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Introduction by the Organisers

The workshop Heat kernels, stochastic processes and functional inequalities, orga-
nized by Masha Gordina (University of Connecticut), Takashi Kumagai (RIMS,
Kyoto University), Laurent Saloff-Coste (Cornell University), and Karl-Theodor
Sturm (University of Bonn) was attended by over 50 participants from Austria,
Belgium, Canada, China, France, Germany, Italy, Japan, Luxembourg, Poland,
Portugal, Spain, Switzerland, United Kingdom, and USA. The program consisted
of 27 talks and 5 short contributions, leaving sufficient time for informal discus-
sions. The general topic of the workshop was the study of linear and non-linear
diffusions in geometric environments: metric measure spaces, Riemannian and
sub-Riemannian manifolds, fractals and graphs, and in random environments.
The workshop brought together leading experts in three different major fields
of mathematics: analysis, stochastics and geometry. It also provided a unique
opportunity for interactions between established and young scientists from these
different areas. One after-dinner session was devoted to short communications by
junior participants of the workshop.

The list of the talks provided below illustrates the wide variety of the topics
treated during the workshop. Even so no particular pressure was put on the
speakers to stress connections across fields, such connections were overwhelmingly
present, loud and clear. The questions during and following the talks demonstrated
both the high interest of the problems and results that were presented from the
point of view of the experts in the field and the curiosity of many participants for
concepts and ideas that were unfamiliar to them.

The notions of metric measure spaces, curvature-dimension bounds and related
problems regarding optimal transport and functional inequalities provided one area
of focus and several novel developments and techniques were discussed including
recent progress on time-dependent metric measure spaces (Eva Kopfer), new in-
sights in monotonicity formulas a la Pereleman (Kazumaza Kuwada) and sharp
functional inequalities via an innovative powerful 1-D localization method (Andrea
Mondino). Optimal transport techniques were successfully extended to degenerate
situations (Chen Li, Giuseppe Savaré) as well as to genuine probabilistic problems
like matching problems (Luigi Ambrosio) or the Skorokhod embedding problem
(Martin Huesmann).

Graphs and metric graphs present a particular challenge as some of the curva-
ture techniques are not easily applicable there. Still, recent efforts show one can
prove a weak form of the Bakry-Émery estimate for some metric graphs (Fabrice
Baudoin), or following the work of S.-T. Yau and co-authors, a version of the
Li-Yau gradient estimates for the heat kernel on graphs (Moritz Kassmann). The
Gromov-Hausdorff-vague topology for graph-like metric spaces was used to prove
an invariance principle for variable speed random walks on trees (Anita Winter).
Embedding of Cayley graphs in Hilbert spaces based on spectral profile was used to
provide a sharp sufficient condition for the Liouville property (Tianyi Zheng) and
variational methods was used to prove a limit shape theorem for certain domino
tilings (Georg Menz).
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Dirichlet forms and heat kernel estimates play key roles in a number of top-
ics discussed during the workshop. In particular, they provide a useful tool to
prove various functional inequalities in absence of an immediately available well-
defined geometry. Analysis on fractals, non-local operators, and random media are
some examples of applications. Talks on such topics included: non-local Dirichlet
forms (Zhen-Qing Chen), analysis on fractals (Naotaka Kajino), analysis on met-
ric measure spaces (Mathav Murugan), as well as two talks by junior participants
(Melchior Wirth and Alberto Chiarini). In particular, some recent progresses were
presented on stability of Harnack inequalities under quasi-isometries for local and
non-local Dirichlet forms on various metric measure spaces.

Random media and random environment provided another major area of focus
for the workshop. The flexibility of functional inequality techniques was demon-
strated by new developments regarding homogenization theory (Antoine Gloria,
Felix Otto), random conductance models (Jean–Dominique Deuschel, Pierre Math-
ieu, Tuan Anh Nguyen), and other discrete random models (Nathanael Berestycki,
Perla Sousi, Alain-Sol Sznitman).

A new direction that has seen significant progress recently is the Liouville quan-
tum gravity. While some participants (Sebastian Andres, Nathanael Berestycki,
Christophe Garban and Naotaka Kajino) have constructed the Liouville Brownian
motion and/or provided detailed heat kernel estimates for the process previously,
the workshop included a review talk on the Liouville quantum gravity (Christophe
Garban), which gave the participants an opportunity to see the larger picture. This
includes concepts from random planar geometry, Gaussian free fields and more gen-
erally certain probability measures on Riemannian surfaces, sometimes referred to
as the two-dimensional quantum gravity. In particular, the Liouville quantum
gravity measure can be viewed as a probabilistic formulation of the Knizhnik,
Polyakov, Zamolodchikov relation in conformal field theory (Bertand Duplantier).

Several talks were centered on stochastic differential geometry when the under-
lying manifold is equipped with a Riemannian or sub-Riemannian metric. Some
of these results involved geometric methods used to study the fundamental solu-
tion to the parabolic problem for weighted Schrödinger operators (Xue-Mei Li),
to describe small-time heat kernel asymptotics at cut points on sub-Riemannian
manifolds (Robert Neel), to construct a reflected Brownian motion in a Rie-
mannian manifold with boundary (Marc Arnaudon), or used probabilistic meth-
ods to study sub-Riemannian manifolds via Hamiltonian random walks (Thomas
Laetsch). One of the talks described the Dirac operator on a compact globally
hyperbolic Lorentzian spacetime with a spacelike Cauchy boundary, and gave an
index formula for this operator connecting it to the Atiyah-Patodi-Singer index
formula for Riemannian manifolds with boundary (Christian Bär).

This diversity of topics and mix of participants stimulated many extensive and
fruitful discussions. It also helped initiate new collaborations, in particular for the
junior researchers, and strengthen existing ties between researchers in different
fields of mathematics.



3090 Oberwolfach Report 55/2016

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Martin T. Barlow and Zhen-Qing Chen in the “Simons
Visiting Professors” program at the MFO.



Heat Kernels, Stochastic Processes and Functional Inequalities 3091

Workshop: Heat Kernels, Stochastic Processes and Functional
Inequalities

Table of Contents

Mathav Murugan (joint with Martin T. Barlow)
Stability of elliptic Harnack inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3093

Martin Huesmann (joint with Mathias Beiglboeck, Alexander Cox)
The geometry of multi-marginal Skorokhod embedding . . . . . . . . . . . . . . . . 3094

Zhen-Qing Chen (joint with Takashi Kumagai and Jian Wang)
Stability of parabolic Harnack inequalities for symmetric non-local
Dirichlet forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3097

Tianyi Zheng (joint with Yuval Peres, Laurent Saloff-Coste)
On groups slow decay of heat kernel implies Liouville property . . . . . . . . . 3099

Jean-Dominique Deuschel (joint with Sebastian Andres, Alberto Chiarini
and Martin Slowik)
Quenched invariance principle for the dynamic random conductance
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3101

Luigi Ambrosio (joint with Federico Stra, Dario Trevisan)
New estimates on the matching problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3103

Kazumasa Kuwada (joint with Xiang-Dong Li)
Monotonicity and rigidity of the W-entropy on RCD

∗(0, N) spaces . . . . . 3104

Xue-Mei Li
Hessian Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3106

Robert Neel (joint with Ugo Boscain, Davide Barilari, and Grégoire Charlot)
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Abstracts

Stability of elliptic Harnack inequality

Mathav Murugan

(joint work with Martin T. Barlow)

A well known theorem of Moser [4] is that an elliptic Harnack inequality (EHI)
holds for solutions associated with uniformly elliptic divergence form PDE. Let A
be given by

Af(x) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂f

∂xj

)
,

where (aij(x), x ∈ Rd) is bounded, measurable and uniformly elliptic. Let h be a
non-negative A-harmonic function in a domain B(x, 2R), and let B = B(x,R) ⊂
B(x, 2R). Moser’s theorem states that there exists a constant CH , depending only
on d and the ellipticity constant of a..(·), such that

(1) esssupB(x,R) h ≤ CH essinfB(x,R) h.

A few years later Moser [5] extended this to obtain a parabolic Harnack inequality
(PHI) for solutions u = u(t, x) to the heat equation associated with A:

(2)
∂u

∂t
= Au.

This states that if u is a non-negative solution to (2) in a space-time cylinder
Q = (0, T )× B(x, 2R), where R = T 2, then writing Q− = (T/4, T/2)× B(x,R),
Q+ = (3T/4, T )×B(x,R),

(3) esssupQ−
u ≤ CP essinfQ+ u.

If h is harmonic then u(t, x) = h(x) is a solution to (2), so the PHI implies the
EHI.

A major advance in understanding the PHI was made in 1992 by Grigoryan
and Saloff-Coste [2, 6], who proved that the PHI is equivalent to two conditions:
volume doubling (VD) and a family of Poincaré inequalities (PI). The context of
[2, 6] is the Laplace-Beltrami operator on Riemannian manifolds, but the basic
equivalence VD+PI ⇔ PHI also holds for graphs and metric measure spaces with
a Dirichlet form. This characterisation of the PHI implies that it is stable with
respect to rough isometries. One consequence of the EHI is the Liouville property –
that all bounded harmonic functions are constant. However, the Liouville property
is not stable under rough isometries – see [3].

These papers left open the following questions:

(1) Is EHI stable under perturbations?
(2) If so, find a characterization of EHI by properties that are easily seen to

be stable under perturbations.

Our main results in [1] answers these questions.
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Theorem 1. [1] Under mild regularity hypothesis on the underlying metric mea-
sure Dirichlet space, the elliptic Harnack inequality is stable under bounded per-
turbations of the Dirichlet form and under rough isometries.

Our proof of the above result also gives a characterization of EHI by properties
that are stable under perturbations.

A main difficulty in proving the above result stems from the following fact.
Every ‘robust’ method to prove EHI relies on the volume doubling property in an
essential way. However there are several examples of spaces satisfying EHI that
do not satisfy volume doubling.

Our starting point to overcome this difficultly is the following simple observa-
tion. Time change of the process (or equivalently change of the reference measure
of the Dirichlet form) does not affect the sheaf of harmonic functions. We show
that any space satifying EHI admits a doubling measure satisfying Poincaré and
Sobolev type inequalities with respect to the corresponding time-changed Dirichlet
form. The existence of doubling measure along with suitable function inequalities
provide a robust characterization of EHI.
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The geometry of multi-marginal Skorokhod embedding

Martin Huesmann

(joint work with Mathias Beiglboeck, Alexander Cox)

This talk is based on [2].
Given µ1, . . . , µn ∈ P(R) centered and increasing in convex order the multi-

marginal Skorokhod embedding problem is to find an increasing sequence τ1 ≤
. . . ≤ τn of stopping times of Brownian motion B minimising

E[γ((Bs)s≤τn , τ1, . . . , τn)](MSEP)

among all stopping times satisfying Bτi ∼ µi and B·∧τn is uniformly integrable.
Here, γ is some functional depending on the path of the Brownian motion up to
time τn as well as the n stopping times τ1, . . . , τn. Typical examples are h(τn)
for some convex/concave function h, the runnning maximum maxs≤τn Bs, or some
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functional of local time φ(Lτn). The uniform integrability condition ensures some
minimality of the solutions.

The case n = 1 is the well known classical Skorokhod embedding problem
with 20+ solutions by various authors, e.g. Azèma, Yor, Root, Rost, Perkins,
Hobson,. . . . We refer to [8] for a nice survey of the existing solutions (up to 2004).
The one-marginal solutions found various applications in probability, cf. [8]. In
fact, many of these applications have natural multi-marginal counterparts which
caused increased interest in the optimization problem (MSEP) in the recent years,
e.g. [4, 5, 6]

Let us mention one particular application themartingale optimal transport prob-
lem: Given two probability measure ν1, ν2 on Rd increasing in convex order and
a cost function c : Rd × Rd → R the martingale optimal transport problem is to
find a minimizer of ∫

c(x, y) Q(dx, dy)(1)

among all martingale couplings Q of ν1 and ν2, i.e. all couplings Q of ν1 and ν2
such that the coordinate process (x, y) is a martingale under Q. This problem is
well understood in dimension one. Essentially as a consequence of the Dambis-
Dubins-Schwarz Theorem (1) can be recast as a Skorokhod embedding problem.
Vice versa any solution to the Skorokhod embedding problem induces a solution
to (1). Hence, the Skorokhod embedding problem can be seen as a continuous
time version of the martingale optimal transport problem in dimension one, cf.
[7]. Moreover, (1) has a clear multi-marginal counterpart corresponding to n-step
martingales instead of 1-step martingales.

The key idea to study (MSEP), similar to [1], is to interprete a stopping time
τ as a way to transport mass attached to a given path ω to the position ω(τ(ω)).
Correspondingly we associate to each tuple τ1 ≤ . . . ≤ τn of stopping times on the
Wiener space the random measure

τ̄(dω, ds1, . . . , dsn) = δτ1(ω)(ds1) · · · δτn(ω)(dsn) W(dω) ,

where W denotes the Wiener measure. In the language of optimal transport this
corresponds to a Monge-type solution since to any tracjectory we associate ex-
actly one n-tuple of positions where to stop. Following a key lesson from optimal
transport we relax this to the class of randomised multi-stopping times satisfying

τ̄ (dω, ds1, . . . , dsn) = τ̄ω(ds1, . . . , dsn) W(dω) ,

with τ̄ω ∈ P({0 ≤ t1 ≤ . . . ≤ tn}) plus some linear constraints ensuring enough
adaptedness to keep the stopping time properties. Using these notions the mini-
mization problem (MSEP) turns into

inf
τ̄∈RMST(µ1,...,µn)

∫
γ(ωs≤tn , t1,≤, tn) τ̄(dω, dt1, . . . , dtn) ,(2)

where RMST(µ1, . . . , µn) is the set of all randomised stopping times embedding
the measures µ1, . . . , µn together with a suitable variant of the uniform integra-
bility condition. The formulation (2) is very useful since it turns our optimization
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problem into an optimization problem over a convex and compact set. Hence, we
directly get

Theorem 1. Let γ be lower semi continuous and bounded from below. There
exists a minimizer to (MSEP).

