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Introduction by the Organisers

The fast solution of highly oscillatory problems remains one of the great challenges
of applied and computational mathematics. This workshop brought together ex-
perts working on fast direct solvers for integral equations, preconditioning and
domain decomposition methods to share novel ideas for the development of scal-
able frequency domain solvers for acoustic and electromagnetic problems.

The workshop was roughly divided into three broad subject areas, namely 1.)
fast direct solvers for Helmholtz problems, 2.) fast iterative methods and precondi-
tioning for oscillatory integral equations, and 3.) domain decomposition methods
for volume problems.

The first day started off with an overview talk by Per-Gunnar Martinsson, out-
lining the challenges of developing fast direct solvers for high-frequency problems.
We then had talks by Steffen Börm and Markus Melenk on novel directional H2

matrix techniques for highly oscillatory problems.
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In the evening Timo Betcke led a discussion on large-scale industrial challenges
for high-frequency solvers and the need to develop large-scale coupled FEM/BEM
domain decomposition frameworks to address them.

The second day saw talks by Adrianna Gillman and Alex Barnett on fast direct
solvers for oscillatory problems, and on the fast solution of periodic problems,
respectively. The algorithms presented in these talks produced stunning results
and were backed up by beautiful graphical visualizations of solutions of oscillatory
problems in two and three space dimensions (see also the respective extended
abstracts).

Significant discussions were created by Mike O’Neil’s talk. He presented novel
results on butterfly algorithms, and it was decided to devote the whole Wednes-
day afternoon to a more detailed understanding of butterfly algorithms. Butterfly
compression has the potential to significantly improve the efficiency of fast di-
rect solvers for oscillatory problems and a lot of work is currently going into the
development of novel algorithms based on butterfly ideas.

A remarkable result of the butterfly discussions during the week was that di-
rectional H2 structures applied to individual admissible blocks lead to a butterfly
representation. This opens up the potential to apply algorithmic developments for
H2 matrices to butterfly decompositions.

Due to weather changes the traditional tour was done together with the other
workshop groups already on Tuesday afternoon.

On Wednesday the focus shifted to fast multipole methods and preconditioning.
Stéphanie Chaillat started with an overview talk on Fast Multipole Methods and
various applications in elastodynamics, followed by a talk by Marion Darbas on
novel analytic preconditioners for high-frequency elastic problems.

The talks were concluded on Wednesday by an overview presentation by Timo
Betcke on the BEM++ software framework which provides solvers for a wide
range of electrostatic, acoustic and electromagnetic problems. In the afternoon
the aforementioned discussions on butterfly algorithms, led by Mike O’Neil took
place.

Thursday started with the second part of Stéphanie Chaillat’s overview talk on
fast solvers for elastodynamics. This was followed by an overview by Sabine Le
Borne on the use of fast hierarchical matrix solver techniques for integral equations
in scattered data approximation problems.

The final talk of the day was an overview talk by Martin Gander on variants
of optimized Schwarz domain decomposition solvers for high-frequency problems.
His framework generalizes a range of methods, including sweeping preconditioners,
polarized traces, and multitrace formulations. This sparked many discussions in
the afternoon, leading over to Friday which concluded with talks by Ivan Gra-
ham on shifted Laplacian preconditioners and an introduction to the ideas behind
polarized traces by Laurent Demanet, which provided a fitting conclusion to the
workshop.

The workshop created a unique atmosphere to bring together fast solver experts
from the domain decomposition and the boundary integral equation community.
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The main threads that developed throughout the workshop were the efficient use
of directional approximations and butterfly ideas, numerical and analytic DtN
approximations for preconditioning and as transmission conditions in domain de-
composition methods, and unifying domain decomposition frameworks that can
incorporate a range of currently investigated methods. The format of the work-
shop allowed to exchange these ideas and give strong impulses for future research
into fast high-frequency solvers.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Steffen Börm (joint with Christina Börst)
DH2-matrix compression of Helmholtz problems . . . . . . . . . . . . . . . . . . . . . 2877

Jens M. Melenk (joint with S. Börm)
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Abstracts

High-order discretizations and direct solvers

Per-Gunnar Martinsson

Context: The development of numerical methods for solving linear elliptic PDEs
has in many ways reached a high degree of maturity. A broad range of versa-
tile tools for discretizing the PDE, and solving the resulting linear systems have
been developed. One area that remains challenging concerns certain problems
with highly oscillatory solutions. As a simple model problem, consider an interior
Helmholtz boundary value problem of the form

(1)

{
−∆u(x) − κ2u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ,

where Ω is a domain in two or three dimensions with boundary Γ. The scalar κ is
the wavenumber. The solution to (1) is typically oscillatory, with a wavelength of
2π/κ. Despite its apparent simplicity, it remains a challenge to solve the equation
(1) numerically when κ grows large. In part, this is to be expected since (1)
can in this environment become ill-posed. For instance, for any value of κ such
that κ2 is an eigenvalue of −∆ on the domain Ω (with homogeneous Dirichlet
boundary data), there are functions g for which (1) does not have a solution, and
the solution is not unique. Moreover, when κ is close to an eigenvalue, the problem
is numerically ill-conditioned in the sense that small changes to either the geometry
or the boundary condition can result in large changes in the solution. Finally, the
linear system of equations resulting upon discretization of (1) is challenging to
solve using standard iterative solvers, since generic pre-conditioners have so far
proven to be elusive.

Direct solvers: In the talk, we make a case that so called direct solvers provide
a particularly promising tool for successfully solving problems with oscillatory
solutions. In this context, we use the term “direct solver” to indicate a method
that given some tolerance ε computes an approximation to the solution operator
of (1) that given input data f and g computes the corresponding solution u to
within tolerance ε. In other words, a direct solver builds a discrete approximation
to the continuum solution operator

u(x) =

∫

Ω

F (x, y) f(y) dy +

∫

Γ

G(x, y) g(y) dS(y) x ∈ Ω.

The functions F and G are the “Green’s functions” of (1). These are known
analytically only in the simplest of geometries (when Ω is a circle, a sphere, a half-
plane, etc), so a direct solver must build approximations to them given a domain
and a differential operator. We observe that the mathematical solution operator
is a global operator, so its discrete representation would naturally involve dense
matrices. However, these matrices have internal structure that often allows us to
represent them and apply them in a computationally efficient manner; analogously
to how the Fast Multipole Method efficiently applies a potential evaluation map.
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In the context of solvers for oscillatory problems, direct solvers have two highly
attractive features: (1) Using a direct solver eliminates the problem of slow con-
vergence of iterative solvers. (While pre-conditioners exist for certain geometries,
all such techniques are more or less problem and geometry specific.) (2) When
numerically solving scattering problems, it is common that we need to solve a
sequence of equations that involve the same geometry and the same operator, but
with different body loads and boundary values. For instance, we may for a given
shape seek to determine its radar cross section, which encodes the reflection from,
say, plane waves hitting the shape from different angles. Direct solvers have an in-
herent advantage in environments like these since the cost of building the solution
operator can be amortized over a large number of solves.

High-order discretizations: Beside direct solvers, we argue in the talk that
high-order discretizations are essential for successfully addressing high-frequency
wave propagation problems. This point has been made by many investigators,
and rests on the fact that PDEs such as (1) can be inherently ill-conditioned. If
a change in the input data can result in a change in the solution that is larger by,
say, a factor 103, then we had better use discretizations that resolve the solution to
much more than three digits of accuracy. This intrinsic difficulty is also reflected
in the well known observation that when low order discretizations are used, the
number of discretization points per wavelength required to meet a certain accuracy
increases as the domain grows larger.

Combining high-order discretization with direct solvers: The “Hier-
archical Poincaré-Steklov (HPS)” method: Having argued that for solving
high-frequency problems we need to use both direct solvers and high-order dis-
cretizations, we next face the problem that these two methodologies typically do
not blend well. For instance, if a standard direct solver for sparse systems such as
the nested dissection or multifrontal methods [5, 3, 4] is used to solve the linear
systems arising from a finite-difference discretization of (1), then the performance
plummets as the discretization order is increased, see, e.g., [6, Table 3].

The second half of the talk was dedicated to presenting a novel discretization
scheme that was designed specifically for allowing highly efficient direct solvers
to be employed even for methods with high local discretization order. This new
scheme is based on a multidomain spectral discretization. For instance, for equa-
tion (1) defined on the square Ω = [0, 1]2, we might use a grid like the one shown
in Figure 1. In this figure, the domain is split into 4× 4 “leaves” and then on each
leaf we place a 7 × 7 tensor product grid of Chebyshev nodes. The PDE (1) is
enforced via collocation on any grid nodes that is interior to a leaf. For each node
on a boundary between leaves, we enforce continuity of the normal derivatives. In
the talk, we demonstrated that the linear system resulting upon this discretization
is remarkably amenable to nested dissection type solvers.

Several numerical examples illustrating the performance of the method were
presented. For instance, Table 1 shows the results we recorded when solving (1)
on the square Ω = [0, 1]2 using a local discretization consisting of 21×21 Chebyshev
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Figure 1. Example of a mesh used in the “Hierarchical Poincaré-
Steklov (HPS)” method for solving (1) on the domain Ω = [0, 1]2.

