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Abstract. Combinatorics is a fundamental mathematical discipline that fo-
cuses on the study of discrete objects and their properties. The present work-
shop featured research in such diverse areas as Extremal, Probabilistic and
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current accounts of exciting developments and challenges in these fields and
a stimulating venue for a variety of fruitful interactions. This is a report on
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Introduction by the Organisers

The workshop Combinatorics, organized by Jeff Kahn (Piscataway), Angelika Ste-
ger (Zürich) and Benny Sudakov (Zürich), was held the first week of January, 2017.
Despite the early point in the year the meeting was well attended, with roughly 50
participants from the US, Canada, Brazil, UK, Israel, and various European coun-
tries. The program consisted of 11 plenary lectures and 18 shorter contributions,
including the presentations by Oberwolfach Leibniz graduate students. There was
also a lively problem session led by Nati Linial. The plenary lectures were chosen
to provide both overviews of the state of the art in various areas and in-depth treat-
ments of major new results. The short talks ranged over a broad range of topics,
including, for example (far from an exhaustive list), graph theory, coding theory,
probabilistic combinatorics, discrete geometry, extremal combinatorics and Ram-
sey theory, additive combinatorics, and theoretical computer science. As in the
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past, particular stress was placed on providing a platform for younger researchers
to present themselves and their results.

This report contains extended abstracts of the talks and statements of problems
that were posed at the problem session. This was a particularly successful edition
of the meeting Combinatorics, in large part because of the exceptional strength
and range of both the participants and the results presented. While it is hard to
do justice to a meeting at such a level in this short summary, we here highlight
just two of the more spectacular developments.

The first of these is Ron Peled’s resolution (with Yinon Spinka) of a more than
30-year-old conjecture of R. Kotecký on the antiferromagnetic Potts model. (Their
results apply in the far more general context of graph homomorphisms, but here
we only discuss the special case that was the subject of R. Kotecký’s conjecture.)

For a fixed q ≥ 3, large fixed d, and very large n, we consider σ chosen uniformly
at random from the set of proper q-colorings of the “box”

Λd
n = {x ∈ Zd : ‖x‖∞ ≤ n}.

In the language of statistical mechanics this is the antiferromagnetic Potts model
at temperature zero. Kotecký conjectured (circa 1985) an affirmative answer to the
basic (“phase transition” or, more properly, “phase coexistence”) question for this
model; namely, does the model admit multiple maximal entropy Gibbs measures?
Such an answer is supplied by the following combinatorial statement, proved by
Peled and Spinka, in which ∂ denotes boundary (thus ∂Λd

n = {x ∈ Zd : ‖x‖∞ =
n}).

Theorem. If A ∪ B is an equipartition of {1, . . . , q} (that is, ||A| − |B|| ≤ 1)
and we condition on σ assigning colors from A (resp. B) to all even (resp. odd)
vertices of ∂Λd

n, then
Pr(σ(0) ∈ A) > 1 − ǫd,

where ǫd → 0 as d→ ∞.

That is: in high enough (fixed) dimension, the influence of the boundary conditions
on behavior at the origin persists as the boundary recedes. For q = 3 this had been
known for about 15 years and stronger results have more recently been established
by Peled and others; but the jump to q ≥ 4 had proved wholly intractable until
this breakthrough.

Our second highlight is the work discussed by Daniela Kühn (obtained jointly
with Stefan Glock, Allan Lo and Deryk Osthus), giving a “second generation”
proof of a vast generalization of the “Existence Conjecture” for block designs.
(This famous nineteenth century problem was settled a few years ago by Peter
Keevash and first announced at the January 2014 edition of “Combinatorics.”)
To give some flavor, we just state (skipping some specifics) a special case of the
original conjecture:

For fixed 2 ≤ t ≤ k and any sufficiently large n obeying some obviously necessary
congruential restrictions, it is possible to find a collection of k-subsets of {1, . . . , n}
containing each t-element set exactly once.
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For t = 2 this was proved in celebrated work of R.M. Wilson in the early 1970’s, but
there was really nothing between Wilson and Keevash that could be called serious
progress on this basic problem; indeed—perhaps most strikingly—for t ≥ 6 not a
single example of such a collection was known to exist.

Keevash’s work, based on a new notion of “randomized algebraic construction,”
was a complete departure from the methods that have dominated design theory for
the last forty years. (Recent times have seen a number of such examples; that is, of
celebrated problems that had usually been attacked by other methods succumbing
to ideas more prevalent in the community at the heart of the present meeting.)

The formidable work of Kühn et al. goes well beyond Keevash, whose approach
already encompasses much more than the Existence Conjecture (as indeed it must
to succeed). Here the algebraic aspects of Keevash are replaced by a highly so-
phisticated (“iterative”) version of the “absorbing method” of Rödl, Ruciński and
Szemerédi, and the work may be considered a sort of culmination (at least to date)
in the development of this powerful approach. A description of even a representa-
tive subset of the new results seems infeasible for the present summary. The new,
more purely combinatorial approach provides considerable flexibility that looks
sure to lead to many further developments.

As always, and on behalf of all participants, the organizers would like to thank
the staff and the director of the Mathematisches Forschungsinstitut Oberwolfach
for providing such a stimulating and inspiring atmosphere.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Equiangular lines and spherical codes

Igor Balla

(joint work with F. Draxler, P. Keevash, and B. Sudakov)

1. Introduction

A set of lines through the origin in Rn is called equiangular if any pair of lines
defines the same angle. Equiangular sets of lines appear naturally in various areas
of mathematics. In elliptic geometry, they correspond to equilateral sets of points,
or, in other words, to regular simplexes [7]. In frame theory, so-called optimal
Grassmannian frames form equiangular sets of lines [8]. In the theory of polytopes,
the convex hull of the points of intersection of an equiangular set of lines with the
unit sphere is a spherical polytope of some kind of regularity [3].

It is therefore a natural question to determine the maximum cardinality N(n)
of an equiangular set of lines in Rn. This is considered to be one of the founding
problems of algebraic graph theory, see e.g. [6, p. 249]. It was first studied by
Haantjes [7] in 1948, who showed that N(3) = N(4) = 6 and that an optimal
configuration in 3 (and 4) dimensions is given by the 6 diagonals of a convex
regular icosahedron. In 1966, van Lint and Seidel [10] formally posed the problem
of determining N(n) for all positive integers n.

A general upper bound of
(

n+1
2

)

on N(n) was established by Gerzon, see [9]. In
dimensions 2 and 3 this gives upper bounds of 3 and 6, respectively, matching the
actual maxima. In R7, the above bound shows N(7) ≤ 28. This can be achieved
by considering the set of all 28 permutations of the vector (1,1,1,1,1,1,-3,-3) [10].
It is also known that there is an equiangular set of 276 lines in R23, see e.g. [9],
which again matches Gerzon’s bound. Strikingly, these four examples are the only
known ones to match his bound. In fact, for a long time it was even an open
problem to determine whether n2 is the correct order of magnitude. In 2000, de
Caen [2] constructed a set of 2(n+ 1)2/9 equiangular lines in Rn for all n of the
form 3 · 22t−1 − 1.

Interestingly, all known examples of size Θ(n2) have a common angle on the
order of arccos(1/

√
n). On the other hand, all known construction of equiangular

lines with a fixed common angle have much smaller size. It is therefore natural
to consider the maximum number Nα(n) of equiangular lines in Rn with common
angle arccosα, where α does not depend on dimension. This question was first
raised by Lemmens and Seidel [9] in 1973, who showed that for sufficiently large
n, N1/3(n) = 2n− 2 and also conjectured that N1/5(n) equals ⌊3(n− 1)/2⌋. This
conjecture was later confirmed by Neumaier [11]. Interest in the case where 1/α
is an odd integer was due to a general result of Neumann [9, p. 498], who proved
that if Nα(n) ≥ 2n, then 1/α is an odd integer.

Despite active research on this problem, for many years these were the best
results known. Recently, Bukh [1] made important progress by showing that
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Nα(n) ≤ cαn, where cα = 2O(1/α2) is a large constant only depending on α. We
completely resolve the question of maximizing Nα(n) over constant α, showing
that for sufficiently large n, Nα(n) is maximized at α = 1

3 .

Theorem 1. Fix α ∈ (0, 1). For n sufficiently large relative to α, the number of
equiangular lines in Rn with angle arccosα is bounded by 2n− 2 if α = 1

3 and by
1.93n otherwise.

A more general setting than that of equiangular lines is the framework of spher-
ical L-codes, introduced in a seminal paper by Delsarte, Goethals and Seidel [5] in
1977 and extensively studied since.

Definition 2. Let L be a subset of the interval [−1, 1). A finite non-empty set C
of unit vectors in Euclidean space Rn is called a spherical L-code, or for short an
L-code, if 〈x, y〉 ∈ L for any pair of distinct vectors x, y in C.

Note that if L = {±α} where α ∈ [0, 1), then an L-code corresponds to a
set of equiangular lines with common angle arccosα. For L = [−1, β], finding
the maximum cardinality of an L-code is equivalent to the classical problem of
packing spherical caps of angular radius 1

2 arccosβ on the sphere. Generalising
Gerzon’s result, Delsarte, Goethals and Seidel [4] obtained bounds on the car-
dinality of sets of lines having k distinct angles. That is, they proved that, for
L = {−α1, . . . ,−αk, α1, . . . , αk} and α1, . . . , αk ∈ [0, 1), spherical L-codes have
size at most O(n2k). They subsequently extended this result to an upper bound
of O(n|L|) on the size of any L-code [5].

Bukh [1] observed that, in some sense, the negative values of L pose less of
a constraint on the size of L-codes than the positive ones, as long as they are
separated away from 0. Specifically, he proved that for L = [−1,−β]∪ {α}, where
β ∈ (0, 1) is fixed, the size of any L-code is at most linear in the dimension.
Motivated by the above-mentioned work of Delsarte, Goethals and Seidel [4] Bukh
made an analogous conjecture for [−1,−β] ∪ {α1, . . . , αk}-codes, which we verify
as follows.

Theorem 3. Let L = [−1,−β] ∪ {α1, . . . , αk} for some fixed β ∈ (0, 1]. Then
there exists a constant cβ,k such that any spherical L-code in Rn has size at most
cβ,kn

k. Moreover, if 0 ≤ α1 < . . . < αk < 1 are also fixed then such a code has
size at most

2k(k − 1)!
(

1 +
α1

β

)

nk + o(nk).

In particular, if α1, . . . , αk are fixed this substantially improves the aforemen-
tioned bound of Delsarte, Goethals and Seidel [4, 5] from O(n2k) to O(nk). We
furthermore show that the second statement of Theorem 2 is tight up to a constant
factor.

Theorem 4. Let n, k, r be positive integers and α1 ∈ (0, 1) with k and α1 being

fixed and r ≤ √
n. Then there exist α2, . . . , αk, β = α1/r − O(

√

log(n)/n) and a

spherical L-code of size (1 + r)
(

n
k

)

in Rn+r with L = [−1,−β] ∪ {α1, . . . , αk}.
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2. Open problems

If α = 1/(2r − 1) for some positive integer r, one can construct an equiangular
set of r⌊(n − 1)/(r − 1)⌋ lines with angle arccos(1/(2r − 1)). For r = 2 [10] and
r = 3 [11], these are the extremal constructions. This motivates the following
conjecture, which was also raised by Bukh [1].

Conjecture 5. Let r ≥ 2 be a positive integer. Then, for sufficiently large n,

N 1
2r−1

(n) =
r(n− 1)

r − 1
+O(1).

If α is not of the above form, there aren’t any known constructions with more than
(1 + o(1))n lines.

For a set of lines attaining k prescribed angles, we have the general bound of
O(n2k) by Delsarte, Goethals and Seidel [4]. The constructions of Ω(n2) equian-
gular lines shows that this bound is the correct order of magnitude for k = 1.
However, no constructions of size Ω(n2k) are known for k ≥ 2.

Theorem 3 shows that spherical [−1, 0)∪{α}-codes in Rn with α fixed can have
size at least n3/2−ǫ, answering a question of Bukh [1]. On the other hand, we can
show that such codes have size at most O(n2). However, if we allow α to depend
on n, then no upper bound is known and the best construction we have is just
that of equiangular lines with size Ω(n2). Since [−1, 0)-codes and {α}-codes in Rn

both have size at most n+ 1, it is plausible to conjecture that [−1, 0)∪ {α}-codes
have size at most O(n2).
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On the number of points in general position in the plane

József Balogh

(joint work with J. Solymosi)

We say that a set of n ≥ d + 1 points on the Euclidean space Rd is in general
position if no hyperplane contains d+ 1 points. One might expect that if in a set
no hyperplane contains d + 2 points then a large subset of the n points can be
selected such that the points of this subset are in general position. Determining
that in the worse case how many points in general position could be chosen -
like many other similar problems - was initiated by Paul Erdős [6, 8]. Here, we
consider only the planar (d = 2) case, the method can be easily extended for higher
dimsenion. The best known upper and lower bounds are far from each other and
even a sublinear upper bound was hard to achieve. Our primary goal is to prove
the existence of a better construction for the upper bound.

Füredi [9] proved the lower bound c·√n logn using a general result of Phelps and
Rödl [15], who gave a lower bound on the independence number of partial Steiner
Systems. Füredi [9] proved o(n) upper bound using the Density Hales-Jewett
Theorem (DHJ) of Katznelson and Furstenberg [10,11]. In this application Füredi
takes a random (generic) projection of the combinatorial cube of the combinatorial
space {1, 2, 3}N to the plane. This point set has no colinear four-tuple, however
for any δ > 0, if N is large enough then any subset of points of size at least δ · 3N
contains a colinear triple, a projection of a combinatorial line. The best known
bound for DHJ follows from a recent proof by D.H.J. Polymath [16]. A subset of
{1, 2, 3}N of density δ contains a combinatorial line if N is at least a tower of 2’s
of height O(1/δ3). We improve the upper bound of Füredi [9].

Theorem 1. As n goes to infinity, there exists a point set containing no four
points in a line such that its every subset of size n5/6+o(1) contains three points on
a line.

Proof. (sketch) We start with [m]3, the 3-dimensional integer grid with side-
length m. Then we sparsen this point set, we keep each point with probability
p = 1

n log1/2 n
. From each of the colinear 4-tuples of the random point set we remove

a point, yielding a point set without a colinear 4-tuple. An elementary argument
gives that most of the points are not removed. With a random generic projection
we map the points into the plan. With high probability we keep colinear point
tuples colinear, and we will not create new colinear point tuples. The heart of
the argument is to prove that these n ≈ m3p points satisfy the condition of the
theorem.

We will use the method of hypergraph containers for the proof. This useful
method was recently introduced independently by Balogh, Morris and Samotij [4],
and by Saxton and Thomason [18]. Roughly speaking, it says that if a hypergraph
H has a uniform edge distribution, then one can find a relatively small collection of
sets, containers, covering all independent sets in H. One can also require that the
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container sets span few edges only. In our applications this later condition guar-
antees that all container sets are small. Our geometric construction determines a
hypergraph where all large subsets contain an edge (e.g. a collinear triple). It is
far from being clear, if 5/6 is the right constant in the exponent, however it could
be that the point set that we constructed is close to be best possible, at least it
should be close to be optimal, and only the limitation of our method is the reason
that we cannot determine it.

We refer the readers to [2–4, 18] for more details and applications on the con-
tainer method. The detailed proof of the theorem appears in [5]. Q.E.D.

The ε-nets are important concepts in computational geometry and approxima-
tion theory in computer science. On a base set A of n elements and a family of
subsets F ⊂ 2A a set E ⊂ A is an ε-net if for every B ∈ F if |B| ≥ εn then
E ∩B 6= ∅. It is expected that if F has low complexity then one can find a small
ε-net. In their seminal paper Haussler and Welzl [12] proved that for any range
space with VC-dimension d, there is an ε-net of size O((d/ε) log (d/ε)). Here we
are concerned with a special case. Answering a question by Matoušek, Seidel, and
Welzl [13], Alon [1] proved that the minimum possible size of an ε-net for point
objects and line ranges in the plane is super-linear in 1/ε. Alon used the density
Hales-Jewett theorem for the construction, so his bound was just enough to break
linearity. Alon conjectured that the upper bound is close to the truth. We cannot
quite answer determine the correct function, however we are able to give a bet-

ter lower bound, (1/ε) log1/3−o(1) (1/ε), for the range space of lines. Our proof is
somewhat similar in soul to the proof of Theorem 1, but different in many ways.
We consider a different grid, and apply the container method somewhat different
way.

Note that the container method was applied in a similar way in the graph set-
ting [14] and [26], and in additive combinatorics [2], and there are several more
recent papers, here we just listed the ones which were motivating our work. The
merit of our work is that we have realized that this machinery is useful in dis-
crete geometry. Given this method, still it is possible that better results could be
obtained, in case someone was able to find more useful hypergraphs, or prove a
variant of a container theorem taylored to these particular hypergraphs.

1. Acknowledgements
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Permanents and complex zeros

Alexander Barvinok

The permanent of an n× n complex matrix A = (aij) is defined as

perA =
∑

σ∈Sn

n
∏

i=1

aiσ(i),

where Sn is the symmetric group of all permutations of the set {1, . . . , n}.

Theorem 1. If A = (aij) is an n× n complex matrix such that

|1 − aij | ≤ 0.5 for all i, j

then perA 6= 0.

Theorem 1 implies
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Theorem 2. If A = (aij) is an n× n complex matrix such that

|1 − aij | ≤ 0.49 for all i, j

then, for any 0 < ǫ < 1, the value of ln perA is approximated within an additive
error ǫ in nO(lnn−ln ǫ) time by a polynomial of degree O(lnn− ln ǫ) in the entries
aij of A.

Theorem 3. If A = (aij) is an n× n complex matrix such that

δ ≤ ℜ aij ≤ 1 and |ℑ aij | ≤ 1

2
δ2 for all i, j

and some 0 < δ ≤ 1 then perA 6= 0.

Theorem 3 implies

Theorem 4. If A = (aij) is an n× n real matrix such that

δ ≤ aij ≤ 1 for all i, j

and some 0 < δ ≤ 1 then, for any 0 < ǫ < 1, the value of ln perA is approximated
within an additive error ǫ in nOδ(lnn−ln ǫ) time by a polynomial of degree Oδ(lnn−
ln ǫ) in the entries aij of A.

The implications Theorem 1 =⇒ Theorem 2 and Theorem 3 =⇒ Theorem 4
illustrate a general principle: if a combinatorially defined polynomial p : Cn −→ C

(such as the permanent or the hafnian of a matrix, the multi-dimensional perma-
nent of a tensor, the independence polynomial of a graph, etc.) has no zeros in
a domain Ω ⊂ Cn then it can be efficiently approximated in a slightly smaller
domain Ω′ ⊂ Ω.
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One-sided epsilon-approximants

Boris Bukh

(joint work with G. Nivasch)

A common theme in mathematics is approximation of large, complicated objects
by smaller, simpler objects. This paper proposes a new notion of approximation in
combinatorial geometry, which we call one-sided ε-approximants. It is a notion of
approximation that is in strength between ε-approximants and ε-nets. We recall
these two notions first.

