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Introduction by the Organisers

In the recent past there have been a number of spectacular developments in local
algebra and singularity theory, the subject of this Oberwolfach workshop. Three
outstanding conjectures have been settled (in the past six months) and there has
been significant progress on two others; what is more, at Oberwolfach we got
news that there has been a major breakthrough on another long-standing open
problem. Fortunately, all the researchers responsible for these developments had
been invited to the workshop, and most were able to participate and present their
work. All this made for a lively and memorable gathering. There were more than
fifty participants, from across the world; twenty three lectures, each an hour long,
were scheduled. Here are some of the highlights.

Hochster’s direct summand conjecture. The direct summand conjecture asserts
that regular local rings are direct summands of their module-finite extensions. It
is one in a network of homological conjectures in local algebra, formulated by
Hochster, that have generated a tremendous amount of activity in the last 50
years. They had largely been resolved for commutative rings that contain a field
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or in low dimension. The direct summand conjecture (which has been known to be
equivalent to various other homological conjectures, such as the canonical element
conjecture and the improved new intersection theorem, among others) remained
open in mixed characteristic until this past summer when André announced a
proof of it based on Scholze’s theory of perfectoid spaces. Bhatt delivered the
opening lecture of the workshop, outlining a simplified proof of this conjecture, and
an extension to the geometric setting; this again makes critical use of perfectoid
spaces. By popular demand, Bhatt gave a second, more informal, lecture on
Tuesday evening, giving an overview of perfectoid theory. It is clear that perfectoid
theory is going to have an enormous impact on commutative algebra.

Eisenbud-Goto regularity conjecture. Over thirty years ago, Eisenbud and Goto
conjectured a bound for the Castelnuovo-Mumford regularity of a prime ideal in
terms of its multiplicity. This bound was proved by Gruson, Lazarsfeld, and Pe-
skine for curves, by Pinkham and Lazarsfeld for smooth complex surfaces, and for
some smooth 3-folds by Ran. Furthermore in dimensions three and four, Kwak
proved regularity bounds that are only slightly worse than the one suggested by
the conjecture. McCullough and Peeva (who were both at the workshop, as was
Eisenbud) found a counterexample this summer, using an ingenious construction
that yields, moreover, examples where the regularity is not bounded by any poly-
nomial function of the multiplicity. McCullough gave a wonderful talk on these,
and more recent, developments on this topic.

Resolution of singularities. In the early 1960s, Hironaka proved the existence of a
resolution of singularities of a reduced algebraic scheme over a field of characteristic
zero. This result has had spectacular application in many areas of mathematics.
Because of the lack of hypersurfaces of maximal contact in positive characteristic,
this problem has remained open over fields of positive characteristic, not to mention
mixed characteristic. Abhyankar proved resolution of singularities for 3-folds of
characteristic larger than five in the mid 1960s and Lipman proved resolution
for reduced excellent surfaces in the mid 1970s. Recently, resolution for reduced
excellent schemes of dimension three has been proven by Cossart and Piltant.
This is the most general theorem which can be true in dimension three. Schober,
who works with Cossart and Piltant, gave a talk in the workshop on this result,
explaining the result and giving an outline of the proof.

Lech’s multiplicity conjecture. Fifty years ago Lech conjectured that if R → S
is a flat local ring extension, the multiplicities satisfy e(R) ≤ e(S); he proved
it when dimR ≤ 2. Ma spoke about his recent work establishing an amazing
inequality when R contains a field; this settles the case dimR = 3. His proof uses
Hilbert-Kunz multiplicities and local Chern characters to tackle rings of positive
characteristic; he deduces the result for rings containing a field of characteristic
zero using Artin approximation and reduction to positive characteristic.

Stillman’s projective dimension conjecture. About ten years ago, Stillman conjec-
tured that there is an upper bound on the projective dimension of an ideal in
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a polynomial ring, in terms of the number of generators of the ideal and their
degrees; the remarkable point is that the bound is independent of the dimension
of the ring. A few months ago Ananyan and Hochster posted a preprint on the
arXiv that settles this conjecture. Regrettably, neither of them were present at
this workshop. We were fortunate that Caviglia agreed to give an overview of the
proof, which is a spectacular tour de force, involving a subtle study of subalgebras
generated by regular sequences, and a complicated induction scheme.

Buchsbaum-Eisenbud-Horrocks conjecture on Betti numbers. This conjecture, from
the 1970s, states that the ith Betti numbers of a module of finite length over a reg-
ular local ring of dimension d is at least

(
d
i

)
; in particular, the total Betti number

is at least 2d. It is related to the problem of finding minimal ranks of syzygies of
vector bundles on the punctured spectrum of the ring. It can also be viewed as the
local algebra analogue of Halperin’s conjecture that if a real torus of dimension d
acts almost freely on a finite CW complex X , then the total rank of the rational

homology of torus is at least 2d. At the workshop Walker announced that he had
settled the conjecture concerning total Betti numbers just a few days ago! He gave
a beautiful talk, with a complete proof of his result that covers also the case of
modules of finite projective dimension over general local rings. The key new idea
comes from K-theory, mainly the use of Adams operations on perfect complexes.
It is clear that this opens up a whole new arsenal of techniques for use in local
algebra, with a promise of further progress in this direction.

In addition to these topics, the talks in the workshop covered a range of topics
of current interest in local algebra and singularity theory.

Presentations were given on recent progress towards resolution of singularities
in positive characteristic and higher dimension. Teissier discussed his proof of local
uniformisation along a maximal rank valuation in all dimensions and in positive
characteristic by a close analysis of the associated graded ring of a local ring with
respect to a valuation. Hauser gave an example showing that one of the main
invariants used in resolution of singularities can have unexpected pathological
behavior in higher dimension and positive characteristic. Villamayor discussed
a systematic way to improve invariants of resolution under permissible blow ups
in a ramified map to a nonsingular scheme of positive characteristic.

Singularities in positive characteristic were also the focus of the talks of Dao
and Tucker. The latter discussed his recent result that the étale local fundamental
group of an F-regular scheme (which can be viewed as the positive characteristic
analog of a Kawamata log terminal singularity) at a geometric point is finite.
Dao talked about the asymptotic behavior of the local cohomology modules of
thickenings (that is to say, powers, or Frobenius powers) of an ideal in a local ring.

The structure of free resolutions of modules over local rings continues to be an
active area of research, and many of the talks in the workshop were related to
this topic. Şega’s talk focused on the question of the rationality of Poincaré series
of modules over compressed local rings. Berkesch explained some special features
of homological algebra in multigraded settings. Avramov, Eisenbud, and Peeva
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spoke about (invariants of) minimal free resolutions of modules over complete
intersection rings. On the more representation theoretic side of things, Buchweitz
presented a complete description of the graded maximal Cohen-Macaulay modules
over graded one dimensional Gorenstein rings.

The interaction between commutative algebra, algebraic geometry and combi-
natorics has a long tradition dating back, al least, to the 1970’s with the pioneering
work of Stanley and Hochster. Four talks at the meeting can be broadly considered
as part of this area: Murai’s talk on the properties of double h-polynomial of Buchs-
baum complexes, Varbaro’s presentation on a surprising connection between the
Castelnuovo-Mumford regularity of monomial ideals and the virtual cohomological
dimension of hyperbolic Coxeter groups, Huh’s proof of the “top-heavy” conjec-
ture of Dowling and Wilson for certain matroids employing geometric methods,
and Srinivasan’s analysis of homological properties of certain monomial curves.

Finally, two talks were devoted to introduce the audience to new research di-
rections. In Erman’s talk the problem of detecting Noether normalizations over
finite fields was discussed and a solution based on a variant of Poonen’s closed
point sieve was presented. Römer presented results concerning Hilbert series of
algebraic objects that have a finite description up to the action of an infinite group
as part of the recent theory of “finite up-to symmetry” ideals which is connected
with stable asymptotic behaviour of group representations.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Anurag Singh in the “Simons Visiting Professors” pro-
gram at the MFO.
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Abstracts

The Direct Summand Conjecture and its Derived Variant

Bhargav Bhatt

The goal of this talk was to sketch a proof of Hochster’s direct summand conjecture:

Theorem 1 (André). Let R be a regular ring, and let f : R → S be a finite
injective map. Then f admits an R-module splitting.

Theorem 1 is straightforward in characteristic 0 or if dim(R) ≤ 2. The case of
equicharacteristic p > 0 was settled in [Ho], while Heitmann settled dimension 3.
The above result was established recently by Yves André in [An2] using [An1]. In
this talk, we explained a proof of Theorem 1 avoiding [An1], following the method
of [Bh2]. A similar method, when combined with a vanishing theorem due to
Scholze, also leads to the following derived version, conjectured by de Jong:

Theorem 2. Let R be a regular ring, and let f : X → Spec(R) be a proper
surjective map. Then R→ RΓ(X,OX) splits in the derived category D(R).

The main new idea is systematically use Scholze’s theory of perfectoid spaces,
especially their analytic geometry. We first explain the characteristic p case in §1
using perfect rings. Replacing perfect rings with perfectoid rings, whose relevant
properties are discussed in §2, leads to the general statement in §3.

1. Characteristic p

We prove Theorem 1 under the following assumptions: R has equicharacteristic
p, and f [ 1g ] is étale for some nonzero g ∈ R. Let obf ∈ Ext1R(S/R,R) be the

extension class defined by f . We must show obf = 0.
The proof has two parts. First, one obtains an “almost splitting” for general

reasons after passing to the perfection Rperf = lim
−→Frob

R = R
1

p
∞
. Using the

regularity of R, we descend this to a genuine splitting over R.

Almost splitting after perfection. Let fperf : Rperf → Sperf be the map on perfec-

tions induced by f . Our generic separability assumption that gk ∈ TrRperf
(Sperf )

⊂ Rperf for some k > 0. As both Rperf and Sperf are perfect, it is immediate that
the trace ideal TrRperf

(Sperf ) ⊂ Rperf is closed under taking p-th roots. Thus,

g
k

p
n ∈ TrRperf

(Sperf ) for all n ≥ 0. On the other hand, it is also a standard

fact that any element of TrRperf
(Sperf ) annihilates obfperf . It follows that all

small powers of g annihilate obfperf . By a diagram case, the same holds true for

obf ⊗R Rperf . In other words, the map f ⊗R Rperf is almost split with respect to

the ideal g
1

p
∞

in the sense of Faltings’ almost mathematics.
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Descent to the real world. As R is regular, the map R → Rperf is faithfully flat.
Thus, the annihilator I := AnnRperf

(obf ⊗R Rperf ) ⊂ Rperf of obf ⊗R Rperf
comes from AnnR(obf ) ⊂ R, and is thus finitely generated. On the other hand,

we showed above that g
k

p
n ∈ I for all I. One may then readily show, using the

faithful flatness of R → Rperf and Krull’s intersection theorem, then I must be
the unit ideal. Thus, obf ⊗R Rperf = 0, and thus obf = 0 by faithful flatness.

2. Perfectoid spaces

Let C = Q̂p be a completed algebraic closure of Qp, and let OC ⊂ C be the
valuation ring. In the entire discussion below, this choice of C is not essential, and
one may use other sufficiently ramified fields instead. The key objects are:

Definition 3 (Scholze). An OC-algebra R is perfectoid if it satisfies:

(1) R is p-adically complete and p-torsionfree.

(2) The Frobenius induces an isomorphism R/p
1
p → R/p.

A standard example is R =
̂
OC [x

1

p
∞
], where the completion is p-adic. The

most important tool in working with these algebras is the almost purity theorem:

Theorem 4 (Faltings, Scholze, Kedlaya-Liu). Let R be a perfectoid OC-algebra,
and let f : R → S be a finite injective map with f [ 1p ] étale. Then the p-adic

completion of the integral closure of R in S[ 1p ] is almost finite étale over R. In

particular, the map f : R→ S is almost split, i.e., the p
1

p
n · obf = 0 for all n ≥ 0.

For our purposes, this helps establish Theorem 1 in an important special case;
this is a mild variant of the case handled in [Bh1]:

Corollary 5. Theorem 1 holds true if f [ 1p ] is étale.

Proof. We may assume that R is local and complete. One may then construct
a faithfully flat map R → R∞ with R∞ being perfectoid; this construction has
been explored in recent work of Shimomoto. The map f ⊗RR∞ is almost split by
Theorem 4. The argument in §1 then gives obf = 0. �

For the general case, we need two results. The first is:

Theorem 6 (André). Let R be a perfectoid OC-algebra. Fix some g ∈ R. Then
there exists an almost faithfully flat (modulo p) map α : R → R∞ of perfectoid
OC-algebras such that α is almost faithfully flat modulo p.

The second result is a quantitative form of Scholze’s Riemann extension theo-
rem. For this, fix a perfectoid algebra R and a perfect element g ∈ R. Consider

R〈
pn

g
〉 :=

̂
R[(

pn

g
)

1

p
∞
],

where the completion is p-adic. These are the rings of bounded functions of the
rational open subset Un := {x ∈ X | |pn| ≤ |g(x)|} of the perfectoid space X
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attached to R. Note that ∪nUn = {x ∈ X | |g(x)| 6= 0} is the Zariski open set
X [ 1g ] defined by g. In this setup, we have:

Theorem 7. The natural map

{R} → {R〈
pn

g
〉}

of projective systems is an almost-pro-isomorphism modulo any nonzero power of

p (where almost mathematics is measured with respect to (pg)
1

p
∞
). In particular,

for any R-module M and i ≥ 0, we have

ExtiR(M,R)
a
≃ limExtiR(M,R〈

pn

g
〉).

The case M = R and i = 0 is Scholze’s Riemann extension theorem: it asserts
that R

a
≃ limR〈p

n

g 〉, i.e., any bounded function on the Zariski open set X [ 1g ] ⊂ X

(almost) extends uniquely to X . For Theorem 1, the case i = 1 is crucial.

3. Mixed characteristic

We now sketch a proof of Theorem 1. For notational ease, we assume R =
̂Zp[x1, ..., xd] is the p-adic completion of a polynomial ring; Hochster had previ-

ously explained a reduction to mild variants of such rings. Fix a nonzero element
g ∈ R such that f [ 1g ] is finite étale; such a g always exists as the generic char-

acteristic of R is 0. We will show that obf = 0 by mimicing the arguments in
§1.

The replacement of Rperf arises by the following construction. Set R∞,0 to be

the p-adic completion of OC [x
1

p
∞

1 , ...., x
1

p
∞

d ], so R∞,0 is a perfectoid OC -algebra
that is faithfully flat over R. Using Theorem 6, we can find an almost faithfully
flat (modulo p) extension R∞,0 → R∞ such that the image of g in R∞ is perfect.

Consider the base changes fn := f ⊗RR∞〈
p
n

g 〉 and f∞ = f ⊗RR∞. By flatness

consideration and a slight variant of the argument used in §1, it suffices to show

that f∞ is almost split with respect to (pg)
1

p
∞
. Now each fn is almost split with

respect to powers of p by almost purity, i.e., by Theorem 4: the map fn[
1
p ] is

finite étale as g | pn in R∞〈
p
n

g 〉. By two applications of Theorem 7, it follows that

f∞
a
≃ lim fn is almost split with respect to (pg)

1

p
∞
, as wanted.
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[An2] Y. André, La conjecture du facteur direct, available at https://arxiv.org/abs/1609.

00345

[Bh1] B. Bhatt, Almost direct summands, Nagoya math. J. 214 (2014), 195–204.



3206 Oberwolfach Report 57/2016

[Bh2] B. Bhatt, The direct summand conjecture and its derived variant, available at https:

//arxiv.org/abs/1608.08882

[Ho] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math.
J., 51 (1973), 25–43.