Theorem 2 (cf. [3]). Let γ be lower semi continuous and bounded from below.
There exists a dual theory to (MSEP).

Most importantly we can prove a geometric characterization of minimizers to
(MSEP) allowing us to establish multi-marginal extensions of all known solutions
to the classical Skorokhod embedding problem and many more. Moreover, all of
these solutions, including the ones corresponding to martingale optimal transport
problems, share a common geometric structure which we exemplify by stating the
n-Root solution to (MSEP). A barrier R is a set R ⊂ R+×R such that (s, x) ∈ R
and t ≥ s implies (t, x) ∈ R.
Theorem 3 (n-marginal Root embedding). Put γi((ωs)s≤sn , s1, . . . , sn) = h(si)
for some strictly convex function h : R+ → R and assume that (MSEP) is well
defined for all τ̄ ∈ RMST(µ1, . . . , µn) and finite for one such τ̄ . Then there exist
n barriers (Ri)ni=1 such that defining

τRoot
1 (ω) = inf{t ≥ 0 : (t, Bt(ω)) ∈ R1}

and for 1 < i ≤ n

τRoot
i (ω) = inf{t ≥ τRoot

i−1 (ω) : (t, Bt(ω)) ∈ Ri}
the multi stopping time (τRoot

1 , . . . , τRoot
n ) minimises

E[h(τ̃i)]

simultaneously for all 1 ≤ i ≤ n among all increasing families of stopping times
(τ̃1, . . . , τ̃n) such that Bτ̃j ∼ µj for all 1 ≤ j ≤ n. This solution is unique in the

sense that for any solution τ̃1, . . . , τ̃n of such a barrier-type we have τRoot
i = τ̃i a.s.

Finally we remark that this approach is not limited to one-dimensional Brown-
ian motion and readily extends to sufficiently regular Markov process such as 3−d
Bessel processes, Ornstein Uhlenbeck processes, or geometric Brownian motion.
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Stability of parabolic Harnack inequalities for symmetric non-local
Dirichlet forms

Zhen-Qing Chen

(joint work with Takashi Kumagai and Jian Wang)

Harnack inequalities are inequalities that control the growth of non-negative har-
monic functions and caloric functions (solutions of heat equations) on domains.
The inequalities were first proved for harmonic functions for Laplacian in the plane
by Carl Gustav Axel von Harnack, and later became fundamental in the theory of
harmonic analysis, partial differential equations and probability. One of the most
significant implications of the inequalities is that (at least for the cases of local
operators/diffusions) they imply Hölder continuity of harmonic/caloric functions.

Because of their fundamental importance, there has been a long history of
research on Harnack inequalities. A lot is known now for parabolic Harnack in-
equalities (PHI) for diffusions and for elliptic differential operators on Euclidean
spaces, manifolds, graphs and on general metric spaces. In particular, stable
charachterizations of parabolic Harnack inequalities have been obtained. See the
introduction part of [2] for a brief history. However, little is known about the
stable characterization of PHI for discontinuous Markov processes.

In this talk, we report recent advances in the study of stable characterizations
of PHI for symmetric purely discontinuous Markov processes, or equivalently, for
symmetric pure jump Dirichlet forms on general metric measure spaces.

Let X be a strong Markov process on a locally compact separable metric space
M . Denote by Zt = (V0−t,Xt) the corresponding space-time process. We say that
a nearly Borel measurable function u(t, x) on [0,∞)×M is parabolic (or caloric)
on Q = (a, b) × B(x0, r) for X if for every relatively compact open subset U of
Q, s 7→ u(Zs∧τU ) is a P(t,x) uniformly integrable martingale for every (t, x) ∈ U ,
where τU is the first exit time of Z from U . If we denote the generator of X
by L, then intuitively, u(t, x) is parabolic in Q = (a, b) × B(x0, r) if and only if
∂u
∂t (t, x) = Lu(t, x) in Q.
Let φ be an increasing function on [0,∞) with φ(0) = 0. We say parabolic

Harnack inequality with scale function φ (PHI(φ)) holds, if there exist constants
C1 > 0, 0 < C2 < 1 and C3 > 0 such that for any non-negative u = u(t, x) caloric
in the cylinder Q(t0, x0, 4C1φ(R), R) := (t0, t0 + 4C1φ(R)) ×B(x0, R),

sup
Q−

u ≤ C3 inf
Q+

u,

whereQ− := (t0+C1φ(R), t0+2C1φ(R))×B(x0, C2R) andQ+ := (t0+3C1φ(R), t0+
4C1φ(R))× B(x0, C2R).
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Now consider a metric measure space (M,ρ, µ) that satisfies volume doubling
and reversed volume doubling property in the sense that there are constants c2 >
c1 > 0 and L > 1 so that

c1µ(B(x, r)) ≤ µ(B(x, Lr)) ≤ c2µ(B(x, r)) for every x ∈M and r > 0.

Here B(x, r) denotes the open ball centered at x with radius r. Let φ be a contin-
uous increasing function on [0,∞) with φ(0) = 0 and φ(1) that has the doubling
and reversed doubling property.

Suppose thatX is a pure jump µ-symmetric Markov process onM with jumping
kernel J(x, y) with respect to µ(dx)µ(dy) associated with a regular Dirichlet form
(E ,F) on L2(E;µ), where

E(u, v) =
∫

M×M

(u(x) − u(y))(v(x) − v(y))J(x, y)µ(dx)µ(dy), u, v ∈ F .

Suppose that X̃ is another purely jump µ̃-symmetric Markov process with jumping

kernel J̃(x, y) with respect to µ̃(dx)µ̃(dy) associated with a regular Dirichlet form

(Ẽ ,F) on L2(E; µ̃), where

c3µ̃ ≤ µ ≤ c4µ̃ and c3J̃(x, y) ≤ J(x, y) ≤ c4J̃(x, y)

for some constants c4 ≥ c3 > 0.
We show that PHI(φ) holds for X if and only if it holds for X̃. This stability

result result is a direct consequence of a more precise characterization of PHI(φ)
obtained in [2] in terms of a Sobolev inequality, a cutoff energy inequality, an
upper bound and an averaging property for the jumping kernel J(x, y).

Other equivalent characterizations for PHI(φ) in terms of heat kernel estimates,
mean exit time bounds, Hölder regularity of parabolic functions and harmonic
functions, as well as its relation to elliptic Harnack inequalites are also given in
the talk.

The talk is based on the recent joint work [1], [2] and [3].
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On groups slow decay of heat kernel implies Liouville property

Tianyi Zheng

(joint work with Yuval Peres, Laurent Saloff-Coste)

Let G be a finitely generated infinite group equipped with a generating set S, and
let µ be a probability measure on G. Let X1, X2, . . . be a sequence of i.i.d. random
variables with distribution µ, so Wn = X1 · · ·Xn is the random walk on G with
step distribution µ. The law of Wn is the n-fold convolution power µ(n). The
return probability of the µ-random walk to the identity e after 2n steps is

P (W2n = e) = µ(2n)(e).

The Shannon entropy of Wn is

Hµ(n) = H(Wn) = −
∑

x∈G

µ(n)(x) log µ(n)(x).

The pair (G,µ) has the Liouville property if all bounded µ-harmonic functions
on G are constant. By classical work of Avez [1], Derrienic [2] and Kaimanovich-
Vershik [5], for µ with finite entropy Hµ(1) <∞, the pair (G,µ) has the Liouville

property if and only if the Avez asymptotic entropy hµ = limn→∞
Hµ(n)

n is 0. We

say a probability measure µ on G is symmetric if µ(g) = µ(g−1) for all g ∈ G.
We show a link between the decay of the return probability and the growth of

entropy of a symmetric random walk on G. Namely, we derive an upper bound on
Hµ(n) from a lower bound on µ(2n)(e), provided that µ(2n)(e) decays sufficiently
slowly. More precisely, in joint work with Peres [7], we show the following. Suppose
µ is a symmetric probability measure of finite entropy on G such that

µ(2n)(e) ≥ exp (−γ(n))
where γ : [1,∞)→ R+ is a function such that both γ(n) and n

1
2 /γ(n) are increas-

ing, that satisfies

lim
n→∞

γ(n)

n
1
2

= 0.

Then (G,µ) has the Liouville property.
Kotowski and Virág [6] analyzed a group G on which simple random walk

satisfies µ(2n)(e) ≥ exp(−cn1/2+o(1)) and the entropy Hµ(n) has linear growth.
The Kotowski-Virg example shows that the exponent 1/2 is the critical value in
the setting of the result above. It is an interesting open problem whether µ(2n)(e) ≥
exp

(
−cn 1

2

)
for some constant c > 0 implies that (G,µ) has the Liouville property.

Simple random walk on the lamplighter group over the two-dimensional lattice
G = Z2 ≀ Z2 satisfies µ(2n)(e) ≃ exp(−n1/2) and Hµ(n) ≃ n/ logn, see [3, 8]. This
example is just beyond the limit of application of our result.

The decay of the return probability enjoys good stability properties, see Pittet
and Saloff-Coste [9]. However, it remains a major open problem whether the
Liouville property is stable under changing the generating set of the group. We
deduce the following corollary regarding stability of the Liouville property provided



3100 Oberwolfach Report 55/2016

that µ(2n)(e) decays slower than exp
(
−n1/2

)
. Suppose G is a finitely generated

group such that for some symmetric probability measure µ with finite generating
support on G,

lim
n→∞

− logµ(2n)(e)

n
1
2

= 0.

Let Γ be a finitely generated group that is quasi-isometric to G. Then (Γ, η) has
the Liouville property for any symmetric probability measure η of finite second
moment on Γ. Here we say a probability measure µ on G has finite second moment
if
∑

g∈G |g|2µ(g) <∞ where | · | is the word distance on the Cayley graph (G,S).

When the decay of the return probability µ(2n)(e) is much slower than

exp
(
−n 1

2

)
, in [7] we have the following explicit entropy upper bound. This im-

proves earlier results of Gournay [4] and Saloff-Coste with the author [10]. Let µ
be a symmetric probability measure of finite entropy on G. Suppose there exists
constants C > 0, β ∈

(
0, 12
)
such that

µ(2n)(e) ≥ exp
(
−Cnβ

)
.

Then there exists a constant C1 = C1(β,C) such that

Hµ(n) ≤ C1n
β

1−β .

This bound is sharp on a family of groups which are extensions of the bubble
groups considered in [6], see Section 5 in [7].
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Quenched invariance principle for the dynamic random conductance
model

Jean-Dominique Deuschel

(joint work with Sebastian Andres, Alberto Chiarini and Martin Slowik)

We are interested in establishing a quenched invariance principle for the dynamic
random conductance model on the d-dimensional Euclidean lattice (Zd, Ed). The
dynamic conductance model is an time-inhomogenous Markov process {Xt : t ≥ 0}
on Zd in continuous time with generator, Lω , which acts on bounded functions
f : Zd → R as

(
Lωt f

)
(x) =

∑

y∼x

ωt({x, y})
(
f(y)− f(x)

)
,

where ω = {ωt(e) ∈ (0,∞) : e ∈ Ed, t ∈ R} is a family of non-negative weights.
Our main objective is to study this model under the following assumption on the
law of the conductances.

Assumption 1. Assume that the law P of the conductances satisfies:

(1) E
[
ωt(e)

]
<∞ and E

[
ωt(e)

−1
]
<∞ for all e ∈ Ed and t ∈ R.

(2) P is ergodic and stationary with respect to space-time shifts τt,x.
(3) For every A ∈ F the mapping (ω, t, x) 7→ 1A(τt,xω) is jointly measurable

with respect to the σ-algebra F ⊗ B(R)⊗ P(Zd).

Theorem 1. Suppose that d ≥ 2 and Assumption 1 holds. Futher, assume that
there exists p, q ∈ (1,∞] satisfying

1

p− 1
+

1

(p− 1)q
+

1

q
<

2

d

such that

E
[
ωt(e)

p
]
< ∞ and E

[
ωt(e)

−q
]
< ∞

for all e ∈ Ed and t ∈ R. Then, the QFCLT holds for X with a deterministic
non-degenerate covariance matrix Σ2.

Quenched invariance principles have been shown for various models for random
walks evolving in dynamic random environments (see [1, 5, 4, 8, 9, 14, 13]). Here
analytic, probabilistic and ergodic techniques were invoked, but assumptions on
the ellipticity and the mixing behaviour of the environment remained a pivotal
requirement. For instance, the QFCLT for the time-dynamic RCM in [1] required
strict ellipticity, i.e. the conductances are almost surely uniformly bounded and
bounded away from zero, as well as polynomial mixing, i.e. the polynomial decay
of the correlations of the conductances in space and time.

One motivation to study the dynamic RCM is to consider random walks in
an environment generated by some interacting particle systems like zero-range or
exclusion processes (cf. [7, 12]). Recently, some on-diagonal upper bounds for the
transition kernel of a degenerate time-dependent conductances model are obtained
in [12], where the conductances are uniformly bounded from above but they are
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allowed to be zero at a a given time satisfying a lower moment condition. In [11]
it is shown that for uniformly elliptic dynamic RCM in discrete time – in contrast
to the time-static case – two-sided Gaussian heat kernel estimates are not stable
under perturbations. In a time dynamic balanced environment a QFCLT under
moment conditions has been recently shown in [7].

An annealed FCLT has been obtained for strictly elliptic conductances in [1],
for non-elliptic conductances generated by an exclusion process in [2] and for a
similar one-dimensional model allowing some local drift in [3] and recently for
environments generated by random walks in [10].

Finally, let us remark that there is a link between the time dynamic RCM and
Ginzburg-Landau interface models as such random walks appear in the so-called
Helffer-Sjöstrand representation of the space-time covariance in these models (cf.
[6, 1]). However, in this context the annealed FCLT is relevant.
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New estimates on the matching problem

Luigi Ambrosio

(joint work with Federico Stra, Dario Trevisan)

Optimal matching problems are random variational problems widely investigated
in the mathematical and physical literature, having many variants (monopartite,
bipartite, matching to the reference measure, grid matching...). See the mono-
graphs [4] and [5] for many more informations on this subject. We provide new
results on the optimal matching of the empirical measure

∑
i
1
nδXi built from an

i.i.d. sequence (Xi) of points in a d-dimensional domain with law µ, and on the
bipartite problem, where µ is replaced by another empirical measure

∑
i
1
nδYi .

