More precisely, given two divisors over the origin of C2, the existence of an
adjacency NF ⊂ NE is equivalent to the existence of a holomorphic family of
arcs αs(t) such that α0(t) lifts transverse to F and αs(t) lifts transverse to E.
This equivalence, which was first proved for the more general case of a surface
singularity by Fernández de Bobadilla in [6] using results of Reguera in [17], has
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an easier proof for (C2, O). Moreover, it can be proved that in C2 we can assume
that if such a family exists, it exists one such that the generic curve is a single
branch at O. Then, it is clear the relation to the classical adjacency problem: if
NF ⊂ NE , then there is a deformation (fs)s of curves whose special curve given
by f0 = 0 has embedded resolution through F and whose generic curves ( given by
fs = 0 for s 6= 0 small enough) have all embedded resolution through E. Moreover,
these deformations are δ-constant deformations.

These deformations fs are of special type: the generic curves, for s 6= 0 small
enough, not only share the topological type but also the position of all the free
infinitely near points that appear in the blowing up process that resolves the family
of generic curves. We say that the family fixes the free points. As one can expect,
not all adjacencies can be achieved with this restricted type, but it seems that,
the amount of them that they are, are not negligible at all.

Let’s see now, what can we say about the Nash-adjacency.
The combinatorial type of a pair of divisors is the co mbinatorics of the minimal

sequence of blowing ups needed for making both of them appear. Then, the
following turns to be true:

Theorem 1. Let E and F be two prime divisors over the origin. The Nash-
adjacency NF ⊂ NE only depends on the combinatorial type of the pair (E,F ).

The proof can be found in [8] and is based on the work [6].
This theorem has some nice consequences as the following:

Corollary 1. Let E and F be prime divisors sharing i infinitely near points in the
blowing up process for finding the minimal model where they appear. If moreover
NF ⊂ NE, then we have the following inclusions:

⋃

F ′≡≥iF

NF ′ ⊂
⋂

E′≡≥iE

NE′

where D ≡≥i D
′ means that the divisors D and D′ have the same combinatorics

and they share i or more blowing up points in the process for finding the minimal
models where D and D′ appear.

We would like to understand the relative position of all these NE . As a first
step we conjecture a relation, easy to check in easy examples, with the subsets
of arcs of the form ContqD. The set ContqD is the closure of arcs whose lifting
meets D with multiplicity greater or equal than q. These sets are the maximal
divisorial sets studied in [5] and [9]. In particular, these sets are cylindrical sets
(determined at certain level of truncation) as NE are. More precisely, we expect
the following to be true (see [8] for more details):

Conjecture 1. Let pi0 be any free point among the infinitely near points {pi}i∈I

which are blown-up in order to obtain the minimal model of a prime divisor E.
We conjecture that the set

⋂
E′≡i0E

NE′ coincides with Contq(Epi0
) for certain q

where Epi0
is the divisor that appears after blowing up the point pi0 . In case the

conjecture is true, it would be interesting to compute q.
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In the case E is a toric divisor and i0 = 1, which means that the generic and
special curves have different tangent lines, then M = β1. The next easy case would
be i0 = 1 and E non toric.

A basic fact, proved in [13] as a generalization of a result in [16], is the impli-
cation: is that one has the implication:

NF ⊂ NE =⇒ νE ≤ νF

where νE denotes the divisorial valuation associated to E.
This implication, which we call the valuative criterion for Nash adjacency, has

been used as a main tool for the investigation of Nash’s Conjecture until the works
[6], [12] and [7] (see [10], [14] and [15]). However, Ishii [9] showed that the converse
implication is not true.

In [8] we clarify the geometric meaning of the inequality νE ≤ νF as follows.
Moreover, we treat the inequality in a unified way for non prime divisors by defining
νE :=

∑
i aiνDi for E =

∑
i aiDi with Di prime. Let F =

∑
i biDi be a divisor

over O in a model S over (C2, O). We say that f is associated to F if Ṽ (f) is a
disjoint union of smooth irreducible curve germs and if for every i, bi of them are
transverse to the corresponding Di at distinct smooth points. Then:

Theorem 2. Let E and F be divisors above O ∈ C2 and let S be the minimal
model where E + F appear. The following are equivalent:

• νE ≤ νF
• there exists a deformation G = (gs)s with g0 associated with F in S and
gs associated with E in S, for s 6= 0 small enough.
• there exists a linear deformation (gs = g0 + sg)s with g0 associated with F
in S and g and gs associated with E in S, for s 6= 0 small enough.

