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Abstract. The goal of this workshop was to explore the recent advances in
the mathematical understanding of the macroscopic properties which emerge
on large space-time scales from interacting microscopic particle systems.
There were 53 participants, including 4 postdocs and graduate students,
working in diverse intertwining areas of probability and statistical mechanics.
During the meeting, 24 talks of 50 minutes were scheduled and an evening
session was organised with 10 more short talks of 10 minutes, mostly by
younger participants. These talks addressed the following topics : hydro-
dynamic limits and hydrodynamic fluctuations with a special emphasis on
KPZ fluctuations, scaling limits in percolation and random walks, approach
to equilibrium in reversible systems with a strong focus on kinetically con-

strained dynamics.
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Introduction by the Organisers

The workshop Large scale stochastic dynamics is the continuation of the highly
successful series of Oberwolfach workshops with the same title previously organized
by C. Landim, S. Olla and H. Spohn. This new edition, organised by T. Bodineau
(Palaiseau), F. Toninelli (Lyon) and B. Toth (Bristol/Budapest), was well attended
with over 50 participants with broad geographic representation.

The workshop was devoted to the wide mathematical problem of understanding
emergent structures on large space-time scales in the evolution of physical sys-
tems. These are modelled by particle systems, namely high-dimensional Markov
processes. In our choice of 24 talks, we tried to illuminate major recent advances
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in the field and to expose and address at least some aspects of the works for each
and every one of the participants. An evening session with short talks was the
occasion to learn about the recent results of 10 participants and to trigger further
discussions afterwards. A more detailed account of the long presentations is given
below.

Hydrodynamic limits and fluctuating hydrodynamics

The aim of hydrodynamic limits is to explain mathematically the emergence of
macroscopic transport phenomena observed in experiments, starting from micro-
scopic dynamics of interacting particles.

S. Olla presented a recent work on deterministic dynamics with additional stochas-
tic noise to model transport in mechanical systems and in particular superdiffusion
in one-dimensional models. He showed that conserved quantities in these models
obey a system of nonlinear partial differential equations.

M. Sasada provided a new perspective on the celebrated non-gradient method
initiated by Varadhan to derive hydrodynamic limits. The main strategy is a
systematic characterisation of closed forms by using ideas of cohomology.

M. Balazs showed how the behaviour of the so-called second class particle, for a
wide class of asymmetric dynamics, can be related to the hydrodynamic limit. A
key to this result is the proper initialisation of the second class particle.

C. Landim reviewed results on the metastability in the zero range process in the
condensation regime. He also proposed a series of open problems on the derivation
of the hydrodynamic behavior when condensation takes place. Further results on
large deviations for reaction-diffusion systems were presented.
P. Ferrari presented a recent result on the box/ball model which is a deterministic
cellular automata, all the randomness being encoded in the initial condition. He
described the invariant measures and explained how the evolution can be followed
in terms of records of a random walk.

The study of fluctuations around the deterministic macroscopic hydrodynamic
limit is of great interest to understand the refined behavior of the microscopic
dynamics.

M. Jara presented a new method to derive an equation describing non-equilibrium
fluctuations. It is based on refined entropic estimates and it generalises the current
approaches which are mainly limited to equilibrium fluctuations.

M. Simon gave a lecture on the different types of fluctuation scalings which occur
when a mechanical system of infinitely many coupled oscillators is perturbed by
different stochastic noises.

M. Gubinelli reviewed the strong and weak KPZ universality conjecture and he
showed that, in the stationary regime, the notion of energy solutions of the KPZ
equation uniquely characterizes solutions.

P. L. Ferrari surveyed the scaling limits arising in the asymmetric simple exclusion
process depending on the different types of initial data. In particular, he presented
a class of initial conditions for the TASEP for which the large-scale behavior



Large Scale Stochastic Dynamics 3033

of fluctuations interpolates between the Baik-Rains distribution and the Tracy-
Widom one.

T. Funaki explained how to renormalize systems of coupled KPZ equations which
naturally arise when one considers anharmonic chains of oscillators with several
conserved quantities.

Random walks and polymer models

J.D. Deuschel presented a new invariance principle for random walks in space-
and time-dependent balanced random environment. The environment is assumed
to be invariant and ergodic under space and time shifts. The result holds in the
quenched sense, without assuming uniform ellipticity.

H. Spohn introduced models of directed polymers with complex random weights,
which are motivated by wave transmission in disordered media. This opens the
way to new challenging problems as the partition function is conjectured to obey
some universal scaling, as is the case for real weights, even though it is a priori
oscillatory.

P. Tarres presented a survey of the recent results connecting techniques of super-
symmetric quantum field theory with the problem of recurrence/transience di-
chotomy for linearly edge-reinforced random walks. These techniques allow to
prove the long standing conjectures about transience in 3 and more dimensions
and weak reinforcement, respectively recurrence in any dimension and sufficiently
strong reinforcement.

E. Bolthausen considered a membrane model where the interactions between
heights are governed by the square of the Laplacian (rather than the Laplacian, as
in the traditional interface models). It was proved that in 5 and more dimensions
the pinned-down version, where the height at the origin is partially tied down to
have value 0, the thermodynamic limit exists (as stationary random field) and its
correlations decay exponentially with distance.

T. Seppalainen: In the first passage percolation problem it is known that there
exists an asymptotic convex shape set of lattice points reached within passage time
N , rescaled by the same N . (This follows from subadditivity.) In this talk a new
variational approach to this problem was presented. A variational formula was
formulated which characterizes the asymptotic shape.

F. Comets considered the random interlacement process in two dimensions. Due
to the marginally recurrent nature of two-dimensional random walk, this process
shows remarkable differences from the well-understood three (and more) dimen-
sional random interlacements. In particular, fine analysis of the fractal structure
of the so-called late points (that is points on the two-dimensional torus which are
not visited till late times) was presented.
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Scaling in percolation

W. Werner presented inter alia recent results about percolation structures on con-
tinuous fractal domains defined as the complements of the two-dimensional Brow-
nian loop coup of intensity c < 1. The construction is the scaling limit of the
Edwards-Sokal coupling between Potts and Fortuin-Kasteleyn percolation models.

G. Kozma reviewed the Aizenmann-Grimmett argument on the perturbation of
the critical point in percolation and explain its generalization to long range per-
turbations along random lines.

Approach to equilibrium in reversible systems.
Glauber dynamics are Markov chains that are reversible w.r.t. the Gibbs distri-
bution of a statistical mechanics system. Understanding how quickly the process
approaches the equilibrium distribution, and the occurrence of slowdown phenom-
ena, gives insight on phase transitions, glassy or metastable behavior.

C. Toninelli gave an overview talk on kinetically constrained models (microscopic
particle systems that model physical system undergoing a glassy or jamming tran-
sition) and presented sharp results on their relaxation time, showing links with
bootstrap percolation.

O. Blondel discussed the behavior of the diffusion coefficient of a tagged particle
moving in a kinetically constrained model, in the limit where vacancies are rare
and the system is almost jammed. Results included notably the strict positivity
of the coefficient for all particle densities.

A. Faggionato presented new results on so-called triangular and square plaquette
models: these are two-dimensional spin systems with no equilibrium phase tran-
sition but a dramatic dynamical slowdown at low temperatures. In particular,
she discussed the interplay between static lengthscales, glassy dynamics and the
fractal space structure of excitations.

E. Lubetzky proved that the Glauber dynamics of the critical two-dimensional
Potts model with q ≤ 4 reaches equilibrium in time that is almost polynomial in
the system size n, thereby significantly improving the previously known bounds
that were of order exp(n).

C. Poquet discussed the Kuramoto mean field model of coupled rotators. In the
limit of large number of rotators the model exhibits synchronization, that persists
when the proper frequencies of the individual rotators are chosen random and
i.i.d. The condensate moves with a speed related to the asymmetry of the disorder
realization and, on large time scales, it has Brownian fluctuations.

H. Lacoin presented results on the cut-off phenomenon and sharp mixing time esti-
mates for Markov chains describing a “card-shuffling” algorithm. The results have
interesting implications on the mixing time for the Asymmetric Simple Exclusion
process on a large but finite segment.

Summary. The workshop helped to update the participants on the state of the art
and on the important pending open problems in the fields related to their domain
of research. It triggered many interesting discussions and was the occasion to
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initiate and pursue collaborations. The scientific presentations proved that this
research field is still very active and is absorbing new ideas from other branches of
mathematics and probabilty theory (conformal loop soups and the Gaussian Free
Field, bootstrap percolation, cohomology, etc).

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Percolation through (some) fractal spaces

Wendelin Werner

(joint work with Jason Miller, Scott Sheffield, Titus Lupu)

The goal of this talk is to survey some recent and ongoing work about how to
define and describe processes that can be viewed as “critical percolation” in some
particular but fairly natural fractals. These percolative structures are relevant in
the study of geometric structures embedded in a Gaussian Free Field, and in the
two-dimensional case, in the study of scaling limits of critical lattice models.

Specifically, we focus on some fractal spaces obtained in d-dimensional space
when d ≥ 3, or in bounded planar domains by sampling a natural Poissonian cloud
of Brownian loops of intensity c that we introduced a decade ago with Greg Lawler.
Recall that in two dimensions, these loop-soups appear to be very closely related
to SLE processes (more precisely, for each value of c ≤ 1, joint work with Scott
Sheffield showed that considering the clusters of loops in a loop-soup allows to
construct collections of non-intersecting SLEκ loops for some κ = κ(c) ∈ (8/3, 4]
– these so-called conformal loop ensembles are the conjectural scaling limit of
crtitical Potts models and their fuzzy generalization to non-integer values for q for
q = q(κ) ∈ (1, 4]), and that the properly renormalised occupation time measure
of a loop-soup with intensity c = 1 (in higher dimension, one needs to look at a
discretized version) is directly related with the square of the Gaussian Free Field
(GFF) (by results of Yves Le Jan).

In the present talk, we describe aspects of the following two type of results:

• In joint work with Jason P. Miller (University of Cambridge) and Scott
Sheffield (MIT) [1, 2], we construct directly in the continuum planar case
the processes that can be viewed as critical percolation in the complement
of the loop-soups for c < 1. The connected components of the complement
of the loop-soup being conjectural scaling limit of Potts model clusters,
our results provide the continuous analog of the Edwards-Sokal coupling
between Potts and FK percolation models. We also explain what happens
in the special critical case c = 1.

• In ongoing joint work [3] with Titus Lupu (ETH Zürich), we explain why
the relation to the GFF leads to the existence of processes that can be
interpreted as critical percolation in the space obtained by contracting all
the loops in the c = 1 loop-soups. This leads to a procedure to connect
Brownian loops in a loop-soup when c = 1 into structures that could be
then viewed as excursion sets away from the origin by the GFF. We also
discuss aspects of the dependence with respect to d.
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Coupled KPZ equations

Tadahisa Funaki

(joint work with Masato Hoshino)

We report the results obtained in [3]. Motivated by the nonlinear fluctuating
hydrodynamics recently discussed by Spohn and others [1], [12], [13], we consider
the following R

d-valued coupled KPZ equation for h(t, x) = (hα(t, x))dα=1 defined
on the one dimensional torus T ≡ R/Z = [0, 1):

(1) ∂th
α = 1

2∂
2
xh

α + 1
2Γ

α
βγ∂xh

β∂xh
γ + σα

β ξ
β , x ∈ T,

for 1 ≤ α ≤ d. We use Einstein’s convention, and ξ(t, x) = (ξα(t, x))dα=1 is an
R

d-valued space-time Gaussian white noise, which has the covariance structure

E[ξα(t, x)ξβ(s, y)] = δαβδ(x− y)δ(t− s).