Denoting by Wp the Wasserstein distance induced by the transport cost c = dp,
1 ≤ p <∞, the problem is to estimate the rate of convergence to 0 of

(1) E

[
W p

p

(
∑

i

1

n
δXi , µ

)]
, E

[
W p

p

(
∑

i

1

n
δXi ,

∑

i

1

n
δYi

)]
.

If µ is uniformly distributed, the typical distance between points is expected to
be of order n−1/d, and therefore it is natural to guess that the quantities in (1)
behave as n−p/d (the lower bound can be achieved using duality and the random
test function mini | · −xi|). However, it is by now well known that this expecta-
tion is true for d ≥ 3, while it is false for d = 1 and d = 2. Leaving aside the
1-dimensional case, for which many explicit computations are possible (since op-
timal allocations are monotone rearrangement), the most striking result has been
obtained in [1], where it has been proved that a logarithmic correction appears:
E
[
W p

p

(∑
i
1
nδXi , µ

)]
∼ (logn)p/2. In [2] we obtain a new proof of this result based

on semigroup tools and spectral analysis; in addition, for p = 2, we are able to
show that

lim
n→∞

n

logn
E

[
W 2

2 (
∑

i

1

n
δXi , µD)

]
=

µ(D)

4π

whenever D is a compact 2-dimensional Riemannian manifold without boundary.
Here µ is the Riemannian volume measure and µD = µ/µ(D) is its normaliza-
tion; our result covers also the classical case of the unit square, by a comparison
argument. In the bipartite case we also prove that the limit is µ(D)/2π, using
independence of the two empirical measures.

In our proof the geometry of the domainD enters only through the (asymptotic)
properties of the spectrum of the Laplacian with Neumann boundary conditions;
for this reason we are able to cover also abstract manifolds.

The idea of the proof comes from a recent work [3], where scaling and expan-
sion hypotheses are made, in the bipartite case on the 2-dimensional torus. The
main idea in [3] is to linearize the Monge-Ampère equation, formally treating the
empirical measures as absolutely continuous measure. We can confirm part of the
predictions of [3] using a delicate smoothing technique, together with Dacorogna-
Moser interpolation and estimates on the Hopf-Lax semigroup.
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Monotonicity and rigidity of the W-entropy on RCD
∗(0,N) spaces

Kazumasa Kuwada

(joint work with Xiang-Dong Li)

Perelman’sW-entropy plays a crucial role in his seminal work on Ricci flow [9]. It
is well-known by Perelman’s entropy formula that the W-entropy is nonincreasing
along the heat distribution in (reversed) time and a time derivative vanishes if
and only if the space is isomorphic to a gradient shrinking Ricci soliton. L. Ni
[7] brought the notion of W-entropy to time-homogeneous Riemannian manifolds,
and the corresponding results has been studied in the literature under nonnegative
Ricci curvature in an appropriate sense (see [6, 7, 8] for instance).

In this talk, we consider the corresponding problem on RCD
∗(0, N) metric mea-

sure spaces. They are “Riemannian” spaces with nonnegative Ricci curvature
(Ric ≥ 0) and an upper bound of dimension by N (dim ≤ N), defined in terms
of optimal transport (see [1] and references therein). It includes all (weighted)

Riemannian manifold with nonnegative N -Bakry-Émery Ricci tensor, and Ricci
limit spaces with an appropriate curvature-dimension bound.

Let (X, d) be a Polish geodesic metric space and m is a Borel measure on X .
We suppose m(Br(x)) ∈ (0,∞) for any open metric ball Br(x) centered at x ∈ X
of radius r > 0. On metric measure space (X, d,m), we can define Cheeger’s
L2-energy functional Ch. When X is a complete Riemannian manifold, d is the
associated Riemannian distance and m is the Riemannian volume measure, Ch is
identified with the Dirichlet energy functional:

Ch(f) =
1

2

∫

X

|Df |2dm.

As a gradient flow of Ch on L2(m), we can define the heat flow (ft)t≥0, the associ-
ated heat semigroup Pt satisfying ft = Ptf0 and its generator ∆. Up to regularity
assumptions, we say that (X, d,m) is RCD∗(0, N) space (N ≥ 2 for simplicity), if
Pt is linear operator, ‖Ptf‖L1(m) = ‖f‖L1(m) for f ∈ L1(m) ∩ L2(m) with f ≥ 0
and the following space-time W2-control of heat flows

W2(Ptfm, Ptgm)2 ≤W2(fm, gm)2 + 2N(
√
t−√s)2
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holds for any probability densities f and g, where W2 is L2-Wasserstein distance.
We can define RCD∗(K,N) spaces (spaces with Ric ≥ K and dim ≤ N) in a similar
manner. See [1] for the precise definition and other equivalent formulations. In this
framework, we can extend Pt to a (continuous) map from the space of probability
measures P2(X) with a finite finite moment to P2(X) itself.

According to [7] (with a different expression and up to additive constants al-
though), we define the W-entropy W : P2(X)× (0,∞)→ R as follows:

W(µ, t) := tIm(µ)− Entm(µ)−
N

2
log t

for µ ∈ P2(X) and t > 0, where Entm is the relative entropy functional with
respect to m and Im is the Fisher information. Note that Entm(Ptµ)

′ = −Im(Ptµ)
holds for a.e. t > 0 and µ ∈ P2(X).

Our first result asserts that, for µt = Ptµ, W(µt, t) is nonincreasing in t on
RCD

∗(0, N) space (X, d,m). By following Topping’s approach [10] to this problem
on a (backward) Ricci flow by means of optimal transport, we can show this mono-
tonicity from our space-time W2-control of heat flows. Indeed, the identification
of W2-metric speed with

√
Im

lim sup
δ↓0

W2(µt, µt+δ)

δ
=
√
Im(µt) a.e. t

plays an essential role. Unlike previous results [6, 7, 8, 9], our proof goes without
deriving the entropy formula which describes the derivative of W(µt, t) explicitly.
As a by-product, even when X is a smooth (weighted) noncompact Riemannian
manifold, the monotonicity holds without additional technical assumptions in [6, 8]
(see [5] also).

Moreover, we also show the rigidity of this monotonicity. Here the rigidity
means that (X, d,m) is a (0, N)-cone of an RCD

∗(N − 2, N − 1) space if the upper
right derivative of W(µt, t) vanishes (see [2] for instance for the notion of (0, N)-
cone). Among smooth Riemannian manifolds, RN is the only possible choice of
such spaces and it recovers previous rigidity results [6, 7, 8] as a special case. It also
means that, some other singular spaces than Euclidean spaces admit a vanishing
time derivative of theW(µt, t). For the rigidity, we reduce the problem to verifying
the assumption of the main result of [2]. For this, the Li-Yau inequality [3] and
the Varadhan-type short time asymptotic for the heat kernel [4] will be used.
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Hessian Estimates

Xue-Mei Li

Gradient and hessian estimates for heat kernel are useful in the study of loops
spaces over a complete Riemannian manifold. Specifically they are needed for
obtaining an integration by parts for the Brownian bridge measure, and estimating
the tails of the measure in terms of exponential integrability of Lipschitz continuous
functions, and for proving the existence of a spectral gap for the Laplacian on loop
space.

The following type of estimates for the heat kernel p(t, x, y)

|∇ log p(t, x, y)| ≤ C(
1√
t
+

d

t
), |∇2 log p(t, x, y)| ≤ C(

1

t
+

d2

t2
)

are standard assumptions in the study of Brownian bridges measures on loop
spaces. These are proved by Sheu for Euclidean spaces, by Malliavin-Stroock for
compact manifolds and extended by Stroock-Turetsky to a class of manifolds with
bounded curvature and with the gradient of Ricci growing at most linearly.

We generalise this result to include more general manifolds and obtain a similar
estimate for the weighted Schrödinger operator with a potential,

∂u

∂t
=

1

2
∆u +Du(∇h)− V u

where h and V are real valued functions on the manifold. Our main tool is a
Hessian formula for which we introduce the doubly damped stochastic parallel
translation equation and study its exponential integrability. We also give several
criteria for non-explosion of Brownian motion with a gradient drift and the strong
1-completeness for gradient SDEs, which are needed for the above mentioned es-
timates.

Using the Hessian formula mentioned earlier, the semi-classical bridge intro-
duced by Elworthy-Truman, and a triple Girsanov transform, we obtain exact
formulas for the Hessian of the weighted heat kernel on manifolds with a pole (for
example for simply connected manifolds of negative curvature). The semi-classical
bridge is Brownian motion with drift ∇ log k1−t. Its radial part is the Bessel bridge
and hence we expect its probability distribution on the pinned path space on [0, 1]
or on the loop space to have nicer properties than the Brownian bridge measure.
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These formulas are expressed in terms of the product of an exact Gaussian kernel
and an explicit correction term E2,

∇dpt(x0, y0) = kt(x0, y0)E2, kt(x0, y0) = (2πt)−
n
2 e−d2(x0,y0)/2tJ− 1

2 (x0, y0).

Here J is the Jacobian determinant of the exponential map at y0. The correc-

tion term E2 can easily be bounded by C(1t + d2

t2 ), but since it is explicit (in
terms of the semi-classical bridge), more precise asymptotics can also be obtained.
Combining this with the elementary formula of Elworthy-Truman for heat ker-
nels of the same form, pt(x0, y0) = kt(x0, y0)E0, and an estimate of the form
∇pt(x0, y0) = kt(x0, y0)E1 obtained in an earlier work in collaboration with my
Ph.D. student Thompson, we obtain estimates for the Hessian of the logarithm of
the heat kernel, which also hold for the weighted Laplacian.

This study raises a number of questions including whether there exists a curva-
ture comparison theorem for the Ruse invariant appearing in the Girsanov term
and and for the gradient of the Jacobian determinant J . These estimates should
also extend to include less smooth data. In a future study we also hope to use
these formulas and estimates to examine the validity of Poincaré and Logarithmic
Sobolev inequalities on the loop space.
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Molchanov’s technique for small-time heat kernel asymptotics at cut
points

Robert Neel

(joint work with Ugo Boscain, Davide Barilari, and Grégoire Charlot)

In [14], Molchanov described a method to compute the small-time heat kernel
asymptotics of the heat kernel at the cut locus of a Riemannian manifold. This
method turns out to be fairly broadly applicable, and in [4], it was extended to
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sub-Riemannian geometry (where Riemannian geometry can be seen as a special
case), with further development in [3] and [2].

We equip our (complete) n-dimensional sub-Riemannian manifold with a sub-
Laplacian ∆, which gives rise to a hypoelliptic diffusion, and a smooth volume,
which serves as a reference measure for the associated heat kernel pt(x, y) (the
fundamental solution to ∂tut(x) = ∆ut(x) in the correct variable).

This method is based on three ingredients: the Chapman-Kolmogorov equa-
tion, a “global” coarse estimate, which in the sub-Riemannian context is given
by −2t log pt(x, y) → 1

2d
2(x, y) as t → 0 uniformly on compacts (due to Leandre

[10, 11]), and a finer estimate off of the cut locus, which in the sub-Riemannian

context is provided by pt(x, y) ∼
(

1
4πt

)n/2
e−d2(x,y)/4t

∑∞
i=0 Hi(x, y)t

i on M minus
Cut(x), x itself, and any abnormals (due to Ben Arous [6]). Concretely, take x and
y to be distinct points in M , let Γ be the set of midpoints of minimal geodesics
from x to y and let Γǫ be an ǫ-neighborhood. For example, if M is the standard
sphere and x and y the north and south poles, Γ is the equator. The idea is to
glue two copies of the expansion at Γ. Let hx,y(z) =

1
2d

2(x, z) + 1
2d

2(z, y) be the
hinged energy function. Then we derive

pt(x, y) =

(
1

2πt

)n ∫

Γǫ

(H0(x, z)H0(z, y) +O(t)) e−hx,y(z)/t dz,

giving the small-time asymptotics of pt as a Laplace integral where hx,y is the
phase function. Note that hx,y(z) achieves its minimum (of d2(x, y)/4) exactly on
the set Γ. Also, for z ∈ Γ, Hesshx,y(z) is non-degenerate if and only if the geodesic
from x to y through z is non-conjugate.

For some broader context, we note that integral representations of hypoelliptic
heat kernels for left-invariant structures on Lie groups (or other spaces with a
lot of symmetry) have been studied algebraically going back to classical work
of Gaveau and Hulanicki on the Heisenberg group and remain active, as seen
in recent work by Bonnefont [7], Baudoin-Wang [5], and Asaad-Gordina [1]. In
a different vein, within the past year, Inahama-Taniguchi [8] used Watanabe’s
distributional Malliavin calculus to give a general approach to sub-Riemannian
heat kernel asymptotics, in a related direction to earlier work of Kusuoka-Stroock
[9], and Ludewig [13, 12] gave similar asymptotics for Riemannian vector bundles
via a path-integral-type approach.

Returning to Molchanov’s method, we note that the integral formula above
is well suited to studying broad classes of examples of Riemannian and sub-
Riemannian structures. We illustrate this in the next two theorems.

In the most commonly studied cases in the literature, M possesses some rota-
tional symmetry and hx,y is a Morse-Bott function (the Hessian is not degenerate
on the normal bundle to TΓ). Then we have the following.

Theorem. Let M be an n-dimensional Riemannian or sub-Riemannian manifold
with an associated heat kernel as above, and let x and y be distinct with every
optimal geodesic joining x to y strongly normal. Define

O := {p ∈ T ∗
xM | Expx(p, d(x, y)) = y}
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Assume that O is a submanifold of T ∗
xM of dimension r and that for every p ∈ O

we have dimkerDp,d(x,y)Expx = r. Then there exists a positive constant C such
that

pt(x, y) =
C +O(t)

t
n+r
2

e−d2(x,y)/4t for small t.