The equivalence between the last two points was proved in a different language
by Alberich and Roe in [1].

In particular this shows that the valuative inequality talks about deformations
of functions and doesn’t say anything about the δ-constancy of the family. By a
classical result of Teissier, the δ-constancy in a deformation of reduced curves is
equivalent to the existence of a parametrization in family, that is precisely what a
family of arcs is.

A characterization of the inequality νE ≤ νF in terms of finitely many inequal-
ities νE(h) ≤ νF (h), for functions h only depending on E, is easily achieved in
[8]. This gives an algorithmic way to check the inequality in a very effective way,
being able for example to find very quickly all the possible adjacencies realizable
by families fixing the free points among the ones listed in [2], [4], [18] and [3]. In
fact we find two, from Z11 and X1,1 to E8, that although would follow easily from
the criteria in [2], seem not to be in the previous lists.

Moreover, we can give an algorithm which, given a topological type, gives back
all the topological types Arnold adjacent to the given one by a deformation fixing
the free points. We expect that this algorithm produces, as in the known examples,
a good portion of all the topological types Arnold adjacent to the given one.
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See [8] for further details.
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[13] C. Plénat. À propos du problème des arcs de Nash. Ann. Inst. Fourier (Grenoble) 55 no. 3
(2005), 805–823.

[14] C. Plénat; P. Popescu-Pampu. A class of non-rational surface singularities with bijective
Nash map. Bull. Soc. Math. France 134 no. 3 (2006), 383–394.

[15] C. Plénat; P. Popescu-Pampu. Families of higher dimensional germs with bijective Nash
map. Kodai Math. J. 31 no. 2 (2008), 199–218.

[16] A. J. Reguera. Families of arcs on rational surface singularities. Manuscripta Math. 88 no.
3, (1995), 321–333.

[17] A. J. Reguera. A curve selection lemma in spaces of arcs and the image of the Nash map.
Compositio Math. 142 (2006), 119–130.

[18] K. Saito. Einfach-elliptische Singularitaten. Inv. Math. 23 (1974), 289–325.



2682 Oberwolfach Report 46/2016

Cohomology jump loci

Nero Budur

1. Classical

We consider generalizations of the classical singularity theory package:

Theorem 1.1. Let f : (Cn, 0)→ (C, 0) be the germ of a holomorphic function.

(1) The eigenvalues of the monodromy of f are roots of unity.
(2) The size of the Jordan blocks of the monodromy on Hi of the Milnor fiber

of f is ≤ i + 1 (0 ≤ i ≤ n− 1).
(3) (A’Campo) The monodromy zeta function of f is computable from a log

resolution.
(4) (Malgrange, Kashiwara) The set of eigenvalues of the monodromy of f

along f−1(0) is the image under Exp( ) = exp(2πi · ) of the zeros of the
Bernstein-Sato polynomial of f .

One of the motivations to study classical invariants of singularities comes from
the Monodromy Conjecture:

Conjecture 1.2. (Igusa, Denef-Loeser) Let f be a polynomial in n variables. The
poles of the motivic zeta function of f give zeros of the Bernstein-Sato polynomial
of f .

2. Cohomology jump loci

Part (1) of Theorem 1.1 above is generalized by part (c) of the following:

Theorem 2.1. Let X be either of

(a) a smooth quasi-projective algebraic variety over C [2],
(b) a compact Kähler manifold [6],
(c) the complement of C-analytic set in a small ball [3].

Then the cohomology jump loci

V i
k (X) = {L ∈MB(X) | dimHi(X,L) ≥ k}

are finite unions of torsion-translated subtori of the space of rank one local systems
on X,

MB(X) := Hom(H1(X,Z),C∗) ≈ (C∗)b1(X) × (finite abelian group).

