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Abstract. Recent developments in quantum field theory strongly call for
techniques from homotopical algebra to develop the mathematical founda-
tions of quantum gauge theories. This mini-workshop brought together ex-
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towards understanding quantum gauge theory. This was achieved via a fruit-
ful exchange of ideas and technologies across different research communities
and encouraging a comparison between recent approaches to homotopical
quantum field theory.
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Introduction by the Organisers

Understanding the mathematical foundations of quantum gauge theories, such as
Chern-Simons, Dijkgraaf-Witten and Yang-Mills theories, and in particular their
descent properties requires a combination of traditional frameworks for quantum
field theory with techniques coming from homotopical algebra. Several approaches
towards homotopical generalizations of quantum field theory have been developed
quite recently, however they are all starting from very different perspectives on
quantum field theory. This makes the comparison between these approaches partic-
ularly challenging. The primary goal of this mini-workshop was to bring together
experts at the interface between topological field theory, quantum field theory
and homotopical algebra to encourage a comparison and exchange of techniques
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between such different approaches, which will eventually result in major progress
towards establishing the mathematical foundations of quantum gauge theory.

The 16 participants of this mini-workshop represented different areas of mathe-
matics and mathematical physics, ranging from homotopy theory to quantum field
theory and topological field theory. Each participant contributed either with an
introductory lecture (90 min) or with a research seminar (60 min). The introduc-
tory lectures covered the main subjects involved at this mini-workshop, including
homotopical algebra (Richter), higher mathematical structures (Schreiber), locally
covariant quantum field theory (Fredenhagen) and the Batalin-Vilkovisky formal-
ism (Cattaneo). The purpose of the introductory lectures was to bridge the gap
between the very diverse mathematical backgrounds represented in the audience,
thus setting the basis for the research seminars, as well as for a fruitful scientific
discussion. The research seminars were mostly situated at the overlap between
two or more of the topics addressed by the introductory lectures, combining homo-
topy theory, topological field theories, BV-quantization, locally covariant quantum
field theory, factorization algebras, higher geometric prequantization and higher
structures thereof. The structure of the mini-workshop, combining introductory
lectures and research seminars, was very well-received by the participants as it
helped to set a common ground for sharing ideas between mathematicians coming
from very different backgrounds. In particular, it strongly fostered stimulating
discussions between experts from different areas, but with a common goal, namely
understanding the mathematical foundations of quantum gauge theory.

Also on behalf of the participants, we would like to address our most sincere
gratitude to the MFO. Besides giving us the opportunity to present the state of
research in the field, the atmosphere in Oberwolfach tremendously helped in suc-
cessfully achieving the main goal of this mini-workshop, namely to establish new
connections between different approaches to the combination of quantum field the-
ory and homotopical algebra. We are confident that these new interactions will
soon trigger new collaborations as well as crucial breakthroughs towards under-
standing the mathematical foundations of quantum gauge theory.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

An Introduction to Locally Covariant Quantum Field Theory

Klaus Fredenhagen

Quantum Field Theory is, according to Rudolf Haag [1], the incorporation of the
principle of locality into quantum physics. Due to crucial nonlocal phenomena of
quantum physics, in particular entanglement, locality can be only implemented
on the level of observables, whereas states necessarily have nonlocal features. The
observables are elements of an algebra of Hilbert space operators, typically uni-
tal C*-algebras. States are defined as linear functionals which assume positive
values on positive operators and are 1 at the unit. Their values are interpreted
as expectation values of the corresponding observable. The principle of locality
is incorporated by associating to a region of spacetime the algebra of all observ-
ables measurable within this region. This association O 7→ A(O) is subject to the
following axioms (Haag-Kastler-Axioms [2]):

Isotony: To any inclusion O1 ⊂ O2 there exists an injective homomorphism

iO2O1
: A(O1)→ A(O2) such that iO3O2

◦ iO2O1
= iO3O1

.

Locality: If two subregions O1.O2 of O are spacelike separated, then the
associated algebras commute,

[iOO1
(A(O1)), iOO2

(A(O2))] = {0} .

Timeslice: If a subregion O1of O contains a Cauchy surface of O then the
homomorphism iOO1

is an isomorphism.
Covariance: The group G of spacetime isometries, which preserve orienta-

tion and time orientation, is represented by isomorphisms αO
g : A(O) →

A(gO) such that

αO2

g ◦ iO2O1
= igO2gO1

◦ αO1

g and αO
g1g2

= αg2O
g1
◦ αO

g2
.

On Minkowski space, this set of axioms has been investigated in much detail. In
a first step one can construct the algebra of all local observables as the inductive
limit of all local algebras A(O). One then studies the representations of this
algebra. A subclass was completely classified. These are representations which
are, after restriction to the spacelike complement of a bounded region, unitarily
equivalent to a distinguished representation (the vacuum representation). It turns
out that this subclass of representations has a monoidal structure (often called
fusion) which makes it, in more than 2 spacetime dimensions, equivalent to the
representation category of a certain compact group with a distinguished element
k with k2 = e [3, 4]. This group can be identified with the group of global internal
symmetries of the system, and k refers to the alternative between Bose and Fermi
statistics. Moreover, provided some of these representations describe particles (in
the sense of eigenstates of the mass operator), one obtains the outgoing as well as
the incoming multiparticle states with the correct statistics [5]. In 2 dimensions
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one can perform an analogous analysis, but here more general structures can occur
(quantum groups, braid group statistics etc.)[6, 7, 8].