In a different direction, recall the ADE classification of generic singularities of
maps of the Arnold school, and say that a geodesic γ is, for example, A3-conjugate
if the exponential map has an A3-singularity at γ. If γ is Am-conjugate, then near
the midpoint of γ, hx,y has the form

hx,y(z) =
1

4
d2(x, y) + z21 + . . .+ z2n−1 + zm+1

n .

Note this implies a minimizing geodesic can’t be A2k-conjugate. Suppose that,
for some ℓ ∈ {3, 5, 7, . . .} every minimizing geodesic from x to y is non-conjugate
or Am-conjugate for some 3 ≤ m ≤ ℓ, and at least one is Aℓ . Then there exists
C > 0 such that

pt(x, y) =
C +O

(
t

2
ℓ+1

)

t
n+1
2 − 1

ℓ+1

e−d2(x,y)/4t.

Moreover, we have the following.

Theorem. Let M be a smooth manifold, dimM = n ≤ 5, and x ∈ M . For
a generic Riemannian metric on M and any minimizing geodesic γ from x to
some y, γ is either non-conjugate, A3-conjugate, or A5-conjugate. Then the only
possible heat kernel asymptotics are (here C > 0 is some constant which can differ
from line to line):

• If no minimizing geodesic from x to y is conjugate, then

pt(x, y) =
C+O(t)

t
n
2

e−d2(x,y)/4t,

• If at least one minimizing geodesic from p to q is A3-conjugate but none

is A5-conjugate, pt(x, y) =
C+O(t1/2)

t
n
2

+1
4

e−d2(x,y)/4t,

• If at least one minimizing geodesic from p to q is A5-conjugate, pt(x, y) =
C+O(t1/3)

t
n
2

+ 1
6

e−d2(x,y)/4t.

We discuss further examples, including generic three-dimensional contact sub-
Riemannian structures and non-generic examples that show that the expansion
need not proceed in integer or half-integer powers of t. In addition, if the exact
structure of the exponential map near all minimizing geodesics is not known, one
can still give estimates on the heat kernel for small times.

Finally, we briefly describe how this method can be extended to study logarith-
mic derivatives of the heat kernel, at least on a Riemannian manifold, as discussed
in [15].
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An index theorem for hyperbolic operators

Christian Bär

(joint work with Alexander Strohmaier)

Let M be a Lorentzian manifold with boundary; the boundary is assumed to con-
sist of two smooth and spacelike Cauchy hypersurfaces, one lying in the past of
the other. We assume that M carries a spin structure so that the spinor bundle
SM → M is defined. Moreover, let the dimension of M be even; then the spinor
bundle splits into the two subbundles of left-handed and right-handed spinors,
SM = SLM ⊕SRM . Finally, let E →M be a Hermitian vector bundle, equipped
with a compatible connection. Then we have the bundles of spinors with coeffi-
cients in E, VL/R = SL/RM ⊗ E.
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The boundary is a Riemannian manifold and the induced operator on the
boundary is a self-adjoint elliptic differential operator. Therefore the Atiyah-
Patodi-Singer boundary conditions make sense in this Lorentzian setting; they
say

P+(u|∂M ) = 0

where P+ denotes the spectral projector onto the subspace of L2-spinors over ∂M
spanned by the eigenspinors to the non-negative eigenvalues of the boundary Dirac
operator.

The twisted Dirac operatorD : C∞(M,VR)→ C∞(M,VL) on M is a hyperbolic
linear differential operator of first order. Usually, index theory is closely tied to
ellipticity of the operator and hyperbolic operators are not Fredholm. Moreover,
solutions of Du = 0 need not be smooth; they can be very irregular.

In this particular setting however, we have a complete analog to the Atiyah-
Patodi-Singer index theorem [1]:

Theorem 1 (Bär-Strohmaier [2]). Under Atiyah-Patodi-Singer boundary condi-
tions, D is a Fredholm operator. The kernel consists of smooth spinor fields and
the index is given by

ind(DAPS) =

∫

M

Â(M) ∧ ch(E) +

∫

∂M

T (Â(M) ∧ ch(E)) − h+ η

2
.

Here Â(M) is the Â-form computable in terms of the curvature of M and ch is

the Chern character form, an expression in the curvature of E. By T (Â(M)∧ch(E))
we denote the corresponding transgression form and h and η denote the dimension
of the kernel and the η-invariant of the boundary operator, respectively.

There are also important differences to the Riemannian case. First of all, it is
possible to replace the Atiyah-Patodi-Singer boundary conditions by the comple-
mentary anti-Atiyah-Patodi-Singer boundary conditions

P−(u|∂M ) = 0.

In the Riemannian case this would not yield a Fredholm operator. In the Lorentzian
setting the operator turns out to be Fredholm and the same index formula as in
Theorem 1 holds, except for a global sign. Moreover, the index can be written as

ind(DAPS) = dimker[D : C∞
APS(M,VR)→ C∞(M,VL)]

− dim ker[D : C∞
aAPS(M,VR)→ C∞(M,VL)]

where the subscripts APS and aAPS indicate that (anti-)Atiyah-Patodi-Singer
boundary conditions are imposed. In the corresponding Riemannian formula
the negative term would have to be replaced by −dim ker[D : C∞

APS
(M,VL) →

C∞(M,VR)] (up to a subtlety if h 6= 0).
In the Lorentzian setup the APS-boundary conditions have a natural physical

interpretation in terms of a particle-antiparticle splitting. This allows to use The-
orem 1 to directly derive a geometric formula for the chiral anomaly in quantum
field theory on curved spacetimes without the need to resort to mathematically
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fishy arguments such as a Wick rotation. See [3] for details and computed exam-
ples.
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Geometric properties of Dirichlet forms under order isomorphisms

Melchior Wirth

(joint work with Matthias Keller, Daniel Lenz, Marcel Schmidt)

Kac’ famous question “Can one hear the shape of a drum?” can mathematically
be formulated as follows: Given Laplacians with Dirichlet boundary on Euclidean
domains Ω1,Ω2 and given a unitary operator U that intertwines the Laplacians,

U∆Ω1 = ∆Ω2U,

are the domains Ω1, Ω2 necessarily isometric?
As the answer is no in general, it is a natural follow-up to ask for conditions on

U that do enforce congruence of the domains. This was accomplished by Arendt
[1], who showed that the answer to Kac’ question is positive if one assumes U to
be an order isomorphism instead of a unitary operator. An order isomorphism
U between Lp-spaces is an invertible linear operator such that U and U−1 map
non-negative functions to non-negative functions.

In this talk we present the results of [4, 5], where we address this kind of
question in the general setting of Dirichlet forms: Let E1, E2 be Dirichlet forms
on L2(X1,m2), L

2(X2,m2) with generators L1, L2, and assume there is an order
isomorphism U such that UL1 = L2U . We investigate which geometric properties
of the Dirichlet forms are preserved in this situation.

This setting allows us to treat a variety of new classes of examples including
graphs, metric graphs, fractals, and metric measure spaces.

As a first result we establish that the assumption of U being an order isomor-
phism is indeed stronger than the one in Kac’ original question. This is new even
in the Euclidean case.

Proposition 1. The Dirichlet form E1 is irreducible if and only if E2 is irreducible.
In this case, ‖U‖−1U is unitary.

It is a classical result that every order isomorphism has the form of a weighted
composition operator:

Uf = h · f ◦ τ
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with h : X2 −→ (0,∞) measurable and τ : X2 −→ X1 measurable with measurable
inverse.

For regular Dirichlet forms we can prove stronger regularity properties of τ .

Proposition 2. Assume that E1, E2 are irreducible and regular. Under some
additional regularity assumption, there exist polar sets N1 ⊂ X1, N2 ⊂ X2 and an
m2-version τ̃ of τ such that τ̃ : X2 \N2 −→ X1 \N1 is a homeomorphism.

Roughly speaking, the additional regularity assumption ensures that there are
sufficiently many bump functions in D(E1) and D(E2) that are mapped to contin-
uous functions by U and U−1 respectively. This condition is satisfied for example
for Dirichlet forms where points have positive capacity (graphs, metric graphs,and
more generally Dirichlet forms induced by resistance forms), complete Riemannian
manifolds [2], and RCD

∗(K,N) spaces with finite measure.
In many situations, τ̃ can be extended to a homeomorphism on the entire space

and even an isometry with respect to suitable distance functions.
If E is a strongly local Dirichlet form on L2(X,m) with energy measure Γ, one

defines the associated intrinsic metric by

d(x, y) = sup{|u(x)− u(y)| : u ∈ D(E)loc ∩ C(X), Γ(u) ≤ m}.

In the case of a jump-type form E , there is no distinguished intrinsic metric,
but instead a family of intrinsic metrics d characterized by

d( · , A) ∧ T ∈ D(E)loc ∩C(X), Γ(d( · , A) ∧ T ) ≤ m

for all A ⊂ X , T > 0 [3]. Note that we allow in both cases metrics that attain the
value 0 off the diagonal or are infinite at some points.

We call a map φ : Y1 −→ Y2 between sets endowed with families of distance
functions D(Y1), D(Y2) an isometry if

ρ 7→ ρ(φ(·), φ(·))

is a bijection between D(Y1) and D(Y2).

Theorem 1. Make the same regularity assumptions on E1, E2 as before. If E1, E2
are strongly local, then τ̃ : X2 \N2 −→ X1 \N1 is an isometry with respect to d1,
d2.

If E1, E2 are Dirichlet forms of jump-type, the same assertion is true with respect
to the sets of intrinsic metrics for E1, E2 under the additional assumption that E1,
E2 are recurrent.

If intrinsic metrics d1, d2 induce the original topology on X1, X2 and are com-
plete, then τ̃ extends to an isometry X2 −→ X1 with respect to d1, d2.

In some special situations, there are other metrics that are better adapted to
the Dirichlet form (e.g. the resistance metric or the combinatorial graph metric
for Dirichlet forms on discrete spaces [4]). We show that τ̃ is also an isometry with
respect to these metrics under suitable conditions.
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Conical square functions for degenerate elliptic operators

Li Chen

(joint work with José Maŕıa Martell, Cruz Prisuelos-Arribas)

The second order divergence form degenerate elliptic operators with degeneracy
in form of Muckenhoupt weights arise naturally from boundary value problems
for elliptic equations. In this talk, we consider the conical square functions that
one can construct using the heat or Poisson semigroup associated with degenerate
elliptic operators, which is a natural generalization of Littlewood-Paley functions.
We study their weighted and unweighted Lp boundedness. As a consequence of
our methods, we find a class of degeneracy weights w for which L2-estimates for
these conical square functions hold. This opens the door to the study of weighted
and unweighted Hardy spaces and of boundary value problems associated with
degenerate elliptic operators.

Non-regular weighted Sobolev spaces and Dirichlet forms

Alberto Chiarini

(joint work with Pierre Mathieu)

Dirichlet form theory has seen a wide spread appreciation in both the analytic
and probabilistic community. This success is due to the rich interplay between the
theory of strongly continuous semigroups and stochastic processes.

A very well studied model in Dirichlet forms theory is the so called distorted
Brownian motion. Let d ≥ 2, we consider a weight ρ : Ω → [0,+∞) measurable
and such that ρ, ρ−1 ∈ L1

loc(R
d). Then a natural way to build a regular Dirichlet

form is to look at the formal generator

Lu(x) :=
1

ρ(x)
∇ · (ρ(x)∇u(x))

which is not well defined being ρ only measurable. Formally integrating by parts∫
Rd v · (−Lu) ρdx in L2(Rd, ρdx) we obtain the bilinear form

E(u, v) :=
∫

Rd

∇u · ∇v ρdx, u, v ∈ H
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where H is the completion of C∞
0 (Rd) with respect to the energy norm E1 =

E+(·, ·)L2(Rd,ρdx). Since (E , H) on L2(Rd, ρdx) is a strongly local regular Dirichlet
form, there exists an Hunt process starting from quasi-every point associated to
it.

The choice of the domain H is very important to characterize the process. Very
naturally, one could also take as domain the set

W :=

{
u ∈W 1,1

loc (R
d) : E1(u, u) :=

∫

Rd

(
|u|2|+∇u|2

)
ρdx <∞

}

where W 1,1
loc (R

d) is the classical space of locally integrable functions in Rd, whose

gradient in the sense of distributions ∇u belongs to L1
loc(R

d)d. Observe that W is
complete with respect to the energy norm and in particular (E ,W ) is a strongly
local Dirichlet form on Rd. Moreover the closure of C∞

0 (Rd) in (W, E1) is exactly
H . The classical Sobolev space corresponds to ρ = 1 and in that case it is well
known that H = W . However we learn from [2] that H = W is not true for a
general weight ρ, i.e. smooth functions are not dense in W in general. Sufficient
conditions for which this holds true are given in [2].

Since any Dirichlet form admits a regular representation, a natural question is
to describe the stochastic process associated to the regular representation of (E ,W )
on L2(Rd, ρdx) and understand how it relates to the one associated to (E , H) on
L2(Rd, ρdx).