N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

6561 6.7 0.23 0.0011 2.56528e-10 1.01490e-08 4.4 87.1
25921 13.3 0.92 0.0044 5.24706e-10 4.44184e-08 18.8 95.2

103041 26.7 4.68 0.0173 9.49460e-10 1.56699e-07 80.8 102.7
410881 53.3 22.29 0.0727 1.21769e-09 3.99051e-07 344.9 110.0

1640961 106.7 99.20 0.2965 1.90502e-09 1.24859e-06 1467.2 117.2
6558721 213.3 551.32 20.9551 2.84554e-09 3.74616e-06 6218.7 124.3

Table 1. Results from solving (1) on Ω = [0, 1]2 using HPS.

grids (executed on a basic office laptop). In this experiment, the number of points-
per-wavelength was kept fixed at 12. tbuild and tsolve refer to the times for the
“build stage” (where the approximate solution operator is build) and the “solve
stage” (where a solution is computed given Dirichlet data), respectively. Epot is
the relative error in the ℓ∞ norm, and M is the memory required to store the
solution operator. We see that there is almost no observable “pollution effect.”
See [12] for details, with [11] being the original preprint.

The scheme presented has the same asymptotic complexity as classical nested
dissection, meaning in two dimensions O(N1.5) for the “build stage” and
O(N logN) for the “solve stage.” (In 3D, the corresponding numbers are O(N2)
and O(N4/3).) For the case where the wave-number is kept fixed as N is increas-
ing, the complexity can be reduced to O(N) for all stages, as shown in [6]. A
modification of the scheme that results in better stability for wave-problems, and
allows so called “FEM-BEM” coupling is presented in [7]. Preliminary results on
the extension to 3D are presented in [10].

Future challenges: While the “HPS” scheme described in the talk provides
a path for combining direct solvers with high order discretizations, much work
remains to be done. Most importantly, in the situation where the “number of
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discretization points per wave-length” is kept fixed as N increases, the current
version of HPS does not scale linearly, which limits the size of problems that can be
handled. (In practice, we estimate that domains up to a couple of hundred of wave-
lengths in 3D can be handled using current computing machinery.) Direct solvers
based on so called “butterfly representations,” as described by Eric Michielssen
(and discussed in Michael O’Neil’s talk) could potentially overcome this problem,
and allow for even larger problems to be solved.

The theme of combining high order discretizations with direct solvers is also
of high relevance in the context of boundary integral equation (BIE) formulations
of wave propagation problems. For BIEs in two dimensions, this was explored
in [13] and later refined in [8]. The extension to 3D problems is discussed in
[9, 1], with techniques for obtaining O(N) complexity in [2] (for the case where
the wave-number is kept fixed as N is increased).
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DH
2-matrix compression of Helmholtz problems

Steffen Börm

(joint work with Christina Börst)

We consider the boundary integral formulation

u(x) =

∫

∂Ω

g(x, y)
∂u

∂n
(y) dy −

∫

∂Ω

∂g

∂ny
(x, y)u(y) dy for all x ∈ Ω

of the Helmholtz equation in a domain Ω. Here

g(x, y) =
exp(ικ‖x− y‖)

4π‖x− y‖
denotes the fundamental solution. In order to obtain a fast summation scheme,
we have to approximate g by a sum of tensor products. If the wave number κ
is large, standard approximation schemes like Chebyshev interpolation converge
slowly, and this leads to relatively high storage requirements and long computation
times.

Following ideas by Brandt [2], Engquist/Ying [3] and Messner/Schanz/Darve
[4], we can employ directional interpolation to significantly reduce the complexity:
we split g into a plane wave and a remainder, i.e.,

g(x, y) = exp(ικ〈x− y, c〉) exp(ικ(‖x− y‖ − 〈x− y, c〉))
4π‖x− y‖︸ ︷︷ ︸
=:gc(x,y)

with a direction c ∈ R3. It is possible to prove that the modified kernel function
gc is smooth in a cone around the axis c, and we can apply standard interpolation
to approximate it in the form

gc(x, y) ≈ g̃c,τσ(x, y) :=

k∑

ν,µ=1

Lτ,ν(x)gc(ξτ,ν , ξσ,µ)Lσ,µ(y) for all x ∈ τ, y ∈ σ,

where τ × σ is the domain of interpolation, (ξτ,ν)kν=1 and (ξσ,µ)kµ=1 are the in-

terpolation points, and (Lτ,ν)kν=1 and (Lσ,µ)kµ=1 are the corresponding Lagrange
polynomials.

Due to

g(x, y) = exp(ικ〈x − y, c〉)gc(x, y) ≈ exp(ικ〈x − y, c〉)g̃c,τσ(x, y)

=

k∑

ν,µ=1

exp(ικ〈x, c〉)Lτ,ν (x)︸ ︷︷ ︸
=:Lτc,ν(x)

gc(ξτ,ν , ξσ,µ) exp(ικ〈−y, c〉)Lσ,µ(y)︸ ︷︷ ︸
=:Lσc,µ(y)

,

we have found an approximation of g by tensor products. This approach is called
directional interpolation.

In order to obtain a fast summation scheme, we have to be able to represent
the Lagrange polynomials in a nested hierarchy. This goal can be achieved by an
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additional approximation step: for τ ′ ⊆ τ and c′ ≈ c, we can apply interpolation
again to find

Lτc,ν(x) = exp(ικ〈x, c〉)Lτ,ν(x) = exp(ικ〈x, c′〉) exp(ικ〈x, c − c′〉)Lτ,ν(x)

≈ exp(ικ〈x, c′〉)
k∑

ν′=1

exp(ικ〈ξτ ′,ν′ , c− c′〉)Lτ,ν(ξτ ′,ν′)︸ ︷︷ ︸
=:eτ′c,ν′ν

Lτ ′,ν′(x)

=

k∑

ν′=1

eτ ′c,ν′νLτ ′c′,ν′(x) for all x ∈ τ ′.

Combining the approximation of g and the approximation of Lτc,ν yields a fast
summation method that is similar to the well-known fast multipole scheme, but
uses multiple directions c for each subdomain τ .

If we discretize the approximated kernel function, we obtain a DH2-matrix: the
underlying index set I is split into a cluster tree TI , and each cluster t ∈ TI is
associated with a set Dt of directions. A matrix G ∈ CI×I is split into submatrices
G|t×s that are either small or can be expressed in the factorized low-rank form

G|t×s = VtcStsW
∗
sc

with a direction c ∈ Dt ∩ Ds depending on the block t × s and a coupling matrix
Sts ∈ Ck×k.

The cluster bases (Vtc)t∈TI ,c∈Dt
and (Wsc)s∈TI ,c∈Ds

are nested, i.e., for all t′ ∈
sons(t), we can find a direction c′ ∈ Dt′ approximating c such that

Vtc|t′×k = Vt′c′Et′c

holds with a transfer matrix Et′c ∈ Ck×k.
Directional interpolation immediately gives rise to DH2-matrix approximations

of the Galerkin stiffness matrices resulting from boundary element discretizations,
but the ranks of the approximations are unnecessarily high.

Following [1], we collect all parts of the original matrix G ∈ CI×I that will be
approximated by Vtc in a submatrix Gtc. If t is a leaf cluster, we can use a singular
value decomposition to find a low-rank approximation

(1) Gtc ≈ VtcV
∗
tcGtc

with an isometric matrix Vtc of minimal rank.
Assume now that t is not a leaf cluster. We consider only the case of a binary

cluster tree, i.e., we have sons(t) = {t1, t2} with t1 6= t2. Given c ∈ Dt, we can find
c1 ∈ Dt1 and c2 ∈ Dt2 approximating c. Once Vt1c1 and Vt2c2 have been computed
by recursion, we can consider the matrix Vtc. Due to the nested structure, we have

Vtc =

(
Vt1c1Et1c

Vt2c2Et2c

)
,

and we only have to find the transfer matrices Et1c and Et2c. Introducing

V̂tc :=

(
Et1c

Et2c

)
, Qtc :=

(
Vt1c1

Vt2c2

)
, Ĝtc := Q∗

tcGtc,
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the approximation (1) takes the form

(2) Ĝtc ≈ V̂tcV̂
∗
tcĜtc,

and we can construct V̂tc again by a singular value decomposition. The resulting
algorithm takes O(n2k) operations to find a DH2-matrix approximation of a given
matrix G, where n := #I denotes the matrix dimension.

If the original matrix G is already given in DH2-matrix form, e.g., obtained by

directional interpolation, we can take advantage of the fact that Gtc and Ĝtc are
matrices of low rank. Using a carefully designed recursive algorithm, we can find
weight matrices Ztc ∈ CkG×kG and isometric matrices Ptc satisfying

Gtc = VG,tcZ
∗
tcP

∗
tc,

where VG,tc denotes the cluster basis and kG denotes the rank of the original
representation. Since the factor Ptc does not influence the singular values or the
left singular vectors, we can drop it and only have to compute the singular value
decompositions of matrices with only kG columns. This approach reduces the
complexity to O(nk2G log(n)).

Numerical experiments illustrate that the DH2-matrix compression significantly
reduces the storage requirements both for the single and the double layer potential
operator and may even be applicable to the construction of preconditioners based
on approximate LR factorizations.
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Stability of iterated re-interpolation in high-frequency applications

Jens M. Melenk

(joint work with S. Börm)

The numerical treatment of integral operators for high-frequency problems has to
address a variety of challenges, e.g., the requirement to store the matrix represen-
tation of a discretization and realize a matrix-vector multiplication in log-linear
complexity. Algorithms with this feature often rely on two approximation steps:
First, a block partition is identified such that each block can be approximation by
a low-rank matrix. On the side of analysis, this can be effected by approximating
the kernel function in terms of a suitable expansion system (e.g., products of plane
waves and polynomials). However, since in the high-frequency setting the number
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of such blocks may be too large to ensure log-linear complexity, a second approx-
imation step is necessary that exploits a multilevel structure by suitably relating
the chosen expansion system on one level to the one on the next level. We focus
on the approximation errors incurred by the second approximation process.