Let P ⊂ Rd be a finite set, and F ⊂ 2R
d

a family of sets in Rd. In applications,
the family F is usually a geometrically natural family, such as the family of all
halfspaces, the family of all simplices, or the family of all convex sets. A finite set
A ⊂ Rd is called an ε-approximant for P with respect to F if

∣

∣

∣

∣

|C ∩ P |
|P | − |C ∩ A|

|A|

∣

∣

∣

∣

≤ ε for all C ∈ F .
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The notion of an ε-approximant was introduced by Vapnik and Chervonenkis [6]
in the context of statistical learning theory. They associated to each family F a
number VC-dim(F) ∈ {1, 2, 3, . . . ,∞}, which has become known as VC dimen-
sion, and proved that if VC-dim(F) < ∞, then every set P admits an ε-approx-
imant A of size |A| ≤ CVC-dim(F)ε

−2, a bound which does not depend on the
size of P . The ε-approximants that they constructed had the additional property
that A ⊂ P . Following tradition, we say that A is a strong ε-approximant if
A ⊂ P . When we wish to emphasize that our ε-approximants are not necessarily
subsets of P , we call them weak ε-approximants. The bound has been improved to
|A| ≤ CVC-dim(F)ε

−2+2/(VC-dim(F)+1) (see [4, Theorem 1.2] and [5, Exercise 5.2.7])
which is optimal [2].

In a geometric context, Haussler and Welzl [3] introduced ε-nets. With P and
F as above, a set N is called an ε-net for P with respect to F if

|C ∩ P |
|P | > ε =⇒ C ∩N 6= ∅ for all C ∈ F .

An ε-approximant is an ε-net, but not conversely. While an ε-net is a weaker
notion of approximation, its advantage over an ε-approximant is that every set P
admits an ε-net of size only CVC-dim(F)ε

−1 log ε−1, which is smaller than the bound
for the ε-approximants. The ε-nets constructed by Haussler and Welzl are also
strong, i.e., they satisfy N ⊂ P .

Most geometrically important families F have a bounded VC dimension. A
notable exception is the family Fconv of all convex sets. Indeed, it is easy to see
that a set of n points in convex position does not admit any strong ε-net of size
smaller than (1 − ε)n with respect to Fconv. Alon, Bárány Füredi, and Kleitman
[1] showed that for every P ⊂ Rd there exists a (weak) ε-net of size bounded solely
by a function of ε and d. No extension of their result to ε-approximants is possible.

Proposition 1. If P ⊂ R2 is a set of n points in convex position, then every
ε-approximant with respect to Fconv has size at least n(14 − ε/2).

Proof. Let p1, p2, . . . , pn be the enumeration of the vertices of P in clockwise order
along the convex hull of P . For i = 1, . . . , ⌊(n − 1)/2⌋ write Ti for the triangle

p2i−1, p2i, p2i+1. Suppose A ⊂ R2 is an ε-approximant for P . Let I
def

= {i :
Ti ∩ A = ∅}. Note that |I| ≥ n/2 − 2|A| − 1 since each point of A lies in at most

two triangles. Define S
def

= {p1, p3, p5, . . . } to be the odd-numbered points, and let

S′ def

= S ∪ {p2i : i ∈ I}. Let C
def

= convS and C′ def

= convS′. Then C ∩A = C′ ∩A,
but |C′ ∩ P |/|P | − |C ∩ P |/|P | = |I|/|P | > ε if |A| < |P |(14 − ε/2). �

In light of Proposition 1, we introduce a new concept. A multiset A ⊂ Rd is a
one-sided ε-approximant for P with respect to the family F if

|C ∩ P |
|P | − |C ∩ A|

|A| ≤ ε for all C ∈ F .
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In other words, if C ∈ F , then C might contain many more points of A than
expected, but never much fewer. It is clear that an ε-approximant is a one-sided
ε-approximant, and that a one-sided ε-approximant is an ε-net.

Our main result shows that allowing one-sided errors is enough to sidestep the
pessimistic Proposition 1.

Theorem 2. Let P ⊂ Rd be a finite set, and let ε ∈ (0, 1] be a real number. Then
P admits a one-sided ε-approximant with respect to Fconv of size at most g(ε, d),
for some g that depends only on ε and on d.

Unfortunately, due to the use of a geometric Ramsey theorem, our bound on g
is very weak:

g(ε, d) ≤ twd

(

ε−c
)

for some constant c > 1 that depends only on d, where the tower function is given

by tw1(x)
def

= x and twi+1(x)
def

= 2twi(x). We believe this bound to be very far from
sharp.
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Induced subgraphs and chromatic number

Maria Chudnovsky

(joint work with A. Scott, P. Seymour, and S. Spirkl)

Let G be a graph. The clique number of G is the size of the largest set of pairwise
adjacent vertices, and the chromatic number is the smallest number k such that
the vertices of G can be colored with k colors and no two adjacent vertices receive
the same color. The clique number of G is denoted by ω(G), and the chromatic
number by χ(G). Clearly χ(G) ≥ ω(G), and an interesting question is what can
be said about bounding the chromatic number from above by a function of the
clique number.

It turns out that in general no such bound exists, because of the following result
of [3].

http://www.tau.ac.il/~nogaa/PDFS/abfk3.pdf
http://mi.mathnet.ru/tvp2146
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Theorem 1. For every g, k > 0 there exists a graph with chromatic number at
least k and with no cycle of length less than g.

Let C be a class of graphs closed under taking induced subgraphs. We say that
C is χ-bounded if there exists a function fC : N → N such that for every graph
G ∈ C χ(G) ≤ fC(ω(G)). We call such fC a χ-bounding function for C. For a graph
H , G is said to be H-free if G has no induced subgraph isomorphic to H . What
can be said in this context about H-free graphs? Theorem 1 implies:

Theorem 2. If the class of H-free graph is χ-bounded, then H is a forest.

The converse of Theorem 2 is a well-known conjecture [4, 7]:

Conjecture 3. For every forest H there exists a function fH such that χ(G) ≤
fH(G) for every H-free graph G.

Very little is known to-date about Conjecture 3, but the case where H is a path
was proved in [4]. To solve this special case a technique was developed, to which
we now refer as “building a Gyárfás path”. The idea is to construct an induced
path in the graph, that starts at an arbitrary vertex, chips off pieces of the graph,
each of which has small chromatic number, and advances in the direction of the
“unexplored” part of the graph (that still has large chromatic number).

Here is another angle on χ-boundedness: what if induced cycles of certain
lengths are forbidden? This is promising because of the next result, known as The
Strong Perfect Graph Theorem [1]. For a graph G, the complement Gc of G is the
graph with vertex set V (G), and such that uv ∈ E(Gc) if and only if uv 6∈ E(G).
The parity of a cycle C is the parity of |V (C)|; thus a cycle can be odd or even.

Theorem 4. Let C be the class of graphs G with no induced cycles of odd length
at least five in G, and none in Gc. Then the function f(x) = x is a χ-bounding
function for C.

In [5] three conjecture were made, in the spirit of Theorem 4, but without
mentioning complements:

Conjecture 5. The class of graphs with no odd induced cycles of length at least
five is χ-bounded.

Conjecture 6. For every l, the class of graphs with no induced cycles of length
at least l is χ-bounded.

Conjecture 7. For every l, the class of graphs with no odd induced cycles of
length at least l is χ-bounded.

Conjecture 5 was proved in [10], and Conjecture 6 in [2]. Recently we were
able to prove Conjecture 7. The proof has two main parts. In the first part we
assume that for every vertex v of G, the subgraph of G induced by the vertices
at distance at most two from v has bounded chromatic number. In this case we
construct a Gyárfás path P of length l, that can be completed to induced cycles
of two different parities (constructing the completions in the new insight in our
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proof, that was missing until now). Having dealt with this case, we can assume
that for every graph with no long odd induced cycle, and with small ω and large
χ, there is a vertex v whose second neighborhood (the vertices at distance exactly
two from v) induces a graph with large chromatic number. Now we follow ideas
from [2], repeatedly extracting such vertices v. This process allows us to either
build an induced subdivision of a large complete bipartite graph in G (which we
use to construct a long induced path that can then be completed to induced cycles
of different parities), or build a vast variety of induced subgraphs in G, including
cycles of any length.
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Universality-type results in random graphs

David Conlon

(joint work with A. Ferber, R. Nenadov, and N. Škorić)

Given a family of graphs H, a graph G is said to be H-universal if it contains
every graph in H as a subgraph. For H = H(n,∆), the class of graphs with at
most n vertices and maximum degree at most ∆, a result of Alon and Capalbo [1]
shows that there are universal graphs with O(n2−2/∆), a result which is sharp up
to the implied constant. In this talk, we explore the extent to which the binomial
random graph G(n, p) may be used as a universal graph for H(n,∆).

In particular, we discuss the proof of the following theorem, due to the speaker,
Ferber, Nenadov and Škorić [3].

Theorem 1. For any constant ǫ > 0 and integer ∆ ≥ 3, the random graph G(n, p)

is a.a.s. universal for the family H((1 − ǫ)n,∆), provided that p≫ n− 1
∆−1 log5 n.

This improves a result of Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Sze-
merédi [2], who proved the analogous statement for p ≥ c∆,ǫ(logn/n)1/∆. This
latter probability serves as a natural boundary for problems involving the embed-
ding of large graphs with maximum degree ∆, since it is the lowest probability at
which one can expect that every collection of ∆ distinct vertices will have many
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common neighbours, a property that facilitates a greedy embedding strategy. Go-
ing below this probability introduces significant difficulties.

We also discuss a resilient version of this theorem, due to the speaker and
Nenadov [4]. We say that a graph G is H-Ramsey-universal if every two-colouring
of the edges of G contains a colour class which is H-universal. For this concept,
our main result, concerns F(n,∆), the class of triangle-free graphs with at most
n vertices and maximum degree at most ∆.

Theorem 2. For any integer ∆ ≥ 5, there exist constants B ∈ N and C > 0 such

that if N = Bn and p = p(N) ≥ (C logN/N)
1

∆−1/2 then G(N, p) is a.a.s. F(n,∆)-
Ramsey-universal.

This improves a result of Kohayakawa, Rödl, Schacht and Szemerédi [5], who
again proved an analogous result for p ≥ c∆(logn/n)1/∆. However, the cost of
bypassing their bound is that we have to restrict to F(n,∆), the class of triangle-
free graphs in H(n,∆), a restriction not required in [5]. It would be very interesting
to remove this caveat from our work.
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On a resilience Littlewood-Offord problem

Asaf Ferber

(joint work with A. Bandeira and M. Kwan)

Let a = (ai)
n
i=1 be a fixed sequence of nonzero real numbers, and for a sequence

of i.i.d. (independent, identically distributed) Rademacher random variables ξ =
(ξi)

n
i=1 (meaning Pr[ξi = 1] = Pr[ξi = −1] = 1/2), define the random sum

X = Xa (ξ) =

n
∑

i=1

aiξi.

Sums of this form are ubiquitous in probability theory. For example, X can be
interpreted as the outcome of an unbiased random walk with step sizes given by a.
The central limit theorem asserts that if the ai are all equal then X asymptotically
has a normal distribution. More flexible variants of the central limit theorem allow
the ai to differ to an extent, and give quantitative control of the distribution of
X . An important example is the Berry-Esseen theorem [1, 4], which gives an
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estimate for the probability that X lies in a given interval, comparing it to the
corresponding probability for an appropriately scaled normal distribution (we give
a precise statement, adapted to our context, later in the paper). The Berry-Esseen
theorem is effective when the ai are of the same order of magnitude, in which case
it can be used to easily deduce the estimate

Pr [X = x] = O

(

1√
n

)

for any x. Qualitatively, it guarantees that X is unlikely to be concentrated on
any particular value (X is anti-concentrated).

Over half a century ago, in connection with their study of random polynomi-
als, Littlewood and Offord [6] considered anti-concentration in the general setting
where no assumption is made on a, other than that its entries being nonzero. The
classical result of Littlewood and Offord [6] strengthened by Erdős [2] states that
for any a, for all x ∈ R we have

Pr [X = x] ≤
(

n

⌊n/2⌋

)/

2n = O

(

1√
n

)

,

which is sharp for the sequence a = (1, 1, . . . , 1). This result is particularly re-
markable due to the fact that if one does not assume anything about ai, then the
distribution of X may be far from normal and Berry-Esseen type bounds may no
longer be meaningful.

Since the Littlewood-Offord problem was first introduced, many variants of
it have been addressed; one particularly interesting line of research involves the
relationship between the structure of a and the resulting concentration probability
maxx Pr [X = x].

Erdős and Moser [3] and Sárközy and Szemerédi [10] considered the case where
the ai are all distinct, and showed that the stronger bound Pr [X = x] = O

(

n−3/2
)

holds. Halász [5] gave even stronger bounds for sequences which are “arithmetically
unstructured” in an appropriate sense. More recently, Tao and Vu [12, 13] and
Nguyen and Vu [8] investigated the inverse problem of characterizing the arithmetic
structure of a given the concentration probability maxx Pr [X = x].

Many fruitful connections have been found between Littlewood-Offord-type
problems and various areas of mathematics. In particular, Littlewood-Offord-type
theorems are essential tools in some of the landmark results in random matrix the-
ory (see for example [11, 12]). In particular, the Littlewood-Offord theorem gives
an upper bound on the probability that a particular row of a random ±1 matrix is
orthogonal to a given vector, and can thus be used to bound the probability that
a Bernoulli random matrix is singular.

In this talk we are interested in studying a “resilience” version of the Littlewood-
Offord problem. Given a sequence a ∈ (R \ {0})n and a real number x ∈ R, we
know that most sequences ξ ∈ {−1, 1}n do not satisfy the event {X (ξ) = x}.
We are interested in understanding whether most sequences ξ are “far” from this
event. In order to make this question precise we need a few definitions. Given two
sequences ξ, ξ′ ∈ {−1, 1}n we define d (ξ, ξ′) to be the Hamming distance between
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ξ and ξ′ (that is, d (ξ, ξ′) denotes the number of coordinates in which ξ and ξ′

differ). If S ⊂ {−1, 1}n is a subset of the hypercube we further define d (ξ, S)
as the minimum Hamming distance from ξ to a point in S. Finally, for a fixed
sequence a of non-zero reals and ξ ∈ {−1, 1}n, let us define

Rx (ξ) := Ra
x (ξ) = d

(

ξ,X−1 (x)
)

,

which is the minimum number of signs one needs to change in ξ in order to satisfy
X = x. We refer to Rx(ξ) as the resilience of ξ with respect to the event {X 6= x},
and if Rx > k we say ξ is k-resilient (for completeness, if one cannot obtain x at
all then we set Rx(ξ) = ∞).

We prove an optimal result (both lower and upper bounds), showing that whp
Rx(ξ) = (1 + o(1)) log3 logn.
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Arithmetic progressions, regularity, and removal

Jacob Fox

(joint work with L. M. Lovasz, H. T. Phan, and Y. Zhao)

Szemerédi’s regularity lemma [28] and its variants are some of the most powerful
tools in combinatorics. Szemerédi used an early version in the proof of his cele-
brated theorem extending Roth’s theorem to arithmetic progressions of any given
length. The regularity lemma roughly says that the vertex set of every graph can
be partitioned into a small number of parts such for most of the pairs of parts, the
induced bipartite subgraph between the pair is pseudorandom.

Green [16] developed an arithmetic regularity lemma and used it to prove two
extensions of Roth’s theorem, known as the arithmetic removal lemma and the
popular differences theorem. A triangle in Fn

p is a triple a, b, c of elements with
a+b+c = 0. The first theorem is known as the arithmetic triangle removal lemma,
as it is an arithmetic analogue of the triangle removal lemma.

Theorem 1 (Green [16]). For each ǫ > 0 and prime p there is δ = δ(ǫ, p) > 0
such that if A,B,C ⊂ Fn

p with at most δp2n triangles in A× B × C, then we can
remove at most ǫpn elements from A,B,C and remove all triangles.

A random subset A of Fn
p of density α almost surely satisfies that for every

nonzero d ∈ Fn
p , the density of three-term arithmetic progressions with common

difference d that are in A is close to α3. For p = 3, Edel’s construction [8] shows
that there are sets with density α whose density of three-term arithmetic progres-
sions is O(α4.63), which is much smaller than the random bound, α3. However, the
following theorem of Green [16], answering a question of Bergelson, Host, and Kra
[1], shows that there is a nonzero d for which the density of three-term arithmetic
progressions with common difference d is at least almost the random bound, α3.

Theorem 2 (Green [16]). For each ǫ > 0 and prime p there is a least positive
integer np(ǫ) such that the following holds. For each n ≥ np(ǫ) and every subset A
of Fn

p with density α, there is a nonzero d in Fn
p such that the density of three-term

arithmetic progressions with common difference d that are in A is at least α3 − ǫ.

A major drawback in applying the graph regularity lemma of Szemerédi or the
arithmetic regularity lemma of Green is that the bound on the number of parts is
enormous as a function of the approximation parameter ǫ (the bound is a tower of
twos of height ǫ−O(1)). This gives seemingly weak bounds for the various applica-
tions. That such a huge bound is necessary in Szemerédi’s regularity lemma was
proved by Gowers [17] using a probabilistic construction. Later, Conlon and Fox
[4], Moshkovitz and Shapira [25], and Fox and Lovász [11] gave improvements on
various aspects. Similarly, Green [16] showed that a tower-type bound is neccesary
in the arithmetic regularity lemma, and Hosseini et al. [20] improved the tower
lower bound to height ǫ−Ω(1).

While a tower-type bound is known to be necessary for these regularity lemmas,
for the various applications, it was generally believed that much better bounds
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should hold, and this would be shown by developing alternative techniques to the
regularity method. This turned out to be the case for many such applications. A
few examples include Gowers’ influential proof of Szemerédi’s theorem [18] which
introduced higher Fourier analysis, new bounds on Ramsey numbers of sparse
graphs (see [5] and [23] and their references) using the greedy embedding method
or dependent random choice, certain applications in extremal graph theory using
the absorption method [26], [24], and the first author’s proof of the graph removal
lemma [10]. Prior to this work, no known application required the tower-type
bound coming from applying a regularity lemma.

Green’s proof of the arithmetic removal lemma, Theorem 1, used the arithmetic
regularity lemma, giving a bound on 1/δ which is a tower of twos of height poly-
nomial in 1/ǫ. Král’, Serra, and Vena [22] showed that the arithmetic triangle
removal lemma follows from the triangle removal lemma for graphs. Green’s proof
shows the result further holds in any abelian group, and the Král’-Serra-Vena proof
shows that an analogue holds in any group.

Green [16] posed the problem of improving the quantitative bounds on the
arithmetic triangle removal lemma, and, in particular, asked whether a polyno-
mial bound holds. Green’s problem has received considerable attention by many
researchers and was featured in more than a dozen papers. This is in part due to its
applications and connections to several major problems in number theory, combi-
natorics, and computer science. The previous best known bound for the arithmetic
triangle removal lemma came from the improved bound on the triangle removal
lemma for graphs [10] together with the Král’-Serra-Vena reduction. It gives a
bound on 1/δ in the arithmetic triangle removal lemma which is a tower of twos
of height logarithmic in 1/ǫ, see [10] for details. An alternative, Fourier-analytic
proof of this bound in the case when p = 2 was given by Hatami, Sachdeva, and
Tulsiani [19]. Prior to this work, this tower-type bound was the best known bound
for the arithmetic triangle removal lemma.