In the talk we provide a very concrete example and a precise description of
the two processes. Related research on this subject can be found in [1] and refer-
ences therein. There, the authors deal with the problem of one-point symmetric
extension of a Dirichlet form.
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Exploring Manifolds via Hamiltonian Dynamics

Thomas Laetsch

(joint work with Maria Gordina)

Let M be a connected, smooth, d-dimensional manifold without boundary. Let
π : T ∗M → M be the standard projection from the cotangent bundle onto the
manifold (x,p) 7→ π(x,p) := x. Coordinates x = (x1, ..., xd) : U → Rd on some
open subset U ⊂M induce coordinates (x,p) = (x1, ..., xd, p1, ..., pd) on π−1(U) by
expanding cotangent vectors within the dx1, ..., dxd basis and prescribing p1, ..., pd
as the corresponding coefficients: p1dx

1 + · · · + pddx
d. Hence T ∗M is endowed

with a canonical symplectic stucture with symplectic form ω =
d∑

k=1

dxk ∧dpk. The
symplectic structure induces a bundle isomorphism ω : T (T ∗M) → T ∗(T ∗M) by
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X 7→ ω(X) := ω(X, ·), and in turn, this map defines the Hamiltonian vector field
Xh of a smooth map (Hamiltonian) h : T ∗M → R via Xh := ω−1(dh). Finally, an
integral curve γ(t) := (x(t),p(t)) of Xh can be defined using Hamilton’s Equations:

(1)
ẋi(t) =

∂h

∂pi
(γ(t))

ṗi(t) = −
∂h

∂xi
(γ(t))

Smooth, symmetric bundle homomorphisms β : T ∗M → TM with image
H ⊂ TM are in one-to-one correspondence with smooth, symmetric maps g :⋃
x∈M

Hx ×Hx → R where g(X,Y ) := φ(β(ϕ)) with β(φ) = X and β(ϕ) = Y . In

the case that β is positive definite, g is a standard Riemannian metric, and β is
represented as a matrix via the familiar index-raising maps gij . When β is posi-
tive semi-definite, then, depending on certain further desired restrictions on H, g
corresponds to a sub-Riemannian metric with H the horizontal bundle. Given a
bundle homomorphism β, the canonical Hamiltonian is defined locally as

(2) H(x,p) =
1

2
piβ

ij
x
pj

with βij
x

= dxi(β(dxj))|x. We recognize (2) as the familiar kinetic energy, one-half
the momentum squared, and hence integral curves along the Hamiltonian vector
field XH correspond to paths of conserved energy.

For the Hamiltonian H in (2), let (t,x,p) 7→ Φt(x,p) be the Hamiltonian
flow, where t 7→ Φt(x,p) is an integral curve along XH starting at (x,p) ∈ T ∗M .
Restricting to the case where β is positive semi-definite and (M, g) is a Riemannian
or sub-Riemannian manifold, we let V ⊂ TM be a choice of smooth vertical bundle
so that TM = H⊕V , and define gV as a smooth, positive-definite extension of g to
TM such that V is the perpendicular space to H under gV . This added structure
induces the isomorphism TM → T ∗M via X 7→ gV(X, ·), where we realize that
β(gV(X, ·)) is the gV -orthogonal projection of X onto H. For each x ∈ M , let νx
be the rotationally invariant probability measure, supported on the g-unit sphere
in Hx. We define the second order differential operator LV on bounded, smooth
functions f : T ∗M → R as

(3) LVf(x,p) =
∫

Hx

d2

dt2

∣∣∣
t=0

f(Φt(x, g
V(v, ·))) νx(dv).

It’s notable that (3) becomes a scaled version of the Laplace-Beltrami operator
on C∞

b (M), the bounded and smooth functions on M , when M is a Riemannian
manifold and we identify f ∈ C∞

b (M) with its lift f ◦ π ∈ C∞
b (T ∗M).

Relegating details to the referenced literature, we here describe an intuitive
construction of a V-dependent random walk on M using our above buildup of
Hamiltonian dynamics. The culmination of this will be to advertise that under
appropriate scaling, the semigroup of this random walk limits to the semigroup
with generator LV , and hence generalizes the case when M is Riemannian, LV is
the Laplace-Beltrami operator, and thusly the limiting process is Brownian motion.
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The development of the walk on M proceeds as follows: start at a point x ∈ M ;
randomly and uniformly choose a unit-direction v ∈ Hx; walk the process along
the flow t 7→ Φt(x, g

V(v, ·)) until some random exponential clock ξ ∼ Exp(ǫ) goes
off; repeat this with x ← π(Φξ(x,v)) and using a new, independent exponential
clock at each iteration. Letting the semigroup of this process be denoted by T ǫ

t ,
the following limit theorem holds on C∞

b (M):

(4) lim
ǫ→0

T ǫ
t/ǫ2f = etL

V

f

where the limit is under the sup-norm on C∞
b (M).
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Looking for a metric in Liouville Quantum Gravity: overview and
tools to address this problem

Christophe Garban

The following formal Riemannian metric tensor arises naturally in the context of
Liouville Quantum Gravity:

eγX(dx2 + dy2)

where X is a well known and highly oscillating distribution on the plane called
the ”Gaussian Free Field”. On the one hand, giving a proper mathematical sense
to its associated volume form eγXdxdy is now well understood since the work of
Kahane in the 80’s. On the other hand, extracting a Riemannian metric out of
the above formal tensor for general values of γ remains a major challenge in this
area. The main goal of this talk was to discuss in details this open problem in
front of an audience which is likely to have the appropriate tools for this question.
I started by introducing and motivating the problem. I then gave an overview of
some tools that have been designed recently in order to analyse this question. The
plan of the talk was as follows.

(1) Context: Liouville quantum gravity, KPZ formula etc.
(2) Gaussian Free Field
(3) Liouville measures Mγ , γ ≤ γc = 2

(a) Construction/existence
(b) Regularity properties / thick points

(4) Liouville Brownian motion
(a) Construction
(b) Liouville heat kernel

(5) Liouville metric
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(a) Miller-Sheffield breakthrough theorem in the case γ =
√

8
3

(b) Discussion when γ 6=
√
8/3

I ended the talk with the following two important warnings:

A. Lack of doubling property
Many other talks in the same workshop assumed a volume doubling property

for the measures considered. It is important to point out here that it is a.s. not the
case for the Liouville measures Mγ . This was quantified by the following result.

Theorem. (Berestycki, Garban , Rhodes, Vargas, 2014). The following essentially
tight upper bound holds

Mγ(B(x, 2r)) ≤ CMγ(B(x, r))
1− γ2

4+γ2

B. Questioning the form of the metric tensor
By analogy with the classical smooth Riemannian setting, all the works so far in

this field have assumed that the following correspondance between metric tensor
and volume form holds.

eγhdxdy ↔ eγh(dx2 + dy2)

I pointed out at the end of my presentation that in the fractal setting of Mγ ,
there is no reason to believe that this correspondance should still hold. I stated
the following conjecture which predicts a different multiplicative exponent in front
of the field X .

Conjecture. The metric tensor corresponding to γ-Liouville Quantum Gravity
corresponds to

e
2γ
β h(dx2 + dy2) ,

where β = β(γ) stands for the Hausdorff dimension of the Liouville metric dγ .

(For example β(
√

8/3) = 4).

This conjecture can be heuristically justified as follows. Assume the appropriate
metric tensor is given by eαh(dx2 + dy2) for some α > 0 possibly 6= γ. It is then
natural to expect that

Mγ(B(x, r)) ≍ r2+γ2/2eγhr(x)

≍ (e
α
2 hr(x)r)β

which suggests β α
2 = γ

Remark. In particular, we conjecture that the metric introduced by Miller-
Sheffield (built out of their QLE processes) does not correspond to the regulariza-

tion of e
√

8/3Xǫ(dx2 + dy2) as ǫ→ 0, but rather to (since β(
√

8/3) = 4)

ǫαe
1
2

√
8/3Xǫ(dx2 + dy2)
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as the regularisation ǫ→ 0 and where α is some unknown renormalization exponent

which is chosen so that the ”diameter” of ǫα e
1
2

√
8/3Xǫ(dx2 + dy2) is tight when

ǫ→ 0.

On disconnection and level sets

Alain-Sol Sznitman

In this talk I reviewed several large deviation estimates obtained in part in collabo-
ration with Xinyi Li (now at the University of Chicago) concerning the probability
that in Zd, d ≥ 3, a simple random walk starting form the origin, or random in-
terlacements in the regime where the vacant set is percolative, or the sub-level
set {ϕ < h} of the Gaussian free field, in the regime where the super-level set
{ϕ ≥ h} is percolative, disconnect a large box BN = {x ∈ Zd, |x|∞ ≤ N} from
the boudnary of a larger concentric box ∂BMN , M > 1. I discussed some of the
links between these various questions.
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volume, centennial of the birth of Kiyosi Itô, J. Math. Soc. Japan 67 (2015), 1801–1843.

[3] X. Li and A.-S. Sznitman, A lower bound for disconnection by random interlacements,
Electron. J. Probab. 19 (2014), 1–26.

[4] X. Li, A lower bound for disconnection by simple random walk, Ann. Probab., in press.
[5] A.-S. Sznitman, Disconnection, random walks, and random interlacements, Probab. Theory

Relat. Fields, in press.

The cutoff phenomenon on random graphs

Nathanael Berestycki

(joint work with Eyal Lubetzky, Yuval Peres and Allan Sly)

The mixing time of a graph is a fundamental quantity which measures the time it
takes for a random walk to reach its equilibrium distribution. More precisely, we
set d(t) = supx ‖P t(x, ·) − π(·)‖ where P t(x, ·) denotes the heat kernel of random
walk (in discrete time, say); ‖ · ‖ denotes total variation; and the sup is taken over
all vertices x. The mixing time is the first time t such that d(t) drops below level
α, where α ∈ (0, 1) is a predetermined threshold (typically one takes α = 1/4 for
convenience). A remarkable phenomenon conjectured to occur in a wide variety
of examples is the cutoff phenomenon, where d(t) drops abruptly from one to zero
asymptotically as some parameter n tends to infinity.

In this work we study random walks on the giant component of the Erdős–Renyi
random graph model G(n, p) where p = c/n for c > 1 fixed (so each potential edge
in the complete graph is present with probability p = c/n, independently of all the
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other edges). In this regime it is known that there is a unique giant component
whose size is a positive fraction of the total number of vertices, n.

The mixing time from the worst starting point on the giant component was
shown by Fountoulakis and Reed, and independently by Benjamini, Kozma and
Wormald, to have order log2 n, with convergence to equilibrium taking place grad-
ually (no cutoff phenomenon). As shown in the second of these papers, this has
to do with the geometry of the giant component, which consists of an expander
(where mixing occurs quickly) to which decorations of logarithmic depth have been
added. These spoil the mixing when started near the end of such decorations.

We prove that by contrast, when started from a uniformly chosen vertex in the
giant component (equivalently, from a fixed vertex conditioned to belong to the
giant component), then mixing occurs on a much faster scale, and moreover the
cutoff phenomenon occurs: that is, convergence to equlibrium in the sense of total
variation takes place abruptly. The mixing time is

tmix = (1/vd)(logn)± (logn)1/2+o(1),

where the constants v and d are respectively the speed of random walk and dimen-
sion of harmonic measure on a Poisson(c)-Galton-Watson tree (shown to exist by
fundamental work of Lyons, Pemantle and Peres). Since d is known to be strictly
smaller than the exponential growth rate of the tree, this implies that there is a
range of times for which the random walk has reached its equilibrium distance
from its starting point, but its distribution is far from equilibrium. This is in
sharp contrast to the case of random regular graphs, where the cutoff was proved
by Lubetzky and Sly (following a conjecture by Berestycki and Durrett) at a time
where the random walk reaches its equilibrium distance.
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Contraction and regularization properties of the heat flow with respect
to Hellinger, Kantorovich, and Hellinger-Kantorovich distances

Giuseppe Savaré

(joint work with G. Luise)

Since the pioneering contribution by F. Otto [15], contraction properties of second
order diffusion equations with respect to the Kantorovich-Rubinstein-Wasserstein
distance W2 played an important role, from both the geometric and the analytic
point of view. These aspects have been deeply studied by a series of contribu-
tions of Otto [15] (nonlinear diffusion), Otto-Villani [16] (heat flow and Ricci
curvature), Carrillo-McCann-Villani [6] (contraction of a general class of evolution
equations combining diffusion, interaction and drift), Ambrosio-Gigli-S. [1] (gra-
dient flows and geodesic convexity in Rd), Otto-Westdickenberg [17] (the Eulerian
approach), Sturm-Von Renesse [18] (equivalence of contraction with lower Ricci
bounds), Daneri-S. [8] (the Eulerian approach to contraction and geodesic con-
vexity), Erbar ’10 [9], Villani [19] (geodesic convexity in Riemannian manifold),
Ambrosio-S.-Zambotti [4] (Hilbert spaces), Kuwada [12] (duality with gradient
estimates), Gigli-Kuwada-Ohta [11] (Alexandrov spaces), Ambrosio-Gigli-S. [2]

(RCD metric measure spaces and Bakry-Émery condition), Bakry-Gentil-Ledoux
[5], Erbar-Kuwada-Sturm [10] Ambrosio-Mondino-S. [3] (refined contraction for
finite dimensional RCD spaces).

Perhaps one of the most general formulation concerns the mass preserving
Markov semigroup (Pt)t≥0 associated to a strongly local symmetric Dirichlet form
E on L2(X,m) admitting a Carré du Champ Γ: for every u0 ∈ L2(X,m) the curve
ut := Ptu0 is a solution of the differential equation

∂tut = Lut

where L : D(L) ⊂ L2(X,m) → L2(X,m) is the selfadjoint operator induced by
E . For the sake of simplicity, we assume here that m is a finite Borel measure on
the complete and separable metric space (X, d) and Γ is compatible with d, in the
sense that every function u ∈ D(E) with Γ(u) ≤ 1 m-a.e. admits a d-continuous
representative (still denoted by u) and

d(x, y) := sup
{
u(x)− u(y) : u ∈ D(E), Γ(u) ≤ 1

}
.

In this case, L satisfies (a suitable weak formulation of) the Bakry-Émery condition
BE(K,∞), K ∈ R,

(1) Γ2(u) =
1

2
LΓ(u)− Γ(u, Lu) ≥ K Γ(u)

if and only if (Pt)t≥0 admits a (unique) extension to the space of finite Borel
measuresM(X) satisfying the contraction property

W2(Ptµ0,Ptµ1) ≤ e−KtW2(µ0, µ1) for every µ0, µ1 ∈M(X), µ0(X) = ν0(X).

Such an equivalence is strictly related to a few basic facts: the identification of Γ(u)
with the squared weak gradient |Du|2w of the metric-Sobolev space W 1,2(X, d,m),



3122 Oberwolfach Report 55/2016

the duality formula expressing the distance W2 in terms of regular subsolutions
ζ ∈ C1([0, 1]; Lipb(X)) to the Hamilton-Jacobi equation

1

2
W2

2(µ0, µ1) = sup
{∫

ζ1 dµ1 −
∫

ζ0 dµ0 : ∂tζt +
1

2
|Dζt|2 ≤ 0

}
,

and the pointwise gradient estimate (in fact equivalent to (1))

Γ(Ptu) ≤ e−2Kt
PtΓ(u).

