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Introduction by the Organisers

The mini-workshop Mathematics of Magnetoelastic Materials, organized by Carlos
J. Garćıa-Cervera (Santa Barbara), Martin Kruž́ık (Prague), Chun Liu (University
Park), and Anja Schlömerkemper (Würzburg), was attended by 15 participants
from the US and Europe. The workshop brought together specialists in mathe-
matical analysis, applied mathematics, numerical computations and engineering.
We had 15 extended talks on various aspects of new modeling and mathematical
approaches to magnetoelastic materials. Finally, we had a lively closing discus-
sion on open problems. The atmosphere of the mini-workshop was stimulating and
very collaborative. During every talk, several questions were posed and interesting
problems were pointed out.

Magnetoelasticity describes the mechanical behavior of solids under magnetic
effects. The magnetoelastic coupling is based on the presence of small magnetic
domains in the material. In the absence of an external magnetic field, these mag-
netic domains are randomly oriented but when exposed to a field they become
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aligned along the field and their rotations induce a deformation of the specimen.
As the intensity of the magnetic field increases, more and more magnetic domains
orientate themselves so that their principal axes of anisotropy are collinear with
the magnetic field in each region and finally saturation is reached. The mathe-
matical modeling of magnetoelasticity is a vibrant area of research, triggered by
the interest on ferromagnetic shape-memory alloys, magnetorheological elastomers
and magnetic fluids. Mathematical tools include weak convergence methods, lower
semicontinuity, compactness, multiscale methods, homogenization, and various ap-
proximations.

The main open problems that we worked out during the workshop are:

• What is the role and importance of the saturation constraint for the mag-
netization with respect to modeling and analysis?

• Resolve the discrepancy between the modeling of different physical effects
that occur on different length scales, as e.g., exchange energies and rate-
independent dissipation mechanisms.

• What are reasonable models for dissipation? Can one derive them from
microscopic considerations?

• Show (non-)existence of minimizers of energy functionals arising in mag-
netoelasticity.

• Can one read off hysteresis from material parameters? What is the role of
nucleation?

• What is the effective static and dynamical behavior of composite materials
with microscopic structure and magnetic interactions?

These are important problems which will help to construct more accurate math-
ematical models for magnetoelasticity. We are convinced that they will also lead
to new mathematical developments.

Generally speaking, the participants felt that the mini-workshop format with
fifteen researchers was particularly successful in promoting discussions and new
interactions. The organizers thank the Institute’s staff for having provided an
inspiring and comfortable environment for the participants.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Marc-André Keip (joint with A. Sridhar)
A Variationally Consistent Approach to Micro-Magnetic Domain
Evolution at Large Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2919

Irene Fonseca
Second Order Γ-Convergence for the (Nonlocal) Modica-Mortola
Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2921
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Cervera and C. Liu)
On some model for magnetoelasticity with Eulerian description . . . . . . . . 2935

Chun Liu
Topics in energetic variational approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 2937



Mini-Workshop: Mathematics of Magnetoelastic Materials 2913

Abstracts

Understanding the Role of Magnetoelasticity in Magnetoelectric
Heterostrutures

Long-Qing Chen

(joint work with Jia-Mian Hu)

Magnetoelectric heterostructures integrate magnetic and dielectric materials to
produce new functionalities, e.g., magnetoelectric responses that are absent in each
of the constituent materials.[1, 2] The magnetoelectric coupling in these materials
is achieved through the interfaces between the two different types of materials,
and the coupling effect is measured by the degree of mutual conversion between
magnetic and electric signals in the absence of an electric current. Magneto-
electric heterostructures are attractive for applications in many energy-efficient
devices and systems since they avoid electric current and offer a wide range of
materials selection and possible geometrical and microstructural designs. Here,
we theoretically and computationally discuss how magnetoelasticity affects the
magnetoelectric coupling in magnetoelectric heterostructures.

Depending on the type of the constituent dielectric materials, the mechanism of
magnetoelectric coupling can vary. For example, if the dielectric material is also
piezoelectric (meaning that it permits a mutual conversion between an electric
field and a mechanical force), and if the magnetic material has a relatively large
magnetoelastic coupling, a stress-transfer-based magnetoelectric coupling can be
achieved (see Figure 1).

This can be quantitatively understood using the equation below,

(1) αi,j =
dMi

dEj
=

(
∂M1

∂σij

)

E,H

η

(
∂σjk
∂ǫpq

)

E,H

(
∂ǫpq
∂Ej

)

σ,E

,

where αij indicates the magnetoelectric coupling coefficient; the first term in brack-
ets on the right describes the magnetoelastic coupling coefficient; the second and
the third terms represent, respectively, the elastic and electromechanical coupling
coefficients of the piezoelectric; the η (0 < η < 1) denotes the efficiency of stress
transfer across the interface of the two constituent phases.

The role of magnetoelasticity in magnetoelectric coupling can also be under-
stood from the energetics of magnets. The total magnetic free energy of the
magnetoelectric heterostruture can be written as [2]
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where m is the normalize magnetization vector (=M/Ms, where Ms is the sat-
uration magnetization) with |m| = 1; A is the phenomenological exchange cou-
pling coefficient describing the local interaction between neighboring magnetic
spins; Ks is the surface anisotropy coefficient; µ0 is the vacuum permeability;
Hd is the magnetic stray field obeying the magnetostatic equilibrium equation
∇·(µ0Hd +M) = 0; Hex denotes the externally applied magnetic field. The spon-
taneous deformation in a magnetoelastic body is described using a stress-free strain
ǫ0,

(3) ǫ0ij(r) =
3

2
λijkl

(
mk(r)ml(r)−

1

3
δkl

)
,

where λ is the magnetostrictive coefficient, and δ is the Kronecker delta. The total
strain ǫ can be separated into a homogenous part ǫhom and a heterogeneous part
ǫhet to describe the global and local deformation, respectively [3]. The heteroge-
neous strain, the volume integral of which is zero, can be obtained by solving the
mechanical equilibrium equation,

(4) ∇·
(
cijkl(r)

(
ǫhetkl (r)− ǫ0ij(r)

)
= 0.

When applying an electric field to a magnetic-piezoelectric heterostructure, both
ǫhom and ǫhet of the piezoelectric phase are modified due to piezoelectric coupling.
This further changes the ǫhom and ǫhet of the magnetic phase. Since the elastic
energy density is an even function of m (see equation (2) and (3)), the electrically
induced change in strain can merely shift the global minima of the total magnetic
free energy from for example mi = 1 or −1 (i = 1, 2, 3) to mi = 0. This suggests
an at most 90 rotation of the magnetization vector under an applied electric field,
leading to a magnetoelectric coupling coefficient with a maximum magnitude of
µ0Ms/|E|. Such strain- mediated electric-field-induced 90 magnetization switching
has been utilized to design a novel magnetoelectric random access memory the
performance of which eclipses competing technologies [4].