Rees-like Algebras and the Eisenbud-Goto Conjecture

Jason McCullough

(joint work with Irena Peeva)

Let S = K[x1, . . . , xn] denote a polynomial ring over a field K, viewed as a stan-
dard graded ring, and let I = (f1, . . . , fm) denote a homogeneous ideal of S. There
are many invariants of I (or its associated projective variety) that one can define
using a minimal graded free resolution or the graded Betti numbers. Of particular
interest are the projective dimension and regularity as both are measures of the
complexity of I. Let F• denote the minimal graded free resolution of S/I and write

Fi = ⊕jS(−i)
βij . Then we can define pd(S/I) = max{i |βij 6= 0 for some j} and

reg(S/I) = max{j |βi,i+j 6= 0 for some i}. The projective dimension of an ideal
is well controlled by the Hilbert Syzygy Theorem but the most general regularity
bound on ideals is doubly exponential:

reg(L) ≤ (2maxdeg(I))2
n−2

.

It is due to Bayer-Mumford [2], based on work by Giusti [6] and Galligo [5], if
char(k) = 0, and by Caviglia-Sbarra [3] in any characteristic. Here maxdeg(I)
denotes the maximal degree of a minimal generator of I. This bound is nearly
the best possible, due to examples based on the Mayr-Meyer construction [10]; for
example, for each positive integer r there exists an ideal Ir in 22r − 1 variables,
generated by 22r− 3 quadrics and one linear form, for which maxdeg(Ir) = 2 and

reg(Ir) ≥ 22
r−1

by Koh [8]. However, better bounds were expected for geometrically nice ideals.
In particular, Eisenbud and Goto made the following conjecture:

Conjecture 1. (Eisenbud-Goto [4], 1984) Suppose that the field k is algebraically

closed. If P ⊂ (x1, . . . , xp)
2 is a homogeneous prime ideal in S, then

reg(P ) ≤ deg(S/P )− codim(P ) + 1,

where deg(S/P ) is the multiplicity of S/P (also called the degree of S/P ) and
codim(L) is the codimension (also called height) of L.

The Regularity Conjecture holds if S/P is Cohen-Macaulay by [4]. It is proved
for curves by Gruson-Lazarsfeld-Peskine [7], completing classical work of Casteln-
uovo. It also holds for smooth surfaces by Lazarsfeld [9] and Pinkham [11], and for
most smooth 3-folds by Ran [12] along with many other special cases and related
results.



Asymptotic Phenomena in Local Algebra and Singularity Theory 3207

We construct counterexamples to the Eisenbud-Goto conjecture as follows. First
we define the Rees-like algebra of I to be S[It, t2] ⊂ S[t], where t is a new variable
of degree 1. We introduce a new polynomial ring

T = S[y1, . . . , ym, z]

graded by deg(z) = 2 and deg(yi) = deg(fi) + 1 for every i. Now consider the
graded homomorphism (of degree 0)

ϕ : T → S[It, t2]

yi 7−→ fit

z 7−→ t2 .

The homogeneous ideal Q = ker(ϕ) is prime. Unlike with the defining ideals of
the Rees algebra S[It] of I, the minimal generators of Q are easy to describe.

Proposition 2. Let F r
(cij)
−→ Fm → I → 0 be a minimal presentation of I. Then

Q is minimally generated by the following elements:

{
yiyj − zfifj

∣∣∣ 1 ≤ i, j ≤ m
}

and

{
m∑

i=1

cijyi

∣∣∣∣∣ 1 ≤ j ≤ r
}
.

We also construct the minimal free resolution of T/Q over T by showing that
the minimal free resolution T̄ /QT̄ over T̄ = T/(z) is the mapping cone of a map
of complexes, the first being the complex obtained by truncating F• and ten-
soring by a koszul complex in y1, . . . , ym, and the second being the resolution of
T̄ /(y1, . . . , ym)2T̄ . Therefore we know the graded Betti numbers of T/Q, but Q is
a prime ideal in a positively graded ring. To create a prime ideal P in a standard
graded polynomial ring with the same graded Betti numbers, we show that a step-
by-step homogenization technique preserves primeness and graded Betti numbers.

Finally, starting with Koh’s ideal Ir, this process produces a prime ideal Pr

in a standard graded ring Rr with deg(Rr/Pr) < 350r and reg(Ir) ≥ 22
r−1

. In
particular:

Theorem 3. Over any field k (in particular, over k = C), the regularity of non-
degenerate homogeneous prime ideals is not bounded by any polynomial function
of the multiplicity.

However, one can ask whether there is any bound on the regularity of such non-
degenerate homogeneous primes purely in terms of the multiplicity. We show that
a positive answer to this question implies a positive answer to Stillman’s Question;
that is, can one bound the regularity (or projective dimension) of any ideal purely
in terms of the degrees of the generators? The question was recently resolved in
the affirmative by Ananyan-Hochster [1] but perhaps this approach will lead to
smaller bounds.
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Ananyan-Hochster Proof of Stillman’s Conjecture

Giulio Caviglia

Recently Tigran Ananyan and Melvin Hochster gave a proof of Stillman’s conjec-
ture [1]. This conjecture can be found in [6, 14] but has been informally circulating
at least since 2000; it asserts that there exists an upper bound on the projective
dimension of an ideal I of forms in a polynomial ring K[X1, . . . , XN ] over a field
depending only on the number and the degrees of the generators of I but not on
the number N of variables. Until now the work on this problem could be broadly
divided into two groups: establishing the existence of bounds for large classes of
ideals, in general (most likely) very far away from being sharp, see [2] where the
problem is solved for quadrics, and establishing the existence of bounds, sharp or
close to be so, for ideals generated by a small number of quadrics and cubics see
[3, 6, 7, 8, 9, 10, 12, 13]. The fact that the restriction on the degree of the forms
is needed follows from work predating the conjecture [4, 5, 11].

Since both Ananyan and Hochster could not attend the workshop I was asked
by organizers to present their proof. The notation and the content of my talk,
including what follows, is taken from their paper [1].

Let n, d, η be positive integers. Ananyan and Hochster show that in a poly-
nomial ring R in N variables over an algebraically closed field K of arbitrary
characteristic, any K-subalgebra of R generated over K by at most n forms of
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degree at most d, is contained in a K-subalgebra of R generated by B ≤ ηB(n, d)
forms G1, . . . , GB of degree ≤ d, where ηB(n, d) does not depend on N or K, such
that these forms are a regular sequence and such that for any ideal J generated
by forms that are in the K-span of G1, . . . , GB, the ring R/J satisfies the Serre
condition Rη. The proofs depend on giving a very special criterion for R/I, where
I is generated by n forms of degree at most d, to satisfy Rη: there is a function
ηA(n, d), independent of K and N , such that if no homogeneous generator of I is
in an ideal generated by ηA(n, d) forms of strictly lower degree, then R/I satisfies
Rη. These results imply Stillman’s conjecture. They also show, and this is crucial
for a certain inductive step of the proof, that there is a primary decomposition of
the ideal such that all numerical invariants of the decomposition (e.g., the number
of primary components and the degrees and numbers of generators of all of the
prime and primary ideals occurring) are bounded independent of N.
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Resolution of Singularities for Arithmetic Threefolds

Bernd Schober

Resolution of singularities is an important method for studying the geometry of
singular schemes. In his celebrated paper [12], Hironaka proves the existence of
resolution of singularities over fields of characteristic zero. While the original
proof is complicated and very technical, Hironaka’s theorem is nowadays quite
well understood (see, for example, the book by Cutkosky [9] or by Kollár [16]). In
contrast to this, very little is known in positive and mixed characteristic. Recently,
the following theorem has been established:

Theorem 1 (Cossart-Piltant, [6] Theorem 1.1). Let X be a reduced, separated,
quasi-excellent, Noetherian scheme of dimension at most three. There exists a
proper, birational morphism π : X ′ → X such that

(i) X ′ is everywhere regular,

(ii) π is an isomorphism outside of the singular locus, π−1(Reg(X )) ∼= Reg(X ),

(iii) π−1(Sing(X )) is a simple normal crossing divisor on X ′.

This extends previous work by the same authors [3] and [4], which deals with
the situation over a field that is differentially finite over a perfect field.

If the dimension of X is four or larger, then the statement of the theorem is an
important open problem. In [11], de Jong proves a weaker version using alterations
which is valid over fields and in any dimension. Strengthened versions of the result
are given by Gabber [14] and by Temkin [18].

Theorem 1 is only on the existence of π and its proof is neither functorial
nor constructive. In particular, if X is embedded in some regular scheme Z,
X ⊂ Z, then π is not obtained as a sequence of blowing ups in regular centers
and the embedding is not necessarily preserved. In fact, embedded resolution
of singularities is only known up to dimension two (see [1], [2], [8], or [15]) and
remains an important open problem in dimension three or larger.

Following Zariski’s program Cossart and Piltant split the proof into two part:
first, they prove local uniformization, a local variant of resolution of singularities,
and then they show a patching theorem ([6] Proposition 4.4) in order to obtain a
global morphism π : X ′ → X as desired.

Theorem 2 (Local Uniformization). Let (A,m, k) be quasi-excellent local domain
of dimension three and K := QF (A) its field of fractions. For every valuation v
of K, with valuation ring (Ov,mv, kv) such that

A ⊂ Ov ⊂ K, mv ∩ A = m, and kv | k algebraic,

there exists a finitely generated A-algebra T , A ⊆ T ⊆ Ov, such that TP is regular,
where P := mv ∩ T .

The proof of this theorem can be reduced to the following situation (see [6]
Theorem 1.4 and Propostion 4.8): Let (S,mS , k) be an excellent regular local
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ring of dimension three with quotient field K := QF (S) and residue characteristic
char(k) = p > 0. Let

h := Xp + f1X
p−1 + . . .+ fp ∈ S[X ], f1, . . . , fp ∈ S,

be a reduced polynomial, X := Spec(S[X ]/(h)), and L := Tot(S[X ]/(h)) be its
total quotient ring. Assume one of the following conditions holds:

(i) char(K) = p and f1 = . . . = fp−1 = 0, or
(ii) X is G-invariant, where G := AutK(L) = Z/p.

Then Cossart and Piltant explicitly construct a sequence of blowing ups in
regular centers solving the local uniformization problem in this particular case.
Here, the centers are independent of the valuation and depend only on certain
local invariants (the mulitplicity, τ , ω, κ).

As the case of multiplicity smaller than p is relatively easy to handle (see [5]),
one may assume the multiplicity to be p. Applying embedded resolution in di-
mension two to the discriminant of h resp. the locus of multiplicity p points of X ,
they deduce a certain condition (E) ([6] Corollary 4.13) stating that the latter are
contained in the exceptional divisors and which is one of the inputs to reduce to
the equi-characteristic situation.

By considering initial forms of h coming from Hironaka’s characteristic poly-
hedron, Cossart and Piltant reduce to the case that S contains a field of positive
characteristic ([6] Theorem 2.14). Hironaka’s characteristic polyhedron is an im-
portant tool in the study of of singularities which is obtained by a particular
projection of the Newton polyhedron of h, see [7], [13], [17]. It is then sufficient
to investigate the behavior of the initial forms under blowing ups to construct a
local uniformization. This is done in a very long and technical proof.
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[15] H. Kawanoue and Kenji Matsuki, Resolution of singularities of an idealistic filtration in di-
mension 3 after Benito-Villamayor, to appear in Adv. Stud. Pure Math., arXiv: 1205.4556.

[16] J. Kollár, Lectures on resolution of singularities, Annals of Mathetmatics Studies 166,
Princeton University Press, 2007.

[17] B. Schober, A polyhedral approach to the invariant of Bierstone and Milman, Preprint
(2014), arXiv: 1410.6543.

[18] M. Temkin, Tame distillation and desingularization by p-alterations, Preprint (2015), arXiv:
1508.06255.

Lech’s Conjecture

Linquan Ma

Let (R,m) be a Noetherian local ring of dimension d. The Hilbert-Samuel multi-
plicity of R is defined as:

e(R) = lim
t→∞

d! ·
l(R/mt)

td
.

This is a classical invariant that measures the singularity of R. Morally speak-
ing, the larger the multiplicity, the worse the singularity. In 1960, Lech made the
following remarkable conjecture on Hilbert-Samuel multiplicities [6]:

Conjecture 1 (Lech’s conjecture). Let (R,m) → (S, n) be a flat local extension
of local rings. Then e(R) ≤ e(S).

It is very natural to expect that if (R,m)→ (S, n) is a flat local extension, then
R cannot have a worse singularity than S. Hence, Lech’s conjecture seems quite
natural and interesting. However, this conjecture has now stood for over fifty years
and remains open in most cases! The best partial results are still those proved
in Lech’s original two papers [6] and [7]. There the conjecture was proved in the
following cases:

(1) dimR ≤ 2;
(2) S/mS is a complete intersection.

The author is partially supported by NSF Grant DMS #1600198, and NSF CAREER Grant
DMS #1252860/1501102.
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In general, Lech proved that for (R,m) → (S, n) flat local extension with d =
dimR, we always have e(R) ≤ d! · e(S) [6]. The conjecture has been of great
interests to commutative algebraists, and throughout the years partial positive
answers have been obtained. For example, it follows from results of [5] that Lech’s
conjecture holds when the base ring R is a strict complete intersection (i.e., gr

m
R

is a complete intersection). The conjecture was also proved when R is a three-
dimensional N-graded k-algebra generated over k by one forms in characteristic
p > 0 [2]. The central idea in the proof of these results is the construction of Ulrich
module: a finitely generated maximal Cohen-MacaulaymoduleM with multiplicity
equal to its minimal number of generators. An observation of Hochster-Huneke
shows that the existence of Ulrich module over (R,m) implies Lech’s conjecture
for any flat local extension (R,m)→ (S, n).

Other related results on Lech’s conjecture can be found in [3], [4], [8]. However,
the conjecture remains open as long as dimR ≥ 3. Our recent result settles
the three-dimensional equal characteristic case, and provides substantial partial
estimates in higher dimensions:

Theorem 2 ([9]). Let (R,m)→ (S, n) be a flat local extension between local rings

of equal characteristic. If dimR = d, then we have e(R) ≤ max{1, d!/2d} · e(S).
In particular, if dimR = 3, then e(R) ≤ e(S).

The strategy of the proof of Theorem 2 in [9] is to first tackle the case R
has equal characteristic p > 0 using Frobenius methods, and then use a careful
reduction to characteristic p > 0 procedure to get the characteristic 0 case.

Theorem 3 ([9]). Let (R,m) → (S, n) be a flat local map between local rings of
equal characteristic with dimR = d. In order to prove Lech’s conjecture e(R) ≤
e(S), or more generally, to prove e(R) ≤ C ·e(S) for certain constant C depending
only on d, it suffices to prove the case when R has equal characteristic p > 0.

The advantage of working in characteristic p > 0 is because we have a closely
related invariant called the Hilbert-Kunz multiplicity, which is defined using the
colength of Frobenius powers of ideals instead of ordinary powers:

eHK(R) = lim
e→∞

lR(R/m
[p

e
])

ped
.

It is a result of Monsky that this limit always exists [10]. In general, Hilbert-
Kunz and Hilbert-Samuel multiplicities are related by the inequality:

e(R)

d!
≤ eHK(R) ≤ e(R).