In order to extend the analysis to theories describing also gravity one tries,
as an intermediate step, to formulate quantum field theory on generic Lorentzian
manifolds. If these manifolds are globally hyperbolic, the Haag-Kastler axioms can
easily be formulated. The axiom of covariance, however, becomes empty in case
the spacetime has no nontrivial symmetries. This restricts the usefulness of the
axioms a lot. In particular, in eliminating the ultraviolet divergences of perturba-
tion theory, one does not have a mean to compare the choices of renormalization
conditions at different points of spacetime [9].

This problem was in principle solved by a generalization of the Haag-Kastler
Axioms, called Locally Covariant Quantum Field Theory [10]. Instead of look-
ing only at subregions of a given spacetime, one considers the category of all
spacetimes which satisfy some general conditions, in particular global hyperbol-
icity, with structure (i.e. metric, orientation, time orientation, causal relations)
preserving embeddings as morphisms. Quantum field theory is then defined as a
functor A into the category of unital C*-algebras with injective homomorphisms
as morphisms, which satisfies the axioms of locality and timeslice. Note that after
restriction of the functor to the subregions of a fixed spacetime one obtains the
Haag-Kastler axioms. In particular, the axioms of isotony and covariance are both
implied by the covariance of the functor.

This new formulation of quantum field theory immediately allows to define fur-
ther natural structures, where the physical intuition of naturality nicely coincides
with the mathematical concept of natural transformations. So two theories are
equivalent if the the corresponding functors are naturally isomorphic. Quantum
fields are natural transformations between the functor of test function spaces and
the quantum field theory functor (combined with the appropriate forgetful func-
tor). Moreover the described ambiguity of renormalization is reduced to the choice
of universal constants by requiring that renormalization has to be natural in the
appropriate sense [11].
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Homotopical algebra and homotopy colimits

Birgit Richter

Homotopical algebra was introduced by Quillen in 1967 [4] when he defined the
concept of a (closed) model category. This is a flexible setting for doing homotopy

theory: One has to specify three classes of maps in a complete and cocomplete
category C, the weak equivalences (we), cofibrations (cof) and fibrations (fib) that
satisfy several compatibility axioms: The identity morphisms are in each of the
classes, they are closed under composition and retracts. The weak equivalences
satisfy the 2-out-of-3 property: if g and f are composable morphisms in C, and if
two out of f, g, g ◦ f are weak equivalences, then so is the third. Every morphism
f in C can be factored as f = q ◦ i with i in cof and q in fib ∩ we and also as
f = p ◦ j with j in cof ∩ we and p in fib. The morphisms in cof have the left
lifting property with respect to morphisms in fib ∩ we and the morphisms in cof ∩
we have the left lifting property with respect to morphisms in fib. If a map from
the initial object in C to some object C is in cof, then C is cofibrant. Dually, if
the unique map from an object X to the terminal object is a fibration, then X is
fibrant.

For the category of non-negatively graded chain complexes, Ch, of R-modules
(for some associative ring R) there are several model category structures. In the
projective model structure a chain map is a weak equivalence, if it is a quasi-
isomorphism, it is a fibration if its components fn are surjective for all n ≥ 1
and it is a cofibration if the fn are monomorphism with projective cokernel for all
n ≥ 0.

For chain complexes the notion of chain homotopies can be expressed in terms of
the cylinder chain complex. Two chain maps f, g : C∗ → D∗ are chain homotopic
if and only if they factor over the cylinder cylC∗

with (cylC∗
)n = Cn⊕Cn−1⊕Cn,

i. e., if there is a chain map H : cylC∗
→ D∗ with H ◦ i0 = f and H ◦ i1 = g where

i0, i1 are the two canonical inclusions of C∗ into cylC∗
.

In a general model category this concept is generalized to cylinder objects which
give a notion of left homotopy. There is a dual notion of right homotopy defined
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in terms of path objects. If one restricts to cofibrant and fibrant objects, then this
gives a well-defined notion of homotopy. The homotopy category of a model cate-
gory, HoC, is the category whose objects are the objects of C and whose morphisms
are homotopy classes of maps between fibrant-cofibrant replacements.

In Ch all objects are fibrant, but only chain complexes that are degreewise
projective are cofibrant. A cofibrant replacement of an R-module M viewed as a
chain complex concentrated in degree zero is precisely a projective resolution of
M .

Colimits are in general not homotopy invariant: The pushout of the diagram
{{∗} ← Sn → {∗}} of topological spaces (with Sn denoting the n-dimensional
unit sphere) is a one-point space. If you replace {∗} by the weakly equivalent
(n + 1)-ball, Dn+1, then you obtain Sn+1. Thus replacing a pushout diagram
by one where the nodes are weakly equivalent to the original ones, changes the
homotopy type of the pushout. A concept that avoids these phenomena is the
homotopy colimit [2, 1, 3]. If you fix a small category D and a model category C
then in good cases the category of functors from D to C, CD, possesses a model
category structure [3, 2]. A homotopy colimit can then be defined as the colimit
of the cofibrant replacement of the diagram in CD. As the model structures on CD

are in general quite involved, it is desirable to have explicit models for homotopy
colimits: In topological spaces the double mapping cylinder and the mapping
telescope are explicit model of a homotopy pushout and a homotopy colimit for
a sequential diagram. Beatriz Rodŕıguez-González established concrete criteria
for the existence of explicit models for homotopy colimits [5]. In particular, any

diagram F ∈ ChD possesses such a model as the totalization of a double complex
constructed out of the nerve of the category D and the functor F .
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Homotopical locally covariant quantum field theory I

Alexander Schenkel

(joint work with Marco Benini and Richard J. Szabo)

In the first part of my talk I reviewed the problems one faces when one formulates
quantum gauge theories in the framework of LCQFT. Being a description in terms
of gauge invariant quantum observables, the functor A : Loc → Alg of a quantum
gauge theory violates the axioms of LCQFT that are relating local and global
properties of the theory, see e.g. [1]. More precisely, it violates the isotony axiom

http://pages.uoregon.edu/ddugger/
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and any kind of descent axiom such as additivity or a cosheaf property. This
implies that ordinary LCQFT is insufficient to describe quantum gauge theories.