A similar approach can be used to obtain new contraction and regularization
estimates involving other interesting distances. A first example is provided by the
Hellinger-Kakutani distance

H2(µ0, µ1) :=

∫ (√
̺1 −

√
̺0

)2
dµ, µi = ̺iµ,

which can also be characterized by the dynamic duality formula

H2(µ0, µ1) = sup
{∫

ζ1 dµ1 −
∫

ζ0 dµ0 : ∂tζt + ζ2t ≤ 0
}
.

It is then possible to show (Luise-S., in preparation) that for every couple of
finite Borel measures µ0, µ1 ∈ M(X) absolutely continuous w.r.t. m and for every
Markov semigroup (Pt)t≥0 (without any curvature assumption)

H(Ptµ0,Ptµ1) ≤ H(µ0, µ1).

A more refined estimate involves the recently introduced Hellinger-Kantorovich
distance HK [7, 14, 13], which can be defined in terms of an Optimal Entropy–
Transport problem [13]

HK2(µ0, µ1) := min
γ∈M(X×X)

Ent(γ0|µ0) + Ent(γ1|µ1) +

∫

X×X

ℓ(x0, x1) dγ,

where γ0, γ1 are the marginals of γ, Ent is the logarithmic entropy functional

Ent(γ|µ) :=
∫

X

(
̺ log ̺− ̺+ 1

)
dµ, γ = ̺µ≪ µ,

and ℓ is the cost function

ℓ(x0, x1) :=

{
log
(
1 + tan2(d(x0, x1))

)
if d(x0, x1) < π/2,

+∞ otherwise.

It turns out that HK admits a dual dynamic representation formula [13]

1

2
HK2(µ0, µ1) = sup

{∫
ζ1 dµ1 −

∫
ζ0 dµ0 : ∂tζt +

1

2
|Dζt|2 + 2ζ2t ≤ 0

}
,

so that when the Bakry-Émery condition BE(0,∞) holds one has [13]

HK(Ptµ0,Ptµ1) ≤ HK(µ0, µ1) for every µ0, µ1 ∈ M(X).

Actually, the stronger Hellinger distance at time t > 0 can be estimated in terms
of the weaker Hellinger-Kantorovich one: for every t > 0 (Luise-S.)

(2) H(Ptµ0,Ptµ1) ≤
c√
t
HK(µ0, µ1) for every µ0, µ1 ∈ M(X).



Heat Kernels, Stochastic Processes and Functional Inequalities 3123

Differently from other well known properties, estimate (2) cannot be deduced by a
regularization effect on a single initial datum, since H and HK are not translation
invariant. In this respect, the dual dynamic approach plays a crucial role.
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Heat equation on time-dependent metric measure spaces

Eva Kopfer

(joint work with Karl-Theodor Sturm)

Let (X, dt,mt) be a family of metric measure space, where t ∈ [0, T ], X is a Polish
space and

(1) dt is a geodesic metric such that

| log(dt(x, y)/ds(x, y))| ≤ L|t− s|,
(2) mt = e−ftm, m ∈ P(X), f ∈ Lip([0, T ]×X).

For every t ∈ [0, T ] we define the Cheeger’s energy Cht : L
2(X,mt)→ [0,+∞] by

Cht(u) :=
1

2
inf

{
lim inf

∫
(liptun)

2 dmt|un ∈ Lip(X), un → u in L2(X)

}
.

Under the assumption that each (X, dt,mt) satisfies RCD(K,N) we have
2Cht(u) = Et(u), where Et(u) =

∫
Γt(u) dmt is the strongly local Dirichlet form

with self-adjoint operator ∆t : Dom(∆t)→ L2(X)

−
∫

∆tuv dmt = Et(u, v) ∀u ∈ Dom(∆t), v ∈ Dom(Et).

Theorem 1 ([2]). There exists a kernel pt,s(x, y) such that

(1) given ū ∈ L2(X)

(t, x) 7→ Pt,sū(x) :=

∫
pt,s(x, y)ū(y) dms(y)

is the unique solution to the heat equation

∂tut = ∆tut on (s, T )×X

with us = ū;
(2) given v̄ ∈ L2(X)

(s, y) 7→ Pt,sv̄(y) :=

∫
pt,s(x, y)v̄(x) dmt(x)

is the unique solution to the adjoint heat equation

∂svs = −∆svs + (∂sfs)vs on (0, t)×X

with vt = v̄.

Both flows admit a gradient flow interpretation. The heat equation can be in-
terpreted as the gradient flow of the time-dependent Cheeger’s energy, and the
adjoint heat equation as the “upward” gradient flow of the time-dependent Boltz-
mann entropy St(ρmt) =

∫
ρ log ρ dmt, see [3].

We define the dual heat flow P̂t,sµ : P(X)→ P(X) by
∫

u dP̂t,sµ =

∫
Pt,su dµ.
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EVI-formulation of the dual heat flow. We introduce a kind of dynamic
version of L2-Kantorovich distance by

W 2
s,t(µ0, µ1) := 2 sup

{∫
ϕ1 dµ1 −

∫
ϕ0 dµ0

}
,

where the supremum runs over all subsolutions ϕ ∈ Lipb([0, 1] × X) to the
“Hamilton-Jacobi equation” ∂aϕ ≤ − 1

2Γs+a(t−s)ϕ. It is important to note that

this is not a distance. Let Ws denote the L2-Kantorovich distance with respect
to dt. Then Ws,t = Ws if s = t and Ws,t(µ, µ) = 0. The next theorem can be
thought of as a time-dependent variant of “Ric ≥ 0”.

Theorem 2 ([2]). The following are equivalent.

(1) ∀t ∈ (0, T ) and every Wt-geodesic (µa)a∈[0,1] with µ0, µ1 ∈ Dom(S)

∂+
a St(µ

a)
∣∣∣
a=1−

+ ∂−
a St(µ

a)
∣∣∣
a=0+

≥ −1

2
∂−
t W 2

t−(µ
0, µ1)

(2) ∀ 0 ≤ s ≤ t ≤ T , µ, ν ∈ P(X)

Ws(P̂t,sµ, P̂t,sν) ≤Wt(µ, ν)

(3) ∀ 0 ≤ s ≤ t ≤ T , ∀u ∈ Dom(E)

Γt(Pt,su) ≤ Pt,sΓs(u)

(4) ∀ 0 ≤ s ≤ t ≤ T we have for all u “Γ2,t(u) ≥ ∂tΓt(u)”

Theorem 3 ([2]). If one of the assertions of the previous theorem holds, we have
∀σ ∈ Dom(S) and t ≤ τ

1

2
∂−
s W 2

s,t(µs, σ)
∣∣∣
s=t−

≥ St(µt)− St(σ),

where τ < T and µt = P̂τ,tµ.

Sketch of Proof. The proof basically follows the idea by Ambrosio, Gigli and Savaré
in [1]. We suppose that (3) holds. Let (ρa)a∈[0,1] be the Wt-geodesic connect-
ing µt with σ. Define the linear interpolation ϑ(a) = s + a(t − s). Consider

ρa,ϑ = P̂t,ϑ(a)(ρa). Then ρa,ϑ connects µs with σ. We obtain then using (3) after
various cancellations

1

2
W 2

s,t(µs, σ)− (t− s)(St(σ)− Ss(µs))

(3)

≤ 1

2

∫
|ρ̇a|2t da− (t− s)2

∫ 1

0

∫
ḟϑ(a) dρa,ϑ da

=
1

2
W 2

t (µt, σ) − (t− s)2
∫ 1

0

∫
ḟϑ(a) dρa,ϑ da.

Then dividing by (t− s) and letting s→ t, we obtain the result. �
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Variational principles for discrete random maps

Georg Menz

(joint work with Martin Tassy)

In the talk we present the results of the preprint [MT16] where a new robust tech-
nique is developed to deduce variance principles for non-integrable discrete sys-
tems. To illustrate this technique we show the existence of a variational principle
for graph homomorphisms from Zm to a d-regular tree. This seems to be the first
non-trivial example of a variational principle in a non-integrable model. Instead
of relying on integrability the technique is based on a discrete Kirszbraun theorem
and a concentration inequality obtained through the dynamic of the model.

Figure 1. An Aztec diamond for domino tilings. The combina-
torics of the model is similar to Lipschitz functions from Z2 to Z.
(see [CKP01])

The appearance of limit shapes as a limiting behavior of discrete systems is
a well-known and studied phenomenon in statistical physics and combinatorics
(e.g. [Geo88]). Among others, models that exhibits limits shapes are domino
tilings and dimer models (e.g. [Kas63, CEP96, CKP01] and see Figure 1), poly-
mer models, lozenge and ribbon tilings (e.g. [LRS01, Wil04], also see Figure 2),
Gibbs models (e.g. [She05]), the Ising model (e.g. [DKS92, Cer06]), asymmetric
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exclusion processes (e.g. [FS06]), sandpile models (e.g.[LP08]), the Young tableaux
(e.g. [LS77, VK77, PR07]) and many more.

Limit shapes appear whenever fixed boundary conditions force a certain re-
sponse of the system. The main tool to explain those shapes is a variational
principle. The variational principle asymptotically characterizes the number of
microscopic states, i.e. the microscopic entropy Entn, via a variational problem.
This means that for large system sizes n, the entropy of the system is given by max-
imizing a macroscopic entropy Ent(f) over all admissible limiting profile f ∈ ‘A.
The boundary conditions are usually incorporated in the admissibility condition.
In formulas, the variational principle can be expressed as (see for example Theo-
rem 2.7 in [MT16])

Entn ≈ inf
f∈A

Ent(f),(1)

where the macroscopic entropy

E(f) =

∫
ent(∇f(x))dx

can be calculated via a local quantity ent(∇f(x)). This local quantity is called
local surface tension in this article.

Often, a simple consequence of those variational principles is that the uniform
measure on the microscopic configurations, concentrates around configurations
that are close to the minimizer of the variational problem. This explains the
appearance of limit shapes on large scales. In analogy to classical probability
theory, one can understand the variational principle as an elaborated version of
the law of large numbers. On large scales, the behavior of the system is determined
by a deterministic quantity, namely the minimizer f of the macroscopic entropy.
Hence, deriving a variational principle is often the first step in analyzing discrete
models, before studying other questions like the fluctuations of the model.

As a motivating example serves the variational principle of domino tilings [CKP01]
(see Figure 1). It was the first variational principle for two-dimensional random
maps. It is one of the fundamental results for studying domino tilings and the
other integrable discrete models. A detail analysis of the limit shapes for domino
tilings was given in [KOS06]. So far, all the tools that were developed to study
variational principles of discrete models rely on the integrability of the model. Up
to the knowledge of the authors, there is no non-trivial example of a variational
principle for which the underlying model is not integrable. However, simulations
as the ones in Figure 2 and Figure 3 show that those limit shapes still appear for
a large class of non-integrable models. Limit shapes appear to be a universal phe-
nomenon. The purpose of our study is to go beyond integrability and to find out
what properties of a discrete system lead to variational principles and limit shapes.

We deduce the variational principle for the non-integrable model of graph ho-
momorphisms form Zm to a d-regular tree (see Figure 3). We choose this model
because of its central role among graph homomorphisms, which stems from the
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Figure 2. An Aztec diamond for ribbon tilings. The combina-
torics of the model is similar to Lipschitz functions from Z2 to Z2

(see [She02]).

Figure 3. An Aztec diamond for Graph homomorphisms in a
3-regular tree. Each color represent one of the αi’s introduced in
Section 3.

fact that regular trees are the universal cover of d-regular graph with no four cycle.
Hence, it provides valuable information for those systems. One should also note
that the underlying lattice can have arbitrary dimension m ≥ 1. We identified two
properties that a model of discrete maps needs to have in order to have a varia-
tional principle: The first one is a stability property i.e. the Kirszbraun theorem.
It means that changes of the boundary condition on a microscopic scale do not
change the macroscopic properties of the model. The second one is a concentration
property which is natural because a variational principle is a type of law of large
numbers.
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Random walk on dynamical percolation

Perla Sousi

(joint work with Yuval Peres, Jeff Steif)

We study random walk on dynamical percolation on Zd
n. The edges refresh at rate

µ ≤ 1 and switch to open with probability p and closed with probability 1 − p
where p > pc(Zd) with pc(Zd) the critical probability for bond percolation on Zd.
The random walk X moves at rate 1. When his exponential clock rings, the walk
chooses one of the 2d adjacent edges with equal probability. If the bond is open,
then it makes the jump, otherwise it stays in place. We call ηt the configuration

of the edges at time t, i.e. ηt ∈ {0, 1}E(Zd
n).

We study the mixing time for the Markov chain described. We will be concerned
with the quenched mixing time. We start by defining the different notions of
mixing that we will be using. First of all we write Px,η(·) for the probability
measure of the walk, when the environment process is conditioned to be η = (ηt)t≥0

and the walk starts from x. We write P for the distribution of the environment
which is dynamical percolation on the torus, a measure on càdlàg paths [0,∞) 7→
{0, 1}E(Zd

n), where E(Zd
n) stands for the edges of the torus. We write Pη0 to denote

the measure P when the starting environment is η0.
This process was introduced by Peres, Stauffer and Steif. They focused on the

subcritical regime p < pc of the dynamical percolation. They proved

Theorem 1 (Peres, Stauffer and Steif). For all p < pc the mixing time of the
process (X, η) satisfies

tmix ≍
n2

µ
.

The upper bound of the above result was established using coupling. A crucial
ingredient of the proof was to define the so-called regeneration times, which relied
heavily on the fact that the process was subcritical. For the lower bound, the
proof used the so-called Markov type property of metric spaces.
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For the supercritical regime, using Markov type they established a lower bound
of order n2 + 1/µ. The question that remained open is to find a matching upper
bound. In our work, we do this in both the quenched and the annealed setting.