The role of magnetoelasticity in magnetoelectric coupling can also be under-
stood from a dynamic perspective. Strain-mediated electric-field-induced dynamic
evolution of m can be described by solving the Landau-Lifshitz-Gilbert equation,

(5)
∂m(r)

∂t
= −γ0

(
m(r) ×Heff(r)

)
+ αG

(
m(r) × ∂m(r)

∂t

)
,

where γ0 is the gyromagnetic ratio describing the ratio of an atom’s magnetic
momentum to its angular momentum; αG is the Gilbert damping coefficient de-
scribing the energy dissipation during magnetization evolution.
Heff(r) = −(1/µ0)(δFtot/δM(r)) denotes the effective magnetic field. A combi-

nation of equation (2)-(5) represents the key of a computational model for modeling
the strain-mediated electric-field-induced magnetization dynamic in magnetoelec-
tric heterostructures. The numerical solution of equation (4) depends on the spe-
cific mechanical boundary condition of a magnetoelectric heterostructure, e.g., a
continuous magnetic thin film or an isolated magnetic island fabricated on a piezo-
electric substrate. Notably, by exploiting the magnetization dynamics, we recently
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Figure 1. Coupling of physical properties in magnetoelectric
systems, showing order parameters (blue) and conjugate fields
(red), notably electric field E, stress field σ, and magnetization
M . Other symbols represent coupling coefficients.

used this computational model to predict a full 180 magnetization switching driven
purely by a dynamic electromechanical strain [5] This could double the magnitude
of magnetoelectric coupling coefficient, with a new maximum of 2µ0Ms/|E|.
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Variational modeling of magnetic-shape-memory crystals

Ulisse Stefanelli

Magnetic shape-memory alloys (MSMAs) are active materials: strains as large as
10% can be activated by thermal, mechanical, or magnetic stimuli [7]. This results
from a solid-solid phase transition between different crystallographic variants of
the materials, namely austenite (high symmetry phase) and ferromagnetic marten-
sites (low symmetry) [5]. The strong magnetoelastic behavior of MSMAs is hence
mainly triggered by magnetic-driven martensitic reorientation.

The phenomenology of nonmagnetic SMAs is well described by the so-called
Souza-Auricchio model [6, 11]. By focusing on the single-crystal, cubic-to-tetra-
hedral transformation regime, this is specified by identifying the local solid phase
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p ∈ {(p1, p2, p3) ∈ R
3 : 0 ≤ pi ≤ 1, p1+p2+p3 = 1} and the Gibbs free energy

Gmech(σ,p) = −σ : C−1σ/2− σ : ε0(p) + Fmech(p).

Here, σ ∈ R3×3
sym is the stress, C is the elasticity tensor, ε0(p) =

∑
i ε
i
0pi ∈ R

3×3
dev

(deviatoric) is the stress-free strain at phase p with εi0 = εLdev(ei ⊗ ei)/
√
6,

εL > 0 maximal reorientation strain, and ei is the i unit versor, and the convex
function Fmech encodes nonquadratic, temperature-dependent hardening.

The evolution of the material is governed by the interplay between energy-
storage and dissipation mechanisms. This last is modulated by the dissipation
potential D(ṗ) = r|ṗ| where r > 0 is a given yield stress. The material constitu-
tive relation has the rate-independent form ∂D(ṗ) + ∂pGmech(σ,p) ∋ 0 (∂ is the
subdifferential) and admits a complete mathematical and numerical discussion [2].

Building upon the original formulation of the Souza-Auricchio model, one can
include the description of magnetic effects by explicitly relating p with the easy
magnetization axis of martensites. Under the assumption of strong magnetic
anisotropy (i.e., no magnetization rotation w.r.t. the easy axis) one can define

G(σ,h,p, α) = Gmech(σ,p)− α2/(2δ) + I[−1,1](α) + µ0h ·msatαp.

Here, p is the easy axis for phase p (in the present cubic-to-tetragonal setting), α ∈
[−1, 1] is the signed proportion of magnetic domains oriented in direction p, δ > 0
is a user-defined parameter controlling the tendency of α to equilibrate at 0, I[−1,1]

is the indicator function of the interval [−1, 1], µ0 > 0 is vacuum permittivity,
msat > 0 is the saturation magnetization, and h is the applied magnetic field. By
assuming α to be nondissipative the material relation reduces to

(1) ∂D(ṗ) + ∂pFmech(p)− ∂pFmag(h · p) ∋ σ : E

where and Eijk = (∂pε0(p))ijk = (εk0)ij and the convex function Fmag ∈ C1,1

is Fmag(r) = (δµ0msatr)
2/(2δ) if |δµ0msatr| ≤ 1 and Fmag(r) = (2(δµ0msatr)−1)/(2δ)

otherwise. In particular, the effective energy driving the evolution of p turns out
to be the sum of a mechanical convex and a magnetic concave part [1].

Existence of energetic solutions [8] to (1) in proved in [3]. By augmenting the
constitutive equation by the nonlocal term

∫
Ω
|∇p|, giving indeed rise to a scale

effect which penalizes martensitic boundaries, the quasistatic evolution problem
consisting in coupling (1) with the equilibrium system ∇ · σ = 0 (with boundary
conditions) is energetically solvable as well. The nonmagnetic Souza-Auricchio
model can be rigorously recovered by letting δ → 0 [9] and both temperature
evolution [10] and magnetic-control problems can be addressed [12].

By dropping the strong-anisotropy assumption one is forced to include the mag-
netization m in the list of state variables and define the total energy as [4]

1

2

∫

Ω

(ε(u)−ε0(p)) : C(ε(u)−ε0(p)) +

∫

Ω

Fmech(p) +

∫

Ω

|∇p|

+
µ0

2

∫

R3

|∇vm|2 + κm

∫

Ω

|∇m|2 − µ0κani

∫

Ω

(m · p)2 − µ0

∫

Ω

h ·m
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under the constraint |m| = msat and the Maxwell equation∇·(−µ0∇vm+mχΩ) =
0 in R3 (χΩ is the characteristic function of Ω). The energy features the Zeeman
term −µ0h ·m and the exchange energy term with κm > 0. The anisotropic term
−µ0κani

∫
Ω
(m · p)2 is minimized when m is parallel to the easy axis p.

By prescribing the dissipation in the form D(ṗ, ṁ) =
∫
Ω
Rp|ṗ| +

∫
Ω
Rm|ṁ|

one can prove the existence energetic solutions [4]. Moreover, again by [9] one
can prove that by letting Rm → ∞ the model rigorously reduces to the purely
mechanical one and by taking Rp → ∞ a micromagnetic model is obtained [4].
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The magnetization ripple revisited

Felix Otto

(joint work with Lukas Döring, Radu Ignat)

The magnetization ripple in a ferromagnetic thin-film sample is its response to
polycrystallinity. The fact that the sample is made up of randomly oriented grains
leads to an easy axis for the magnetization m that is a random field, and thus acts
like quenched noise. In experiments, the response to that noise manifests itself as
an in-plane oscillation of m, predominantly in direction of the main magnetization
direction. This anisotropic response of m to the isotropic noise comes from its
non-local interaction mediated by the stray-field.
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Starting from the three-dimensional micromagnetic (variational) model, we
heuristically derive a reduced model that zooms in on the (different) longitudi-
nal and transversal characteristic scales of the ripple. The reduced model is a
two-dimensional, non-local variational model formulated in terms of the transver-
sal magnetization component m2. Because the grains are typically smaller than
the characteristic ripple scales, the random easy axis acts like a transversal field
of white-noise character. This derivation, which essentially follows [1, Section V],
is self-consistent.

We point out two challenges of the reduced model. The first challenge can al-
ready be seen on the level of the simplification that gets rid of the anharmonic
term in the energy. The ensuing linear Euler-Lagrange equation can be explicitly
solved in Fourier space — however the highest-order term in the energy, the ex-
change contribution, diverges. Hence the ripple should rather be analyzed on the
level of the Euler-Lagrange equation than by the direct method of the calculus of
variations.

