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Introduction by the Organisers

Analytic number theory is on the roll for quite some time now, with spectacular
discoveries year after year. Thus, the timing was perfect for an exciting week, but
the overload of talent and the vast activities in various subbranches of the field
made it challenging to select an appropriate mix of participants. However, we feel
that we could not have done better: during the workshop, we experienced a typical
Oberwolfach atmosphere, open, collaborative and productive.

We tried to keep the schedule moderate, with ample time for work and discussion
after lunch and in the evening. The programme included a round table discussion
on recent advances with the circle method on Tuesday evening, and a problem
session on Thursday evening. The problems posed are included at the end of this
report.

Many important results have been announced during the week. Rather than
making an attempt to highlight the truly outstanding contributions, we let the
collection of abstracts speak for itself.

Finally, it is our great pleasure to record the warm-hearted hospitality and
excellent support by the local staff during a great event.
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Abstracts

Epstein zeta-functions, subconvexity, and the purity conjecture

Valentin Blomer

Let Z be a symmetric, positive definite n-by-n matrix with real entries, and let Q
be the associated quadratic form. The Epstein zeta-function associated with Z is
given by

E(Z, s) =
∑

x∈Zn\{0}

Q(x)−ns/2.

As a function of s, it is a Dirichlet series with a functional equation relating s to 1−s
with Gamma factor Γ(ns/2), but no Euler product in general. As a function of Z, it
is essentially a maximally degenerate Eisenstein series: the function z 7→ E(zz⊤, s)
lives on Xn := SLn(Z)\SLn(R)/SOn(R) and is an eigenfunction of all invariant
differential operators and all Hecke operators. In particular, its Laplace eigenvalue
for s = 1/2 + it is λ(t) = 1

24 (n
3 − n) + 1

2n(n− 1)t2 ≍ 1 + t2.
The first result bounds E(Z, s) on the critical line s = 1/2 + it and provides,

for arbitrary n ≥ 2, a result that is better than what can be obtained from the
functional equation by a convexity argument: we have the subconvexity bound

E(Z, 1/2 + it) ≪ (1 + |t|)n
4 −δn+ε

for any ε > 0, where δ2 = 1/6, δ3 = 1/4, δn = 1/2 for n ≥ 4, and the implied
constant is uniform in Z as long as Z varies in a fixed compact domain. The proof
uses results of Götze [Go].

The second result shows that the previous bound is best possible for n ≥ 4: we
have the lower bound

E(idn, 1/2 + it) = Ω
(

1 + |t|)n
4 − 1

2

)

for n ≥ 4. The proof starts with an application of Siegel’s mass formula, and for
odd n exploits the rich structure of multiple Dirichlet series.

Taken together, these bounds imply for fixed compact domain idn ∈ D ⊆ Xn

the relation

(1) lim
t→∞

log ‖E(., 1/2 + it)|D‖∞
log t2

=
n

8
− 1

4

for n ≥ 4.
This can be interpreted in the context of Sarnak’s purity conjecture [Sa]: if X is

a compact, arithmetic, irreducible locally symmetric space and {fj | j = 1, 2, . . .}
is any L2-normalized sequence of eigenfunctions for all Hecke operators and all
invariant differential operators with Laplacian eigenvalue λj → ∞, then

accumulation points

{

log ‖fj‖∞
logλj

| j = 1, 2, . . .

}

⊆ Z/4∩
[

0,
dim(X)− rank(X)

4

)

.
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To the author’s knowledge, no single accummulation point has been determined
in any non-trivial example, but the conjecture is consistent with all known upper
and lower bounds for sup-norms (see e.g. [RS]).

While the above example of Eisenstein series do not exactly meet the assump-
tions of Sarnak’s purity conjecture (Xn is not compact and E(., 1/2 + it) is not
L2-integrable), the denominator 8 in (1) is an interesting feature that indicates
that there may occur unexpected phenomena to be explored.

References

[Go] F. Götze, Lattice point problems and values of quadratic forms, Invent. Math. 157 (2004),
195–226

[RS] Z. Rudnick, P. Sarnak, The behavior of eigenstates of arithmetic hyperbolic manifolds,
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On Roth’s theorem on arithmetic progressions

Thomas Bloom

(joint work with Olof Sisak)

Let r(N) denote the size of the largest subset of {1, . . . , N} that contains no
(non-trivial) three term arithmetic progression; that is, three numbers of the form
x, x + d, x + 2d with d 6= 0, or, equivalently, a solution to x + y − 2z = 0 with
x 6= y.

In 1953, answering a question of Erdős and Turán, Roth showed that r(N) =
o(N). In fact, introducing a stunning new variant on the circle method, he gave the
quantitative estimate r(N) ≪ N/ log logN . This estimate has seen a succession
of improvements, leading to the bound of r(N) ≪ N/ logN1−o(1) due to Sanders,
also achieved by the speaker via an alternative method.

In this talk we present a recent result, due to the speaker and Olof Sisask, that
r(N) ≪ N/(logN)1+c for some absolute constant c > 0. In particular, for the
first time the so-called ‘log barrier’ has been broken, allowing this statement to
have implications for sets such as the primes on density grounds alone. It also
gives the first non-trivial case of a conjecture of Erdős, that a set A ⊂ Z such that
∑

n∈A
1
n = ∞ must contain arbitrarily long arithmetic progressions.

This result mirrors a 2010 result of Bateman and Katz, who obtained a similar
bound of 3n/n1+c for the analogous problem over Fn

3 . This bound has recently
seen a vast improvement by Ellenberg and Gijswijt, using the new polynomial
method of Croot, Lev, and Pach, which so far has not been applicable to the
integer setting.

The methods of Bateman and Katz, however, build directly on the classical
density increment method initiated by Roth, and thus are more amenable to trans-
lation. Our proof follows a similar strategy to theirs, incorporating a number of
refinements.
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The main idea of Roth is, that if A ⊂ {1, . . . , N} contains few arithmetic pro-
gressions, then it has increased density on some smaller Bohr set, and the argument
can then be iterated until the density is sufficiently large. The increment comes
from a careful analysis of the large spectrum, the set of large Fourier coefficients of
the characteristic function of A. The goal is to find many such coefficients which
have many additive relations between them, allowing for a large increase in density
without reducing the size of the Bohr set too much.

The key advance of Bateman and Katz was to study the large spectrum using
combinatorial methods; in particular, showing that either the spectrum has an
unusual amount of additive energy, or else it has a structural decomposition.

Our proof builds on such ideas. We must first adapt the argument to the
more technically forbidding realm of Bohr sets in the integers. We then give
a more powerful structural result that is necessary in this setting, using entirely
elementary arguments. Finally, we find a more efficient way to exploit the structure
thus obtained – roughly speaking, we use elementary arguments to perform a lifting
argument, showing that either the large spectrum itself is additively structured, or
else there is a set of even larger Fourier coefficients which is additively structured.
In either case, we obtain an efficient density increment which, when iterated, leads
to the result.

Extreme values of the Riemann zeta function

Andriy Bondarenko, Kristian Seip

We presented the basic ideas used in the proof of the following theorem.

Theorem. Let 0 < β < 1 be given and let c be a positive number less than
√

min(1/2, 1− β). If T is sufficiently large, then there exists a t, T β ≤ t ≤ T ,
such that

∣

∣

∣

∣

ζ
(1

2
+ it

)

∣

∣

∣

∣

≥ exp

(

c

√

logT log log logT

log logT

)

.

The best lower estimate for extreme values of |ζ(1/2 + it)| known previously
was obtained in 2008 by Soundararajan [5] who proved that

∣

∣

∣

∣

ζ
(1

2
+ it

)

∣

∣

∣

∣

≥ exp

(

(1 + o(1))

√

logT

log logT

)

holds for some t, T ≤ t ≤ 2T , if T is large enough. In 1977, Montgomery [4] had
proved, assuming the Riemann Hypothesis, that there exist arbitrarily large t such
that

∣

∣

∣

∣

ζ
(1

2
+ it

)

∣

∣

∣

∣

≫ exp

(

c

√

log t

log log t

)

with c = 1/20. This result was proved unconditionally at the same time by
Balasubramanian and Ramachandra with a larger value of c (see [1] and [5]).
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The proof of Theorem 1 uses the resonance method introduced by Soundarara-
jan [5]. The main new ingredient of the proof is a special multiplicative function
associated with a large greatest common divisor (GCD) sum. The idea behind
the construction of this function is inspired by our recent work [2]. In the latter
paper, we found that there exists an absolute constant A less than 7 such that

(1)

N
∑

k,ℓ=1

gcd(nk, nℓ)√
nknℓ

≤ N exp

(

A

√

logN log log logN

log logN

)

for arbitrary integers 1 ≤ n1 < · · · < nN and N sufficiently large. We show in [3]
that (1) is optimal in the sense that it does not hold if A < 1.
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Mean value and variance of arithmetical sequences using

Vaughan-type major arcs approximation

Régis de la Bretèche

(joint work with Daniel Fiorilli)

In order to study the distribution of arithmetical sequences A = {f(n)}n≥1 in
progressions of large moduli, we consider

∑

x/2N<q≤x/N

q
∑

a=1

(

∑

a<n≤x
n≡a mod q

f(n)− E(x, q, a)
)2

,

where E(x, q, a) is chosen so that
∑

x/2N<q≤x/N

(

∑

a<n≤x
n≡a mod q

f(n)− E(x, q, a)
)

is small.
We will consider arithmetical sequences A = {f(n)}n≥1 satisfying two hypothe-

ses. The first is analogous to a standard sieve hypothesis, and the second describes
the equidistribution of A in arithmetic progressions.



Analytic Number Theory 2983

1 — There exists an integer J ≥ 0, arithmetical functions hj and monotonic
smooth functions uj : R≥0 → R with 0 ≤ j < J such that uniformly for 1 ≤ d ≤ x
we have

Ad(x) :=
∑

n≤x
d|n

f(n) =
∑

0≤j<J

hj(d)

d
Uj(x) +O

(

U0(x)

L(x)(logQ(x))2

)

,

where Uj(x) :=
∫ x

0
uj .

2 — For x ≥ 1 we have the bound

∑

q≤Q(x)

max
y≤x

max
1≤a≤q

∣

∣

∣

∑

n≤y
n≡a mod q

f(n)− 1

φ(q/(q, a))

∑

n≤y
(n,q)=(a,q)

f(n)
∣

∣

∣≪ U0(x)

L(x)
.

These hypotheses are satisfied by Λ [1], µ [3], τk the k iterated divisor functions,
to name a few. The approximation E(x, q, a) will be determined in terms of the
data in the first hypothesis. In order to do so, we extract the major arcs from a
heuristic application of the circle method. The resulting expression is

FR(n) :=
∑

0≤j<J

uj(n)
∑

r≤R

(hj ∗ µ)(r)
φ(r/(r, n))

µ
( r

(r, n)

)

;

we then define the Vaughan-type approximation

E(x, q, a) :=
∑

n≤y
n≡a mod q

FR(n).

The goal of our study is to estimate the mean M1 and the variance M2 with

M1 :=
∑

x/2N<q≤x/N

(

∑

a<n≤x
n≡a mod q

∆R(n)
)

,

M2 :=
∑

x/2N<q≤x/N

q
∑

a=1

(

∑

a<n≤x
n≡a mod q

∆R(n)
)2

,

where ∆R(n) := f(n)−FR(n). We show that, under Hypotheses 1 and 2 that M1

is small and M2 can be approximated by

#{x/2N < q ≤ x/N}
∑

n≤x

∆R(n)
2.

We recover Fiorilli’s result [1] and Vaughan’s result [6] when f = Λ.
For f = τk and k ≥ 2, we obtain the existence of an absolute constant η > 0

such that for every k ≥ 2 and in the range N ≤ R ≤ xη/k we have

(1)
∑

n≤x

∆R(n)
2 = Ckx

(log x)k
2−1

(k2 − 1)!

(

1−
( logR

log x

)(k−1)2

Pk

( logR

log x

)

+O
( 1

log x

))

,
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where Pk are polynomials of degree 2k − 2 and

Ck :=
∏

p

(

1− 1

p

)k2
(

∑

ν≥0

τk(p
ν)2

pν

)

.

Defining

γk(c) :=
1

k!G(k + 1)2

∫

[0,1]k
δ(w1 + ...+ wk − c)∆(w)2dkw,

where δ is the Dirac delta-function, ∆(w) :=
∏

i<j(wi − wj) is the Vandermonde

determinant, and G(k + 1) = (k − 1)!(k − 2)! · · · 1!, we observe that

(log x)k
2−1

(k2 − 1)!

(

1−
( logR

log x

)(k−1)2

Pk

( logR

log x

))

= (log(x/R))k
2−1γk

( log x

log(x/R)

)

.