We assume that the coupling constants Γα
βγ satisfy

(2) Γα
βγ = Γα

γβ

and the diffusion matrix σ = (σα
β )1≤α,β≤d is invertible.

The coupled KPZ equation (1) itself is ill-posed, so that we need to introduce its
approximations; see [4] for a scalar-valued KPZ equation. A simple approximation
of (1) is defined as follows. Let η ∈ C∞

0 (R) be a symmetric function satisfying
∫

R
η(x)dx = 1. We set ηε(x) = η(x/ε)/ε for ε > 0 and consider the R

d-valued

KPZ approximating equation for h = hε(t, x) ≡ (hε,α(t, x))dα=1 with a smeared
noise and a proper renormalization:

(3) ∂th
ε,α = 1

2∂
2
xh

ε,α + 1
2Γ

α
βγ(∂xh

ε,β∂xh
ε,γ − cεAβγ −Bε,βγ) + σα

β ξ
β ∗ ηε,

for 1 ≤ α ≤ d, where Aβγ =
∑d

δ=1 σ
β
δ σ

γ
δ , c

ε = 1
ε‖η‖2L2(R) and Bε,βγ is another

renormalization factor, which diverges as O(− log ε) as ε ↓ 0 in general.
Second approximation of (1) suitable for studying invariant measures is in-

troduced as follows. Let η2(x) = η ∗ η(x), ηε2(x) = η2(x/ε)/ε and consider the

following R
d-valued equation for h̃ = h̃ε(t, x) ≡ (h̃ε,α(t, x))dα=1 with a smeared

noise and a proper renormalization:

(4) ∂th̃
ε,α = 1

2∂
2
xh̃

ε,α + 1
2Γ

α
βγ(∂xh̃

ε,β∂xh̃
ε,γ − cεAβγ − B̃ε,βγ) ∗ ηε2 + σα

β ξ
β ∗ ηε,

for 1 ≤ α ≤ d, where B̃ε,βγ is a renormalization factor, which diverges asO(− log ε)
as ε ↓ 0 in general.

If Γ̂ determined from Γ as

(5) Γ̂α
βγ = ταα′Γα′

β′γ′σ
β′

β σγ′

γ



Large Scale Stochastic Dynamics 3041

satisfies the trilinear condition

(6) Γ̂α
βγ = Γ̂β

γα,

for all α, β, γ, then the distribution of the derivative of the d-dimensional periodic
and smeared Brownian motion

(

∂x(σB ∗ ηε)
)

x∈T
=

(

(∂xσ
α
βB

β ∗ ηε(x))dα=1

)

x∈T

multiplied by σ is infinitesimally invariant for the tilt process u = ∂xh̃ of the
solution h̃ of (4) with B̃ε,βγ = 0. This was shown in [2] when σ is an identity
matrix I, but is easily extended to the general setting with σ.

When d = 1 and Γα
βγ = σα

β = 1 for simplicity, the approximating equations (3)

with Bε,βγ = 0 and (4) with B̃ε,βγ = 0 have the forms:

(7) ∂th = 1
2∂

2
xh+ 1

2

(

(∂xh)
2 − cε

)

+ ξ ∗ ηε,

and

(8) ∂th̃ = 1
2∂

2
xh̃+ 1

2

(

(∂xh̃)
2 − cε

)

∗ ηε2 + ξ ∗ ηε,

respectively. It is shown that the solution of (7) converges as ε ↓ 0 to the so-called
Cole-Hopf solution hCH(t, x) of the KPZ equation [7], [8], while the solution of
(8) converges to hCH(t, x) +

1
24 t under the equilibrium setting [4] and the non-

equilibrium setting for a maximal solution [10]. The method of [4] is based on
the Cole-Hopf transform, which is not available for our multi-component coupled
equation in general.

The existence of the limits of the solutions of two types of approximating equa-
tions (3) and (4) as ε ↓ 0 is established based on the paracontrolled calculus
introduced by Gubinelli et al. [5], [6]. The difference between these two limits is
studied and this extends the results for the scalar-valued KPZ equation mentioned
above. For κ ∈ R and r ∈ N, (Cκ)r := Bκ

∞,∞(T;Rr) denotes the R
r-valued Besov

space on T.

Theorem 1.1. (1) Assume h(0) ∈ ⋃

δ>0(Cδ)d, then a unique solution hε of the
KPZ approximating equation (3) exists up to the survival time T ε

sur ∈ (0,∞] (i.e.
T ε
sur = ∞ or limt↑T ε

sur
‖hε‖C([0,t],(Cδ)d) = ∞). With a proper choice of Bε,βγ, there

exists 0 < Tsur ≤ lim infε↓0 T ε
sur and hε converges in probability as ε ↓ 0 to some h

in C((0, T ], (C1/2−δ)d) for every δ > 0 and 0 < T < Tsur. This Tsur can be chosen
maximal in the sense that Tsur = ∞ or limT↑Tsur

‖h‖C([0,T ],(Cδ)d) = ∞.

(2) A similar result holds for the solution h̃ε of the KPZ approximating equation

(4) with some limit h̃ under a proper choice of B̃ε,βγ . Moreover, under a well-

adjusted choice of the renormalization factors Bε,βγ and B̃ε,βγ , one can make
h = h̃.

Theorem 1.2. We assume the trilinear condition (6). Then, both Bε,βγ and

B̃ε,βγ behave as O(1), so that the solutions of (3) with Bε,βγ = 0 and (4) with

B̃ε,βγ = 0 converge as ε ↓ 0. In the limit, we have

h̃α(t, x) = hα(t, x) + cαt, 1 ≤ α ≤ d,
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where

cα =
1

24

∑

γ,γ′

σα
β Γ̂

β
α′α′′ Γ̂

α′

γγ′Γ̂α′′

γγ′.

Another result is on a global-in-time existence of the limit process h under

the condition (6). Let µσ be the distribution on the space (C−1/2−δ
0 )d := {u ∈

(C1/2−δ)d ;
∫

T
u = 0}, δ > 0, of (∂xσB)x∈T, which is the limit in law of that of

(

∂x(σB ∗ ηε)
)

x∈T
as ε ↓ 0.

Theorem 1.3. We assume the trilinear condition (6). Then there exists a subset

H ⊂ (C−1/2−δ
0 )d such that µσ(H) = 1, and if ∂xh(0) ∈ H, the convergence to

the limiting process h as above holds on whole [0,∞) almost surely. Moreover, the

spatial derivative u = ∂xh of the limit process h is a Markov process on (C−1/2−δ
0 )d

which admits µσ as an invariant measure.

Proposition 5.4 of Hairer and Mattingly [9] (combined with Theorem 1.3) shows
that the limit process h exists on [0,∞) almost surely for all initial values h(0) ∈
(C1/2−δ)d. Kupiainen and Marcozzi [11] have a similar result to our Theorem
1.1-(1) and a part of Theorem 1.2 due to a different approach.

References

[1] P.L. Ferrari, T. Sasamoto and H. Spohn, Coupled Kardar-Parisi-Zhang equations in
one dimension, J. Stat. Phys., 153 (2013), 377–399.

[2] T. Funaki, Infinitesimal invariance for the coupled KPZ equations, Memoriam Marc Yor –
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Interpolation between standard and anomalous diffusion of energy

Marielle Simon

(joint work with C. Bernardin, P. Gonçalves, M. Jara, M. Sasada)

Over the last few years, anomalous behaviors have been observed for one-dimen-
sional chains of oscillators. The rigorous derivation of such behaviors from deter-
ministic systems of Newtonian particles is very challenging, due to the existence
of conservation laws, which impose very poor ergodic properties to the dynami-
cal system. A possible way out of this lack of ergodicity is to introduce stochastic
models, in such a way that the qualitative behaviour of the system is not modified.
One starts with a chain of oscillators with a Hamiltonian dynamics, and then adds
a stochastic which keeps the fundamental conservation laws (energy, momentum
and stretch, usually).

One may first investigate the macroscopic evolution of the fluctuation field
(around equilibrium), associated to the conserved quantities. For the unpinned
harmonic chain where the velocities of particles can randomly change sign (and
therefore the only conserved quantities of the dynamics are the energy and the
stretch), it is known [5] that, under a diffusive space-time scaling, the energy profile
evolves following a non-linear diffusive equation involving the stretch. In [1] and [4]
it has been shown that in the case of one-dimensional harmonic oscillators with
noise that preserves the momentum, the scaling limit of the energy fluctuations is
ruled by the fractional heat equation.

This talk aims to understand the regime transition for the energy fluctuations,
and to describe the results of [2,3]. Let us consider the same harmonic Hamiltonian
dynamics, but now perturbed by two stochastic noises S1 and S2: both perturba-
tions conserve the energy, but only S1 preserves the momentum. If S2 = 0, the
momentum is conserved, the energy transport is superdiffusive and described by
a Lévy process governed by a fractional Laplacian. Otherwise, the volume con-
servation is destroyed, and the energy normally diffuses. What happens when S2

vanishes with the size of the chain? In this case, we can show that the limit of
the energy fluctuation field depends on the evanescent speed of the random per-
turbation, we recover the two very different regimes for the energy transport, and
we prove the existence of a crossover between the normal diffusion regime and the
fractional superdiffusion regime.

One future research direction would be to describe very precisely the form of the
critical regime for the anharmonic chain. Since the study of anharmonic systems
is still very challenging, one can start with the weakly anharmonic case. The
expected scenario is that as the strength of the anharmonicity increases, a crossover
from a fractional superdiffusion regime to a different superdiffusion regime should
appear. This crossover regime is too subtle to be described by Spohn’s theory, and
one needs a more accurate analysis of the system to get the precise critical values
for which it crosses the different behaviors.
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Limit distributions for KPZ growth models with spatially
homogeneous random initial conditions

Patrik L. Ferrari

(joint work with S. Chhita and H. Spohn)

For stochastic growth models in the Kardar-Parisi-Zhang (KPZ) universality class
over a one-dimensional substrate the height fluctuations “always” broaden as t1/3.
On the other hand the full probability density function depends on the choice
of the initial data. As well known, for a flat initial surface, h(x, t = 0) = 0,
the large t fluctuations of h(0, t) are distributed according to GOE Tracy-Widom
distribution [5, 18, 22]. In contrast, if the height profile is macroscopically curved,
then GOE has to be replaced by GUE [2,3, 7, 13, 16, 20, 21].

If as a surface growth model we consider the one-dimensional KPZ equation,

∂th = 1
2 (∂xh)

2 + 1
2∂

2
xh+ ξ

with ξ(x, t) normalized space-time white noise, then the time-stationary initial
data are

h(x, 0) = B(x)

with B(x) a two-sided Brownian motion. As shown in [6] (for other KPZ models,
see [1, 4, 12, 15]),

h(0, t) ≃ − 1
24 t+ (t/2)1/3ξBR

for large t and the random amplitude ξBR is Baik-Rains distributed [4]. Recently,
Quastel and Remenik [19] identified a large domain of attraction for GOE Tracy-
Widom distribution. Roughly speaking, for a macroscopically flat initial profile,
if it satisfies |h(x, 0)− h(0, 0)| ≃ |x|1/2 for large |x| is the borderline below which
the height fluctuations are GOE Tracy-Widom distributed.