Directional H2-matrices by interpolation: single-level approximation.
We exemplify the situation by the 3D Helmholtz kernel function

G(x, y) = exp(ik‖x− y‖)‖x− y‖−1,

where k > 0 is assumed to be large. First, let us consider a low-rank approximation
of G on the tensor product BX

0 ×BY
0 of two axis-parallel boxes BX

0 ⊂ R3, BY
0 ⊂ R3

that satisfy the parabolic admissibility condition

k max{diamBX
0 , diamBY

0 }2 ≤ η1 dist(BX
0 , BY

0 ),(1)

max{diamBX
0 , diamBY

0 } ≤ η2 dist(BX
0 , BY

0 ).(2)

Denote by cBX
0
,BY

0
the unit vector pointing from the center of BY

0 to the center of

BX
0 , and let c0 ∈ R3 with ‖c0‖ = 1 be such that

(3) k‖c0 − cBX
0
,BY

0
‖max{diamBX

0 , diamBY
0 } ≤ η3.

Then, when denoting by IBm : C(B) → Qm the tensor-product Chebyshev inter-
polation operator mapping into the space of polynomials of degree m (in each
variable), one can show (cf. [3, 8, 1, 4]) for (x, y) ∈ BX

0 ×BY
0

(4)∣∣∣G(x, y) − exp(ik〈x− y, c0〉)IB
X
0 ×BY

0
m (exp(−ik〈x− y, c0〉)G(x, y))

∣∣∣ ≤ Ce−bm

dist(BX
0 , BY

0 )

for some constants C, b > 0 that depend solely on η1, η2, η3. Suitable expansion
systems for BX

0 ×BY
0 are therefore systems of functions of the form

LBX
0
,i,c(x) := exp(i〈c, x〉)LBX

0
,i(x), i = 1, . . . , (m + 1)3, c ∈ DBX

0
,

where DBX
0

is a set of vectors of unit length that contains the vector c0, and the

functions LBX
0
,i(x), i = 1, . . . , (m+ 1)3, form the Lagrange basis of Qm associated

with Chebyshev interpolation on BX
0 . An analogous expansion system can be

associated with BY
0 .

Directional H2-matrices by interpolation: multi-level approximation.
Assume that a sequence of nested boxes Bℓ, ℓ = 0, . . . , L, is given with the property
that, for a fixed q ∈ (0, 1),

(5) Bℓ+1 ⊂ Bℓ, diamdBℓ+1 ≤ qdiamdBℓ, d ∈ {1, 2, 3};

here, diamdA denotes the diameter of the set A in the direction of the dth coordi-
nate. Assume the existence of a sequence of vectors cℓ, ℓ = 0, . . . , L, with

(6) ‖cℓ‖ = 1 and k‖cℓ+1 − cℓ‖ diamBℓ ≤ η4, ℓ = 0, . . . , L− 1.

These boxes Bℓ and vectors cℓ can be used to define interpolation operators

IBℓ,cℓf := exp(ik〈x, cℓ〉)IBℓ
m (exp(−ik〈x, cℓ〉)f)
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and the iterated interpolation operators

I
iter
(Bℓ)Lℓ=1

,(cℓ)Lℓ=1

:= IBL,cL ◦ · · · ◦ IB,c1 .

Theorem 1 Fix q̂ ∈ (q, 1). Then there exists Ĉ > 0 depending solely on q such
that for all π ∈ Qm

‖
(

I−I
iter
(Bℓ)Lℓ=1

,(cℓ)Lℓ=1

)
(exp(ik〈x, c0〉π)‖L∞(BL) ≤ ((1 + Ĉq̂m)L − 1)‖π‖L∞(B0).

The algorithm designed in [10] can be analyzed using Theorem 1 as shown in
[4]. Underlying this analysis is the observation that, for a parabolically admissible
pair (BX

0 , BY
0 ) and sequences (BX

ℓ )Lℓ=0, (BY
ℓ )Lℓ=0, (cℓ)

L
ℓ=0, one has to quantify the

accuracy of the approximation

G|BX
L ×BY

L
≈ G̃BX

L ×BY
L

:= (Iiter(BX
ℓ
)L
ℓ=1

,(cℓ)Lℓ=1

◦IBX
0
,c0)⊗(Iiter(BY

ℓ
)L
ℓ=1

,(−cℓ)Lℓ=1

◦IBY
0
,−c0)G.

[4] shows:

Corollary 1 Assume that the sequences (BX
ℓ )Lℓ=0, (BY

ℓ )Lℓ=0 satisfy the contraction
property (5) and that the chosen (cℓ)

L
ℓ=0 satisfy (6) with both BX

ℓ and BY
ℓ taking

the place of Bℓ there. Then, there are C, b, C′ > 0 s.t. for m ≥ C′ log(L + 1)

‖G− G̃BX
L
×BY

L
‖L∞(BX

0
×BY

0
) ≤ Ce−bm(dist(BX

0 , BY
0 ))−1.

Extensions to Butterfly algorithms. The approximation result of Theorem 2
can be generalized to certain forms of butterfly algorithms thereby sharpening the
analyses of [7] and [9]; details are given in [5].

Let (x, y) 7→ Φ(x, y) be a function. Assume that the sequence Bℓ satisfies (5).
Let (y−ℓ)

L
ℓ=0 be a sequence of points. Define the interpolation operators

(7) Ĩ
X
ℓ f := exp(ikΦ(x, y−ℓ))I

Bℓ
m (exp(−ikΦ(x, y−ℓ))f)

and the corresponding iterated version

Ĩ
X,iter
L := Ĩ

X
L ◦ · · · ◦ ĨX1 .

One can then prove the following approximation result:

Theorem 2 Let Φ be real-valued for real arguments and analytic in a complex
neighborhood of BX

0 × B′, where the (closed) box B′ ⊂ R3 contains y−ℓ, ℓ =
0, . . . , L. Assume that the sequence (BX

ℓ )Lℓ=0 satisfies the contraction condition
(5) and, for some η5 > 0,

diamBX
ℓ+1‖y−ℓ − y−(ℓ+1)‖ ≤ η5/k, ℓ = 0, . . . , L− 1.

Then there exist q̂ ∈ (q, 1) and Ĉ > 0 such that

‖
(

I−Ĩ
X,iter
L

)
(exp(ikΦ(x, y0))π)‖L∞(BL) ≤ ((1+Ĉq̂m)L−1)‖π‖L∞(B0) ∀π ∈ Qm.
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To create separable approximations of exp(ikΦ(x, y)), we have to introduce the

operators Ĩ
Y
ℓ analogously to Ĩ

X
ℓ for a given sequence (x−ℓ)

L
ℓ=0:

I
Y
ℓ f := exp(ikΦ(x−ℓ, y))IBℓ

m (exp(−ikΦ(x−ℓ, y))f)

and its iterated version Ĩ
Y,iter
L := Ĩ

Y
L ◦ · · · ◦ ĨY1 .

Corollary 2 Let (BX
ℓ )Lℓ=−L, (BY

ℓ )Lℓ=−L be two sequences of nested boxes that

satisfy the contraction property (5). Assume that Φ is real-valued on BX
−L ×BY

−L

and analytic in a complex neighborhood of BX
−L×BY

−L. Let xℓ ∈ BX
ℓ and yℓ ∈ BY

ℓ

satisfy,

diamBX
ℓ+1‖y−ℓ−y−(ℓ+1)‖+diamBY

ℓ+1‖x−ℓ−x−(ℓ+1)‖ ≤ η5/k, ℓ = 0, . . . , L−1.

Define the approximation E by

exp(ikΦ(x, y) ≈ E := (ĨX,iter
L ◦ ĨX0 ) ⊗ (ĨY,iterL ◦ ĨY0 )(exp(ikΦ(x, y))).

Then, there are constants C, b, C′ > 0 s.t. for m ≥ C′ log(L + 1)

‖ exp(ikΦ(x, y)) − E‖L∞(BX
0
×BY

0
) ≤ Ce−bm.
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The Hierarchical Poincaré-Steklov scheme: Oscillatory problems

Adrianna Gillman

(joint work with P.G. Martinsson, A. Barnett, C. Borges and L. Greengard)

Consider the problem of computing the scattered wave us that results when a given
incident wave ui (which satisfies the free space Helmholtz equation) impinges upon
the region with variable wave speed. Mathematically, the scattered field us satisfies
the variable coefficient Helmholtz equation

(1) ∆us(x) + κ2(1 − b(x))us(x) = κ2b(x)ui(x), x ∈ R
2,
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and the outgoing Sommerfeld radiation condition

(2)
∂us

∂r
− iκus = o(r−1/2), r := |x| → ∞,

uniformly in angle. The real number κ in (1) and (2) is the free space wavenumber
(or frequency), and the so called “scattering potential” b = b(x) has compact
support.

Classic numerical partial differential equation techniques face two big challenges
when applied to the problem above for large wavenumber κ. First, the accuracy of
finite element and finite difference schemes for the Helmholtz equation is limited
by so-called “pollution” (dispersion) error, demanding an increasing number of de-
grees of freedom per wavelength in order to maintain fixed accuracy as wavenum-
ber κ grows. Second, iterative solvers that are typically used to solve the linear
system resulting from discretization are slow to converge due to ill-conditioning.
There is much ongoing work to resolve these issues. For example, efficient (both in
computational cost and memory) direct solvers have been developed to avoid the
convergence issues associated with iterative solvers for highly oscillatory problems.