The second challenge is more subtle and more serious: The nonlinearity in the
Euler-Lagrange equation is too singular for its rhs given by white noise ξ. More
dramatically, one of the quadratic terms in the Euler-Lagrange equation cannot
be given a path-wise unambiguous sense even when one plugs in the solution of
the linear Euler-Lagrange equation. This situation is similar to certain classes of
stochastic partial differential equation (SPDE); ie time-dependent nonlinear para-
bolic equations driven by space-time white noise. While noise in SPDEs typically
models thermal noise and our noise is of quenched nature, and while these SPDEs
are typically parabolic and our Euler-Lagrange equation is of (non-local) elliptic
character, the mathematical challenges are identical.

In fact, the issue is to make sense of the product of a function and a distribution.
This can be done in an unambiguous sense provided the function is more regular
than the distribution is irregular. In the context of a PDE, regularity has to be
measured in a way that is consistent with the (leading-order) linear part of the
equation. While in the parabolic case, this requires function spaces that respect
the fact that the time derivative is worth two space derivatives, in our case we have
the relationship that two x2-derivates are worth three x1-derivatives. When the
distribution of the driving noise remains stationary under shifts, like is the case of
white noise, there is no loss in using the scale of Hölder spaces — and thus wrt to
a (Carnot-Carathéodory) metric that respects the above scaling. On the scale of
these Hölder spaces, the crucial product turns out to be border-line singular: The

function in this product is slightly worse than C
3

4 while the distribution is slightly

worse than C− 3

4 .

This situation is reminiscent of a fundamental problem in stochastic (ordinary)
differential equations (SDE): The theory requires, at a minimum, to give a (dis-
tributional) sense of the product of (multi-dimensional) Brownian motion and of
its derivative, ie (temporal) white noise. Brownian motion is known to be slightly
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worse than C
1

2 and thus white noise slightly worse than C− 1

2 . Stochastic anal-
ysis has found two ways out of this (specific) border-line singular situation: Ito
calculus, and more recently Lyons’ rough path theory. While Ito calculus uses
the Martingale structure of Brownian motion and thus is not easily ameanable
to a treatment of irregular spatial noise, rough path theory is oblivious to this
structure. Hairer and coworkers have extended rough path theory from SDEs to
SPDEs. We follow their approach in our – simpler – situation.

This approach consists of two parts: The first part gives an “off-line” definition
to the singular product with the solution of the linear (constant-coefficient) equa-
tion v plugged in. This product F is the product of two Gaussian fields and can be
characterized by Gaussian calculus: Thanks to stochastic cancellations, an almost-
sure (distributional) sense may be given to this product that is unambiguous in
the sense that it is stable under regularization of white noise by convolution.

The second part consists in setting up a completely deterministic (ie path-wise)
fixed-point problem in w := u − v, where u denotes the solution of the nonlinear

problem, with a rhs given by the distribution F ∈ C− 3

4
−. All the further non-

linearities in the PDE are regular. For this second part, we have to show 1) that
for our (anisotropic and nonlocal) linear operator L we have L−1Cα−2 ⊂ Cα and
2) that Cα ×Cβ ⊂ Cβ for β < 0 < α with α+ β > 0 (ie the regular case). We do
both with help of a set of tools recently introduced for SPDEs [2, Section 2].
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A Variationally Consistent Approach to Micro-Magnetic Domain
Evolution at Large Deformations

Marc-André Keip

(joint work with A. Sridhar)

This contribution presents a variational formulation of micro-magnetic domain
evolution at finite deformations, cf. [1, 2]. Such approach is of particular impor-
tance for the understanding of micro-magnetic domain evolution in large-strain
scenarios. A prototype example is given by magnetorheological elastomers, in
which ferromagnetic particles are embedded in a soft elastomeric matrix [3, 4].

The macroscopic boundary-value-problem of a ferromagnetic body B embedded
in a general free space box Ω is a coupled multifield problem. Primary variables

are the deformation map ϕ, the magnetic self-potential φ̃ and the reference mag-
netization director M given by,

ϕ :

{
Ω× T → Rd

(x, t) 7→ ϕ(X , t)
, φ̃ :

{
Ω× T → R
(X , t) 7→ φ̃(X, t)

, M :

{
B × T → Sd−1

(X, t) 7→ M (X, t) .
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The magnetization director has the geometric property such that |M | = 1 with

the rate Ṁ = ω ×M , where ω is the spin of the magnetization. The three-field
rate-type saddle-point variational principle is given as,

(1) {ϕ̇, ˙̃φ,Ṁ} = arg
{

inf
ϕ̇∈Rd

sup
˙̃
φ∈R

inf
Ṁ∈TMSd−1

Π
′

(ϕ̇,
˙̃
φ,Ṁ)

}
,

where the rate-type magneto-mechanical potential Π
′

appears as,

Π
′

(ϕ̇,
˙̃
φ,Ṁ) :=

d

dt
E

′

(ϕ, φ̃,M) +D(Ṁ ;C)− Lmech(ϕ̇; t)− Lmag(Ṁ ; t) .

Here, E
′

is the mixed energy-enthalpy functional that contains the energy stored
in the magnetized body as well as the free-space contribution. D is the dissipation
potential that describes the dynamic evolution of the order parameter. Lmech and
Lmag are the mechanical and magnetic loading contributions. It has to be noted
here that the dissipation potential and the magnetic loading contributions have to
formulated in terms of the objective rates of the magnetization such that,

Lmag(Ṁ ; t) =
∫
ϕt(B) ρµ0msh ·£vm dv =

∫
B ρ0µ0msh · FṀ dV ,

D(Ṁ ;C) =
∫
ϕt(B)

ρη2 tr[£vm⊗£vm] =
∫
B
η
2ρ0tr[C(Ṁ ⊗ Ṁ )] dV .

Taking the consistent first variation of the potential Π
′

with Ṁ = ω ×M , gives
the Euler-Lagrange equations as,

Div[∂FΨ] = 0 , M×(ηCṀ−Div(∂∇MΨ)−µ0msF
Th) = 0 , Div[−∂

H̃
Ψ] = 0 .

We identify the balance of momentum, Gauss’s law and the large-deformation LLG
equation.

In order to arrive at a numerically more feasible formulation, we propose a
penalty-type approach to the geometric property of the magnetization director,
such that we rewrite (1) as,

(2) {ϕ̇, ˙̃φ,Ṁ} = arg
{

inf
ϕ̇∈Rd

sup
˙̃
φ∈R

inf
Ṁ∈Rd

Πaug(ϕ̇,
˙̃
φ,Ṁ)

}

where the augmented rate-type magneto-mechanical potential Πaug is given as,

Πaug(ϕ̇,
˙̃
φ,Ṁ) :=

d

dt
(E

′

(ϕ, φ̃,M)+Epen)+D(Ṁ ;C)−Lmech(ϕ̇; t)−Lmag(Ṁ ; t) .

Here, the penalty functional Epen = ǫ
2 (||M || − 1)2 penalizes the violation of the

unity constraint. Taking the first variation of the augmented potential gives us
the evolution of the magnetization which contains the penalty contribution,

ηCṀ + ∂MΨ+ ǫ{||M || − 1} M

||M || −Div(∂∇MΨ)− µ0msF
Th = 0 .