In the case p = 2, obtaining better upper bounds for δ has also received much
attention due in part to its close connection to property testing, and, in particular,
testing triangle-freeness. Bhattacharyya and Xie [2] were the first to give a non-
trivial upper bound on δ. Fu and Kleinberg [15] provided a simple construction
showing that δ ≤ ǫC2−o(1), where C2 ≈ 13.239 is defined below. It is based on
a construction from Coppersmith and Winograd’s famous matrix multiplication
algorithm [6]. It was widely conjectured that the exponent in the bound is not
optimal (and that the bound is perhaps even superpolynomial).

We solve Green’s problem by proving an essentially tight bound for the arith-
metic triangle removal lemma in vector spaces over finite fields. We show that
a polynomial bound holds, and further determine the best possible exponent for
every prime p. It involves, for every p, constants cp which will be between 0
and 1 and will be defined below, and Cp = 1 + 1/cp. In particular, we have1

c2 = 5/3 − log 3 ≈ .0817 and C2 = 1 + 1/c2 ≈ 13.239 as in Fu and Kleinberg [15],

1Here, and throughout, all logarithms are base 2.
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and c3 = 1 − log b
log 3 , where b = a−2/3 + a1/3 + a4/3, and a =

√
33−1
8 . This gives

c3 ≈ .0775, and C3 ≈ 13.901.

Theorem 3. [Fox and Lovász [12]] Let 0 < ǫ ≤ 1/2 and δ = (ǫ/3)Cp. If A,B,C ⊂
Fn
p with less than δN2 triangles in A × B × C, then we can remove ǫN elements

from A ∪ B ∪ C so that no triangle remains. Furthermore, this bound is tight in
that we must have δ ≤ ǫCp−o(1).

Theorem 3 appears in [12] and uses recent breakthroughs on the cap set problem
by Croot, Lev, and Pach [7], Ellenberg and Gijswijt [9] and its generalization to the
multicolored sum-free problem by Blasiak et al. [3], Alon, and Kleinberg, Sawin,
and Speyer [21] together with probabilitistic and combinatorial arguments.

With Pham [13], we recently determined tight tower-type bounds for Green’s
theorem on popular progression differences, Theorem 2, which is tight up to an
absolute constant factor for p fixed. We prove lower and upper bounds on the nec-
essary dimension which grow as an exponential tower of twos of height Θ(log(1/ǫ)).
Note that this is the first application of a regularity lemma for which the tower-
type bound that come from using the regularity lemma is necessary.

Theorem 4 (Fox-Pham [13]). Recall np(ǫ) is the least positive integer such that the
following holds. For each n ≥ np(ǫ) and every subset A of Fn

p with density α, there
is a nonzero d ∈ Fn

p such that the density of three-term arithmetic progressions with

common difference d that are in A is at least α3 − ǫ. For ǫ < 2−500p−8, we have
np(ǫ) grows as an exponential tower of p’s of height Θ(log(1/ǫ)).

We further determine for p ≥ 19 and β < α3 the correct tower height, up
to an absolute constant factor and an additive constant depending on p, of the
minimum dimension n needed to guarantee that for any subset of Fn

p of density
α there is a nonzero d such that the density of three-term arithmetic progressions
with common difference d is at least β. In particular, to obtain half the random
bound (when β = α3/2), we get the dimension we need to guarantee such a d
grows as a tower of twos of height proportional to (log p) log log(1/α).

In joint work with Zhao [14], we extend Theorem 4 to general abelian groups.
This required new ideas to overcome challenges related to the lack of subgroups
in the general setting. For the upper bound, we extend our arguments to work for
Fourier analysis on Bohr sets. For the lower bound, new construction ideas.

References

[1] V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, with an appendix

by Imre Ruzsa, Invent. Math. 160 (2005), 261–303.
[2] A. Bhattacharyya and N. Xie, Lower bounds for testing triangle-freeness in Boolean func-

tions, Comput. Complexity 24 (2015), 65–101.
[3] J. Blasiak, T. Church, H. Cohn, J. Grochow, E. Naslund, W. Sawin, and C. Umans, On cap

sets and the group-theoretic approach to matrix multiplication, Discrete Analysis 2017:3,
27pp.

[4] D. Conlon and J. Fox, Bounds for graph regularity and removal lemmas, Geom. Funct. Anal.
22 (2012), 1191–256.



28 Oberwolfach Report 1/2017

[5] D. Conlon, J. Fox, and B. Sudakov, On two problems in graph Ramsey theory, Combinatorica
32 (2012), 513–535.

[6] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.
Symbolic Comput. 9 (1990), 251–280.

[7] E. Croot, V. F. Lev, and P. P. Pach, Progression-free sets in Zn
4

are exponentially small,
Annals of Math. 185 (2017), 331–337.

[8] Y. Edel, Extensions of generalized product caps, Designs, Codes and Cryptography 31

(2004), 5–14.
[9] J. S. Ellenberg andD. Gijswijt, On large subsets of Fn

q with no three-term arithmetic pro-

gression, Annals of Math. 185 (2017), 339–343.
[10] J. Fox, A new proof of the graph removal lemma, Annals of Math. 174 (2011), 561–579.
[11] J. Fox and L. M. Lovász, A tight bound for Szemerédi’s regularity lemma, Combinatorica,
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[16] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom.
Funct. Anal. 15 (2005), 340–376.

[17] W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct.
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Kneser ranks of random graphs and minimum difference
representations

Zoltán Füredi

(joint work with I. Kantor)

1. Kneser representations

A representation of a graph G is an assignment of mathematical objects of a given
kind (intervals, disks in the plane, finite sets, vectors, etc.) to the vertices of G
in such a way that two vertices are adjacent if and only if the corresponding sets
satisfy a certain condition (intervals intersect, vectors have different entries in each
coordinate, etc.). Representations of various kinds have been studied extensively,
see, e.g., [5], the monograph [11], or from information theory point of view [9].

The Kneser graph Kn(s, k) (for positive integers s ≥ 2k) is a graph whose
vertices are all the k-subsets of the set [s] := {1, 2, . . . , s}, and whose edges connect
two sets if they are disjoint. An assignment v 7→ Av to the vertices v ∈ V of a
graph G = (V,E) is called a Kneser representation of rank k if each Av has size
k, the sets are distinct, and Au and Av are disjoint if and only if uv ∈ E.

Every graphG on n vertices with minimum degree δ has a Kneser representation
of rank n−δ. For every i ∈ V (G), let A′

i be the set of the edges adjacent to i in the
complement of G. We have A′

i ∩ A′
j = 1 if ij 6∈ E(G), otherwise A′

i ∩ A′
j = 0. To

turn this co-star representation into a Kneser representation add pairwise disjoint
sets of labels to the sets A′

1, . . . , A
′
n to increase their cardinality to exactly n−δ(G).

Let G(n) denote the set of 2(n
2) (labelled) graphs on [n] and let G(n, k,Kneser)

denote the family of graphs on [n] having a Kneser representation of rank k.
G ∈ G(n, k,Kneser) is equivalent to the fact that G is an induced subgraph of
some Kneser graph Kn(s, k). We have

G(n, 1,Kneser) ⊆ G(n, 2,Kneser) ⊆ · · · ⊆ G(n, n− 1,Kneser) = G(n).

Let fKneser(G) denote the smallest k such that G has a Kneser representation of
rank k. We have seen that fKneser(G) ≤ n− δ. We have

Theorem 1. There exist constants c2 > c1 > 0 such that for G ∈ G(n) with high
probability

c1
n

logn
< fKneser(G) < c2

n

logn
.

1.1. Thickness of clique covers. The clique cover number θ1(G) of a graph G
is the minimum number of cliques required to cover the edges of graph G. Recall
that in a random graph G ∈ G(n, p), each of the

(

n
2

)

edges occurs independently
with probability p. Similarly, G(n, n, p) denotes the class of graphs G(n, n) with

the probability of a given graph G ∈ G(n, n) is pe(G)(1 − p)n
2−e(G). Frieze and

Reed [7] proved that for p constant, 0 < p < 1, there exist constants c′i = c′i(p) > 0,
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i = 1, 2 such that for G ∈ G(n, p) with high probability

c′1
n2

(log n)2
< θ1(G) < c′2

n2

(logn)2
.

The thickness θ0 of a clique cover C := {C1, . . . , Cm} of G is the maximum
degree of the hypergraph C, i.e., θ0(C) := maxv∈V (G) degC(v). The minimum
thickness among the clique covers of G is denoted by θ0(G). A clique cover C
corresponds to a set representation v 7→ Av in a natural way Av := {Ci : v ∈ Ci},
yielding

θ0(G) ≤ fKneser(G) ≤ θ0(G) + 1.

Theorem 2. For constant 0 < p < 1 there exist constants ci = ci(p) > 0, i = 1, 2
such that for G ∈ G(n, p) with high probability

c1
n

logn
< θ0(G) < c2

n

logn
.

2. Minimum difference representations

In difference representations, generally speaking, vertices are adjacent if the rep-
resenting sets are sufficiently different.

Definition 3. Let G be a graph on the vertices [n] = {1, . . . , n}. A k-min-
difference representation (A1, . . . , An) of G is an assignment of a sets so that

ij ∈ E(G) ⇔ min{|Ai \Aj |, |Aj \Ai|} ≥ k.

Let G(n, k,min) be the set of graphs with V (G) = [n] that have a k-min-difference
representation. The smallest k such that G ∈ G(n, k,min) is denoted by fmin(G).

The co-star representation shows that fmin(G) exists and it is at most n −
δ(G). Boros, Collado, Gurvits, and Kelmans [3] showed that many n-vertex graphs
belong to G(n, 2,min) and they did not find any graph with fmin(G) ≥ 3. Boros,
Gurvitch and Meshulam [4] asked whether the value of fmin over all graphs is
bounded by a constant. This question was answered in the negative by Balogh and
Prince [2], who proved that for every k there is an n0 such that whenever n > n0,
then for a graph G on n vertices we have fmin(G) ≥ k with high probability. They
used a Ramsey-type result of Balogh and Bollobás [1], so their bound on n0 is a
tower function of k.

Our main result is a significant improvement of the Balogh-Prince result. Let

G(n, n) denote the family of 2n
2

bipartite graphs G with n+ n vertices.

Theorem 4. There is a constant c > 0 such that for almost all bipartite graphs
G ∈ G(n, n) one has fmin(G) ≥ cn/(logn).

Corollary 5. There is a constant c > 0 such that almost all graphs G on n vertices
satisfy

fmin(G) ≥ c logn

log logn
.
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3. Prague dimension

The Prague dimension (it is also called product dimension) fPra(G) of a graph G is
the smallest integer k such that one can find vertex distinguishing good colorings
ϕ1, . . . , ϕk : V (G) → N. This means that ϕi(u) 6= ϕi(v) for every edge uv ∈ E(G)
and 1 ≤ i ≤ k but for every non-edge {u, v}, there exists an i with ϕi(u) = ϕi(v),
moreover the vectors (ϕ1(u), ϕ2(u), . . . , ϕk(u)) and (ϕ1(v), ϕ2(v), . . . , ϕk(v)) are
distict for u 6= v. Two vertices are adjacent if and only if their labels disagree in
every ϕi. We have

fmin(G) ≤ fKneser(G) ≤ fPra(G).

Conjecture 6. For a constant probability 0 < p < 1 there exists a constant
c2,Pra = c2,Pra(p) > 0, such that for G ∈ G(n, p) and also for G ∈ G(n, n, p) with
high probability

fPra(G) < c2,Pra
n

logn
.

Problem 7. Is it true that for any fixed 0 < p < 1 for G ∈ G(n, p) with high
probability one has Ω(n/(logn)) ≤ fmin(G)?

The Kneser rank and Prague dimension can be Ω(n). E.g., fKneser(K1,n−1) =
n− 1. No such results are known for fmin.

Problem 8. What is the maximum of fmin(G) over the set of n-vertex graphs G?
Is it true that it is o(n) for every G ∈ G(n) ∪ G(n, n)?
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[6] P. Erdős, A. W. Goodman, and L. Pósa, The representation of a graph by set intersections,

Canad. J. Math. 18 (1966), 106–112.
[7] A. Frieze and B. Reed, Covering the edges of a random graph by cliques, Combinatorica 15

(1995), 489–497.
[8] P. Hamburger, A. Por, and M. Walsh, Kneser representations of graphs, SIAM J. Discrete

Math. 23 (2009), 1071–1081.
[9] J. Körner and A. Monti, Compact representations of the intersection structure of families

of finite sets, SIAM J. Discrete Math. 14 (2001), 181–192.
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Performance of Sequential Local Algorithms for the Random
NAE-K-SAT Problem

David Gamarnik

(joint work with M. Sudan)

In this work we consider a class of algorithms which we dub “sequential local algo-
rithms” that capture local implementations of message-passing based decimation
algorithms, including the BP-guided and the SP-guided decimation algorithms.
We analyze the behavior of local sequential algorithms on random instances of
“Not-All-Equal-K-SAT (NAE-K-SAT)”.

Our setting and results. The NAE-K-SAT problem is a Boolean constraint
satisfaction problem closely related to more commonly studied K-SAT problem.
An instance of the NAE-K-SAT problem consists of a collection of N K-clauses on
n Boolean variables x1, . . . , xn. Each K-clause is given by K-literals, where each
literal is either one of the variables or its negation. The clause is satisfied by a
Boolean assignment to the variables if at least one of the literals is satisfied (set to
1) and at least one is unsatisfied (set to 0). (This symmetry between satisfied and
unsatisfied literals lends a convenient symmetry to the NAE-K-SAT problem that
is not shared by the K-SAT counterpart). The collection of N clauses is satisfied
by a Boolean assignment if each clause is satisfied. Given ℓ ≤ N , we say that a
Boolean assignment ℓ-satisfies the collection if at most ℓ clauses are violated.

In this work we consider the ability to find satisfying and ℓ-satisfying assign-
ments to random instances of the NAE-K-SAT problem. Here the N clauses
are chosen uniformly and independently from the collection of 2K ·

(

n
K

)

possible
K-clauses. Throughout the paper we consider the regime where the number of
variables n grows, but the clause size K remains constant. In particular we con-
sider the setting where N = d · n for some constant d = d(K) that depends on
K, but not n, and consider what is the largest d for which there exists a efficient
algorithm for identifying an ℓ-satisfying satisfying assignment with probability
bounded away from zero as n → ∞ by some function going to zero at some rate
with n. We will be interested primarily in regime where ℓ is a linear function of
N and therefore n as well. The parameter d is often referred to as the formula
density. Of course, no algorithm can find a satisfying assignment if none exists;
and the limit of when such an assignment exists is well-studied. In particular
Coja-Oghlan and and Panagiotou [7] have established that random instances of
the NAE-K-SAT problem are satisfiable with high probability (w.h.p.) when the
density d is below ds = 2K−1 ln 2 − ln 2/2 − 1/4 − oK(1), and is not satisfiable
w.h.p. when d > ds. Earlier bound was obtained by Achlioptas and Moore [4]
who obtained a bound of the form ds = 2K−1 ln 2 −OK(1). Here oK(·) and OK(·)
denote standard order of magnitude notation as K increases. Our interest is in
determining how qualitatively close to this threshold an efficient algorithm can
get, i.e., how does the largest density at which the algorithm manages to find a
satisfying or even ℓ-satisfying assignments compare with ds.
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The class of algorithms that we explore in this work are what we call “local
sequential algorithms”. A sequential local algorithm can be described roughly as
follows. The algorithm works by assigning Boolean values to variables sequentially,
where a chosen variable is assigned its value by a potentially probabilistic choice,
which depends on the local neighborhood of the variable at the time the choice
is made. The local neighborhood is defined to be the graph-theoretic B(r) ball
of small value r radius with respect to the underlying factor graph on the set of
variables and clauses, to be defined later. Once a variable is assigned a value, the
formula is simplified (removing some clauses, and restricting others). This in turn
may influence the local neighborhoods of other variables, and when the future
variables are set to particular Boolean values, this is done with respect to thus
possibly modified neighborhoods. The algorithm continues with its iterations till
all variables are set.

Local sequential algorithms capture restricted versions of BP- and SP-guided
decimation algorithms, specifically when the number of message passage iterations
used between every decimation step is bounded by O(r). In the specific context of
BP-guided decimation algorithm based on r iterations, the local rule assigns value
1 to a variable x with probability equal to the fraction of assignments in which
x is assigned value 1 among all assignments that satisfy all clauses in the local
neighborhood B(r). The SP-guided decimation algorithm uses a more complex
rule for its assignments. It is based on lifting the Boolean constraint satisfaction
problem to a constraint satisfaction problem involving three decisions, as opposed
to two decisions, but otherwise follows the same spirit.

Our main contribution is to show that, w.h.p. as the size of the instance di-
verges to infinity, every “balanced” sequential local algorithm fails to produce a
ℓ-satisfying assignment when the ratio d of the number of clauses to the number

of variables exceeds (1 + oK(1))2
K−1

K ln2K, clause size K is sufficiently large (but

independent from the number of variables), and r = O
(

(ln lnn)
O(1)

)

. Specifically,

we will show this when the ratio of ℓ to the total number of clauses dn is below
a certain constant less than unity, (see the aforementioned theorem for details).
“Balance” is a technical condition, which says that the local algorithm respects
the inherent symmetry between 0 and 1. It is a condition satisfied by all known
algorithms inlcuding BP- and SP-guided decimation, as we establish.

Our bound on the ratio d is reasonably close to bounds at which simple al-
gorithms actually work. In particular, it is well-known that a very simple Unit
Clause algorithm is capable of finding satisfying assignments for this problem when

d is below ρ 2K−1

K for some universal constant ρ, [3] for K sufficiently large. The
Unit Clause algorithm is the best known algorithm for this problem. (A better
algorithm is known for the random K-SAT problem that works up to clause to

variables ratio (1 − oK(1))2
K

K lnK [5]. It is likely that a similar idea can be ap-
plied to the NAE-K-SAT setting, but such a result is not available to the best of
our knowledge.) One of the hopes was that BP- and SP-guided decimation algo-
rithms may be able to bridge this factor of K between the unit clause algorithm
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and the satisfiability threshold ds above. Our result however implies that, short
of possibly a ln2K multiplicative factor, the ”infamous” factor O(K) gap between
the satisfiability threshold and the region achievable by known algorithms can-
not be broken by means of sequential local algorithms, in particular by BP- and
SP-guided decimation algorithms with O(r) number of rounds of message passing
iterations.