The function γk has already appeared in [4] and [5].
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Pairs of quadrics and Nair’s theorem

Tim Browning

(joint work with Efthymios Sofos)

A quartic del Pezzo surface X over Q is a smooth projective surface in P4 cut
out by a pair of quadrics defined over Q. Let U ⊂ X be the Zariski open
set obtained by deleting the 16 lines from X and consider the counting function
N(B) = #{x ∈ U(Q) : H(x) ≤ B}, for B ≥ 1, where H is the standard height
function on P4(Q). Note that #{x ∈ (X \U)(Q) : H(x) ≤ B} has order B2 as soon
as one of the lines is defined over Q. The Batyrev–Manin conjecture [2] predicts
the existence of a constant c ≥ 0 such that N(B) ∼ cB(logB)ρ−1, as B → ∞,
where ρ is the rank of the Picard group of X . To date, as worked out by de la
Bretèche and Browning [1], the only example for which this conjecture has been
settled is the surface

x0x1 − x2x3 = x20 + x21 + x22 − x23 − 2x24 = 0.
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Our main result gives expected upper and lower bounds for any conic bundle
quartic del Pezzo surface over Q. Thus, assuming only that X(Q) 6= ∅ and that
X contains a conic defined over Q, we show that there exist constants c1, c2 > 0,
depending on X , such that

c1B(logB)ρ−1 ≤ N(B) ≤ c2B(logB)ρ−1.

Our proof makes essential use of [5], where detector functions are worked out
for the fibres with Q-rational points. Combining this with height machinery and a
uniform estimate for the number of rational points of bounded height on a conic,
in the generic case the problem is reduced to finding optimal bounds for divisor
sums of the shape

∑

s,t≤x

∑

d|∆(s,t)

(

G(s, t)

d

)

,

for forms ∆, G ∈ Z[s, t] such that ∆ is irreducible and 2 | degG. Thus far, such
sums have only been examined in the special case thatG is constant. The extension
to general G draws on pioneering work of Shiu [4] and Nair–Tenenbaum [3].
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Squarefree orders for the reductions of an elliptic curve over a

function field

Alina-Carmen Cojocaru

(joint work with Árpád Tóth, José Felipe Voloch)

Let K be a global field of characteristic p and constant field Fq. We denote by VK
the set of places of K; for v ∈ VK , we denote by kv the residue field of K at v and
by deg v := [kv : Fq] the degree of v. Let E/K be an elliptic curve over K and set

VE/K := {v ∈ VK : Ev/kv is smooth} ,
VE/K(x) := {v ∈ VE/K : deg v = x},
∣

∣V E/K

∣

∣ :=
∑

v∈VK\VE/K

deg v.
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We report on progress towards the following claim: assuming p ≥ 5 and jE 6∈ Fq,
for each sufficiently large integer x there exists δ(E, x) ∈ Q ∩ [0,∞) such that

(1) #
{

v ∈ VE/K(x) : Ev(kv) has squarefree order
}

= δ(E, x)πK(x) + ø

(

qx

x

)

,

where πK(x) := #{v ∈ VK : deg v = x}.
Claim (1) may be viewed as a function field analogue of the following asymptotic

formula, proposed and investigated by Cojocaru in the early 2000s (see [Co1], also
[Co2], [Co3]):

Squarefree Order Conjecture [Co1]
Let E/Q be an elliptic curve over Q, of conductor NE. For a prime p not dividing
NE, let Ep/Fp be the reduction of E modulo p. Then there exists an explicit
constant δ(E) ≥ 0 satisfying, as x→ ∞,

(2) #{p ≤ x : Ep(Fp) has squarefree order} ∼ δ(E) π(x),

where π(x) denotes the number of primes p ≤ x.
We recall that, while (2) is known in the case End

Q
(E) 6≃ Z (see [Co3, Thm.

1.1, p. 588]) and is supported by average results (see [Ge] and [AkDaHaTh]), it
remains open in the case EndQ(E) ≃ Z.

The principal tools in our approach towards (1) are:

• results concerning the frequency with which qdeg v + 1− |Ev(kv)| equals a
given integer, due to A. Pacheco and R. Schoof;

• classical estimates of class numbers of imaginary quadratic fields;
• arithmetic / algebraic properties of the division fields and of the function
fields of Igusa curves, associated to E/K, due to J-I. Igusa and N.M. Katz
and B. Mazur;

• effective versions of the Chebotarev density theorem for global function
fields, due to V.K. Murtya and J. Scherk (and based on A. Weil).
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[Er] M. Erdélyi, The distribution and density of cyclic groups of the reductions of an
elliptic curve over a function fields, preprint 2016.

[FuHa] W. Fulton and J. Harris, Representation theory , Springer Science & Business
Media, vol. 129, 1991.

[Ge] E.-U. Gekeler, Statistics about elliptic curves over finite prime fields, Manuscripta
Math. 127, 2008, no. 1, pp. 55–67.

[HaRi] H. Halberstam and H-E. Richert, Sieve methods, Dover Publications Inc, Mineola,
New York, 2011.

[HaVo] C. Hall and J.F. Voloch, Towards Lang-Trotter for elliptic curves over function
fields, Pure Appl. Math. Q. 2, no. 1, part 1, 2006, pp. 163–178.

[Ig] J-I. Igusa, Fibre systems of Jacobian varieties (III. Fibre systems of elliptic
curves), Amer. J. Math. 81, 1959, pp. 453–476.

[Ig2] J-I. Igusa, On the algebraic theory of elliptic modular functions J. Math. Soc.
Japan 20, 1968, pp 96–106.

[MuSc] V.K. Murty and J. Scherk, Effective versions of the Chebotarev density theorem
for function fields, C.R. Acad. Sci. Paris, t. 319, Série I, 1994, pp. 523–528.

[Pa] A. Pacheco, Distribution of the traces of Frobenius on elliptic curves over function
fields, Acta Arithmetica 106.3 (2003), pp. 255–263.

[Ro] M. Rosen, Number theory in function fields, Graduate Texts in Mathematics 201,
Springer-Verlag, New York, 2002.

[Sc] R. Schoof, Nonsingular plane cubic curves over finite fields, Journal of Combina-
torial Theory, Series A 46, 1987, pp. 183–211.

[Si] J.H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathemat-
ics 106, Springer-Verlag, New York, 1986.

[Vo1] J.F. Voloch, A note on elliptic curves over finite fields, Bulletin de la S.M.F., tome
116, no 4 (1988), pp. 455–458.

[Vo2] J.F. Voloch, Primitive points on constant elliptic curves over function fields, Bol.
Soc. Bras. Mat., Vol. 21, no. 1, 1990, pp. 91–94.

[Wa] E. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. 2,
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Statistics of L-functions

Brian Conrey

(joint work with Jon Keating)

The value distribution, especially large values, of L-functions in families can be
determined to a certain extent by averages or moments of the L-functions in the
family. Similarly, small values and zero statistics can be ascertained by averages
of the ratio of products of L-functions. In recent years precise conjectures for
moments and for ratios of L-functions have been developed especially using random
matrix theory as a guide. These conjectures agree with theory whenever the
theory is known, and have also been extensively tested numerically and found to
be in good agreement. These conjectures have been developed by Conrey, Farmer,
Keating, Rubinstein, and Snaith and by Conrey, Farmer, and Zirnbauer. An
alternate approach to moments is due to Friedberg, Goldfeld, and Hoffstein.
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What has been missing from this picture is a way to develop these conjectures
through arithmetic means. In particular for the Riemann zeta-function how can
one obtain the moments conjectures from shifted divisor problems? The purpose
of this talk is to explain a method developed by Conrey and Keating to do this.

Typically when one thinks about the 2kth moment
∫ 2T

T

|ζ(1/2 + it)|2k dt

for k > 2 one assumes that the number theory needed to input is a conjectural
formula for the shifted divisor problem

∑

n≤x

dk(n)dk(n+ h).

However, we now realize that this is not sufficient. In fact, in the terminology
developed in the recipe of [CFKRS], this arithmetic information will only give rise
to the “one-swap” terms of the recipe.

What is needed to recover the “two-swap” terms is to solve a problem like
∑

mn≤x

dj(m)dj(m+ h1)dℓ(n)dℓ(n+ h2)

where j+ ℓ = k, which could be described as “a convolution of two shifted divisor
problems.” In general, one needs to solve “a k-fold convolution of shifted divisor
problems”, at least on average, to recover all of the terms in the recipe for the
2kth moment of ζ.

The original incarnation of this idea is in a couple of papers of Bogomolny and
Keating on correlations of zeros of the Riemann zeta-function in which they show
formally how to get the n-correlation of zeros of ζ(s) from the Hardy-Littlewood
conjectures for prime pairs

∑

n≤x Λ(n)Λ(n+ 2k).
This new convolution of shifted divisor problems bears some resemblance to

phenomena in the study of rational points on complicated varieties. There are
known examples where the circle method does not register all of the main terms
within the study of the major arcs. An example of this, pointed out by Trevor
Wooley, occurs in the study of equal sums of three fourth powers:

x41 + x42 + x43 = y41 + y42 + y43

with |xi|, |y + i| ≤ N . Here the circle method predicts a main term of size ≈ N2.
But the diagonal terms xi = yj give a term of size N3. And the terms on the
subvariety with x1 = x2 + x3, y1 = y2 + y3 give a term of size ≈ N2 logN . So,
care is needed in handling this equation!

In our zeta-function moment we are also counting lattice points

x1 . . . xk = y1 . . . yk + h.

Ostensibly there should be no other terms. And in a certain regime the circle
method (or delta-method) apparently no longer gives all of the main terms and
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one needs to forcibly consider counting lattice points on, for example,

Mx1 . . . xj = Ny1 . . . yj + h1 Nt1 . . . tℓ =Mu1 . . . uℓ + h2

for small parameters M and N .
The complete stratification becomes combinatorially quite complicated. But in

the end one can recover all of the main terms with the geometric and arithmetic
weights which appear in the recipe.

Systems of cubic forms

Rainer Dietmann

Let γ(r) be the smallest non-negative integer such than whenever C1, . . . , Cr ∈
Q[X1, . . . , Xs] are cubic forms with s > γ(r), then the system Ci(x) = 0 (1 ≤
i ≤ r) has a solution x ∈ Qs\{0}. The best known bounds at present are γ(1) ≤ 13
([4]), γ(2) ≤ 654 ([2], [4]), and γ(r) < (10r)5 ([8]) in general. It is that latter case
of large r which we want to focus on. To state results more precisely, let us first
generalize Davenport and Lewis’ definition of the h-invariant ([3]) to systems of
cubic forms in the following way: Let K be a field and C1, . . . , Cr ∈ K[X1, . . . , Xs]
be cubic forms, then define hK(C1, . . . , Cr) to be the smallest non-negative integer
h such that there exist linear forms L1, . . . , Lh ∈ K[X1, . . . , Xs] and quadratic

forms Q
(j)
1 , . . . , Q

(j)
h ∈ K[X1, . . . , Xs] (1 ≤ j ≤ r) such that

Cj =

h
∑

i=1

LiQ
(j)
i (1 ≤ j ≤ r).

It is easy to see that s − hK(C1, . . . , Cr) is the dimension of the largest K-linear
space on which C1, . . . , Cr simultaneously vanish.

Using the circle method, one can show that if C1, . . . , Cr ∈ Z[X1, . . . , Xs] are
cubic forms such that each form C in the Q-rational pencil of C1, . . . , Cr satisfies
hQ(C) > 8r2 + 8r, then an asymptotic formula for the number of simultaneous
integer zeros of C1, . . . , Cr in an expanding box holds true. The bottleneck is
to show that the singular series is positive. Schmidt ([5], [6], [7]) developed an
approach combining reduction theory and exponential sums showing that if the
system C1, . . . , Cr is ‘ω-bottomed’ for ω > 1764(3r+1)2, then its singular series is
positive. However, his argument for ‘bottomless’ systems was more wasteful, and
it is here that we introduce new ideas: If C1, . . . , Cr is not ω-bottomed, then one
can show that there is a form C in the Q-rational pencil of C1, . . . , Cr such that

(1) h
Q
(C) < 3ωr.

The main new ingredient is now our following result ([1]).

Theorem 1. Let α1, . . . , αq ∈ Q be Q-linearly independent, and let C1, . . . , Cq ∈
Z[X1, . . . , Xs] be cubic forms. Then

hQ(C1, . . . , Cq) ≤ 6qhQ(α1C1 + . . .+ αqCq) + 1.
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Applying this in the situation (1) from above, one finds that there are linearly
independent cubic forms C1, . . . , Cq in the Q-rational pencil of C1, . . . , Cr having

hQ(C1, . . . , Cq) ≤ 400000qr3,

hence simultaneously vanishing on a Q-linear space V of dimension at least s −
400000qr3. This way, substituting V into the remaining cubic forms, one can
inductively reduce the number of equations and obtains the following improvement
over Schmidt’s result:

Theorem 2. We have

γ(r) ≤ 400000r4.