The authors present a new discretization technique for high frequency scatter-
ing problems in variable media. This method which does not observe pollution
and has an efficient direct solver called the Hierarchical Poincaré-Steklov (HPS)
scheme. The technique uses a classical spectral collocation method, as described
in e.g. Trefethen [6], on a collection of disjoint leaf boxes whose union is the
domain. On each leaf box approximate solution operators and Poincaré-Steklov
operators such as Dirichlet-to-Neumann operators are constructed. Then boxes
are “glued” together in a hierarchical fashion creating approximate solution and
Poincaré-Steklov operators for the union of two boxes. Once this precomputation
is complete, new boundary conditions and source functions can be processed by ap-
plying the solution operators via a collection of small matrix vector multiplies. The
resulting method has computational cost that is asymptotically the same as the
nested dissection method [3] but has high order accuracy even for problems with
highly oscillatory solutions. For example when applied to the Helmholtz problem
with a fixed twelve points per wavelength, the HPS method achieves eight digits
of accuracy [5].

In [4], the performance of the HPS method for high frequency variable me-
dia problems is investigated. Here we report on the performance for two choices
scattering potential b(x):
Lens : A vertically-graded lens (Figure 1(a)), at wavenumber κ = 300.
Random bumps : The sum of 200 wide Gaussian bumps randomly placed in a
box,rolled off to zero (see Figure 1(b)) giving a smooth random potential at
wavenumber κ = 160.

Table 2 reports the number of discretization points N , the points per wave-
length ppw, the time for building the direct solver tpre, the time for applying
the solver tsolve and the relative convergence errors Elens and Ebumps for the lens
and random bump scattering potentials, respectively. The timings illustrate the
pre-asymptotic behavior of the building the direct solver and the extremely small
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constant associated with the solve. The errors illustrate that even in the high
frequency regime the HPS method is able to achieve spectral accuracy and that
the accuracy can be predetermined by choosing the correct number of points per
wavelength.

(a) (b)

(c) (d)

Figure 1. Plots of the (a) Lens, and (b) Random bumps scat-
tering potentials as well as the real part of the total field (c), (d)
respectively.

With the ability to achieve high accuracy for problems with highly oscillatory
solutions and also have an efficient direct solver, the HPS method is ideal for a
variety of applications where conditioning and pollution have stagnated progress.
Recently it been integrated into a recursive linearization procedure [2] for free
space inverse scattering problems[1]. The resulting method was able to recover
the media to three digits with over one million PDE solves in two days on a
modest server. In the future the method will be applied to a variety of problems
including seismic imaging and PDE constrained optimization.
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N ppw tpre tsolve Elens Ebump

231361 5 17 s 0.16 s 3e-3 1e-02
923521 10 78 s 0.7 s 2e-7 7e-07
3690241 20 6 m 2.7 s 7e-10 1e-09

Table 2. Table reporting the time for computing the direct solver
tpre, the time for finding the solution with new boundary data
tsolve, the relative convergence error Elens and Ebump for the lens
and bump scattering potentials with ppw points per wavelength
and N discretization points.
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Robust periodization of frequency-domain integral equation solvers

Alex Barnett

(joint work with Min Hyung Cho, Yuxiang Liu, Adrianna Gillman, Jun Lai,
Motoki Kobayashi, Leslie Greengard)

Abstract. Integral equations enable the efficient and accurate numerical solution
of wave diffraction from periodic dielectrics or metallic geometries. However, use
of the usual quasi-periodic Green’s function has certain disadvantages, including
its breakdown at certain scattering parameters. I review a spectrally-accurate
alternative that combines free-space Green’s kernels with a set of auxiliary partic-
ular solutions, whose coefficients are solved by imposing periodicity and radiation
conditions on a unit cell in the least squares sense. This forms the core of various
fast algorithms for the solution of challenging Helmholtz and Maxwell problems
in 2D and 3D.

Background and motivation. We seek to solve the scattering of time-harmonic
waves at frequency ω from a periodic geometry in 2D or 3D, using boundary
integral equation (BIE) methods. The numerous applications include dielectric
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diffraction gratings, antennae, meta-materials, photonic crystals, lithography, wa-
ter waves, and thin-film solar cell design. For simplicity we start with a grating
ΩΛ of disjoint copies of a bounded obstacle Ω ⊂ R2, ie ΩΛ := {x ∈ R2 : x + nd ∈
Ω for some n ∈ Z}, where d = (d, 0) is the lattice vector. An incident plane wave
ui(x) = eik·x where k = (ω cos θ, ω sin θ), satisfies the quasi-periodicity condition
u(x+d) = αu(x) where the Bloch phase is α = eiωd cos θ. The horizontal wavenum-
bers of plane waves which are quasi-periodic are κn = k cos θ + 2πn/d. We seek a
scattered wave u satisfying the boundary value problem (BVP)

(∆ + ω2)u = 0 in R
2\Ωλ(1)

u = −ui on ∂ΩΛ(2)

u(x, y) =
∑

n∈Z

ane
iκnx+i

√
ω2−κ2

n(y−y0), y ≥ y0, x = (x, y),(3)

u(x, y) =
∑

n∈Z

bne
iκnx+i

√
ω2−κ2

n(y0−y), y ≤ −y0(4)

where y = ±y0 define horizontal lines enclosing Ω, and the sign of square-roots
are taken positive real or positive imaginary (insuring outgoing or decaying waves
respectively). Here (2) insures that the physical wave ui + u vanishes on ∂ΩΛ,
ie, a sound-soft (Dirichlet) boundary condition. (3)–(4) are Rayleigh–Bloch (RB)
radiation conditions, the periodic analog of the Sommerfeld condition. A unique
solution u to (1)–(4) exists for all ω and θ ∈ (−π, 0) [3], and is quasi-periodic.

One BIE method to numerically solve the above BVP builds upon the standard
BIE method for scattering from a single (non-periodic) obstacle Ω [6]. The latter
uses a combined-field indirect BIE representation

(5) u = (D − iωS)τ

where S and D are the single- and double-layer potentials based on the free-space

kernel G(x,y) = i
4H

(1)
0 (ω‖x−y‖), x,y ∈ R2. Then using standard jump relations

on ∂Ω gives the 2nd-kind Fredholm equation A0τ := (12 + D − iωS)τ = −ui|∂Ω,
which can be solved to give the density τ via the Nyström method with an N -node
high-order quadrature. Now, to switch the periodic BVP one may replace G by its
quasi-periodic cousin GQP(x,y) =

∑
m∈Z

αmG(x,y−md), which is a spatial sum
over a source lattice. The solution u is then evaluated via (5). This generalizes to
doubly-periodic problems in 3D, and is a standard method used by many groups
(eg Chandler-Wilde, Arens, Otani–Nishimura [11], Bruno et al [4], etc).

There are three issues with the above approach:

(1) GQP blows up (does not exist) at certain parameter pairs (ω, θ) called
Wood anomalies (corresponding to a vanishing vertical wavenumber in
the RB expansions), even though the BVP remains well-posed;

(2) pointwise evaluation of GQP(x,y) introduces an O(N2) cost, so is not
compatible with fast algorithms;

(3) GQP is difficult to compute accurately. The most popular method involves
lattice sums (eg [11]), which can be coupled with a fast algorithm; however,
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Figure 1. Left: scattering from 2D 1000-layer dielectric struc-
ture computed by block-tridiagonal direct solver (N = 6 × 105

unknowns, 8-digit accuracy, 6 minutes) [5]. Right: 3D electromag-
netic scattering from a 13-wavelength doubly-periodic grating of
dielectric rounded cylinder shapes (N = 83000, 8-digit accuracy,
2 hours) [10].

lattice sums (as do Taylor series) converge in balls, therefore are clumsy
if the unit cell has high aspect ratio.

One way around the robustness issue (1) is to use Dirichlet or Neumann half-
space versions of GQP which, due to faster decay in the spatial sum, never blow
up. However, in multi-layer dielectric problems this would also lead to a non-robust
formulation (due to possible resonances of complementary strip-like BVPs), unless
impedance half-space versions were used, which are difficult to evaluate.

Alternative scheme. We now sketch an alternative which cures all three issues
above (for details see [2, 1, 7, 5, 8, 9]). Let B be a unit cell “box” of width d and
vertical extent [−y0, y0]. We replace (5) by

(6) u =
∑

m∈{−1,0,1}

αm(Dm − iωSm)τ +

M∑

j=1

cjφj ,

where Sm and Dm indicate layer potentials living on the mth source copy ∂Ω+md,
while φj are basis functions (particular solutions) satisfying (∆ + ω2)φj = 0 in B.
At low frequencies, in 2D, M ∼ 102 and in 3D, M ∼ 103. The unknowns are τ ,
the vector c := {cj}Mj=1, and the vectors a and b containing the coefficients in

truncated RB expansions (3)–(4). Three block rows of an extended linear system
(ELS) are built by i) imposing the boundary condition on the N nodes on ∂Ω, ii)
imposing uL − α−1uR = 0 and unL − α−1unR = 0, at discrete collocation nodes
on L and R, the side walls of B, where n indicates normal derivative, and iii)
equating Cauchy data u and un at nodes on U and D, the top and bottom walls
of B, between (6) and (3) or (4). After stacking ξ = [c; a;b], the ELS takes the
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form

[
Anear B
C Q

] [
τ
ξ

]
=

[
−ui|∂Ω

0

]
, Anear := 1

2
+

∑

m∈{−1,0,1}

(Dm − iωSm) ,

which is rectangular and, due to the last term in (6), ill-conditioned. The block
Anear is square and well-conditioned. The ELS may be solved in three ways: a)
direct dense methods [1]; or by b) eliminating ξ to leave the Schur complement
AQP = Anear−BQ+C (where Q+C is applied in a backward stable fashion), which
is an N × N system for τ that may be solved iteratively using the FMM plus a
rank-M correction, as in [8]; or c) eliminating τ (via a fast direct solver to build a
compressed A−1) to leave a small dense linear system for ξ. (b) and (c) are “fast.”