Because of this, Hilbert-Kunz theory allows us to prove estimates on Hilbert-
Samuel multiplicities for flat local extensions. We should point out that, although
Hilbert-Kunz multiplicity is in general hard to study, the analog of Lech’s conjec-
ture for Hilbert-Kunz multiplicity turns out to be true: if (R,m)→ (S, n) is a flat
local extension of local rings of characteristic p > 0, then eHK(R) ≤ eHK(S) [2].
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Another important tool we used in the proof is the Cohen-factorization devel-
oped in [1]: for any local homomorphism of local rings (R,m) → (S, n) with S
complete, the map can be factored as:

(R,m)→ (T, n)→ (S, n)

where (R,m)→ (T, n) is flat local with T/mT regular and S = T/J . It is not hard
to show that e(R) = e(T ), and when S is flat over R, J is a perfect ideal in T , i.e.,
the projective dimension of T/J is equal to the depthJT [1], [9]. Thus we arrive
at the following natural conjecture:

Conjecture 4. Let (T, n) be a local ring and J a perfect ideal of T . Then e(T ) ≤
e(T/J).

The above discussion shows Conjecture 4 implies Conjecture 1. We were not
aware of any counter-example to Conjecture 4. It holds in many cases, for example
when J is generated by a regular sequence or when T is standard graded over a
field and J is homogeneous. On the other hand, we do not know a good general
result, even when J is n-primary. In this case, the multiplicity e(T/J) is simply
the length l(T/J), and we expect this case is more approachable.
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Approximating Rational Valuations by Abhyankar Valuations

Bernard Teissier

Let k be an algebraically closed field and let X ⊂ A
n(k) be an affine algebraic

variety. According to the ”viewpoint on resolution of singularities” of [2], one
hopes to prove embedded resolution of singularities by proving the existence of

re-embedding X ⊂ A
N (k) such that there exist coordinate systems on A

N (k)
such that the intersection of X and the torus (complement of the coordinate hy-

perplanes) is dense in X and there exist proper birational toric maps Z → A
N (k)
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of non singular toric varieties such that the strict transform of X ⊂ A
N (k) is non

singular and transversal to the toric boundary of Z.
The same problem makes sense for projective varieties and Tevelev (see [5]) has
proved that given an embedded resolution of an irreducible projective variety X ⊂
P
n(k), one can find re-embeddingsPn(k) ⊂ P

N (k) (built from the given embedded

resolution) and projective coordinates on P
N (k) such that the given embedded

resolution is obtained by strict transforms from a proper birational toric map

Z → P
N (k) of non singular toric varieties. This means that toric embedded

resolutions are in a sense ”universal” among embedded resolutions.
In the absence of a given embedded resolution, how can one try to build suitable

re-embeddings, say for X ⊂ A
n(k)?

The idea is to first find ”embedded local uniformizations” for valuations centered
in X . This means to find re-embeddings X ⊂ A

N (k) and toric maps Z → A
N (k)

which will at least make the center of the valuation non singular on the strict trans-
form X ′ ⊂ Z of X , and X ′ transversal to the toric boundary of Z at that point.
This strategy is suggested by the case of branches, corresponding to analytically
irreducible one dimensional excellent local domains. In this case local embedded
local uniformization of the unique valuation ν given by the normalization coincides
with embedded resolution and the appropriate re-embedding is given by elements
of the local ring R of the branch whose valuations (in the normalization) generate
the semigroup of values Γ = ν(R \ {0}) ⊂ N.
Therefore we study valuations of the local ring R of X at a given closed singular
point and we may assume that R is a domain. In [1, Proposition 3.20] it is
shown that it suffices to uniformize rational valuations, which are those valuations
centered in R for which the residual extension R/m ⊂ Rν/mν is trivial. These
valuations correspond to rational points of the Zariski-Riemann manifold of the
fraction field of R.

A valuation ν determines a filtration on each subring R′ of Rν by the ideals
Pφ(R

′) = {x ∈ R′/ν(x) ≥ φ}, and P+
φ (R

′) = {x ∈ R′/ν(x) > φ}.

The graded ring grνR =
⊕

φ∈Φ≥0
Pφ(R)/P

+
φ (R) associated to the ν-filtration on

R is the graded k-subalgebra of grνRν whose homogeneous elements have degree
in the semigroup Γ = ν(R \ {0}). Since the valuation is rational, each homoge-
neous component of grνR is a one dimensional k-vector space and in fact grνR is

isomorphic to the semigroup algebra k[tΓ]. Since R is noetherian the semigroup Γ,
which is not finitely generated in general, is well ordered and so has a minimal sys-
tem of generators Γ = 〈γ1, . . . , γi, . . .〉. We emphasize here that the γi are indexed

by a countable ordinal I ≤ ωh, where h is the rank (or height) of the valuation,
which is less than its rational rank. In [1, Proposition 4.2], it is shown that the
graded k-algebra grνR is then generated by homogeneous elements (ξi)i∈I with

degξi = γi and we have a surjective map of graded k-algebras

k[(Ui)i∈I ] −→ grνR, Ui 7→ ξi,
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where k[(Ui)i∈I ] is graded by giving Ui the degree γi. Its kernel is generated by

binomials (Um
ℓ

− λℓU
n
ℓ

)ℓ∈L, λℓ ∈ k
∗, where Um represents a monomial in the

Ui’s. These binomials correspond to a generating system of relations between the
generators γi of the semigroup.

By a result of Piltant (see [1, Proposition 3.1]), for rational valuations, the
Krull dimension of the k-algebra grνR is the rational rank of the group Φ of the
valuation ν, so that Abhyankar’s inequality reduces to dimgrνR ≤ dimR. The
valuations for which equality holds are called Abhyankar valuations and it was
shown in [3] that embedded local uniformization holds for them.

The main purpose of the lecture was to explain how to approximate a rational
valuation ν of rational rank r on a complete equicharacteristic noetherian local
domain R of dimension d by Abhyankar semivaluations νB, that is, Abhyankar
valuations νB on r-dimensional quotients R/KB of R, indexed by certain finite
subsets of the minimal set of generators of the semigroup Γ of ν on R, which are
the generators of the value semigroups of the valuations νB and fill up the set of
generators of Γ as B grows. The idea is that for large enough B an embedded
local uniformization for νB will also uniformize ν. The reduction to the case of
complete local domains is a separate issue which will not be discussed here.

Theorem 1. Let R be a complete equicharacteristic noetherian local domain and
let ν be a rational valuation centered in R, of rational rank r = 1. Let Γ = 〈(γi)i∈L〉
be the minimal set of generators of Γ. There exist a collection B of finite subsets
B ⊂ I such that I =

⋃
B∈B B and prime ideals KB of R such that each quotient

R/KB is one dimensional and carries a rational Abhyankar valuation νB whose
value semigroup is the semigroup 〈(γi)i∈B〉, and for each x ∈ R \ {0} there are
B ∈ B such that x /∈ KB and ν(x) = νB(x mod.KB). One may choose the sets B
to be nested, but there are no inclusions between the ideals KB in general.

Example 2. If R is a power series ring in two variables over k, we recover
the description of ”infinitely singular” valuations as limits of ”curve valuations”,
limits which is this case are understood in terms of infinite sequences of point
blowing-ups. See [1, Example 4.20].

We believe that the result is true for arbitrary rational rank.
The idea of the proof is to first present R as a quotient of a power series ring
S = k[[x1, . . . , xn]] by a prime ideal P = (p1, . . . , ps) and apply the valuative
Cohen theorem of [3, §4] to the valuation µ on S which is composed of the PSP -
adic valuation µ1 on S and the valuation ν on S/P . The value group of µ is

Φ̃ = Z ⊕ Φ with the lex order. One shows that one can choose a minimal system
of generators (pa)a=1,...,s of the ideal P such that their initial forms inµpa are part

of a minimal system of generators of the graded k-algebra grµS, as well as the ξi
which generate the subalgebra grνR ⊂ grµS.

The valuative Cohen theorem gives us the existence of representatives in S

(ξ̃i)i∈I , p1, . . . , ps, (hj)j∈J
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of the elements of a minimal system of generators of the graded k-algebra grµS
such that there exists a surjective continuous map of k-algebras

Π: ̂k[(ui)i∈I , v1, . . . , vs, (zj)j∈J ]→ S, ui 7→ ξ̃i, va 7→ pa, zj 7→ hj ,

where the first algebra, whose definition is part of the theorem, is a generalized
power series ring topologized by giving each variable the weight (e.g., w(ui) = γi)

of the corresponding element of the semigroup Γ̃ of µ and S is topologized by the
filtration determined by µ.

The kernel of Π is generated up to closure by deformations of a set of binomials
generating the kernel of the surjective map of graded k-algebras

k[(Ui)i∈I , V1, . . . , Vs, (Zj)j∈J ]→ grµS

determined by the minimal set of generators of grµS. The topological generators
of the kernel of Π can be chosen in such a way that each involves only finitely
many variables. For each va, among these generators must be series of the form

um
ℓ

− λℓu
n
ℓ

+
∑

w(p)>w(u
m

ℓ

)

cpu
p +

∑

q

vq = va.

In characteristic zero, the sum
∑

q v
q does not appear. These equations and the

variables they contain are used to define the ideals KB.
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Resolution of Singularities in Positive Characteristic

Herwig Hauser

After reviewing the logical structure of Hironaka’s proof of resolution in zero char-
acteristic we explain how the invariant he uses for the induction can be defined in
a characteristic free manner. The invariant is a string of positive integers (orders
of ideals) associated to each point of the variety which, in zero characteristic, is
upper semicontinuous and whose maximum decreases under blowup with center



3218 Oberwolfach Report 57/2016

the stratum where the string attains lexicographically its maximal value. In pos-
itive characteristic, the invariant has a much more complicated behavior, is no
longer upper semicontinuous and may increase under blowup.

We explain how this can be rearranged for surfaces so as to provide again a reliable
resolution invariant. The idea is to consider local multiplicities not only at closed
points but also along smooth curves. As for higher dimensions, we exhibit an ex-
ample of Stefan Perlega from Vienna in five variables where the second component
of the invariant, the so-called residual order, increases indefinitely. This is not yet
a counter-example to resolution in positive characteristic. But it shows that the
classical approaches need new ideas and methods so as to advance in this still open
problem.

On the Multiplicity and Invariants of Singularities over Fields of

Positive Characteristic

Orlando Villamayor U.

There are at least two ways to study the singularities of a variety X . One is by
fixing locally at a point x ∈ X an inclusion of X in a regular variety, say X ⊂W ,
in which case the singularity at x is studied by looking at the equations in W
defining X locally at such point. Another approach is to fix locally at a point
x ∈ X a dominant finite morphism X → W ; which enables us to consider X as
finite (ramified) cover of the regular variety W .

The first approach was considered by Hironaka in his Theorem of Resolution
of Singularities over fields of characteristic zero. There he considers the Hilbert
Samuel function at a point x ∈ X and uses a local immersion X ⊂W to describe
in W the set of points of X with the same Hilbert-Samuel function (the Hilbert-
Samuel stratum of X containing x).

If Y ⊂ X(⊂ W ) is a regular subscheme in X , the blow-up of W at Y is a
morphism

W ←W1

and W1 is also regular; Y also defines

X ← X1

(the blow up of X at Y ), together with a closed inmersion X1 ⊂ W1. Therefore
X1 is defined by equations in W1.

Hironaka’s strategy for resolution of singularities of schemes over fields of char-
acteristic zero is to blow up at regular centers Y , included in X , chosen so that
the Hilbert Samuel function at x ∈ X is the same at each closed point x ∈ Y (X
is a normally flat along Y ).

He shows that this Hilbert-Samuel function will ultimately improve by blowing
up at suitable normally flat centers.

The second approach, that in which a variety is viewed as a ramified cover of a
regular one, has been used historically in the formulation of the multiplicity at a
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point x ∈ X . In fact the notion of multiplicity of X at a point x ∈ X was defined
in terms of the finite morphism X →W in a neighborhood of the point.

One can read the multiplicity of X at a point x (at x ∈ X) from the Hilbert-
Samuel function. But the multiplicity is a very elementary invariant which can
be presented in many other ways, involving only basic concepts of commutative
algebra as we indicate below.

There is an interesting similarity of the behavior of finite morphisms X → W
with closed immersions X ⊂W when it comes to blow ups. To make this concept
precise let us assume that the morphism is affine, soX = Spec(B)→W = Spec(S)
where S ⊂ B is a finite extension of a regular ring S. If the generic rank of B
over S is n (i.e., if the dimension of B ⊗S K over K is n, where K is the quotient
field of S), then the highest multiplicity at points of X is at most n, and the set
of points of multiplicity n, say Fn(X), is closed. Let us mention in passing that
that the multiplicity at x ∈ X is n if this is the smallest integer such that one can
define locally a finite morphisms X →W of generic rank n.

If Y is a regular subscheme of Fn(X), then Y defines two blow ups

W ←W1 X ← X1,

together with finite morphisms X →W and X1 →W1. Moreover, this morphisms
produce a square and commutative diagram.

This says that X1 → W1 is, in a natural way, the blow up of X → W at Y
whenever we chose Y ⊂ Fn regular. And this notion of blow ups of finite covers
makes this second approach very useful in the study of the multiplicity; particularly
to study its behavior of the multiplicity when blowing up X at regular equimultiple
centers.

Over fields of characteristic zero one can also prove resolution of singularities
by using the multiplicity as the main invariant (see [5]). This solves a question
formulated by Hironaka in [3].

This latter approach has some advantages over that of Hironaka which uses the
Hilbert-Samuel invariant, and the aim of this talk is to focus on one of them: We
present invariants, related to the multiplicity, introduced when X is a variety over
a perfect field of positive characteristic.

The open problem of resolution of singularities in positive characteristic would
have a positive answer if one could prove reduction of the multiplicity by blowing
up at regular equimultiple centers. The highest multiplicity of a variety X can
be expressed, as indicated above, in terms of a finite morphism X → W over a
regular variety W . In this talk we discuss about the open problem of reduction
of the multiplicity of X for the case in which there is an affine morphism, say
X = Spec(B)→W = Spec(S) where S ⊂ B is a purely inseparable extensions of
the regular ring S. We show that this opens the way to the new invariants, and
we mention some tools and ideas developed in [1] and in [4].



3220 Oberwolfach Report 57/2016

References

[1] A.Benito, O.E. Villamayor U. ‘On an upper-semi-continuos invariant in positive character-
istic’ (Preprint).

[2] A. Bravo, O. E. Villamayor U., ‘On the behavior of the multiplicity on schemes: stratification
and blow ups’, The Resolution of Singular Algebraic Varieties. Clay Mathematics Institute
Proceedings (CMIP) 2014.

[3] H. Hironaka, ‘Resolution of singularities of an algebraic variety over a field of characteristic

zero I-II’, Ann. Math., 79 (1964) 109–326.
[4] D. Sulca, O.E. Villamayor U. ‘On the multiplicity along primes of a purely inseparable

extension of a regular ring’ (Preprint).
[5] O. E. Villamayor U., ‘Equimultiplicity, algebraic elimination, and blowing-up’, Adv. in

Math., 262, (2014), 313–369.

Layered Resolutions of Cohen-Macaulay Modules

Irena Peeva

(joint work with David Eisenbud)

Let S be a regular local ring and suppose that M is a finitely generated Cohen-
Macaulay S-module of codimension c. Given a regular sequence f1, . . . , fc in the
annihilator of M we construct an S-free resolution

L↑S(M, f1, . . . , fc),

and an R := S/(f1, . . . , fc)-free resolution

L↓R(M, f1, . . . , fc)

ofM . These resolutions are constructed through an induction on the codimension,
and each of them comes with a natural filtration by subcomplexes; we call them
layered resolutions.