Previously, Coja-Oghlan [6] showed that the BP-guided decimation algorithm

fails to find satisfying assignments for random K-SAT problem when d ≥ ρ 2K

K for
some universal constant ρ, for an arbitrary number of iterations r, which in partic-
ular might depend on the number of variables. (Here 2K factor is an ”appropriate”
substitution for 2K−1 when switching from NAE-K-SAT to the K-SAT problem.
We maintain this distinction, even though technically it is eliminated by constant
ρ). It is reasonable to expect that his result holds also for NAE-K-SAT problem
using the same analysis. Thus our result partially reproduces the main result of [6]

in the special case when the number of iterations is bounded by O
(

(ln lnn)
O(1)

)

(short of additional ln2K factor). At the same time, however, our result is ap-
plied in a ”blanket way” to a broad class of algorithms, including most notably
SP-guided decimation algorithm with the number of iterations bounded by the
same value, and our analysis is insensitive to the details of the algorithm.

After the first version of our paper was posted, we have became aware of the
result by Hetterich [9] who shows that the SP-guided decimation algorithm w.h.p.
fails to find a satisfying assignment of a random K-SAT formula above density
(ds/K) lnK for ds = 2K ln 2, for all sufficiently large K. His result, unlike ours,
does not assume any bound on the number of iterations of the SP-guided deci-
mation algorithm and applies to a slightly smaller formula density (ds/K) lnK as

opposed to density (ds/K) ln2K appearing in our main result.

Techniques. Our main proof technique relies on the intricate geometry of the
solution space of the random NAE-K-SAT problem. Specifically it relies on the
so-called m-overlap structure of nearly satisfying assignments of random NAE-K-
SAT, which relates to the space of possible pair-wise Hamming distances between
m such satisfying assignments. Previously this overlap structure was studied for
the case m = 2 for random K-SAT problem, and several other related problems,
including the problem of proper coloring of sparse random graphs [2],[1]. A certain
shattering property was established which roughly speaking says that above a
certain density, the Hamming distance between every pair of satisfying assignments
(overlap) normalized by the number of variables, is either smaller than a certain
constant δ1 or larger than some constant 1 ≥ δ2 > δ1. As as result the solution
space can be partitioned into different subsets (clusters) based on their proximity
to each other. For the case of NAE-K-SAT problem this 2-overlap property can be
established for densities d approximately d > ds/2. (A weaker version of this result
corresponding to ”almost” all pairs does hold at densities above O

(

ds

K lnK
)

[11]).

Unfortunately, this is not strong enough to cover the regime of d > (ds/K) ln2K
claimed in our main theorem, so instead we have to establish a certain property
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regarding m-overlaps of satisfying assignments, for appropriately chosen m > 2.
This is the essence of a structural theorem which we prove in this paper. Roughly
speaking this theorem says that, with probability at least 1 − exp(−Ω(n)), when
d ≥ (1 + ǫ)ds

K ln2K, and K is sufficiently large, one cannot find m ≈ ǫK/ lnK
satisfying assignments such that the Hamming distance (overlap) between every
pair of the assignments normalized by the number of variables is ≈ lnK/K. The
result applies to ℓ-satisfying assignments as well for sufficiently small ℓ < dn.
Then for every β ∈ (0, 1), we establish the following result. If a sequential local
algorithm was capable of finding an ℓ-satisfying assignment, with probability at

least n−(ln lnn)O(1)

, then by running the algorithm m times and constructing a
certain interpolation scheme, one can construct m ℓ-satisfying assignments such
that the pairwise normalized distance between any pair of these assignments is

≈ β, hence a contradiction. Our super polynomial upper bound n−(ln lnn)O(1)

on
the likelihood of success also rules out the possibility of running the algorithm
for polynomially many independent trials in the hope of finding at least one ℓ-
satisfying assignment.

The link between the overlap property and the ensuing demise of local algo-
rithms was recently established by authors [8] in a different context of finding a
largest independent set in a random regular graph. There the argument was used
to show that so-called i.i.d. factor based local algorithms are incapable of finding
nearly largest independent sets in random regular graphs, refuting an earlier con-
jecture by Hatami, Lovász and Szegedy [10]. The result was further strengthened
by Rahman and Virag [13], who obtained essentially the tightest possible result,
using m-overlap structures of ”large” independent set. Our use of m-overlaps is
inspired by this work, though the set of restrictions on the m-overlaps is much
simpler than the one appearing in [13].

An important technical and conceptual difference between the present work
and that of [8] and [13] is that algorithms considered in the aforementioned papers
are not sequential. Instead the decision taken by each variable in those models
are taken simultaneously for all variables. In the case of sequential local algo-
rithms, since the variables are set sequentially, the decision for one variable can be
non-localized for the remaining variables, thus creating potential long-range de-
pendencies. We deal with this potential long-range impact of decisions as follows.
We associate variables with random i.i.d. weights chosen from an arbitrary contin-
uous distribution, for example a uniform distribution. The weights are used solely
to determine the order of fixing the values of the variables during the progression
of the sequential local algorithm. Specifically the largest weight first rule is used.
The decision to fix the value of a particular variable then can only impact variables
with lower weights. Specifically if the value of variable x is fixed now, the value of
variable y can be impacted only if there exists a sequence x0 = x, x1, . . . , xℓ = y
such that the distance between xi and xi+1 is at most r (the radius of the deci-
sion making rule) and the weight of xi is larger than that of xi+1 for all i. For
a given set of variables x0, . . . , xℓ the likelihood of this total order of variables is
1/ℓ! which decays faster than any exponential function in ℓ. This coupled with
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the fact that the growth rate of nodes at distance at most rℓ from x is at most
exponential in rℓ, will allow us to control the range of influence of the variable x
when its value is set. A similar idea of controlling the range of influence is used
in the analysis of local algorithms in several places, including [12]. Bounding the
ranges of influences is a crucial idea in implementing the interpolation scheme and
constructing m assignments with ”non-existent” normalized overlaps β.
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Forbidden vector-valued intersections

Peter Keevash

(joint work with E. Long)

The Frankl-Rödl forbidden intersection theorem is a fundamental result of Ex-
tremal Set Theory, which has had a wide range of applications to different areas of
mathematics, including discrete geometry [3], communication complexity [9] and
quantum computing [1].
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Let [n] = {1, . . . , n} and let
(

[n]
k

)

= {A ⊂ [n] : |A| = k}. For A ⊂
(

[n]
k

)

and
t ∈ [n] let A ×t A be the set of all (A,B) ∈ A × A with |A ∩ B| = t. Note

that
(

[n]
k

)

×t

(

[n]
k

)

is non-empty if and only if max(2k − n, 0) ≤ t ≤ k. Frankl and
Rödl proved the following ‘supersaturation theorem’, showing that if t is bounded

away from these extremes and A is ‘exponentially dense’ in
(

[n]
k

)

then A ×t A is

‘exponentially dense’ in
(

[n]
k

)

×t

(

[n]
k

)

.

Theorem 1 (Frankl–Rödl [2]). Let 0 < n−1 ≪ δ ≪ ǫ < 1 and max(2k − n, 0) +

ǫn ≤ t ≤ k − ǫn. Suppose A ⊂
(

[n]
k

)

with |A| ≥ (1 − δ)n
(

n
k

)

. Then |A ×t A| ≥
(1 − ǫ)n

∣

∣

∣

(

[n]
k

)

×t

(

[n]
k

)

∣

∣

∣
.

In a recent survey on the Borsuk problem, Kalai [7] remarked that the Frankl–
Rödl theorem can be used to give a counterexample to the Borsuk conjecture
(the Frankl–Wilson intersection theorem [4] was used in Kahn and Kalai’s cel-
ebrated counterexample [6]), and suggested that improved bounds might follow
from a suitably generalised Frankl–Rödl theorem. He proposed the following su-
persaturation conjecture as a possible step in this direction, in which one mea-
sures a set by its size |A| =

∑

i∈A 1 and its sum
∑

A =
∑

i∈A i. Let [n]k,s
be the set of A ⊂ [n] with |A| = k and

∑

A = s. For A ⊂ [n]k,s write
A×(t,w) A = {(A,B) ∈ A×A : A 6= B with |A ∩B| = t and

∑

(A ∩B) = w}.

Conjecture 2 (Kalai). Let 0 < n−1 ≪ δ ≪ ǫ, α1, α2, β1, β2 < 1, k = ⌊α1n⌋,
s = ⌊α2

(

n
2

)

⌋, t = ⌊β1n⌋ and w = ⌊β2
(

n
2

)

⌋. Suppose A ⊂ [n]k,s with |A| ≥
(1 − δ)n|[n]k,s|. Then |A ×(t,w) A| ≥ ⌊(1 − ǫ)n

∣

∣[n]k,s ×(t,w) [n]k,s
∣

∣⌋.
Somewhat surprisingly, this conjecture is false in general! In fact, although the

conjecture holds in a number of natural special cases, it fails quite dramatically
in general; for most pairs (α1, α2) there is exactly one choice of (β1, β2) for which
Conjecture 2 holds.

Our first result exactly describes those values of (α1, α2, β1, β2) for which Con-
jecture 2 holds. Note that the set [n]k,s is exponentially large in n if and only
if (α1, α2) ∈ Λ := {(x, y) : 0 < x < 1, x2 < y < 2x − x2}. As Conjecture 2
is only interesting in this setting, we will restrict attention to this region. We
say that g = (α1, α2, β1, β2) ∈ [0, 1]4 is (δ, ǫ, n)-good if with k, s, t, w ∈ N as in
Conjecture 2, all A ⊂ [n]k,s with |A| ≥ (1 − δ)n|[n]k,s| satisfy |A ×(t,w) A| ≥
⌊(1 − ǫ)n

∣

∣[n]k,s ×(t,w) [n]k,s
∣

∣⌋.
Theorem 3. There are functions β1, β2 : Λ → R such that the following holds.
Consider the sets:

Γ1 =
{

(α1, α2, β1, β2) : (α1, α2) ∈ Λ, α1 6= α2 and βi = βi(α1, α2)
}

;

Γ2 =
{

(α, α, β, β) : 0 < α < 1 and max(2α− 1, 0) < β < α
}

;

Γ3 =
{

(1/2, 1/2, β1, β2) : (2β1, 2β2) ∈ Λ
}

.

Then given g′ ∈ Γ =
⋃

i∈[3] Γi and ǫ≫ δ ≫ n−1, any g ∈ [0, 1]4 with ‖g−g′‖1 ≤ δ

is (δ, ǫ, n)-good. On the other hand, given g ∈ [0, 1]4 \ Γ there is ǫ > 0 such that g
is not (δ, ǫ, n)-good for any ǫ≫ δ ≫ n−1.
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We have the following interpretation of elements of g = (α1, α2, β1, β2) ∈ Γ:

• Popular intersections: For (α1, α2) ∈ Λ with α1 6= α2 there is ex-
actly one (α1, α2, β1, β2) ∈ Γ1. For n large, the value (β1n, β2

(

n
2

)

) is
essentially the most popular intersection between sets in [n]k,s, where
(k, s) = (α1n, α2

(

n
2

)

).
• Doubly random: If A ⊂ [n] is a uniformly random set of size k = αn,

the expected size of
∑

A is α
(

n
2

)

+ o(n2). Similarly, if two sets A and B
in [n]k,s with |A∩B| = βn are randomly selected then the expected value
of

∑

(A∩B) is β
(

n
2

)

+ o(n2). Theorem 3 for Γ2 shows Conjecture 2 holds
for ‘random βn intersections’ between ‘random αn sets’, provided α and
β satisfy the Frankl-Rödl conditions.

• Uniformly random sets: Lastly, most sets A ∈ [n]k,s with (k, s) =
(12n,

1
2

(

n
2

)

) have |A ∩ [2L]| = L± o(n) = |A ∩ [n− 2L, n]| for all L ≤ n/2.

Intersections of type (t, w) = (β1n, β2
(

n
2

)

) can only occur between such

sets if 1
2

(

2t
2

)

+ o(n2) ≤ w ≤ 1
2

((

n+1
2

)

−
(

n−2t+1
2

))

+ o(n2). Equivalently
(2β1 + o(1), 2β2 + o(1)) ∈ Λ. Theorem 3 for Γ3 shows that Conjecture 2 is
true for (α1, α2) = (1/2, 1/2) provided this necessary condition is fulfilled.

Although the bounds from Conjecture 2 in general do not hold, it is still natural
to ask if we can find any (t, w)-intersections in A, and if so, how many. We obtain
essentially best possible answers to these questions (although for simplicity we
will not state these results in this abstract). Our results apply to vector-valued
intersections defined by more general vectors in higher dimensions, and also to
cross-intersection theorems for two or more families over vectors over any finite
alphabet. However, for simplicity in this abstract we stick with the setting of
Kalai’s conjecture. For cleaner notation and compatibility with the general setting
we introduce the notation X = [n]k,s and I(A) = A×(t,w) A.

Our next theorem shows that, there are only two obstructions to a supersatu-
ration result as in Kalai’s conjecture; either there exists a small set Bfull which
artificially inflates the number of (t, w)-intersections in X , or there is a large set
Bempty which contains no (t, w)-intersections. Furthermore, in the latter case, our
result still gives supersaturation relative to Bfull.

Theorem 4. Let n−1 ≪ δ ≪ ǫ, α1, α2, β1, β2. Then one of the following holds:

(1) All A ⊂ X with |A| ≥ (1 − δ)n|X | satisfy |I(A)| ≥ (1 − ǫ)n|I(X )|;
(2) There exists Bfull ⊂ X with |Bfull| ≤ (1 − δ)n|X | and

|I(X ) \ I(Bfull)| ≤ (1 − δ)n|I(X )|.
Furthermore, for B ⊂ Bfull with |B| ≥ (1 − δ)n|Bfull| we have |I(B)| ≥
(1 − ǫ)n|I(X )|;

(3) There is Bempty ⊂ X with |Bempty| ≥ ⌊(1 − ǫ)n|X |⌋ and I(Bempty) = ∅.
A key paradigm of our approach is that V-intersection theorems often have

equivalent formulations in terms of certain maximum entropy measures, and that
the necessary condition for these theorems appears naturally as a condition on the
measures.
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To illustrate this point, we recast the Frankl-Rödl theorem in such terms. Again
we identify subsets of [n] with their characteristic vectors in {0, 1}n, on which we
introduce the product measure µp(x) =

∏

i∈[n] pxi , where p1 = k/n and p0 =

1− p1. Pairs of subsets are identified with {0, 1}n×{0, 1}n, which we can identify
with ({0, 1} × {0, 1})n, on which we introduce the product measure µq(x,x′) =
∏

i∈[n] qxi,x′
i
, where q1,1 = t/n, q0,1 = q1,0 = (k − t)/n and q0,0 = (n− 2k + t)/n.

It is not hard to see that the hypothesis of Theorem 1 is essentially equivalent
to µp(A) > (1 − δ)n and the conclusion to µq(A ×t A) > (1 − ǫ)n. Furthermore,
the assumption on t can be rephrased as qj,j′ ≥ ǫ for all j, j′ ∈ {0, 1}, and this
indicates the condition that we need in general.

The next result gives our probabilistic forbidden intersection theorem. We say
that the product measure µq is κ-bounded if all qij,j′ ∈ [κ, 1 − κ].

Theorem 5. Let 0 < n−1, δ ≪ κ, γ, ǫ, α1, α2, β1, β2. Suppose that µq is a κ-
bounded product measure on ({0, 1} × {0, 1})n with

∑

i(1, i)q
i
1,1 = (t, w) and both

marginals µp. Let A ⊆ {0, 1}n with µp(A) > (1− δ)n. Then µq(I(A)) > (1− ǫ)n.

We briefly indicate how Theorem 5 can be used to prove Theorem 4. First we
prove a large deviation principle, which can be roughly stated as saying that the
uniform measure on X has the same exponential tail events in X as the measure µp

on {0, 1}n that has maximum entropy subject to
∑

i pi(1, i) = (k, s). Thus we can
apply Theorem 5 to any A as in Theorem 4 and any κ-bounded µq with marginals
µp. Similarly, there is a maximum entropy measure µq on ({0, 1} × {0, 1})n with
the same exponential tail events in I(X ) as the uniform measure.

The first question to consider is whether µq is κ-bounded. If not then we cannot
guarantee any (t, w)-intersections. The key parameter in understanding this case
is the well-known [10] Vapnik-Chervonenkis dimension of I(X ) ⊆ ({0, 1}×{0, 1})n.
To see why it is natural to consider the VC-dimension, consider the problem of
finding an intersection of size n/3 among subsets of [n] of size 2n/3. The conditions
of the Frankl-Rödl theorem are not satisfied, and indeed the conclusion is not true:

take A = {A ∈
( [n]
2n/3

)

: 1 /∈ A}. Considering
( [n]
2n/3

)

×n/3

( [n]
2n/3

)

as a subset of

({0, 1} × {0, 1})n, we see that no coordinate can take the value (0, 0), so there is
not even a shattered set of size 1! Modifying this example in the obvious way we
see that it is natural to assume a bound that is linear in n. We also note that this
example shows that the ‘Frankl-Rödl analogue’ of Conjecture 2 is not true, and
hints towards a counterexample for Kalai’s conjecture.

If µq is κ-bounded then the next question to consider is whether its marginals
µp̃ are close to the maximum entropy measure µp that describes X . If so, then
for A) ⊆ X we have the implications |A|/|X | > (1 − δ)n ⇒ µp(A) > (1 − δ′)n ⇒
µq(I(A)) > (1 − δ′′)n ⇒ I(A)/I(X ) > (1 − ǫ)n, i.e. we have supersaturation as in
Kalai’s Conjecture. On the other hand, if µp̃ is far from µp then it concentrates on
some small subset Bfull of X , which accounts for most of the (t, w)-intersections
in X .

This sketch also gives some indication of how the values in Theorem 3 arise.
We can explicitly describes the maximum entropy measures µq and µp considered
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above as Boltzmann distributions. It turns out to be quite rare for a Boltzmann
distribution to be a marginal of another, although occasionally it does occur. One
simple instance is given by taking the measure µq formed by two independent
copies of µp, which leads to the ‘popular intersection’ case of Theorem 3.
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The distribution of the number of triangles in a random graph

Swastik Kopparty

(joint work with J. Gilmer)

We will work with the Erdos-Rényi random graph G(n, p). Recall that G(n, p) is
the random undirected graph G on n vertices sampled by including each of the
(

n
2

)

possible edges into G independently with probability p. Let Sn be the random

variable equal to the number of triangles in G(n, p). Let µn = E[Sn] = p3
(

n
3

)

and σn =
√

Var[Sn] = Θ(n2) (see [2] for an exact expression of σn). Our main
result [2] states that if p is a fixed constant in (0, 1), then the distribution of Sn is
pointwise approximated by a discrete Gaussian distribution:

Pr[Sn = k] =
1√

2πσn
e−((k−µn)/σn)

2/2 ± o(1/n2).(1)

Thus, for every k ∈ µn ± O(σn), we determine the probability that G(n, p) has
exactly k triangles, up to a (1 + o(1)) multiplicative factor.

The proofs are based on bounding the characteristic function ψ(t) of Sn, and
involves a number of different conditioning arguments for different ranges of t.
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More recently, Berkowitz [1] greatly enhanced the power of these methods with
some elegant conceptual and technical ideas, and gave a significantly improved
quantitative version of this result. His main result states (with the same setup)
that for each fixed ǫ > 0,

Pr[Sn = k] =
1√

2πσn
e−((k−µn)/σn)

2/2 ± o(
1

n2.5−ǫ
).(2)

This improved quantitative bound then enables Berkowitz to deduce an ℓ1-distance
bound between the distribution of Sn and the discrete Gaussian distribution.