I now review recent progress based on the above. Method (c) is used in [7],
which, since it is rapid for multiple right-hand sides, gives a 600× acceleration
over iterative solution via GMRES and FMM. The Schur complements of method
(b) are used in each layer of the multilayer dielectric direct solver of [5] (see left
panel of Fig. 1). Method (b) with an iterative solver is used for axisymmetric
bodies in the 3D acoustic [9] and full Maxwell [10] settings (see right panel).

We sketch a couple of implementation aspects. The choice of φj may be local
expansions (Fourier–Bessel in 2D, or spherical harmonics in 3D) [2, 8, 9, 10], com-
plex plane waves [1, 7], or fundamental solutions (proxy points) [5]. The last two
can handle high aspect-ratio unit cells better than lattice sums. Topology turns
out to affect the design of a scheme robust at Wood anomalies: for instance, when
the obstacles join up to form a continuous layer (as in the left panel), for repre-
sentations in a half space the non-physical RB condition need not be applied (and
in a bounded layer, no RB condition need be applied). This makes method (b) ro-
bust, and simplifies the coupled ELS’s somewhat [5]. In contrast, for disconnected
obstacles, to achieve robustness with method (b) one would have to introduce a
fictitious connected interface; we leave this to future work. Methods (a) and (c)
are already robust for disconnected obstacles. In the Maxwell case it turns out
that one may periodize Ex, Ey and Ez almost as independent scalar fields [10].

Future work. There are many directions in which we expect the above scheme
to be useful, including high aspect ratios, various periodicities (eg singly-periodic
in 3D), and the design of schemes for the general 3D multilayer dielectric problem.
One advantage of our approach is that existing quadrature and FMM libraries built
for the non-periodic setting may be exploited as black boxes. Thus a future goal is
to release codes for the fast evaluation of potentials due to periodized Helmholtz
or Maxwell sources, for all possible dimensions of periodicity in 2D and 3D, which
“wrap around” existing free-space FMM libraries. This would decouple the fast
periodization task from the choice of quadrature and representation, leaving the
last two up to the user. We also leave the interesting problems of non-periodic
excitation of periodic geometries, and of local perturbations of periodic geometries,
for future research.
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Butterfly algorithms

Michael O’Neil

Boundary integral equation formulations of the classical PDEs of mathematical
physics, namely the Helmholtz and Maxwell’s equations, lead to discretized sys-
tems which are dense. Denoting the size of these discretized systems by N , their
direct solution requires O(N3) operations – a cost which is prohibitive for even
modest sized problems in three dimensions. However, fast multipole methods for
Helmholtz potentials, invented roughly 25 years ago by Greengard and Rokhlin,
allow for the rapid application of these systems at a computational cost of O(N) or
O(N logN), depending on the driving frequency. This fact, when coupled with it-
erative linear algebraic solvers, allows for an accelerated solution method to these
integral equation formulations, often in the same computational cost when the
number of iterations can be controlled.

While asymptotically optimal from a computational point of view, the high-
frequency FMM involves several numerical methods involving special functions, fil-
tering, etc. Another, slightly more expensive, alternative to high-frequency FMMs
are butterfly algorithms, first reported 20 years ago by Michielssen and Boag. This
class of algorithms, whose underlying analysis is very similar to FMMs, can be
numerically implemented using nothing more that straightforward linear algebraic
matrix factorizations. While FMMs rely on the well-separated-ness of groups of
sources and targets, butterfly algorithms rely on fixing the product of the volume
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occupied by those same sources and targets. That is to say, N -body calculations
can be accelerated via compressing interactions in a dual-hierarchy where source
regions grow larger and target regions shrink by the same factor. These algorithms
are very similar to the recent directional methods, and contain data movement that
is akin to standard implementations of the Fast Fourier Transform.

In this talk I will provide a relatively thorough description of computing the
butterfly compression of several oscillatory kernels in one dimension, and give a
brief overview of the method in higher dimensions. Then, to highlight some recent
research in the area, I will discuss various butterfly factorizations and the associ-
ated speed-up in precomputation that they admit. Finally, I will work through
some of the recent results by E. Michielssen regarding the construction of fast
direct solvers using butterfly compression. This is very preliminary work, and re-
sults are empirical, but it is likely the these algorithms will lead to the first robust
fast direct solver for high-frequency wave problems.

Fast solvers for 3D elastodynamic Boundary Element Methods

Stéphanie Chaillat

Scientific Context. The modeling of seismic wave propagation to understand
complex phenomena such as site-effects or soil-structure interaction is an active
area of research. The difficulties are related to the complexity of the system to
model and the large spatial scale of the problems. Currently, 3D simulations are
still limited to simplified configurations.

Various numerical methods can be used to simulate seismic wave propagation.
The main advantages of the Boundary Element Method (BEM) are to reduce the
discretization to the domain boundary and to exactly take into account radiation
conditions at the infinite. As a result, BEMs are well suited to deal with problems
in (semi-)infinite domains. However standard BEMs lead to a fully-populated
influence matrix, and are thus severally limited regarding problems with complex
geometries or in a large frequency range. This presentation provides an overview
of recent works to improve the efficiency of the method to study elastic wave
propagation in large-scale domains.

Fast Multipole Method for problems in a half-space (join work with M.
Bonnet). The Fast Multipole Method (FMM) allows one to overcome the draw-
back of the fully-populated matrix by introducing a fast, reliable and approximate
method to compute the linear integral operator [5]. The FMM requires analytic
closed-form expression of the fundamental solution to approximate the integral
operator and is defined together with the use of an iterative solver. The efficiency
of the method has been demonstrated in various fields including in 3D elastody-
namics [3]. In a first part, we show the principle of the Fast Multipole Method
in 3D elastodynamics and visco-elastodynamics to speed up the solution of the
BEM.

A new version of the frequency-domain elastodynamic Fast Multipole-Boundary
Element Method (FM-BEM) for semi-infinite media, based on the
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half-space Green’s tensor (and hence avoiding any discretization of the planar
traction-free surface), is then presented. Unlike the full-space Green’s tensor, the
elastodynamic half-space Green’s tensor cannot be expressed using derivatives of
the Helmholtz fundamental solution. As a result, multipole expansions of that ten-
sor cannot be obtained directly from known expansions, and are instead derived
by means of a partial Fourier transform with respect to the spatial coordinates
parallel to the free surface. The obtained formulation critically requires an effi-
cient quadrature for the Fourier integral, whose integrand is both singular and
oscillatory. A version custom-tailored for the present needs of a methodology pro-
posed by Bremer et al. [1], which generates generalized Gaussian quadrature rules
for specific types of integrals, has been implemented. The accuracy and efficiency
of the proposed formulation is demonstrated through numerical experiments. In
particular, a complexity significantly lower than that of the non-multipole version
is shown to be achieved [2].

Preconditioning the FM-BEM for 3D elastodynamics. The FM-BEM is
intrinsically based on an iterative solver. In 3D elastodynamics, it is efficient but
the number of iterations can significantly hinder the overall efficiency. In a second
part, we present two possible preconditioners: an analytic preconditioner (join
work with M. Darbas and F. Le Louër) and a H-LU preconditioner (join work
with P. Ciarlet and L. Desiderio).

Analytic preconditioners are in fact a clever integral representation of the scat-
tered field which naturally incorporates a regularizing operator. When considering
Dirichlet boundary value problems, the regularizing operator is a high-frequency
approximation to the Dirichlet-to-Neumann operator, and is constructed in the
framework of the On-Surface Radiation Condition (OSRC) method [4]. The ef-
ficiency of such preconditioners is demonstrated for 3D elastodynamic exterior
Dirichlet problems.

An alternative approach consists in deriving a low accuracy LU factorization
and to use it to precondition the iterative solver. H-matrices [7] permits to ap-
proximate the fully-populated BEM matrix by a data-sparse matrix. When used
in conjunction with an efficient rank revealing algorithm (for example Adaptive
Cross Approximation) it leads to a data-sparse and memory efficient approxima-
tion of the original fully-populated BEM matrix. Using the H-matrix arithmetic
and low-rank approximations, we derive a fast direct solver. The numerical ef-
ficiency and accuracy is assessed on the basis of numerical results obtained for
problems having known solutions. We derive then a fast LU solver to precondition
the FM-BEM. This type of preconditioner is shown to be moderately efficient in
the high frequency regime.