In order to solve this problem, we started developing a novel and more powerful
framework, called homotopical LCQFT, that combines LCQFT with homotopical
algebra [2, 3]. A homotopical LCQFT is modeled by a functor A : Loc → cAlg

from the category of spacetimes to the model category of cosimplicial algebras
that satisfies homotopically meaningful generalizations of the axioms of LCQFT.
The choice of cosimplicial algebras as the target model category is motivated by
the following observation: The field configuration ‘space’ of a gauge theory on a
spacetime M is a smooth simplicial set (i.e. ∞-stack)

F(M) =
(

F0(M) F1(M)oo
oo

F2(M)oo

oo
oo · · ·oo

oo

oo

oo )

.

Functions on this smooth simplicial set are described by the cosimplicial algebra

C∞(F(M)) =
(

C∞(F0(M)) //
// C∞(F1(M))

//

//
// C∞(F2(M)) //

//

//

//
· · ·

)

,

and our cosimplicial algebra of quantum observables A(M) should be obtained
from deformation quantization of C∞(F(M)).

Even though the axiomatic framework of homotopical LCQFT is not yet devel-
oped in full detail, we obtained some promising results towards homotopical de-
scent in toy-models of gauge theories [2] and the structure of the up-to-homotopy
LCQFT axioms [3]. These aspects were discussed in M. Benini’s talk and I refer
to his contribution to these reports for more details.
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An introduction to BV

Alberto S. Cattaneo

(joint work with Pavel Mnëv, Nicolai Reshetikhin)

The BV formalism is a general method for setting the computation of functional
integrals in the presence of symmetries. I discussed the general mathematical
framework of this formalism and a recent development for the case of manifolds
with boundary, including the quantum version. I presented the examples of abelian
and non abelian BF theories and showed how the ensuing quantum theories are
compatible with cutting and gluing.
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Quantization via twisted generalized cohomology

Urs Schreiber

Recently there has been much progress in identifying mathematical axioms for
quantum field theories, taking into account more of the local structure than had
been considered in the past. This concerns quantum, hence quantized field theories.
What has received less attention is the development of the corresponding higher
local geometric structures on the side of classical field theories, as well as the higher
local refinement of the process of quantization that should take the latter to the
former.

For more review of the problem, exposition of the following partial solution,
and for references to the literature, see [3, 4]. This here is to advertize some first
progress in this direction, as worked out in two master theses that I had advised
[1, 2], see [3, 5] for the wrap-up:

In certain good situations (which are satisfied in particular for Chern-Simons
theory) ordinary geometric quantization is in fact equivalent to push-forward of the
pre-quantum line bundle in G-equivariant K-theory, where G is a given group of
prequantized Hamiltonian symmetries acting leaf-wise on a given Poisson manifold.
This is in refinement to an observation that goes back to Bott and is often known
as Spinc-quantization.

This is noteworthy for the following reason: The traditional prescription for
geometric quantization – in terms of polarized sections of a prequantum line bundle
with symplectic curvature – is problematic when generalizing to higher dimensional
local field theory, where the prequantum line bundle becomes a higher pre-quantum
gerbe. On the other hand, the concept of push-forward in twisted generalized
cohomology is intrinsically homotopy theoretic and as such naturally lends itself
to such a generalization.

Second, the geometric quantization of any (compact) Poisson manifold this way
may naturally be understood as the non-perturbative boundary quantization of the
2d-Poisson sigma model with that Poisson manifold as target space. This may be
regarded as a non-perturbative refinement of the famous perturbative result by
Kontsevich and Cattaneo-Felder.

Finally, this construction is such that it has an evident generalization to higher
dimensional field theories, provided the correct higher pre-quantum data: on the
moduli stack of boundary fields of some d+1-dimensional (topological) field theory
we need a pre-quantum (d − 1)-gerbe, and then we need a “superposition princi-
ple” embodied in a choice of some E∞-ring spectrum E (playing the role of the
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ground field and replacing the complex numbers in traditional quantum mechan-
ics) together with a homomorphism Bd−1U(1) → GL1(E) from the “∞-group of
phases” to the ∞-group of units of E.

One finds that in this perspective all the analytic subtleties of quantum theory
are packaged into the choice of ring spectrum E. For instance the reason that
the K-theory spectrum E = KU knows about quantum mechanics is ultimately
due to the fact that C∗-algebras and Hilbert bimodules present the category of
KU-modules, via KK-theory. In [5] I discuss evidence that one plausible choice of
ring spectrum for quantizing 2-dimensional conformal field theory as the boundary
theory of 3-dimensional Chern-Simons theory is E = tmf, the spectrum of topo-
logical modular forms. Again, as the name suggests, this captures just the kind of
analytical data that controls 2d CFTs.

The main open questions remaining in this approach of higher geometric quan-
tization via twisted generalized cohomology theory are 1) the identification of the
ring spectra that quantize a given type of d-dimensional field theory, and 2) the
refinement of the whole prescription from single boundaries to an n-functor on
higher codimension singularities.
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2-Hilbert spaces from sections of prequantum bundle gerbes

Severin Bunk

(joint work with Christian Sämann and Richard J. Szabo)

Geometric quantisation is based on the space of sections of a hermitean line bundle
whose field strength is required to provide a geometric realisation of a symplectic
form with integer periods. This space of sections comes endowed with an inner
product given by evaluating the hermitean metric of the line bundle on a pair
of sections and integrating the resulting function over the base M . However,
several mathematically and physically relevant geometries are not symplectic, but
come with higher-degree analogues of symplectic forms instead. Examples are the
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canonical 3-forms on compact simple Lie groups, and special instances of the H-
field in string theory. The question for a different quantisation scheme adapted
to this situation arises naturally. A geometric realisation of a 3-form with integer
periods is a gerbe with connection, or a bundle gerbe with connection as introduced
by Murray [3]. This is to replace the hermitean line bundle with connection in
geometric quantisation.