In combination with a staggered solution algorithm [2], the above model was im-
plemented into the Finite Element Method, see Fig. 1 for an example application.
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Figure 1. Formation of particle chains and associated deforma-
tions for different micro-structures under external field h [3, 5].
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Second Order Γ-Convergence for the (Nonlocal) Modica-Mortola
Functional

Irene Fonseca

Variational models in micromagnetics exhibit competition between the anisotropic
energy, that favors the formation of domains according to the easy axes of the
magnetization director, and the exchange energy that penalizes the creation of
interfaces. More broadly, in this talk we discussed the asymptotic behavior of
anisotropic Cahn-Hilliard-type functionals that are the prototype of singularly
perturbed bulk energies with multi-wells energy densities and with higher order
perturbations accounting for interface energy when domains are formed, as the
small parameter ε that determines the width of the transition layer tends to zero.

We recall the anisotropic Cahn-Hilliard functional (see, e.g., [11], [14], [13])

(1) Wε (u) :=

∫

Ω

(
W (u (x)) + ε2Φ2 (∇u (x))

)
dx ,

where Ω is a bounded open set in RN , N ≥ 2, with Lipschitz boundary. Here
W : R → [0,+∞) is an even function of class C1 such that W (s) = 0 if and
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only if s = ±1, with W (s) = |s − 1|β near s = 1 for some 1 < β < 2, and
Φ : RN → [0,+∞) is convex, even, and positively homogeneous of degree one.

We impose a mass constraint and a boundary condition

(2) u ∈ H1 (Ω) ,

∫

Ω

u (x) dx = m, and u = 1 on ∂Ω ,

where − |Ω| < m < |Ω|. To study the asymptotic behavior of Wε (u), we rescale
the energies as

Fε (u) :=
∫

Ω

(
1

ε
W (u (x)) + εΦ2 (∇u (x))

)
dx

if (2) is satisfied, and we extend Fε to L1 (Ω) by setting Fε (u) := +∞ if (2) is not
satisfied.

The first order term in the asymptotic development by Γ-convergence is well-
known (see [3], [4], [9], [17]), and is related to a suitable anisotropic perimeter of
the interface

(3) F0 (u) := cW PΦ (E)

if

(4) u = uE := 1− 2χE , E ⊂ Ω , P (E) < +∞ , and |E| = |Ω| −m

2
,

while F0 (u) := +∞ if (4) is not satisfied. Here

cW := 2

∫ 1

−1

√
W (s) ds

and PΦ is the Φ-perimeter, defined for every E ⊂ Rn with finite perimeter by

PΦ (E) :=

∫

∂∗E

Φ (νE(x)) dHN−1(x) ,

where ∂∗E is the reduced boundary of E, νE is the measure theoretic outer unit
normal of E, and HN−1 is the (N − 1)-dimensional Hausdorff measure. Observe
that in contrast with the results in the literature just quoted, due to the boundary
condition in (2) in (3), we obtain the full Φ-perimeter of E as opposed to the
relative Φ-perimeter of E in Ω.

Jointly with Gianni Dal Maso and Giovanni Leoni, in [7] we studied the second
order term W(2) for (1). We recall the notion of asymptotic development by Γ-
convergence of order k:

Fε
Γ
= F (0) + εF (1) + · · ·+ εkF (k) + o

(
εk
)

if Fε
Γ→ F (0) and

F (i)
ε :=

F
(i−1)
ε − infX F

(i−1)

ε

Γ→ F (i)

for i = 1, . . . , k, where F
(0)
ε := Fε (see [1], [2], [5, Section 1.10]).

Under some additional assumptions on Ω and W , we proved that W(2) (u) = 0
if u is a minimizer of F0 and W(2) (u) = +∞ otherwise. This was somewhat
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disappointing as we were hoping to use this higher order Γ-limit to narrow further
the selection criteria invoking, e.g., the curvature of the interfaces. In fact, a
similar problem was studied in [2] for the single-well potential W (s) = s2 without
imposing the mass constraint and assuming a strictly positive boundary condition
g. This forces a transition near ∂Ω and leads to a second order term W(2) in
the asymptotic expansion of the form 1

2

∫
∂Ω g

2K dHn−1, where K is the mean
curvature of ∂Ω.

This problem is very sensitive to the hypotheses we place onW . The assumption
that W is even is used in a crucial way to cancel many terms in the estimates due
to symmetry arguments. The hypothesis that W (s) = |s−1|β near s = 1 for some
1 < β < 2 is also fundamental, since it implies that the solution z of the Cauchy
problem

z′(t) =
√
W (z(t)) , z (0) = 0 .

reaches 1 and −1 in “finite time”, and this property was central to our proofs.
Without assuming the boundary condition in (2), it can be shown that W(2) may
be different from zero if either 1 < β < 2 but W is not even or β = 2 and W is
even (see [12]).

As observed by Bronsard and Kohn in [6], Grant in [10], Otto and Westdicken-
berg in [16], among others, identifying the (static) Γ-limit yields an estimate on
the rate of convergence for the dynamics of the related gradient flow. In [7] we
use what we know on the Γ-limit to “prepare well the initial data” of the Allen-
Cahn equation (the L2 gradient flow for the Cahn-Hilliard energy) and deduce
slow motion of the interface, here on a ε−1 time scale (see also [15]).

Further, we note that on our recent work [8] we studied nonlocal Cahn-Hilliard-
type singularly perturbed functionals. The kernels considered included those lead-
ing to Gagliardo’s fractional seminors for gradients. The integral representation of
the Γ-limit energy is again characterized as an anisotropic energy of the interfaces
separating the different phases.
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Thermodynamics of magnetoelastic materials at large strains

Tomáš Roub́ıček

The theory of elastic magnets at large strains is formulated merely in the reference
(material) configuration Ω ⊂ R

d, i.e. using the Lagrangian approach which is
convenient for solids. The basic variables are thus the deformation y : Ω → Rd

and the magnetisation y : Ω → Rd, and the material response is determined by
the free energy ψ = ψ(F,m) with F a placeholder for ∇y. On the other hand,
some data (as the external magnetic field hext) are naturally given in the space, i.e.
in the actual deformed configuation, and the same concerns demagnetising field
generated by the magnetisation ms : y(Ω) → Rd in the deformed configuration,
i.e. the push-forward of m given by ms = [Fm/ detF ]◦y−1. In turn, the external
field can be pulled-back into the reference configuration as hext,r = F⊤(hext◦y),
cf. Fig. 1. Let us note that the pulled-back field hext,r is defined only on Ω, in
contrast to hext which is defined on the whole “universe” Rd. Then, for example,
for the energy of magnetisation in the external field (Zeeman’s energy), it holds
∫

Ω

hext,r(x)·m(x) dx =

∫

Ω

(
[∇y]⊤(x)hext(y(x))

)
·m(x) dx =

∫

y(Ω)

hext(z)·ms(z) dz.

Actually, the middle form is most natural because it combines the given field
hext with the magnetisation in the reference configuration where all equations are
formulated within the Lagrangean approach. Similar transformation applieas for
the demagnetising field.

The magnitute of magnetization is not constrained by the Heisenberg con-
straint (otherwise discutable, except very low temperatures) but the temperature-
dependent saturation magnetisation is reflected through the free energy ψ, cf.
[2]. This allows for ferro-to-paramagnetic phase transformation as well as for the
interpretation as ferroelectric instead of ferromagnetic materials.