We consider translation invariant random initial data, for which height differ-
ences typically grow as |x|1/2. More precisely, for the totally asymmetric simple
exclusion process, TASEP, with initial slopes ηj(t = 0) = ηj ∈ {0, 1}, we allow
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initial conditions such that {ηj |j ∈ Z} is a stationary stochastic process satisfying
the functional central limit theorem

lim
ℓ→∞

1√
ℓ

[γxℓ]
∑

j=0

(

ηj − 〈η0〉
)

= σB(x)

for some σ ≥ 0. Here γ is a scaling constant set by the fact that σ = 1 corre-
sponds to stationary initial condition. We show that for each σ there is a distinct
distribution function F (σ)(s).

Denote by ρ the expected density of particles and j the expected (infinitesimal)
current of particles. Then if j′(ρ) = 0 holds, the time correlations are relevant
around the origin and the height fluctuations, as obtained from ηj(t), are governed

by F (σ)(s) in the large t limit. If j′(ρ) 6= 0, then correlations spread at a non-zero
velocity and F (σ)(s) will be observed after properly centering (see e.g. [12] in the
σ = 1 case).

For the TASEP we prove that the limiting distribution is determined through
a variational formula,

F (σ)(s) = P

(

sup
x∈R

{
√
2σB(x) +A2(x) − x2} ≤ s

)

,

where A2(x) is the Airy process and is independent of the two-sided Brownian
motion B(x). The proof employs several non-trivial results obtained only recently,
the most important ones being tightness [9] for the point-to-point process with
ending points on horizontal lines, and the one-point slow-decorrelation [10]. Finally
one also needs to know the convergence of the finite-dimensional distributions [8].
These ingredients can be used to obtain a functional slow-decorrelation result,
see [11] for the discrete time counterpart. Interestingly, this latter result then
implies tightness of the point-to-point process along generic lines, which is a result
not covered by the elegant and soft arguments of [9].

As already proved in [17], F (0)(s) = FGOE(2
2/3s), with FGOE the GOE Tracy-

Widom distribution. Our result indirectly implies that F (1)(s) equals the Baik-
Rains distribution. The only other explicit solution corresponds formally to the
limit σ → ∞, which reads (after scaling s with σ4/3)

P

(

sup
x∈R

{B(x)− x2} ≤ s
)

.

An explicit representation is provided in [14]. Its probability density vanishes for
s < 0 and decays as a stretched exponential with power 3

2 for s → ∞.
For all other values of σ we have to rely on Monte Carlo simulations, see Figure 1

for a plot of the densities of F (σ) for some values of σ.
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Figure 1. Probability densities of F (σ)(s) with σ =
√

α/(1− α)
from TASEP simulation until time tmax = 103 and 106

runs. The different plots corresponds to the values α =
0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.54, 0.58, 0.62.
The left-most black line is the exact rescaled GOE distribution
(σ = 0), which overlaps with α = 0 from the simulations. The
black line in the middle is the stationary case (σ = 1).
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Quenched invariance principles for random walks in a balanced
time-dependent environment

Jean-Dominique Deuschel

(joint work with N. Berger, X. Guo and A. Ramı́rez)

We consider random walks in a space- and time- inhomogeneous balanced random
ergodic environment which is not necessarily uniformly-elliptic. We will prove
strong and weak versions of invariance principles under the quenched measure.

To be specific, we let M be the set of probability measures on {e ∈ Z
d : |e| ≤

1}, d ≥ 2. A time-dependent environment is an element ω ∈ Ω := MZ
d×N with

ω = {ωn(x)}(x,n)∈Zd×N = {ωn(x, e) : |e| ≤ 1}(x,n)∈Zd×N.

We let P be a probability measure on Ω which is ergodic with respect to the
space-time shifts {θy,m}y∈Zd,m≥0 defined by

(θy,mω)(x, n) = ω(x+ y, n+m).

For a given environment ω, the random walk (Xn)n≥0 is a (possibly space- and
time-inhomogeneous) Markov chain with law

Pω(Xn+1 = x+ e|Xn = e) = ωn(x, e).

We say that ω is static if ωn(x) = ωm(x) for all m,n and x. When the en-
vironment (P-almost surely) is static and satisfies the uniformly elliptic assump-
tion mini=1,...,d ω(0, ei) ≥ κ for some positive constant κ, Lawler [4] proved the
quenched invariance principle (QCLT). Namely, for P-almost every ω, the law of
the rescaled process

(X⌊tn⌋/
√
n)t≥0
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converges weakly to a Brownian motion with a deterministic nondegenerate dif-
fusion matrix Σ. Later, the QCLT is proved by Guo and Zeitouni [3] for elliptic
iid environment and any ergodic environment that satisfies the moment condi-

tion EP[
∏d

i=1 ω(0, ei)
−1] < ∞. Recently, it is shown by Berger and Deuschel [1]

that the QCLT holds when the law P on static environment is i.i.d and genuinely
d-dimensional. That is, P(ω(0, ei) > 0) > 0 for all i = 1, . . . , d.

In our joint work, we will generalize all the aforementioned works to a possibly
non-elliptic ergodic time-dependent balanced environment. Let Ji = inf{n > 0 :
Xi − X0 = ei} for i = 1, . . . , d and J0 = inf{n > 0 : Xn − X0 = 0}. Our main
result is the following theorem.

Theorem 1. Assume that EP[
∏d

i=0 Eω [Ji]] < ∞. Then P-almost surely, the
RWRE satisfies a CLT with a random nondegenerate diffusion matrix Σ(ω).

(1) Σ(ω) can take only finitely many values.
(2) When d = 2 and the environment is elliptic, then Σ is deterministic and

the QCLT holds.
(3) When d ≥ 3, we have a counter-example that in a non-elliptic mixing

random environment, the diffusion matrix is supported in a set of more
than two values.
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What can we learn from Brochettes?

Gady Kozma

(joint work with Hugo Duminil-Copin, Marcelo Hilário, Gil Kalai, Ioan
Manolescu, Vladas Sidoravicius and Vincent Tassion)

We dicussed two dimensional results from [2] as follows. Let δ > 0 and “strengthen”
each column of Z2 with probability δ, independently. Now let ǫ > 0 be a second
parameter and examine percolation on Z

2 where every edge in a strengthened col-
umn is open with probability p+ ǫ while all other edges are open with probability
p, and all edges are independent. Then the result of [2] is that for every δ > 0
and every ǫ > 0, we have that the critical p for this process is strictly smaller than
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pc(Z
2). We sketched the proof, which combines the classic Aizenman-Grimmett

argument [1], some near critical analysis, and finally the results of [4].
We then moved to discuss what would be needed for extending this result to

3 dimensions. The results uses a number of critical and near critical facts about
percolation. Some of them known (in particular certain crucial lemmas from [3])
and others unpublished. In particular we mentioned the following yet unpublished
result: the correlation length of percolation (in any dimension larger than 1) at
pc + ǫ is bounded above by exp(C/ǫ2).
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Convergence of vertex-reinforced jump processes to an extension of
the supersymmetric hyperbolic nonlinear sigma model

Pierre Tarrès

(joint work with Franz Merkl, Silke Rolles)

Consider a finite undirected graph G = (V,E) with edge weights W = (Wij)i,j∈V .
The vertex-reinforced jump process (VRJP) is a stochastic jump process Y =
(Yt)t≥0 in continuous time with càdlàg paths, taking values in the vertex set V of
G. The process starts in Y0 = i0 ∈ V ; at time t, if Yt = i, it has a jump rate to
j ∼ i given by WijLj(t), where

Lj(t) = 1 +

∫ t

0

1{Ys=j} ds, i ∈ V(1)

is the local time plus one at site j.
The VRJP was initially proposed by Werner and introduced by Davis and

Volkov in [DV02,DV04] on trees. Further analysis on regular and Galton-Watson
trees was conducted by Collevecchio in [Col06,Col09] and by Basdevant and Singh
in [BS12].

We first review recent progress on VRJP:

- explicit link with the edge-reinforced random walk (ERRW) by Tarrès
[Tar11] and Sabot and Tarrès in [ST15]

- explicit correspondence, in [ST15], with a marginal of a supersymmetric
hyperbolic sigma model introduced by Zirnbauer [Zir91]

https://arxiv.org/abs/1608.04963
https://arxiv.org/abs/1207.3168
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- recurrence of VRJP on any graph of bounded degree for large reinforce-
ment in [ST15], i.e. small conductances We, e ∈ E, using a result of Dis-
ertori and Spencer [DS10]; see Angel, Crawford, and Kozma in [ACK14]
for an alternative proof not using the connection with a SuSy model

- transience of VRJP on Z
d, d ≥ 3 for small reinforcement in [ST15], using

a result from Disertori, Spencer and Zirnbauer [DSZ10]
- representation through the Green function of a random Schrödinger oper-
ator by Sabot, Tarrès and Zeng [STZ15]

- link between a reversed version of the VRJP and the so-called Ray-Knight
local time theorems by Sabot and Tarrès [ST16].

In [ST15], the marginals of the SuSy hyperbolic H2|2 model arise in horospher-
ical coordinates, as a function of the asymptotic proportions of local times at
the vertices, but the other variables are not interpreted. On the other hand, the
asymptotic analysis of the related edge-reinforced random walk by Keane and
Rolles [KR00] (also Coppersmith and Diaconis [CD86]) naturally involves other
variables than the asymptotic density, such as for instance the last exit tree of the
walk.

In a joint work with Merkl and Rolles [MRT16] we prove that a similar asymp-
totic analysis can be carried out for the VRJP, and enables to interpret all the
variables of an extension of the initial SuSy model by Zirnbauer [Zir91]. We show
that in its tree version, the other variables in horospherical coordinates in that
model arise on two different time scales as limits of the rescaled crossing numbers,
rescaled fluctuations of local times, asymptotic local times on a logarithmic scale,
endpoints of paths, and last exit trees.
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Exponential decay of the correlations for the pinned membrane model

Erwin Bolthausen

(joint work with Alessandra Cipriani, Noemi Kurt)

The simplest example of a membrane model is the Gaussian measure on R
D,

D ⊂⊂ Z
d with Hamiltonian

H (φ) :=
∑

x

(∆φ)
2
x =

〈

φ,∆2φ
〉

,

and 0 boundary conditions. Here, ∆ is the discrete Laplacian

∆f (x) :=
1

2d

∑

y:|y−x|=1

[f (y)− f (x)] .

The measure is described as

µD (dφ) :=
1

ZD
exp [−H (φ)]

∏

x∈D

dφx

∏

x/∈D

δ0 (φx) .

In physics literature, such measures have been introduced to model membranes,
see for instance [2], [3]. The critical dimension is 4 : For d ≥ 5, the field exists
on D = Z

d, by a thermodynamic limit, and has decay of correlations of order

|x− y|4−d
. For d = 4, the variance of φ0 for D = DN = {−N, . . . , N}4 is of order

logN . This case belongs to the class of logarithmically correlated models.
We investigate modified models with local pinning at the origin, i.e. measures

of the form

µε
D (dφ) :=

1

Zε
D

exp [−H (φ)]
∏

x∈D

(dφx + εδ0 (dφx))
∏

x/∈D

δ0 (φx)
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where ε > 0 is the pinning parameter. There are other versions of local pin-
ning which have a locally changed Hamiltonian. The above so-called δ-pinning is
mathematically the most convenient one.

Our main result is the following

Theorem 1. Let d ≥ 5, and let covεN denote the covariance under the measure
µε
DN

. For any ε > 0, there exist η (d, ε) , C (d, ε) > 0 such that

|covεN (φx, φy)| ≤ C (ε, d) exp [−η (d, ε) |x− y|]
uniformly in N, x 6= y, x, y ∈ DN .