Adaptive mesh strategies (joint work with S. Groth and A. Loseille). Finally,
we present the first application of a metric-based anisotropic mesh adaptation
strategy within the boundary element method for problems of acoustic wave scat-
tering by three-dimensional obstacles. Traditional mesh adaptation strategies for
the BEM rely on Galerkin discretisations of the boundary integral equations. The
development and approximation of appropriate error indicators often require the
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solution of further, hypersingular, integral equations. These methods utilise the
error indicators to mark elements where the error is above a specified tolerance
and then refine these elements. The main drawback of such an approach is that
the orientation and shape of the elements cannot be modifed. On the other hand,
the method we propose is independent of the discretisation technique (e.g., collo-
cation, Galerkin). It completely remeshes the geometry at each refinement step.
The shape, size and orientation of elements are modified according to the opti-
mal metric, based on the reconstructed Hessian of the boundary solution. The
resulting adaptation is truly anisotropic and we show via a variety of numerical
examples that it recovers optimal convergence rates for domains with geometric
singularities.
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Analytic preconditioners for 3D high-frequency elastic scattering
problems

Marion Darbas

(joint work with S. Chaillat, F. Le Louër)

Motivations. The aim of this work is to solve numerically 3D high-frequency elas-
tic scattering problems by a bounded rigid obstacle, namely the exterior Navier
problem with a Dirichlet boundary condition. To deal with the unbounded char-
acteristic of the computational domain, we choose to apply the integral equation
method. It is well-known that the advantage is to reformulate equivalently, through
the potential theory, the exterior boundary-value problem as an integral equation
on the boundary of the scatterer. The dimension of the problem is thus reduced
by one. However, it is well-known also that the discretization by Boundary Ele-
ment Methods (BEM) of boundary integral equations (BIE) leads to the solution
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of large and fully-populated complex linear systems. The solution of these systems
can be handled by the GMRES iterative method. To decrease the overall cost of
the solver, two complementary ways are investigated: fast methods for the compu-
tation of matrix-vector products and preconditioners to speed up the convergence
of the solver. The Fast Multipole Method (FMM) permits to overcome the draw-
back of the fully-populated matrix by introducing a fast and approximate method
to compute the linear integral operator. In 3D elastodynamics the FM-BEM has
been shown to be efficient [4] with solution times of order O(N logN) per iteration
(where N is the number of BE degrees of freedom). However, the number of itera-
tions in GMRES can significantly hinder the overall efficiency. Preconditioning the
FM-BEM is therefore an important practical issue. Preconditioners are prescribed
to yield fast convergence independently of both mesh size and frequency.

Methodology. A possible approach consists in constructing analytic precondi-
tioners. The idea is to consider a judicious integral representation of the scattered
field which naturally incorporates a regularizing operator. This operator is an ap-
proximation of the Dirichlet-to-Neumann (DtN) map. The BIEs arising from this
representation are compact perturbations of the identity operator. Such integral
formulations can be interpreted as generalizations of the well-known Brakhage-
Werner integral equation and Combined Field Integral Equation (CFIE). Several
well-conditioned integral equations based on this formalism have already been
proposed in acoustics and electromagnetism for ten years (e.g. [1, 2, 3]). In [2],
a pseudo inverse of the principal classical symbol of the single layer boundary
integral operator - or equivalently the principal classical symbol of the Neumann
trace of the double layer boundary integral operator - is used to approach the DtN
map in the framework of the On-Surface Radiation Condition methods. This is
intuitively natural in view of the Calderón formulas and the compactness of the
double layer boundary integral operator.

A preparatory theoretical work has been proposed to adapt such a precondition-
ing technique to solve Dirichlet exterior scattering problems in 3D-elasticity [6].
The authors suggest strategies to overcome difficulties inherent in elasticity. The
double layer boundary integral operator and its adjoint are not compact even for
sufficiently smooth boundaries. This implies, according to Calderón formulas, that
regularizing the standard BIEs via a pseudo inverse of the single layer boundary
integral operator is not sufficient to obtain well-conditioned boundary integral
equations. The principal part of the double layer boundary integral operator has
also to be taken into account in the preconditioner to regularize the single layer
integral operator. It is not an easy task to obtain the expressions of the principal
parts of each elementary boundary integral operator. To this end, the tangential
Günter derivative plays an important role. The new preconditioned BIEs are well
posed at any frequency.

Results. We combine an approximate DtN map as an analytic preconditioner
with a FM-BEM solver. The approximations of the DtN map are derived using
tools proposed in [6]. They are expressed in terms of surface differential opera-
tors, square-root operators and their inverse. Complex Padé rational approximants
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provide local and uniform representations of the square-root operators. The addi-
tional computational cost of the preconditioner is negligible compared to the cost
a FMM accelerated matrix-vector product.

The numerical efficiency of the different proposed preconditioned CFIEs is il-
lustrated for several more or less complex geometries: a unit sphere, an ellipsoid,
a cube and a sphere with cavity. An analytical study for the spherical case under-
lines an ”ideal” eigenvalue clustering around the point (1, 0) for the preconditioned
CFIEs. This is not the case for the standard CFIE which has small eigenvalues
close to zero. The number of GMRES iterations is drastically reduced when the
preconditioned CFIEs are considered, independently of the frequency [5].
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Software operator frameworks for computational boundary element
methods

Timo Betcke

(joint work with Matthew Scroggs, Wojciech Śmigaj)

In recent years there has been tremendous progress for the development of fast
boundary integral equation solvers for acoustic and electromagnetic problems. Yet,
efficient implementations of these solvers remains a challenging task.

At UCL we are developing the BEM++ library [5] (www.bempp.org), which
aims to provide a versatile computational framework for boundary element com-
putations in electrostatics, acoustics and computational electromagnetics. In the
following we present a brief overview of the BEM++ operator concept, which al-
lows to model complex boundary integral equationx for challenging high-frequency
problems in very simple code snippets.

Operator definitions The basic principle of BEM++ is an operator algebra
that knows about domains, ranges and test spaces, and thereby allows complex
operations such as operator preconditioning without exposing implementational
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issues of the Galerkin discretization to the user. A simple example is the Helmholtz
single-layer operator V : H−1/2(Γ) → H1/2(Γ) given by

[V φ](x) =

∫

Γ

eik|x−y|

4π|x− y|φ(y)ds(y).

To implement the operator we need stable discretizations of the domain space,
range space and test space. This is provided by the following BEM++ commands:

const_space = bempp.api.function_space(grid, "DUAL", 0)

lin_space = bempp.api.function_space(grid, "B-P", 1)

The first space is a space of piecewise constant functions implemented over the
dual grid [4]. The second space is the space of standard piecewise linear basis
functions over the original grid. The operator can now be defined in BEM++ as

slp = bempp.api.operators.boundary.helmholtz.single_layer(

const_space, lin_space, const_space, k)

The first space argument is the domain space of the operator. The second is
the range space, and the third is the dual space to the range space, that is the
test space. Typically, a Galerkin discretization only needs the domain space and
the test space. But the addition of the range space allows us to implement ad-
vanced operator concepts. Moreover, this description follows the mathematics in
the sense that const_space is a suitable discretization of H−1/2(Γ) and lin_space

discretizes H1/2(Γ) whose dual space is again H−1/2(Γ) for closed boundaries. To
demonstrate this concept consider the Helmholtz hypersingular operator mapping
from H1/2(Γ) to H−1/2(Γ), and defined in BEM++ as

hyp = bempp.api.operators.boundary.helmholtz.hypersingular(

lin_space, const_space, lin_space, k)

A typical form of preconditioning the single-layer operator is multiplying with the
hypersingular operator (see e.g. [4]). This can now be easily accomplished with
the BEM++ command

op = hyp * slp

All relevant mappings between the spaces are performed automatically, allowing
the user to focus on the Mathematics without needing to deal with details of the un-
derlying Galerkin discretization. These operator concepts have been implemented
in BEM++ throughout, including Maxwell problems.

Acoustic High-Frequency Preconditioning As an example we consider a pre-
conditioned Burton Miller formulation for sound-hard scattering of an incoming
wave uinc from an obstacle Ω ⊂ R3. The boundary integral formulation is given
as [(

1

2
I −K

)
− ηD

]
φ = uinc − η

∂u

∂n
uinc.

Here, K is the double layer bounday operator, and D is the hypersingular boundary
operator. The parameter η is a coupling constant and is typically chosen as η = 1

ik .
The left hand-side operator can easily represented in BEM++ as

op = 0.5 * ident - dlp - eta * hyp,
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where dlp is the double layer operator and hyp the hypersingular boundary opera-
tor defined over spaces of continuous, piecewise linear basis functions. By exchang-
ing η with an operator that approximates the Neumann-To-Dirichlet (NtD) map,
a much better conditioned left-hand side can be achieved. BEM++ implements
OSRC approximations [1] which can be simply defined as

ntd = bempp.api.operators.boundary.helmholtz.osrc_ntd(

space, k).

The resulting preconditioned operator is now given as

op = 0.5 * ident - dlp - ntd * hyp.

A large-scale example for a problem with over 100 wavelenghts across the domain
is presented in [3]. More information on the BEM++ operator algebra can be
found in [2].
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Hierarchical matrices in scattered data approximation

Sabine Le Borne

Scattered data approximation (SDA) deals with the problem of producing a func-
tion, here of type s : Rd → R, that in some sense represents some given (typically
scattered) data and allows to make predictions at other times/locations/parameter
settings. Applications are quite diverse: Surface reconstruction, image compres-
sion, numerical solution of PDEs (with their diverse applications), to name just a
few.

In the context of this workshop, highly oscillatory problems require (or at least
benefit from) high-order discretizations, and kernel-based SDA provides an alterna-
tive approach to well-established finite element or finite difference approaches. Fur-
thermore, the resulting discrete operator is (typically) dense and ill-conditioned.
Techniques for the efficient representation and preconditioning of (boundary inte-
gral) operators for highly oscillatory problems are related and applicable to the
discrete operators obtained in SDA.

In a scattered data interpolation problem, the interpolant is typically of the form

s(x) =
∑N

i=1 cibi(x) for some given functions bi. The coefficient vector c ∈ RN of
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the interpolant may be computed as the solution of a linear system Bc = y which
results from enforcing the interpolation conditions for the given scattered data.
While properties of the matrix B obviously depend on the choice of functions
bi, several of the most commonly used approaches yield highly ill-conditioned,
dense matrices B, resulting in a challenge to solve the linear system Bc = y, and
hence to solve the scattered data interpolation problem. This talk deals with these
challenges and some possible strategies for the solution of this system Bc = y.