The proof of Theorem 1 makes use of Schmidt’s subspace theorem: Suppose
that

(2)

q
∑

i=1

αiCi(x) =

h
∑

i=1

Li(x)Qi(x)

for cubic forms Ci ∈ Z[X1, . . . , Xs], linear forms Li ∈ C[X1, . . . , Xs] and quadratic
forms Qi ∈ C[X1, . . . , Xs]. Choosing x ∈ Zs\{0}, such that simultaneously all
|Li(x)| are small, one can force the right hand side of (2) to be small, whereas by
the subspace theorem, and Q-linear independence of α1, . . . , αq, the left hand side
can only be small if all integers Ci(x) are simultaneously zero. This idea can be
generalized to finding a Q-linear space of common rational zeros of C1, . . . , Cq and
this way leads to a bound of hQ(C1, . . . , Cq) in terms of hQ(α1C1 + . . .+ αqCq).

References

[1] Dietmann, R. On the h-invariant of cubic forms, and systems of cubic forms, to appear in
Q. J. Math.

[2] Dietmann, R. & Wooley, T. Pairs of cubic forms in many variables, Acta Arith. 110

(2003), 125–140.
[3] Davenport, H. & Lewis, D. J. Non-homogeneous cubic equations, J. London Math. Soc.

39 (1964), 657–671.
[4] Heath-Brown, D. R. Cubic forms in 14 variables, Invent. Math. 170 (2007), 199–230.
[5] Schmidt, W. M. On cubic polynomials. I. Hua’s estimate of exponential sums, Monatsh.

Math. 93 (1982), 63–74.
[6] Schmidt, W. M. On cubic polynomials. II. Multiple exponential sums, Monatsh. Math. 93

(1982), 141–168.
[7] Schmidt, W. M. On cubic polynomials. III. Systems of p-adic equations, Monatsh. Math.

93 (1982), 211–223.
[8] Schmidt, W. M. On cubic polynomials. IV. Systems of rational equations, Monatsh. Math.

93 (1982), 329–348.



Analytic Number Theory 2991

Moments of L–functions in function fields

Alexandra Florea

This report is concerned with moments in the family of quadratic Dirichlet L–
functions over function fields. Fix Fq[x], with q a prime with q ≡ 1 (mod 4). We
are interested in obtaining asymptotic formulas for

∑

D∈H2g+1

L(12 , χD)k,

where H2g+1 denotes the ensemble of monic, square-free polynomials of degree
2g+1 with coefficients in Fq, when the genus g → ∞. Using the “recipe” method
developed by Conrey, Farmer, Keating, Rubinstein and Snaith to predict moments
for different families of L–functions over number fields, Andrade and Keating made
the following conjecture.

Conjecture 1. For q fixed, we have
∑

D∈H2g+1

L(12 , χD)k = q2g+1
(

Pk(2g + 1) + o(1)
)

,

where Pk is a polynomial of degree k(k + 1)/2 with explicit coefficients.

The first moment was computed by Andrade and Keating, with an error term

of size O(q
3g
2 +ǫg). In the same setting, I computed an extra term, of size approxi-

mately the cube root of the main term.

Theorem 1. For q, fixed, we have that
∑

D∈H2g+1

L(12 , χD) = q2g+1P1(2g + 1) + q
2g+1

3 Q1(2g + 1) +O(q
g
2 (1+ǫ)),

where P1 and Q1 are linear polynomials with explicit coefficients.

The proof relies on using a Poisson summation formula over function fields
which leads to three terms: a diagonal term, an off-diagonal term arising from
the dual parameter in the Poisson summation formula being a square, and an
off-off diagonal contribution from non-square polynomials. By identifying the off-
diagonal term, as in the work of Soundararajan on the second and third moments
of quadratic L–functions in number fields, and by using a matching argument, one
can show that this term partly cancels out with the error arising from the diagonal

term, and then contributes a lower order term of size q
2g+1

3 g.
In the case of the second and third moments, we prove the following.

Theorem 2. For q fixed and k = 2, 3, we have that
∑

D∈H2g+1

L(12 , χD)k = q2g+1Pk(2g + 1) +O(q
kg
2 (1+ǫ)).

For the second moment, it is believed that the true size of the error term should
be O(qg(1+ǫ)), while for the third moment in the number field setting, by using
multiple Dirichlet series, Diaconu, Goldfeld and Hoffstein conjectured the existence
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of a term of size X
3
4 (which translates to q

3g
2 in the function field setting) in the

asymptotic formula. In light of these conjectures, the error terms obtained in
the theorem above are sharp. Both of these terms arise from the off-off diagonal
contribution of non-square polynomials, which can be related to another shifted
moment-type expression. Obtaining the upper bound relies on using the Lindelöf
bound for L–functions.

The fourth moment is more delicate to compute, and we cannot obtain the
full degree 10 polynomial conjectured by Andrade and Keating. However, we can
obtain an asymptotic formula with the first few leading terms. Specifically, we
have the following result.

Theorem 3. For q fixed,

∑

D∈H2g+1

L(12 , χD)4 = q2g+1
(

a10g
10 + a9g

9 + a8g
8
)

+O
(

q2g+1g7+
1
2+ǫ
)

,

where a10, a9, a8 are arithmetic factors which can be written down explicitly.

The proof of the theorem above entails obtaining first an upper bound of the
correct order of magnitude for the fourth moment (as in the work of Soundararajan
and Harper on moments of the Riemann-zeta function). Using upper bounds for
moments allows us to obtain the first leading term in the asymptotic formula.
By truncating the Dirichlet polynomial coming from the approximate functional
equation and using a recursive argument, one can compute the g9 and the g8 terms
as well.

Moments of L–functions at the central point

Étienne Fouvry

(joint work with V. Blomer, E. Kowalski, Ph. Michel, D. Milićević and W. Sawin)

In 2011 M. Young proved the following asymptotic formula [6]

(1)
1

q − 2

∑

∗

χ mod q

∣

∣

∣L(χ, 1/2)
∣

∣

∣

4

= P4(log q) +O
(

q−
1
80 (1−2θ)+ε

)

,

where q ≥ 3 is prime, where the sum is over all primitive characters modulo q,
where P4 is a real polynomial with degree 4, and where θ is any constant, such
that the inequality |λf (n)| ≤ d(n)nθ, (d usual divisor function) holds for any
n ≥ 1, for any cuspidal Hecke eigenform, holomorphic or not. Recall that the
value θ = 7/64 is correct (Kim–Sarnak) and it is conjectured that θ = 0 is also
correct (Ramanujan–Petersson conjecture).

The purpose of our work has two aspects: extend the left–hand side of (1) and
improve the error term. Here are our three results (see [1], [2], [4]).

Let f be a cuspidal Hecke eigenform with level 1, holomorphic or not. Then
there exist three polynomials P4, P0 and P1, with degrees 4, 0 and 1 respectively,
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such that, for any ε > 0, for any prime q ≥ 3, we have the equalities

(2)
1

q − 2

∑

∗

χ mod q

∣

∣

∣
L(χ, 1/2)

∣

∣

∣

4

= P4(log q) +Oε

(

q−
1
20+ε

)

,

(and the exponent 1/20 is improved in 1/16 if θ = 0)

(3)
1

q − 2

∑

∗

χ mod q

L(f ⊗ χ, 1/2)L(χ, 1/2)
2
= P0(log q) +Oε

(

q−
1
68+ε

)

,

(4)
1

q − 2

∑

∗

χ mod q

∣

∣

∣L(f ⊗ χ, 1/2)
∣

∣

∣

2

= P1(log q) +Oε

(

q−
1

144+ε
)

,

In the above formulas, L(f ⊗ χ, s) is the classical Dirichlet twist of a modular
L–function: L(f ⊗ χ, s) =

∑

λf (n)χ(n)n
−s. Remark, that if we consider, for

instance the sum treated in (4) but with f replaced by the Eisenstein series E,
we recover the sum appearing in (1) and (2). The problem of giving asymptotic
formulas of the sums presented in (2), (3) and (4) (with a power saving in the
error term) is more and more difficult. The reason is essentially due to the fact
that the sums we are creating in the proof, are more and more rigid: the function
d, seen as a Fourier coefficient of an Eisenstein series, is present in (1) and (2) and
introduces more flexibility.

Compared with (1), our improvements are essentially based on a better treat-
ment of the shifted convolution problems and also new results concerning bilinear
sums of Kloosterman sums. For q prime, we denote by Kl2(a; q) the normalized
Kloosterman sum Kl2(a; q) := (1/2

√
q)
∑

exp(2πi(x + ay)/q), where the sum is
over all (x, y) modulo q such that xy = 1. By Weil, we know the inequality
|Kl2(a; q)| ≤ 1. We are searching for deeper cancellations by exploiting the oscil-
lations of the signs of Kl2 in bilinear sums of the shape

B(M,N) :=
∑

m∈M

∑

n∈N

αmβnKl2(mn; q),

where M and N are intervals modulo q, with cardinalities M and N , and where
αm and βn are coefficients less than 1 in modulus. Our aim is to go below the trivial
bound B(M,N) = O(MN) forM and N as small as possible when compared with
the prime q going to infinity.

We treat B(M,N) under different angles: Cauchy–Schwarz and independence of
Kloosterman sheaves ([1]), by trace functions techniques, or opening Kloosterman
sums ([5], [2]), Karatsuba shift by ab and bounds for exponential sums over some
varieties ([1]),...

The recent bound (see [4]) B(M,N) ≪ MNq−δ for M and N ≥ q
1
2−γ where δ

and γ are some specified constants certainly is the achievment of all these tech-
niques and seems to be essential in the proof of (4).

The combination of (2), (3) or (4) with now standard techniques of analytic
number theory (amplification, mollification, resonator,...) leads to various results
on the existence of special behaviour of these L–functions at the central point.
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For instance we prove that if f is a fixed Hecke cuspidal newform, there exists a
positive proportion of Dirichlet twists L(f⊗χ, 1/2) with modulus greater 1/(log q)
when χ belongs to the set of a characters modulo the prime q going to infinity (see
[3]).
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smooth bilinear sums of Kloosterman sums, Special issue of the Proceedings of the Steklov
Institute of Mathematics dedicated to the 125th anniversary of I. M. Vinogradov (to appear),
see arXiv:1604.07664.

[3] V. Blomer, E. Fouvry, E. Kowalski, Ph. Michel, D. Milićević and W. Sawin, Non–vanishing
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Divisor sums and rational points on conic bundle surfaces

Christopher Frei

(joint work with Daniel Loughran and Efthymios Sofos)

A conic bundle surface over a number field K is a smooth projective surface X
over K with a dominant morphism π : X → P1

K , such that each fibre of π is
isomorphic to a plane conic. It can be defined inside a P2-bundle over P1 by an
equation

Q(s, t;x0, x1, x2) :=
∑

0≤i,j≤2

aij(s, t)xixj = 0,

with binary forms aij ∈ OK [s, t]. In particular, every del Pezzo surface is a conic
bundle surface if the base field K is large enough. The height machine provides us
with a height function H on the rational points X(K) relative to the anticanonical
divisor −KX of X . If −KX is big, then X has an open subset U satisfying the
Northcott property, i.e.,

NU,H(B) := #{x ∈ U(K) | H(x) ≤ B} <∞
for all B > 0. If moreoverX(K) dense in X , versions of Manin’s conjecture predict
an asymptotic formula

NU,H(B) ∼ cB(logB)ρX−1,

where c > 0 and ρX is the rank of the Picard group of X . Our results concern
(conjecturally) sharp asymptotic lower bounds for NU,H(B) for a wide range of
conic bundle surfaces and arbitrary open subsets U thereof. To each conic bundle
surface π : X → P1

K , we associate a generalized divisor sum Dπ(B) over the values



Analytic Number Theory 2995

of certain binary forms. For simplicity, let us restrict to the case K = Q. Then
our divisor sums take the rough shape

D(B) :=
∑

(s,t)∈(Z∩[−B,B])2

Fi(s,t) 6=0
(s,t)≡(σ,τ) mod q

n
∏

i=1

(1 ∗ f) (Fi(s, t))

(

∑

di∈N
di odd

di|Fi(s,t)

(

Gi(s, t)

di

))

.

Here, σ, τ, q, are positive integers, f is a small arithmetic function, the integer
binary forms Gi have even degree, and the forms Fi are irreducible and coprime
to Gi and each other. For such divisor sums, one would expect lower bounds (and
even asymptotics) of the order of maginitude

(1) D(B) ≫ B(logB)rk(D),

where rk(D) := #{1 ≤ i ≤ n | Gi(s, 1) is a square mod Fi(s, 1)}, assuming that
no Fi is proportional to t. The divisor sum Dπ(B) corresponding to a conic bundle
surface π has the irreducible factors of the discriminant ∆(s, t) := det(aij(s, t))
as the forms Fi and certain detector functions deciding the splitting properties of
singular fibres as the forms Gi. The main result of [1] shows that a lower bound
as in (1) for Dπ(B) implies a lower bound

NU,H(B) ≫ B(logB)ρX−1

for the number of rational points in any non-empty open subset U of X , which is
sharp according to Manin’s conjecture. In [2], we prove the validity of (1) for all
divisor sums D of complexity

c(D) :=
∑

1≤i≤n
Gi(s,1) 6≡� mod Fi(s,1)

degFi ≤ 3

over all number fields, under some technical hypotheses. The sum in the definition
of c(D) runs over all i such that Gi(s, 1) is no square modulo Fi(s, 1). These bounds
translate back to sharp lower bounds for conic bundle surfaces π of complexity

c(π) :=
∑

p∈P1
K

Xp non-split

[K(p) : K] ≤ 3,

leading to remarkable consequences in particular for del Pezzo surfaces. Recall that
every del Pezzo surface has a degree d ∈ {1, . . . , 9}, defined as the self-intersection
number d = KX ·KX . Manin’s conjecture is known to hold for del Pezzo surfaces
of degree d ≥ 6, so we restrict to d ≤ 5.