∞
∑

k=−∞

∣

∣

∣

∣

Pr[Sn = k] − 1√
2πσn

e−((k−µn)/σn)
2/2

∣

∣

∣

∣

≤ o(
1

n0.5−ǫ
).(3)
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Local 3-profiles of graphs

Daniel Král’

(joint work with R. Glebov, A. Grzesik, P. Hu, T. Hubai, J. Volec)

Many problems in graph theory relate to understanding possible combinations
of densities of subgraphs in graphs. One of the recent breakthroughs in extremal
graph theory was the description of possible densities of complete graphs in graphs
with a given edge density, which is given in the exciting work of Razborov [4],
Nikiforov [3] and Reiher [5]. While problems related to possible densities of small
graphs may look innocent at the first sight, they can become incredibly challenging.
For example, determining the minimum possible sum of densities of K4 and K4 is
a well-known problem open for more than five decades.

Huang, Linial, Naves, Peled and Sudakov [1], building on their results from [2],
determined possible densities of K3 and K3. We contribute to this line of research
by completing the description of possible densities of all pairs of 3-vertex graphs.
More precisely, let di(G) be the density of the 3-vertex i-edge graph in a graph
G, i.e., the probability that three random vertices induce a subgraph with i edges,
and let S ⊆ R4 be the set of all quadruples (d0, d1, d2, d3) that are arbitrary close
to 3-vertex graph densities in arbitrary large graphs. Huang et al. [1] determined
the projection of the set S to the (d0, d3) plane, and we determine the projection
of the set S to all the remaining planes.
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The existence of designs – beyond quasirandomness

Daniela Kühn

(joint work with S. Glock, A. Lo, and D. Osthus)

1. Block designs and Steiner systems

An (n, q, r, λ)-design is a set X of q-subsets (often called ‘blocks’) of some n-set
V , such that every r-subset of V belongs to exactly λ elements of X . (Note
that this makes only sense if q > r, which we assume throughout.) In the case
when r = 2, this coincides with the notion of balanced incomplete block designs.
An (n, q, r, 1)-design is also called an (n, q, r)-Steiner system. There are some
obviously necessary ‘divisibility conditions’ for the existence of a design: consider
some subset S of V of size i < r and assume that X is an (n, q, r, λ)-design.

Then the number of elements of X which contain S is λ
(

n−i
r−i

)

/
(

q−i
r−i

)

. We say that

the necessary divisibility conditions are satisfied if
(

q−i
r−i

)

divides λ
(

n−i
r−i

)

for all
0 ≤ i < r.

The ‘Existence conjecture’ states that for given q, r, λ, the necessary divisibility
conditions are also sufficient for the existence of an (n, q, r, λ)-design, except for a
finite number of exceptional n. Its roots can be traced back to work of e.g. Plücker,
Kirkman and Steiner in the 19th century. Over a century later, a breakthrough
result of Wilson [17–19] resolved the graph case r = 2.

For r ≥ 3, much less was known until relatively recently. In 1963, Erdős and
Hanani proposed an approximate version of the Existence conjecture for the case
of Steiner systems. More precisely, they asked whether one can find blocks which
cover every r-set at most once and cover all but o(nr) of the r-sets, as n tends to
infinity. This was proved in 1985 by Rödl [15] via his celebrated ‘nibble’ method.

Teirlinck [16] was the first to prove the existence of designs for arbitrary r ≥ 6
(this however requires q = r + 1 and λ large compared to q). Kuperberg, Lovett
and Peled [13] proved a ‘localized central limit theorem’ for rigid combinatorial
structures, which implies the existence of designs for arbitrary q and r, but again
for large λ. There are many constructions resulting in sporadic and infinite families
of designs (see e.g. the handbook [4]). However, the set of parameters they cover is
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very restricted. In particular, even the existence of infinitely many Steiner systems
with r ≥ 4 was open until recently.

In a recent breakthrough, Keevash [10] proved the Existence conjecture in gen-
eral, based on the method of ‘Randomised algebraic constructions’.

In [7], we provide a new proof of the Existence conjecture based on the method
of iterative absorption. In fact, our main theorem is considerably more general
than this (as well as the results in [10]). Roughly speaking, our main result con-

cerns K
(r)
q -decompositions of hypergraphs whose clique distribution fulfils certain

regularity requirements. A ‘regularity boosting’ process frequently enables us to
meet these requirements even if the clique distribution of the original hypergraph
does not satisfy them. This enables us to strengthen the results in [10] as well as
to derive a number of new results which go beyond the setting of quasirandom hy-
pergraphs. In particular, in combination with this regularity boosting technique,
our main result gives us a minimum degree version (see Theorem 1), a resilience
version and effective bounds for a typicality version.

The method of iterative absorption was initially introduced in [10, 11] to find
Hamilton decompositions of graphs. In the meantime it has been successfully
applied to verify the Gyárfás-Lehel tree packing conjecture for bounded degree
trees [9], as well as to find decompositions of dense graphs into a given graph F [2,
3, 6].

2. Designs in hypergraphs

We will study designs in a hypergraph setting. Here a hypergraph H is a pair
(V,E), where V is the vertex set and the edge set E is a set of subsets of V . We
identify H with E. In particular, we let |H | := |E|. We say that H is an r-graph

if every edge has size r. We let K
(r)
n denote the complete r-graph on n vertices.

Let H be some r-graph. A K
(r)
q -decomposition of H is a collection K of copies

of K
(r)
q in H such that every edge of H is contained in exactly one of these copies.

More generally, a (q, r, λ)-design of H is a collection K of distinct copies of K
(r)
q

in H such that every edge of H is contained in exactly λ of these copies. Note

that a (q, r, λ)-design of K
(r)
n is equivalent to an (n, q, r, λ)-design.

For a set S ⊆ V with 0 ≤ |S| ≤ r, the (r−|S|)-graph H(S) has vertex set V \S
and contains all (r−|S|)-subsets of V \S that together with S form an edge in H .
(H(S) is often called the link graph of S.) We say that H is (q, r, λ)-divisible if for

every S ⊆ V with 0 ≤ |S| ≤ r− 1, we have that
(

q−|S|
r−|S|

)

divides λ|H(S)|. Similarly

to Section 1, this is a necessary condition for the existence of a (q, r, λ)-design

of H . We say that H is K
(r)
q -divisible if H is (q, r, 1)-divisible.

We let δ(H) denote the minimum (r − 1)-degree of an r-graph H , that is, the
minimum value of |H(S)| over all S ⊆ V (H) of size r − 1. The following result

guarantees designs not just for K
(r)
n , but also for r-graphs which are allowed to be

far from complete in the sense that they only have large minimum degree.
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Theorem 1 (Minimum degree version, [7]). For all q > r ≥ 2 and λ ∈ N, there
exists an n0 ∈ N such that the following holds for all n ≥ n0. Let

c⋄q,r :=
r!

3 · 14rq2r
.

Suppose that G is an r-graph on n vertices with δ(G) ≥ (1 − c⋄q,r)n. Then G has
a (q, r, λ)-design if it is (q, r, λ)-divisible.

The main result of [10] implies a weaker version where c⋄q,r is replaced by some
non-explicit ε≪ 1/q. Theorem 1 motivates the following very challenging problem

regarding the decomposition threshold cq,r of K
(r)
q .

Problem 2 ([7]). Determine the supremum cq,r of all c ∈ [0, 1] with the following

property: There exists n0 ∈ N such that for all n ≥ n0, every K
(r)
q -divisible r-graph

on n vertices with δ(G) ≥ (1 − c)n has a K
(r)
q -decomposition.

Theorem 1 implies that cq,r ≥ c⋄q,r. It is not clear what the correct value should
be. We note that for all r, q, n0 ∈ N, there exists an r-graph Gn on n ≥ n0 vertices

with δ(Gn) ≥ (1 − br
log q
qr−1 )n such that Gn does not contain a single copy of K

(r)
q ,

where br > 0 only depends on r.
We now consider the graph case r = 2. A famous conjecture by Nash-Williams

[14] on the decomposition threshold of a triangle would imply that c3,2 = 3/4. Until
recently, the best bound for the problem was by Gustavsson [8], who claimed that
cq,2 ≥ 10−37q−94. Iterated absorption methods have led to significant progress in
this area. For instance, the results in [6] imply that cq,2 = c∗q,2, where c∗q,r denotes
the fractional version of the decomposition threshold (the triangle case q = 3
was already obtained in [2]). This in turn has resulted in significantly improved
explicit bounds on cq,2, via results on fractional decompositions obtained in [1,5].
In particular, the results from [1, 6] imply that 1

104q3/2
≤ cq,2 ≤ 1

q+1 , where the

upper bound is conjectured to be the correct value. The results in [2, 6] make
(implicit) use of Szemerédi’s regularity lemma, whereas our proof avoids this,
resulting in much more moderate requirements on n.
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Some stories of high-dimensional permutations

Nati Linial

What is the higher-dimensional analog of a permutation? If we think of a per-
mutation as given by a permutation matrix, then the following definition suggests
itself: A d-dimensional permutation of order n is an n × n× . . . n = [n]d+1 array
of zeros and ones in which every line contains a unique 1 entry. A line here is a
set of entries of the form {(x1, . . . , xi−1, y, xi+1, . . . , xd+1)|n ≥ y ≥ 1} for some
index d+ 1 ≥ i ≥ 1 and some choice of xj ∈ [n] for all j 6= i. It is easy to observe
that a one-dimensional permutation is simply a permutation matrix and that a
two-dimensional permutation is synonymous with an order-n Latin square.

In this lecture I surveyed three aspects of this subject:

• How many d-dimensional permutations are there? Interpolating from Stir-
ling’s formula and the estimate for the number of Latin squares, it is nat-
ural to conjecture that the number is:

(

(1 + o(1))
n

ed

)nd

.

In joint work with Luria [2] we proved this as an upper bound. A matching
lower bound for dimensions 3 and above is still missing, though there is
hope that recent advances in the study of combinatorial designs can help
accomplish this.

• In joint work with Michael Simkin [3] we proved the following facts:
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– Every d-dimensional permutation of order n contains a strongly mono-
tone subsequence of length Ωd(

√
n). The dependence on n is sharp.

– In almost every d-dimensional permutation the length of the longest

monotone subsequence is Θd(n
d−1
d ).

The analogous statements for weakly monotone subsequences remain un-
known. Also the exact dependence of these bounds on the dimension has
not been determined yet.

• In recent work with Luria [4] we seek high-dimensional permutations of

low discrepancy. A box B ⊆ [n]d+1 is the cartesian product B =
∏d+1

1 Ai

and its volume is defined as
∏ |Ai|. We conjecture that permutations X

exist such that for every box B

||X ∩B| − vol(B)/n| ≤ O(
√

vol(B)).

Moreover it is conjectured that similar and even stronger bounds hold for
almost every d-dimensional permutation. We say that box B is empty if
X ∩ B = ∅. A special case of the above conjecture which is established
in [4] is that permutations exist (or even for almost all permutations)
where every empty box has volume O(n2). It is interesting to note that
a theorem of Kedlaya [1] shows that the Latin square corresponding to

every finite group has a substantially larger empty box of volume Ω(n
33
14 ).

This clearly suggests that completely new ideas will be needed in order to
find good explicit constructions in this domain.
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Integral homology of random simplicial complexes

Tomasz  Luczak

(joint work with Y. Peled)

The random 2-dimensional simplicial complex process {Y2(n,M) : 0 ≤ M ≤
(

n
3

)

}
is a Markov chain which starts with a complete graph with vertex set [n] =
{1, 2, . . . , n} and in each step a new 2-dimensional face, chosen uniformly at ran-
dom, is added. In a similar way one can define the Markov process {Y2(n, p) : 0 ≤
p ≤ 1}, where the stage of this process, Y (n, p), is the simplicial complex with
full 1-skeleton in which each 2-dimensional edge is present independently with
probability p. This model of topological structures was introduced by Linial nad
Meshulam [4] who showed that the threshold for vanishing of the first homology
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of Y2(n, p) over F2 is (2 + o(1)) lnn/n and it is the same as the threshold for the
property that each pair 1-dimensional face is contained in some 2-dimensional face
of Y2(n, p). This result was generalized by Meshulam and Wallach [6] to higher di-
mensions and arbitrary fixed abelian groups. Recently Kahle and Pittel [2] proved
the hitting time result of Linial-Meshulam’s result, showing that whp in the ran-
dom simplicial complex process the first homology over F2 vanishes precisely in
the moment when for the first time all pairs are covered by 2-dimensional faces.

For the case of Z, which is not the field, so its homology group can have a non-
trivial torsion factor, the threshold function was determined only up to a contant
factor by Hoffman, Kahle and Paquette [1] who showed that whp H1(Y2(n, p))
vanishes provided p ≥ 160 lnn/n. We determine the threshold for vanishing of the
first homology over Z proving the following hitting time statment.

Theorem 1. In the random 2-dimensional complex process whp the hitting time
for the property that H1(Y2(n,M);Z) = 0 is the same as for the property that each
pair of vertices belong to some 2-dim face of Y2(n,M).

Our argument has two main ingredients, algebraic and combinatorial. For a 2-
dim simplicial complex Y with vertex set [n] and the full 1-dim skeleton we define
the shadow of Y over a field F as

SH(Y ;F) = {f ∈
(

[n]

3

)

: H1(Y ;F) = H1(Y ;F ∪ f)}.

Thus, the shadow is the set of all potential 2-dim faces which, added to Y , would
not affect its first homology group. It is easy to see that this group vanishes, i.e.

H1(Y ;F) = 0, if and only if the shadow is full, i.e. |SH(Y ;F )| =
(

[n]
3

)

. Moreover,
the following result of Kalai [3] states that the first homology over Z vanishes when
it vanishes over all fields which are not too large.

Lemma 2. Let Y be a 2-dim simplicial complex on n vertices. If H1(Y ;F) = 0
for every field F such that

|F| ≤
√

3
(n−1

2 ) ≤ exp(−n2) ,

then also H1(Y ;Z) = 0.

It is not true that for a given field F the probability that H1(Y2(n, p);F) = 0,

which is equivalent to |SH(Y2(n, p);F)| =
(

[n]
3

)

, tends to 0 faster than exp(−n2)
for p ∼ 2 logn/n which is close to the threshold we are interested in. However, the
following, slightly weaker, result holds.

Lemma 3. If p ≥ logn/n then

Pr
(

|SH(Y2(n, p);F)| ≥
(

[n]

3

)

− n3

ln lnn

)

= exp(−2n2) .

Moreover, we can supplement the above algebraic result by a combinatorial one.
We say that a 2-dim simplicial complex Y on n vertices has property B if for each
field F such that

|SH(Y2(n, p);F)| ≥
(

[n]

3

)

− n3

ln lnn
,
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we have |SH(Y2(n, p);F)| =
(

[n]
3

)

. Then, clearly, Theorem 1 is an immediate cnse-
quence of Lemmata 2, 3, and the following result.

Lemma 4. Whp the hitting time for the property B is the same as the hitting time
for the property that each pair of vertices is covered by at least one 2-dim face.
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High Dimensional Expansion

Roy Meshulam

(joint work with A. Lubotzky)

Expander graphs have been a focus of intensive research in the last four decades,
with numerous applications throughout mathematics and theoretical computer
science (see [2, 4]). In view of the ubiquity of expander graphs, there a recent
growing interest in high dimensional notions of expansion. The k-dimensional
version of the graphical Cheeger constant, called ”coboundary expansion”, came up
independently in the work of Linial, Meshulam and Wallach [3, 6] on homological
connectivity of random complexes and in Gromov’s remarkable work [1] on the
topological overlap property.

We proceed with the formal definitions. Let X be a finite n-dimensional pure
simplicial complex. For k ≥ 0, let X(k) denote the k-dimensional skeleton of X
and let X(k) be the family of k-dimensional faces of X , fk(X) = |X(k)|. Define a
positive weight function w = wX on the simplices of X as follows. For σ ∈ X(k),
let c(σ) = |{η ∈ X(n) : σ ⊂ η}| and let

w(σ) =
c(σ)

(

n+1
k+1

)

fn(X)
.

Note that
∑

σ∈X(k) w(σ) = 1. Let Ck(X) denote the space of F2-valued k-cochains

of X with the coboundary map dk : Ck → Ck+1. The space of k-coboundaries of
X is Bk(X) = dk−1C

k−1(X). For φ ∈ Ck(X), let [φ] denote the image of φ in
Ck(X)/Bk(X). Let

‖φ‖ =
∑

{σ∈X(k):φ(σ) 6=0}
w(σ)
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and

‖[φ]‖ = min{‖φ+ dk−1ψ‖ : ψ ∈ Ck−1(X)}.
Definition 1. The k-th coboundary expansion constant of X is

hk(X) = min

{‖dkφ‖
‖[φ]‖ : φ ∈ Ck(X) −Bk(X)

}

.

Clearly, hk(X) > 0 if and only if H̃k(X ;F2) = 0. Indeed, hk(X) can be thought
of as a measure of the resiliency of the property of having trivial k-dimensional
F2-cohomology, under deletion of (k + 1)-simplices from X .

As in the classical 1-dimensional case, one basic question concerns the existence
of bounded degree higher dimensional expanders. Let Dk(X) be the maximum
number of (k + 1)-dimensional faces of X containing a common k-dimensional
face. A complex X is a (k, d, ǫ)-expander if

Dk−1(X) ≤ d and hk−1(X) ≥ ǫ.

In joint work with Lubotzky [5] we establish the existence of an infinite fam-
ily of (2, d, ǫ)-expanders for some fixed d and ǫ > 0. Our proof is probabilistic
and depends on the following new model, based on Latin squares, of random 2-
dimensional simplicial complexes with bounded edge degrees. Let Sn be the sym-
metric group on [n] = {1, . . . , n}. A k-tuple (π1, . . . , πk) ∈ Skn is legal if πiπ

−1
j is

fixed point free for all 1 ≤ i < j ≤ k. A Latin Square of order n is a legal n-tuple of
permutations L = (π1, . . . , πn) ∈ Snn. Let Ln denote the uniform probability space
of all Latin squares of order n. Let V1 = {ai}ni=1, V2 = {bi}ni=1, V3 = {ci}ni=1 be
three disjoint sets. The complete 3-partite complex Tn = V1 ∗V2 ∗V3 consists of all
σ ⊂ V = V1∪V2∪V3 such that |σ∩Vi| ≤ 1 for 1 ≤ i ≤ 3. An L = (π1, . . . , πn) ∈ Ln

determines a subcomplex T
(1)
n ⊂ Y (L) ⊂ Tn whose 2-simplices are [ai, bj , cπi(j)]

where 1 ≤ i, j ≤ n. In particular Y (L) has 3n2 edges and every edge lies in a
unique 2-simplex, i.e. D1(Y (L)) = 1. Fix d and regard Ld

n as a uniform prob-

ability space. For Ld = (L1, . . . , Ld) ∈ Ld
n, let Y (Ld) = ∪d

i=1Y (Li). Note that

D1(Y (Ld)) ≤ d. Let Y(n, d) denote the probability space of all complexes Y (Ld)
with measure induced from Ld

n.