The model can be augmented by possible diffusion and heat flow governed by
Fick’s and Fourier’s laws in the deformed (Eulerian) configuration, respectively.
Then ψ = ψ(F,m, ζ, θ) with ζ the concentration of a diffusant and θ temperature.
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Figure 1. An illustration how the magnetization and the magnetic
field transform. An elastically soft but magnetically hard specimen
with a homogeneous magnetization m fixed at the bottom by Dirichlet
condition is deformed in a homogeneous external magnetic field hext.
Alternatively, an interpretation of polarization and electric field in case
of elastic ferroelectric materials can be considered, too.

These transport processes are formulated naturaly in the actual configuration and
then pulled back into the reference configuration. The concepts of nonlocal non-
simple materials and viscous Cahn-Hilliard equations are used.

Except the static (or quasistatic) problems, the demagnetising field is ignored
(which is legitimate rather for long magnets like in Figure 1, otherwise its influence
may be quite essential [1]) and only local non-selfpenetration is considered. In the
dynamic case, the governing system of equations is

̺
..
y = div(∂Fψ(∇y,m, ζ) − (hext◦y)⊗m− divH(∇2y)) + ((∇hext)◦y)⊤∇ym,
τ1
.
m = κ1∆m− ∂mψ(∇y,m, ζ, θ) + (∇y)⊤hext◦y,

.
ζ − div(M(∇y,m, ζ, θ)∇µ) = 0 with µ = ∂ζψ(∇y,m, ζ, θ) + τ2

.
ζ − κ2∆ζ,

cv(m, ζ, θ)
.
θ − div(K(∇y,m, ζ, θ)∇θ) = τ1|

.
m|2 + τ2

.
ζ2

+M(∇y,m, ζ, θ)∇µ·∇µ+ θ∂2mθψ(m, ζ, θ)·
.
m+ θ∂2ζθψ(m, ζ, θ)

.
ζ

where the dot-notation stands for the time derivative, ̺ is the mass density,
cv(m, ζ, θ) = −θ∂2θθψ the heat capacity, τ ’s and κ’s are given constants, M is
the pulled-back mobility tensor and K the heat-conductivity tensor, and H is a
(nonlocal) hyperstress realizing the nonsimple-material concept. The existence of
weak solutions of an initial-boundary value problem for this system is proved by
a careful regularization and approximation by a Galerkin method.

Either ignoring or combining particular aspects, the model has numerous appli-
cations as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion
of solvents in polymers possibly accompanied by magnetic effects (magnetic gels),
or metal-hydride phase transformation in some intermetalics under diffusion of
hydrogen (as studied in [3] at small strains) accompanied by magnetic effects.
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The talk was in large parts based on a joint work with Giuseppe Tomassetti [4].

Acknowledgment: This research was done under the grants 14-15264S “Experimentally
justified multiscale modelling of shape memory alloys” and 16-03823S “Homogenization
and multi-scale computational modelling of flow and nonlinear interactions in porous
smart structures” of the Czech Sci. Foundation.
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Relaxation, deformation and thermal fluctuation of a quasi-spherical
body

Liping Liu

(joint work with Miao Yu, Hao Lin, Ramsey Foty)

Motivated by recent experiments on vesicles, cells and cell aggregates, we con-
sider a general viscoelastic model that consists of a 2D membrane encapsulating
a 3D bulk. Quantifying the mechanical properties of vesicles, cells and cell ag-
gregates requires analytical and numerical solutions to suitable boundary value
problems. In the first part of the talk [1], I present a framework for quick ex-
plicit and numerical solutions for a variety of different 2D elastic models including
(i) constant surface tension model, (ii) Helfrich-Canham bending model and (iii)
Gurtin-Murdoch surface elasticity. These solutions can be used to extract proper-
ties of postulated material models for cells or cell aggregates. In the second part
of the talk [2], I present a statistical-physics based model that explains the origin
of nonlinear volume-dependent surface (or cortex) tension of vesicles (or cells).
Though we start from a model assuming incompressible bulk and area-preserving
membrane, thermal fluctuations give rise to an effective model that the bulk is
compressible with a nonlinear bulk modulus and the surface is stretchable with a
nonlinear surface tension.
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Magnetic domains in thin ferromagnetic films with strong
perpendicular anisotropy

Hans Knüpfer

(joint work with Cyrill B. Muratov, Florian Nolte)

This talk summarizes the results of our upcoming paper [3], in which we investi-
gate the scaling of the ground state energy and optimal domain patterns in thin
ferromagnetic films with strong uniaxial anisotropy and easy axis perpendicular
to the film plane. Starting from the full three-dimensional micromagnetic model,
we identify the critical scaling where the transition from single domain states to
multi-domain states such as bubble or maze patterns occurs. Furthermore, we
analyze the asymptotic behavior of the energy in two regimes separated by the
transition. In the single domain regime, the energy Γ-converges towards a much
simpler two-dimensional and local model. In the second regime, we derive the
scaling of the minimal energy and deduce a scaling law for the typical domain
size.
More precisely, we show that, in the regimes we consider, the main part of the
micromagnetic energy, upon rescaling and subtracting a constant, is given by the
following two-dimensional functional

Fε,λ[m] =





∫

T2

ε|∇m|2
2

+
(1 −m2

3)

2ε
d2x− λ

| log ε|

∫

T2

|∇1/2m3|2 d2x,

if m ∈ H1(T2; S2),

+∞, otherwise

(1)

In (1), T2 = R2/Z2 denotes the flat square torus and we have assumed for simplic-
ity that m : T2 → S

2 is periodic to avoid boundary effects. The main part of our
analysis is concerned with the asymptotic behavior of (1) as ε → 0 for different
values of λ > 0. Note that the last term in (1) occurs with a negative sign and
hence prefers oscillations of m3.

As it turns out, the value of the parameter λ is crucial - in fact, we will show
that the asymptotic behavior changes at λc =

π
2 , which is a singular point in the

terminology of [2]. For λ < λc the Γ-limit F∗,λ := Γ(L1)-limε→0 Fε,λ measures the
length of the interface separating regions with m ≈ e3 and m ≈ −e3

F∗,λ[m] =





(
1− λ

λc

)∫

T2

|∇m3| d2x, for m ∈ BV (T2; {±e3}),

+∞, otherwise.
(2)

(Note that the last term in (1) leads to a reduction of the interfacial cost by λ
λc

compared to the classical result [1] for λ = 0.) On the other hand, for λ > λc, the
scaling of the minimal energy changes

minFε,λ ∼ −λε
λc−λ

λ

| log ε|
ε→0−→ −∞,(3)
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and sequences {mε}ε>0 which achieve the optimal scaling Fε,λ[mε] ∼ minFε,λ are
highly oscillatory in the sense that

∫

T2

|∇ (mε)3 |dx ∼ ε
λc−λ
λ

ε→0−→ +∞.(4)

Furthermore, for λ ≥ λc, the leading order contributions of all three terms in (1)
cancel. The main difficulty in the proof is to find asymptotically optimal estimates
for the non-local term.
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Injectivity in magnetoelasticity

Barbora Benešová

(joint work with Malte Kampschulte, Martin Kruž́ık)

In continuum mechanics the primary state variable is the deformation of the spec-
imen y : Ω → y(Ω). Here and in the sequel Ω ⊂ Rn (n = 2, 3) is a bounded
Lipschitz domain, the reference configuration.