Method of proof: The basis is an expansion

covεN (φx, φy) =
∑

A⊂DN

νεN (A)GA (x, y)

where here y 7→ GA (x, y) for x ∈ DN\A satisfies

GA (x, y) = 0, y ∈ A ∪Dc
N ,

∆2
yGA (x, y) = δx,y,

and where

νεN (A) :=
Zε=0
DN\A
Zε
DN

ε|A|

The result then follows from properties of this measure, and a proof that y →
GA (x, y) is rapidly decaying when A is “sufficiently” dense. Information about
the latter is obtained by adapting a method developed by Vladimir Mazya [4].

Open problems:

• The case d = 4 is open, but it is expected that there the model has a
similar exponential decay of the correlations. The main difficulty is to
derive appropriate properties of νεN .

• Completely open are properties under pinning for non-Gaussian models
with Hamiltonians

H (φ) :=
∑

x

V (∆φx) ,

where V is not quadratic.
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Variational formulas for percolation limit shapes

Timo Seppäläinen

(joint work with Nicos Georgiou, Arjun Krishnan, Firas Rassoul-Agha)

Consider standard first-passage percolation on the d-dimensional integer lattice
Z
d. Nonnegative independent and identically distributed edge weights {t(e)}e∈Ed

are given, indexed by the set of undirected nearest-neighbor edges between vertices
of Zd:

Ed = {{x, y} : x, y ∈ Z
d, |x− y| = 1}.

The passage time from vertex x to vertex y is the minimal time along a path from
x to y:

Tx,y = inf
γ

∑

e∈γ

t(e)

where the infimum is over paths γ = {x0, x1, . . . , xn} such that x0 = x, xn = y,
and |xi − xi+1| = 1 for all 0 ≤ i ≤ n − 1. The length of a path is arbitrary. We
assume that E(t(e)p) < ∞ for some p > d, which is stronger than needed but it
does guarantee that all that follows is proved. The limiting time constant is the
law of large numbers limit

µ(ξ) = lim
n→∞

n−1T0,[nξ] for ξ ∈ R
d.

The limit exists almost surely. [nξ] is some choice lattice point close to nξ.
The goal is to characterize the limit µ(ξ) with a variational formula. Assume

now that the weights {t(e)} are defined on a product probability space (Ω,F ,P)
with an action of the group {θx}x∈Zd of translations. Let R = {±e1, . . . ,±ed} be
the set of admissible steps of paths. Introduce a potential function V : Ω×R → R

which is now defined by V (ω, z) = t({0, z}) and satisfies V (θxω, z) = t({x, x+z}).
Define the following space of stochastic processes. Let K denote the space of

functions B : Ω× Z
d × Z

d → R with these properties:

E[B(x, y)] < ∞,

B(ω, x, y) +B(ω, y, z) = B(ω, x, z),

and B(ω, x+ u, y + u) = B(θuω, x, y).

Given B ∈ K, define (the negative of) its mean vector h(B) by

h(B) · x = −E[B(0, x)] ∀x ∈ Z
d.

A variational characterization of µ is now given as follows:

µ(ξ) = − inf
B∈KV

h(B) · ξ

where the subspace KV of K is defined as follows:

KV = {B ∈ K : min
z∈R

[V (ω, z)−B(ω, 0, z)] ≥ 0 P-a.s.}.
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This formula is in currently unpublished joint work with A. Krishnan and
F. Rassoul-Agha. It is proved from a variational formula for a first-passage perco-
lation problem with restricted path lengths. Let

G0,n,x = inf
(xk)nk=0

n−1
∑

k=0

V (θxk
ω, xk+1 − xk)

where (xk)
n
k=0 is an n-step path from x0 = 0 to xn = x. The limiting time constant

for this problem is
g(ξ) = lim

n→∞
n−1G0,n,[nξ]

for ξ in the convex hull of R. The variational formula for g(ξ), from article [1], is

g(ξ) = sup
B∈K

P-ess inf
ω

min
z∈R

{V (ω, z)−B(ω, 0, z)− h(B) · ξ}.

Given the formula above, the proof of the formula for µ(ξ) begins from the con-
nection

T0,x = inf
k≥|x|1

G0,k,x.
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Cover time and cover process for the random walk on the
2-dimensional torus

Francis Comets

(joint work with C. Gallesco, S. Popov and M. Vachkovskaia)

Consider the simple random walk on the two-dimensional discrete torus Z
2
n :=

Z
d/nZd with the starting point chosen uniformly at random. Let Tn be the cover

time of the torus, i.e., the first moment when this random walk visits all sites
of Z

2
n. Being the largest hitting times of torus points, Tn is the maximum of

dependent random variables, it motivates much research efforts at the moment.
The cover time can be defined in arbitrary dimension d, but the dependence

between different hitting times is weak for d ≥ 3 because of the transience of the
walk: asymptotics in this case are similar to the independent case. On the contrary,
in dimension d = 2, hitting times are strongly correlated. It was shown in [4] that

Tn

n2 ln2 n
→ 4

π in probability; later, this result was refined by the first correction to
this limit. Then, some asymptotics of the cover time are much different from the
independent case [1]. The reason is found in the structure of the set of late points,
i.e., the set of points that are still unvisited up to a given time. This set is rather
well understood in large dimension.

In dimension 3 or higher, A.-S. Sznitman introduced random interlacements
in [5] to describe the trace of simple random walk the torus Z

d
n. Random inter-

lacements are a consistent approximation of this trace at times ranging from O(nd)
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to the typical cover time. Late points are approximately independently disributed,
as a Bernoulli-Poisson process.

In two dimensions, by recurrence of the walk, the strict analogue of Sznitman’s
construction is trivial, and the set of late points has interesting fractal-like prop-
erties when the elapsed time is a fraction of the expected cover time.

In [2], we define two-dimensional random interlacements at level α as a point
process on Z

2: its complement Vα is called the vacant set, and is characterized by:

P[A ⊂ Vα] = exp
(

− πα × cap(A)
)

,

for all finite A ⊂ Z
2 containing the origin. Here, cap(A) denotes the (recurrent)

capacity of a finite set A. We construct two-dimensional random interlacements
using simple random walk trajectories on Z

2 conditioned on never hitting the
origin. We prove that the law of the uncovered set around the origin at time
4α
π n2 ln2 n conditioned on the event that the origin is uncovered, is close to the law
of two-dimensional random interlacements at level α. This describes the structure
late points in the neighborhood of a randomly chosen unvisited site.

The two-dimensional random interlacements has interesting properties: invari-
ance, long range dependence, . . . Furthermore, it has a phase transition, of a dif-
ferent nature than percolation: the vacant set Vα is a.s. infinite if α ≥ 1, and a.s.
finite if α > 1. The critical case α = 1 requires a considerable effort [3].
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Cohomological approach to the decomposition theorem for closed
forms in the non-gradient method

Makiko Sasada

(joint work with Yukio Kametani)

To prove the hydrodynamic limit for non-gradient models, applying the gradient
replacement, introduced by Varadhan and Quastel in [7] and [4], is a standard and
unique strategy so far. Its essential part is the so-called characterization of closed
forms (cf. [1], [3]). This part requires a very complicated argument with a sharp
spectral gap estimate. Even though the statement of the characterization theorem
of closed forms is almost same for a wide class of models, we need to change the
details of the proof depending on the specific model and it is not straightforward.
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Also, to show the sharp spectral gap estimate for each model is usually a tough
work.

In this talk, we aim to understand the common structure of the characterization
of closed forms among different models. In particular, we reveal why the dimension
and the explicit expression of the set of harmonic forms (or precisely, closed but
not exact forms) do not depend on the details of the model, which we can guess
from the previous works on the non-gradient models ( [1], [2], [3], [5], [7]). For
this purpose, we introduce a CW complex associated to the configuration space
and reconsider the characterization of closed forms from algebraic and geometric
points of view. We report new observations and results obtained by the study of
this complex. They are the followings:

(i) The typical characterization theorem of closed forms required in the context
of hydrodynamic limit is about the closed forms in L2(ν) where ν is a probabil-
ity measure on a configuration space. The theorem claims that any closed form
(precisely any germ of closed form) is decomposed as a sum of an exact form and
a harmonic form. Moreover, the space of harmonic forms is explicitly given. We
study the closed forms which are local functions, and prove the similar decompo-
sition of them by the exact forms and the harmonic forms. The space of harmonic
forms are common for L2 functions and local functions. The proof is very simple
and able to apply very general models directly.

(ii) The statement and the proof of the characterization theorem for local func-
tions do not relate to the probability measure ν nor the spectral gap estimate, so
it turns out to be purely an algebraic problem.

(iii) From the characterization theorem for local functions, we know the di-
mension and the explicit expression of the set of harmonic forms. In fact, the
dimension is exactly the first cohomology group of an abelian group acting the
configuration space.

(iv) Using the idea of the proof of the characterization theorem for local func-
tions, for the case where the model has a good duality, we give an alternative
proof of the characterization theorem for L2(ν) functions where we do not use
the spectral gap estimate. The example of the model having a nice duality is the
lattice gas reversible under Bernoulli measures studied in [1].

(v) With our new observations, we can generalize these results of the charac-
terization theorem of closed forms for the interacting particle systems in a crystal
lattice instead of Z

d. As mentioned in [6], the hydrodynamic limit for a non-
gradient system in a crystal lattice is an important open problem. Our result
gives a way to attack the problem.
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Temperature profiles in non-equilibrium stationary states

Stefano Olla

(joint work with Tomasz Komorowski, Marielle Simon)

Systems that have more than one conserved quantity (i.e. energy plus momentum,
density etc.), can exhibit quite interesting temperature profiles in non-equilibrium
stationary states. For example in [1] it has been studied numerically a chain of
coupled rotators, attached at the boundary to thermal Langevin thermostats and
under a constant force on the last rotator, that keeps the dynamics in a stationary
non-equilibrium state. Notably in these stationary states the temperature at the
center of the system is considerably higher than at the boundary. We understand
now that this effect is strictly related to the presence of more than one conserved
quantity. We present here some analytical result on a more simple model where
this phenomena can be proved rigorously and the corresponding temperature pro-
file computed explicitly. The system is given by an unpinned chain of harmonic
oscillators, whose dynamics include a force applied on the last particle, Langevin
thermostats acting at the boundaries, and random flipping of the sign of the ve-
locity of the particles. Energy and volume are conserved quantities, only changed
by the border thermostat and force.

The configurations of the system are given by sequences (q,p) :=
{qx, px}x=0,...,n, where px ∈ R stands for the momentum of the oscillator at
site x, and qx ∈ R represents its position. Thus the configuration space is
Ωn := (R × R)n+1. The interaction between two particles x and x + 1 is de-
scribed by the quadratic potential energy V (qx − qx+1) = 1

2 (qx − qx+1)
2 of a

harmonic spring relying the particles. At the boundaries the system is connected
to two Langevin heat baths at temperatures T− and T+. Furthermore on the
right boundary is acting a force (tension) τ̄+, eventually slowly changing in time
at a scale t/n2. Notice that the system is unpinned. Consequently the absolute
positions qx do not have precise meaning, and the dynamics depends only on in-
terparticle elongations rx = qx − qx−1, x = 1, . . . , n. The configurations are then
described by

(1) (r,p) = (r1, . . . , rn, p0, . . . , pn) ∈ R
n × R

n+1.
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The energy is defined by the Hamiltonian:

En :=

n
∑

x=1

{

p2x
2

+
r2x
2

}

+
p20
2
.