The inductive construction of the resolutions follows a pattern often seen in
results about complete intersections in singularity theory and algebraic geometry.
It allows us to exploit the fact that we can choose the regular sequence to be
in general position with respect to M . In this way we achieve minimality for
high R-syzygies, and we give necessary and sufficient conditions for minimality in
general.

We now explain the inductive constructions. We may harmlessly assume that
M has no free summand as an R-module. For brevity, we will always abbreviate
the phrase “maximal Cohen-Macaulay” to “MCM”.

In the base case of the induction, c = 0, M is 0 and the layered resolutions are
trivial. For the inductive step we think of R as a quotient, R = R′/(fc), where
R′ = S/(f1, . . . , fc−1) and consider the MCM approximation

α : M ′ ⊕B0 ։ M

of M as an R′-module, in the sense of Auslander-Buchweitz: here B0 is a free
R′-module, M ′ is an MCM R′-module without free summand and the kernel B1 of
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the surjection α has finite projective dimension. In our case B1 is a free R′-module

and we write B
S for the complex of free S-modules

B
S : B

S
1 → B

S
0 .

obtained by lifting the map B1
b
−→ B0 back to S.

Layered resolution over S. For the layered resolution ofM over S we let K be

the Koszul complex resolvingR′ as an S-module and let L′ = L↑S(M ′, f1, ..., fc−1),
the layered resolution constructed earlier in the induction. There is an induced

map BS1
ψ
−→ L′

0 which, in turn, induces a map of complexes K⊗ B
S → L

′ whose
mapping cone we define to be the layered S-free resolution of M with respect to
f1, . . . , fc.

Layered resolution over R. For the layered resolution ofM over R we let T′ =

L↓R
′

(M ′, f1, . . . , fc−1), the layered resolution constructed earlier in the induction.

The layered R-free resolution of M with respect to f1, . . . , fc is obtained from T
′

by the Shamash construction applied to the box complex

· · · → T ′
2 T ′

1 T ′
0

⊕ ⊕

T ′ :

B1 B0 ,
b

R′ ⊗ ψ

where b and ψ are the maps listed above.

Minimality. We give criteria for the minimality of the layered resolutions. They
imply that, when the residue field of S is infinite, the layered resolutions can be
taken to be minimal for any sufficiently high R-syzygy of a given R-module N .
For such modules the layered resolutions coincide with the resolutions we have
produced in terms of “higher matrix factorizations”.

Tor as a Module over an Exterior Algebra

David Eisenbud

(joint work with Irena Peeva, Frank-Olaf Schreyer)

Write S for a regular local ring with maximal ideal m and residue field k, and
let f1, . . . , fc ∈ S be a regular sequence. Set I := (f1, . . . , fc) ⊂ S and consider
the complete intersection R := S/I. Let M be a finitely generated S-module
annihilated by I. We denote by E the exterior algebra

E := ∧k(I/mI) =: k〈e1, . . . ec〉 .

The finite-dimensional graded vector space TorS(M,k) has a natural E-module
structure induced by the action of homotopies for the fi on the minimal S-free
resolution of M . When M is a high R-syzygy in the sense of [EP1] we show:
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(i) The E-module TorS(M,k) is generated by TorS0 (M,k) and TorS1 (M,k),
and its (Castelnuovo-Mumford) regularity is 1.

(ii) Let

T ′ := E · TorS0 (M,k) ⊂ TorS(M,k)

and let

T ′′ := TorS(M,k)/T ′

be the quotient. Assuming that the field k is infinite and the generators of
(f1, . . . , fc) are chosen generally, we compute vector space bases of T ′ and
T ′′, and show that, as E-modules, T ′ and T ′′ have Gröbner deformations
to direct sums of copies of E/(ep, . . . , ec) for p = 1, . . . , c. It follows that,

even when k is finite, T ′ and T ′′ have linear E-free resolutions, given
explicitly in (iv) below.

(iii) We prove that the Betti numbers of the 0-linear strand of the minimal E-

free graded resolution of TorS(M,k) are given by the even Betti numbers
of M over R, and the Betti numbers of the 1-linear strand are given by
the odd Betti numbers of M over R. That is:

βEi,i

(
TorS(M,k)

)
= βR2i(M)

βEi,i+1

(
TorS(M,k)

)
= βR2i+1(M) .

(iv) We show that the numerical statement in (iii) is a consequence of the struc-

ture of the E-free resolution of TorS(M,k) by proving that the minimal

E-free resolution of TorS(M,k) is the mapping cone:

. . . TorR4 (M,k)⊗R E TorR2 (M,k)⊗R E TorR0 (M,k)⊗R E

. . .
⊕ ⊕ ⊕

. . . TorR5 (M,k)⊗R E TorR3 (M,k)⊗R E TorR1 (M,k)⊗R E ,

t2 t2 t2

t2 t2 t2

t3 t3

where the two rows are themselves (minimal) linear free resolutions of
the E-submodule T ′ and the quotient T ′′. The maps labeled t2 are the
CI (=Complete Intersection) operators (also called Eisenbud operators),
while the maps labeled t3 between the two strands are higher CI-operators,
introduced in [EPS].

Next we focus on ExtR(M,k). The action of the CI operators makes the graded
vector space ExtR(M,k) into a finitely generated module over the ring

R := Symk

(
(I/mI)∨

)
=: k[χ1, . . . , χc] .

We prove that when M is a high R-syzygy, the minimal R-free resolution of
ExtevenR (M,k) is obtained by the Bernstein-Gel’fand-Gel’fand (BGG) correspon-

dence from the E-module structure of T ′∨, and similarly for ExtoddR (M,k) and
T ′′∨.
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One Corollary doesn’t even require the definition of T ′. Write

µ : E1 ⊗k Tor
R
0 (M,k)→ TorR1 (M,k)

for the multiplication map and

µ∨ : Ext1S(M,k)→ Ext1S(M,k)⊗R1

for its vector space dual. The R-module ExtevenR (M,k) then has the (non-minimal)
linear free presentation

Ext1S(M,k)⊗R(−1)
τ
−→ hom(M,k)⊗R → ExtevenR (M,k)→ 0

where τ is the map of free modules whose linear part is µ∨. This follows because
µ∨ is 0 on the submodule T ′′∨.

An essential ingredient in the proofs is a new theory of higher CI operators.
Just as the Eisenbud-Shamash construction allows one to describe an R-free res-
olution of any R-module from the higher homotopies on an S-free resolution, one
can describe an S-free resolution from the higher CI-operators on an R-free reso-
lution. This construction was discovered independently by Jessie Burke [Bu]. The
differentials in the E-free resolution of TorS(M,k) are related, as above, to the
higher CI-operators.

We also use the “layered” structures of the minimal S-free and R-free resolutions
of M [EP2], which come from the higher matrix factorizations of [EP1]

Related Work. Avramov and Buchweitz made use of the simple classification
of modules over an exterior algebra on 2 generators to study free resolutions of
modules over complete intersections of codimension 2 in [AB], and this study is
carried further in [AZ]. For other points of view on the module structure of Tor
see [Da, HW]. For further results on resolutions over exterior algebras, see for
example [AI, Ei2, Fl].

Acknowledgements. Computations with Macaulay2 [M2] led us to guess the
statements of our main theorems. Many of the constructions in this paper are
coded in the packages BGG and CompleteIntersectionResolutions distributed with
the Macaulay2 system. We want to express our gratitude to the authors Dan
Grayson and Mike Stillman of Macaulay2 for their unfailing patience in answering
our questions about the program.
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On Betti Numbers of Modules over Regular Rings

Mark E. Walker

Conjecture 1 (Weak Horrocks Conjecture). Assume (R,m, k) is a local ring of
dimension d. If M is a non-zero R-module of finite length and finite projective
dimension, then ∑

i

βi(M) ≥ 2d,

where βi(M) is the i-th Betti number of M .

The stronger version of conjecture, known as “The Horrocks Conjecture” or
sometimes as “The Buchsbaum-Eisenbud-Horrocks Conjecture” , asserts that

βi(M) ≥

(
d

i

)

holds for all i. The strong form first appears in print in the 1977 paper [3] by Buchs-
baum and Eisenbud, and it also occurs (in the form of a question) in Hartshorne’s
1979 problem list [6] where it is attributed to Horrocks. The first appearance in
print of the weak form seems to be the 1985 book [4] of Evans and Griffith, where
it is attributed to Avramov. It also appears in the 1993 paper [1] by Avramov and
Buchweitz, in which they prove it holds for equi-characteristic rings of dimension
at most 5. (They also prove a graded analogue of the conjecture in many cases.)

In this talk I will prove:

Theorem 2. The Weak Horrocks Conjecture holds if (R,m, k) is a regular local
ring with char(k) 6= 2.

For any local ring (R,m, k), let Perfm(R) be the category of bounded complexes
of finite rank free F -modules having finite length homology. For F ∈ Perfm(R)
define its Euler characteristic to be

χ(F ) :=
∑

i

(−1)iℓRHi(F )
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where ℓR denotes the length of an R-module. The central technique in the proof
is to exploit properties of a secondary invariant χ2, which we now define.

For F ∈ Perfm(R), we form the complex F ⊗R F and equip it with the action
of the cyclic group C2 or order two generated by τ by having τ act by

τ · (x ⊗ y) = (−1)|x||y|y ⊗ x

where | − | denote the degree of a homogeneous element in a complex. With this
action F ⊗R F is a complex of R[C2]-modules. If 2 is invertible in R then the
elements τ+1

2 and τ−1
2 of R[C2] are mutually orthogonal idempotents that sum

to one, and thus for any complex of R[C2]-modules N , they induced a natural
decomposition

N = N+ ⊕N−

of complexes of R-modules. In other words,

N+ = {m ∈M | τ ·m = m} and N− = {m ∈M | τ ·m = −m}.

Given an object F ∈ Perfm(R), we define S2(F ) = (F ⊗R F )
+ and Λ2(F ) =

(F ⊗R F )
−, so that we have a natural decomposition

F ⊗R F = S2(F )⊕ Λ2(F )

of complexes of R-modules. Since F ∈ Perfm(R), the complex F ⊗R F also has

finite length homology, and hence so do each of the summands S2(F ) and Λ2(F ).

Definition 3. Assume (R,m, k) is a local ring with char(k) 6= 2. Given F ∈
Perfm(R) define an integer

χ2(F ) := χ(S2(F ))− χ(Λ2(F )).

Remark 4. The assignment F 7→ [S2(F )]− [Λ2(F )] induces an endomorphism on
K0(Perf

m(R)), the Grothendieck group of Perfm(R); see [2]. This endomorphism

is the second Adams operation, written ψ2.

Proposition 5. Assume (R,m, k) is a local ring of dimension d with char(k) 6= 2.

(1) If F
∼
−→ F ′ is a quasi-isomorphism of objects of Perfm(R), then

χ2(F ) = χ2(F
′).

(2) If 0→ F ′ → F → F ′′ → 0 is a short exact sequence of objects of Perfm(R),
then

χ2(F ) = χ2(F
′) + χ2(F

′′).

(3) If R is regular and K is the Koszul complex on a regular sequence of

generators of the maximal ideal, then χ2(K) = 2d.

Versions of Proposition 5 have been known for some time. For example, using a
different (but equivalent if char(k) 6= 2) definition of the second Adams operation,
this result may be found in [5]. The version stated here can be found in [2].



3226 Oberwolfach Report 57/2016

Corollary 6 (Corollary of Proposition 5). Assume (R,m, k) is a regular local ring
of dimension d and M is R-module of finite length. If F is a free resolution of M ,
then

χ2(F ) = 2d · ℓR(M).

Proof. We proceed by induction on ℓR(M). The case ℓR(M) = 1 is given by parts
(1) and (3) of the Proposition. If ℓR(M) > 1, there is a short exact sequence
0 → M ′ → M → M ′′ → 0 with ℓR(M

′), ℓR(M
′′) < ℓR(M). The result follows by

the Horseshoe Lemma and part (2) of the Proposition. �

Proof of Theorem 2. Assume (R,m, k) is a regular local ring, char(k) 6= 2 and M
is a non-zero R-module of finite length. Let F be the minimal free resolution of
M . We have

χ2(F ) = χ(S2(F ))− χ(Λ2(F ))

=
∑

i

(−1)iℓRHi(S
2(F ))−

∑

j

(−1)jℓRHj(Λ
2(F ))

≤
∑

i even

ℓRHi(S
2(F )) +

∑

j odd

ℓRHj(S
2(F ))

≤
∑

i even

ℓRHi(F ⊗R F ) +
∑

j odd

ℓRHj(F ⊗R F )

=
∑

i

ℓRHi(F ⊗R F ).

The second inequality holds since each of S2(F ) and Λ2(F ) is a summand of
F ⊗R F . We next use that

ℓRHi(F ⊗R F ) ≤ βj(M) · ℓR(M)

for each i. This follows from the fact that Hi(F ⊗R F ) ∼= Hi(F ⊗R M) is a
subquotient of Fi ⊗R M for each i, and the latter has length equal to rank(Fi) ·
ℓR(M) = βi(M) · ℓR(M).

Combining these inequalities and the Corollary gives

ℓR(M) · 2d ≤ ℓR(M) ·
∑

j

βj(M).

Since ℓR(M) > 0 we obtain
∑

j βj(M) ≥ 2d. �
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Gorenstein Monomial Curves

Hema Srinivasan

(joint work with Philippe Gimenez)

1. Introduction and Notations

Let a = (a0, . . . an) be a sequence of positive integers and let k be an arbitrary
field. If φ : k[x0, . . . , xn]→ k[t] is the ring homomorphism defined by φ(xi) = tai ,
then I(a) := kerφ is a prime ideal of height n in R := k[x0, . . . , xn]. I(a) is a
weighted homogeneous binomial ideal with the weighting deg xi := ai. It is the
defining ideal of the affine monomial curve C(a) ⊂ A

n
k parametrically defined by

a whose coordinate ring is S(a) := Imφ = k[ta0 , . . . , tan ] ≃ R/I(a). As S(a) is
isomorphic to S(da) for all integer d ≥ 1, we will assume without loss of generality
that a0, . . . , an are relatively prime. Observe that S(a) is also the semigroup ring
of the numerical semigroup 〈a0, . . . an〉 ⊂ N generated by a0, . . . , an.

In a series of papers beginning with [1] with Gimenez and Sengupta, we consider
the resolutions of monomial curves. We explicitly construct the graded resolution
for these curves when a is in arithmetic sequence and show that the entire minimal
resolution is determined by the Cohen-Macaulay type and it is determined by a0
modulo n. One of the many consequences of this is that the graded Betti numbers
of arithmetic sequences with the same common difference are periodic in a0 with
period with period an− a0. Thanh Vu generalized this to prove that graded Betti
numbers of all monomial curves are eventually periodic in a0 with period an− a0,
as conjectured by Herzog and Srinivasan.

In particular, we prove in [1] when a0, a1, . . . , an are in arithmetic sequence,
with ai = a0 + id (a0, d) = 1 and ao = t modulo n, then the Cohen-Macaualy
type of S(a) = t− 1. In this case, the ideal I(a) = I2(A) + I2(B), the sum of two

determinantal ideals, where A =

[
x0 x1 . . . xn−1

x1 x2 . . . xn

]
. When a0 = 2 modulo n,

then we get a Gorenstein Monomial Curve. We also show that the resolution of
S(a) in this case, can also be obtained as a mapping cone of the Eagon Northcott
Complex associated to the matrix A and its dual.

1.1. Principal matrix. Now consider the general a = {a0, a1, . . . , an}. Let us
assume that a0, . . . an are relatively prime and minimally generate the semigroup
〈a〉. Then for each i, 0 ≤ i ≤ n, there exists a unique smallest positive integer ri
such that riai =

∑
j 6=i rijaj or equivalently fi = x

ri
i −

∏
j 6=i x

rij
j ∈ I(a). These fi

are called principal relations and are part of a minimal generating set of I(a).
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Definition: The n + 1 × n + 1 matrix D(a) := (rij) where rii := −ri is called a
principal matrix associated to a.