It is generally postulated [2] that an element of the set of admissible deforma-
tions should be an orientation-preserving and injective map with a suitably inte-
grable weak gradient; one usually assumes that y ∈ W 1,p(Ω;Rn) with 1 < p ≤ +∞.

The injectivity constraint is of particular importance in magnetoelasticity where
the observables are not only the deformation but also the magnetizationM , defined
in the current configuration. Then, the stable states are obtained by minimizing
the magnetoelastic energy of the form

ψ(y,M) = A

∫

y(Ω)

|∇M |2 dx

︸ ︷︷ ︸
exchange energy

+

∫

Ω

φ(∇y,M ◦ y) dx
︸ ︷︷ ︸

anisotropy energy

+
µ0

2

∫

R3

|H |2 dx

︸ ︷︷ ︸
stray field energy

+

∫

Ω

W (∇y) dx
︸ ︷︷ ︸
elastic energy

−µ0

∫

y(Ω)

M ·Hextdx

︸ ︷︷ ︸
Zeeman energy

,(1)

where A is a constant, µ0 is the permeability of vacuum, Hext is the applied
magnetic field and the stray field H : R3 → R3 (defined in the whole space, even
if Ω ⊂ R2) is obtained from (possibly a reduced set) of the Maxwell equations.

As we see from (1), the purely magnetic parts of the energy (such as the ex-
change or Zeeman one) are defined in the deformed configuration while the ones



Mini-Workshop: Mathematics of Magnetoelastic Materials 2929

referring to elasticity in the reference one. Thus, in order to allow for a transfor-
mation between the two configurations, we need the deformation to be invertible
or even to be a homeomorphism. On a more technical level, one might look, for
example, at the composition M ◦ y that appears in the anisotropy energy. This
may not be Lebesgue measurable even if M and y are measurable themselves.1

In this talk, we concentrated on two types of set admissible deformations in the
plane: the quasiconformal maps

QC(Ω;R2) =
{
y ∈W 1,2(Ω;R2) : y is a homeomorphism and ∃K ≥ 1 such that

|∇y|2 ≤ K det(∇y) a.e. in Ω
}
,

as well as the bi-Lipschitz maps

W 1,∞,−∞(Ω;R2) =
{
y ∈W 1,∞(Ω;R2) : y is injective, det(∇y) > 0

and y−1 ∈W 1,∞(y(Ω); Ω)
}
;

and studied conditions on the stored energy W that assure weak lower semiconti-
nuity of the elastic energy in (1)

(2) I(y) :=

∫

Ω

W (∇y) dx

along sequences in QC(Ω;R2) or W 1,∞,−∞(Ω;R2).
The relevant condition that we identified with this respect is the so-called bi-

quasiconvexity or quasiconformal quasiconvexity:

Definition. We say that a Borel measurable and bounded from below function
W : R2×2 → Ω is bi-quasiconvex if

(3) L2(Ω)W (A) ≤
∫

Ω

W (∇ϕ(x)) dx

for all ϕ ∈W 1,∞,−∞
+ (Ω;R2), ϕ = Ax on ∂Ω and all A with detA > 0.

We say that W is quasiconformally quasiconvex if (3) holds for all A with
det(A) > 0 and all ϕ ∈ QC(Ω;R2) such that ϕ(x) = Ax on ∂Ω.

With this definition at hand, we have the following result:

Proposition (see [4, 3]). Let Ω ⊂ R2 be a bounded Lipschitz domain. Let W be
continuous on the set of matrices 2 × 2 with a positive determinant. Then W is
bi-quasiconvex if and only if I in (2) is sequentially weakly* lower semicontinuous

on W 1,∞,−∞
+ (Ω;R2).

Moreover, let W satisfy 0 ≤ f(A) ≤ c(1+ |A|2) with c > 0 on the set of matrices
with a positive determinant. Then W is quasiconformally quasiconvex if and only
if I is weakly lower semicontinuous on QC(Ω;R2).

1However, measurability of the composition can be assured if either M is continuous (which
however is not physically required) or y is an homeomorphism, which is the physical requirement
that we aim to study.
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Let us highlight that weak lower semicontinuity of I is proved from quasi-
convexity without assuming that W locally bounded on R2×2. This is generally
considered to be a difficult task in the calculus of variations (cf. [1]) but it is phys-
ically important because the stored energy should be infinite on matrices with
a non-positive determinant to yield (with further restrictions) injectivity of the
deformation.

References

[1] J.M. Ball, Some open problems in elasticity, In: Geometry, Mechanics, and Dynamics,
Springer, New York, 2002, 3–59.

[2] P.G. Ciarlet, Mathematical Elasticity Vol. I: Three-dimensional Elasticity, North-Holland,
Amsterdam, 1988.
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Coupling and numerical integration
of the Landau–Lifshitz–Gilbert equation

Michele Ruggeri

(joint work with Dirk Praetorius and Bernhard Stiftner)

The understanding of the magnetization dynamics plays an essential role in the
design of many technological applications, e.g., storage devices, sensors, actuators,
electric motors, and generators. The availability of reliable numerical tools to
perform large-scale micromagnetic simulations of magnetic systems is therefore of
fundamental importance. Time-dependent micromagnetic phenomena are usually
described by the Landau–Lifshitz–Gilbert (LLG) equation

(1) ∂tm = −m× [heff +Π(m)] + αm× ∂tm in Ω× (0, T ).

Here, Ω ⊂ R3 is a bounded Lipschitz domain, while T and α are positive con-
stants. The unknown is the normalized magnetization m ∈ L2(0, T ;H1(Ω)) ∩
H1(0, T ;L2(Ω)), which satisfies |m| = 1 a.e. in Ω. The effective field takes the

form heff = − δE(m,f)
δm = ∆m+ π(m) + f , where the energy is given by

E(m,f) =
1

2
‖∇m‖2L2(Ω) −

1

2
〈π(m),m〉 − 〈f ,m〉.

The bounded, linear, and self-adjoint operator π : L2(Ω) → L2(Ω), the function
f ∈ H1(0, T ;L2(Ω)), and the bounded operator Π : {m ∈ H1(Ω) : |m| =
1 a.e. in Ω} → L2(Ω) are generalm-dependent, m-independent, and nonenergetic
field contributions, respectively. The LLG equation is usually supplemented with
homogeneous Neumann boundary conditions ∂nm = 0 on ∂Ω× (0, T ) and initial
condition m(0) = m0 in Ω, where m0 ∈ H1(Ω) satisfies |m0| = 1 a.e. in Ω.
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The numerical integration of (1) poses several challenges: strong nonlinearities,
a nonconvex pointwise constraint, an intrinsic energy law, which combines conser-
vative and dissipative effects, as well as the presence of nonlocal field contributions
which require the coupling with other partial differential equations (PDEs).

In this contribution, we discuss some of our recent results [1, 7, 2, 3, 9, 10].
To discretize (1), we extend the numerical scheme of [4]. We consider a quasi-
uniform family {Th} of tetrahedral triangulations of Ω with mesh size h and a
uniform partition {ti = ik : 0 ≤ i ≤M} of the time interval (0, T ) with time-step
size k = T/M . We denote by S1(Th) the space of piecewise linear and globally
continuous polynomials. The orthogonality m · ∂tm = 0 from (1) is introduced at
the discrete level only at the nodes of Th by considering the discrete tangent space

Kmh
:= {φh ∈ S1(Th)3 : mh(z) · φh(z) = 0 for any node z} for mh ∈ S1(Th)3.