V i
k (X) are affine closed subschemes of MB(X) and are homotopy invariants of

the topological space X . The first two results build on a long list of important
partial results and contributions. The compact Kähler manifold case had been
conjectured by Beauville in late 1980’s. The last part was given a proof indepen-
dent of all other partial results and pointed out that there seems to be a close-to-
universal reason for these structure results: the Riemann-Hilbert correspondence
between D-modules and constructible sheaves. This opens up generalizations of
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the structure results to other types of loci defined by usual (derived) functors. In
this direction, we mentioned an ongoing project with Botong Wang.

In a certain sense which can be made precise, classical singularity theory is
a 1-parameter diagonal in the space of rank one local systems. The Jordan de-
composition of the monodromy actions can be deduced from the scheme-theoretic
intersection of this diagonal with the various cohomology jump loci.

From this point of view, one has the following analog of Part (2) of Theorem
1.1:

Theorem 2.2. ([5]) Let φ : H1(X,Z) → Z be a surjective homomorphism. De-
note by Xφ → X the corresponding Z-cover. Let Ti(X,φ) be the torsion part of
Hi(X

φ,C) as C[t, t−1]-module, where t is induced by the deck action.

(a) If X is a compact Kähler manifold, then all Jordan blocks for t on Ti(X,φ)
are of size one. That is, Ti(X,φ) is semi-simple over C[t, t−1].

(b) If X is a smooth quasi-projective algebraic variety over C of dimension n,
then the size of the Jordan blocks for t on Ti(X,φ) is ≤ min{i+ 1, 2n− i}.

It is very difficult to calculate the cohomology jump loci V i
k (X). Conjecturally,

they are combinatorial for complements of hyperplane arrangements.

3. Cohomology support loci

Part (3) of Theorem 1.1 is generalized by the following:

Theorem 3.1. ([4]) Let F = (f1, . . . , fr) : (Cn, 0) → (Cr, 0) be the germ of a
holomorphic map and f =

∏
i fi. Then the locus VF ⊂ (C∗)r of rank one local

systems on (C∗)r with non-trivial cohomology on some small ball complement along
f−1(0) is a finite union of codimension-one torsion translated subtori, computable
from a log-resolution of f .

VF can also be obtained as the union of the non-trivial cohomology jump loci
of small-ball complements of f along f−1(0). Hence the interesting part of the
above result is that all components become hypersurfaces.

In the case all fi are linear, VF is easily computable from the combinatorics of
the hyperplane arrangement f , see [4].

4. Bernstein-Sato ideals

Part (4) of Theorem 1.1 would be generalized by the following recent conjectures
of [1]:

Conjecture 4.1. Let F = (f1, . . . , fr) : (Cn, 0) → (Cr, 0) be the germ of a holo-
morphic map and f =

∏
i fi.

(i) The ideal BF ∈ C[s1, . . . , sr] given by b(s) such that

b(s) ·
∏

i

f si
i = P ·

∏

i

f si+1
i
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for some P ∈ C[x1, . . . , xn, ∂/∂x1, . . . , ∂/∂xn][s1, . . . , sr], is generated by
products of polynomials of the type

a1si + . . . + arsr + b (ai ∈ Q≥0, b ∈ Q>0).

(ii) The image of the zero locus of BF under Exp : Cr → (C∗)r is VF .

One inclusion in part (ii) is done, namely Exp(Zeros(BF )) contains VF , see
[1, 4]. There is recent progress by Maisonobe on showing that Exp(Zeros(BF )) is
a union of torsion-translated subtori of codimension exactly one of (C∗)r, and on
a geometric computation of the “slopes” of these hypersurfaces.

The Monodromy Conjecture for F = (f1, . . . , fr) states that the polar locus of
the multi-variable motivic zeta function of F gives hyperplanes lying in the zero
locus of the Bernstein-Sato ideal BF , see [1]. One feature of the multi-variable
case, not seeable in the classical case, is that one can also make sense of “half”
of the conjecture. This is namely just the statement relating the “slopes” of the
hyperplanes of the polar locus with the initial ideal of BF . This might be more
approachable.
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On the algebraic stringy Euler number of a singular variety

Victor Batyrev

(joint work with Giuliano Gagliardi)

If X is a smooth projective algebraic variety over C. The topological i-th Betti
number bitop(X) of X is the dimension of the C-space Hi(X,C). The topological

Euler number of X is the alternating sum etop(X) :=
∑2 dimX

i=0 (−1)ibitop(X).