The equation of the dynamics are given by
(2)


























drx(t) = n
2 (px(t)− px−1(t)) dt

dpx(t) = n
2 (rx+1(t)− rx(t)) dt− 2px(t

−) dNx(γn
2
t), x ∈ {1, . . . , n− 1}

dp0(t) = n
2
r1(t) dt− 2p0(t

−) dN0(γn
2
t)− γ̃n

2
p0 dt+ n

√

2γ̃T
−
dw0

dpn(t) = −n
2
rn(t) dt+ n

2
τ̄+(t) dt− 2pn(t

−) dNn(γn
2
t)− γ̃n

2
pn dt+ n

√

2γ̃T+dwn

where w0(t) and wn(t) are two independent standard Wiener processes.
It is useful to use the generator of the dynamics in order to compute time

evolutions. This is given by

(3) Lt = n2
(

At + γS + γ̃S̃
)

where

(4) At =

n
∑

x=1

(px − px−1)∂rx +

n−1
∑

x=1

(rx+1 − rx)∂px
+ r1∂p0

+ (τ̄+(t)− rn) ∂pn
,

(5) Sf(q,p) =
n
∑

x=0

(f(q,px)− f(q,p))

where px is the velocities configuration with the sign of px changed. The generator
of the Langevin heat bath at the borders is given by

(6) S̃ =
∑

x=0,1,n−1,n

(

Tx∂
2
px

− px∂px

)

, T0 = T1 = T−, Tn−1 = Tn = T+.

Let us denote by < · > the average with respect to this process, including on the
initial conditions. The hydrodynamic limit result is the following:

〈

r[nu](t)
〉

−→
n→∞

r(t, u)
〈

p2[nu](t)
〉

−→
n→∞

eth(t, u),
(7)

where r(t, u), eth(t, u) are solution of the diffusive system:

∂tr(t, u) =
1

2γ
∂2
uur(t, u)

∂teth(t, u) =
1

4γ
∂2
uueth(t, u) +

1

2γ

(

∂ur(t, u)
)2

, (t, u) ∈ R+ × [0, 1]

(8)

with boundary conditions

r(t, 0) = 0, r(t, 1) = τ̄+(t),

eth(t, 0) = T−, eth(t, 1) = T+
(9)
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with the initial condition

(10) r(0, u) = r0(u), eth(0, u) = T0(u).

Take τ̄+ constant in time and T− = T+ = T . If τ̄+ 6= 0, the stationary profiles in
the equations (8) satisfy:

rss(u) = τ̄+u

∂2
uueth,ss(u) + 2τ̄2+ = 0, eth,ss(0) = eth,ss(1) = T.

(11)

i.e.

(12) eth,ss(u) = τ̄2+u(1− u) + T.

Notice that the chain heats up at the center, reaching the maximum temperature

at eth,ss(1/2) = T +
τ̄2
+

4 . Notice that this is independent of the sign of of τ̄+ and
that this is a quadratic effect.
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How to initialize a second class particle ?

Márton Balázs

(joint work with Attila László Nagy)

We greatly generalize P. A. Ferrari and C. Kipnis’ [3] results on the behavior of
the second class particle in the rarefaction fan of the totally asymmetric simple
exclusion process. Versions of their results are shown to hold through for prac-
tically any attractive particle system (including zero-range, misanthrope models,
and many more) with established hydrodynamic behavior.

The second class particle in exclusion processes is a unique object in the sense
that, being the integer difference between two 0-1 random variables, it must see
occupation number 0 for one of the coupled processes while 1 for the other. Gen-
eralizing the notion to other models with more options for a site poses the new
question of what the distribution of the coupled pair should be at the site of the
second class particle, and sets the old task of providing a one-site coupling with
the following properties:

• the first marginal of the coupled pair is the desired stationary marginal of
one of the two densities for the rarefaction fan initial data;

• the second marginal of the coupled pair is the desired stationary marginal
of the other of the two densities;

• the coupled pair either agree or have one difference between them (zero or
one second class particles).
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This is easily achieved by the standard monotone coupling of Bernoulli variables
for exclusion, and is also doable for the discrete Gaussian example we have seen
as a stationary distribution of the bricklayer processes. However, there is no such
coupling probability distribution for other natural examples like the classical zero
range process (with iid. Geometric marginals) or independent walkers (iid. Poisson
marginals).

The main novelty is thus the introduction of a signed coupling measure as initial
data, which nevertheless results in a proper probability initial distribution for the
site of the second class particle. This is made possible by the observation that the
signed coupling measure that arises from the above conditions always assigns non-
negative weights on the off-diagonal state (when we have a second class particle),
the unwanted negative mass can only occur at the diagonal entry where there is no
second class particle present. To obtain a probability distribution for the second
class particle one simply rescales the non-negative, off-diagonal part of the signed
coupling measure.

This distribution proves to be canonical in many senses and makes the exten-
sion of [3] possible via a tricky argument that makes use of conditioning the pair
of processes before coupling them. Combined with strong recent results in hydro-
dynamic limits, we are able to identify the ballistically and diffusively rescaled
limit distribution of the second class particle position in a wide range of asymmet-
ric and symmetric models, respectively. The asymmetric result is similar to that
achieved in [3] while the symmetric case provides a new way of proving central
limit theorems for the second class particle.

We also point out a model with non-concave, non-convex hydrodynamics [2,
4], where the rescaled second class particle distribution has both continuous and
discrete counterparts. As a by-product of our methods we reveal a very interesting
invariance property of the one-site marginal distribution of the process underneath
the second class particle. Finally, we give a lower estimate on the probability of
survival of a second class particle-antiparticle pair.
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Invariance principle for a slowed random walk over symmetric
exclusion

Otávio Menezes

(joint work with Milton Jara)

We establish an invariance principle for a random walk driven by a simple exclusion
process in one dimension. The walk has a drift to the left (resp. right) when it
sits on a particle (resp. hole). The environment starts from equilibrium and is
speeded up with respect to the walker. After a suitable space-time rescaling, the
random walk converges to a sum of a Brownian motion and a Gaussian process
with stationary increments, independent of the Brownian motion. The proof is
based on the martingale approximation method of Kipnis and Varadhan. The
most important step in the proof is a bound on the relative entropy between the
environment process and the Bernoulli product measure (which is not invariant
for the environment process).
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Branching Interlacements

Balázs Ráth

(joint work with Omer Angel, Qingsan Zhu)

We consider critical branching random walk (BRW) with geometric offspring dis-
tribution and uniform starting point on the d-dimensional torus of side length N ,
and condition the total number of offspring to be equal to ⌊uNd⌋. We look at the
limit of the law of the trace of this BRW as N goes to infinity for some fixed value
of u and d ≥ 5, and find that it is a random subset of Zd which can be constructed
as the trace of a Poisson point process on the space of infinite trees embedded in
the lattice. Our construction relies on the notion of contour process of a plane tree.
Inspired by similar results about Sznitman’s random interlacements, one studies
the connectivity properties of this random subset of the lattice (the branching
interlacement at level u) and its complement. The talk is based on joint work in
progress with Omer Angel and Qingsan Zhu.
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Figure 1. Illustration of N = 50 non-intersecting Brownian mo-
tions conditioned to stay below the black threshold.

Tilings of the Aztec diamond on a restricted domain and the
hard-edge tacnode process

Bálint Vető

(joint work with Patrik L. Ferrari)

This work in progress is motivated by the tiling problem of the Aztec diamond.
The Aztec diamond is a domain An in the two-dimensional integer lattice that
consists of the union of squares of the form [k, k + 1] × [l, l + 1] which lie inside
{|x| + |y| ≤ n + 1}. One of all possible tilings of An by vertical or horizontal
2 × 1 domino is chosen uniformly at random. As n → ∞, the upper part of the
Aztec diamond An contains only horizontal domino in a special alignment which
form the north polar region. The boundary of this region is the Arctic circle with
limiting fluctuations given by the Airy2 process on the n1/3 scale, see [2].

To obtain a non-trivial interaction with the limiting Airy2 process on the bound-
ary of the north polar region, we consider a uniform tiling of the Aztec diamond
An restricted to y ≤ R where the horizontal line y = R is tangential to the Arctic
circle. As a limit process, the Airy2 process restricted to stay below a constant
level is expected.

The same limit process was obtained in [1] as the n → ∞ limit of n non-
intersecting Brownian bridges conditioned to stay below a fixed threshold, see
Figure 1. The scaling limit in this case appears if the limit shape of the region
filled by the Brownian bridge paths is tangential to the threshold. In [1] the
limiting distribution of the top Brownian bridge conditioned to stay below a func-
tion is described as well as the limiting correlation kernel of the system. It is a
one-parameter family of processes which depends on the tuning of the threshold
position on the natural fluctuation scale.
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Some recent works on the branching Brownian motion

Bernard Derrida

(joint work with Zhan Shi)

Three recent results were presented during my short presentation:

(1) It is well know that the most recent common ancestor of two particles,
chosen at random among the right most particles of a branching Brownian
motion (BBM), is either very close to the top of the tree or very close to
its bottom. This is closely related to the broken symmetry of replicas in
the mean field theory of directed polymers. In a recent work with Peter
Mottishaw we have computed the leading finite size correction, i.e. the
probability that the common ancestor is at any intermediate height on the
tree [1]. Our result is universal as it remains unchanged for more general
branching random walks.

(2) With Zhan Shi [2], we have obtained some results on generalizations of
the branching Brownian motion in presence of selection (L-BBM, N-BBM,
branching random walk with coalescence). In the limit L → ∞, N → ∞
or of a very small coalescence rate, the large deviation function of the
position of the rightmost particle exhibits a non-analytic dependence on
the position.

(3) With Zhan Shi [3], we have computed the large deviation function for
negative large deviations of the position of the rightmost particle of a
branching Brownian motion. This large deviation function is linear in a
certain range, where the prefactor is a power law of time with an irrational
exponent.
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Upper triangular matrix walk: cutoff for finitely many columns

Shirshendu Ganguly

(joint work with Fabio Martinelli)

Random walks on the groupMn(q) of the n×n-upper triangular matrices with one
along the diagonal and entries from the finite field Fq, q a prime, have received quite
a lot of attention, owing to the fact that they form basic examples of random walks
on nilpotent groups. The random walk, sometimes called the upper triangular walk,
in the case q = 2, is the Markov chain whose generic step consists in choosing
uniformly at random a row among the first (n − 1)-ones and adding to it the
next row mod 2. It is easy to check that this chain is reversible w.r.t. the uniform
measure onMn(2). A natural variant, called the lazy upper triangular walk, entails
to perform the above addition with probability 1/2. We refer the interested reader
to [9] for a nice review of the background on the literature related to this walk
and other related variants.

In this work, we consider the continuous time version of the upper triangular
walk where each row at rate one is updated by adding the row below it with prob-
ability 1/2. Sharp bounds on the spectral gap were proven by Stong [6] implying,
in particular, that the spectral gap λ2(n) is positive uniformly in n. Using an
elegant argument, Peres and Sly [9] proved that the total variation mixing time
tmix(n) = Θ(n). From the above results it follows that limn→∞ λ2(n)× tmix(n) =
+∞, a known necessary condition for the occurence of the so called mixing time
cutoff [2], i.e. a sharp transition in the total variation distance from equilibrium
which drops from being close to one to being close to zero in a very small time
window compared to the mixing time scale.

In [1], Y. Peres conjectured that, for many natural classes of reversible Markov
chains, the above condition (sometimes referred to as the product condition) is also
sufficient for the occurrence of cutoff, despite of the fact that, in full generality,
this is known to be false (cf. [7, Chapter 18]). Thus it is a natural and interesting
problem to decide whether the upper triangular matrix walk exhibits cutoff or not.