Observe thatD(a) is not unique. Although the diagonal entries−ri are uniquely

determined, there is not a unique choice for rij . Since D(a)[a0, . . . , an]
T = 0, it

follows that the rank of D(a) is ≤ n.

We have the “map” D : N[n+1] → Tn from the set N[n+1] of sequences of n+ 1
relatively prime positive integers to the subset Tn+1 of n + 1 × n+ 1 matrices of
rank n with negative integers on the diagonal and non negative integers outside
the diagonal. One can recover a from D(a) by factoring out the greatest common
divisor of the n+ 1 maximal minors of the n× n submatrix of D(a) obtained by

removing the first row. By an abuse of notation, let D−1 : Tn+1 → N [n+1] the
operation that, for M ∈ Tn+1, takes the first column of adj(M) and then factors

out the g.c.d. to get an element in N [n+1]. However, not all matrices of this form,

are principal matrices. For instance, M =




−4 0 1 1
1 −5 4 0
0 4 −5 1
3 1 0 −2


 is not principal,

for D−1(M) = (7, 11, 12, 16) and it is easy to check that 3(11) = 3(7)+12, so that
r2 = 3 < 5.

2. Gorenstein, non complete intersections

Now let a define a Gorenstein monomial curve. The numerical semigroup S = 〈a〉
is called Symmetric if there is a positive integer s such that for all integers x either
x ∈ S or s − x ∈ S. It is a theorem of Kunz that 〈a〉 is symmetric if and only if
the semigroup ring S(a) or the monomial curve C(a) is Gorenstein.

In [2], we strengthen a criterion of Brezinsky to prove the following:

Theorem 1. Let A be a 4× 4 matrix of the form

A =




−c1 0 d13 d14
d21 −c2 0 d24
d31 d32 −c3 0
0 d42 d43 −c4




with ci ≥ 2 and dij > 0 for all 1 ≤ i, j ≤ 4, and all the columns summing to
zero. Then the first column of the adjoint of A (after removing the signs) defines a
Gorenstein, non complete intersection, monomial curve if and only if these entries
are relatively prime.

Brezinsky [3] proved that if a is symmetric and not Gorenstein, then its principal
matrix has this form. We prove the converse, that is, any matrix of this form is
a principal matrix of a monomial curve (hence a Gorenstein one) provided the
entries of the first column of the adjoint are relatively prime.

Further, we prove that any matrix of this form defines a Gorenstein, non com-
plete intersection ideal of height three which is not prime and it will be prime and
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the principal matrix of a Gorenstein monomial curve if and only if the entries of
first (and hence every) column of the adjoint are relatively prime.

As a consequence, we also show that we can generate two families of Gorenstein
non complete intersection curves in A4 from a Gorenstein monomial curve by
translation.

Theorem 2. Given any Gorenstein non complete intersection monomial curve
C(a) in A

4
k, there exist two vectors u and v in N

4 such that for all t ≥ 0, C(a+ tu)
and C(a + tv) are also Gorenstein non complete intersection monomial curves
whenever the entries of the corresponding sequence (a + tu for the first family,
a+ tv for the second) are relatively prime.

We also write down precisely the resolution and the maps in the free resolution
in terms of the principal matrix D(a) for these Gorenstein ideals.

2.1. Decomposable Gorenstein Sequences of length 5. Let a1, a2, a3, a4, a5
be a sequence of relatively prime positive integers which define a Gorenstein and
non complete intersection monomial curve in A5.

Question: Can one give a criterion for Gorenstein monomial curves defined by
a1, a2, a3, a4, a5 in terms of its principal matrix?

By a criterion of Delorme for Gorenstein monomial curves, if a1, a2, a3, a4.a5
form a Gorenstein monomial curve which is not a complete intersection, then
there are precisely two possibilities: Either no four of them have a common factor
or after reordering there exists two relatively prime integers r and s, such that
{a1, a2, a3, a4, a5} = {rb1, rb2, rb3, rb4, s} where b1, b2, b3, b4 are relatively prime
and define a Gorenstein non complete intersection and s is in the semigroup
〈b1, b2, b3, b4〉. In the later case, we say the Goresntein sequence is decomposable.

Theorem 3. Suppose a is a sequence of length 5 which is a Gorenstein non
complete intersection that is decomposable. Then there is a principal matrix for a

of the form [
A 0
B s

]

where A is a 4× 4 pseudo Gorenstein matrix whose 3× 3 minors of the any three
rows are relatively prime. Conversely, if we have any such matrix, then we have a
Gorenstein ideal I of height four which is the monomial prime defined by the 4× 4
minors of the last four rows. Furthere, this ideal has a resolution

0→ R→ R6 → R10 → R6 → R→ R/I

Thus, one has that any Gorenstein, non complete intersection monomial curve
in A4 is defined by 5 equations and if it is decomposable one in A5 it is given by
6 equations.

It is an open problem to determine if the number of generators for the ideals of
an affine Gorenstein monomial curves in An are bounded.
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Points, Lines, Planes, etc.

June Huh

(joint work with Botong Wang)

I will give a precise statement of a conjecture proposed during the talk, referring
[Oxl11] for undefined terms. Let M be a rank r simple matroid on E, L be the set
of all flats of M, and Lp be the set of rank p flats of M.

I will define a graded analogue of the Möbius algebra for L. Introduce symbols
yF , one for each flat F of M, and construct vector spaces

Bp(M) =
⊕

F∈L
p

Q yF , B∗(M) =
⊕

F∈L

Q yF .

Equip B∗(M) with the structure of a commutative graded algebra overQ by setting

yF1
yF2

=

{
yF1∨F2

if rank(F1) + rank(F2) = rank(F1 ∨ F2),

0 if rank(F1) + rank(F2) > rank(F1 ∨ F2).

Maeno and Numata introduced this algebra in a slightly different form in [MN12],
who used it to show that modular geometric lattices have the Sperner property.
Unlike its ungraded counterpart, which is isomorphic to the product of Q’s as
a Q-algebra [Sol67], the graded Möbius algebra B∗(M) has a nontrivial algebra
structure. Define

L =
∑

i∈E

yi.

Conjecture 1. For nonnegative integer p less than r
2 , the multiplication map

Bp(M) −→ Br−p(M), ξ 7−→ Lr−2p ξ

is injective.

Conjecture 1 for M implies the “top-heavy” conjecture of Dowling and Wilson
for M [DW74, DW75]. When M is realizable over some field, Conjecture 1 can be
deduced from the decomposition theorem package for ℓ-adic intersection complexes
[HW].
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A Probabilistic Approach to Noether Normalization

Daniel Erman

(joint work with David J. Bruce)

Given a projective variety X ⊆ P
r over an infinite field, any generic collection of k

polynomials of degree d will be a (partial) system of parameters, in the sense that
the vanishing locus will have codimension k on X . We compute the corresponding
probabilities over finite fields, relating this to the numerics of subvarieties in X .
Throughout Fq will denote a finite field with q elements.

Theorem A. Let X ⊆ P
r
Fq

be an n-dimensional closed subscheme. Then the

asymptotic probability that random polynomials (f0, . . . , fk) of degree d are pa-
rameters on X is

lim
d→∞

Prob

(
(f0, . . . , fk) of degree d
are parameters on X

)
=

{
1 if k < n

ζX(n+ 1)−1 if k = n

where ζX(s) is the arithmetic zeta function of X .

The maximal case k = n is due to Bucur and Kedlaya [1, Theorem 1.2], and
is proven via an application of Poonen’s closed point sieve. For submaximal cases
where k < n, we adapt Poonen’s argument by sieving over closed subvarieties of
dimension n− k.

We then apply these probabilistic results to provide an effective bound for
Noether normalizations over a finite field, and to give a new proof of the existence
of uniform Noether normalizations for projective families over the integers.

Corollary 1. Let Fq be a finite field and let X ⊆ P
r
Fq

where dimX = n. If

max{d, q} ≥ d̂eg(X) and

d > logq d̂eg(X) + logq n+ n logq d

then there exist f0, . . . , fn of degree dn inducing a finite morphism π : X → P
n
Fq
.
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Corollary 2. Let X ⊆ P
r
Z be a closed subscheme. If each fiber of X over

Z has dimension n, then for some d, there exist polynomials f0, f1, . . . , fn ∈
Z[x0, x1, . . . , xr] of degree d inducing a finite morphism π : X → P

n
Z.

Remarks:

(1) Corollary 1 appears to be the first effective such bound in the literature.
(2) Corollary 2 is a special case of a recent result of Chinburg-Moret-Bailly-

Pappas-Taylor [2, Theorem 1.2] and of Gabber-Liu-Lorenzini [3, Theorem
8.1].

(3) Corollary 2 holds with Z replaced by Fq[t] but it can fail if we replace Z

by Q[t] or Z[t]. See [2, 3].

Previous analogues include: [4] and [5] which prove something similar in the case
whereX is a normal projective curve over Z or more general Dedekind domains; [7],
which shows that Noether normalizations of semigroup rings always exist over Z;
and [6, Theorem 14.4], which implies that given a family over any base, one can
find a Noether normalization over an open subset of the base. A different analogue
is Poonen’s Bertini theorem over Z [8, Theorem 5.1], which is based on similar
techniques, but is contingent on the abc conjecture.

Example 1. On P
1
Z the forms f0 = ax2 + bxy + cy2 and f1 = dx2 + exy + fy2

will determine a finite map π : P1
Z → P

1
Z if and only if a the determinant

det




a b c 0
0 a b c
d e f 0
0 d e f


 = ±1.

The above determinant is the resultant of these two forms, and if they are divisible
by some prime p, then the map (x, y) 7→ (f0(x, y), f1(x, y)) will have a base point
over Fp.

Example 2. Let

X = [1 : 4] ∪ [3 : 5] ∪ [4 : 5] = V ((4x− y)(5x− 3y)(5x− 4y)) ⊆ P
1
Z.

The fibers are 0-dimensional, so a finite map X → P
0
Z will be determined by a

single polynomial f0 that restrict to a unit on all of the points simultaneously. No
linear form will work. In fact, there exists an f0(x, y) restricting to unit on X if
and only if deg f0 is divisible by 60.

The proof of our main result is based on a computation of the probability that
randomly chosen elements of degree d form a (partial) system of parameters, over
a finite field. A key new idea in this computation is an adaptation Poonen’s closed
point sieve [8], instead sieving over higher dimensional varieties; this computes
the desired probability via a zeta function type enumeration of subvarieties of a
specified dimension and degree. In each fiber over Z, the error in the sieve is
bounded using geometric results about the locus of partial systems of parameters,
while the global error bound over Z relies on a uniform convergence over Z obtained
via uniform bounds on Hilbert functions.
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Free Complexes for Smooth Toric Varieties

Christine Berkesch Zamaere

(joint work with Daniel Erman, Gregory G. Smith)

The standard graded polynomial ring is the Cox ring for projective space. Minimal
free resolutions over this ring enjoy a number of useful properties; for instance,
they are

(i) acyclic complexes,
(ii) unique up to isomorphism,
(iii) short (in the sense of Hilbert’s Syzygy Theorem),
(iv) measure vanishing (via Castelnuovo–Mumford regularity), and
(v) reflect geometry in a number of other ways, as well.

The coincidence of these properties is due in large part to the fact that in this
setting, the maximal homogeneous ideal and irrelevant ideal for projective space
coincide.

Fix a smooth projective toric variety X with Cox ring S and irrelevant ideal
B. The local version of Hilbert’s Syzygy Theorem implies that any coherent sheaf
on X admits a locally free resolution of length at most dimX . In contrast, the
global version of Hilbert’s Syzygy Theorem implies that every B-saturated S-
module M has a minimal free resolution of length at most dimS − 1. When
X = P

m, the minimal free resolution is optimal in both the geometric and algebraic
settings. However, when the rank r of the Picard group of X is greater than 1,
minimal free resolutions are longer, and typically much longer, than their geometric
counterparts.

Definition 1. A free complex F := [F0 ← F1 ← · · · ] of Z
r-graded S-modules is

called a free Cox complex for a Z
r-graded S-module M when the corresponding

complex of vector bundles F̃ is a resolution of the sheaf M̃ .
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For smooth toric varieties besides projective space, allowing irrelevant homology
can yield shorter and simpler complexes. Our broad goal is to demonstrate that the
right analogues over smooth toric varieties of these homological theorems use free
Cox complexes rather than minimal free resolutions. In particular, while free Cox
complexes of a Z

r-graded S-module will typically not be (i) acyclic or (ii) unique
up to isomorphism, they are the right replacement for minimal free resolutions to
recover properties (iii), (iv), and (v) above.

We focus on the product of projective spaces P
b := P

n1 × P
n2 × · · · × P

nr

with dimension vector n := (n1, n2, . . . , nr) ∈ N
r. Let S := k[xi,j | 1 ≤ i ≤

s, 0 ≤ j ≤ ni] be the Cox ring of Pn, and let B :=
⋂r
i=1〈xi,0, xi,1, . . . , xi,ni

〉 be its

irrelevant ideal. We identify Z
r = PicPn and partially order the elements using

the componentwise order. If e1, e2, . . . , er is the standard basis of Zr, then the
polynomial ring S has the Z

r-grading induced by deg(xi,j) := ei. We consider
only finitely-generated Z

r-graded S-modules.

Example 2. Let C be a genus 4 hyperelliptic curve. This can be embedded as
a curve of bi-degree (2, 8) in P

1 × P
2, and we let I ⊆ S be the B-saturated ideal

defining C. A computation in Macaulay2 [2] yields such a curve, where the minimal
free resolution of S/I is

S1 ←

S(−3,−1)1

⊕

S(−2,−2)1

⊕

S(−2,−3)2

⊕

S(−1,−5)3

⊕

S(0,−8)1

←

S(−3,−3)3

⊕

S(−2,−5)6

⊕

S(−1,−7)1

⊕

S(−1,−8)2

←

S(−3,−5)3

⊕

S(−2,−7)2

⊕

S(−2,−8)1

← S(−3,−7)1 ← 0 .

The following free Cox complex of S/I has a much simpler form.

S1 ψ
←−

S(−3,−1)1

⊕

S(−2,−2)1

⊕

S(−2,−3)2

ϕ
←− S(−3,−3)3 ← 0 .(1)

If J ⊆ S is the image of ψ, then J = I ∩ Q for some ideal Q whose radical
contains B. In fact, here S/J is Cohen–Macaulay, and thus J is the ideal of
maximal minors of, for instance, the 4× 3 matrix

ϕ =




x23 x24 −x22
−x1x2 − x1x3 0 x0x4

x0 −x1 0
0 x0 x1


.



Asymptotic Phenomena in Local Algebra and Singularity Theory 3235

We now address property (iii) above, showing the existence of free Cox com-
plexes of length at most |n| =

∑r
i=1 ni = dimP

n.

Theorem 3. Every B-saturated S-module M has a free Cox complex of length at
most |n| = dimP

n.

To prove this result, we adapt Beilinson’s resolution of the diagonal Pn →֒
P
n×Pn to construct free Cox complexes that, while short, involve a large number of

free summands that are generated in relatively high degrees. Our next two results
produce free Cox complexes that not only avoid this problem but also address
property (iv) by linking certain free Cox complexes to multigraded regularity,
which is defined in terms of the vanishing of sheaf cohomology [1]. Let ∆i ⊆ Z

r

denote the set of degrees of the generators of the i-th step of the minimal free
resolution of the irrelevant ideal B.