The collection of bundle gerbes with connection on a given manifoldM has been
shown to form a symmetric monoidal 2-category BGrb

∇(M) [4]. Similar to line

bundles, the monoidal unit in BGrb∇(M) deserves to be called the trivial bundle
gerbe I0 with the trivial connection, and we can define a category of sections
Γ(M,G) := BGrb∇(M)(I0,G) for any bundle gerbe G on M . The sections of a
bundle gerbe then form a category as one would expect from the point of view
that gerbes should categorify line bundles.

We have shown that this category of sections carries a monoidal structure, stem-
ming from the direct sum of hermitean vector bundles, and that it forms a semisim-
ple Abelian category (although with infinitely many simple objects) enriched in
the category Hilb of finite-dimensional Hilbert spaces. Furthermore, sections form
a module category over the rig category of higher functions BGrb∇(M)(I0, I0),
which is equivalent to the rig category HVBdl∇(M) of hermitean vector bundles
with connection on M and parallel morphisms. Finally, Γ(M,G) can be endowed
with a higher bundle metric, which is a sesquilinear functor mapping pairs of
sections to higher functions, i.e. hG : Γ(M,G)op×Γ(M,G)→ HVBdl∇(M).

A 2-Hilbert space basically is a Kapranov-Voevodsky 2-vector space [5] taken
over Hilb with an inner product functor. In order to turn the sections of G into a
module category over Hilb, we use the embedding Hilb →֒ HVBdl∇(M), where V is
mapped to the trivial vector bundle with fibre V and with the trivial connection.
This is in complete analogy with how C sits in C∞(M) as constant functions.
A non-degenerate, sesquilinear, Hilb-valued inner product of two sections of G is
given by first evaluating the higher bundle metric on a pair of sections and then
taking the space of parallel sections of the resulting hermitean vector bundle with
connection. This makes the category Γ(M,G) into a 2-Hilbert space.

The above construction has been worked out in [1], and moreover it has been

shown there that the structures on the morphism categories in BGrb∇(M) are com-
pletely compatible with transgression of gerbes. The results concerning 2-Hilbert
spaces have been presented non-technically in [2], where additionally several ex-
amples of the abstract formalism have been worked out explicitly.
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Abelian and non-abelian BF theory on cobordisms endowed with

cellular decomposition

Pavel Mnev

(joint work with Alberto S. Cattaneo, Nicolai Reshetikhin)

We present an example of a topological field theory living on cobordisms endowed
with CW decomposition (this example corresponds to the so-called BF theory in
its abelian and non-abelian variants). Its partition function satisfies is constructed
by a finite-dimensional integral (replacing the functional integral of quantum field
theory) and satisfies the following properties.

• The partition function satisfies Batalin-Vilkovisky quantum master equa-
tion (modified by a boundary term).
• Change of gauge-fixing choices changes the partition function by a homo-
topy (in an appropriate sense).
• Partition function satisfies a version of Segal’s gluing axiom w.r.t. con-
catenation of cobordisms.
• Partition function is compatible with cellular aggregations (inverses of
subdivisions of the cellular decomposition of the cobordism).

In non-abelian case, the action functional of the theory is constructed out of local
unimodular L∞ algebras on cells. The partition function is invariant under simple-
homotopy equivalence and carries the information about the Reidemeister torsion,
together with certain information pertaining to formal geometry of the moduli
space of local systems (and, in simply connected case, contains the complete in-
formation on the rational homotopy type of the cobordism). Also, the partiton
function contains a mod 16 complex phase depending solely on the (twisted) Betti
numbers of the cobordism. This theory provides a combinatorial example of the
BV-BFV programme for quantization of field theories on manifolds with bound-
ary in cohomological formalism [1, 2] (see [3] for a short overview), with partition
functions given by finite-dimensional BV pushforwards. This is a joint work [4]
with Alberto S. Cattaneo and Nicolai Reshetikhin and is an extension of previous
works of P.M. [5, 6].
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Operads

Ulrich Krähmer

Operads offer a formalism for defining types of algebraic structures such as commu-
tative, Lie, Poisson or - most relevant for this workshop - Gerstenhaber, Batalin-
Vilkovisky and Beilinson-Drinfel’d algebras. The operad itself consists of the vec-
tor spaces O(n) of all the operations

A⊗n → A

that are present in the free algebra of the given type, together with the partial
composition maps

◦i : O(n)⊗O(m)→ O(m+ n− 1)

obtained by inserting the output of one operation as i-th input into another, and -
if one considers symmetric operads - the natural action by the permutation group
Sn on P(n).

In the above we tacitly assumed we are working with algebraic structures on
vector spaces, but one can consider symmetric operads in any symmetric monoidal
category, e.g. topological spaces.

In this survey talk we begin by introducing operads and the necessary prelimi-
nary notiuons and then focus for a while on examples.

One important advantage of using the language of operads is that symmetric
monoidal functors allow one to relate algebraic structures in different categories.
A good example is the little discs operad whose n-ary operations are the config-
urations of n little discs, i.e. the continuous embeddings of D × · · · × D into D,
where D ⊂ C is the unit disc. Applying the singular chains functor yields an op-
erad in chain complexes, taking homology an operad in graded vector spaces. The
latter turns out to define Gerstenhaber algebras, and a pivotal result in homolog-
ical algebra, the by now proven Deligne conjecture, asserts that the Gerstenhbaer
algebra structure on the Hochschild cohomology of an associative algebra lifts in
fact to the structure of an algebra over the singular chains on the little discs on
the Hochschild cochain complex itself.