For ǫ ∈ (0, 1), x ∈ Zd
n and a fixed environment η = (ηt)t≥0 we write tmix(ǫ, x, η)

to denote

tmix(ǫ, x, η) = min
{
t ≥ 0 : ‖Px,η(Xt = ·)− π‖TV ≤ ǫ

}
,

where π is the uniform measure on Zd
n. We also write

tmix(ǫ, η) = max
x

tmix(ǫ, x, η).

Theorem 2. Let p > pc(Zd) with θ(p) > 1/2. Then there exists a > 0 so that for
all ǫ > 0 for all n sufficiently large and all starting environments η0 we have as
n→∞

Pη0

(
η = (ηt)t≥0 : tmix(ǫ, η) ≤ (logn)a

(
n2 +

1

µ

))
= 1− o(1).

Our second main result concerns Cesaro mixing in the quenched regime for all
values of p > pc(Zd). First we recall the definition of Cesaro mixing. For every t
let Ut be a uniform random variable on {1, . . . , t} independent of the chain. Then
we define

tCes(ǫ, η) = min
{
t ≥ 0 : max

x
‖Px,η(XUt = ·)− π‖TV ≤ ǫ

}
.

Theorem 3. Let p > pc(Zd). Then there exists a > 0 so that for all ǫ > 0 and all
n sufficiently large and all starting environments η0 we have

Pη0

(
η = (ηt)t≥0 : tCes(ǫ, η) ≤ (logn)a

(
n2 +

1

µ

))
≥ 1− ǫ.

As a corollary of the Theorem above we get a bound on the mixing time for the
chain (X, η). We write tmix for its mixing time.

Corollary 4. Let p > pc(Zd). Then there exists a > 0 so that for all ǫ > 0 and
all n sufficiently large

tmix(ǫ) ≤ (log n)a
(
n2 +

1

µ

)
.

We now explain the main ideas behind the proofs. First we note that when
we fix the environment to be η, we obtain a time inhomogeneous Markov chain.
To study its mixing time, we use the theory of evolving sets developed by Morris
and Peres [1] adapted to the inhomogeneous setting. In particular, a beautiful
coupling due to Diaconis and Fill transfers to this setting. This coupling is going
to be crucial for us in the proofs of Theorems 2 and 3. What it says is that
conditional on the Doob transform of the evolving set up to time t, the random
walk at time t is uniform on it.

The Doob transform of the evolving set in the inhomogeneous setting is again
a submartingale, just like in the homogeneous one. The crucial quantity we want
to control is by how much its size increases. This increase will be large only



3132 Oberwolfach Report 55/2016

at good times, i.e. when the intersection of the Doob transform of the evolving
set with the giant cluster is a substantial proportion of the evolving set. Hence
we want to ensure that there are enough good times. We achieve this using the
coupling of the walk with the evolving set together with a result of Gabor Pete [3]
who established that the isoperimetric profile of the giant cluster in supercritical
percolation coincides with its lattice profile.

We conclude by showing that there exists a stopping time bounded by the
mixing time with high probability so that at this time the Doob transform of the
evolving set has size at least (1 − δ)(θ(p) − δ)nd. In the case when θ(p) > 1/2
we can take δ > 0 sufficiently small so that (1 − δ)(θ(p) − δ) > 1/2. Using the
uniformity of the walk on the Doob transform of the evolving set again, we deduce
that at this stopping time the walk is close to the uniform distribution in total
variation with high probability.

To finish the proof of Theorem 3 the idea is to repeat the above procedure to
obtain k sets whose union covers at least 1− δ of the whole space. Then define τ
by choosing one of these times uniformly at random. At time τ the random walk
will be uniform on a set with measure at least 1 − δ, and hence this means that
the total variation from the uniform distribution at this time is going to be small.
Since this time is with high probability smaller than k times the mixing time, this
implies the Cesaro mixing time bound.

References

[1] B. Morris and Yuval Peres. Evolving sets, mixing and heat kernel bounds. Probab. Theory
Related Fields, 133(2):245–266, 2005.

[2] Y. Peres, A. Stauffer and J. Steif, Random walks on dynamical percolation: mixing times,
mean squared displacement and hitting times, Probab. Theory and Related Fields, 162
(2015), 487–530.
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On Li-Yau inequalities on graphs

Moritz Kassmann

(joint work with Dominik Dier, Rico Zacher)

The aim of the talk was to present a new approach to differential Harnack inequal-
ities on graphs. The presentation was based on [3].

1. Introduction

The classical gradient estimate given by Li-Yau [4] holds true for positive solutions
u : [0,∞) ×M → (0,∞) of the heat equation ∂tu − ∆u = 0 on a complete d-
dimensional Riemannian manifold M with Ric(M) ≥ 0: For every t ∈ (0,∞) and
x ∈M

|∇u(t, x)|2
u2(t, x)

− ∂tu(t, x)

u(t, x)
≤ d

2t
(1)
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or, equivalently,

|∇ log u(t, x)|2 − ∂t(log u)(t, x) ≤
d

2t
.(2)

An important consequence of this estimate is a pointwise bound on the solution
itself, which can be obtained from integration over a path that connects two given
points (t1, x1) and (t2, x2) with t2 > t1:

u(t1, x1) ≤
(
t2
t1

)d/2

u(t2, x2) exp

(
r2(x1, x2)

4(t2 − t1)

)
.(3)

Note that estimates (1), (2), and (3) are sharp in the sense that corresponding
equalities hold true for the fundamental solution to the heat equation on Rd, i.e.,

if u(t, x) equals (4πt)−d/2 exp
(

−|x|2

4t

)
.

The aim of the current project is to study estimates of the type of (1), (2), and
(3) for positive solutions to the heat equation on graphs. In order to establish a
corresponding theory, we establish new computation rules for functions defined on
discrete spaces. Furthermore, we provide a condition for graphs, which serves as
a substitute for the assumption that the Ricci-curvature is nonnegative.

Let G = (V,E) be a locally finite graph with weights ωxy > 0. Let µ : V →
(0,∞). The Laplace operator on G maps functions v ∈ RV to ∆v ∈ RV as follows:

∆v(x) =
1

µ(x)

∑

y:y∼x

(v(y)− v(x))ωxy

As it is usual, we define the carré du champ-operator Γ : RV × RV → RV as
follows: 2Γ(v, w) = ∆(uv)− v∆w − w∆v.

One approach to Li-Yau type estimates on graphs is given in [1] and related
subsequent works. The authors establish the following estimate

Γ(
√
u)(t, x)

u(t, x)
− ∂t(

√
u)(t, x)

u(t, x)
≤ n

2t
(t > 0, x ∈ V )(4)

for positive solutions u to the heat equation on G. The graph G is assumed to
satisfy a so-called exponential curvature dimension inequality CDE(n, 0). The
significance of this assumption and alternative conditions are investigated in [1]
and other works. As a consequence of (4), the authors obtain a Harnack inequality

u(t1, x1) ≤ u(t2, x2)

(
t2
t1

)n

exp

(
4Dr2(x1, y1)

t2 − t1

)
(0 < t1 < t2, xi ∈ V ),(5)

where D equals the maximal degree of a vertex in G. Note that Zd satisfies
CDE(n, 0) with n = 2d. We prove an estimate like (5) with a more general
expression in place of (t2/t1)

n. The result is optimal for some graphs. Note
that [5] contains a different approach to Li-Yau estimates on (finite) graphs with
advancements over [1] in some cases.
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2. Results

Assume that G = (V,E) is a locally finite graph and ∆ is the Laplace operator
as explained above. In order to work with the logarithm of solutions to the heat
equation, we need a new computation rule.

Definition 1:

(i) Given H : R→ R, we define ΨH : RV → RV by

ΨH(u)(x) =
1

µ(x)

∑

y:y∼x

H(u(y)− u(x))ωxy

(ii) We will need the function Υ : R→ R,

Υ(z) = exp(z)− z − 1.

Lemma 2: Let u be a positive solution of ∂tu−∆u = 0 on G and set v = log u.
Then v satisfies ∂tv −∆v = ΨΥ(v).

Proof: The assertion follows from the chain rule:

∆(log u) =
1

u
∆u−ΨΥ(log u).

Working with the logarithm of positive solutions rather than with the square
root as in [1] is one achievement of our approach. Another one concerns the
functions t → d

2t resp. t → n
2t in (1), (2) resp. in (4). We choose a function for

each class of graphs separately. As we discuss below, this choice is optimal for
some graphs. Note that, for finite graphs, it is desirable to consider a function
which is integrable at t = 0.

We call a continuous function F : [0,∞) → [0,∞) a CD-function if F (0) =
0, F (x)/x is strictly increasing on (0,∞), and if 1/F is integrable at ∞. A model
case is given by F (x) = x2.
Lemma 3: If F is a CD-function, then there is a unique positive solution ϕ of

ϕ′(t) + F (ϕ(t)) = 0 (0 < t <∞)(6)

with ϕ(0+) =∞. The function ϕ is strictly decreasing and log-convex. Moreover,
it satisfies ϕ(∞) = 0. A model case is ϕ(t) = 1

t .
Now we can formulate our main assumption and a first result.

Definition 4: The graph G satisfies the condition CD(x, F, 0) at vertex x ∈ V ,
if for every function v ∈ RV with

−∆v(x) > 0, and−∆v(x) ≥ −∆v(y) for every y ∼ x,

the following estimate holds true:

∆ΨΥ′(v)(x) ≥ F (−∆v(x)).

We say that the graph G satisfies CD(F, 0) if it satisfies CD(x, F, 0) for every
x ∈ V .

In the definition above, we use the notation “CD” because the condition has a
relation to curvature dimension inequalities. On the first hand, it does not look
easy to check CD(F, 0) for a given graph. In fact, this is possible in many cases.
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The unweighted two-point graph satisfies CD(F, 0) with F (a) = 2 sinh(a). The
function ϕ from Lemma 3 then is ϕ(t) = − log(tanh t). We are able to show that
every regular unweighted Ricci-flat graph in the sense of [2] satisfies CD(F, 0) and
F can be computed explicitly. Here is our main result in the case of finite graphs:

Theorem 5: Let G satisfy CD(F, 0) and ϕ : (0,∞) → (0,∞) be associated with
F via (6). Suppose u : [0,∞)× V → (0,∞) solves ∂tu−∆u = 0 on G. Then

ΨΥ(log u)(t, x)− ∂t(log u)(t, x) ≤ ϕ(t)

for t > 0, x ∈ V .
In the forthcoming article [3] we explain implications and extensions of this

result. Most important, the pathwise integration from [1] can be applied to obtain
a Harnack estimate. We provide examples, for which our approach leads to sharp
results. Theorem 5 can be extended to infinite graphs. Though, the localization
procedure does not seem very simple. We discuss the condition CD(F, 0) in detail.
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Brownian motion on graph-like metric spaces and the cover time
bound

Anita Winter

In this talk we consider a class of Feller processes with compact metric state space
(X, r), which are symmetric with respect to a finite measure ν of full support, and
which are assumed to admit local times. We interested in a condition under which
these processes have finite cover time.

To answer this question we merge two complementary type of results. First,
in [5] it is shown for simple random walk on a finite, connected graph that the
cover time equals (up to a constant which does not depend on the size of the
graph) the square of the mean maximum of the associated discrete Gaussian free
field. Secondly, in [2] and [4] it has been established for tree- and graph-like
metric spaces (resistance networks) that stochastic processes converge weakly in
path space if and only if the associated metric measure spaces converge Gromov-
Hausdorff-weakly. Moreover, in [1] and [6], Feller processes were associated with a
given compact metric measure space. These processes satisfy the above property
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and can be considered as the extension of simple random walk on finite graphs to
Brownian motion on graph-like metric spaces.

Our main result shows that the techniques presented in [5] can be extended to
our class of Feller processes. In particular, it states that the cover time is finite if
the majorizing measure yields a finite entropy integral:

Theorem. Let (V, E ,F , ν) be a compact measured resistance network, and
X = (Xt)t≥0 the associated ν-symmetric V -valued Feller process. Assume that
there exists a probability measure m on (V,R(V,E,F)) such that

sup
z∈V

∫ ∞

0

dε
√
− log

(
m(BR(V,E,F)

(z, ε))
)
<∞.

Then the cover time is finite.
(based on joint work with Siva Athreya and Wolfgang Löhr and on ongoing

discussions with Omer Angel, Siva Athreya and Manjunath Krishnapur)
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Functional inequalities via a 1-dimensional localization method

Andrea Mondino

(joint work with Fabio Cavalletti)

The 1-dimensional localization method roughly consists in reducing an N -dim
problem to a (often easier) 1-dim statement to be proved. It has its roots in a
work of Payne-Weinberger [10] of 1960 about the sharp Poincaré inequality in a
bounded convex subset of Rn; apart from the interesting result by itself, the novelty
of that paper was the proof based on an iterative bisection argument which finally
reduced the problem to a one dimensional statement. Such a procedure, then called
1-dimensional localization, was then formalized by Gromov-V. Milman [4] and by
Kannan-Lovats-Simonovits [5], still by using iterative bisections. Since such an
approach relies on the high symmetry of the space, the localization method was
for a long time confined to euclidean space (or very symmetric spaces like spheres,
hyperbolic spaces, Hilbert spaces).
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A new approach via L1-optimal transportation was proposed in a ground-
breaking work of Klartag [7], who extended the localization technique to smooth
Riemannian manifolds endowed with weighted measures. Such an approach has
the tremendous advantage of dropping any symmetry assumption, on the other
hand it heavily relies on the smoothness of the space.

In a recent joint work with Cavalletti [1], we extended even further the localiza-
tion method to include the class of non smooth metric measure spaces satisfying
Ricci curvature lower bounds in the synthetic sense of Lott-Villani [8] and Sturm
[11, 12]. More precisely we proved that the 1-dimensional localization method
extends to essentially non-branching CDloc(K,N) spaces. The statement is the
following.

Theorem [1]. Let (X, d,m) be an essentially non-branching metric measure space
with m(X) = 1, verifying CDloc(K,N), with 1 < N < ∞. Let f : X → R with∫
f m = 0 and

∫
|f(x)|d(x, x0)m(dx) <∞.