Theorem 4. Let M be a B-saturated S-module. The regularity of M contains
d ∈ Z

r if and only if M(d) has a free Cox complex F0 ← F1 ← · · · ← F|n| ← 0,

such that, for all 0 ≤ i ≤ |n|, the degree of each generator of Fi belongs to ∆i+N
r.

Our next result provides an analogue of the existence of linear resolutions on
projective space, as well as a characterization of regularity via free Cox complexes.

Theorem 5. Let M be a B-saturated S-module that is d-regular. If G is the free
subcomplex of a minimal free resolution of M consisting of summands generated
in degree at most d+ n, then G is a free Cox complex for M .

The complex G, which we call the free Cox complex of (M,d), can be very small
in comparison to the minimal free resolution. In addition, Theorem 5 highlights
the non-uniqueness of free Cox complexes. An S-module M will typically have
several incomparable minimal elements in the regularity of M , each of which will
yield an incomparable free Cox complex. We conclude with a result that extracts
geometric information from certain free Cox complexes, as per property (v).

Theorem 6. Let Y ⊆ P
n and let I be the B-saturated ideal defining Y . Assume

that I is defined in degrees d1,d2, . . . ,ds and that the natural map (S/I)di
→

H0(Y,OY (di)) is an isomorphism for i = 1, 2, . . . , s. If any of the following hold

(1) codimY = 2 and there is d ∈ reg(S/I) such that the free Cox complex of
(S/I,d) has length 2, or

(2) codimY = 3, min{ni} ≥ 2, and there is d ∈ reg(S/I) such that the free
Cox complex of (S/I,d) is a self-dual complex (up to twist) of length 3, or

(3) in any codimension, there is d ∈ reg(S/I) such that free Cox complex of
(S/I,d) is a Koszul complex of length codimY ,

then the embedded deformations of Y in P
n are unobstructed and the component

of the Hilbert scheme of Pn containing the point Y is unirational.

Example 7. Let C be the curve in Example 2 with defining ideal I. Since the
complex (1) is the free Cox complex of

(
S/I, (2, 1)

)
, Theorem 6 implies that the
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embedded deformations of the curve C are unobstructed. Moreover, the correspond-
ing component of the Hilbert scheme of P1×P

2 can be given an explicit unirational
parametrization by simply varying the entries in the 4× 3 matrix ϕ.

Also among our results along the lines of property (v), every punctual scheme
on projective space P

m is arithmetically Cohen–Macaulay, which means that the
minimal free resolutions of their structure sheaves have projective dimension m.
While this fails for points on products of projective spaces, we show that if we work
with free Cox complexes instead of the minimal free resolution, there is an analogue
of the arithmetic Cohen–Macaulay property for any punctual scheme. We then
use this to show that there is a free Cox complex analogue of the Hilbert–Burch
Theorem for S/I when X is a smooth toric surface and I is the B-saturated ideal
of n points in general position.
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Fundamental Groups of F -regular Schemes

Kevin Tucker

(joint work with Bhargav Bhatt, Jose Carvajal-Rojas, Patrick Graf, and Karl
Schwede)

In this talk, I would like to highlight the following restrictions on the étale funda-
mental groups of strongly F -regular schemes.

Theorem 1. [CST, main theorem] Suppose X is a strongly F -regular variety over
a perfect field of characteristic p > 0 with dimension at least two. Then for all

x ∈ X, πét
1 (Spec◦Osh

X,x) is finite.

Theorem 2. [BCGST, main theorem] Suppose X is a strongly F -regular variety
over a perfect field of characteristic p > 0.

(1) If X ← X1 ← X2 ← · · · is a sequence of finite Galois quasi-étale mor-
phisms (i.e. étale in codimension one) of normal varieties, then all but
finitely many of the morphisms in the sequence are étale.

(2) There exists a normal variety Y and a finite Galois quasi-étale morphism

Y → X such that πét
1 (Xreg) = πét

1 (Yreg) = πét
1 (Y ).

The first result is a local restriction, and is used in the proof of the the global
statements of the second result.

One should view both of these results as positive characteristic versions of pre-
viously shown statements for complex algebraic varieties. Recall that, under the
well-studied dictionary between singularities in characteristic zero and positive
characteristic, one may characterize Kawamata log terminal (klt) singularities as
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those which are strongly F -regular after reduction to characteristic p ≫ 1. The
main result of [Xu] is but Theorem 1 for complex algebraic varieties, after replac-
ing strongly F -regular with klt; similarly, the main result of [GKP] is essentially
Theorem 2 with the same modification.

The proof of Theorem 1 follows from new transformation rules for the F -
signature under finite local extensions. Recall that the F -signature of a finite
local domain (R,m, k) of characteristic p > 0 is the limit

s(R) = lim
e→∞
q=p

e

frkR(R
1/q)

rkR(R
1/q)

where rkR(M) denotes the torsion-free rank of an R-module M , and frkR(M) is
the so-called “maximal free rank” of M (the maximal rank of a free R-module G
admitting a surjectionM → G). The F -signature was first introduced by Huneke-
Leuschke, after being studied implicitly by Smith-Van den Bergh, and was shown
to exist by the speaker in full generality.

Suppose (R,m, k)→ (S, n, l) is a finite local inclusion of F -finite normal domains
in characteristic p > 0. Previously, the best known result (due in stages to Huneke-
Leuschke, Yao, Tucker) states that

frkR(S) · s(S) ≤ rkR(S) · s(R)

with equality if S is regular. Roughly speaking, would like to achieve equality
without this additional assumption, and in analogy to the situation for Hilbert-
Kunz multiplicity. Recall that the Hilbert-Kunz multiplicity of (R,m, k) is

eHK(R) = lim
e→∞
q=p

e

µR(R
1/q)

rkR(R
1/q)

= lim
e→∞
q=p

e

ℓR(R/m
[q])

qdim(R)

where µR(M) and ℓR(M) denote the minimal number of generators and length,

respectively, of an R-module M , and I [q] = 〈iq | i ∈ I〉 denotes the expansion of I
over the e-th iterate of Frobenius.

In the case of Hilbert-Kunz multiplicity, one readily generalizes the definition

to finite colength ideals I ⊆ R, setting eHK(I, R) = limq→∞ ℓR(R/I
[q])/qdim(R).

For any finite local inclusion (R,m, k)→ (S, n, l), one can relate the Hilbert-Kunz
multiplicity of an ideal

[l : k] · eHK(IS, S) = rkR(S) · eHK(I, R)

and its expansion. In the case that HomR(S,R) ≃ S, we can do something similar
for F -signature. For a finite colength ideal I ⊆ R, define

s(I, R) = lim
e→∞
q=p

e

ℓR(R/Ie)

qdim(R)
Ie = 〈r ∈ R | φ(r

1/q) ∈ I for all φ ∈ HomR(R
1/q, R)〉

and observe s(m, R) = s(R) recovers the original notion of F -signature. When
HomR(S,R) ≃ S, let also J = 〈s ∈ S | φ(s) ∈ I for all φ ∈ HomR(S,R)〉; then

[l : k] · s(J, S) = rkR(S) · s(I, R)
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in analogy to the result for Hilbert-Kunz multiplicity. In particular, specializing
to the case where the extension is quasi-étale (so that HomR(S,R) is generated
by the trace map), this imlies that the F -signature (of the maximal ideal) of a
geometric point gets multiplied by the degree of a finite quasi-étale extension.
Since the F -signature is always bounded above by one, this gives an upper bound
on the degree of all quasi-étale extensions, and immediately implies Theorem 1.

In general, one can expect to deduce global results as in Theorem 2 from the
local restrictions in Theorem 1 via stratification arguments. For example, [GKP]
make use of Whitney stratifications to deduce the global results in characteristic
zero. In [BCGST], we deduce Theorem 2 by first showing the existence of a strat-
ification of a strongly F -regular scheme in terms of the local fundamental groups
appearing in Theorem 1. The proof relies on a constructability result of Gabber,
and also depends heavily upon knowing in advance that these local fundamen-
tal groups are bounded in size uniformly for all geometric points of a strongly
F -regular scheme – which in turn follows from the local bound in Theorem 1
together with the lower semi-continuity of F -signature.
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Polynomial Growth of Betti Sequences over Local Rings

Luchezar L. Avramov

(joint work with Alexandra Seceleanu and Zheng Yang)

Let (R,m) be a (noetherian) local ring. Let multR denote the Hilbert-Samuel mul-
tiplicity of R, edimR the minimal number of generators of m, and set codimR =

edimR− dimR. When the completion R̂ is isomorphic to some regular local ring
modulo a regular sequence, R is said to be c.i. (for complete intersection); an

inequality multR ≥ 2codimR holds whenever R is c.i.
The asymptotic patterns of Betti sequences of finitely generated R-modules M

reflect and affect the singularity of R. For instance, in 1974 Gulliksen showed that
if R is c.i. of codimension c, then for each M there are polynomials b±M (x) with

deg b±M (x) ≤ c − 1, such that βR2i(M) = b+M (i) and βR2i+1(M) = b−M (i) hold for all

i ≫ 0. In 1980 he proved a strong converse: If βRi (R/m) is bounded above by
some polynomial of degree c− 1, then R is c.i. with codimR ≤ c; furthermore, for
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i ≥ d with d = dimR the function i 7→ βRi (R/m) is equal to a polynomial in i of

degree c− 1 (Tate, 1957), and if c = 1 then βRi (M) = βRd (M) (Eisenbud, 1980).
Our goal is to characterize those rings R over which the Betti numbers of

every M are eventually polynomial, in the sense that for all i ≫ 0 the function

i 7→ βRi (M) is equal to bM (i) for some polynomial bM (x). To avoid boring special
cases, we assume that m is not principal and that k is infinite.

Our answers involve properties of Rg, the associated graded ring of R. To state
them, let P be the symmetric algebra of m/m2 over R/m, let I∗ be the kernel of
the canonical map P → Rg, and let I∗〈2〉 denote the ideal of P generated by I∗2 .

The proof of the first theorem below uses results of Avramov (1994, 1996).

Theorem 1. For a positive integer c the following conditions are equivalent.

(1) The ring R is c.i. with codimR = c ≤ dimR/m I
∗
2 + 1.

(2) There is a real number b, such that for every real number a > 0 inequalities

aic−2 < βRi (R/m
2) ≤ bic−1 hold all i≫ 0 .

(3) The Betti numbers of R/m2 are eventually polynomial of degree c− 1.

For the next theorem, we strengthen both conditions (1) and (3) of Theorem 1.

Theorem 2. For a non-negative integer c the following conditions are equivalent.

(1) The ring R is c.i. with codimR = c ≤ height I∗〈2〉 + 1.

(2) There is an isomorphism R̂ ∼= Q/(g), where (Q, q) is a c.i. local ring with

multQ = 2c−1, and g is a non-zero-divisor in q
2.

These conditions imply

(3) The Betti numbers of each R-moduleM are eventually polynomial of degree
at most c− 1, and eventually polynomial of degree c− 1 for some M .

The fact that (2) implies (1) in Theorem 2 utilizes the structure of c.i. rings of
minimal multiplicity, described by Rossi and Valla (1988). The converse implica-
tion may be viewed as a structure theorem for the rings described in (1).

The delicate part of the proof of Theorem 2 is to deduce the first assertion of (3)

from (2). This means, to show that every series PRM (z) =
∑

i≥0 β
R
i (M)zi satisfies

(1 − z)c−1PRM (z) ∈ Z[z]. After fixing M , we find a syzygy module L = ΩsR(M)

such that (1 − z2)
∑

i≥s β
R
i (M)zi−s = PQ

′

L (z) holds, where (Q′, q′) is local with

multQ′ = 2c−1 and R̂ ∼= Q′/(g′) for a non-zero-divisor g′ ∈ q
′2. We then prove

(1−z)c−2PQ
′

L (z) = (1+z)pM (z) for some pM (z) ∈ Z[z], by using results of Herzog

and Iyengar (2005) and of Şega (2013). The desired property of PRM (z) follows.
By combining the preceding theorems, we obtain

Corollary 3. Assume that I∗ is minimally generated by homogeneous forms
g1, . . . , gc satisfying 2 ≤ deg g1 ≤ · · · ≤ deg gc.

All R-modules have eventually polynomial Betti numbers if and only if the se-
quence g1, . . . , gc is regular and deg g1 = · · · = deg gc−1 = 2.

The corollary settles a question in [1], and raises the question whether the condi-
tions in Theorem 2 are always equivalent. We have an answer in low codimension.
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Theorem 4. If k is algebraically closed, R is c.i., and all cyclic modules have
eventually polynomial Betti numbers, then the following inequality holds:

min{codimR, 4} ≤ height I∗〈2〉 + 1 .

In order to prove the last theorem, we set c = codimR and assume, by way of
contradiction, that height I∗〈2〉 ≤ c− 2 holds for some c ≤ 4. This implies that I∗〈2〉
has a minimal prime ideals P that is either degenerate (that is, contains non-zero
linear forms) or satisfies heightP + 1 ≤ mult(P/P) ≤ 4. We use P in order to
produce ideals J in R, such that the ring S = R/J is Golod; the classification of
non-degenerate varieties of minimal or almost minimal multiplicity (by Del Pezzo,
Bertini, Brodmann-Schenzel) is instrumental for these constructions.

The final step of the argument consists in showing that the Betti sequence of
the R-module S is not eventually polynomial. This is equivalent to proving that

the Poincaré series PRS (z) has a pole at z = −1. We do it by explicitly computing
the Poincaré series of Golod quotient rings of complete intersection rings, and
verifying that in the cases of interest they do have poles at z = −1.

Proofs of the results reported in the talk will appear in [2].
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Asymptotic Behavior of Local Cohomology of Thickenings of Ideals

Hailong Dao

(joint work with Jonathan Montaño, Ilya Smirnov, Kei-ichi Watanabe)

Let (R,m) be a local ring of dimension d and I ⊂ R an ideal. Let In be a

decreasing sequence of ideals cofinal with In. For example, I = In, I(n) or I [p
n
]

when R has positive characteristic. In recent years the behavior of the length of
H0

m
(R/In) has attracted a lot of attention. For example, a striking recent result

by Cutkosky states that when R is analytically unramified, the limit lim ℓ(R/In)

n
d

exists if ImIn ⊆ Im+n for all m,n > 0 and In are m-primary. Consequently,

limn→∞
ℓ(H

0

m
(R/I

n
)

n
d exists for any ideal I. In this report we shall try to understand

the behavior of higher local cohomology modules.

Question 1. Assume that ℓ(Hi
m
(R/In)) <∞ for n≫ 0. What can we say about

the the asymptotic behavior of the sequence ln = ℓ(Hi
m
(R/In)).

The condition that ℓ(Hi
m
(R/In) < ∞ is not that restrictive. For example,

it holds for In if I is generated by a regular sequence locally on the punctured
spectrum. Or if char R = p > 0 and R/I satisfies Serre’s condition (Sj), then

ℓ(Hi
m
(R/I [p

n
])) <∞ for all n and i ≤ j.

Together with J. Montaño, we prove in [4]:
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Theorem 2. Let I a monomial ideal in a polynomial ring R. Assume that
ℓ(Hi

m
(R/In)) <∞ for n≫ 0. Then the sequence {ℓ(Hi

m
(R/In))}n≫0 agrees with

a quasi-polynomial with rational coefficients for n ≫ 0. Moreover, this sequence
has a rational generating function.

Surprisingly, the proof uses the theory of Presburger language and Presburger
counting function developed in [6].