Theorem 1. Let X be a del Pezzo surface of degree d ≤ 5 over K. Then

NU,H(B) ≫ B(logB)ρX−1

holds after a base extension of degree bounded by nd <∞.
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Theorem 2. Let X be a del Pezzo surface of degree d ≤ 5 over K with X(K) 6= ∅.
Then

NU,H(B) ≫ B(logB)ρX−1

as soon as ρX ≥ rd.
The constants nd, rd in Theorems 1 and 2 are given explicitly as follows.

d 5 4 3 2 1
nd 5 80 432 4032 138240
rd 3 4 4 5 6
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Sums of squares and combinatorial geometry

Brandon Hanson

The numbers which can be represented as a sum of squares are of classical impor-
tance to number theory. Laundau gave an asymptotic formula for the number of
such integers up to x. From an additive combinatorial point of view, the fact that
the number of such integers is even o(x) is perhaps surprising. Why should the
squares have any additive structure at all. A simple modification of the large sieve
can be used to explain this. On the other hand, this small amount of additive
structure is conjectured to be the most any collection of squares has. Namely,
if S is any finite set of perfect squares, then a conjecture of Rudin states that
|S + S| ≫ |S|2−ǫ should hold for any positive ǫ (at the cost of an implicit con-
stant). This conjecture is wide open, and even |S + S| ≫ |S|1+δ for some positive
δ is not known. Here, the assumption that S consists of squares of integers is
essential. We prove that for difference sets, i.e. sets of the form D = A−A where
A is a set of real numbers, a similar phenomenon holds: |D2 + D2| ≫ |D|1+δ.
This provides a certain rigid structure to the endpoint case of the famous Erdos
Distinct Distances Problem for point sets which are cartesian products.
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Character sums and point counting

Adam J Harper

Let q be a large prime, and let χ 6= χ0 be a non-principal Dirichlet character
mod q. The behaviour of character sums

∑

n∈I χ(n), where I is an interval, is a
classical topic of study in analytic number theory. In my talk I reported on work
in progress on the behaviour of the sums

S(x) = S(x; q, χ,H) :=
∑

x<n≤x+H

χ(n),

where H = H(q) ≥ 0 is some length function, and where x ∈ {0, 1, ..., q − 1}
is chosen uniformly at random. This statistical question has been the subject of
work by Davenport and Erdős [1] and by Lamzouri [2], amongst others.

Since χ is periodic modulo q, we may restrict attention to length functions
satisfying 0 ≤ H ≤ q. Moreover, when H ≍ q it turns out that the behaviour of
S(x) has special structure (e.g. when H = q we have S(x) ≡ 0, by orthogonality),
and for bounded H the question of the distribution of S(x) essentially reduces to
the distribution of values of the character χ itself. Therefore we restrict to the
case where H(q) → ∞ but H(q) = o(q) as q → ∞. In this setting, and for real χ,
and assuming in addition that (logH)/ log q → 0, Davenport and Erdős [1] proved
that

S(x)√
H

d→ N(0, 1) as q → ∞.

Recall that the object on the left is a random variable for each q (as x is chosen at
random), and the result of Davenport and Erdős is the convergence in distribution
of this sequence of random variables (as q → ∞) to the standard real Gaussian
N(0, 1). Lamzouri [2] extended the result of Davenport and Erdős to allow complex
characters χ, now with a complex Gaussian limit distribution, but still under the
extra assumption that (logH)/ log q → 0 as q → ∞.

Lamzouri [2] also made a conjecture about what should happen when the as-
sumption (logH)/ log q → 0 is removed. More precisely, he conjectured that pro-
vided H(q) → ∞ and H(q) = o(q/ log q) one should see the same Gaussian limit
distributions. This conjecture was based on the analogy with a model problem
where one fixes an interval [y, y+ z(y)] (with y → ∞ at the end), and looks at the
distribution of the sum on this fixed interval of a random multiplicative function.

The results I described in my talk were as follows. Firstly, Lamzouri’s con-
jecture is not correct, since for any fixed A > 0 one can take H(q) = q/ logA q
and find a sequence of characters χ mod q for which one doesn’t see the desired
limit distributions. But secondly, Lamzouri’s conjecture is correct on the range
q1−o(1) ≤ H(q) = o(q), provided one only asks for the result for “almost all” char-
acters. In particular, one doesn’t need the extra restriction H(q) = o(q/ log q)
posited by Lamzouri for an “almost all” result (and the result is false if one wants
it for all characters).

The disproof of Lamzouri’s conjecture works by looking at the Fourier expansion
of S(x), and observing that this closely resembles a sum of χ over an interval of
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length q/H = logA q. Thus it turns out one can rule out the posited Gaussian
limits by using characters whose sum over such an interval is “highly biased”. The
positive “almost all” result is proved using a moment calculation with this Fourier
expansion, which reduces to a point counting problem.
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Iteration of quadratic polynomials over finite fields

Roger Heath-Brown

Let f(X) ∈ Fq[X ] and define the iterates fj(X) by setting f0(X) = X and
fj+1(X) = f(fj(X)). Let m ∈ Fq, and consider the sequence of values f0(m),
f1(m), f2(m), . . .. Since the field Fq is finite, the sequence eventually recurs, and
one enters a closed cycle. We are interested in the questions:- How long is it before
one enters the cycle? How long is the cycle?

The standard model assumes that the values fi(m) form a random walk. They
should then typically recur after O(

√
q) steps. However the polynomials f(X) =

X2 and f(X) = X2 − 2 do not behave in this way. If q = 2r + 1 and r = 2l + 1
with q, r, l all prime and l ≡ 1(mod 4), then the first of these produces a period
of length (q − 3)/2 if the starting value m is a primitive root of q. Similarly, the
second will produce a cycle of length ≫ q for many initial values m.

Things also appear to go wrong for f(X) = X3+1 when q ≡ 5(mod 6) is prime.
Here f induces a permutation on Fq, and if this were a random permutation we
would expect cycles of length ≫ q in a positive proportion of cases. The numerical
evidence seems to support this model.

In contrast we prove:
For f(X) = X2 + 1 the sum of all cycle lengths is O(q/(log log q)). Moreover,

every trajectory f0(m), f1(m), . . . recurs after O(q/(log log q)) steps.
The proof proof works for most quadratic polynomials but requires (among

other conditions) that

fa(X)− fa(Y )

fb(X)− fb(Y )

is absolutely irreducible for all positive integers a > b; and one can see that this
fails for X2 and X2 − 2.
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The sieve of Eratosthenes in less space

Harald Andrés Helfgott

The sieve of Eratosthenes is a procedure for constructing all primes up to N . More
generally, such a sieve can be used for computing all values f(n), n ≤ N , for many
arithmetical functions f that depend on the factorization of integers. For instance,
one can take f = µ, the Möbius function, or f = λ, the Liouville function.

The point of the sieve of Eratosthenes is that it can be carried out in time close
to linear on N , even though determining whether an individual integer is prime,
let alone factorizing it, takes much more than constant time with current methods.
Though a very näıve implementation of the sieve would take space proportional
to N , it is not hard to see how to implement the sieve in space O(

√
N), simply

by applying the sieve to intervals of length O(
√
N) at a time; the time taken is

still essentially linear on N . (One could take shorter intervals, but the algorithm
would then become much less efficient.) This is called the “segmented sieve”; see
[Sin69] for an early reference.

Galway [Gal00] found a way to sieve using space O(N1/3) and essentially linear
time. Like the sieve in [AB04], on which it is based, Galway’s sieve is specific to
finding prime numbers.

I have managed to find a way to implement a sieve of Eratosthenes in space
O(N1/3) and essentially linear time.

Theorem 1. We can construct all primes p ≤ N in space O(N1/3) and time
O(N). We can also compute all values µ(n) and λ(n) with n ≤ N , in space
O
(

N1/3(logN)2/3
)

and time O(N logN).
Moreover, we can construct all primes in an interval [N−∆, N+∆) and compute

all values µ(n), λ(n) therein in time O(∆ log x) for ∆ ≥ N1/3(logN)2/3.

The main ideas come from basic number theory. In order for us to be able to
apply the sieve to an interval I of length O(N1/3) without large time inefficiencies,

we need to be able to tell in advance which primes (or integers) d up to
√
N divide

at least one integer in I, without testing each d individually. We can do this by
Diophantine approximation, a local linear approximation to the function x 7→ n/x
for n fixed, and by the solution to what amounts to a linear equation mod1.

The idea of using Diophantine approximation combined with a local linear
approximation is already present in [TCH12], where it was used to compute
∑

n≤x τ(n) in time O(x1/3(log x)O(1)). The basic underlying idea in [Gal00] may
be said to be the same: we are speaking of an Diophantine idea that stems ul-
timately from Voronöı’s work on the circle problem (in the case of [Gal00]) and
the Dirichlet divisor problem. For that matter, [Gal00, §5] already suggests that
Voronöı’s work on the Dirichlet divisor problem could be used to make the sieve
of Eratosthenes in space O(N1/3) and essentially linear time.

The main difference is that the relation to Voronöı in Galway’s work is much
more direct, in that he literally dissects a region between two circles, much as
Voronöı does. In the case of the present work, we can speak of a main idea that
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originated in the context of giving elementary estimates for a quantity in analytic
number theory and is now used to carry out an exact computation.
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New results on the Selberg class

Jerzy Kaczorowski, Alberto Perelli

Part I - The functional equation of the standard twists of certain L-functions.

The standard twist of an L-function F (s) satisfying a general Riemann-type func-
tional equation

(1) Λ(s) = ωΛ(1− s), Λ(s) = Qs
r
∏

j=1

Γ(λjs+ µj)F (s)

is defined as

(2) F (s, α) =

∞
∑

n=1

a(n)

ns
e(−αn1/d),

where α > 0, e(x) = e2πix and a(n) (resp. d = 2
∑r

j=1 λj) are the coefficients

(resp. the degree) of F (s). The standard twist is a useful tool in the study
of L-functions (in particular in the Selberg class theory), and its basic analytic
properties (meromorphic continuation, polar structure and order of growth on
vertical strips) are known.

In view of the characterization of the degree 1 L-functions, in such a case
F (s, α) reduces to a certain combination of Hurwitz-Lerch zeta functions, and
hence satisfies a Hurwitz-Lerch type functional equation. One may therefore ask
if the standard twist has a functional equation for general degrees d ≥ 2. Recently
we proved that if F (s) satisfies (1) with a special choice of Γ-factors, then F (s, α)
has a functional equation reflecting s to 1− s.

Examples of such a choice of Γ-factors can be produced for any integer degree
d ≥ 2. In particular, for d = 2 our method applies to the classical case of the Hecke
L-functions associated with cusp forms of half-integral weight. As a consequence,
in such a case F (s, α) satisfies, in addition to the above reported properties, a
functional equation which may be regarded as a degree 2 analog of the Hurwitz-
Lerch functional equation. Moreover, information about trivial and non-trivial
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zeros of F (s, α) can be deduced. We are currently investigating how to enlarge
the choice of admissible Γ-factors.

Part II - Converse theorems for degree 2, conductor 1 L-functions from the Selberg
class.

Converse theorems are statements identifying known L-functions by their analytic
properties. We focus our attention on degree 2 L-functions from the Selberg
class of conductor 1. It is expected that the only primitive L-functions of this
type are those coming from holomorphic and non-holomorphic eigenforms with
respect to the full modular group Γ0(1). The theorems below yield strong evidence
supporting these expectations.

For F (s) from the Selberg class S we denote by d and q the degree and the
conductor of F (s), respectively. Moreover, let ξ = 2

∑r
j=1(µj − 1

2 ), H(2) =

2
∑r

j=1 B2(µj)λ
−1
j (here B2(X) = X2 − X + 1/6 denotes the second Bernoulli

polynomial) and δ(F ) = inf |ℜ(ω′ − ω)|, where the infimum is taken over different
trivial zeros of F (s) with ℑ(ω) = ℑ(ω′). The following theorems hold.

Theorem 1. If F ∈ S has d = 2, q = 1 and a pole at s = 1, then F (s) is the
square of the Riemann zeta function: F (s) = ζ2(s).

Theorem 2. If F ∈ S has d = 2, q = 1, ξ = k − 2 (k ≥ 12, even integer) and
H(2) = 2B2((k − 1)/2), and all its trivial zeros are simple, then there exists a
holomorphic eigenform f ∈ Sk(Γ0(1)) such that F (s) = L(s+ k−1

2 ).