It has been observed before and was crucially used in [9], that the marginal
process on a given column coincides with the East process [3–5] at density 1/2,
a well known constrained interacting particle system. The East chain is known
to exhibit cutoff (cf. [8]), a result which, combined with the previous observation,
suggests that the upper triangular walk in continuous time might do the same.

In this work we extend and complement the Peres-Sly result by proving that (i)
the spectral gap of our chain is equal to the spectral gap of the East process on
n − 1 vertices; (ii) the marginal chain on finitely many columns exhibits mixing
time cutoff at the mixing time of the column with the largest index, among the
chosen ones.

Whether the whole matrix has cutoff and mixes at the same location as the
last column remains an intriguing open question! We also remark that, perhaps
surprisingly, certain numerical evidence suggests that the mixing time of full chain
is strictly larger (on a linear scale n) than the mixing time of one column.
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Invariant measures of mass migration processes

Ellen Saada

(joint work with Lucie Fajfrová, Thierry Gobron)

We introduce in [5] the mass migration process (MMP), a conservative particle

system on N
Z
d

. It consists in simultaneous jumps of k particles (k ≥ 1) between
sites, with a jump rate depending only on the state of the system at the departure
and arrival sites of the jump. On one hand it is a particular case of the dynamics
studied in [7], and on the other hand it generalizes misanthropes, zero range and
target processes [1, 3, 8], for which k = 1 always. In a mass migration zero range
process (MM-ZRP) - resp. target (MM-TP) - the rates do not depend on the
occupation number of the arrival site - resp. non-empty departure site - of the
jump. The generalized zero range [9] (which may exhibit condensation) and the
q-Hahn asymmetric zero range [2] (an exactly solvable model) are MM-ZRPs.

After the construction of MMP (done in the spirit of [1, 10]), our main focus
is on its invariant measures, whose explicit knowledge is essential to study con-
densation (see [4]), or exactly solvable models. We derive necessary and sufficient
conditions for the existence of translation invariant and invariant product prob-
ability measures. For asymmetric MM-ZRP and MM-TP, these conditions yield
explicit solutions, and, if these processes are moreover attractive (we study attrac-
tiveness for MMP relying on [7], summarized in [12]), we obtain their extremal
translation invariant, invariant probability measures. We study condensation for
MMP, and its link with attractiveness (see also [11] on this link). Finally, we give
the first proof of coexistence of attractiveness and condensation on a fixed finite
volume (see [6]) on an example of MM-ZRP.
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RW kernels, spanning forests and multiscale analysis on graphs.

Luca Avena

(joint work with Fabienne Castell, Alexandre Gaudillière and Clothilde Mélot)

We use ideas from large-scale stochastic dynamics to build a multiresolution scheme
to analyse arbitrary functions on graphs. These types of problems emerge naturally
in the context of signal processing. The goal is to obtain successive approxima-
tions at different scales of arbitrary functions on graphs which are used for signal
classification, reconstruction and data compression. When the signal is defined on
a graph having enough regularity structures, several methods (such as wavelets)
are available in the literature and used in practice. When the regularity struc-
ture of the graph is lacking, very few methods are known. Our work [2, 3] aims
at addressing this issue by using random spanning forests [1], loop-erased walks,
determinantal structures, random walk kernels and intertwining of Markov chains.
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How does ice melt at 0◦C ?

Benôıt Laslier

(joint work with Fabio Toninelli)

Lozenge tilings can be seen as a random 2-dimensional surface embedded in R
3

and can be therefore used as a model for an interface. In a work in progress,
we consider a reversible dynamics on this model, corresponding physically to an
interface at a point of phase coexistence, and prove that the surface follows a
deterministic hydrodynamics limit at the diffusive time scale.
The dynamics was introduced by Luby, Randall and Sinclair to give a polynomial
algorithm for generation of uniformly random lozenge tilings and we show that
it is in some sense a gradient dynamics, allowing us to apply the H−1 method of
Funaki and Spohn. The limit PDE is fully non-linear and has a non-trivial mobility
coefficient but is strikingly explicit and was previously derived non-rigorously by
the same authors in [1].
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Current Fluctuations for the Stationary ASEP

Amol Aggarwal

The purpose of this short talk is to explain our recent result of [1], which accesses
the scaling limit of the current of the stationary one-dimensional asymmetric sim-
ple exclusion process (ASEP).

Recall that the ASEP is a continuous-time interacting particle system on Z.
There is a one-parameter family of translation-invariant, stationary measures for
this process, given by Bernoulli product measures, meaning that each site is occu-
pied with some fixed probability ρ ∈ (0, 1).

Denoting the tagged particles of the ASEP by · · · < X−1(t) < X0(t) < X1(t) <
· · · at each time t ≥ 0 (where we initialize X−1(0) ≤ 0 < X0(0)), define for each
x ∈ R the current Jt(x) by the almost surely finite sum

Jt(x) =

∞
∑

i=−∞

(

1Xi(0)≤01Xi(t)>x − 1Xi(0)>01Xi(t)≤x

)

.

The following theorem provides the scaling limit for the current of the stationary
ASEP along the characteristic line x = (1− 2ρ)t.
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Theorem 1.1 ( [1, Theorem 1.4]). Consider the ASEP with left jump rate L, right
jump rate R, and stationary initial data with parameter ρ; assume δ = R−L > 0,
and denote χ = ρ(1− ρ). Then, for any s ∈ R, we have that

lim
T→∞

P

[

Jδ−1T

(

(1− 2ρ)T
)

≥ ρ2T − χ2/3sT 1/3
]

= Φ(s),(1)

where Φ(s) denotes the Baik-Rains distribution, given by Definition 2 of [2].

Let us explain the context for the above theorem. Since the ASEP is a dis-

cretization of the Kardar-Parisi-Zhang (KPZ) equation ∂tH = ∂2
xH+(∂xH)

2
+ Ẇ

(Ẇ is space-time white noise), it had long been believed that the scaling limit
of the current of the stationary ASEP should converge to the scaling limit of the
height fluctuations of the stationary KPZ equation.

The latter was recently analyzed in the work of Borodin-Corwin-Ferrari-Vető [4];
they showed that the height function of the stationary KPZ equation, after run
for some large time T , is of order T 1/3 and scales to the Baik-Rains distribution
Φ(s) above. Thus, it would be expected that the scaling limit of the current of the
ASEP after run for some large time T should (along the characteristic line) also
be of order T 1/3 and scale to Φ(s).

Special cases of this result were established by Ferrari-Spohn [5] and Balász-
Seppäläinen [3], and the scaling limit of the ASEP with different types (step-
Bernoulli) of initial data was later obtained by Tracy-Widom [6]; however, none
of these methods seemed to directly apply to the stationary setting.

Theorem 1.1 above accesses the scaling limit for the current fluctuations of the
stationary ASEP, thereby establishing the conjecture stated above.

A question left unresolved by this work is that of universality. For example,
it remains unknown whether (1) holds for general stationary exclusion processes
with non-nearest neighbor jumps.
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Diffusions in Kinetically Constrained Models

Oriane Blondel

(joint work with Cristina Toninelli)

KCM are interacting particle systems on Z
d reversible with respect to a product

Bernoulli measure with some parameter 1−q ∈ (0, 1). They evolve with either spin-
flip or exchange dynamics, where updates are suppressed if a local constraint on
the number of zeroes in the neighbourhood is not satisfied. We consider two classes
of KCM: (1) non-cooperative models, the simplest example of which is the FA-1f
model. The dynamics is spin-flip and updates are allowed at x provided at least
one nearest-neighbour is empty. (2) KA models with parameter j ∈ {1, . . . , d},
where a particle at x is allowed to jump to an empty nearest neighbour y if x has
at least j empty neighbours and y has at least j − 1.

These models are known to be ergodic at any density q and the properties of
their spectral gap investigated in the past [2, 3]. Here we want to study them
“from the inside”. In spin-flip non-cooperative models such as FA-1f, we consider
a probe particle, i.e. a simple random walk started at the origin and constrained to
jump only between empty sites. In KA models, we follow the motion of a tagged
particle.

In both these settings, due to reversibility and classical results, the probe or
tagged particle satisfies an annealed invariance principle, with a diffusion coeffi-
cient D(q) given by a variational formula [4] and depending on the density. The
strength of this variational formula is that it allows to derive properties of the
diffusion coefficient by comparison with an appropriate auxiliary dynamics.

For the probe particle in non-cooperative Kinetically Constrained Spin Models
we find the correct (polynomial) asymptotic dependence of D(q) as q → 0 [1].
For the tagged particle in KA models, in collaboration with Cristina Toninelli, we
announce a proof that D(q) > 0 for any q ∈ (0, 1). In particular the proof fixes
critical issues in the strategy sketched in [5].

An open problem is the derivation of the correct asymptotic order for D(q),
q → 0 in the KA models (the bound we get should be off by an exponential). We
also expect that in other KCM, there exists a regime where diffusion occurs (i.e.
D(q) > 0) even though the KCM is not ergodic.
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Static length scales and glassy dynamics in triangular and square
plaquette models

Alessandra Faggionato

(joint work with P. Chleboun, F. Martinelli, C. Toninelli)

Plaquette models are finite range interacting spin systems with Glauber dynamics
expected to exhibit a glassy behavior, despite the absence of dynamical constraints
(present in kinetically constrained models) and disorder (present in spin glasses)
[3, 5]. In particular, the triangular plaquette model on the triangular lattice and
the square plaquette model on Z

2 are supposed to have a dynamics similar to
the East model and the FA1f model (which are kinetically constrained models).
Plaquette models are an interesting object also in string theory [2] and in for
cellular automata [6].

Since also the triangular lattice can be transformed into Z
2 by a linear map,

we can work directly on Z
d. The plaquettes are given by the sets P∗ + z, as z

varies in Z
d, where P∗ is a fixed finite subset of Zd. Writing P for the family

of plaquettes, we fix uniformly bounded coupling constants J(P ), P ∈ P . The
resulting Hamiltonian is then given by H(σ) = − 1

2

∑

P∈P J(P )σP , where σ ∈
{−1, 1}Zd

and σP :=
∏

x∈P σx. The square plaquette model (SPM) corresponds
to the case d = 2 and P∗ = {0, 1} × {0, 1}, while the triangular plaquette model
(TPM) to the case d = 2 and P∗ = {(0, 0), (0, 1), (1, 1)}.

Plaquette models with P∗ of the form B1 × B2 × · · · × Bd (as for the SPM)
are called factorizable and in [4] it has been proved the validity of the Dobrushin–
Shlosman criterion [1] for any inverse temperature β, thus implying that for any β
there is uniqueness of the infinite volume Gibbs measure µβ, and this uniqueness
is stable under small perturbations of the Hamiltonian. Their analysis is based
on algebraic methods that do not apply to non factorizable systems as the TPM.
We have provided a different method to derive the above results also for some non
factorizable systems including the TPM. Restricting to the SPM and TPM we have
also proved that the infinite volume Gibbs state µβ is self–similar, in the sense that
its marginal on any square sublattice (for SPM) or on any triangular sublattice of
side a power of 2 (for TPM) can be identified with µβ′ for a suitable new inverse
temperature β′. We have also proved that the critical correlation-decay lengthscale

if given by e
β
2 and e

ln 2
ln 3

β for the SPM and the TPM, respectively.
We have also discussed the effect of boundary conditions in the Dobrushin–

Shlosman sense in the TPM and SPM. To clarify, given finite subsets V ⊂ Λ and
a configuration τ , let us write µτ

Λ,V for the marginal on V of the Gibbs measure

on Λ with b.c. τ and inverse temperature β. Suppose that τ ′ is another boundary
condition differing from τ at points x ∈ X and denote by B(x, ℓ) the box with
center x and radius ℓ, i.e. B(x, ℓ) = {y : ‖x − y‖∞}. Then, the distance in

total variation of µτ
Λ,V and µτ ′

Λ,V with V = Λ \ ∪x∈XB(x, ℓ) is always o(1) at low

temperature if ℓ is larger eβ , while for ℓ ≤ eβ one can exhibit examples where the
total variation distance is not negligible. We shortly say that eβ is the critical
lengthscale in the Dobrushin–Shlosman sense both in the TPM and SPM.
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Another interesting lengthscale is the so–called cavity length, roughly the dis-
tance from the boundary at which the effect of the boundary condition on the
bulk is negligible. Up to now, the analysis of this length scale remains an open
problem.