We denote by H2i
alg(X,C) the C-subspace in H2i(X,C) generated by the classes

[Z] of algebraic cycles Z ⊆ X of codimension i. The dimension b2ialg(X) of the

C-space H2i
alg(X,C) we call the 2i-th algebraic Betti number of X . The number

ealg(X) :=

dimX∑

i=0

b2ialg(X)
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we call the algebraic Euler number of a smooth projective variety X . We extend
this notion to the case of singular varieties.

Let X be a d-dimensional normal projective variety over C and let ρ : Y → X
be a desingularization of X such that the exceptional locus of ρ is a union of
smooth irreducible divisors D1, . . . , Ds with normal crossings. Assume that X is
a Q-Gorenstein, i.e. the canononical class KX is a Q-Cartier divisor, and we can
write

KY = ρ∗KX +

s∑

i=1

aiDi

for some rational numbers ai. The variety X is said to have at worst log-terminal
singularities if ai > −1 for all 1 ≤ i ≤ s. We set I := {1, . . . , s} and define
D∅ := Y , DJ := ∩j∈JDj for all ∅ 6= J ⊆ I. Then for any subset J ⊆ I the
complete intersection DJ is either empty, or a smooth projective subvariety of
codimension |J |.

We define the algebraic stringy Euler number of a singular variety by the for-
mula:

estralg(X) :=
∑

∅⊆J⊆I

ealg(DJ)
∏

j∈J

(
−aj
aj + 1

)
.

Using results of Teh [3] based on the non-Archimedean integration [1], it can be
shown that the algebraic stringy Euler number is independent on the choice of the
resolution ρ : Y → X .

The algebraic stringy Euler number estralg(X) is a rational number. Our first
conjecture claims:

Conjecture 1. Let X be a projective algebraic variety with at worst Q-Gorenstein
log-terminal singularities. Then estralg(X) > 0.

The algebraic stringy Euler numbers are expected to be useful in the Mori
program.

Definition 2. A proper birational morphism f : X → X ′ of two Q-Gorenstein
varieties X and X ′ is called a divisorial Mori contraction if f contracts a divisor
D ⊆ X and the anticanonical divisor −KX is f -ample.

Definition 3. A birational morphism g : X 99K X+ of two Q-Gorenstein varieties
X and X+ together with the birational morphisms f : X → Z and f+ : X+ → Z
in a commutative diagram

X
g

//❴❴❴❴❴❴❴

f
��
❅❅

❅❅
❅❅

❅❅
X+

f+

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

Z

is called a Mori flip if g is an isomorphism in codimension one, the anticanonical
class −KX is f -ample, and the canonical class KX+ is f+-ample.
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We conjecture the following strict monotonicity of the algebraic stringy Euler
number with respect to the above elementary birational transformations in the
Mori program:

Conjecture 4. Let f : X → X ′ be a divisorial Mori contraction. Then

estralg(X) > estralg(X ′).

Conjecture 5. Let g : X 99K X+ be a Mori flip. Then

estralg(X) > estralg(X+).

Remark 6. From the viewpoint of Conjectures 1, 4, and 5, a projective algebraic
variety X with at worst terminal singularities is a minimal model in a given bira-
tional class if its algebraic stringy Euler number estralg(X) has the minimal possible
value among all projective algebraic varieties with at worst terminal singularities
in the same birational class.

We can prove our conjectures in the equivariant Mori program for arbitrary
projective spherical varieties [2].

Theorem 7. Let G be a connected reductive algebraic group. Conjectures 1, 4 and
5 are true in the G-equivariant Mori program for projective spherical G-varieties.

This result extends analogous statements in the equivariant Mori program for
toric varieties obtained by M. Reid [4].
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Auf der Morgenstelle 10
72076 Tübingen
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