After discussing these topics in some detail, I will finish with a brief discus-
sion of Hopf algebroids, an algebraic structure that allows one to unify various
generalisations of the setting of the Deligne conjecture such as Poisson algebras.
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An introduction to factorization algebras towards topological field

theories

Claudia Scheimbauer

First introduced by Lurie [6] and Costello-Gwilliam [2] in the topological setting,
factorization algebras are algebraic structures designed to encode the structure of
the observables of a quantum field theory (henceforth QFT).

Definition. A factorization algebra F on M is an algebra over the colored operad

with open sets in M as colors and

PreFactM (U1, . . . , Un;V ) =

{

{∗} if U1 ∐ . . . ∐ Un ⊆ V ;

∅ otherwise,

satisfying multiplicativity, i.e. F(U)⊗F(V )
≃
−→ F(U ∐ V ), and descent for Weiss

covers.

One can think of them as a multiplicative, non-commutative version of cosheaves
and they turn out to be a tool useful for describing algebraic structures such as
bimodules between algebras, centralizers, universal enveloping algebras, and En-
algebras. Moreover, they are very similar to the structures appearing in (pertur-
bative) Algebraic Quantum Field Theory, as we also saw in the other talks in this
workshop.

A source of examples of “topological” factorization algebras, which reflect topo-
logical field theories, is factorization homology, also called topological chiral homol-
ogy [7, 1]: these factorization algebras are fully local, i.e. are determined by their
value at a small disk, [4]. This value has the structure of an En-algebra, which is
an algebra in S for the little cubes operad in dimension n. Examples include n-fold
loop spaces, associative algebras up to homotopy for n = 1, i.e. A∞-algebras, and
braided monoidal categories for n = 2.

After giving a detailed introduction to factorization algebras and factoriza-
tion homology, we discussed joint work with Calaque [3], namely, how topological
factorization algebras give examples of fully extended functorial topological field
theories in the sense of Lurie [7] and their twisted cousins following Stolz-Teichner
[8, 5]. Finally, we briefly mentioned ongoing joint work with Gwilliam on first sim-
ple examples of fully extended twisted field theories which include the information
of the state space of the QFT.
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Linear Batalin-Vilkovisky quantization as a functor of ∞-categories

Rune Haugseng

(joint work with Owen Gwilliam)

The most fundamental example of quantization assigns to the vector space R2n the
Weyl algebra, which is the associative algebra on 2n generators p1, . . . , pn, q1, . . . , qn
with relations [pi, pj ] = 0 = [qi, qj ] and [pi, qj ] = δij . Here R2n should be thought
of as the cotangent bundle of Rn, equipped with its standard symplectic structure,
which is the arena for classical mechanics on Rn. This assignment can be formu-
lated as a functor, known as Weyl quantization, from symplectic vector spaces (or
more generally vector spaces equipped with a skew-symmetric pairing) to associa-
tive algebras, which naturally breaks up into three steps:

(1) To a vector space V with skew-symmetric pairing ω we associate its Heisen-
berg Lie algebra Heis(V, ω), which is the direct sum V ⊕R~ equipped with
the Lie bracket where

[x, y] = ω(x, y)~

for x, y in V , and all other brackets are zero.
(2) To the Lie algebra Heis(V, ω), we assign its universal enveloping algebra

UHeis(V, ω).
(3) If we now set ~ to 1, we get the Weyl algebra, i.e.

Weyl(V, ω) := UHeis(V, ω)/(~ = 1).

On the other hand, if we set ~ = 0 we get Sym(V ), which we can equip with the
Poisson bracket

{x, y} = lim
~→0

[x, y]/~ = ω(x, y),

for x, y ∈ V ; this is an algebraic version of the Poisson algebra of classical ob-
servables. The universal enveloping algebra UHeis(V, ω) can thus be viewed as
a deformation quantization of the Poisson algebra Sym(V ). This procedure is at
the core of all approaches to “free theories,” and hence the base case for the more
challenging and more interesting interacting theories.

In our paper [1] the main object of study is a derived and shifted version of
this procedure — derived in the sense that we replace vector spaces by cochain
complexes and shifted in the sense that we consider pairings of degree 1. We
call this linear BV quantization as it produces the simplest possible examples of
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Batalin-Vilkovisky (BV) quantization; this is a homological approach to quantiza-
tion of field theories introduced by Batalin and Vilkovisky as a generalization of
the BRST formalism, in an effort to deal with complicated field theories such as
supergravity.

In the BV formalism, the classical observables form a 1-shifted Poisson algebra,
and the quantum observables are an E0-algebra, i.e. just a pointed cochain com-
plex. Our construction gives a functorial quantization of cochain complexes with
shifted pairings to E0-algebras, using shifted versions of the Heisenberg Lie algebra
and the universal enveloping algebra; using a variety of homotopical machinery,
we implement these as symmetric monoidal functors of ∞-categories.

However, the enveloping algebra is no longer an associative algebra, but rather a
BD-algebra. A BD-algebra (for Beilinson-Drinfeld) is a differential graded module
(M, d) over k[~] equipped with an ~-linear unital graded-commutative product of
degree zero and an ~-linear shifted Poisson bracket of degree one such that

d(αβ) = d(α)β + (−1)αα d(β) + ~{α, β}

for any α, β in M . Starting with a BD-algebra M , by setting ~ = 0 we obtain
a shifted Poisson algebra, which we interpret as the dequantization of M . On
the other hand, if we set ~ to 1, i.e. we pass to the quotient M/(~− 1), then the
differential is not a derivation and so, up to quasi-isomorphism, the only remaining
algebraic structure is the unit. That is, the reduction M/(~− 1) is essentially just
a pointed A-module.