As final part we have discussed some aspects of the Glauber dynamics. In
particular, for the SPM we have proved that the infinite volume relaxation time
(defined as the inverse of the spectral gap) is of Arrenhius type and we have
explained some physical conjecture on the relaxation time of the TPM related to
a hierarchical structure proposed in [5]. Further analysis of the dynamical aspects
is a work in progress with A. Smith.
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Kinetically constrained models and bootstrap percolation: critical
time and length scales

Cristina Toninelli

(joint work with Fabio Martinelli)

In recent years, a great deal of progress has been made in understanding the be-
haviour of a class of monotone cellular automata, whose general definition has been
given in [1]. Fix a finite collection of finite subsets of Zd \ 0, U = {X1, . . . , Xm}.
U is the update family of the process and each X ∈ U is an update rule. The
U-bootstrap percolation process on the d dimensional torus of linear size n, Zd

n, is
then defined as follows. Given a set A ⊂ Z

d
n of initially infected sites, set A0 = A,

and define recursively for each t ∈ N

At+1 = At ∪ {x ∈ Z
d
n : x+Xk ⊂ At for some k ∈ (1, . . .m)}

In words, site x is infected at time t + 1 if the translate by x of at least one of
the update rules is already entirely infected at time t, and infected sites remain
infected forever. The set of sites that are eventually infected, ∪∞

t=0At, is called
the U-update closure of A and denoted by [A]U . This general class includes as
specific examples the classical r-neighbour bootstrap percolation models (see [4]
and references therein). In this case a site gets infected if at least r of its nearest
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neighbours are infected, namely the update family is formed by all the r-subset of
nearest neighbours of the origin.

The key issue is the global behavior starting from q-random initial conditions,
namely when each site of Zd

n belongs independently with rate q to the initial set
of infected sites. In particular one would like to know how large q should be
in order that the closure tipically covers the whole lattice. In [1–3] universality
results for general U-bootstrap percolation processes in dimension d = 2 have been
established, yielding the behavior of the critical percolation threshold defined as

qc(n;U) = inf{q : Pq([A]U = Z
d
n) ≥ 1/2}

One can equivalently express these results in term of the critical length Lc(q,U) =
min{n : qc(n,U) = q}. In turn, this length is naturally related to the infection
time of the origin, τ(A,U) := min(t ≥ 0 : 0 ∈ At). In particular, if A is q-
random, and lim infn→∞ qc(n,U) = 0, with high probability as q → 0 it holds
τ(A,U) = Lc(q) [1].

Given a U-bootstrap model one can consider the associated kinetically con-
strained model (KCM), a continuos time stochastic dynamics on Z

d in which each
vertex is resampled (independently) at rate one by tossing a q-coin if it could be
infected in the next step by the U-bootstrap model and it is not updated other-
wise [6]. Since the constraint does not depend on the to-be-updated site, detailed
balance holds w.r.t. the product measure µ which gives weight q to empty sites
and 1− q to occupied sites. Therefore µ is an invariant reversible measure for the
process.

The basic issues concerning the long time behavior KCM are in general not
trivial. In particular, due to the presence of constraints, there exist configurations
which do not evolve under the dynamics, and relaxation to µ is not uniform on the
initial configuration. Also, at variance with the cellular automata, these stochastic
dynamics are not monotone: the presence of more zeros facilitates motion and can
therefore also allow killing more zeros. Thus coupling and censoring arguments
which have been developed for attractive dynamics (e.g. Glauber dynamics for
Ising model) cannot be applied. The main interest of KCM is that for q → 0 they
reproduce some of the most striking features of the liquid/glass transition, a major
and still largely open problem in condensed matter physics. In particular, they
display an heterogeneous dynamics and anomalously long mixing times.

A key issue both from the physical and mathematical point of view is to de-
termine the divergence of the time scales when q ↓ qc = lim infn→∞ qc(n,U). A
natural time scale is the mean of the random first time τ0 at which the occupation
variable at the origin is updated, Eµ(τ0). Here the mean is over the process and
the distribution µ for the initial configuration. Via a general argument based on
the finite-speed of propagation, it is easy to establish (see [6]) that Eµ(τ0) is lower
bounded by the critical length of the corresponding cellular automata, Lc. In-
stead, there is not a direct connection with the cellular automata which allows to
compute an upper bound on the time scales, and the best general upper bound is
Eµ(τ0) ≤ exp(cLd

c) ( [6]). Though this bound have been refined for special choices
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of the constraints yielding in some cases the sharp behavior, the techniques are
always ad hoc and valid only for very special choices of the constraints.

The main result that we present in this talk is a general toolbox which allows to
obtain much tighter upper bound and hopefully identify the universality classes for
the KCM critical scaling. In particular we apply our technique to the KCM with
update rule corresponding to r-neighbour bootstrap percolation. This is a very
popular KCM, known in physics literature as Friedrickson Andersen k-facilitated
model. In this case the sharp scaling of Lc has been determined in a series of
works (see [4] and references therein), leading to

Lc(q) = exp(k−1)

(λ(d, k) + o(1)

q1/(d−k+1)

)

,

with λ(d, k) an explicit constant and exp(r) the r-times iterated exponential.
We prove that for k = 2 there exists α > 0 such that

Eµ(τ0) = O
(

Lc(q)
log(1/q)α

)

and for 3 ≤ k ≤ d there exists c > λ(d, k) such that

Eµ(τ0) ≤ exp(k−1)

(

c/q1/(d−k+1)
)

This, together with the lower bound Eµ(τ0) ≥ Lc, establish a much tighter connec-
tion between Eµ(τ0) and Lc then previous results. At this point one might think
that Eµ(τ0) is a function of the critical bootstrap length, perhaps scaling as power
law. We explain that this is not the case and we discuss a class of the rules for
which we prove that Lc = 1/qΘ(1) and Eµ(τ0) = q−Θ(log(1/q)) ≫ Lc.
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Random long time dynamics of the stochastic Kuramoto model

Christophe Poquet

(joint work with Lorenzo Bertini, Giambattista Giacomin, Eric Luçon)

In this talk I have presented some recent progress in the study of the stochastic
Kuramoto model [1], which is constituted of a population of N interacting rotators
evolving according to the following system of stochastic differential equations:

dϕj(t) = δωjdt−
K

N

N
∑

i=1

sin(ϕj(t)− ϕi(t))dt + dBj(t),

where ϕj(t) is seen modulo 2π, (Bj)1≤j≤N is a family of independent standard
Brownian motions, and (ω)1≤i≤N is a family of i.i.d. random variables with dis-
tribution λ (called the disorder of the system).

On finite time intervals and in the limit of infinite population this model is
described by a system of coupled PDEs [4, 7]: the empirical measure µN,t =
1
N

∑N
j=1 δ(ϕj(t),ωj) converges to pt(θ, ω)dθλ(dω), where pt(θ, ω) satisfies

∂tpt(θ, ω) =
1

2
∂2
θpt(θ, ω)− ∂θ

[

pt(θ, ω)

(
∫

R

J(θ − θ′)p(θ′, ω′)dθ′λ(dω′) + ω

)]

,

with J(θ) = −K sin(θ). Here pt(θ, ω) represents the limit distribution of the
rotators having natural frequency ω.

When the interaction is strong enough and the disorder small enough, this
system of PDEs admits a stable periodic solution of the form pt(θ, ω) = q(θ−ct, ω),
where q is a synchronized profile [6]. In the case of symmetric disorder c = 0, the
system admits a stable curve (in fact a circle) of stationary profiles.

For large but finite populations, the randomness brought by the thermal noise
and the disorder is still present, and its effect on the system appear macroscopi-
cally on appropriate time scales. In the case of symmetric disorder, the finite-size
fluctuations of the disorder appear at the time scale

√
Nt: with probability con-

verging to 1 the re-scaled empirical measure µN,
√
Nt is close with high probability

to q(θ − bN t, ω)dθλ(dω), where bN depends on the fluctuation of the disorder [8].
At this time scale the finite-size fluctuations of the thermal noise play no role. On
the other hand, in absence of disorder, these thermal fluctuations appear at the
scale Nt: with probability converging to 1, µN,Nt is close to q(θ − σWN (t))dθ,
where WN (t) converges in distribution to a Brownian motion [2, 3].

These questions remain open for other graphs of interaction, in particular of
Erdös-Rényi type: to my knowledge the existence of deterministic limit dynamics
on bounded time intervals for edge density pN ≪ logN/N and interaction term
appropriately re-scaled, and the study of the fluctuations for any edge density,
have not been treated yet for Erdös-Rényi graphs of interaction [5].
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The Cutoff phenomenon for biased card shuffling and Adjacent
transposition shuffle

Hubert Lacoin

(joint work with Cyril Labbé)

We consider the biased card shuffling and the Asymmetric Simple Exclusion Pro-
cess (ASEP) on the segment. We obtain the asymptotic of their mixing times,
thus showing that these two continuous-time Markov chains display cutoff. Our
analysis combines several ingredients including: a study of the hydrodynamic pro-
file for ASEP, the use of monotonic eigenfunction, stochastic comparisons and
concentration inequalities.

The ASEP can be defined as follows: k particles on a segment of length N
jump independently with rate p > 1/2 to the right and q = (1 − p) to the left. A
restriction is added: each site can be occupied by at most one particle. The biased
card shuffling which is a walk on the symmetric group which can be described
as follows: for any n, the image of n and n + 1 are exchanged with rate p if the
exchange puts them in increasing order and with rate q if not. The generator for
this second chain is given by

LNf(σ) :=
N−1
∑

i=1

(

p1{σ(i+1)<σ(i)} + q1{σ(i+1)>σ(i)}
)

[f(σ ◦ τi))− f(σ)]

=

N−1
∑

i=1

p[f(σi,+)− f(σ)] + q[f(σi,−)− f(σ)].

(1)
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We let gapN,k, gapN , TN,k
mix (ε) and TN

mix(ε) the spectral gaps and total variation
mixing times associated to these two chains. Our main result is the obtainment
of sharp estimates for these mixing times which implies in particular that cutoff
(abrupt convergence to equilibrium) holds.

For the biased card-shuffling:

Theorem 1. We have for every p ∈ (1/2, 1] and ε ∈ (0, 1)

lim
N→∞

TN
mix(ε)

N
=

2

p− q
.

Moreover we have for every value of N and p

(2) gapN = (
√
p−√

q)2 + 4
√
pq sin

( π

2N

)2

.

And for the ASEP when the particle density tends to α:

Theorem 2. We have for every p ∈ (1/2, 1], every α ∈ [0, 1] and every ε ∈ (0, 1)

lim
N→∞
k/N→α

TN,k
mix (ε)

N
=

(
√
α+

√
1− α)2

p− q
.