Theorem 2 ([5]). There exist ǫ > 0, d <∞ such that

lim
n→∞

Pr [Y ∈ Y(n, d) : h1(Y ) > ǫ] = 1.

In [5] it is shown that one may take ǫ = 10−11 and d = 1011. It would be of some
interest to improve these constants. In particular, we conjecture that Theorem 2
holds with d = 4 and an appropriate ǫ > 0.
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The sharp threshold for making squares

Rob Morris

(joint work with P. Balister and B. Bollobás)

Many of the fastest known algorithms for factoring large integers rely on find-
ing subsequences of randomly generated sequences of integers whose product is a
perfect square. Examples include Dixon’s algorithm [2], the quadratic sieve [5],
and the number field sieve (see, e.g., [4]); an excellent elementary introduction to
the area is given by Pomerance [7]. In each of these algorithms one generates a
sequence of congruences of the form

ai ≡ b2i (mod n), i = 1, 2, . . .

and then one aims to find subsets of the ai whose product is a perfect square, say
∏

i∈I ai = X2, so then one has X2 ≡ Y 2 (mod n) with Y =
∏

i∈I bi. If one is
lucky then X 6≡ ±Y (mod n), in which case one can generate non-trivial factors
of n as gcd(X ± Y, n).

Motivated by this, Pomerance [6] posed in 1994 the problem of determining the
threshold for the event that a sequence of random numbers a1, a2, . . ., each chosen
independently and uniformly at random from the set {1, . . . , x}, contains a subset
whose product is a square. To be precise, given x ∈ N, let us define a random
variable T (x) by setting

T (x) := min

{

N ∈ N :
∏

i∈I

ai is a perfect square for some I ⊆
{

1, . . . , N
}

, I 6= ∅
}

.

Pomerance [8] proved that

(1) T (x) = exp
(

(

1 + o(1)
)
√

2 logx log log x
)

with high probability, and conjectured that T (x) in fact exhibits a sharp threshold.
Pomerance’s conjecture remained wide open for over ten years, until a fundamental
breakthrough was obtained by Croot, Granville, Pemantle and Tetali [1], who
used a combination of techniques from number theory, probability theory and
combinatorics to dramatically improve both the upper bound of Schroeppel and
the lower bound of Pomerance [8], determining the location of the threshold to
within a factor of 4/π. To be precise, they proved that

(2)
π

4

(

e−γ − ε
)

J(x) ≤ T (x) ≤
(

e−γ + ε
)

J(x)
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with high probability, where1

J(x) = min
2≤y≤x

π(y)x

Ψ(x, y)
,

and γ ≈ 0.5772 is the Euler–Mascheroni constant.
Croot, Granville, Pemantle and Tetali [1] conjectured that the upper bound

in (2) is sharp. Our main theorem confirms their conjecture.

Theorem 1. For all ε > 0 we have with high probability
(

e−γ − ε
)

J(x) ≤ T (x) ≤
(

e−γ + ε
)

J(x).

We remark that, in addition to proving the lower bound, we also obtain a
new proof of the upper bound, quite different from that given in [1], as a simple
consequence of our method. (We thank Jonathan Lee for pointing out to us a
particularly simple and natural way of deducing this from our proof.)

Croot, Granville, Pemantle and Tetali [1] proved the lower bound in (2) via the
first moment method, by counting the expected number of non-empty subsets I ⊆
{1, . . . , N} such that

∏

i∈I ai is a square. Unfortunately, there exists a constant
c > 0 such that this expected number blows up when N ≥ (e−γ − c)J(x), which
implies that a sharp lower bound cannot be obtained by this method.

Instead, we use the method of self-correcting martingales to follow a random
process which removes numbers from the set {a1, . . . , aN} as soon as we can guar-
antee that they are not contained in a subset whose product is a square. This is
in one sense very simple: a number ai can be discarded if there exists a prime for
which ai is the only remaining number that it divides an odd number of times.
However, this apparent simplicity is deceiving, and the technical challenges in-
volved in tracking the process are substantial. For example, we need to reveal
the random numbers {a1, . . . , aN} gradually (roughly speaking, prime by prime,
in decreasing order), and the amount of information we are allowed to reveal at
each step is rather delicate. Moreover, the removal of a number can trigger an
avalanche, causing many other numbers to be removed in the same step. Fortu-
nately, however, self-correction (which is partly a result of these avalanches) allows
us to show that the process remains subcritical (in a certain natural sense), which
in turn allows us to control the upper tail of the size of the avalanches. In order
to do so, we need good control over the dependence between the prime factors of
the numbers {a1, . . . , aN} conditioned on the information we have observed so far;
to obtain such control, we need some number-theoretic estimates, most of which
follow from the fundamental work of Hildebrand and Tenenbaum [3] on smooth
numbers.

Using the method described above, we are able to show that, with high prob-
ability, the number m(z) of ‘active’ numbers (i.e., elements of {a1, . . . , aN} that

1As usual, π(y) denotes the number of primes less than or equal to y, and Ψ(x, y) denotes the
number of y-smooth integers in {1, . . . , x}, that is, the number of integers with no prime factor
strictly greater than y.
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we have not yet discarded) when we reveal the zth smallest prime, tracks the
(deterministic) solution of the equation

(3) m(z) exp

(

−
∫ m(z)/z

0

1 − e−t

t
dt

)

=
Ψ(x, qz)

x
·N

until there are very few numbers remaining (roughly e−C
√
log y0y0 for some large

constant C), at which point we can apply the first moment calculation from [1].
The heuristic reason for the appearance of the formula (3) is that the number of y-
smooth numbers is concentrated (e.g., by Chernoff’s inequality) for all reasonably
large values of y, since the ai are chosen independently, and is equal to the number
of isolated vertices in a certain natural (random) hypergraph. We show that the
number sk(z) of edges of size k is self-correcting, and satisfies2

sk(z) ∈
(

1 ± εk · k!

Λ(z)

)

m(z)

k(k − 1)
e−m(z)/z

∞
∑

ℓ=k−1

1

ℓ!

(

m(z)

z

)ℓ

in the ‘critical range’ eO(
√
log y0)y0, and that these edges are chosen almost inde-

pendently, so in particular the degree distribution of the random hypergraph is
close to Poisson. Equating these two estimates for the number of isolated vertices
gives (3).

Finally, in order to prove the upper bound in Theorem 1, we observe that the
ratio of the number of active numbers and active primes (that is, primes which
could still appear in some square) approaches 1 when z = π(y0) and N/J(x)
approaches e−γ . Thus, by adding just a few extra y0-smooth numbers, we can
apply a simple linear algebra approach due to Schroeppel in order to obtain a
subset whose product is a square, as required.
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Higher-order terms in Janson’s inequality

Frank Mousset

(joint work with A. Noever, K. Panagiotou, and W. Samotij)

By an increasing family we will mean a triple (Ω,Γ, p) where Ω is a finite set, Γ =
{γ1, . . . , γN} is a collection of non-empty subsets of Ω, and p is a map Ω → (0, 1).
Given such a triple (Ω,Γ, p), we write Ωp for the random subset of Ω that contains
each ω ∈ Ω with probability p(ω), independently of the others, and for i ∈ [N ] we
set Xi = 1γi⊆Ωp and X = X1 + · · · + XN . Our goal is to prove bounds on the
probability that X = 0. Probabilities of this type arise commonly in probabilistic
combinatorics. The classical result here is Janson’s inequality (where the lower
bound comes from the Harris inequality):

Theorem 1. For every increasing family (Ω,Γ, p), we have

(1)
∏

i∈[N ]

(1 −E[Xi]) ≤ Pr[X = 0] ≤ e−µ+∆,

where

µ = E[X ] and ∆ =
∑

i<j,γi∩γj 6=∅
E[XiXj ].

Typically, we will apply Theorem 1 in a situation where
∑

i∈[n] E[Xi]
2 = o(1).

In this case, the lower bound is asymptotic to e−µ. Hence, unless ∆ = o(1),
the upper and lower bounds in (1) may be apart by an arbitrarily large factor.
The reason is that the lower bound only looks at the first-order contribution µ,
whereas the upper bound also includes the second-order contribution ∆, which
may be non-negligible. To tighten (1), it is natural to look at upper and lower
bounds that include higher-order contributions.

Before we can state such a result, we have to make some definitions. Let
A = {X1, . . . , Xm} be a set of real-valued random variables on the same finite
probability space. The joint moment of the elements in A is defined as

(2) ∆(A) = E[X1 · · ·Xm].

The joint cumulant may be defined as

(3) κ(A) =
∑

π∈Π(A)

(|π| − 1)!(−1)|π|−1
∏

P∈π

∆(P ),

where we write Π(A) for the set of all partitions of A into non-empty sets. We
also define the quantity

(4) δ(A) = ∆(A) · max {E[Xi] | i ∈ [m]}
that will play an important role below. We define the dependency graph GΓ on
the vertex set [N ], where {i, j} is an edge if and only if γi ∩ γj 6= ∅. Moreover, we
write Ci for the collection of all i-element subsets A ⊆ [N ] such that the induced
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subgraph GΓ[A] is connected. The elements of Ci are called clusters of size i. For
i ∈ N we then define

∆i =
∑

A∈Ci

∆(Xi | i ∈ A), δi =
∑

A∈Ci

δ(Xi | i ∈ A), κi =
∑

A∈Ci

κ(Xi | i ∈ A).

With these definitions, our main result reads as follows.

Theorem 2. Let (Ω,Γ, p) be an increasing family. For every set A ⊆ [N ], denote
by N(A) the proper neighbourhood of A in the dependency graph GΓ, and let

ρA =
∑

i∈N(A)

E[Xi].

Let k ∈ N. Assume there is some ε > 0 such that E[Xi] ≤ 1−ε for all i ∈ [N ] and
ρA ≤ 1 − ε for all A ⊆ [N ] of size at most k + 1. Then there exists K = K(k, ε)
such that

(5)
∣

∣ log Pr[X = 0] + κ1 − κ2 + κ3 − · · · ± κk
∣

∣ ≤ K(δ1,K + ∆k+1,K),

where

δ1,K =

K
∑

i=1

δi and ∆k+1,K =

K
∑

i=k+1

∆i.

For a better understanding of the error terms, we note that if

max {E[Xi] | i ∈ [N ]} → 0,

which is commonly the case, then we have ∆i ∼ κi for all i. The error term
∆k+1,K morally corresponds to the error term ∆ in Janson’s inequality, and often
its magnitude is proportional to κk+1. In these situations, this error of course
cannot be avoided. The error δ1,K comes from replacing products by exponentials;
an error of this type is also necessary. While Theorem 2 does not formally imply
Janson’s inequality, in many situations it more powerful, as shown by the following
examples.

Example 3. Let Ω = {xy | 1 ≤ x < y ≤ n} be the edge set of the complete graph
with n vertices, p(e) = p for all e ∈ Ω, and Γ contain all triplets of edges that form
a triangle, that is,

Γ =
{

{xy, yz, xz} | 1 ≤ x < y < z ≤ n
}

.

Then X is the number of triangles in the random graph Gn,p. From Janson’s

inequality (1) it easily follows that for p = o(n−1/2),

P[X = 0] ∼ exp
(

− n3p3

6
+O(n4p5)

)

= exp(−κ1 +O(κ2)).

Applying Theorem 2 we can show much better bounds, namely, that for all p =
o(n−1/2) and all k ∈ N, we have

(6) P[X = 0] ∼ exp(−κ1 + κ2 − · · · ± κk +O(κk+1)).

Here p = o(n−1/2) is essentially the range where the sequence κ1, κ2, . . . is de-
creasing, i.e., the same statement holds trivially if p = ω(n−1/2). For i ≤ 4 the
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values of κi are not too hard to compute, and from (6) it follows for example that
for p = o(n−7/11), we have

P[X = 0] ∼ exp
(

− n3p3

6
+
n4p5

4
− 7n5p7

12
+
n2p3

2
− 3n4p6

8
+

27n6p9

16

)

.

This result was previously obtained by Stark and Wormald [1], extending an earlier
result of Wormald [2].

Example 4. Let Ω = [n], let p(ω) = p for all ω ∈ Ω, and let Γ be the set of
all r-term arithmetic progressions in Ω. Note that X counts the number of such
arithmetic progressions contained in the random binomial subset [n]p. Applying

Janson’s inequality (1) we can obtain that for p = o(n−1/r), we have

P[X = 0] ∼ exp(−κ1 +O(κ2)),

where one has κ1 ≍ n2pr and κ2 ≍ n3p2r−1. Thus we see that this statement is
meaningless already for p = ω(n−1/(r−1)), since then κ2 ≫ κ1. Using Theorem 2
we can show that for all p = o(n−1/(r−1)) and all k ∈ N we have

(7) P[X = 0] ∼ exp(−κ1 + κ2 − · · · ± κk +O(κk+1)),

which is strictly better than the bounds given by Janson’s inequality in this range.
Again, p = o(n−1/(r−1)) is the range where the sequence κ1, κ2, . . . is decreasing.
For example, performing the calculations for r = 3 and k = 2 one obtains that for
p = o(n−4/7)),

P[[n]p is 3-AP-free] ∼ exp
(

− n2p3

4
+

17n3p5

24

)

.
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Estimating the rectilinear crossing number of dense graphs

János Pach

(joint work with J. Fox and A. Suk)

A straight-line drawing of a graph G is a mapping which assigns to each vertex a
point in the plane and to each edge a straight-line segment connecting the corre-
sponding two points. The rectilinear crossing number of a graph G, cr(G), is the
minimum number of crossing edges in any straight-line drawing of G. Determining
or estimating cr(G) appears to be a difficult problem, and deciding if cr(G) ≤ k is
known to be NP-hard. In fact, the asymptotic behavior of cr(Kn) is still unknown.

We present a deterministic n2+o(1)-time algorithm that finds a straight-line
drawing of any n-vertex graph G with cr(G)+o(n4) crossing edges. Together with
the well-known Crossing Lemma due to Ajtai et al. [1] and Leighton, this result
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implies that for any dense n-vertex graph G, one can efficiently find a straight-
line drawing of G with (1 + o(1)) cr(G) crossing edges. The proof is based on a
geometric partition result [3] and on an algorithmic version of the Frieze-Kannan
regularity lemma [4], [2].
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Long-range order in random colorings and graph homomorphisms

Ron Peled

(joint work with Y. Spinka)

A (graph) homomorphism from a graph G to a graph H is a function f from the
vertex set of G to that of H , which preserves edges, i.e., f(u) and f(v) are adjacent
in H whenever u and v are adjacent in G. We investigate the typical properties
of a uniformly chosen homomorphism from an induced finite subgraph of Zd to an
arbitrary finite graph H . We do not require H to be a simple graph, i.e., loops
and multiple edges are allowed (though multiple edges make no difference to the
model). We show that for a large class of graphs H , when the dimension d is
sufficiently high, the random homomorphism exhibits a type of long-range order.
The class of graphs for which the results apply includes several well-known models
as special cases, amongst which are: proper q-colorings (obtained when H is a
clique on q vertices), independent sets (also called the hard-core model; obtained
when H is an edge with a loop at one endpoint) and the Widom-Rowlinson model
(obtained when H is a path on three looped vertices). The results extend to
non-uniform distributions, in which H is equipped with vertex and edge weights,
(λa)a∈V (H), (λ{a,b}){a,b}∈E(H), and the probability of choosing a particular homo-
morphism f is proportional to

∏

u∈V (G)

λf(u)
∏

{u,v}∈E(G)

λ{f(u),f(v)},

but we do not formulate these extensions here.
In order to formulate our results, we require some definitions. A phase of the

graph H is a pair (A,B) of subsets of V (H) such that a and b are adjacent for all
a ∈ A and b ∈ B. A phase is called dominant if it maximizes the quantity |A| · |B|.
We say that two phases (A,B) and (A′, B′) are direct-equivalent if there is an
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automorphism of the graphH taking A to A′ and B to B′, and we say that they are
equivalent if (A,B) is direct-equivalent to either (A′, B′) or (B′, A′). Our results
apply whenever all dominant phases are equivalent. Let us fix a bipartition of Zd

by saying that a vertex is even (odd) if its graph-distance from the origin is even
(odd), that is, a vertex has the parity of the sum of its coordinates. For a positive
integer n, let Λd

n denote the subgraph of Zd induced by the cube [−n, n]d and let
∂Λd

n := Λd
n \ Λd

n−1 denote the vertex boundary of Λd
n. Given a homomorphism f

from Λd
n to H , we say that a vertex v ∈ Λd

n is in the (A,B)-phase if

v is even and f(v) ∈ A or v is odd and f(v) ∈ B.

We also say that a set of vertices is in the (A,B)-phase if all its elements are such.

Theorem 1. Let H be a finite graph in which all dominant phases are equivalent.
For any ǫ > 0 there exists d0 such that for any dimension d ≥ d0 and any n ≥ 1,
the following holds. Suppose that f is a uniformly sampled homomorphism from
Λd
n to H. Then, for any dominant phase P and any vertex v ∈ Λd

n, we have

Pr
(

v is in the P -phase | ∂Λd
n is in the P -phase

)

≥ 1 − ǫ.

The theorem states that a random homomorphism in high dimensions exhibits a
strong type of long-range order in which, subject to (A,B)-boundary conditions, a
chessboard-like (A,B)-pattern emerges within the box Λd

n, where any even vertex
is likely to take a value in A and any odd vertex a value in B. Hence, any dominant
phase defines “persistent” boundary conditions.

An interesting consequence from the viewpoint of statistical mechanics is the ex-
istence of multiple Gibbs states in such models (whenever (A,A) is not the unique
dominant phase). Theorem 1 admits several extensions beyond the weighted ver-
sion mentioned above. These include a quantitative dependence of ǫ and d0 on
H , and a version in which Zd is replaced by a ‘thickened’ version of Z2, namely
Z2 × {0, 1}d (in a sense, the ‘global dimension’ of this graph is 2 and its ‘local
dimension’ is d+ 2). We do not discuss these extensions further here.

A result with similar features on the hypercube graph G = {0, 1}d was proved
earlier by Engbers–Galvin [4]. Related counting results (in more general settings)
consistent with Theorem 1 include a calculation by Meyerovitch–Pavlov [12] of
the limiting entropy constant as the dimension tends to infinity and an estimate
by Galvin-Tetali [8] on the number of homomorphisms from the the torus graph
to an arbitrary finite graph (extending the entropy method of Kahn [9] who used
it to count the number of independent sets in bipartite regular graphs, proving a
conjecture of Alon [1]).

Let us briefly describe the result in the context of the three well-known models
mentioned above.

Proper colorings. Let H = Kq be the complete graph on q ≥ 2 vertices. Then a
homomorphism from G to H is precisely a proper q-coloring of G, i.e., a function
f : V (G) → {1, . . . , q} such that f(u) 6= f(v) when u and v are adjacent in G.
In this case, the dominant phases are all equipartitions of [q] := {1, . . . , q} into
two sets, i.e., pairs (A,B) of disjoint subsets of [q] such that |A|, |B| ≥ ⌊q/2⌋.
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In particular, Theorem 1 shows that when the dimension is sufficiently high as a
function of q, any such equipartition defines persistent boundary conditions. This
is a trivial fact for q = 2. It was previously known for q = 3 where it is due,
independently, to Peled [13] and to Galvin–Kahn–Randall–Sorkin [7], with an
extension to positive temperature (the weighted case) by Feldheim–Spinka [5] who
proved the Kotecký conjecture [10]. The result here is novel for q ≥ 4. We remark
that the Dobrushin uniqueness condition [2] implies that when q is sufficiently
large as a function of the dimension (q > 4d suffices), the model ceases to exhibit
long-range order.