Theorem 3. Let F ∈ S be such that d = 2, q = 1, ξ ∈ {−2, 0}, H(2) = 4
3 − 2κ2,

where κ2 + 1
4 is an eigenvalue of the hyperbolic Laplacian, and δ(F ) > 1. Then

there exists a weight 0 Maass eigenform for Γ0(1) corresponding to the eigenvalue
κ2+ 1

4 such that F (s) = L(s, f). Moreover, f is even if ξF = −2 and odd if ξF = 0.

Sieve weights and their smoothings

Dimitris Koukoulopoulos

(joint work with Andrew Granville and James Maynard)

Inclusion-exclusion tells us that

(1) 1(a,m)=1 =
∑

d|(a,m)

µ(d).

Here we think of a as belonging some set A from which we are trying to extract
primes, andm as the product of some primes with which we are siftingA. However,
the divisors d in the right hand side of (1) become too large for this formula to
be useful in practice. Modern sieve methods can be thought of as an attempt of
replacing the right hand side of (1) with weights that correlate sufficiently strongly
with the left hand side. In the combinatorial sieve, this is done using combinatorial
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tools. In Selberg’s sieve though, one replaces the right hand side of (1) by

(2)





∑

d|(a,m)

λd





2

,

where the λd’s are some real numbers to be chosen in an optimal way. If λ1 =
1, then the expression in (2) always majorizes 1(a,m)=1. To guarantee that the
support of the sum in (2) is small enough, we assume that λd = 0 for d > R.
If m =

∏

p≤R and we impose some reasonable assumptions on the set A we are
sieving, we find that the optimal choice in Selberg’s sieve is given by

λd ≈ c · µ(d) ·
(

log(R/d)

logR

)κ

· 1d≤R,

where κ is a certain invariant of the sieving problem called the dimension and c
is a normalizing factor. What is important to notice here is as κ increases, the
truncation at d = R is done in a smoother and smoother way.

More generally, we can consider the Selberg-style sieve weight

Mf (n;R) =
∑

d|n

µ(d)f

(

log d

logR

)

,

where f is supported on (−∞, 1]. Such weights and their higher-dimensional
analogues play a crucial role in the study of small gaps between primes [6, 8, 10, 11].
In [7], we investigate the role of the smoothness of f in these weights. As it turns
out, the effect of the smoothing can be seen more explicitly when taking high
moments of Mf (n;R). In the special but important case when f(x) = fA(x) :=
1x<1 · (1 − x)A, we proved the following result:

Theorem 1. For fixed integers k ≥ 1 and A ≥ 0, there is a constant ck,A > 0
such that

1

x

∑

n≤x

Mf (n;R)
2k = ck,A · (logR)Ek,A +O((logR)Ek,A−1) (x ≥ R2k logR),

where Ek,A := max{
(

2k
k

)

− 2k(A + 1),−1}. In particular, Ek = Ek,0 =
(

2k
k

)

− 2k.

Additionally, we find that there is a constant c′k > 0 such that for R2k ≤ x we have

1

x

∑

n≤x

(

∑

d|n
R/2<d≤R

µ(d)
)2k

= c′k(logR)
(2kk )−2k +O

(

(logR)(
2k
k )−2k−1

)

.

All implied constants depend at most on k and A.

In particular, we see that 2k-th power of MfA(n;R) behaves like a sieve weight

only when A >
(

2k
k

)

/(2k) − 1. The above theorem improves upon [1, 3] when
A = 0.
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We also studied analogous questions in the ring Fq[t], where q is a prime. Pre-
cisely, we considered the sum

Polyq(n,m; k) :=
1

qn

∑

N∈Fq[t]
degN=n

∣

∣

∣

∑

M|N
degM=m

µ(M)
∣

∣

∣

2k

.

Part of our motivation for studying this analogy was to get a better understanding
of the unexpected exponent Ek,0 =

(

2k
k

)

− 2k in the unsmoothed cased. However,
it turns out that there is a discrepancy between Z and Fq[t], a rare occurrence:

Theorem 2. For integers k,m ≥ 1 and n ≥ 2mk, and a prime power q that is
large enough in terms of m and k, we have that

Polyq(n,m; k) ≍m,k 1 +m22k−1−2k−1.

We explained this discrepancy by observing that it is rooted in the fact that
the Möbius function µ(M) can be replaced here by (−1)deg(M)µ(M), which is zero
on average over irreducible polynomials. An analogous example of a real-valued
multiplicative function over Z is a real, non-principal Dirichlet character χ, and
the analogous quantity is

D(x;R) :=
1

x

∑

n≤x

(

∑

d|n
R/2<d≤R

χ(d)
)2k

.

We proved that D(x;R) behaves like the finite field analogy for R large enough
in terms of χ. However, if L(s, χ) has a Siegel zero, so that χ(n) pretends to be
µ(n) for small n, then D(x;R) behaves like the same sum with χ replaced by µ
for small R.
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Height of rational points on random Fano varieties

Pierre Le Boudec

The goal of this note is to report on forthcoming work of the author [5] investigating
the distribution of the height of the lowest rational point on a variety V in terms
of the height of V , as V runs over families of Fano complete intersections.

We let n ≥ 3, r ≥ 1 and d1, . . . , dr ≥ 2 be fixed. Moreover, we set d =
(d1, . . . , dr) and d = d1 + · · ·+ dr and we assume that n+ 1− d > 0. Finally, for
e ≥ 1, we let N(e, n) be the number of monomials of degree e in n+ 1 variables.

Ordering monomials using the lexicographical order, smooth complete inter-
sections in Pn of codimension r and multidegree d defined over Q are naturally
parametrized by a subset Vd,n of PN(d1,n)−1(Q)× · · · × PN(dr,n)−1(Q). From now
on, we thus view the above varieties as elements of this product of projective
spaces.

Note that the assumption n+ 1 − d > 0 implies that the elements of Vd,n are
Fano varieties.

We define the exponential height Hn : Pn(Q) → R>0 by choosing coordinates
(x0, . . . , xn) ∈ Zn+1 satisfying gcd(x0, . . . , xn) = 1 and by setting

Hn(x0 : · · · : xn) = max{|x0|, . . . , |xn|}.
Let V ∈ Vd,n. Recall that the anticanonical height H : V (Q) → R>0 on V is

defined by

H(x0 : · · · : xn) = Hn(x0 : · · · : xn)n+1−d.

Our goal is to investigate the quantity M(V ) defined by

M(V ) = min{H(x),x ∈ V (Q)},
if V (Q) 6= ∅ and by M(V ) = ∞ if V (Q) = ∅.

We now introduce an ordering of Vd,n by defining the height of an element V
of Vd,n. For V = (a1, . . . , ar), we set

H(V ) = max
1≤i≤r

HN(di,n)−1(ai)
r.

Finally, for A ≥ 1, we let

Vd,n(A) = {V ∈ Vd,n,H(V ) ≤ A}.
In [5], the author introduces a probabilistic model which provides a prediction

for the distribution of M(V ) in terms of H(V ) as V runs over Vd,n. This model
leads in particular to the following conjecture.
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Conjecture 1. For t ∈ (0, 1), we have the upper bound

lim sup
A→∞

#{V ∈ Vd,n(A),M(V ) ≤ tH(V )}
#Vd,n(A)

≪ t.

We define

δglobal = lim
A→∞

#{V ∈ Vd,n(A), V (Q) 6= ∅}
#Vd,n(A)

,

if this limit exists. It is important to note here that we expect δglobal > 0, which
is the reason why Conjecture 1 is pertinent. Indeed, let

δlocal = lim
A→∞

#{V ∈ Vd,n(A), V (AQ) 6= ∅}
#Vd,n(A)

,

if this limit exists and where V (AQ) denotes the set of adèles of V . In the case
r = 1, Poonen and Voloch conjectured (see [6, Conjecture 2.2]) that δglobal = δlocal
and they showed (see [6, Theorem 3.6]) that δlocal > 0. Moreover, they proved (see
[6, Proposition 3.4]) that the equality δglobal = δlocal follows from the conjecture
of Colliot-Thélène (see [4] and [3]) asserting that the Brauer-Manin obstruction to
the Hasse principle is the only one for smooth Fano hypersurfaces. In addition,
Browning recently generalized (see [1, Theorem A]) their results to the case r > 1.

The main results established in [5] are the following.

Theorem 1. If r ≤ n+ 1− d then Conjecture 1 holds.

It is worth stressing that Theorem 1 implies in particular that Conjecture 1
holds if r = 1.

Corollary 1. Assume that r ≤ n + 1 − d. Let ψ : R>0 → R>0 be such that
ψ(u) = o(u) as u→ ∞. We have the equality

lim
A→∞

#{V ∈ Vd,n(A),M(V ) > ψ(H(V ))}
#Vd,n(A)

= 1.

The probabilistic model introduced in [5] leads to the expectation that M(V )
andH(V ) should typically have comparable size. Therefore, Corollary 1 is expected
to be optimal.

The topics addressed in [5] have not been much studied. However, we note
that Brüdern and Dietmann have investigated the case of diagonal hypersurfaces,
which is of course much harder. They have obtained the analog of Conjecture 1
for these families under the assumption that n+ 1− d ≥ d (see [2, Theorem 1.4])
but unfortunately, the case n+ 1− d = 1 seems to be far out of reach.

References

[1] Browning, T. D., How often does the Hasse principle hold?, Preprint,2016.
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Unexpected biases in the distribution of consecutive primes

Robert J. Lemke Oliver

(joint work with Kannan Soundararajan)

While the sequence of primes is very well distributed in the reduced residue classes
(mod q), the distribution of pairs of consecutive primes among the permissible
pairs of reduced residue classes (mod q) is surprisingly erratic. We propose a
conjectural explanation for this phenomenon, based on the Hardy-Littlewood con-
jectures, which fits the observed data very well. This conjecture has certain sur-
prising consequences. For example, it follows from the conjecture that the distribu-
tion of triples or longer patterns of consecutive primes (mod q) is not Markovian.
Another interesting consequence is a slight refinement of our conjecture which pre-
dicts that the number of occurrences of switching patterns always outnumbers the
number of repeats among pairs of consecutive primes (mod 3) and (mod 4).

We also study the distribution of the terms predicted by the conjecture, which
proves to be subtle and related to quantities of classical interest in analytic number
theory. In particular, the terms predicted by the conjecture (mod q) are closely
related to the Fourier transform of the Dedekind sums (mod q). We show that
both have distribution functions. Moreover, these quantities are also related to
an Omega-result on the error in

∑

n≤x φ(n), which error we prove also possesses
a distribution function.

Rational points on quartic hypersurfaces

Oscar Marmon

(joint work with Pankaj Vishe)

Let F ∈ Z[x1, . . . , xn] be a non-singular form of degree d, defining a hypersurface
X ⊂ Pn−1. By a classical result of Birch [1], X satisfies the Hasse principle
provided that

n ≥ 2d(d− 1) + 1.

In the cubic case d = 3, this has been improved by Heath-Brown [4] to n ≥ 10,
and subsequently by Hooley [6] to n ≥ 9. In the quartic case d = 4, Browning
and Heath-Brown [2] showed that 41 variables suffice, and this was improved by
Hanselmann [3] to n ≥ 40. Our main result improves the situation further for
quartic hypersurfaces. The Hasse principle is expressed in a quantitative form, in
terms of the counting function

N(F, P ) = #{x ∈ Zn ∩ [−P, P ]n | F (x) = 0}.
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Theorem. Let d = 4 and n ≥ 37. Then if X(AQ) 6= ∅, there exist constants P0

and c > 0 (depending on F ) such that

N(F, P ) ≥ cPn−4 for P ≥ P0.

(We have proved a result for general quartic forms, but in this talk we restrict to
the case when F is non-singular.)

Our starting point for estimating N(F, P ) is the δ-version of the circle method,
as developed by Heath-Brown in [5]. For a smoothly weighted version of our
counting function

NW (F, P ) =
∑

x∈Zn

F (x)=0

W (P−1x)

and the corresponding weighted exponential sum

S(α) =
∑

x∈Zn

W (P−1x)e(αF (x)),

our version of the δ-method produces the following result.

Lemma. Given Q ≥ 1 and θ > 0, we have

NW (F, P ) =

Q
∑

q=1

∫

|z|<(qQ)−1+θ

pq(z)

( q
∑∗

a=1

S(a/q + z)

)

dz +ON,θ(P
nQ−Nθ),

for any N ≥ 0, where pq(z) is a smooth function satisfying

pq(z) ≪ 1

and

pq(z) = 1 +ON

(

(q/Q)N
)

for |z| < Q−2.

This formula resembles what could have been obtained from an application of
the circle method. It may be thought of as an exact Kloosterman refinement, in
that it allows for potential cancellation in the sum over residue classes a (mod q).