In particular, we study the application of techniques from the H-matrix frame-
work both for the approximation of the system matrix B itself as well as for the
construction of preconditioners. H-matrices provide a data-sparse matrix format
that permits storage and matrix arithmetic in complexity O(N logα N) for moder-
ate α. It turns out that several typical sets of basis functions from the (scattered
data) literature, e.g. Gaussian, (inverse) multiquadrics and thin plate splines, lead
to matrices B that fit into this framework, yielding cost-effective approximation
schemes of both analytic and algebaric types for the interpolation matrix B as
well as its (approximate) LU-factors to be used as a preconditioner in an iterative
solver.
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On the limitations of sweeping type preconditioners for wave
propagation

Martin J. Gander

Sweeping type preconditioners have received a lot of attention over the past few
years, following the publication by Engquist and Ying [1]. These preconditioners
are however not new: they have their roots in optimal and optimized Schwarz
methods and AILU preconditioners, see [2] for an overview and the precise relation
between various such techniques, and one has to be careful claiming optimality of
such methods for wave propagation problems based on numerical experiments.

To illustrate this, we use here the example that arose during the presentation
of Laurent Demanet, namely the one dimensional time dependent wave equation

(1)
∂ttu = c2∂xxu in (0, L) × (0, T ),
Bl(u) := (∂t − c∂x)u(0, t) = 0, Br(u) := (∂t + c∂x)u(L, t) = 0,

with appropriate compactly supported initial conditions. For constant wave speed
c, the d’Alembert solution is a sum of a left and a right going wave, u(x, t) = gl(x+
ct) + gr(x− ct), as one can easily see by just introducing it into the wave equation
(1). The boundary conditions in (1) are called the transparent (or exact or non-
reflecting) boundary conditions, since the outgoing waves satisfy them exactly,
Bl(gl) = 0 and Br(gr) = 0, and thus the solution of (1) coincides with the solution
of the problem posed on R× (0, T ).
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An optimal Schwarz waveform relaxation method for this problem was defined
and analyzed in [3]. It is based on a decomposition of the spatial domain Ω :=
(0, L) into non-overlapping subdomains Ωj := (xj−1, xj), j = 1, 2, . . . , J with
0 =: x0 < x1 < . . . < xJ := L, and in its alternating (sweeping) version, the
method solves at iteration n for a given approximation un−1

j for j = 1, 2, . . . , J the
forward sweep

(2)
∂ttu

n− 1
2

j = c2∂xxu
n− 1

2

j in Ωj × (0, T ),

Bl(u
n− 1

2

j ) = Bl(u
n− 1

2

j−1 ), Br(u
n− 1

2

j ) = Br(un−1
j+1 ),

where we defined u
n− 1

2

0 = 0 and un−1
J+1 = 0 to simplify the notation. The forward

sweep is followed by the backward sweep which solves for j = J − 1, J − 2, . . . 1

(3)
∂ttu

n
j = c2∂xxu

n
j in Ωj × (0, T ),

Bl(u
n
j ) = Bl(u

n− 1
2

j−1 ), Br(u
n
j ) = Br(u

n
j+1).

In this alternating version, the algorithm converges in one iteration (a forward
sweep followed by a backward sweep) for an arbitrary initial guess u0

j , as one can
see as follows: in the forward sweep, the component of the solution traveling to
the right is obtain exactly in each subdomain, since on their left interfaces, no

artificial reflections are created. Hence at the end of the forward sweep, u
1
2

J ≡ u.
Now in the backward sweep, this exact solution is just transmitted from right to
left, again no reflections are created on the left boundaries of the subdomains, and
thus u1

j ≡ u also for j = J − 1, J − 2, . . . , 1. This algorithm is closely related
to a block LU decomposition, only the right boundary condition in the block LU
factorization corresponds to a Dirichlet condition, see [2]. In a parallel version
of the algorithm, convergence is achieved in J iterations, see [3], but then it is
essential to use the transparent boundary conditions on both subdomain sides.

Discretizing the wave equation (1) using finite differences, we get

(4)
ui,k+1−2ui,k+ui,k−1

∆t2 = c2
ui+1,k−2ui,k+ui−1,k

∆x2 0 ≤ i ≤ I, 0 < k < K,
u0,k+1−u0,k−1

2∆t − c
u1,k−u−1,k

2∆x = 0,
uI,k+1−uI,k−1

2∆t + c
uI+1,k−uI−1,k

2∆x = 0.

If the discretization parameters are chosen precisely at the limit of the CFL con-
dition, c ∆t

∆x = 1, this discretization produces the exact solution, as one can verify
by introducing the d’Alembert solution consisting of the forward and backward
moving waves into (4). This is thus the ideal situation where we can easily check
the influence of using transparent transmission conditions or approximations in
the discretized algorithm (2,3).

We first show in Figure 1 how one forward and backward sweep generates the
exact solution for an example with J = 6 subdomains, L = 6, T = 12, c = 1,
and ∆x = ∆t = 1

5 so c∆t
∆x = 1, with initial condition u(x, 0) = 0 and ∂tu(x, 0) =

−2(32 − x)e−( 3
2
−x)2 . We see how the algorithm produces the forward moving wave

in the forward sweep and then completes the solution in the backward sweep,
converging in one iteration as expected for the transparent transmission conditions.
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Figure 1. The first six panels represent the forward and the
last five the backward sweep of one optimal alternating Schwarz
waveform relaxation iteration leading to the solution of the prob-
lem

The key question we want to address now is what happens if the transparent
transmission conditions are approximated. To do so, we apply the algorithm to
the error equations, i.e. with zero initial conditions, and we start with a random
initial guess on the interfaces. We show in Figure 2 on the left the influence
on the convergence behavior of the algorithm when the discretization parameters

are chosen either exactly on the CLF, c∆t
∆x = 1/10

1/10 = 1, or just a little below,

c∆t
∆x = 3/35

1/10 = 6
7 . We see that when we are exactly on the CFL, the algorithm

converges in one double sweep to machine precision, independently of the number
of subdomains or the length of the time interval. If we are slightly below however,
the first iteration only brings a small error reduction, and then the algorithm seems
to stagnate. The spectacular performance is thus intimately related to having the
exact (discrete !) transparent boundary condition at the interfaces. In Figure 2
on the right, we show an inhomogeneous numerical example with constant wave
speed per subdomain, c1 = 1

2 , c2 = 1, c3 = 2
5 , c4 = 1, c5 = 3

10 and c6 = 1 (in
the case of J = 12 subdomains we just repeat the sequence once more), and we
use at the interfaces a discretization of the exact transparent boundary condition
based on the neighboring subdomain, not taking into account reflections that will
come from subdomains with different wave speed further away. When on the CFL

for the fastest wave speeds, cmax
∆t
∆x = 1/10

1/10 = 1, the algorithm now converges

in a number of iterations that depends on the number (and size) of subdomains
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Figure 2. Decay of the error as a function of the number of dou-
ble sweeps when using approximations of the optimal alternating
Schwarz waveform relaxation algorithm

and the length of the time interval1, which can be understood from the number
of reflections that have to be taken into account up to the time of interest T , see
[3]. The number of reflections would however be infinity in the time harmonic
regime, which corresponds to T = ∞. If one is slightly below the CFL for all

the subdomains, cmax
∆t
∆x = 3/35

1/10 = 6
7 , the algorithm seems to diverge used as an

iterative solver2. This could be masked to some extent using Krylov acceleration,
but would certainly manifest itself at some point there as well to indicate that this
is not an optimal preconditioner any more.

One thus has to be very careful claiming that an optimal solver has been ob-
tained for the time harmonic case just based on numerical experiments, and such
preconditioners should always be tested without Krylov acceleration as well, and
with random initial guess3, so convergence problems are not masked initially by a
clever polynomial selection of the Krylov method, or just small frequency content.

References

[1] B. Engquist, L. Ying Sweeping preconditioner for the Helmholtz equation: Hierarchical
matrix representation, Comm. Pure Appl. Math. LXIV (2011), 697–735.

[2] M.J. Gander, H. Zhang, Iterative Solvers for the Helmholtz Equation: Factorizations,
Sweeping Preconditioners, Source Transfer, Single Layer Potentials, Polarized Traces, and
Optimized Schwarz Methods, submitted to SIAM Review (2016).

1It is essential that each subdomain with a CFL less than one has two neighbors with a CFL
equal to one for convergence in a finite number of steps.

2In this time dependent case, super-linear convergence will set in after a very large number of
iteration steps related to the number of time steps, namely after T/(2∆t) iterations (e.g. 70 in
the first example), due to the waveform relaxation nature of the algorithm, but this would not
be the case for a time harmonic formulation that corresponds again to T = ∞.

3See Subsection 5.2, last paragraph in [4] on how to numerically ’prove’ optimality of an
algorithm which is in fact not optimal, by just using low frequency content.



Mini-Workshop: Fast Solvers for Highly Oscillatory Problems 2901

[3] M.J. Gander, L. Halpern Optimal Schwarz Waveform Relaxation for the One Dimensional
Wave Equation, SIAM J. Numer. Anal. 41(5) (2003), 1643–1681.

[4] M.J. Gander, Schwarz Methods Over the Course of Time, ETNA 31 (2008), 228–255.

On domain decomposition preconditioners for finite element
approximations of the Helmholtz equation using absorption

Ivan Graham

(joint work with Euan Space, Eero Vainikko)

As a model problem for high-frequency wave scattering, we study the boundary
value problem

(1)

{
−(∆ + k2)u = f in Ω,

∂u
∂n − iku = g on Γ,

where Ω is a bounded domain in Rd with boundary Γ. Our results also apply
to sound-soft scattering problems in truncated exterior domains. Discretisations
of this problem for high wavenumber k are notoriously hard to solve iteratively
because the system matrices are complex, non-Hermitian and usually highly non-
normal: Information about spectra and condition numbers generally does not give
much information about the convergence rates of iterative methods. Here we
work with the classcal convergence theory of Eisenstat, Elman and Schultz which
requires bounds on the field of values.