Independent sets. Let H be the graph with vertex set {0, 1} and edge set
{{0}, {0, 1}}, i.e., a single edge with a loop at one endpoint. Then a homomorphism
from G to H can be identified with an independent set in G, i.e., a subset of
vertices I which contains no two adjacent vertices. In this setting it is common to
consider a more general distribution, called the hard-core distribution, in which
an independent set I is chosen with probability proportional to λ|I|, where λ > 0
is a parameter called the fugacity. In this case, there are two dominant phases,
({0}, {0, 1}) and ({0, 1}, {0}), and an extension of Theorem 1 to the weighted case
shows that when the dimension is sufficiently high as a function of the fugacity
λ, there are two persistent boundary conditions, one in which I consists mostly
of even vertices and one in which it consists mostly of odd vertices. The fact
that this is the case for sufficiently large fugacity as a function of the dimension
d ≥ 2 goes back to Dobrushin [3]. In fact, our results show that the minimal
fugacity for which this behavior occurs tends to zero as the dimension tends to
infinity. This result was previously known and is due to Galvin–Kahn [6], with a
quantitative improvement by Peled-Samotij [14]. As in the case of proper colorings,
the Dobrushin uniqueness condition [2] implies that when λ is sufficiently small
as a function of the dimension (λ ≤ 1/2d suffices), the model ceases to exhibit
long-range order.

The Widom-Rowlinson model. Let H be the graph with vertex set {−1, 0, 1}
and edge set {{0}, {±1}, {0,±1}}, i.e., a path on three looped vertices. Then one
may regard a homomorphism from G to H as describing the territory occupied
by two competing species (one represented by “1” and the other by “-1”) which
cannot be adjacent to one another. In this case, there are two dominant phases,
({0, 1}, {0, 1}) and ({−1, 0}, {−1, 0}), and Theorem 1 shows that when the dimen-
sion is sufficiently high, there are two persistent boundary conditions, one in which
the “1” species is predominant and the other in which “-1” is predominant. Such a
result was previously known only in the weighted case, by Lebowitz-Gallavotti [11],
when the presence of “1” and “-1” in the configuration is encouraged by sampling
configurations with probability proportional to λ raised to the number of “1” and
“-1”, and λ is taken sufficiently high as a function of the dimension.
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An occupancy approach to bounding graph polynomials

Will Perkins

(joint work with E. Davies, M. Jenssen, and B. Roberts)

Many graph polynomials (the independence polynomial, matching polynomial,
and indirectly, the Tutte and chromatic polynomials) can be viewed as partition
functions of statistical physics models. We present a new method for proving
extremal results for graph polynomials over classes of bounded degree graphs using
the perspective of statistical physics.

The hard-core model at fugacity λ on a graph G is a random independent set
I drawn according to the distribution

P(I) =
λ|I|

ZG(λ)
.

The function ZG(λ) =
∑

I λ
|I| is the partition function of the hard-core model, or

in graph theory, the independence polynomial. Evaluating ZG(1) counts the total
number of independent sets of G.
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Our approach is to maximize (or minimize) the free energy

FG(λ) = |V (G)|−1 logZG(λ)

of the hard-core model and other models from statistical physics by maximizing
or minimizing the occupancy fraction,

αG(λ) := λ · F ′
G(λ) = |V (G)|−1E[|I|],

which is both the (scaled) derivative of the free energy and a probabilistic observ-
able of the model. By integrating αG(t)/t from 0 to λ, a bound on αG yields a
bound on the free energy. For instance, in [2] we show

Theorem 1. For all d-regular G and all λ > 0,

αG(λ) ≤ αKd,d
(λ).

This is a strengthening of results of Kahn [6], Galvin and Tetali [5], and Zhao [9]
proving via the entropy method that the free energy FG(λ) is maximized over d-
regular graphs by Kd,d (or to put it differently, the number of independent sets,
and the independence polynomial are maximized over d-regular graphs by disjoint
unions of Kd,d’s).

Our general method for proving such theorems can be summarized as follows.

• Choose a Gibbs measure (e.g. the hard-core model), an observable (the oc-
cupancy fraction), and a class of bounded-degree graphs (d-regular graphs).

• For a fixed depth t, consider the two-part experiment of choosing a con-
figuration (independent set) σ from the Gibbs measure on G, choosing a
vertex v uniformly at random from V (G) and recording both the depth-t
neighborhood of v as well as the boundary condition of the Gibbs measure
induced by σ. Call the neighborhood plus boundary condition the random
local view from the experiment.

• Relax the extremal problem on graphs to an optimization problem on prob-
ability distributions on local views, adding carefully chosen constraints
that must hold for all distributions induced by graphs in the chosen class.

• Pose the relaxation as a linear program, solve it, and integrate the bound
on the observable to obtain a bound on the free energy.

By restricting to triangle-free graphs and minimizing instead of maximizing,
the method yields the following result [3].

Theorem 2. For any triangle-free graph G of maximum degree at most d,

αG(1) ≥ (1 + od(1))log d/d.

Theorem 2 provides an alternative proof to Shearer’s classic result [8] that
gives the best known upper bound on the Ramsey number R(3, k). Recall that
αG(1) · |V (G)| is the average size of a uniformly random independent set from G.
The theorem begs the question of whether the maximum size of an independent
set in a triangle-free graph is significantly larger than the average size.
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Conjecture 3. In any triangle-free graph the ratio of the maximum independent
set size to the average independent set size is at least 4/3. In any triangle-free
graph of minimum degree d, the ratio is at least (2 − od(1)).

A proof of Conjecture 3 would yield a respective factor 4/3 or 2 improvement
on the current upper bound on R(3, k).

We can also apply the method to matchings in regular graphs. Let M be a

random matching from a graph G chosen with probability P(M) = λ|M|

MG(λ) where

MG(λ) =
∑

M λ|M| is the Monomer-Dimer partition function, or the matching
generating function. Bregman’s theorem [1] tells us that the Monomer-Dimer free
energy is maximized in the λ → ∞ limit by Kd,d, but the result for finite λ (and
the counting case λ = 1) was not known previously. In [2] we prove:

Theorem 4. For all d-regular G and all λ > 0,

αM
G (λ) ≤ αM

Kd,d
(λ),

and in particular,

|V (G)|−1 logMG(λ) ≤ (2d)−1 logMKd,d
(λ).

The method can also be applied to the anti-ferromagnetic Potts model on cubic
graphs which yields in the zero-temperature limit a tight bound on the number of
proper q-colorings of a cubic graph [4].

Finally, we can obtain a richer class of extremal regular graphs if we forbid
certain local structures. Examples of such results include the following from [7].

Theorem 5. Let P5,2 denote the Petersen graph. Then for every 3-regular,
triangle-free graph G, and every λ ∈ (0, 1],

αG(λ) ≥ αP5,2(λ).

Let H3,6 denote the Heawood graph, the unique (3, 6)-cage graph. Then for every
3-regular graph G of girth at least 5, and all λ > 0,

αG(λ) ≤ αH3,6(λ).

Integrating the occupancy fraction yields a tight bound on the independence
polynomial and the normalized number of independent sets.

Further discussion of extremal problems for regular graphs can be found in the
recent survey of Zhao [10]
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Hamiltonian cycles in 3-uniform hypergraphs

Christian Reiher

(joint work with V. Rödl, A. Ruciński, M. Schacht, E. Szemerédi)

G. A. Dirac [6] proved that every graph G = (V,E) on at least 3 vertices and with
minimum vertex degree δ(G) ≥ |V |/2 contains a Hamiltonian cycle. This result is
best possible, as there are graphs G with minimum degree δ(G) =

⌈

|V |/2
⌉

− 1 not
containing a Hamiltonian cycle.

We continue the study to which extent Dirac’s theorem can be generalised to
hypergraphs. Here we shall restrict to 3-uniform hypergraphs and if not mentioned
otherwise by a hypergraph we will mean a 3-uniform hypergraph. Note that in
this case there are at least two natural concepts of a minimum degree condition
and several notions of cycle, and we briefly introduce some of them below.

For a hypergraph H = (V,E) and a vertex v ∈ V we denote by dH(v) the degree
of v defined as

dH(v) =
∣

∣{e ∈ E : v ∈ e}
∣

∣ ,

and by δ(H) = min dH(v) the minimum vertex degree of H taken over all v ∈ V .
Similarly, for any two vertices u, v ∈ V we denote by dH(u, v) their pair degree,
which is the number of edges containing u and v, i.e.,

dH(u, v) =
∣

∣NH(u, v)
∣

∣ =
∣

∣{e ∈ E : u, v ∈ e}
∣

∣ ,

and let δ2(H) = min dH(u, v) be the minimum pair degree over all pairs of vertices
of H .

An early notion of cycles in hypergraphs appeared in the work of Berge [1]
(see, also [2]) more than 40 years ago. More recently, Katona and Kierstead [9]
considered the following types of paths and cycles.

A hypergraph P is a tight path of length ℓ, if |V (P )| = ℓ + 2 and there is
an ordering of the vertices V (P ) = {x1, . . . , xℓ+2} such that a triple e forms a
hyperedge of P if and only if e = {xi, xi+1, xi+2} for some i ∈ [ℓ]. The ordered
pairs (x1, x2) and (xℓ+1, xℓ+2) are the end-pairs of P and we say that P is a
tight (x1, x2)-(xℓ+1, xℓ+2) path. This definition of end-pairs is not symmetric and
implicitly fixes a direction on P and the order of the end-pairs. Hence, we may
refer to (x1, x2) as the starting pair and to (xℓ+1, xℓ+2) as the ending pair. All
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other vertices of P are called internal. We sometimes identify such a path P with
the sequence of its vertices x1 . . . xℓ+2. Moreover, a tight cycle C of length ℓ ≥ 4
consists of a path x1 . . . xℓ of length ℓ − 2 and the two additional hyperedges
{xℓ−1, xℓ, x1} and {xℓ, x1, x2}. In both cases the length of a tight cycle and of
a tight path is measured by the number of hyperedges and we will use the same
convention for the length of cycles, paths, and walks in graphs. For simplicity we
denote edges and hyperedges by xy and xyz instead of {x, y} and {x, y, z}.

Roughly speaking, one may think of tight paths and cycles as ordered hyper-
graphs such that “consecutive” edges overlap in exactly two vertices. Similarly,
one may consider so-called loose paths and cycles, where the overlap is restricted
to one vertex only. The optimal approximate minimum pair and vertex degree
conditions for the existence of loose Hamiltonian cycles were obtained in [3, 10]
and precise versions for large hypergraphs appeared in [5, 8].

Results on pair degree conditions implying tight Hamiltonian cycles were ob-
tained in [15,16]. For minimum vertex degrees, (5/9 − o(1))n2/2 provides a lower
bound (see Examples 2 1 – 3 below), which was conjectured to be optimal. So far
only suboptimal upper bounds were obtained in [7,13,14]. We close this gap here,
as the following result provides an asymptotically optimal minimum vertex degree
condition for tight Hamiltonian cycles.

Theorem 1. For every α > 0 there exists an integer n0 such that every 3-uniform
hypergraph H with n ≥ n0 vertices and with minimum vertex degree

δ(H) ≥
(

5
9 + α

)

n2

2

contains a tight Hamiltonian cycle.

A recent result of Cooley and Mycroft [4] establishes the existence of an almost
spanning tight cycle under the same degree condition as in Theorem 1. Moreover,
both these results are asymptotically best possible, as the following well known
examples show.

Example 2.

(1) Consider a partition X ∪· Y = V of a vertex set V of size n with |X | =
⌈(n + 1)/3⌉ and let H be the hypergraph containing all triples e ∈ V (3)

such that |e ∩ X | 6= 2. It is not hard to show that H contains no tight
Hamiltonian cycle, since two consecutive vertices inX cannot be connected
to Y (see, e.g., [13]). Moreover, we have δ(H) ≥ (5/9 − o(1))n2/2.

(2) Similarly, one may consider a partition X ∪· Y = V with |X | = ⌈2n/3⌉
and let H be the hypergraph consisting of all triples e ∈ V (3) such that
|e ∩ X | 6= 2. Again H has δ(H) ≥ (5/9 − o(1))n2/2 and it contains no
tight Hamiltonian cycle.

(3) The last example utilises the fact that every tight Hamiltonian cycle con-
tains a matching of size ⌊n/3⌋. Again we consider a partition X ∪· Y = V
this time with |X | = ⌊n/3⌋ − 1 and let H consist of all triples hav-
ing at least one vertex in X . Consequently, H contains no matching of
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size ⌊n/3⌋ and, hence, no tight Hamiltonian cycle. On the other hand,
δ(H) ≥ (5/9 − o(1))n2/2.

The proof of Theorem 1 may be found in [11].
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Incidence geometry, rank bounds for design matrices, and applications

Shubhangi Saraf

(joint work with A. Basit, Z. Dvir, and C. Wolf)

Given any set P of n points in Rd and suppose we know that many small subsets of
the points are linearly dependent. Can we deduce a global bound on the dimension
of the entire configuration? The oldest example of such a question dates back to
1893 when Sylvester, motivated by certain complex configurations arising from
Elliptic curves, asked “If every line through two points in P contains a third
point from P , must they all line on the same line?” [11]. The positive answer to
this question, proved independently by Melchior [9] and by Gallai (answering a
question of Erdos [6]), is now known as the Sylvester-Gallai (SG) theorem. This
is a strong form of the local-to-global principle. Loosely speaking, it says that the
existence of ‘many’ local dependencies (collinearity of triples is captured by affine
dependence) imposes a global structure - here all points must lie in 1-dimensional
affine space.

There have been several variations of this question that have been studied
such as high dimensional, colorful, approximate and quantitative versions of the
Sylvester-Gallai theorem, as well as their analogs over finite fields. In recent years,
theorems of this nature have been useful in studying certain structural questions
arising in theoretical computer science. Variants of the SG theorem were useful in
understanding the structure of low-depth arithmetic circuits and the polynomial
identity testing problem (PIT) [4, 8, 10]. Quantitative versions of the SG theo-
rem were shown to be closely linked to the structure of linear Locally Correctable
Codes [1, 3, 5].

This talk surveys some of these extensions, with particular emphasis on a proof
technique that has recently proven to be quite powerful for proving strong bounds
for several of the incidence questions, which is via rank bounds for design matrices.
We will demonstrate the power of this technique by focusing on the proof of the
following recent result [2].

Consider a set of n points in Rd. The classical theorem of Sylvester-Gallai says
that, if the points are not all collinear then there must be a line through exactly
two of the points. Let us call such a line an “ordinary line”. In a recent result,
Green and Tao were able to give optimal linear lower bounds (roughly n/2) on the
number of ordinary lines determined n non-collinear points in Rd.

We will consider the analog over the complex numbers. While the Sylvester-
Gallai theorem as stated above is known to be false over the field of complex
numbers, it was shown by Kelly [7] that for a set of n points in Cd, if the points
don’t all lie on a 2-dimensional plane then the points must determine an ordinary
line. Using techniques developed for bounding the rank of design matrices, we will
show that such a point set must determine at least 3n/2 ordinary lines, except in
the trivial case of n-1 of the points being contained in a 2 dimensional plane.
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Removal Lemmas with Polynomial Bounds

Asaf Shapira

(joint work with L. Gishboliner)

A hereditary graph property P is said to be testable if there is a function fP(ε)
such that for every ε > 0 and for every graph G, if G is ε-far from satisfying P
then a random subset of fP(ε) vertices of G does not satisfy P with probability
at least 2

3 . P is easily testable if one can take fP(ε) to be polynomial in ε−1. For
a fixed graph H , the testability if H-freeness is equivalent to the celebrated graph
removal lemma of Ruzsa and Szemerédi [9]. It was shown by Alon and Shapira
[6] that every hereditary graph property is testable. This general result relied on
a version of Szemerédi’s regularity lemma [10] and thus gave tower-type bounds
on fP(ε). Consequently, several authors [4,8] raised the problem of characterizing
the easily testable hereditary graph properties.

We prove new sufficient and necessary conditions for a hereditary graph prop-
erty to be easily testable. These general combinatorial conditios imply almost all
previously known results of this type, as well as many new ones. As a corollary,
we prove a conjecture of Alon, stating that every semi-algebraic graph property is
easily testable.
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For a hereditary graph property P , let F(P) denote the family of minimal
forbidden induced subgraphs for P . Our first result gives a sufficient condition
that guarantees that P is easily testable.

Theorem 1. If F(P) is finite and contains a bipartite graph, a co-bipartite graph
and a split graph, then P is easily testable.

Theorem 1 implies the previously known results thatH-freeness is easily testable
for a bipartite H [1] and that induced H-freness is easily testable if H is a path
with at most four vertices [4, 5], as well as the new results that the properties of
being a line graph, being a threshold graph and being a trivially perfect graph are
easily testable.

Our next result is a necessary condition for a hereditary property to be easily
testable. It only applies when F(P) is finite.

Theorem 2. If F(P) is finite and P is easily testable then F(P) contains a
bipartite graph and a co-bipartite graph.

Theorem 2 implies as corollaries the negative results of [1] and [5]. Our final
result for the case that F(P) is finite is that the necessary condition in Theorem
2 is not sufficient.

Theorem 3. There is a bipartite graph F1 and a co-bipartite graph F2 for which
induced {F1, F2}-freeness is not easily testable.

We now turn to consider the case where F(P) is infinite. It is natural to ask
if the condition of Theorem 1 is still sufficient. Our next theorem states that it is
not.

Theorem 4. There is a graph family F which contains a bipartite graph, a co-
bipartite graph and a split graph, for which induced F-freeness is not easily testable.

The family F in Theorem 4 is an ad hoc construction and does not arise from
a familiar graph property. We prove that for many “natural” properties, the
condition in Theorem 1 is sufficient. To state the exact result we need the fol-
lowing definition. Let H be a graph with vertices V (H) = {1, . . . , r} and let
g : V (H) → {0, 1}. A graph G is a g-blowup of H if G admits a vertex partition
V (G) = V1 ∪ · · · ∪ Vr such that (Vi, Vj) is a complete (resp. empty) bipartite
graph whenever (i, j) ∈ E(H) (resp. (i, j) /∈ E(H)) and Vi is a clique (resp. an
independent set) whenever g(i) = 1 (resp. g(i) = 0).

Theorem 5. Let P be a hereditary graph property satisfying the following.

(1) F(P) contains a bipartite graph, a co-bipartite graph and a split graph.
(2) For every H ∈ P there is a function g : V (H) → {0, 1} such that every

g-blowup of H satisfies P.

Then P is easily testable.