Our treatment, like that of Browning and Heath-Brown [2], involves van der
Corput differencing and Poisson summation, but in contrast to their treatment,
we apply this to the sum

S(q, z) :=

q
∑∗

a=1

S(a/q + z)

rather than to each individual term separately. After the Poisson summation step,
one is lead to estimate sums

∑

v∈Zn

Sh(q,v)Ih(z, q
−1v)

for varying h ∈ Zn. The quantities Ih(z, q
−1v) are exponential integrals containing

only cubic polynomials, which is essential for the analysis to work. The exponential
sums Sh(q,v), on the other hand, are quartic in nature (in contrast to the situation
in [2]). It turns out that bounding the exponential sums Sh(p,v) for prime moduli
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p, using results by Katz, requires knowledge of the dimension, sp(h,v) say, of the
singular locus of the projective variety defined over Fp by the equations

F (x) = h.∇F (x) = v.x = 0,

as p, h and v vary.
We believe that the number of variables needed in the theorem can be reduced

below 37, and this is the subject of ongoing work.
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Vinogradov’s three primes theorem with primes from special sets

Kaisa Matomäki

(joint work with James Maynard and Xuancheng Shao)

Vinogradov showed in 1937 that every large enough odd integer can be represented
as a sum of three primes. One may ask what if these primes are restricted to some
subset of the primes. In general, if the set is badly distributed in congruence
classes or Bohr sets, the result does not necessarily hold. Examples of such badly
distributed sets include {p ∈ P : p ≡ 1 (mod 5)} and {p ∈ P : ‖

√
2p‖ < 1/6− ε},

where ‖x‖ denotes the distance from x to the nearest integer.
In the talk I discuss two “transference type” results [1, 2] aimed to show that

these are only sort of obstructions. As applications of the transference principles we
show that Vinogradov’s three primes theorem holds for Chen’s primes (i.e. primes
p for which p + 2 has at most two prime factors) and for almost equal primes
(i.e., for any θ > 0.55, every large enough odd integer N can be represented as
N = p1 + p2 + p3, where |pi −N/3| < Nθ for each i).
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Primes with restricted digits

James Maynard

We present the following result, which shows there are infinitely many primes with
no digit 7 in their decimal expansion.

Theorem 1. Let X ≥ 4 and A = {∑i≥0 ni10
i < X : ni ∈ {0, . . . , 9}\{7}} be

the set of numbers less than X with no digit in their decimal expansion equal to
7. Then we have

#{p ∈ A} ≍ #A
logX

≍ X log 9/ log 10

logX
.

There are φ(10)κ2#A/10 elements of A which are coprime to 10, and there are
(10+ o(1))X/φ(10) logX primes less than X which are coprime to 10. Thus if the
properties ‘being in A’ and ‘being prime’ where independent for integers n < X
coprime to 10, we would expect (κ2 + o(1))#A/ logX primes in A. Theorem 1
shows such a heuristic guess is within a constant factor of the truth.

Our argument is fundamentally based on an application of the circle method.
Assume X is a power of 10 for convenience. The number of primes in A is

#{p ∈ A} =
1

X

∑

0≤a<X

SA

( a

X

)

SP

(−a
X

)

,

where

SA(θ) =
∑

a∈A

e(aθ), SP(θ) =
∑

p<X

e(pθ).

We then separate the contribution from the a in the ‘major arcs’ which give our
expected main term for #{p ∈ A}, and the a in the ‘minor arcs’ which we bound
for an error term.

We expect that SP(θ) is large only when θ is close to a rational with small
denominator, and SA(θ) is large when θ has a decimal expansion containing many
0’s or 9’s. Thus we expect the product to be large only when both of these
conditions hold, which is essentially when θ is well approximated by a rational
whose denominator is a small power of 10. By standard techniques one can verify
that amongst a in the major arcs M we obtain our expected main term, and this
comes from when a/X is well-approximated by a rational with denominator 10.

It turns out that the Fourier transform SA(θ) has some somewhat remarkable
features which cause it to typically have better than square-root cancellation. (A
closely related phenomenon is present and crucial in the work of Mauduit and
Rivat [2] and Bourgain [1], which have many similarities with our work.) Indeed,
we establish the ℓ1 bound

(1)
∑

0≤a<X

∣

∣

∣SA

( a

X

)∣

∣

∣≪ #AX0.36.

which shows that for ‘generic’ a we have SA(a/X) ≪ #A/X0.64 ≪ X0.32. This
gives us a (small) amount of room for a possible successful application of the circle
method to this binary problem. We actually get good asymptotic control over all
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moments (including fractional ones) of SA(a/X) rather than just the first. By
making a suitable approximation to SA(θ), we can re-interpret moments of this
approximation as the average probability of restricted paths in a Markov process,
and obtain asymptotic estimates via a finite eigenvalue computation.

By combining an ℓ2 bound for SP(a/X) with an ℓ1.526 bound for SA(a/X), we
are able to show that it is indeed the case that ‘generic’ a < X make a negligible
contribution, and that we may restrict ourselves to a ∈ E , some set of sizeO(X0.36).

Thus we are left to show when a ∈ E\M, the product SA(a/X)SP(−a/X) is
small on average. By using an expansion of the indicator function of the primes
as a sum of bilinear terms (similar to Vaughan’s identity), we are led to bound
expressions such as

(2)
∑

a1,a2∈E\M

∣

∣

∣SA

(a1
X

)

SA

(a1
X

)∣

∣

∣

∑

n1,n2≤N

min
(X

N
,
∥

∥

∥

a1n1 − a2n2

X

∥

∥

∥

−1)

.

The double sum over n1, n2 in (2) is of size O(N2) for ‘typical’ pairs a1, a2, and if it
is noticeably larger than this then (a1, a2) must share some Diophantine structure.
We find that (a1, a2) must lie close to the projection from Z3 to Z2 of some low
height plane or low height line if this quantity is large, where the arithmetic height
of the line or plane is bounded by how large the double sum is.

This restricts the number and nature of pairs (a1, a2) which can give a large
contribution. By using the explicit description of such pairs (a1, a2) we succeed
in obtaining such a superior bound on the sum over these pairs. It is vital here
that we are restricted to a1, a2 lying in the small set E (for points on a line) and
outside of the set M of major arcs (for points in a lattice).

This ultimately allows us to get suitable bounds for (2) provided N ∈ [X0.36,
X0.425]. If this range were larger, we would obtain an asymptotic estimate for
#{p ∈ A}. Unfortunately our range is not large enough to do this. Instead we
work with a minorant for the indicator function of the primes throughout our
argument, which is chosen such that it is essentially a combination of bilinear
expressions which do fall into this range. Such a minorant is constructed via
Harman’s sieve. This gives a lower bound

#{p ∈ A} ≥ (c+ o(1))
#A
logX

for some constant c. We use numerical integration to verify that we (just) have
c > 0, and so we obtain our asymptotic lower bound for #{p ∈ A}.
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Linear relations of zeros of the zeta function

Micah B. Milinovich

(joint work with William Banks, Greg Martin, Nathan Ng)

The Linear Independence Conjecture (LIC) predicts that the positive ordinates of
the nontrivial zeros of Riemann zeta-function, ζ(s), are linearly independent over
the rational numbers. There are a number of important consequences of LIC. For
instance, it implies the Riemann Hypothesis (since if there is a nontrivial zero of
ζ(s) off the critical line then there are two zeros with the same ordinate) and it
implies that the zeros of ζ(s) are all simple. In addition, if M(x) =

∑

n≤x µ(n)

where µ(n) is the Möbius function, then Ingham [3] showed that LIC implies that

lim sup
x→∞

M(x)√
x

= +∞ and lim inf
x→∞

M(x)√
x

= −∞.

In particular, LIC implies that Mertens’ conjecture is false (in a strong sense).
There seem to be very few results in the literature that study LIC directly, even

in the simplest case of one linear relation. Fixing α > 0, we seek a lower bound
for the size of the set

Sα(T ) :=
{

0 < γ ≤ T : ζ(12+iγ) = 0 and ζ
(

1
2+iαγ

)

6= 0
}

.

We henceforth assume the Riemann Hypothesis (RH). Then LIC predicts that

#Sα(T ) = #
{

0 < γ ≤ T : ζ(12+iγ) = 0
}

=
T

2π
log

T

2π
− T

2π
+ O(logT )

as T → ∞ for every positive α ∈ Q \ {1}. Moreover, for α 6∈ Q, we expect that
ζ(12 + it) and ζ(12 + iαt) should simultaneously vanish at only finitely many t.
Therefore this asymptotic formula should hold for all positive α 6= 1 as well. A
straightforward counting argument shows that #Sα(T ) ≥

(

1−α
2π + o(1)

)

T logT
when 0 < α < 1. For rational values of α in a certain range, we are able to prove
the following result in the more difficult case where α > 1.

Theorem. Assume RH. Let α ∈ Q with 1 < α ≤ 2, and let ε > 0 be arbitrary.
Then #Sα(T ) ≫ε,α T

1−ε as T → ∞.

It is likely that this inequality can be improved slightly using ideas in [4] and [5],
and we are investigating this possibility. Using different methods (and ideas from
the proof of the Piatetski–Shapiro prime number theorem), we are also trying
to prove that #Sα(T ) ≫α T logT , a positive proportion result, for all real α ∈
(1, 1+ δ) for some small δ > 0. Moreover, we are in the process of extending these
ideas to other L-functions and to more general linear combinations of zeros.

Let α ∈ Q ∩ (1, 2]. The proof of the theorem begins with the observation that
if H(s) is an analytic function which is bounded on the critical line, then

(1)

∣

∣

∣

∣

∑

0<γ≤T

H(12+iγ) ζ
(

1
2+iαγ

)

∣

∣

∣

∣

≪
∑

0<γ≤T

∣

∣ζ
(

1
2+iαγ

)∣

∣.

For various choices of H(s), we can use explicit formula methods (which relate
sums over zeros of ζ(s) to sums over primes) and stationary phase techniques to
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estimate the sum on the left-hand side of (1). We have to choose H(s) in such a
way that we can simultaneously handle the stationary phase estimates and ensure
that the sum remains as large as possible. This idea is inspired by two papers
from the 1980s that studied simple zeros of degree two L-functions [1, 2].

Let α = a/q with (a, q) = 1, and let A = {n ∈ N : n = kq with k ∈ N}. For the
choice H(s) = χ(1−s) where ζ(s) = χ(s)ζ(1−s), we show that

∣

∣

∣

∣

∑

0<γ≤T

H(12+iγ) ζ
(

1
2+iαγ

)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

mnα≤ T
2π

Λ(m)n(α−1)/2e
(

mnα
)

∣

∣

∣

∣

+ oα(T )

as T → ∞, where Λ(m) is the von Mangoldt function and e(x) = e2πix. (This
estimate is slightly different when α = 2.) The terms with n ∈ A in the sum on the
right-hand side of the above equation contribute an amount that is ∼ T

2π ζ
(

a+q
2

)

.
The remaining terms contribute an amount that is o(T ). We show this by splitting
the remaining sum into O(log2 T ) dyadic sums of the form

∑∑

M<m≤2M
N<n≤2N

⋆
Λ(m)n(α−1)/2e

(

mnα
)

where the superscript ⋆ indicates the sum is restricted to n 6∈ A. If M is small,
we estimate these sums trivially. If M is large, say T/(logT )c ≤M ≤ T for some
c > 0, then we estimate these sums using Vaughan’s identity for sums of the von
Mangoldt function and the Diophantine nature of the sequence {nα} as n varies.

This analysis allows us to conclude that the sum on the right-hand side of (1)
is ≫ T . On the other hand, this sum is ≪ T ε ·#Sα(T ) for any ε > 0 since there
are #Sα(T ) nonzero terms in the sum and |ζ(12 + it)| ≪ε (|t| + 1)ε (under RH).
Combining these two estimates, the theorem follows.
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Real and rational system of forms

Simon L. Rydin Myerson

Let f(x) ∈ Z[x]R be a system of R homogeneous forms of the same degree d ≥ 2,
with integer coefficients, in n variables. Define the counting function

N(P )
def
= # {x ∈ Zn : f(x) = 0, |x|∞ ≤ P} .

A classic result of Birch estimates N(P ) when the number of variables n is suffi-
ciently large and f is suitably nonsingular. In particular, his work implies:

Theorem 1 (Birch [1]). If V (f) ⊂ Pn−1 is smooth with dimension n−R−1, and

(⋆) n ≥ R(R+ 1)(d− 1)2d−1 +R

then the equation f(x) = 0 satisfies the Hasse principle, and

N(P ) ∼ νPn−dR

as P → ∞, for some real constant ν ≥ 0.

The proof uses the circle method. Birch’s work has been very widely generalised,
for example to systems of forms with differing degrees by Browning and Heath-
Brown [2], to linear spaces of solutions by Brandes [3], to bihomogeneous forms
by Schindler [4], and to function fields by Lee [5].

Despite this, improvements in the condition (⋆) have until now been confined
to the case R = 1, with the exception of the case (d,R) = (2, 2) where (⋆) has
been improved from n ≥ 14 to n ≥ 11 by Munshi [6].

In a series of forthcoming papers [7, 8, 9] I prove the following result.