Our construction has a number of pleasant properties:

• Due to the naturality of the construction, it induces a “higher BV quan-
tization” from En-algebras in cochain complexes with 1-shifted pairings,
which we expect to be equivalent to cochain complexes with (1−n)-shifted
pairings, to En-algebras. In particular, for n = 1 we expect to recover Weyl
quantization.
• Everything we do works not just over the base field k, but also over an
arbitrary commutative differential graded k-algebra. It then follows quite
formally from Lurie’s descent theorem for ∞-categories of modules that
there is a natural extension of our functor to derived algebraic geometry.
• Over Artinian differential graded algebras, and more generally over for-
mal moduli problems, our functor behaves like a determinant. More pre-
cisely, in these cases the BV-quantization of a perfect complex with a
non-degenerate pairing is invertible.
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Dictionary between the pAQFT and factorization algebras approaches

to renormalization

Kasia Rejzner

(joint work with Owen Gwilliam)

In my talk I gave an account of how the BV formalism is used in constructing
models in perturbative algebraic QFT (pAQFT) [BDF09, FR12, Rej16]. Next, I
presented a dictionary between this approach and the one advocated by Costello
and Gwilliam, which uses factorisation algebras [Cos11, CG11]. The main differ-
ence between the two approaches is that the former works in Lorentzian signature
of spacetime (making use of the causal structure), while the latter in the Euclidean
signature. A natural ground to compare the two is the pAQFT construction of
time ordered products Tn. Vacuum expectation values of these are then related to
Euclidean Green functions constructed using factorisation algebras language. For
simplicity, on the pAQFT side, I discussed only regular observables.

Table 1: Dictionary between the approaches.

Fredenhagen-Rejzner Costello-Gwilliam

M = (R4, η), η = diag(1,−1,−1,−1) M = (R4,1)

The space of field configurations: E = C
∞(M,R)

TE = E × Ec, if E is equipped with the U ⊂ M , TcE(U) = E(U)× Ec(U)
Whitney topology; here Ec

.
= C

∞

c (M,R)

Regular functionals: Freg smooth/smeared observables Sym(E !
c)

Solutions to filed equations: zero locus of a 1-form dS on E

dS ∈ Γ(T ∗
E), where T ∗

E = E × E
′

c dS ∈ Γ(TcE)

Free field equation

dS(ϕ) = (�+m2)ϕ = 0 dS(ϕ) = (∆ +m2)ϕ = 0

Polyvector fields

PVreg(O) regular functionals PVc(E(U)) as in [CG11]
on T ∗[−1]E , ([Rej16, 3.4])

Classical observables

Obsclreg(O) = (PVreg(O), δS), Obscl(U) = PVc(E(U)),with
where δS

.
= −ιdS (insertion of dS) the differential ιdS

Feynman propagator satisfies: G satisfies
−(�+m2) ◦GF = −GF

◦ (�+m2) = iδ (∆ +m2) ◦G = δ

Wick (normal) ordering operator

T = e
i~

2
DF , where DF =

〈

GF, δ2

δϕ2

〉

W = e~∂G , where ∂G

is essentially contraction with G

Quantum observables

Obsqreg(O)
.
= (PVreg(O)[[~]], ŝ0,△) Obsq = (Obscl[[~]], d = d1 + d2)

ŝ0 = δS0
− i~△

Obsqreg = Obsclreg[[~]] as vector spaces Obsq = Obscl[[~]] as vector spaces
Commutative, associative product · Factorisation product on Obsq

on Obsqreg
Continued on next page
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Table 1 – continued from previous page

Fredenhagen-Rejzner Costello-Gwilliam

We have a map There is a co-chain isomorphism
T

−1 : Obsclreg(O)[[~]] → Obsqreg(O) WU : Obscl(U)[[~]] → Obsq(U)
that intertwines the differentials, and it deforms the factorisation product

induces a new product on Obsclreg[[~]]: as follows:
F ·T G = T (T −1F · T

−1G) α ∗ β = e−~∂G

(

e~∂Gα · e~∂Gβ
)

Tn(Φ(f1), . . . ,Φ(fn))(0) Euclidean Green’s functions
is the n-point Green’s function. (Schwinger functions)
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Modular categories from cobordism categories

Bruce Bartlett

(joint work with Chris Schommer-Pries, Chris Douglas and Jamie Vicary)

An n-dimensional oriented topological quantum field theory (the author suggests
the simpler terminology of bordism representation) in the Atiyah-Segal sense is a
symmetric monoidal functor

(1) Z : (Bordorn−1,n, ⊔)→ (Vect, ⊗)

from the n-dimensional oriented bordism category, whose objects are closed (n−1)-
manifolds and whose morphisms are oriented n-dimensional cobordisms, to the
category of vector spaces.

It is well-known that two-dimensional oriented bordism representations are clas-
sified by commutative Frobenius algebras (the image of the circle under the functor
Z).

It has long been expected that three-dimensional oriented bordism represen-
tations should be classified by modular categories (a finitely semisimple linear
category equipped with a nondegenerate braiding and a compatible twist), but
making this precise has proved difficult. The seminal book of Bakalov and Kirillov
[1] uses the technique of surgery and gets quite far in this regard, but encounters

http://people.mpim-bonn.mpg.de/gwilliam/vol1may8.pdf
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some difficulties (they need to supply the underlying category ‘by hand’ as well as
demand that it is rigid as a monoidal category; there is an issue with the anomaly;
and there are not natural functors in both directions establishing an equivalence).