In order to describe the main application of Theorem 5, we recall the definition
of semi-algebraic graph properties. A semi-algebraic property is given by a set
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of real 2k-variate polynomials f1, . . . , ft ∈ R[x1, . . . , x2k] and a Boolean function
Φ : {true, false}t → {true, false}. A graph G satisfies the property if there is an
assignment of points {pv : v ∈ V (G)} to the vertices of G, where pv ∈ Rk, such
that (u, v) ∈ E(G) if and only if

Φ
(

f1(pu, pv) ≥ 0; . . . ; ft(pu, pv) ≥ 0
)

= true.

In the expression fi(pu, pv), we substitute pu into the first k variables of fi and pv
into the last k variables of fi. Many well studied classes of graphs, such as interval
graphs, unit disc graphs and circular arc graphs, are semi-algebraic. We proved
that every semi-algebraic property satisfies conditions 1-2 of Theorem 5. Thus, we
got the following corollary, which confirms a conjecture of Alon [2].

Corollary 6. Every semi-algebraic graph property is easily testable.

The proofs of Theorems 1 and 5 rely on a lemma stating that F(P) contains
a bipartite graph, a co-bipartite graph and a split graph if and only if there is
k = k(P) such that every G ∈ P has VC-dimension at most k. Next we use a
theorem by Alon, Fishcer and Newman [3], stating that if only a small fraction of
the induced subgraphs of G of order poly(1/ε) have VC-dimension larger than k,
then G admits a highly-structured (more structured than the one produced by the
regularity lemma) partition with only poly(1/ε) parts. In the proof of Theorem 5
there is an additional difficulty that arises from having to handle infinitely many
forbidden subgraphs. Indeed, there can be a situation in which G is ε-far from
satisfying P but the smallest F ∈ F(P) which is an induced subgraph of G is of
size much larger than poly(1/ε). In fact, such a construction is used in the proof
of Theorem 4. Condition 2 of Theorem 5 allows us to overcome this difficulty, as
well as other technical difficulties that arise in proofs of this type.

In order to prove 2 and 3 we prove the following new hardness result.

Theorem 7. For every non-bipartite H, ε > 0 and n ≥ n0(ε) there is an n-vertex
graph which is ε-far from being induced H-free but contains only εc log(1/ε)nv(H)

(not necessarily induced) copies of H.

The proof of Theorem 7 relies on a new variant of the Ruzsa-Szemerédi construc-
tion. Instead of using a set of integers with no solution to x1 + · · · + xk = kxk+1,
as was done in previous works, we use a set with no solution to any equation of
the form a1x1 + . . .+akxk = (a1 + . . .+ak)xk+1 with positive bounded a1, . . . , ak.
Furthermore, we carefully label the vertices of H in order to guarantee that every
copy of H in the construction will contain a cycle which corresponds to a solution
to one of the above equations.
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Core Forging by Warning Propagation

Kathrin Skubch

(joint work with A. Coja-Oghlan, O. Cooley, and M. Kang)

The k-core of a graph is the largest subgraph of minmum degree k. It can be de-
termined algorithmically by the peeling process that removes an arbitrary vertex
of degree less than k while there is one. In one of the most influential contribu-
tions to the theory of random graphs Pittel, Spencer and Wormald analysed the
peeling process on the Erdős-Rényi random graph via the method of differential
equations [6]. They determined the precise threshold dk from where on the k-core
is non-empty w.h.p as well as the asymptotic order (i.e., number of vertices) and
size (number of edges) of the k-core for d > dk and k ≥ 3. The case k ≥ 3 is very
different from the case k = 2, as the 2-core simply emerges continuously (mostly)
inside the giant component. By contrast, a most remarkable feature of the k-core
problem for k ≥ 3, first observed by  Luczak [3, 4], is that the order of the k-core
leaps from 0 to a linear the number of vertices the very moment the k-core becomes
non-empty.

Since the seminal work of Pittel, Spencer and Wormald several alternative
proofs of the k-core threshold have been developed. Some of these proofs ex-
tend to hypergraphs and/or given degree sequences. Additionally, establishing
a bivariate central limit theorem, Janson and Luczak [2] also studied the joint
limiting distribution of the order and size of the k-core.

While one way or another all the previous work on the k-core problem has been
based on tracing the peeling process in the random graph, in the present paper
we develop a very different approach. Instead of analysing the peeling process,
we devise a probabilistic scheme for constructing graphs with a k-core of a given
order and size directly. Formally, we develop a randomised sampling algorithm
Forge that produces a graph with a core of a given desired order and size. The
output distribution of Forge converges in total variation to the distribution of an
Erdős-Rényi random graph given the order and size of the k-core. Consequently,
because the randomised construction employed by Forge is surprisingly simple,
we can immediately read off the asymptotic number of graphs with a k-core of a
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given order and size. As an application, we obtain a bivariate local limit theorem
for the distribution of these parameters in the Erdős-Rényi random graph. This
result sharpens the central limit theorem of Janson and Luczak [2]. Additionally,
the sampling algorithm completely elucidates the way the k-core is embedded into
the random graph, a question on which we obtained partial results in an earlier
paper via the formalism of local weak convergence [1].

Our randomised algorithm Forge is based on an enhanced “configuration model”
that explicitly designates which vertices will wind up in the core. Setting up such
a model is anything but straightforward because the core interacts with the rest
of the graph, sometimes called the “mantle”, in a rather complicated way.

The key idea of the present paper is to investigate not merely the set of vertices
and edges in the k-core but to also look at the “surrounding structure” of the
graph from the right angle. As it turns out, the necessary additional structure can
be set out concisely by way of Warning Propagation, a message passing scheme
that plays an important role in physics work on random constraint satisfaction
problems [5]. Remarkably, the Warning Propagation messages contain additional
information that help to unlock the k-core problem.
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[5] M. Mézard, A. Montanari: Information, physics and computation. Oxford University
Press 2009.

[6] B. Pittel, J. Spencer, N. Wormald, Sudden emergence of a giant k-core in a random graph,
Journal of Combinatorial Theory, Series B 67 (1996), 111–151

An application of the polynomial method

József Solymosi

(joint work with J. Ellenberg and J. Zahl)

The polynomial method is an important and powerful method with various appli-
cations in number theory, discrete geometry, and combinatorics. In this talk we
gave a brief introduction and then sketched the proof of the theorems below. For
the interested reader we recommend the excellent lecture note by Larry Guth [1].

As an application of the method we established new bounds on the number of
tangencies and orthogonal intersections determined by an arrangement of curves.
First, given a set of n algebraic plane curves, we showed that there are O(n3/2)
points where two or more curves are tangent. In particular, if no three curves
are mutually tangent at a common point, then there are O(n3/2) curve-curve
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tangencies. Second, given a family of algebraic plane curves and a set of n curves
from this family, we showed that either there are O(n3/2) points where two or
more curves are orthogonal, or the family of curves has certain special properties.

We obtained these bounds by transforming the arrangement of plane curves into
an arrangement of space curves so that tangency (or orthogonality) of the original
plane curves corresponds to intersection of space curves. We then bounded the
number of intersections of the corresponding space curves. For the case of curve-
curve tangency, we used a polynomial method technique that is reminiscent of
Guth and Katz’s proof of the joints theorem [2]. For the case of orthogonal curve
intersections, we employed a bound of Guth and Zahl to control the number of
two-rich points in space curve arrangements [3].
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[2] L. Guth and N. Katz. On the Erdős distinct distance problem in the plane. Ann. of Math.,
181:155–190, 2015.

[3] L. Guth and J. Zahl. Algebraic curves, rich points, and doubly-ruled surfaces.
arXiv:1503.02173, 2015.

Generalized Turán Numbers

Jacques Verstraëte

(joint work with M. Molloy and B. Sudakov)

The generalized Turán number ex(G,F ) of two graphs G and F is the maximum
number of edges in an F -free subgraph of G. Define dx(G,F ) to be the largest
minimum degree amongst all F -free spanning subgraphs of G. The determination
of the Turán numbers ex(Kn, F ) is a central problem in combinatorics. In the
case that F has chromatic number r + 1 ≥ 2, then for any graph G, ex(G,F ) ≥
(1 − 1

r )e(G), by taking a random r-partition of the vertices of G. By Turán’s

Theorem, ex(Kn, F ) ∼ (1 − 1
r )
(

n
2

)

, and so for non-bipartite F , this determines
the asymptotic minimum value of ex(G,F ) given the number of edges in G. The
focus in this paper is on the case that F is bipartite and contains a cycle. The
generalized Turán numbers ex(G,F ) have been studied at length for specific graphs
G, in particular when G = Qn, the boolean cube graph (see [2] and the references
therein), when G is a C2k-free graph (see Györi [5] and Kühn and Osthus [7]),
and in random graphs (see Bohman and Keevash [1], Schacht [8] and Conlon and
Gowers [3] and the references therein) and pseudorandom graphs [6].

We focus in this paper on the case that G has prescribed minimum and max-
imum degree. If G is a △-regular graph, a recurring theme is whether ex(G,F )
and dx(G,F ) achieve their minimum values (exactly or asymptotically or in order
of magnitude as △ → ∞) when G is a disjoint union of cliques of order △ + 1.
Along these lines, the following conjecture was made in [4]:
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Conjecture 1. If F and G are graphs and △(G) = △ → ∞, then

dx(G,F ) = Ω
(dx(K△, F )

△
)

· δ(G).

Partial results were obtained when F = C2k for k ∈ {2, 3, 5} by Foucaud,
Krivelevich and Perarnau [4]. To state our main theorem, we require the following
definitions. If F and H are graphs and f : V (F ) → V (H) is a homomorphism,
then f is called a local isomorphism if |{f(u)f(v) : uv ∈ E(F )}| = |E(F )|. In other
words, the map φ : E(F ) → E(H) defined by φ(uv) = f(u)f(v) for uv ∈ E(F ) is
a bijection. For a graph F , let HF denote the family of graphs H such that there
is a local isomorphism f : V (F ) → V (H). Our main theorem is as follows:

Theorem 2. Let F be a graph containing a cycle. Then for any graph G of
maximum degree △ ≥ 1 such that dx(K△,HF ) · δ(G) ≥ 1050△ log△,

dx(G,F ) ≥ dx(K△,HF )

105△ · δ(G).

Furthermore, for all △ ≥ 1,

ex(G,F ) ≥ ex(2△,HF )

2e△2
· e(G).

Theorem 2 solves Conjecture 1 whenever dx(Kn,HF ) = Θ(dx(Kn, F )), which
may even be true for all graphs F .

Conjecture 3. For any graph F , show that dx(Kn, F ) = Θ(dx(Kn,HF )).

Focusing on the case of regular graphs, we do not have an example of a family
of △-regular graphs G△ for which dx(G△, F ) ∼ dx(K△, F ) as △ → ∞, so we pose
the following problem: determine those graphs F for which there exists an ǫ > 0
such that for all large enough △ and there exists a △-regular graph G△ such that

dx(G△, F ) < (1 − ǫ)dx(K△, F ).

This is open even in the case F = C4.

One of the interesting ingredients of the proof of Theorem 2 involves injective
proper colorings: an injective proper coloring of a graph G is a proper coloring
of the square graph G2 i.e. the graph obtained by joining any pair of vertices at
distance at most two in G. We prove the following result:

Theorem 4. Let G be a graph of maximum degree △, and let J be any graph
on 5△ vertices such that 2δ(J)δ(G) ≥ 1050△ log△. Then there is a spanning
subgraph H of G with an injective proper J-coloring such that for all v ∈ V (H),

dH(v) ≥ dJ (χ(v))dG(v)

10000△ .

In particular, if G is △-regular, this shows that even though G2 may have
chromatic number of order △2, one can find a spanning subgraph of G of minimum
degree Θ(△) whose square graph has chromatic number Θ(△). In other words,
G2 may be moderately thinned out to reduce the chromatic number to Θ(△).
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Upper tails for arithmetic progressions

Yufei Zhao

(joint work with B. Bhattacharya, S. Ganguly, and X. Shao)

Let Xk denote the number of k-term arithmetic progressions in a random subset of
{1, 2, . . . , n} where every element is included with probability p. We are interested
in estimating the upper tail probability P(Xk ≥ (1 + δ)EXk).

It may be helpful to compare with the analogous problem in random graphs.
For a fixed graph H , let XH denote the number of copies of H in an Erdős–Rényi
random graph G(n, p).

The problem of estimating the upper tail of these random variables has a long
history, and it has been called the “infamous upper tail” [8]. Even the order of
the log-probability had not been known until relatively recently. In the case of
triangle counts in a random graph, the order of the log-probability was determined
by DeMarco and Kahn [5], and independently, by Chatterjee [2].

Theorem 1 (Chatterjee/DeMarco–Kahn). Fix δ > 0. If p & logn/n, then

P(XK3 ≥ (1 + δ)EXK3) = pΘδ(n
2p2).

DeMarco and Kahn [6] subsequently extended this result to cliques. The cor-
responding result for arithmetic progressions was proved recently by Warnke [10].

Theorem 2 (Warnke). Fix δ > 0 and k ≥ 3. If p & ( logn
n )1/(k−1), Then

P(Xk ≥ (1 + δ)EXk) = pΘk(
√

δn2pk).

In our work, we are interested in determining the missing constant in the ex-
ponent. See Chatterjee’s recent survey [3] for a discussion of recent developments
in this direction.
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Chatterjee and Dembo [4] devised a new nonlinear large deviation principle
that reduces such certain problems (random graphs, 3-term progressions) to nat-
ural variational problems, though its applicability is restricted to p ≥ n−α for
some fixed α > 0 in each case. Very recently, Eldan [7] proved a new nonlinear
large deviation principle, using completely different methods, that appears to be
somewhat quantitatively more efficient than [4].

The corresponding variational problem was solved in [9] for triangle counts, and
more generally whenever H is a clique. This result was subsequently extended to
all H in [1]. Together with the nonlinear large deviation principles, we now know
the following.

Theorem 3. Fix δ > 0 and graph H with maximum degree ∆. There is some
constant αH > 0 such that whenever p = pn → 0 with p ≥ n−αH , one has

P(XH ≥ (1 + δ)EXH) = p(1+o(1))cH(δ)n2p∆

,

where cH(δ) > 0 is some explicit constant.

For example, when H = K3, we have

cK3(δ) = min{ 1
2δ

2/3, 13δ}.
See [1] for the formula for cH(δ) for general H .

Our main new result is a corresponding theorem for Xk, the number of k-term
arithmetic progressions in a random subset of {1, . . . , n}.

Theorem 4. Fix δ > 0 and integer k ≥ 3. There is some constant αk > 0 such
that whenever p = pn → 0 with p ≥ n−αk , one has. With p→ 0, one has

P(Xk ≥ (1 + δ)EXk) = p(1+o(1))
√

δn2pk
.

The best known αk is currently being improved in work in progress, and we do
not state it here.
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Problem Session

(1) (Günter M. Ziegler) Describe the set of integers m ≥ 2 for which there
exists a matrix A(t) ∈ {0, 1, t}(n+1)×(n+1) such that det(A(t)) 6≡ 0 and
det(A(m)) = 0, where “describe” could mean find its size and its maximum
value.

(2) (Anders Björner) For any function w :
(

[n]
2

)

→ R and for any G ⊆
(

[n]
2

)

,
define w(G) =

∑

e∈G w(e).

Conjecture. If n ≥ 8 then for any w :
(

[n]
2

)

→ R with w(
(

[n]
2

)

) = 0, the

number of spanning trees T ⊂
(

[n]
2

)

such that w(T ) ≥ 0 is at least 2nn−3.

Note that the above conjecture is equivalent to the statement that the
w which minimizes the number of spanning trees T with w(T ) ≥ 0 is given
by assigning a huge negative weight to one edge, and all the rest positive
(so that nonnegative weight spanning trees are precisely those that avoid
the negative edge).

(3) (Noga Alon)

Conjecture. For all p1, . . . , pn ∈ Rn with ‖p1‖ = · · · = ‖pn‖ = 1, there
exist q1, . . . , qn ∈ Rn/2 such that for all i, j

|〈pi, pj〉 − 〈qi, qj〉| ≤
1000√
n
.

(4) (Boris Bukh) Degeneracy of random subgraph.
Let G be a graph of minimum degreeD. Let G1/2 be a random subgraph of
G obtained by keeping each edge of G with probability 1/2 independently
of the other edges. Let d be the largest integer such that G1/2 contains a
non-empty subgraph of minimum degree d. How large must d be in term
of D?
Trivialities:
(a) If G = KD+1, then d = D/2 − o(D) by Chernoff’s bound.
(b) Since G has average degree ≥ D, the average degree of G1/2 is ≥

D/2 − o(D) implying that d ≥ D/4 − o(D), for any G.

Surprisingly, there is a better construction than the complete graph. Name-
ly, if G is a (d/3)-blowup of a large 3-regular expander, then d ≤ D/3 +
o(D).
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Conjecture. d ≥ D/3 − o(D) for any G.

(5) (Ron Peled & Jeff Kahn) Positive association for colorings.
Let G be a finite bipartite graph with parts A and B. Let q ≥ 3 and f be
a uniformly sampled proper q-coloring of G. Does the set f−1(0)∩A have
positive association? Precisely, if X,Y : {0, 1}A → R are increasing, is

E[X(f |−1
A (0))Y (f |−1

A (0))] ≥ E[X(f |−1
A (0))] · E[Y (f |−1

A (0))]?

Even in the case of 4 vertices u, v, x, y ∈ A, we don’t know if

P[f(u) = f(v) = f(x) =f(y) = 0] ≥
P[f(u) = f(v) = 0]P[f(x) = f(y) = 0].

∆ + 1 colors.
Suppose that G is a finite graph with max degree ∆ and q = ∆ + 1. Let f
be a uniformly sampled proper q-coloring of G. For two vertices x, y ∈ G,
does the correlation of the events f(x) = 0 and f(y) = 0 go to zero as the
distance between x and y increases, uniformly in the choice of graph G
and vertices x and y?

(6) (József Solymosi) Let A be an n × n. Ri =
∑

j:j 6=i |Ai,j | is the radius of
the Gershgorin disk centered at Ai,i. The radius of the half Gershgorin
disk ri is defined as the sum of the ⌊n/2⌋ largest terms of {|Ai,j | : j 6= i}.

Theorem (Bárány, Solymosi). If A is a real non-negative valued matrix,
and λ is an eigenvalue with geometric multiplicity ≥ 2, then λ lies in a
half Gershgorin disk, D(Ai,i, ri) for some i.

Q1: What about for eigenvalues with higher multiplicity?
Q2: What about for positive semidefinite or general (complex) matrices?

(7) (János Pach) Are pseudosegment disjointness graphs χ-bounded?

(8) (Nati Linial) For any matrix A ∈ {0, 1}n×n with no ( 1 1
1 1 ) as a submatrix,

the maximium number of 1s in A is Θ(n3/2). Analogously, define f(n) to
be the maximum number of 1s, taken over all 3D matrices A ∈ {0, 1}n×n×n

having no 2×2×2 subcube consisting of all 1s. It is known that Ω(n8/3) ≤
f(n) ≤ O(n11/4), but the correct order of magnitude isn’t known.

(9) (Swastik Kopparty) What is P[per(A) = 0] if A is an n×n random matrix
over F3?

Reporters: Igor Balla & Frank Mousset
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ETH Zürich

CAB G 38
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