There is a strong recent interest on preconditioning (1) using the discrete form
of the “shifted Laplace” problem

(2)

{
−(∆ + k2 + iǫ)u = f in Ω,

∂u
∂n − iµ(k, ǫ)u = g on Γ,

for some function µ. Let A,Aǫ denote the system matrices for discretizations of
(1) and (2) respectively, and let B−1

ε denote any (practically useful) approximate
inverse for Aε. It is easy to see that sufficient conditions for B−1

ε to be a good
GMRES preconditioner for A are: (i) A−1

ε should be a good preconditioner for
A and (ii) B−1

ε should be a good preconditioner for Aǫ. It is generally observed
empirically that (i) holds if the “absorption” parameter ǫ > 0 is not taken too
large, while (ii) holds (e.g. for geometric multigrid) provided ǫ is large enough.

In the talk we presented an upper bound on ǫ which ensures that (i) holds, using
techniques from PDE analysis of (1) and (2) in the high frequency case [1]. The
talk also described lower bounds ε which ensure that (ii) holds, when B−1

ǫ is defined
by classical two level additive Schwarz domain decomposition methods on general
subdomains with a coarse grid. To obtain the results for (ii) we use a coercivity
argument in the natural k−dependent Helmholtz energy norm to estimate the field
of values of the preconditioned matrix. This analysis is for k arbitrarily large [2].

The gap between the ranges of ǫ which ensure conditions (i) and (ii) hold in
practical situations is explored experimentally. The best methods found in practice
are either multilevel methods, where relatively fine coarse grids are inverted by
inner iterations or one-level methods, where impedance conditions are employed on
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subomains. Results were pesented for highly parallelisable variants which combine
Dirichlet and impedance local problems on several refinement levels in a hybrid
manner, and taking ε ∼ k [3].

In the talk we also presented new work with Eric Chung and Jun Zou (Chinese
University of Hong Kong) which provides robustness estimates for domain decom-
position methods using impedace local solves for problem (2) with ε close to k.
We also presented initial findings of recent work with Stefan Sauter (Zürich) on
heterogeneous media problems (where k = k(x)).
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Aide-mémoire: The method of polarized traces

Laurent Demanet

This note is an overview of the framework in which the method of polarized traces,
for computational high-frequency wave propagation, can be understood as the
boundary integral version of the optimal Schwarz domain decomposition method
of Frédéric Nataf.

1. Polarization

Green’s representation formula reads

u(x)χΩ(x) =

∫

Ω

G(x, y)f(y)dy+

∫

∂Ω

G(x, y)
∂u

∂n
(y)dSy −

∫

∂Ω

∂G

∂ny
(x, y)u(y)dSy.(1)

The reasoning above works when x ∈ Ω, or x ∈ Ωc, but does not work when
x ∈ ∂Ω. In that case, a careful analysis of the jump condition for the so-called
double layer potential

∫
∂Ω

∂G
∂ny

(x, y)u(y)dSy would show that the left-hand side

should be u(x)
2 when x ∈ ∂Ω (provided the latter is smooth enough).

To eliminate exterior unknowns in a scenario when f = 0 in Ωc, the GRF allows
to reduce the Sommerfeld radiation condition to

(2) 0 = −
∫

∂Ω

G(x, y)
∂u

∂n
(y)dSy +

∫

∂Ω

∂G

∂ny
(x, y)u(y)dSy,
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for x ∈ Ω. It is the exact way of locally encoding the character of a wave that
is outgoing at infinity. Its form is independent of the values of m(x) (anywhere
away from infinity), or of the boundary condition for G(x, y) in the region x ∈ Ω
– though of course G(x, y) depends on these choices.

For x ∈ ∂Ω, we need to mind the extra u(x)
2 term again. Then, we can take

equation (2) as the absorbing boundary condition for  Lu = f on Ω, without any
approximation. If we denote the single-layer potential by S, and the double-layer
potential by D, then we can write equation (2) as ( I2 − D)u = −S ∂u

∂n . In what
follows, we denote this relation as

Pe

(
u,

∂u

∂n

)
= 0.

We call Pe the exterior “polarizer”.

2. Localization into subdomains

To discuss domain decomposition, consider the very special scenario where Ω an
infinite vertical strip, split in a layered fashion into two strips Ω1 (left) and Ω2

(right) meeting at an interface Γ. Respectively call Γ1 and Γ2 the left and right
infinite edges.

Let  Lu = f be posed in Ω without consideration of the boundary condition at
infinity1, and with absorbing boundary condition on ∂Ω, i.e., Pe

(
u, ∂u

∂n

)
= 0 on

Γ1 ∪ Γ2.
Consider two (global) subproblems in Ω,

 Lv1 = fχ1,  Lv2 = fχ2,

with the same homogeneous boundary condition as the original problem, such that
u = v1 + v2. These subproblems can be equivalently formulated in a local fashion,
from

•
 Lv1,1 = f in Ω1, P2

(
v1,1,

∂v1,1
∂n

)
= 0 on Γ,

by simply pushing the right absorbing boundary condition on Γ, and keep-
ing the left boundary condition unchanged. The subscript 2 for P2 refers
to the fact that its Green’s function needs to be accurate on Ω2, though
not on Ω1. Then v1,1 = v1 on Ω1.

• Once the problem for v1,1 is solved, let

 Lv1,2 = 0 in Ω2, P1

(
v1,2,

∂v1,2
∂n

)
= P1

(
v1,1,

∂v1,1
∂n

)
on Γ,

with an unchanged right boundary condition. Note that, in P1, there is
freedom in changing the problem that gives rise to G1 in Ω2, but not in
Ω1. Then v1,2 = v1 on Ω2.

Similarly for v2, we define the equivalent local subproblems

1Or, place those boundary conditions in the definition of the local or global Green’s functions
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•
 Lv2,2 = f in Ω2, P1

(
v2,2,

∂v2,2
∂n

)
= 0 on Γ,

with an unchanged right boundary condition. Then v2,2 = v2 on Ω2.
• Once the problem for v2,2 is solved, let

 Lv2,1 = 0 in Ω1, P2

(
v2,1,

∂v2,1
∂n

)
= P2

(
v2,2,

∂v2,2
∂n

)
on Γ,

with an unchanged left boundary condition. Then v2,1 = v2 on Ω1.

3. Optimal Schwarz sequence

We may group the computation of the four local subproblems in a more efficient
fashion that results in 3 subproblems only.

(1) Solve for v1,1 as earlier, and for simplicity call it v1;
(2) On Ω2, consider the combined subproblem with both (i) a non-zero right-

hand side, and (ii) the condition on Γ that transmits v1, namely

 Lu2 = f in Ω2, P1

(
u2,

∂u2

∂n

)
= P1

(
v1,

∂v1
∂n

)
on Γ,

with an unchanged right boundary condition. Then u2 = v1,2 + v2,2 =
v1 + v2 on Ω2, as desired.

(3) On Ω1, solve

 Lu1 = f in Ω1, P2

(
u1,

∂u1

∂n

)
= P2

(
u2,

∂u2

∂n

)
on Γ,

with an unchanged left boundary condition. Note that, in this last step
only, there is freedom to require another condition on Γ, such as u2 = u1.

For general domain decomposition, this sequence is a double sweep that com-
putes v1 through vn−1 (like a forward substitution), then un to u1 (like a backward
substitution). The requirements for this sequence to be exact is that the Gj used
in Pj should be exact in Ωj∼, the union of all the subdomains to the right of Ωj

for the forward sweep, and exact in Ω∼j, the union of all the subdomains to the
left of Ωj for the backward sweep.

4. Integral version of the optimal Schwarz sequence

Denote the traces of u respectively as uL, uΓ, uR, and the traces of ∂u
∂n as λL, λΓ, λR.

Continue to consider the problem on Ω, with P1(uL, λL) = P2(uR, λR) = 0. In its
integral form, the optimal Schwarz sequence may be called the method of polarized
traces, and becomes

(1) [
vΓ
µΓ

]
=

[ ∫
Ω1

G1f∫
Ω1

∂G1

∂n f

]
.

These traces are polarized right-going by construction, i.e., P2(vΓ, µΓ) = 0.
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(2) [
uR

λR

]
=

[ ∫
Ω2

G2f∫
Ω2

∂G2

∂n f

]
+

[
D −S
N −D∗

] [
vΓ
µΓ

]
,

where S,D,D∗, N are the usual layer potentials. These traces are polar-
ized right-going by construction, i.e., P2(uR, λR) = 0.

(3) [
uΓ

λΓ

]
=

[
vΓ
µΓ

]
+

[ ∫
Ω2

G2f∫
Ω2

∂G2

∂n f

]
.

The second term in the right-hand side contains the left-polarized traces.
(4) [

uL

λL

]
=

[ ∫
Ω1

G1f∫
Ω1

∂G1

∂n f

]
+

[
D −S
N −D∗

] [
uΓ

λΓ

]
.

These traces are polarized left-going by construction, i.e., P1(uL, λL) = 0.

The integral formulation presents a potential advantage: The integral equations
no longer need to be understood as a sequence, they can be viewed as a self-
contained system of equations at the interfaces/boundaries. The Schwarz sequence
is then an exact double-sweep inverse for this system. If the Green’s function
Gj is modified liberally in Ωc

j (rather than Ωj∼ or Ω∼j as explained earlier),
then the exactness of the double sweep is lost, but the integral system for the
polarized traces remains exact. We believe that this property of algebraic exactness
is desirable in the method of polarized traces.

Reporter: Timo Betcke
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