The situation in characteristic p > 0 also holds great promise. In fact, length of
local cohomology behaves well even for modules. In a recent work with Smirnov
([2]), generalizations of the classical Hilbert-Kunz functions are studied. LetM be
a finitely generated R-module. Let FnR(M) =M⊗R

nR denote the n-fold iteration
of the Frobenius functor given by base change along the Frobenius endomorphism.
Let dimR = d and q = pn. The following introduced under different notations by
Epstein and Yao ([5]):

and

egHK(M) := lim
n→∞

ℓHi
m
(FnR(M))

pnd
,

which are called the generalized Hilbert-Kunz function and generalized Hilbert-
Kunz multiplicity of M , respectively. We can prove ([2]):

Theorem 3. Suppose that Mmathfrakp has finite projective dimension for all non-
maximal prime ideal p (this always holds for example when R is an isolated sin-
gularity). Then

(1) If R is excellent, equidimensional and and locally Cohen-Macaulay on the
punctured spectrum, egHK(M) exists.

(2) If R is Cohen-Macaulay, egHK(M) exists.
(3) If R is a complete intersection, then egHK(M) = 0 if and only if the

projective dimension of M is less than dimR.

The limit exists for higher local cohomology modules and other homological
functors. For example ([2]):

Theorem 4. Let R be a local Cohen-Macaulay ring of dimension d and M a
finitely generated R-module which is locally free on the punctured spectrum of R.
Then for each 0 ≤ i ≤ d− 1.

eigHK(M) = lim
n→∞

ℓR(H
i
m
(Fn(M)))

pnd

exists.

These limits were studied at the same time by Holger Brenner independently in
[1]. What is interesting is that these notions seem to behave more geometrically
than the old one. For example, Brenner made use of some of our results to con-
struct examples of irrationality of the usual Hilbert-Kunz multiplicity, answering
a long open problem in this area. The construction started by building a reflexive
module M whose e2gHK(M) is irrational.
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One can give other strong applications. For example, we can give a quick proof
that the Picard groups of the punctured spectrum of a complete intersection of
dimension 3 is torsion-free. Or that the torsion elements in the class group of an
isolated F -regular singularity is Cohen-Macaulay ([3]).
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Asymptotic Properties of Invariant Chains of Graded Ideals

Tim Römer

(joint work with Uwe Nagel)

Let K be a field and c ∈ N. For n ∈ N let

K[Xn] = K[Xi,j : 1 ≤ i ≤ c, 1 ≤ j ≤ n]

be a polynomial ring in c×nmany variables overK. We are interested in algebraic
properties of ideals in a family (In)n≥1, where In ⊆ K[Xn] is an ideal for n ≥ 1.
Especially one would like to understand the “limit behavior” (if present) of the
properties under consideration. In algebraic geometry and commutative algebra
several examples of such situations exist. For a typical example let In be the ideal
of 2-minors of the c× n-matrix (Xi,j)1≤i≤c,1≤j≤n.

Following an approach of Hillar-Sullivant in [4], an idea is to consider the poly-
nomial ring

K[X ] = K[Xi,j : 1 ≤ i ≤ c, j ≥ 1]

and the ideal

I =
⋃

n≥1

InK[X ].

In this generality not much can be said. One difficulty is, e.g., that K[X ] is not
Noetherian. One has to find suitable assumptions under which the situation can
be controlled in a better way.

For this let Sym(n) be the group of bijections π : [n] → [n] where [n] =
{1, . . . , n}. The group Sym(n) is naturally embedded into Sym(n + 1) as the
stabilizer of {n+ 1}. We set

Sym(∞) =
⋃

n∈N

Sym(n).
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Then Sym(∞) acts on K[X ] by σ · Xi,j = Xi,σ(j) for σ ∈ Sym(∞). A first very
interesting result is:

Theorem 1 (Hillar-Sullivant [4]). Let I ⊆ K[X ] be a Sym(∞)-invariant ideal.
Then I is finitely generated up to symmetry, i.e. there exist f1, . . . , fm ∈ I such
that I = 〈Sym(∞) · f1, . . . , Sym(∞) · fm〉.

Note that in the theorem it is not assumed that I is directly defined by a
family (In)n≥1 as considered above. But given I one can naturally define a canon-
ical/saturated family by setting

In = I ∩K[Xn] for n ≥ 1.

Observe that then

Sym(n)(Im) ⊆ In for every m ≤ n.(1)

We say that this family is a Sym(∞)-invariant filtration. Conversely, given a
family (In)n≥1 of ideals which is a Sym(∞)-invariant filtration (i.e. (1) holds),
then I =

⋃
n≥1 InK[X ] is again a Sym(∞)-invariant ideal of K[X ].

As a summary one should remember that for a given Sym(∞)-invariant filtra-
tion, there is the “global” object I which can be used to study algebraic properties
of the ideals of the filtration. One should also mention that there exist also other
relevant and very useful actions of suitable monoids, but to simplify things here,
we consider only the defined Sym(∞) action. See Draisma [3] for an overview
article on relevant and related developments in the recent years. See also related
approaches on twisted commutative algebras and GL∞-algebras by Sam-Snowden
[6, 7], and on FI-modules by Church-Ellenberg-Farb-Nagpal [1, 2].

Let fix us a Sym(∞)-invariant filtration I = (In)n≥1 of graded ideals, i.e. that
additionally the ideals In are graded. Then we define its bigraded Hilbert-series to
be

HI(s, t) =
∑

n≥0, j≥0

dimK [K[Xn]/In]j · s
ntj .

One of the main theorems in [5] is that this series is rational. More precisely, we
know:

Theorem 2. Let I = (In)n∈N be a Sym(∞)-invariant filtration of graded ideals.
Then the bigraded Hilbert series HI(s, t) of I is a rational function of the form

HI(s, t) =
g(s, t)

(1− t)a ·
∏b
j=1[(1− t)

cj − s · fj(t)]
,

where a, b, cj are non-negative integers with cj ≤ c, g(s, t) ∈ Z[s, t], and each fj(t)
is a polynomial in Z[t] satisfying fj(1) > 0.

A related result of [5] is that there exist A,B ∈ Z with 0 ≤ A ≤ c such that,
for all n≫ 0,

dimK[Xn]/In = An+B.

Note that also the multiplicities of the ideals in the filtration can be studied via
this methods. For this and further results we refer to [5].
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A Duality of Buchsbaum Rings and Triangulated Manifold

Satoshi Murai

(joint work with Isabella Novik, Ken-ichi Yoshida)

The Dehn-Sommerville equation is one of the most famous symmetries in face
enumeration theory. It was first proved by Dehn and Sommerville for simplicial
polytopes, but later it was generalized to all triangulated manifolds. Here we
introduce a simple algebraic way to express the Dehn-Sommerville equation for
triangulated manifolds by using Matlis duality and Stanley–Reisner theory.

The Dehn-Sommerville equation for balls and spheres. We first recall the
Dehn-Sommerville equation for balls and spheres. We fix a field K. For a simplicial
complex ∆ of dimension d− 1, let fi−1(∆) be the number of (i − 1)-dimensional

faces of ∆ and let hi(∆) =
∑i

j=0(−1)
i−j(d−j

i−j

)
fj−1(∆) for i = 0, 1, . . . , d. For

F ∈ ∆, the simplicial complex lk∆(F ) = {G ∈ ∆ : F ∪ G ∈ ∆, F ∩ G = ∅}
is called the link of F in ∆. A simplicial complex ∆ is said to be pure if all
its facets have the same dimension. A pure simplicial complex ∆ of dimension d

is said to be a K-homology d-sphere if H̃∗(lk∆(G)) ∼= H̃∗(S
d−|G|) for all faces

G ∈ ∆ (including G = ∅), where H̃i(X) denotes the ith reduced homology group
with coefficients in K. A pure simplicial complex of dimension d is said to be a
K-homology d-ball if (1) the link of each face G of ∆ has the homology of either

S
d−|G| or Bd−|G|, and (2) the set of all boundary faces, that is,

∂∆ :=
{
G ∈ ∆ : H̃∗(lk∆(G)) ∼= H̃∗(B

d−|G|)
}
∪ {∅}

is a K-homology (d− 1)-sphere. For convention, for a homology sphere ∆, we set
∂∆ = ∅. One version of the Dehn-Sommerville equation is the following.
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Theorem 1 (Dehn-Sommerville equation for balls and spheres). If ∆ is a K-
homology (d− 1)-ball or a K-homology (d− 1)-sphere, then

hi(∆) = hd−i(∆, ∂∆) for i = 0, 1, . . . , d.(1)

This symmetry can be algebraically explained by using Matlis duality and
canonical modules. For a (d − 1)-dimensional simplicial complex ∆ on [n] =
{1, 2, . . . , n}, let K[∆] = S/I∆ be the Stanley–Reisner ring of ∆ over K, where
S = K[x1, . . . , xn] and where I∆ = (xi1 · · ·xik : {i1, . . . , ik} 6∈ ∆) is the Stanley–
Reisner ideal. For a subcomplex Γ ⊂ ∆, the ideal K[∆,Γ] = IΓ/I∆ of K[∆] is
called the Stanley–Reisner module of the pair (∆,Γ). Let d = dimK[∆,Γ].
Let fi(∆,Γ) be the number of i-dimensional faces in ∆ but not in Γ. Define
hi(∆,Γ) in the same way as the usual h-numbers. Then the h-numbers appears
as the Hilbert series of K[∆,Γ]. It is known that

∞∑

k=0

(dimK K[∆,Γ]k)t
k =

1

(1− t)d
{
h0(∆,Γ) + h1(∆,Γ)t+ · · ·+ hd(∆,Γ)t

d}.

It was proved by Hochster [5, Ch. II §7] that if ∆ is a K-homology ball or a
K-homology sphere, then K[∆, ∂∆] is the canonical module of K[∆]. This result
implies that if we take a linear system of parameters Θ for K[∆], then we have an
isomorphism

K[∆]/ΘK[∆] ∼= (K[∆, ∂∆]/ΘK[∆, ∂∆])∨(−d),(2)

where N∨ denotes the Matlis dual of a graded S-module N . This isomorphism (2)
immediately implies (1) since h-numbers of ∆ coincides with the Hilbert function
of K[∆]/ΘK[∆] and h-numbers of (∆, ∂∆) coincides with the Hilbert function of
K[∆, ∂∆]/ΘK[∆, ∂∆].

The Dehn-Sommerville equation for manifolds. We say that a d-dimensional
simplicial complex ∆ is a K-homology d-manifold without boundary if, for
any non-empty face G ∈ ∆, the link of G is an K-homology (d − |G|)-sphere.
An K-homology d-manifold with boundary is a pure d-dimensional simplicial
complex ∆ satisfying (1) the link of each non-empty face G of ∆ has the homology

of either Sd−|G| or Bd−|G|, and (2) the set of all boundary faces, that is,

∂∆ :=
{
G ∈ ∆ : H̃∗(lk∆(G)) ∼= H̃∗(B

d−|G|)
}
∪ {∅}

is a (d − 1)-dimensional K-homology manifold without boundary. For homology
manifold ∆ without boundary, we set ∂∆ = ∅. We now introduce a generalization
of the Dehn-Sommerville equation for manifolds. Let Γ ⊂ ∆ be a pair of simplicial
complexes with dimK[∆,Γ] = d. We write β̃j−1(∆,Γ) = dimK H̃j−1(∆,Γ). A
connected K-homology d-manifold is said to be orientable if Hd(∆, ∂∆) ∼= K.
We define the h′′-numbers of (∆,Γ) as

h′′j (∆,Γ) =

{
hj(∆,Γ)−

(
d
j

)∑j
l=1(−1)

j−lβ̃l−1(∆,Γ), if 0 ≤ j < d,

hd(∆,Γ)−
∑d−1

l=1 (−1)
j−lβ̃l−1(∆,Γ), if j = d.
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Theorem 2 (Dehn-Sommerville equation for manifolds). If ∆ is a connected ori-
entable K-homology (d− 1)-manifold, then

h′′i (∆) = h′′d−i(∆, ∂∆) for i = 0, 1, . . . , d.(3)

The above equation was discovered by Klee [1] for manifolds without boundary
and by Macdonald [2] for manifolds with boundary. While their formulations are
different to (3) since they use f -numbers, the above simple formula in terms of
h′′-numbers were discovered in Novik [7] and Murai-Novik [6].

An algebraic Dehn-Sommerville equation for manifolds. Theorem 2 nat-
urally leads us a question “can we express (3) using Matlis duality?” To answer
this question, we need an idea considered by Goto [3] in 1983. For a finitely gen-
erated graded S-module M of Krull dimension d and its homogeneous system of
parameters Θ = θ1, . . . , θd, we define

Σ(Θ;M) = ΘM +

d∑

k=1

(θ1, . . . , θ̂i, . . . , θd)M :M θi.

This submodule was introduced by Goto to study Buchsbaum local rings. We say
that a finitely generated graded S-moduleM of Krull dimension d is Buchsbaum

if, for every homogeneous system of parameter Θ = θ1, . . . , θd for M ,

(θ1, . . . , θi−1)M :M θi = (θ1, . . . , θi−1)M :M m

for i = 1, 2, . . . , d, where m = (x1, . . . , xn). We show the following result.

Theorem 3. If K[∆,Γ] is Buchsbaum, then for any linear system of parameters
Θ for K[∆,Γ], one has

dimK(K[∆,Γ]/Σ(Θ;K[∆,Γ]))i = h′′i (∆,Γ) for all i.

By the work of Schenzel [8], if ∆ is a K-homology manifold, then both K[∆]
and K[∆, ∂∆] are Buchsbaum. Hence the above theorem gives an algebraic way
to study h′′-vectors using Artinian graded algebra. Moreover, the following result
holds.

Theorem 4. Let R = S/I be a Buchsbaum graded K-algebra of Krull dimension
d ≥ 2, ωR the canonical module of R, Θ = θ1, . . . , θd ∈ S a homogeneous system
of parameters of R. If depth(R) ≥ 2, then

ωR/Σ(Θ;ωR) ∼=
(
R/Σ(Θ;R)

)∨
(−δ),

where δ =
∑d

i=1 deg θi.

It was proved by Gräbe [4] that the module K[∆, ∂∆] is the canonical module
of K[∆] when ∆ is a connected orientable homology manifold. Thus, by Theorem
4 we obtain the following strengthen of Theorem 2.

Theorem 5. Let ∆ be a connected orientable K-homology (d − 1)-manifold with
non-empty boundary ∂∆ and Θ a linear system of parameters for K[∆]. Then

K[∆]/Σ(Θ;K[∆]) ∼=
(
K[∆, ∂∆]/Σ(Θ;K[∆, ∂∆])

)∨
(−d).
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Rationality of Poincaré Series over Local Rings

Liana M. Şega

Let (R,m, k) be a local Noetherian ring and M be a finitely generated R-module.

We denote by bi(M) the ith Betti number ofM , namely bi(M) = dimkTor
R
i (M,k).

The Poincaré series of M is the formal power series

PRM (z) =

∞∑

i=0

bi(M)zi .

In the 1950’s Kaplansky and Serre asked if the Poincaré series PRk (z) is always
a rational function. This question was answered negatively by Anick in 1982.

Subsequently, Bögvad constructed a Gorenstein ring R with m
4 = 0 and PRk (z)

transcendental. Many recent papers prove that certain families of rings have ra-
tional Poincaré series. Roos [6] calls a local ring R good if the Poincaré series of all
finitely generated modules over R are rational, sharing a common denominator,
and he gives an example of a ring R and a sequence of R-modules with rational
Poincaré series which do not share a common denominator. In most known cases,
the fact that a certain class of rings is good is established using a result a Levin,
as a consequence of a remarkable structural property, namely that there exists a
surjective Golod homomorphism from a complete intersection onto the ring. The
existence of such a map is an important conclusion on its own, and has other
important consequences.