Given 0 ≤ θ ≤ 1, the time-marching scheme is based on an equivalent reformula-
tion of (1) and consists, for every 0 ≤ i ≤M − 1, of the following steps:

(i) Compute vih ∈ Kmi
h
such that, for all φh ∈ Kmi

h
,

α〈vih,φh〉+ 〈mi
h × vih,φh〉+ θk〈∇vih,∇φh〉

= −〈∇mi
h,∇φh〉+ 〈πh(mi

h),φh〉+ 〈f ih,φh〉+ 〈Πh(m
i
h),φh〉;

(ii) Define mi+1
h ∈ S1(Th)3 by mi+1

h (z) =
mi

h(z)+kv
i
h(z)

|mi
h
(z)+kvi

h
(z)|

for every node z.

Here, mi
h ≈ m(ti) and vih ≈ ∂tm(ti). The pointwise constraint is enforced by

nodal projection of the computed solution at each time-step. Despite all the
nonlinearities, the algorithm requires only the solution of one linear system per
time-step. Under suitable stability and convergence assumptions onm0

h, {f ih}, πh,
andΠh, the sequence of discrete approximations converges towards a weak solution
of the problem [7]. If 1/2 < θ ≤ 1 and the triangulation additionally satisfies a
weak acuteness condition, the convergence is unconditional, i.e., the analysis does
not impose any CFL-type condition between the time-step size and the mesh size.
Moreover, a fully linear projection-free variant of the method, which omits the
nodal projection in (ii), preserves the (unconditional) convergence result [1].

One particular focus of our work is on the efficient treatment of coupled systems,
for which we show that an approach based on the decoupling of the time integration
of the LLG equation and the coupled PDE reduces the computational cost, but
still leads to time-marching algorithms that are unconditionally convergent. This
approach was successfully applied to the coupling of the LLG equation with the
Maxwell equations [8, 6] and with a balance law for the linear momentum to model
the magnetoelastic interaction [5]. As an application of the theory, we analyze
several extensions of the micromagnetic model for the simulation of spintronic
devices. As an example, we consider the system

∂tm = −m× heff + αm× ∂tm−m× s,

∂ts = ∇ · [(I3×3 − ββ′m⊗m)∇s]− s− s×m− β∇ · (m⊗ je),
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where the LLG equation is nonlinearly coupled with a parabolic equation, which
models the evolution of the spin accumulation s in the presence of a spin-polarized
electric current je in magnetic multilayer structures. Numerical experiments sup-
port our theoretical findings and demonstrate the applicability of the method for
the simulation of practically relevant problem sizes [2, 9, 3, 10].
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Phase transformations and magnetism

Richard D. James

Many interesting problems are emerging from problems in which magnetism is
combined with phase transformations. Typical interesting phenomena include
cases in which the two phases have diverse magnetic properties — one phase is
ferromagnetic and the other non-ferromagnetic (or anti-ferromagnetic), one phase
soft-magnetic, the other hard etc. These lead to challenging problems in the cal-
culus of variations for which there, as yet, does not appear even an existence
theorem.

Other older problems that remain unsolved include the “coercivity paradox” and
the “permalloy problem”. The former is, from the mathematical point of view, the
failure of linear stability analysis. But there is no clear resolution though methods
that are adapted to analyze “large localized disturbances” could be relevant. In
the permalloy problem the challenge is to understand, from a predictive viewpoint,
the particular compositions 45% Ni and 78.5 % Ni (in the FexNi1−x system) at
which the alloys become exceptionally soft.
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Two open mathematical problems concerning ferroelectric solids

Kaushik Bhattacharya

Ferroelectric materials are the electrical analogs of magnets as they are sponta-
neously electrically polarized.

The first problem concerns understand the physical origins of electrical polar-
ization from microscopic physics. We seek to understand if commonly used macro-
scopic models based on polarization arise as the large body limit of microscopic
models based on electron density. We conjecture this to be true and support the
conjecture with an upper bound. The lower bound remains open. This is based
on joint work with Saurabh Puri.

The second problem concerns the phase diagram of a commonly used material
which is a solid solution of lead titanate and lead zirconate. We propose a model
similar to an random field Ising model with long-range interactions, and show
through numerical simulation that particular features of the phase diagram arises
from a competition between the short-range disorder (from the chemistry) and
long-range order (from the electrostatic and mechanical interaction). A systematic
analysis of this model remains open. This is based on joint work with Jiangyu Li
and Jeong Ho You.

Polyconvexity in magnetoelasticity and phase transitions

Martin Kruž́ık

In this talk, we first review results obtained in [6]. Here we investigate a variational
theory for magnetoelastic solids under the incompressibility constraint. The state
of the system is described by deformation and magnetization. While the domain
of the deformation is the reference configuration, magnetization is defined in the
deformed configuration instead. We discuss the existence of energy minimizers
without relying on second-order deformation gradient terms cf. [7] where, on the
other hand, no incompressibility constraint was imposed. Then, by introducing
a suitable positively 1-homogeneous dissipation, a quasistatic evolution model is
proposed and analyzed within the frame of energetic solvability.

The state of a magnetostrictive material is described by its deformation y :
Ω → R3 from the reference configuration Ω ⊂ R3 and by its magnetization m :
Ωy → R3 which is defined on the deformed configuration Ωy := y(Ω) instead. This
difficulty is exclusively related to large deformation regimes that magnetostrictive
materials can undergo. Relying standardly on a variational approach, we define
the magnetoelastic energy as

E(y,m) :=

∫

Ω

W (∇y,m ◦ y) dx+
α

2

∫

Ωy

|∇m|2 dx +
µ0

2

∫

R3

|∇um|2 dx

−
(∫

Ωy

h ·m+

∫

Ω

f · u+

∫

∂Ω

g · u
)
.(1)

Here, W stands for the elastic energy density, the second term is the so-called
exchange energy and α > 0 is related to the typical size of ferromagnetic texture.
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The next term represents magnetostatic energy, µ0 = 4π × 10−7N/A2 is the per-
meability of the vacuum, and um is the magnetostatic potential generated by m.
In particular, um is a solution to the Maxwell equation

(2) ∇ · (−µ0∇um + χΩym) = 0 in R
3,

where χΩy is the characteristic function of the deformed configuration Ωy. Finally,
h, f , and g are external magnetic field, and densities of volume and surface forces
applied to the specimen, respectively. We consider E under the constraints

(3) det∇y = 1 and |m| = 1 almost everywhere in Ω,

which correspond to incompressibility and magnetic saturation.
As to the stored energy density, we assume that for some p > 3 and the rotation

group SO(3) it holds that

∃c > 0 ∀F,m : −1/c+ c|F |p ≤W (F,m),(4a)

∀R ∈ SO(3) :W (RF,Rm) =W (F,m),(4b)

∀F,m : W (F,m) =W (F,−m),(4c)

∀F,m : W (F,m) = Ŵ (F, cof F,m),(4d)

where Ŵ (·, ·,m) is convex. The last condition (4d) is just polyconvexity ofW (·,m).
Polyconvexity was introduced in [1] to show existence of minimizers for energy
functionals arising in nonlinear elasticity. Here, cof F denotes the cofactor matrix
of F . Incompressibility is expressed by the requirement that detF = 1 which
implies that cof F = F−⊤. Polyconvexity allows us to incorporate injectivity of y
and it is also relatively easy to construct polyconvex functions.