Moreover for every N , every k ∈ {1, . . . , N − 1} and every p we have

(3) gapN,k = (
√
p−√

q)2 + 4
√
pq sin

( π

2N

)2

.
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Non-equilibrium fluctuations of interacting particle systems

Milton Jara

(joint work with Otávio Menezes)

Let us consider the following simple example of interacting particle systems. Let
n ∈ N be a scaling parameter. Let Λn = Z

d/nZd denote the discrete torus with
n points. We think about Λn as a discrete approximation of the continuous torus
T
d = R

d/Zd. Let Ωn = {0, 1]}Λn be the state space of a continuous-time Markov
chain that we will describe below. We denote by η = (ηx)x∈Λn

the elements of Ωn.
For x, y ∈ Λn and η ∈ Ωn, let η

x,y ∈ Ωn be the configuration obtained from η by
exchanging its occupation variables at x and y:

ηx,yz =







ηy ; z = x
ηx ; z = y
ηz ; z 6= x, y.
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For x ∈ Λn and η ∈ Ωn, let η
x ∈ Ωn denote the configuration obtained from η by

swapping its occupation variable at x:

ηxz =

{

1− ηx ; z = x
ηz ; z 6= x.

We say that x, y ∈ Λn are neighbors if
∑d

i=1 |yi−xi| = 1. We denote this by x ∼ y.
For f : Ωn → R, let Lnf : Ωn → R be given by

Lnf(η) = n2
∑

x,y∈Λn
x∼y

(

f(ηx,y)− f(η)
)

+
∑

x∈Λn

cx(η)
(

f(ηx)− f(η)
)

,

where cx(η) = c+x (η)(1 − ηx) + c−x (η)ηx and

c+x (η) = 1, c−x (η) = 1 +
b

2d

∑

y∼x

ηy.

We consider the family of Markov chains {ηnt ; t ≥ 0}n∈N generated by the operators
Ln. We call this model the reaction-diffusion model with reaction rate cx. It has
been proved that for this model, the density of particles has a hydrodynamic limit
given by solutions of the equation

∂tu = ∆u+ F (u),

where

F (ρ) =

∫

cx(η)(1 − 2ηx)dµρ

and µρ is the Bernoulli measure of density ρ. Notice that F (ρ) = 0 for ρ =

(1 +
√
1 + b)−1. From now on, we fix this value of ρ and we take ηn0 with law µρ.

We denote by Pn the law of this process and by En the expectation with respect
to Pn. We define the density fluctuation field as the distribution-valued process
{Xn

t ; t ≥ 0} given by

Xn
t (f) =

1

nd/2

∑

x∈Λn

(

ηnx (t)− ρ
)

f
(

x
n

)

We prove that in d = 1, the density fluctuation field {Xn
t ; t ≥ 0} converges in law

to the solution of the stochastic PDE

∂tX = ∆X + F ′(ρ)X +
√

2ρ(1− ρ)∇Ẇ1
t +

√

G(ρ)Ẇ2
t ,

where G(ρ) =
∫

cxdµρ. In dimension d = 2, we can prove convergence of finite-
dimensional distributions. The proof is based on a novel technique, which involves
an entropy estimate that controls the distance of the law of the process ηn(t) to
the measure µρ. More specifically, let gnt denote the density of the law of ηn(t)
with respect to µρ:

En[f(η
n(t))] =

∫

f(η)gnt (η)dµρ

for any f : Ωn → R. Let Hn(t) denote the entropy of gnt :

Hn(t) =

∫

gnt log gnt dµρ.
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Then, we can prove that there exists a finite constant C, independent of t and n,
such that

d
dtHn(t) ≤







C ; d = 1
C logn ; d = 2
Cnd−2 ; d ≥ 3.

This entropy bound allows to deal with the density fluctuation field adapting
techniques from the case on which the measure µρ is stationary with respect to
the evolution of the process ηn(t).

Our proofs of both the entropy estimates and the convergence of the density
fluctuation field are very general and can be adapted for a large class of interacting
particle systems with diffusive behaviour.

Invariant measures for the Box Ball System in Z

Pablo A. Ferrari

(joint work with Chi Nguyen, Leonardo Rolla, Minmin Wang)

There is a box at each integer x ∈ Z which may contain one ball or be empty.
Denote η ∈ {0, 1}Z a ball configuration, with η(x) := 1 if there is a ball at x, else
η(x) := 0. Take a configuration with a finite number of balls and let an empty
carrier start from the left of the leftmost ball and visit the boxes in increasing
order. At each box the carrier picks a ball if there is any and if the box is empty
and the carrier has at least one ball, he deposits one ball in the box. Let Tη be
the configuration obtained after the carrier visited all boxes. For instance:

0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 η
0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 Tη
0 0 1 0 1 2 1 0 0 0 1 2 1 2 1 0 0 0 0 carrier

This cellular automaton called Box-Ball-System (BBS) was introduced by Taka-
hashi and Satsuma [3], as a discrete system showing solitons, a phenomenon
present in the Korteweg & de Vries (KdV) differential equation for u(r, t) ∈ R

+,
r ∈ R, t ∈ R

+ given by

u̇ = u′′′ + u u′(1)

For the relation between BBS and KdV see Tokihiro et al [4], Takahashi and
Matsukidaira [2] and Kato, Satoshi and Zuk [1].

We start the BBS with infinitely many balls. The set of configurations with
density λ is defined by

Xλ =
{

η ∈ {0, 1}Z : lim
y→±∞

∣

∣

∣

1

y

y
∑

x=0

η(x)
∣

∣

∣
= λ

}

We show that if λ ∈ (0, 1
2 ) and η ∈ Xλ, then Tη is well defined as limit of Tηn for a

sequence of finite ball configurations ηn ր η and Tη ∈ Xλ. Let X := ∪λ∈(0, 1
2
)Xλ.
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The operator T induces operators in the space of bounded functions: (Tf)(η) =
f(Tη) and of measures: (µT )f = µ(Tf).

A measure is invariant for T if µT = µ. For λ < 1/2, the distribution of iid
Bernoulli(λ) is invariant for T , as a consequence of Burke Theorem. Indeed, in
this case the carrier performs a random walk with probabilities p(k, k + 1) = λ,
p(k + 1, k) = p(0, 0) = 1 − λ, k ≥ 0, which is stationary and reversible. By
reversibility, the up jumps of the carrier are distributed as the time-reversed down
jumps. Since the up jumps are iid Bernoulli, so are the down jumps. Conclude by
observing that the down jumps occur at the position of balls in Tη.

The description of other invariant measures is based on the basic sequences, a
set of conserved quantities defined in [3]. We call them k-podes. Loosely speak-
ing, a k-pode is a set of k successive ones followed by k zeroes, in the middle of
zeroes. Isolated k-podes travel at speed k and conserve the distances. k-podes are
conserved and can be identified even when they are not isolated, interacting with
m-podes. In the following evolution we see a 1-pode interacting with a 3-pode.

000001110000000100000000000011100000000000000000000000

000000001110000010000000000000011100000000000000000000

000000000001110001000000000000000111000000000000000000

000000000000001110100000000000000000011100000000000000

000000000000000001011100000000000000000011100000000000

000000000000000000100011100000000000000000011100000000

A ball configuration η ∈ X induces the increments ξ(x)− ξ(x− 1) := 2η(x)− 1 of
a nearest-neighbors walk ξ(x) ∈ Z. There is a record at x if ξ(x)− ξ(x− z) < 0 for
all z > 0. If η ∈ X , then records are conserved and can be followed. Let rt(i, η)
be the position at time t of the ith record of η. The cycle of record i at time t is
the ball configuration between rt(i, η) and rt(i + 1, η). In pictures we substitute
zeroes at records by dots:

.....111000....10...........111000....................

........111000..10.............111000.................

...........11100010..............111000...............

..............11101000...............111000...........

.................10111000...............111000........

..................10..111000...............111000.....

The effective distance between successive k-podes is the number of records sepa-
rating them when isolated from m-podes for all m > k. To obtain this, evolve the
finite configuration between the record to the left of the left k-pode and the record
to the right of the right k-pode. When there remain only records between the
two k-podes, count them. For m > k, when an m-pode overpasses a k-pode, the
k-pode gains 2(m−k) extra records with respect to its natural speed-k trajectory.

Call X o the set of configurations in X with a record at the origin. Take η ∈ X o,
tag the record 0 and recall r1(0, η) is its position in Tη. Let the translation

operator be defined by (θxη)(y) = η(y−x) and define T̂ η = θr1(0,η)Tη, the system
at time 1 as seen from the tagged record initially at the origin.

Multipode decomposition. We define a family of operators Mk : X o → X o with
the property that the k-component Mkη consists of k-podes separated by records
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at the effective distance. In case η has no k-podes, Mkη contains only records. For
instance,

..........11101000.10x..10...111000.10.............. η

..............10...10x..10........10................ M1η

.....................x.............................. M2η

..............111000.x.....111000................... M3η

The x indicates the position of the record at the origin.

Theorem 1. Let µ be a shift-stationary, mixing, invariant measure on X with
density λ < 1/4. Let η be a random ball configuration with distribution µ̂, the
measure µ conditioned to have a record at the origin. Then

(Mkη : k ≥ 1) is a family of independent random configurations.

Let ρk be the expected number of k-podes between the record at the origin and
the nearest record to the right of it, under µ̂. The proof of Theorem 1 is based in
the following result.

Theorem 2. Let µ be a shift-stationary, mixing, invariant measure on X and η
with law µ̂. The k-component of T̂ tη is the k-component of a translation of η:
there are functions y(k, t, η) such that

MkT̂
tη = Mkθ−y(k,t,η)η

Assume
∑

m≥1 m
2ρm < ∞. The translations have finite limits: if ρk > 0, then

lim
t→∞

y(k, t, η)

t
=: vk < ∞, k ≥ 1,

which satisfy the system of equations

vk = k +
∑

m>k

2(m− k)(vm − vk)ρm, k ≥ 1.(2)

For m > k, there exist constants c(m, k) such that

c(m, k) ≤ vm − vk ≤ m− k.

If λ < 1/4 then c(m, k) > 0 for all m > k. Furthermore,

vk ≤ k + 2
∑

m≥1

m2ρm.

Final remark. We show that the system starting with a mixing invariant measure
may contain infinitely many rigid solitons described by the k-components of η, for
k ≥ 1. The k-components are independent but the soliton-soliton interactions pro-
duce temporary deformations of distances and modify average speeds as reflected
by equations (2). The proof of independence in Theorem 1 requires c(m, k) > 0
which we prove in the regime λ < 1/4.
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Université de Nice Sophia-Antipolis
Parc Valrose
06108 Nice Cedex 02
FRANCE

Dr. Oriane Blondel

Institut Camille Jordan
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Universidade de Lisboa
Avenida Rovisco Pais, 1
Lisboa 1049-001
PORTUGAL

Dr. Paul Chleboun

Mathematics Institute
University of Warwick
Gibbet Hill Road
Coventry CV4 7AL
UNITED KINGDOM



Large Scale Stochastic Dynamics 3083

Prof. Dr. Francis M. Comets

U.F.R. de Mathématiques
Université Paris VII
Case 7012
75205 Paris Cedex 13
FRANCE

Prof. Dr. Bernard Derrida

Département de Physique, LP 5
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Pura e Aplicada
Jardim Botânico
Estrada Dona Castorina, 110
Rio de Janeiro, RJ 22460-320
BRAZIL

Prof. Dr. Alessandra Faggionato

Dipartimento di Matematica
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