We want to understand whether the property that a ring is good holds gener-
ically. We provide answers in the case of Artinian level k-algebras. Once the
relevant parameters are fixed, these algebras are parameterized by a Grassman-
nian. We say that a property holds “generically” if it holds for all k-algebras
that correspond to points on a non-empty open set of the Grassmanian. When
k is infinite, it is known that one can choose a non-empty open subset of this
Grassmannian so that its points correspond to compressed level k-algebras, see [4].
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In [5] we extend the notion of compressed level k-algebra to the case of local
rings that do not necessarily contain a field. To define this concept, we introduce
first some terminology. The embedding dimension of R is the minimal number of
generators of m. We say that R is a level ring of socle degree s if its socle is equal
to m

s. In this case, we define the socle dimension of R to be the dimension of the
k-vector space ms. Also, we let v(R) denote the largest integer i such that I ⊆ n

i,

where (Q, n, k) is a regular local ring and I ⊆ n
2.

Theorem 1. ([5, Theorem 3.5]) Let (e, s, c) be integers and let (R,m, k) be a level
local Artinian ring with embedding dimension e, socle degree s, and socle dimension
c. Then the following statements hold.

(1) The length of R satisfies

(#) λR(R) ≤
s∑

i=0

min

{(
(e − 1) + i

i

)
, c

(
(e− 1) + (s− i)

s− i

)}
.

(2) Equality holds in (#) if and only if the Hilbert function of R is given by

dimk(m
i/mi+1) = min

{(
(e − 1) + i

i

)
, c

(
(e− 1) + (s− i)

s− i

)}
, for 0 ≤ i ≤ s .

(3) If equality holds in (#), then
(a) the parameter v(R) satisfies s ≤ 2v(R)− 1;

(b) ann(mi) = m
s−i+1 for 0 ≤ i ≤ s;

(c) The associated graded ring gr
m
(R) is a compressed level graded k-

algebra.

We say that R is a compressed level local Artinian ring if equality holds in (#).
The statements of the theorem are known when R is a k-algebra, in which case

they can be elegantly proved using the Macaulay inverse system. Since we cannot
use such methods in the case of rings that do not contain a field, our proof in [5]
relies (in part) on writing R as a quotient of an Artinian Gorenstein ring of the
same embedding dimension as R, and using Gorentsein duality.

We now come back to the main problem, namely understanding whether the
property that there exists a Golod homomorphism from a complete intersection
onto the ring (implying that the ring is good) holds generically, in the case of level
Artinian k-algebras. In view of the discussion above, the results will be stated
for compressed level local Artinian rings. Since the property that R is good is
invariant with respect to faithfully flat extensions, there is no harm in assuming
that k is algebraically closed. In the Theorem below, part (1) is contained in [3],
part (2) is contained in [7] and part (2) is contained in [5].

Theorem 2. Let (e, s, c) be integers and let (R,m, k) be a compressed level local
Artinian ring with embedding dimension e, socle degree s, and socle dimension c.
Assume that k is algebraically closed. The following then hold.

(1) If c = 1 (equivalently, R is Gorenstein), s = 3 and there exists an element
x ∈ m such that ann(x) is principal, then there exists a Golod homomor-
phism onto R from a codimension 2 complete intersection.



Asymptotic Phenomena in Local Algebra and Singularity Theory 3249

(2) If c = 1 and s 6= 3, then there exists a Golod homomorphsim onto R from
a codimension 1 complete intersection.

(3) For any c, if s is odd and s 6= 3, then the following hold:
(a) If s = 2v(R) − 1, then there exists a Golod homomorphsim onto R

from a codimension 1 complete intersection.
(b) If s 6= 2v(R)− 1, then R is Golod (equivalently, there exists a Golod

homomorphism onto R from a regular local ring).

In view of the work in [1] and [2], the additional condition in (1) on the existence
of the element x holds in the case of generic Gorenstein k-algebras of socle degree
3. This additional condition is necessary in (1), due to Bögvad’s example.

The existence of the Golod homomorphisms implies that there exists a poly-

nomial dR(z) such that dR(z)P
R
M (z) ∈ Z[z] for all finitely generated R-modules

M . In what follows, “case (1)” refers to the hypotheses of part (1) of Theorem 2
being satisfied, and so on. In each of four cases in the theorem, we can compute
the common denominator dR(z) as follows:

dR(z) =





1− et+ et2 − t3 in case (1)

1− z(PQR (z)− 1) + cze+1(1 + z) in cases (2) and (3a)

1− z(PQR (z)− 1) in case (3b)

We provide some of the ingredients involved in the proof in case (3a). Assume s
is odd and s 6= 3. Set t = v(R), hence s = 2t− 1. Set P = Q/(f) and p = n/(f),

where f ∈ I r n
t+1, and consider the induced map χ : P → R. To show that χ

is Golod, we use the definition of the notion of Golod homomorphism, stated in
terms of existence of certain trivial Massey operations. Once the following two
claims are proved, the desired Massey operation can be constructed inductively.

Claim 1. The map TorPi (R, k) → TorPi (R/m
t−1, k) induced by the projection

R→ R/mt−1 is zero for all i > 0.

Claim 2. The map TorPi (m
2t−2, k) → TorPi (m

t−1, k) induced by the inclusion

m
2t−2 →֒ m

t−1 is zero for all i ≥ 0.

The proof of Claim 1 follows by noting that the induced map TorPi (p
t, k) →

TorPi (p
t−1, k) is zero for all i > 0. For Claim 2, we show that the induced map

TorPi (m
t+1, k)→ TorPi (m

t, k) is zero; the hypothesis s 6= 3 is necessary to conclude
Claim 2 from here, as it guarantees that 2t−2 ≥ t+1. The main ingredient, proved
using Gorenstein duality and Theorem 1, is the next lemma. Its statement can
be further interpreted in terms of the Koszul homology of R with respect to a
minimal generating set of m, towards further understanding of the relevant maps.

Lemma 3. Let (R,m, k) be a compressed level local Artinian ring with embedding
dimension e and socle degree s. Set t = v(R). Assume that s is odd and s = 2t−1.
Decompose the maximal ideal m as the sum of two subideals m = (x1) + m

′ with
x1 a minimal generator of m and m

′ minimally generated by e− 1 elements. Then

xt−1
1 [annR(m

′) ∩m
t] = m

s.
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Theorem 2 does not cover the cases when c > 1 and s is even, and c > 1 and
s = 3. These cases remain open.
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Graded Maximal Cohen-Macaulay Modules over Graded

One-dimensional Gorenstein Rings

Ragnar Olaf Buchweitz

(joint work with Osamu Iyama, Kota Yamaura)

Let R = ⊕i≥0Ri be a one-dimensional Gorenstein ring with R0 = k a field. With

N ⊂ R the set of homogeneous nonzerodivisors, set K = N−1R, the total graded
ring of fractions. The a-invariant of R is the largest degree in which K/R is not

zero. Let p > 0 be an integer such that K ∼= K(p). With CMZ

0 (R) the stable
category of graded maximal Cohen-Macaulay R-modules that are locally free on
teh punctured spectrum of R, we have the following:

Theorem 1. (1) The triangulated category CMZ

0 (R) admits

T =

a+p⊕

i=1

(
R≥i

)
(i) =

a+p⊕

i=1

R(i)≥0

as a tilting object.

(2) There is an exact equivalence CMZ

0 (R) ∼ K♭(proj(Λ)), for Λ =

End(grR(T )), the endomorphism ring of T in CMZ

0 (R).
(3) Λ is a finite dimensional Iwanaga-Gorenstein algebra.
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(4)

Λ =




R0 0 · · · · · · · · · · · · · · · · · · 0
R1 R0 0 · · · · · · · · · · · · · · · 0
R2 R1 R0 0 · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . . · · · · · · · · · 0

Ra−1 Ra−2 · · · R1 R0 0 · · · · · · 0
Ka Ka−1 · · · K2 K1 K0 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
. . .

...
Ka+p−1 Ka+p−2 · · · · · · · · · · · · K2 K1 K0




If R is reduced, then Λ is of finite global dimension
We then explained how this implies that the isomorphism classes of graded

maximal Cohen-Macaulay modules without free summands are in bijection with
maximal perfect T -complexes:

0←− Pm
∂
←− Pm+1

∂
←− · · ·

∂
←− Pn ←− 0,

where

• m,n ∈ Z

• Pi ∈ add(T )

• ∂2 = 0
• The components of each ∂ in End(T⊕?) are in the radical of Λ.

Linear Syzygies and Hyperbolicity

Matteo Varbaro

(joint work with Alexandru Constantinescu, Thomas Kahle)

Let n be a positive integer, S = K[x1, . . . , xn] be a standard graded polynomial
ring over a field K, and I ⊆ S be a homogeneous ideal minimally generated by s
quadratic forms.

The minimal graded free resolution of S/I has the form:

0→
⊕

j∈Z

S(−j)βk,j → . . .→
⊕

j∈Z

S(−j)β2,j →
⊕

j∈Z

S(−j)β1,j → S → S/I

where k ≤ n is the projective dimension of S/I, β1,j = 0 if j 6= 2 and β1,2 = s.
The Castelnuovo-Mumford regularity of S/I is

regS/I = max{j − i : βi,j 6= 0}.

In [6], Mayr and Meyer gave examples of quadratic ideals I ⊆ S for which
regS/I is doubly exponential in n. The ideals of Mayr-Meyer have the property
that already the first syzygy module has minimal generators in a very high degree,

indeed in their examples β2,j 6= 0 for a certain j > 22
cn

for some c ∈ Q>0.
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Conversely, if the first syzygy module of I is linearly generated (i.e. β2,j = 0
whenever j > 3), no example with regS/I big compared to n seems to be known:

Open Question 1. Is there a family of quadratic ideals Im ⊆ K[x1, . . . , xm] such
that the first syzygy modules of Im are linearly generated and

lim
m→∞

reg Im
m

> 0

Definition 2. For a positive integer p, we say that S/I satisfies the property Np
if βi,j = 0 for all i ≤ p, j > i+ 1. The Green-Lazarsfeld index of S/I is

indexS/I = sup{p ∈ N : S/I satisfies the property Np}

For example, S/I satisfies N1 just means that I is generated by quadrics, S/I
satisfies N2 means that I is generated by quadrics and has first linear syzygies,
S/I satisfies N3 means that I is generated by quadrics and has first and second
linear syzygies, and so on ...

From now on we will focus in the case I = I∆ ⊆ S is a square-free monomial
ideal. In this case S/I∆ is denoted by K[∆] and called the Stanley-Reisner ring
of the simplicial complex ∆. The following is a result from [3].

Theorem 3 (Dao, Huneke, Schweigh). If K[∆] satisfies the property Np for some
p ≥ 2, then

regK[∆] ≤ log p+3

2

(
n− 1

p

)
+ 2

Corollary 4. If Im ⊆ K[x1, . . . , xm] is a family of quadratic monomial ideals with
linearly generated first syzygy module, then

lim
m→∞

reg Im
m

= 0

In view of Theorem 3, the following is a natural question for any given p ≥ 2:

Question (Ap). Is there a constant λ ∈ R for which regK[∆] ≤ λ whenever K[∆]
satisfies Np?

To deal with the above question we will introduce some concepts in metric group
theory: Let Γ be a simple graph on a (possibly infinite) vertex set V . Given two
vertices v, w ∈ V , a path e from v to w consists in a subset of vertices

{v = v0, v1, v2, . . . , vk = w}

such that {vi, vi+1} is an edge for all i = 0, . . . , k − 1. The length of such a path
is ℓ(e) = k. The distance between v and w is

d(v, w) := inf{ℓ(e) : e is a path from v to w}.

A path e from v to w is called a geodesic path if ℓ(e) = d(v, w). A geodesic triangle
of vertices v1, v2 and v3 consists in three geodesic paths ei from vi to vi+1 (mod 3)
for i = 1, 2, 3. For δ ≥ 0, a geodesic triangle e1, e2, e3 is δ-slim if d(v, ei ∪ ej) ≤ δ
∀ v ∈ ek and {i, j, k} = {1, 2, 3}. The graph Γ is δ-hyperbolic if each geodesic
triangle of Γ is δ-slim; it is hyperbolic if it is δ-hyperbolic for some δ.
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Given a group G and a subset S ⊆ G (not containing the identity) of (distinct)
generators of G, the Cayley graph Cay(G,S) is the simple graph with:

(i) G as vertex set;
(ii) as edges, the sets {g, gs} where g ∈ G and s ∈ S.

The following is a fundamental result of Gromov (see Theorem 12.3.5 in [4]):

Theorem 5 (Gromov). Given two finite sets of generators S and S ′ of G, the
Cayley graph Cay(G,S) is hyperbolic if and only if Cay(G,S ′) is.

In view of the theorem above the following is a good notion:

Definition 6. A group G is hyperbolic if it has a finite set of generators S such
that Cay(G,S) is hyperbolic.

The cohomological dimension of a group G is defined as:

cdG = sup{n ∈ N : Hn(G;M) 6= 0 for some G-module M}.

If G has nontrivial torsion, then it is well known that cdG = ∞. A group G is
virtually torsion-free if it has a finite index subgroup which is torsion-free. By a
result of Serre, if Γ and Γ′ are two finite index torsion-free subgroups of G, then

cdΓ = cdΓ′.

So it is well-defined the virtual cohomological dimension of a virtually torsion-free
group G: vcdG = cdΓ where Γ is a finite index torsion-free subgroup of G.

Finally, recall that a Coxeter group is a pair (G,S) where G is a group with a
presentation of the type 〈S | R〉 such that:

(i) S = {s1, s2, . . . , sn} is a system of generators of G;
(ii) the relations R are of the form (sisj)

mij = e where mii = 1 for all i =
1, . . . , n and mij ∈ {2, 3, . . .} ∪ {∞} otherwise.

A Coxeter group is right-angled if and only if mij ∈ {1, 2,∞}. Since a Coxeter
group (G,S) can always be embedded in GLn(C) (where n = |S|), by Selberg’s
lemma, a Coxeter group is virtually torsion-free; in particular the virtual coho-
mological dimension of a Coxeter group is well-defined, and Gromov raised the
following:

Question (B). Is there a global bound for the virtual cohomological dimension of
a right-angled hyperbolic Coxeter group?

A main consequence of the forthcoming joint work with Constantinescu and
Kahle [2] is:

Theorem 7. Questions A2 and B are equivalent.

In particular, since the question of Gromov has been negatively answered in

2003 by Januszkiewicz and S̆wia̧tkowski [5], we get as corollary a previous result
achieved in [1]:

Corollary 8. For any r ∈ N, there exists a simplicial complex ∆ such that K[∆]
satisfies N2 and regK[∆] ≥ r.
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In [2], we also exploit a method that, in particular, allows us to negatively
answer Question Ap in general as follows:

Theorem 9. For any p ≥ 2 and any r ∈ N, there exists a simplicial complex ∆
such that K[∆] satisfies Np and regK[∆] = r.

Unfortunately in our methodK[∆] is far from being Cohen-Macaulay in general.
On the other hand, we already knew that K[∆] cannot be Gorenstein by the
following result in [1]:

Theorem 10. If ∆ is a simplicial complex such that K[∆] satisfies N2 and is
Gorenstein, then

regK[∆] ≤ 4.

Open Question 11. Is there a constant λ ∈ R for which regK[∆] ≤ λ if K[∆]
satisfies N2 and is Cohen-Macaulay?
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