We resolve these difficulties and complete the classification by adopting a
2-categorical approach and using Cerf theory. Namely, we consider ‘three-dimen-
sional bordism representation’ to mean a symmetric monoidal 2-functor

(2) Z : (Bordor1,2,3, ⊔)→ (CatC, ⊠)

from the symmetric monoidal 3-dimensional oriented bordism bicategory Bordor1,2,3
(objects are 1-manifolds, morphisms are 2-dimensional cobordisms, 2-morphisms
are 3-dimensional cobordisms) to the symmetric monoidal bicategory CatC (ob-
jects are Cauchy complete C-linear categories, morphisms are linear functors, 2-
morphisms are natural transformations).

We have three main results. The first is that, using higher-dimensional Cerf
theory, we obtain a simple finite presentation O for the symmetric monoidal bicat-
egory Bordor1,2,3. In other words, Bordor1,2,3 is “the free symmetric monoidal bicate-
gory F (O) on a bunch of generating objects, 1-morphisms and 2-morphisms, with
some relations, all specified by the presentation O”. The main point here is that
the topology of 3-dimensional cobordisms translates naturally into the language of
higher categories with duals — an important principle encoded in the Cobordism
Hypothesis of Baez and Dolan [2].

Our second result is that, dropping a relation (‘anomaly-freeness’) from the
presentation O, we obtain a simple presentationM for a certain central extension

by Z of the oriented bordism bicategory. Bordism representations arising from
physics such as Chern-Simons theory are actually representatons of this bicategory
(they are anomalous when considered as representations of the oriented bordism
bicategory).

Our third result is that representations of F (M) correspond precisely to modu-
lar categories equipped with a choice of sign, while representations of F (O) corre-
spond preicsely to anomaly-free modular categories. In this way, and in this sense,
we complete the classification of 3-dimensional TQFTs.
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Tureav-Viro theories based on non-semisimple spherical categories

Christoph Schweigert

(joint work with Jürgen Fuchs and Gregor Schaumann)

We presented results on 3-2-1-extended oriented topological field theories of Tu-
raev-Viro type in the presence of topological defects and physical boundaries.
Besides motivations from physics, we also argued that the isomorphism that relates
the Brauer-Picard group of a fusion categoryA to the group of braided equivalences
of its Drinfeld center Z(A) [1] and the equivariance properties of the generalized
Frobenius-Schur indicator [6] should find natural explanations in this framework.

To a 1-cell, such an extended TFT assigns a C-linear category, and to a 2-cell
a linear functor. We explained that it should be possible to construct these parts
of a TFT by taking a finite spherical tensor category as an input datum, without
necessarily requiring it to be semisimple. General considerations for three-dimen-
sional TFTs [4] imply that surface defects are labeled by bimodule categories. The
category of Wilson lines embedded into a surface defect can be described as the
category of modules over a natural monad on the bimodule categories that label the
two-dimensional strata adjacent to the Wilson line. The resulting categories can
be expressed in terms of relative Deligne products of bimodule categories and of
a category-valued trace [2]. For the specific subclass of Dijkgraaf-Witten theories,
this construction matches results obtained via a gauge theoretic construction [5]
that involves a generalization of relative bundles.

The functor that the TFT associates to a surface is called a block functor.
We explained that block functors should be left exact and outlined the ideas of
a construction of block functors that involves two steps. In a first step, yielding
functors that we call pre-blocks, the state sum inherent to Turaev-Viro models is
implemented via coends; the second step involves a projection. We showed that
an Eilenberg-Watts calculus for finite categories [3] allows one to find convenient
and illustrative expressions for pre-blocks and and block functors.
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A Cohomological Perspective on AQFT

Eli Hawkins

The space of antisymmetric multivector fields on a smooth manifold carries two al-
gebraic structures. The exterior product is an associative and graded commutative
product of degree 0. The Schouten-Nijenhuis bracket is a graded Lie bracket of
degree −1. The bracket is a biderivation of the product. These structures together
constitute a Gerstenhaber algebra structure.

Given an associative algebra, A, the degree q component of the Hochschild
complex is the space of q-multilinear maps Cq(A,A) = Hom(A⊗q, A). The complex
is a differential graded Lie algebra, and deformations of the associative product
m ∈ C2(A,A) are characterized by the Maurer-Cartan equation. The Hochschild
cohomology is a Gerstenhaber algebra.

In particular, for a smooth manifold, the Hochschild cohomology of the algebra
of smooth functions is the Gerstenhaber algebra of multivector fields. An infini-
tesimal deformation of the algebra is characterized by a degree 2 cohomology class
satisfying the Maurer-Cartan equation, and that is simply a Poisson bivector field.

An algebraic quantum field theory can be described as a functor A : X →
Alg from a small category to the category of associative algebras (a diagram of

algebras). Hochschild cohomology extends to such a structure. The Hochschild
bicomplex of A is constructed by using the simplicial structure of the nerve of
X. This is not a differential graded Lie algebra, but an L∞-algebra, because the
Maurer-Cartan equation is not quadratic.

Deformations of A are described by a truncated Hochschild bicomplex (dropping
the degree (0, ∗) part). From this perspective, an infinitesimal deformation of A
is given by a degree 2 cohomology class, but there are 2 fundamental types of
deformation. The transition from classical to quantum field theory comes from
degree (2, 0). The transition from free to interacting field theory comes from
degree (1, 1).

In the untruncated Hochschild bicomplex, degree (0, 2) provides another kind
of deformation. This leads me to define a skew diagram of algebras and thus a
generalization of AQFT. Automorphisms in the category of skew diagrams are a
sort of generalized symmetry of an AQFT.