Theorem 2 (RM). If either d ≤ 3, or f is in general position, we may replace
the condition (⋆) in Birch’s result with

n ≥ d2dR+ R. (†)

This improves on (⋆) in each of the following three cases: either d = 2 and
R ≥ 4, or d = 3 and R ≥ 3, or d ≥ 4 and R ≥ 2. The “general position” condition
can be made explicit, and is in some sense a nonsingularity condition.

According to the “square-root cancellation” heuristic, in place of (⋆) one would
expect the condition n ≥ 2dR + 1 to suffice. Since (⋆) is linear in R, it brings us
within a constant factor of square-root cancellation if d ≥ 2 is held fixed.

I also give a generalisation of Theorem 1 to systems of forms with real coeffi-
cients. Let g(x) ∈ R[x]R be a system of R forms in n variables of degree d ≥ 2
with real coefficients. Define

Mg(P,Q)
def
= # {x ∈ Zn : |g(x)|∞ ≤ Q, |x|∞ ≤ P} .

We say g(x) is irrational if there is no α ∈ RR \ {0} for which
∑

i αigi(x) ∈ Z[x]
has integral coefficients. In [10] I prove
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Theorem 3 (RM). If d ≤ 3 let V (g) be smooth of dimension n−R− 1. If d ≥ 4
let g be in general position. Let ρ ∈ [0, d− 1), and if ρ = 0 let g be irrational.
Suppose V (g) has a real point and

n ≥ (d− ρ)2dR+R.

Then for some real constant ν∞ > 0, we have in the limit as P → ∞ that

M(P, P ρ) ∼ measure {x ∈ Rn : |g(x)|∞ ≤ P ρ, |x|∞ ≤ P} ∼ ν∞P
n−(d−ρ)R.

The case d = 2 of this result is essentially due to Müller [11], or to Bentkus and
Götze [12] when R = 1.

Note that when ρ > 0, Theorem 3 applies to systems of forms with either
real or rational coefficients. Only in the case ρ = 0 is it necessary to impose an
irrationality condition. This is because an inequality of the form |f(x)| ≪ 1, where
f has integral coefficients, would lead to p-adic conditions on the variables x and
the asymptotic formula in Theorem 3 would need to be modified accordingly.

The strategy of proof for Theorems 2 and 4 reduces the problem to an upper
bound for the number of solutions to a system of multilinear auxiliary inequalities
described in [7].

When d = 2 these inequalities are linear and the required upper bound is not
difficult. When d = 3 a strategy of Davenport [13] can be used to treat the
problem.

The case d ≥ 4 seems more difficult, but when f is in general position the
auxiliary inequalities cannot be very singular and consequently an upper bound
can be obtained by elementary means. It might be hoped that one could generalise
Davenport’s approach to d ≥ 4, and so remove the “general position” condition
from Theorems 2 and 3.
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On ℓ-torsion in class groups of number fields of arbitrary degree

Lillian B. Pierce

(joint work with M. M. Wood and C. Turnage-Butterbaugh)

Let K be an extension of Q of degree n, with absolute discriminant DK =
|DiscK/Q|. The ideal class group ClK is a finite abelian group, and for any integer
ℓ ≥ 1, we may consider the ℓ-torsion subgroup of ClK given by

ClK [ℓ] := {[a] ∈ ClK : [a]ℓ = Id}.
It is natural to ask about the cardinality of the ℓ-torsion subgroup, either for a fixed
field K, or as K varies within a family of fields of fixed degree. It is conjectured
that for every K and every integer ℓ ≥ 1, |ClK [ℓ]| ≪ε,ℓ,n D

ε
K . This conjecture has

been recorded by Brumer and Silverman, who were motivated by counting elliptic
curves with fixed conductor; by Duke, who was motivated by the discriminant
multiplicity conjecture, which asserts that given D ≥ 1, at most Dε fields of any
fixed degree can have discriminant D; and by S. Zhang, who was motivated by
questions about CM points on Shimura varieties; it is also related to the heuristics
of Cohen and Lenstra. In almost all cases, the best known unconditional result

is still the trivial bound |ClK [ℓ]| ≤ |ClK | ≪n,ε D
1/2+ε
K . The most universally

applicable nontrivial bound is conditional on GRH, and takes the form

(1) |ClK [ℓ]| ≪n,ℓ,ε D
1
2−

1
2ℓ(n−1)

+ε

K .

This is due to Ellenberg and Venkatesh, and arises from the provision (under GRH)
of sufficiently many small rational primes that split completely in K.

In our forthcoming work, by studying |ClK [ℓ]| as K varies over an appropriate
family of number fields, we can recover the bound (1) for all but a possible zero-
density subfamily, without assuming GRH, although for certain families we must
assume other well-known conjectures. The families we study are defined in terms
of the Galois group of the Galois closure, and certain ramification restrictions on
all primes that ramify tamely in K. We mention here two examples of our results.

A first result, for cyclic number fields, is completely unconditional. Let G be
a cyclic group of order n ≥ 2. Let F(X) be the family of Galois extensions K/Q
with Gal(K/Q) ≃ G as a permutation group and with DK ∈ (0, X ] and such that
all rational primes ramifying in K are totally ramified. Then |F(X)| grows like a
power of X , while at most O(Xε) fields in the family can possibly violate (1).

As a second result, let n ≥ 2 be fixed and let F(X) be the family of degree

n extensions K/Q with square-free DK ∈ (0, X ] such that the Galois closure K̃

has Gal(K̃/Q) ≃ Sn as a permutation group. Then assuming the Malle-Bhargava
principle, the strong Artin conjecture, and the discriminant multiplicity conjecture,
|F(X)| grows like a power of X , while at most O(Xε) fields in the family can
possibly violate (1).

Other results of a similar nature are obtained for G a simple group, or a dihedral
group. This work represents the first time that a nontrivial bound for ℓ-torsion
has been exhibited for infinite families of high degree fields, for all integers ℓ ≥ 1.
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Torsion of CM elliptic curves over number fields

Paul Pollack

(joint work with Abbey Bourdon, Pete L. Clark)

A remarkable theorem of Merel [5] asserts that if E is an elliptic curve defined over
a number field F of degree d, then #E(F )[tors] ≤ T (d), where T (d) is a constant
depending only on d. While explicit admissible values of T (d) are known, these
grow (at least) exponentially with d. By contrast, it is widely conjectured that
one can take T (d) to grow polynomially in d. This conjecture is known for certain
special families of elliptic curves. For instance, if E is an elliptic curve defined over
a number field F of degree d ≥ 2, and j(E) is an algebraic integer, then Hindry
and Silverman [4] have shown that

T (d) ≤ 1977408 · d log d.
Elliptic curves with complex multiplication always have integral j-invariant,

and so the Hindry–Silverman bound applies immediately to such curves. In this
talk, we report on work with Clark [3] establishing a sharper result in this case.
Specifically, if E is a CM elliptic curve defined over a degree d number field F ,
then

#E(F )[tors] ≪ d log log d,

where the implied constant is absolute and effectively computable. This bound
is best possible (up to the constant), as shown by a construction of Breuer [2].
Our proof uses the classical theory of complex multiplication, a recent theorem
of Bourdon and Clark allowing one to reduce to the case when the CM order is
maximal, and an estimate for the partial Euler products of L(1, χ), where χ is a
quadratic Dirichlet character.

We also report on related statistical results obtained in joint work with Bourdon
and Clark [1]. Let TCM(d) denote the largest size of a torsion subgroup of a CM
elliptic curve over a degree d number field. (Thus, the result of [3] is precisely that
TCM(d) ≪ d log log d.) We discuss estimates for the lower, average, and typical
order of the function TCM(d).
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Eigenvalues of the large sieve matrix

Maksym Radziwill

(joint work with Florin Boca)

The famous large sieve inequality is equivalent to the statement that the largest
eigenvalue of the positive definite symmetric matrix

A⋆A :=
(

∑

θ∈FQ

e((n−m)θ)
)

1≤n,m≤N

is ≤ N+Q2−1. One would like to be able to refine the large sieve inequality to an
asymptotic equality. For special sequences this has been (essentially) accomplished
in the paper on the “Asymptotic Large Sieve” by Conrey, Iwaniec, Soundararajan.
In the general case, a first step would be to understand the distribution of the
eigenvalues of A⋆A in the bulk (and not just the largest eigenvalue). In the regimes
when N/Q2 → 0 or N/Q2 → ∞ the limiting behavior of the eigenvalues of A⋆A
is well understood (they all accumulate at one point). However in the remaining
regime N ∼ αQ2 (with α > 0) Ramare conjectured that the eigenvalues, scaled
by 1/N , admit a non-trivial limiting distribution. I’ve discussed joint work with
Florin Boca in which we settle Ramare’s conjecture. We moreover gave an explicit
description of the moments of the limiting measure and showed the continuity of
the moments as α varies.

Arithmetic functions in short intervals and function field analogues

Brad Rodgers

1. We are interested in the variance of sums of arithmetic functions over random
short intervals. An example of what we mean by this is the classical conjecture of
Goldston and Montgomery on the variance of counts of primes over short intervals
[2]; that for H = Xδ with δ ∈ (0, 1) fixed,

Varx∈[X,2X]

(

∑

x≤n≤x+H

Λ(n)

)

∼ H(logX − logH).

Here variance may be understood in the usual sense:

Varx∈[X,2X]

(

∑

x≤n≤x+H

Λ(n)

)

:=
1

X

∫ 2X

X

(

∑

x≤n≤n+H

Λ(n)− µX,H

)2

dx,

with

µX,H :=
1

X

∫ 2X

X

(

∑

x≤n≤x+H

Λ(n)

)

dx ∼ H.

One way to get a better understanding of conjectures of this sort is to consider
analogues in a function field setting; this was done for the Goldston-Montgomery
Conjecture in the not-too-distant-past by Keating and Rudnick [4], who proved
an analogue in which the integers are replaced by the ring Fq[T ], and q → ∞.
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2. We consider some variants of this conjecture, first with Λ(n) replaced by dk(n),
the k-fold divisor function.

Conjecture 1 (Keating – Rodgers – Roditty-Gershon – Rudnick [5]). For logH
logX →

δ with δ ∈ (0, 1− 1/k),

Varx∈[X,2X]

(

∑

x≤n≤x+H

dk(n)

)

∼ akHPk(δ)(logX)k
2−1,

where ak is a certain arithmetic constant, and Pk(δ) is a certain piecewise-poly-
nomial with ‘phases’ on the intervals

(

0,
1

2

)

,
(1

2
,
2

3

)

, ... ,
(k − 2

k − 1
,
k − 1

k

)

,

and phase-changes in between.

Of particular interest are the at first surprising phase changes in the polynomial
Pk(δ), which appear when H = Xδ grows at different orders.

Some justification for this conjecture is given by a function field analogue,
proved in [5]: for fixed 0 ≤ h ≤ n− 5, as q → ∞

Varf∈Mn

(

∑

g∈I(f ;h)

dk(g)

)

∼ qh+1pk(n, h),

where pk(n, h) is a certain piecewise-polynomials in n and h satisfying

pk(n, h) ∼ Pk(δ)n
k2−1 as

h

n
→ δ.

Here we take the variance over random f ∈ Mn, which denotes the collection of
all monic degree n elements f of Fq[T ]. Likewise I(f ;h) is a short-interval around
f , defined by I(f ;h) := {g ∈ Fq[T ] : deg(f − g) ≤ h}.

Additional evidence for the conjecture for certain ranges of δ includes the recent
work: [6], [3], [8], [1].

3. Another variant considers ω(n), the number of distinct prime factors of n. In
this case a function field analogy, proved in [7], once again leads us to speculate
the following: that for H = Xδ with δ ∈ (0, 1) fixed,

Varx∈[X,2X]

(

∑

x≤n≤n+H

ω(n)

)

= Oδ(H).

Such a result would be at least slightly surprising, since a different probabilistic
model based upon the independence of ω(n) and ω(n+ h) for random n and fixed
h might lead one to expect that the variance is instead asymptotically H log logX .