Then X = Z ∪ T , Z ∩ T = ∅, with f = 0 m-a.e. over Z and

(1) there exists a partition {Xq}q∈Q of T ;
(2) such a partition induces a disintegration m =

∫
Q
mq α(dq), with α(Q) = 1

and mq(Xq) = mq(X) = 1 for α-a.e. q ∈ Q;
(3) Xq is a geodesic in X and (Xq, | · |,mq) is a CD(K,N) space;
(4) for α-a.e. q ∈ Q it holds |Xq| > 0 and

∫
f mq = 0.

Having the above localization theorem at hand we [1] could extend the Levy-
Gromov isoperimetric inequality [3] (and as well the generalization by E. Milman
[9] to general lower Ricci curvature bounds) to essentially non-branching metric
measure spaces verifying CDloc(K,N). In case the isoperimetric lower bound
is achieved and the space is RCD∗(K,N) for some K > 0, by using the maximal
diameter Theorem (originally proved by Cheng for smooth manifolds and extended
by Ketterer [6] to RCD∗(K,N)-spaces), we showed rigidity: namely the space
must be a spherical suspension. Moreover, also the almost rigidity holds: if the
isoperimetric lower bound is almost achieved, then the space is close to a spherical
suspension in measured Gromov-Hausdorff sense.

With similar methods [2] we have been able to prove a number of inequalities
in sharp form (in class of spaces with Ricci curvature bounded below and dimen-
sion bounded above), answering some open problems proposed in the celebrated
optimal transport book of Villani [13]: sharp p-spectral gap, Sobolev, log-Sobolev,
Brunn-Minkowsky. A remarkable feature of such results is that they ensure in-
equalities with sharp constants under the local curvature condition CDloc(K,N)
(instead of the a-priori stronger global CD(K,N)).
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Weyl’s eigenvalue asymptotics for the Laplacian on circle packing limit
sets of certain Kleinian groups

Naotaka Kajino

1. Introduction: circle packing limit sets of Kleinian groups

The purpose of this talk1 was to present the author’s recent results on the con-
struction of a “canonical” Laplacian on circle packing fractals invariant under the
action of certain Kleinian groups and on the asymptotic behavior of its eigenvalues.

Recall that each
( α β
γ δ

)
∈ PSL2(C) acts on the Riemann sphere Ĉ := C ∪ {∞}

as a Möbius (linear fractional) transformation z 7→ (αz + β)/(γz + δ), which is a

biholomorphism of Ĉ and maps circles to circles (with each straight line considered
as a circle containing ∞). A discrete subgroup G of PSL2(C) is called a Kleinian

group, and the smallest closed subset Λ(G) of Ĉ invariant under the action of G
is called the limit set of G. It is known in the theory of Kleinian groups (see, e.g.,
[1, 5]) that the limit sets of certain classes of Kleinian groups are circle packing
fractals, and typical examples of such circle packing fractals are provided in the
book [3] with a number of beautiful pictures of them.

Aiming at developing a rich theory of analysis on circle packing fractals, the
author has recently identified a candidate for the “canonical” Laplacian on them
and proved Weyl’s eigenvalue asymptotics for this Laplacian in important special
cases. This talk presented these results, which are summarized in this abstract.
The identification of the Laplacian is based on the preceding studies on the Apollo-
nian gasket (Fig. 1) and is explained in Section 2. Then Section 3 gives an extension

1This work was supported by JSPS KAKENHI Grant Numbers 25887038, 15K17554.
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Fig. 1. Some Apollonian gaskets Fig. 2. Limit set of 7
43 double cusp group

of the construction of the Laplacian to a certain important class of circle packing
fractals and states the author’s result on Weyl’s eigenvalue asymptotics.

2. Preceding results for the Apollonian gasket

The Apollonian gasket Kα,β,γ associated with an ideal triangle (the closed subset
of R2 enclosed by mutually tangent three circles) formed by three circles of radii
α, β, γ ∈ (0,∞) (Fig. 1) is the compact fractal subset of R2 obtained from the
given ideal triangle by repeating indefinitely the process of removing the interior
of the inner tangent circles of the ideal triangles. Kα,β,γ is homeomorphic to the
(usual) Sierpiński gasket K as can be easily seen from its construction.

An essential idea for constructing a “canonical Laplacian” on the Apollonian
gasket was proposed by Teplyaev [4]. His idea was to try to make the given
geometry of Kα,β,γ harmonic by equipping Kα,β,γ with a suitable energy func-
tional (Dirichlet form). Specifically, Teplyaev [4] proved the following proposi-
tion. For each m ∈ N ∪ {0}, let Vm denote the set of all the vertices of the
3m ideal triangles {∆m,k}3

m

k=1 obtained after the mth step of the construction
of Kα,β,γ, and equip Vm with the natural graph (edge) structure Bm given by
Bm :=

{
{x, y}

∣∣ x, y ∈ ∆m,k for some k ∈ {1, . . . , 3m}, and x 6= y
}
.

Proposition 1 ([4]). There exists a unique (up to constant multiples) sequence
{cα,β,γm }∞m=0 where cα,β,γm = (cα,β,γm,x,y){x,y}∈Bm

∈ (0,∞)Bm for each m ∈ N ∪ {0},
such that the bilinear forms Eα,β,γm : RVm × RVm → R defined by Eα,β,γm (u, v) :=∑

{x,y}∈Bm
cα,β,γm,x,y(u(x)−u(y))(v(x)− v(y)) satisfy the following: for m ∈ N∪{0},

Eα,β,γm (u, u) = min{Eα,β,γm+1 (v, v) | v ∈ Rm+1, v|Vm = u} for any u ∈ RVm ,(2.1)

Eα,β,γm (h|Vm , h|Vm) = Eα,β,γ0 (h|V0 , h|V0) for any affine function h : R2 → R.(2.2)

(2.2) means that, on the complement of V0, the inclusion map Kα,β,γ →֒ R2

is harmonic with respect to the sequence {Eα,β,γm }∞m=0 of forms. By virtue of the
compatibility condition (2.1), we can further take the natural limit asm→∞, as in
the following definition. Set C(Kα,β,γ) := {u | u : Kα,β,γ → R, u is continuous}.
Definition 2. We define Cα,β,γ ⊂ C(Kα,β,γ) and Eα,β,γ : Cα,β,γ × Cα,β,γ → R by
Cα,β,γ :=

{
u ∈ C(Kα,β,γ)

∣∣ limm→∞ Eα,β,γm (u|Vm , u|Vm) <∞
}
and

(2.3) Eα,β,γ(u, v) := limm→∞ Eα,β,γm (u|Vm , v|Vm) ∈ R, u, v ∈ Cα,β,γ.
While Proposition 1 proved just the unique existence of the sequence of forms

{Eα,β,γm }∞m=0 satisfying (2.1) and (2.2) without giving their weights (cα,β,γm,x,y){x,y}∈Bm
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explicitly, the author has recently determined the values of (cα,β,γm,x,y){x,y}∈Bm
as con-

crete rational functions in α, β, γ and σ := (α−1β−1+β−1γ−1+γ−1α−1)−1/2, from
which the following expression of Eα,β,γ can be deduced:

Theorem 3 (K.). CLIPα,β,γ := {u|Kα,β,γ
| u : R2 → R, u is Lipschitz continuous} ⊂

Cα,β,γ, and (after specifying a constant multiple of Eα,β,γ) for any u ∈ CLIPα,β,γ,

(2.4) Eα,β,γ(u, u) =
∑

C∈Aα,β,γ

rad(C)

∫

C

|∇Cu|2dvolC ,

where Aα,β,γ denotes the set of all the arcs appearing in the construction of Kα,β,γ,
rad(C) the radius of C, ∇C the gradient on C and volC the length measure on C.

3. The limit sets of the double cusp groups on Maskit’s boundary

Let p/q ∈ Q ∩ (0, 1), µ ∈ C and define a, b ∈ PSL2(C) by a := aµ :=
(
iµ i
i 0

)
and

b :=
(
1 2
0 1

)
. Set ε0 := {z ∈ C | Im z < 0} and ε1 := εµ,1 := {z ∈ C | Im(z−µ) > 0}.

The framework of this section is summarized in the following theorem.

Theorem 4 ([2, 1, 5]). There exists a unique µ = µ(p/q) ∈ C with Imµ ≥ 1 such

that for some disjoint open discs {δk}p+q
k=0 contained in C\(ε0∪ε1), a(δk) = δk+p for

any k ∈ {0, . . . , q}, b(δk) = δk+q for any k ∈ {0, . . . , p}, (ε0, ε1), (ε0, δ0), (ε0, δq),
(ε1, δp), (ε1, δp+q) and (δk, δk+1) for {0, . . . , p+ q − 1} are mutually tangent, and
no other two distinct discs from {ε0, ε1, δ1, . . . , δp+q} are mutually tangent.

We set µ := µ(p/q) throughout the rest of this section. It then follows from
Theorem 4 that the subgroup G := Gµ(p/q) := 〈a, b〉 of PSL2(C) generated by
a = aµ(p/q), b, called the p/q double cusp group, is a free group in the two alphabets
a, b and is a Kleinian group, and that the complement of its limit set Λ(G) is given

by Ĉ \ Λ(G) =
⋃

g∈G

(
g(ε0) ∪ g(δ0)

)
and is a disjoint union of open discs in Ĉ.

Let D,D′ be the two connected components of C\ε0 ∪ ε1 ∪ δ0 ∪ · · · ∪ δp
C

where
−t + µ/2 ∈ D and t + µ/2 ∈ D′ for sufficiently large t ∈ (0,∞), and set F :=

Λ(G) ∩ D′Ĉ and Γ := {w ∈ PSL2(C) | w−1(∞) ∈ D}. For w ∈ Γ, we also set
Fw := w(F ) and Aw :=

{
Fw ∩ ∂C(wg(δ))

∣∣ g ∈ G, δ ∈ {ε0, δ0}
}
, so that Aw is a

family of arcs in C with Fw =
⋃

C∈Aw
C

C

.

Now we adopt (2.4) as the definition of the Dirichlet form on our fractal Fw .

Definition 5. Let w ∈ Γ and Cw := {u|Fw | u : C→ R, u is Lipschitz continuous}.
We define a Borel measure νw on Fw and a bilinear form Ew : Cw × Cw → R by

(3.1) νw :=
∑

C∈Aw

rad(C) ·volC , Ew(u, v) :=
∑

C∈Aw

rad(C)

∫

C

〈∇Cu,∇Cv〉dvolC .

Proposition 6 (K.). On L2(Fw, ν
w), (Ew, Cw) is closable and its closure (Ew,Fw)

is a strongly local regular Dirichlet form. Moreover, with Fw equipped with the
inner product Ew(u, v) +

∫
Fw

uv dνw, the inclusion Fw →֒ L2(Fw , ν
w) is compact.

Let d be the Hausdorff dimension of Fw with respect to the Euclidean metric
and let Hd be the d-dimensional Hausdorff measure on C with respect to the
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Euclidean metric. It is easy to see that d is independent of w, and it is known
that d ∈ (1, 2) and Hd(Fw) ∈ (0,∞). The following is our main theorem.

Theorem 7 (K.). There exists c1 ∈ (0,∞) such that for any w ∈ Γ, the eigenvalues
{λw

n }n∈N (with each eigenvalue repeated according to its multiplicity) of the non-
negative self-adjoint operator on L2(Fw , ν

w) associated with (Ew ,Fw) satisfies

(3.2) limλ→∞ λ−d/2#{n ∈ N | λw
n ≤ λ} = c1Hd(Fw).
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Reflected Brownian Motion: selection, approximation and
Linearization

Marc Arnaudon

(joint work with Xue-Mei Li)

Let M be a Riemannian manifold with smooth boundary and (Xt) a Brownian
motion in M with normal reflection at boundary. We construct a family (Wt) of
damped transports along (Xt): Wt(ω) is a linear map TX0(ω)M → TXt(ω)M , which
solves the heat equation for differential 1-forms with absolute boundary conditions

∂φ

∂t
=

1

2
∆1φ in Mo, φ(t, ν) = 0 on ∂M, φ(0, ·) = φ0

where ν(x) is the inward normal vector at boundary. The damped transport

process evolves pathwise by the Ricci curvature Ric♯ in the interior, by the shape
operator S on the boundary driven by the boundary local time Lt, and has its
normal part erased on the boundary: its Itô covariant differential DWt, which
measures difference with parallel transport along (Xt), satisfies

DWt = −
1

2
Ric♯(Wt) dt− S(Wt) dLt − 1{t∈R(ω)}〈Wt, ν(Xt)〉ν(Xt)

where R(ω) is the set of end times of excursions outside boundary.
A representation of the solution to the heat equation for 1-forms is

φt(v) = E[φ0(Wt(v))],

valid when Ric and S are bounded from below.
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From this we can prove a Bismut type formula: if F : [0, T ]×M → R is C1,2

and satisfies (∂t +
1
2∆)F = 0 on Mo and 〈∇F, ν〉 = 0 on ∂M then 〈dFt,Wt〉 is a

local martingale, so

〈dF0, v〉 = −E
[
F (τ,Xτ )

∫ τ

0

〈Wsḣs, dXs〉
]

with h0 = v, hτ = 0, τ = T ∧ τ∂M , τ∂M is the hitting time of ∂M by (Xt),

ḣ ∈ L1+ε([0, T ]× Ω).
When M is compact, we prove that, taking a > 0 suitably small, we can

approximate (Xt,Wt)t∈[0,T ] as close as we want in the Sp topology for any p ≥ 1, by

(Xa
t ,W

a
t )t∈[0,T ], where X

a
t is Brownian motion with drift ∇ ln tanh

(
dist(·, ∂M)

a

)

and W a
t is the damped parallel translation along Xa

t , i.e.

DW a
t =

(
−1

2
Ric♯(W a

t ) +∇Wa
t
∇ ln tanh

(
dist(·, ∂M)

a

))
dt.

But W a
t is known to be a derivative flow for Xa

t for some special construction of
Brownian motion with drift. Taking a weak limit as a→ 0, we prove that Wt is a
derivative flow of Xt.
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d’Informatique
Aix-Marseille Université (12M)
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