The simplest way of constructing a Poisson bivector field is as the product of 2
commuting vector fields. A corresponding strict deformation quantization can be
constructed by the methods of Rieffel [1] using the abelian group action generated
by the vector fields.

The Gerstenhaber algebra structure on the Hochschild cohomology, H•(A,A)
suggests that an interaction can be constructed as a product of classes in H1(A,A).
In this way, an interacting AQFT might be constructed using a group of skew
automorphisms of a free AQFT.

The details are presented in [2].
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Homotopical locally covariant quantum field theory II

Marco Benini

(joint work with Alexander Schenkel and Richard J. Szabo)

Following the introduction to homotopical locally covariant quantum field theory
presented by Alexander Schenkel, we presented the first instances of this structure,
focusing in particular on the local-to-global property and on the causality and
time-slice axioms up to homotopy.

Concerning the local-to-global axiom, we showed that global observables for the
Abelian gauge theory of principal U(1)-bundles equipped with connection can be
reconstructed from local ones [2]. Our approach is motivated by the observation
that stacks are equivalent to homotopy sheaves of groupoids [6], where the homo-
topy sheaf condition is formulated in terms of a suitable homotopy limit. Dually,
the local-to-global process is performed forming the homotopy colimit of a diagram
in chain complexes describing linear observables associated to contractible regions
of a fixed manifold. It turns out that the resulting global observables distinguish
principal U(1)-bundles with connection (up to isomorphism).

Homotopical versions of the causality and time-slice axioms arise instead from
quantum field theories defined on categories fibered in groupoids over the category
of spacetimes. Examples arise from quantum field theory functors that assign
observable algebras to spacetimes equipped with additional structure (forming a
fibered category over the category of spacetimes), e.g. spacetimes equipped with a
spin structure or with a bundle and possibly a connective structure. It turns out
that forming the homotopy right Kan extension of a quantum field theory functor
defined on a category fibered in groupoids over spacetimes along its “projection”
functor (that only remembers the underlying spacetime) provides a new functor
that resembles the behaviour of a gauge theory. In particular, the causality and
time-slice axioms of locally covariant quantum field theory (LCQFT) [4] hold only
up to homotopy, providing examples of the homotopy LCQFT axioms.

A comprehensive analysis of these structures requires the implementation of
higher homotopies taking care of a number of coherencies. This indicates the need
for an operadic approach that effectively keeps track of the necessary coherency
relations. To this aim, we proposed a novel approach based on encoding the struc-
ture of a LCQFT into a coloured operad (later called LCQFT operad): the colours
correspond to spacetimes, while the operations arise from spacetime embeddings
and algebraic multiplication and are subject to relations encoding the LCQFT
axioms. As a result, the LCQFT operad “interpolates” between associativity and
commutativity, according to the causal relations between spacetime embeddings.
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Generalizing the factorization algebra approach of [5] to the Lorentzian framework,
the proposed operadic approach paves the way to completely novel constructions
in the realm of LCQFT, which are based on forming free algebras over the LCQFT
operad and quotients thereof, and provides a natural candidate to model the ho-
motopical extension of LCQFT, namely the coloured operad which is obtained by
a cofibrant resolution [3] of the LCQFT operad.
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Generalised abelian gauge theories

Richard J. Szabo

The configuration space of gauge fields in Maxwell theory on an oriented manifold
M is given by the differential cohomology group Ĥ2(M), a differential refinement
of the degree two integer cohomology H2(M,Z); this is the group of isomorphism
classes of U(1)-bundle/connection pairs (P,∇) on M , and the characteristic class
map to integer cohomology is just the Chern class c1(P ). The coupling of gauge
fields to charged particles is described by the holonomy of the connection along
the worldline γ of the particle. This group generalises in various ways to describe
configuration spaces of generalised (or ‘higher’) abelian gauge theories of interest
in string theory, see e.g. [1]. In particular, the differential cohomology groups

Ĥk(M) in varying degrees describe higher-form fields (e.g. B-fields and C-fields)
coupled to elementary charged degrees of freedom (e.g. fundamental strings and
membranes). Quantization of these gauge theories in this context was originally
carried out in [2] in the case of ultrastatic spacetimes M = R × Σ, where the
quantum theory was shown to naturally exhibit the S-duality symmetry of the
classical theory. It was subsequently generalised to arbitrary globally hyperbolic
spacetimes in [3] within the context of locally covariant quantum field theory, and
the implementation of quantum S-duality in this framework was provided in [4],
including a fully covariant quantum field theory of the elusive self-dual field in any
dimension.

In string theory, there are other higher-form fields which couple to extended
degrees of freedom other than the fundamental ones mentioned above; generally,
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the configuration spaces of such gauge theories are described by generalised dif-
ferential cohomology theories [1] which are differential refinements of generalised
cohomology theories. In particular, the self-dual Ramond-Ramond field, which
couples to D-branes, is described by differential (complex) K-theory. In this talk
we explained how the quantisation of these abelian gauge theories on ultrastatic
spacetimes can be carried out using the formalism of [2]; the key feature is the
differential extension of the Adams operation in K-theory which together with the
intersection pairing enable the construction of a non-degenerate skew-symmetric
pairing between differential K-theory classes. An open problem in this regard is
to find a suitable model for differential K-theory which enables the fully covariant
quantisation of [3] to be applied. There is also a cochain model for differential
K-theory which describes the groupoid of Ramond-Ramond fields, and presum-
ably should enable a full global characterization of Ramond-Ramond fields and
their corresponding observables using homotopical methods along the lines of [5].
The quantisation can also be generalised to string orbifolds, whose corresponding
differential K-theory was first constructed in [6], by using the model of [7].
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