4. We observe finally that in a function field setting, some of the behavior we
have discussed above in evaluating the variance of short-interval sums of arithmetic
functions can be illuminated by the following combinatorial observation, explained
in greater depth in [7]: arithmetic functions such as Λ, dk and ω can in each case be
decomposed into a sum of functions u+ v, where u is a regular enough arithmetic
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function that the variance of its sum over short intervals is negligible, while v is
oscillatory, and the variance of its sum over short intervals is given entirely by
diagonal contributions. This decomposition changes based upon the size of the
short-interval, elucidating the sometimes surprising changes seen in the variance
evaluations above.
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Quantum chaos, eigenvalue statistics and the Fibonacci sequence

Zeev Rudnick

One of the outstanding insights obtained by physicists working on “Quantum
Chaos” is a conjectural description of local statistics of the energy levels of simple
quantum systems according to crude properties of the dynamics of classical limit,
such as integrability, where one expects Poisson statistics, versus chaotic dynamics,
where one expects GOE statistics. I will describe in general terms what these
conjectures say and discuss recent joint work with Valentin Blomer, Jean Bourgain
and Maksym Radziwill, in which we study the size of the minimal gap between the
first N eigenvalues for one such simple integrable system, a rectangular billiard
having irrational squared aspect ratio. For certain quadratic irrationalities, such
as the golden ratio, we show that the minimal gap is about 1/N , consistent with
Poisson statistics. In the case of the golden ratio, the problem involves some
curious properties of the Fibonacci sequence. Just before the start of the workshop,
the case of a general quadratic irrationality was done by Dan Carmon. We also
give related results for a generic set of rectangles of full measure. The proofs use
a variety of ideas of an arithmetical nature, involving Diophantine approximation,
the theory of continued fractions, and results in analytic number theory.
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Counting rational points on cubic curves

Per Salberger

Let C be an irreducible plane curve defined over Q of degree d and N(C;B)
the number of rational points of height at most B on C. It was then proved
by Heath-Brown in 2002 that N(C;B) = Od,ε(B

2/d+ε). The estimate is uniform
in the sense that the implicit constant only depends on d and ε. In 2005 El-
lenberg and Venkatesh obtained a slightly sharper estimate for curves of positive
genus. For non-singular plane cubics they showed in particular that N(C;B) =
O(B2/3−405). This was then improved by Heath-Brown and Testa to N(C;B) =
Oε(B

2/3−1/110+ε). The aim of our talk was to present a proof of the following
uniform estimate.

Theorem 1. Let C be a non-singular irreducible plane cubic curve defined over
Q. Then

N(C;B) = Oε(B
2/3−1/84+ε).

The proof follows the same basic strategy as in the previous papers. But there
is one important new ingredient. Let S ⊂ C × C × C be the surface of all points
(P,Q,R) on C × C × C such that the secant of P and Q intersects C in a third
point lying on the tangent line of C at R. We then have the following result.

Lemma 1. Let N(S;B) be the number of rational points (P,Q,R) on S such that
P and Q are of height at most B. Then N(S;B) = Oε(B

2/3+ε).

The proof of this lemma is difficult and uses a global version of Heath-Brown’s
p-adic determinant method developed by the author. The Riemann-Roch theorem
for threefolds is also used in the proof. From this lemma, the inequality of Cauchy-
Schwarz and descent theory one deduces the following result.

Lemma 2. Let C be an irreducible plane curve defined by a non-singular ternary
cubic form F over Q. Let H(F ) be the height of F . Then

N(C;B) = Oε(H(F )3B1/3+ε).

The theorem follows from this lemma and the estimate

N(C;B) = Oε(B
2/3+ε/H(F )1/9)

of Ellenberg-Venkatesh.

Equidistribution of zeros of polynomials

Kannan Soundararajan

Given a polynomial P (z) = aNz
N+aN−1z

N−1+ . . .+a0 of degree N with complex
coefficients (and a0aN 6= 0), a classical theorem of Erdős and Turán [2] shows
that if the values of the polynomial (suitably normalized) are small on the unit
circle then the zeros cluster around the unit circle and are evenly distributed in
argument. A more recent theme, with the work of Bilu [1] (with earlier work by
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Langevin), has been to study the zeros of irreducible polynomials with integer
coefficients, and replace conditions on the size of the polynomial by bounds on the
Mahler measure. In this situation, a key role is played by the discriminant of the
polynomial P , which is a non-zero integer, and therefore at least 1 in size. In my
talk, I described a simplified proof of Bilu’s theorem, which leads to better explicit
quantified versions, as well as giving refinements of recent work of Pritsker, and
refinements of work of Mignotte, Amoroso, and Dubickas on bounding resultants
of polynomials in terms of their Mahler measure.

To state some sample results, we need a little notation. Let P (z) ∈ C[z] be
as above, and let αj (for 1 ≤ j ≤ N) denote the zeros of P , so that P (z) =

aN
∏N

j=1(z − αj). The Mahler measure of P is defined as

M(P ) = exp
(

∫ 1

0

log |P (e(θ))|dθ
)

= |aN |
N
∏

j=1

max
(

1, |αj |
)

.

Given a complex number z, we define

ρ(z) =

{

z if |z| ≤ 1

z/|z|2 if |z| > 1.
.

In other words, consider inverting the complex plane about the unit circle; given a
complex number z, the quantity ρ(z) denotes either z or its image under inversion,
whichever lies within the unit circle.

Theorem 1. Let P ∈ Z[x] be a polynomial of degree N ≥ 2 with no repeated roots.
Then

∞
∑

m=1

e−2m/N

m

∣

∣

∣

N
∑

j=1

ρ(αj)
m
∣

∣

∣

2

≤ (2N − 2) logM(P ) +N logN.

Here are two consequences of this theorem.

Corollary 1. Suppose P ∈ Z[x] is of degree N ≥ 2 with no repeated roots, and
with r1 real roots and 2r2 complex roots. Then

NM(P ) ≥ exp
( π2

256

r21
N

)

.

Corollary 2. Suppose P ∈ Z[x] is of degree N ≥ 2 with no repeated roots, and
suppose θ is the length of the largest interval I ∈ R/Z which does not contain the
argument (divided by 2π) of any zero of P . Then

NM(P ) ≥ exp
( 2

15
θ2N

)

.
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Problem session

1. (Balazard) We begin by recalling a problem that Michel Balazard asked at
a meeting here some years ago: Does there exist a Dirichlet series D(s) that
converges in some half-plane σ > α and has exactly one zero in this half-plane? The
number α is not necessarily the abscissa of convergence of the Dirichlet series. If
RH is true, then 1/ζ(s) is such an example. The object is to create an unconditional
example.

2. (Montgomery) Let 0 < γ1 ≤ γ2 ≤ . . . denote the ordinates of the zeros of the
zeta function. Let

E = lim sup
j→∞

γj+1 − γj
2π/(log γj)

.

Clearly E ≥ 1. R. R. Hall has used the asymptotic values of
∫ T

0
|ζ(1/2 + it)|2 dt

and
∫ T

0
|ζ(1/2 + it)|4 dt to derive a larger lower bound for E. If one assumes the

truth of the conjectures concerning the higher moments of the zeta function on
the 1/2 line, what can be derived? Possibly that E = ∞?

3. (Rudnick) With the zeros of the zeta function in mind, and the questions we
ask about them, consider similarly the eigenvalues of Maass forms,

f ∈ L2
(

SL2(Z)\H
)

, ∆fj = λjfj .

Here 0 < λ1 ≤ λ2 ≤ . . .. The number of λj not exceeding x is asymptotic to cx,
so the average gap λj+1 − λj is 1/c. We have two problems: Show that the liminf
of the gaps is 0, and that the limsup of the gaps is ∞.

4. (Fouvry) Suppose that p > 3 and that t 6≡ 0 (mod p). Let Ep(t) denote the
curve (mod p) given by

x+
1

x
+ y +

1

y
= t .

Then #Ep(t) = #Ep(16/t). Is there a bijective proof of this, in which points
of Ep(t) are mapped to Ep(16/t), through some magic formula? A proof of this
result is found in Kowalski’s blog. Granville comments that there may be papers
of Lalin and Rodriguez Villegas that are relevant.

5. (Heath-Brown) Let

S = {n ∈ N : p|n =⇒ p ≡ 3 (mod 4)} .
Is it true that every sufficiently large even number is the sum of two members of
S? That is, 2N = S + S for N > N0.

6. (Granville) My good friend Javier Cilleruelo passed away recently, and left
behind some mathematical questions that I associate with him. Suppose that m
is highly composite, and consider those x such that x2 ≡ a (mod m). Order these
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numbers as 0 < x1 < x2 < · · · < xK < m, where K = τ(m). Fix ε > 0, show that
there exists a Bε such that

#
{

xi ∈
[

y, y +m1−ε
]}

≤ Bε

7. (Granville) Consider the lattice points in the curve x2 + y2 = n where n =
p1p2 · · · pk, with distinct primes pj ≡ 1 (mod 4). There are 2k+2 such points. Can
there exist two such lattice points very close together? Yes. How about 3 points?
They cannot all be within cR1/3. For four points we have the same lower bound.
For 5 points one can construct a proof that such points are > cR2/5 apart. For
6 points, the same, and for 7 points the separation is > cR3/7. Can one achieve
points that are this close together?

8. (Friedlander) We recall the problem of gaps between sums of two squares, which
is O

(

x1/4
)

. By the same method, we can construct numbers a and b so that a2−b2
is within O

(

n1/4
)

of n. Hence there exists a number m with |m− n| ≪ n1/4, such

that P (m) ≪ n1/2. Can one improve on this? A paper of Friedlander and Lagarias
(J. Number Theory 25 (1987), 249–273) is relevant here. The result mentioned
above was independently discovered by Balog.

9. (Vaughan–Gafni) Consider the curve x = (x, x2, x3). Suppose that ψ(q) is
monotonically decreasing to 0. If

∑∞
q=1 ψ(q)

3 < ∞, does it follow that the set of

x for which the inequality |qx−a| < ψ(q) has infinitely many solutions is a set of
measure 0. We ask also for a proof that conversely, if the sum diverges, then the
inequality has infinitely many solutions for almost all x.

10. (Browning) Let r(n) denote the number of ways of writing n as a sum of two
squares. Show that there is a positive constant δ such that

∑

m,n≤x

r
(

m5 + n5
)

≫ x1+δ .

The lower bound ≫ x is known.

11. (Wooley) Let p1 < p2 < · · · be the sequence of all prime numbers, and
let q1 < q2 < · · · be the sequence of all primes that are ≡ 3 (mod 4). Put
P = p1p2 · · · pk, Q = q1q2 · · · qk. Euclid showed that the least prime factor of
P + 1 is pk+r for some r > 0, and that 4Q− 1 and 4Q + 3 have prime factors of
the form qk+r with r > 0. The proposer has recently shown that the least prime
divisor of

PPP − 1

is pk+1. Can one define a similar expression, a function of Q, with the property
that its least prime divisor is qk+1?

12. (Wooley) Let C(x1, x2, . . . , xs) ∈ Z[x1, x2, . . . , xs] be a homogeneous cubic
polynomial. It is conjectured that if s ≥ 10, then the number of solutions of
C(x1, x2, . . . , xs) = 0 with integral variables in the box |xi| ≤ B is ≫ Bs−9. We
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know that if N is a cubic norm form, then there is a prime number p such that
the only solution x ∈ Z9 of the equation

N(x1, x2, x3) + pN(x4, x5, x6) + p2N(x7, x8, x9) = 0

is x = 0. Putting xi = Li(y1, y2, . . . , ys) where the Li are certain linear forms, we
deduce that the number of solutions of

N(L1, L2, L3) + pN(L4, L5, L6) + p2N(L7, L8, L9) = 0

in |yi| ≤ B is ≪ Bs−9.
Consider quadratic polynomials Q1, Q2, . . . , Qh ∈ Z[y1, y2, . . . , yt], and let

x1, x2, . . . , xh be fixed integers with |xi| ≤ Bθ. Is it true that for a positive
proportion of these x one has

#{x1Q1(y) + x2Q2(y) + · · ·+ xhQh(y) = 0, |yi| ≤ B} ≫ Bt−2−θ

for some θ with
h− 7

h− 1
≤ θ < 1 ?

This is related to the h-invariant of a cubic form — the least integer h such that

C = L1Q1 + · · ·+ LhQh,

for linear forms Li and quadratic forms Qi. When h ≥ 15, the circle method
applies to show that

#{C(x) = 0, |x| ≤ B} ≫ Bs−3 .

So one is left to deal with h with 10 ≤ h ≤ 15, to which cases the problem on
quadratic polynomials is relevant.

13. (Granville) A number of books mention that the Diophantine equation 3x3 +
4y3+5z3 = 0 has no solution, despite being everywhere locally solvable. However,
usually a proof of this is not provided, and when it is, it is not a very attractive
proof. Mordell, in his book on Diophantine equations, uses the fact that if p =
a2 + 3b2, then 2 is a cube modulo p if and only if 3|b, to show that the equation
x3 + 3y3 + 20z3 = 0 has no solution, despite being everywhere locally solvable.
Better proofs in this area are needed.

14. (Goldmakher) Let Kq(a) = Q
(

e(1/q), a1/q
)

. By the Chebotarev density
theorem, the primes that split completely in Kq(a) have density

1

|Kq(a) : Q| =
1

qφ(q)
.

Thus

π(x;Kq(a)) ∼
π(x)

qφ(q)
.

If we assume RH for ζKq(a)(s), then we have a quantitative estimate,

π(x;Kq(a)) =
π(x)

qφ(q)
+O

(√
x log(aqx)

)

.
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Lagarias and Odlyzko showed unconditionally that the above holds with the error
term

O

(

x exp

(

− c

√

log x

qφ(q)

))

.

Problem: Show that
1

π(x)

∑

q≤x

π(x;Kq(a)) = o
(
√

log log x
)

.

Let ℓa(p) denote the order of a modulo p. The estimate above would allow one to
show that ω

(

ℓa(p)
)

is normally distributed in the manner of the Erdős–Kac law.

Reporter: Jörg Brüdern
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