In many situations, however, one cannot rely on polyconvexity; see [2] for a
recent survey. This is, for example, the case of magnetic shape memory materials
where W (·,m◦ y) has a multiwell structure. Each well describes a stress free state
of a particular variant of the material. Energy minimizing deformations exhibit
fine microstructures composed of various material variants. In many mathematical
models, this feature is manifested by non-existence of minimizers because minimiz-
ing sequences exhibit finer and finer oscillations. A possible way out was proposed
by Šilhavý in [8] who introduced the so-called interfacial polyconvexity. We call a
function g : R3×3 × S2 → R interfacial polyconvex if there is a convex and posi-
tively 1-homogeneous function Ψ such that g(F, n) = Ψ(n, F ×n,CofF n). Here n
is the unit vector and F ∈ R3×3 is such that Fn = 0. Moreover, F × n is defined
by the formula (F ×n)a := F (n× a) for every a ∈ R3. If F is the surface gradient
and n is the unit normal to the surface between two different variants then F × n
measures the curvature of the interface in the deformed configuration while CofF n
accounts for the area of the deformed interface. A model for quasistatic evolution
of shape memory materials using interface polyconvexity can be found in [5], its
phase-field approximation in [4], and an analogous model for ferromagnetic shape
memory alloys in [3].
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On some model for magnetoelasticity with Eulerian description

Anja Schlömerkemper

(joint work with B. Benešová, J. Forster, C. Garćıa-Cervera and C. Liu)

A fundamental issue in the modeling of magnetoelastic materials is that elasticity
is phrased in Lagrangian coordinates whereas magnetism is phrased in Eulerian
coordinates. We discuss a model that is completely phrased in Eulerian coordinates
and show existence of weak solutions, cf. [1, 2, 4]. The model presented is a
system of partial differential equations that contains (i) a Navier-Stokes equation
with magnetic and elastic terms in the stress tensor obtained by a variational
approach, (ii) a regularized transport equation for the deformation gradient and
(iii) the Landau-Lifshitz-Gilbert equation for the dynamics of the magnetization.

Let Ω0 ⊂ Rd, d = 2, 3 be the reference configuration of the body considered.
Its elements X are referred to as Lagrangian coordinates. The current/deformed
configuration at time t ∈ [0, T ] is denoted by Ω ⊂ R

d and is identified with Ω0 at
t = 0. The deformation or flow map of the body

x : Ω0 × [0, T ] → Ω, (X, t) 7→ x(X, t), where x(X, 0) = X,

maps the reference configuration onto the deformed/current configuration at time
t. The velocity is a mapping v : Ω× [0, T ] → Rd such that v(x(X, t), t) = ∂

∂tx(X, t)

for all t > 0. The deformation gradient is defined as F̃ : Ω0 × [0, T ] → Rd×d with

F̃ (X, t) := ∂x
∂X (X, t) and becomes F (x(X, t), t) = F̃ (X, t) in Eulerian coordinates.

As in [6], the following transport equation allows us to determine the deformation
gradient in Eulerian coordinates from the velocity:

Ft + (v · ∇)F −∇vF = 0 in Ω× [0, T ].(1)
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For the beginning, we work in the framework of incompressible materials

div v = 0 in Ω× [0, T ].(2)

The energetic variational approach starts from an action functional, which is an
integral of the difference of the kinetic energy and the free energy of the system,
as well as a dissipation term due to viscosity. The first variation of this action
functional with respect to the flow map yields the balance of momentum

vt + (v · ∇)v − divT = 0 in Ω× [0, T ],(3)

where T = −p Id+ν∇v+Tmag-ela is the stress tensor with p denoting the pressure,
Id denotes the identity matrix, and ν∇v, ν > 0 represents the viscous stress, which
in fact makes the model magnetoviscoelastic. The formula for Tmag-ela follows from
a variation with respect to the flow map x of the corresponding free energy ψ
phrased in Eulerian coordinates.

The magnetization M : Ω× [0, T ] → R3 is phrased in Eulerian coordinates and
satisfies |M(x, t)| = 1 almost everywhere in Ω × [0, T ]. Based on the standard
micromagnetic energy, the free energy reads

ψ(F,M) = 1
2

∫

Ω

|∇M |2 dx
︸ ︷︷ ︸
exchange energy

+

∫

Ω

Φ(F,M) dx

︸ ︷︷ ︸
anisotropy energy

+ 1
2

∫

R3

|H |2 dx
︸ ︷︷ ︸
stray field energy

+

∫

Ω

W (F ) dx

︸ ︷︷ ︸
elastic energy

−
∫

Ω

M ·Hextdx

︸ ︷︷ ︸
Zeeman energy

,

where Φ : Rd×d × R3 → R describes the impact of the crystalline structure on
the magnetization and is allowed to depend on F and M here. Further, Hext is
the applied magnetic field, and the magnetic field H : Rd → R3 is the solution of
Maxwell’s equations for magnetostatics.

The dynamics of the magnetization vector is governed by the Landau-Lifshitz-
Gilbert equation (LLG), where the usual time-derivative dM

dt needs to be replaced
by the convective or material derivative,

Mt + (v · ∇)M =M × δψ

δM
+M ×

(
M × δψ

δM

)
in Ω× [0, T ],(4)

with δψ
δM denoting the variational derivative of ψ with respect to M . The LLG

equation inherits a coupling of F and M from ψ.
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The system of PDEs describing the evolution of magnetoelastic materials is
then given by the equations (1)–(4) and certain boundary and initial conditions
for F , M and v, see [4] for details.

In [1] we prove existence of weak solutions to a special version of this system
in d = 2 for small initial data. In the special system, the stray field energy and
anisotropy energy are neglected, the elastic energy W is assumed convex and the
transport equation for F is regularized. On Ω× [0, T ] the system then reads

vt + (v · ∇)v +∇p+ div
(
∇TM∇M −W ′(F )FT

)
= ν∆v +∇THextM,

div v = 0,

Ft + (v · ∇)F −∇vF = κ∆F,

Mt + (v · ∇)M = −M × (∆M +Hext)−M × (M × (∆M +Hext))(5)

for some κ > 0 and certain boundary and initial conditions.
We prove global in time small data existence of weak solutions in two dimen-

sions, and locally in time also in three dimensions [1]. The proof is based on a
Galerkin method and a fixed-point argument; it combines ideas from the analysis
of models for the flow of liquid crystals [5] and of the Landau-Lifshitz equation
[3]. For a corresponding result in d = 2, 3 for a gradient flow for M instead of (5)
we refer to [2, 4].
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Topics in energetic variational approaches

Chun Liu

In this talk, I present a general framework of variational approaches. The ap-
proaches are motivated by earlier work of Rayleigh and Onsager. It had been
proven to be extremely useful to derive thermodynamically consistent coupled
systems; such as those of liquid crystals, magnetohydrodynamics, electrorheologi-
cal fluids and polymeric fluids. It emphasizes the coupling between the kinematic
transport of the phase variables and the induced elastic stresses. For example, we
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look at the Eulerian description of an incompressible Hookean elasticity and the
well-posedness results of viscoelastic fluids. Finally, by looking at the examples
of fine interface motion in mixtures and MHD dynamics, we demonstrate the un-
derlying structure of these systems as well as the specifics of the individual ones.

Reporter: Barbora Benešová
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