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Abstract. The field of the mathematical and numerical analysis of systems
of nonlinear partial differential equations involving interfaces and free bound-
aries is a well established and flourishing area of research. This workshop
focused on recent developments and emerging new themes. By bringing to-
gether experts in these fields we achieved progress in open questions and
developed novel research directions in mathematics related to interfaces and
free boundaries. This interdisciplinary workshop brought together researchers
from distinct mathematical fields such as analysis, computation, optimisation
and modelling to discuss emerging challenges.
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Introduction by the Organisers

The workshop Emerging Developments in Interfaces and Free Boundaries, organ-
ised by Charles M. Elliott (Warwick), Yoshikazu Giga (Tokyo), Michael Hinze
(Hamburg) and Vanessa Styles (Brighton) was attended by 54 participants from
Austria, France, Germany, Great Britain, Japan, and the United States, with
expertise from three main areas: optimal control of partial differential equations,
modelling involving free boundary problems and mathematical and numerical anal-
ysis of free boundary problems. Apart from discussing current problems, tech-
niques and issues across the differing communities the focus of the workshop was
set on
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(1) Diffuse interface methods – modelling, analysis, and optimization,
(2) Analysis and approximation of PDEs on evolving domains,
(3) Evolution of interfaces and free boundaries with applications.

The presentations of Abels, Aland, Blank, Deckelnick, Kahle, Lam, Salgado,
Stoll and Wirth concerned modelling, analytical, numerical and optimization ap-
proaches to interfaces and free boundaries using diffuse interface methods, while
Antil, Bartels, Chambolle, Fritz, van Gennip, Mi-Ho Giga, Hamamuki, Kimura,
Lehrenfeld, Nochetto, Ohtsuka, Olshanski, Schulz, Shirakawa and Yamamoto pre-
sented talks related to analysis and numerical methods for problems related to
evolving shapes and PDEs on evolving domains. Gräser, Kenmochi, King, Liu,
Luckhaus, Ranner and Ren gave talks on mathematical modelling of applications
related to interfaces and free boundaries.

To offer young researchers a stage for presenting their research, a session for
young researchers was organized on Wednesday evening where Tatsu-Hiko Miura,
Tatsuya Miura and Siebenborn together with the Oberwolfach Leibniz Graduate
Students Alphonse and Djurdjevac took this opportunity and gave talks on their
current research results.

Surveys and articles concerning mathematical and numerical approaches to in-
terfaces and free boundary problems may be found in the conference and sympo-
sium proceedings [3, 6, 11, 15]. The books [2, 10, 13] contain models, numerical
methods and analysis for variational and level set approaches. Modern math-
ematical concepts of control and optimization with partial differential equation
constraints are developed in [14, 16]. Shape optimisation and problems of optimal
design are surveyed in [4, 5]. Analysis and numerics for surface PDEs are pre-
sented in [1, 9, 17]. Also we mention surveys of models and numerical methods
for interface evolution involving curvature, [8, 12]. Finally we remark that many
recent references concerning the issues of the workshop are provided at the end of
each extended abstract.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Professor Ricardo Nochetto in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

Sharp Interface Limit for a Stokes/Allen-Cahn System

Helmut Abels

(joint work with Yuning Liu)

We consider the sharp interface limit of a coupled Stokes/Allen-Cahn system, when
a parameter ε > 0 that is proportional to the thickness of the diffuse interface tends
to zero, in a two dimensional bounded domain Ω ⊆ R2. For sufficiently small
times we prove convergence of the solutions of the Stokes/Allen-Cahn system to
solutions of a sharp interface model, where the interface evolution is given by the
mean curvature equation with an additional convection term coupled to a two-
phase Stokes system with an additional contribution to the stress tensor, which
describes the capillary stress. More precisely, we consider the asymptotic limit
ε→ 0 of the following system:

−∆vε +∇pε = −ε div(∇cε ⊗∇cε) in Ω× (0, T1),(1)

div vε = 0 in Ω× (0, T1),(2)

∂tcε + vε · ∇cε = ∆cε −
1

ε2
f ′(cε) in Ω× (0, T1),(3)

vε|∂Ω = 0 cε|∂Ω = −1 on ∂Ω× (0, T1),(4)

cε|t=0 = c0,ε in Ω(5)

for a suitable double well potential f and for suitable “well-prepared” initial data
c0,ε specified below. Here vε, pε are the velocity and the pressure of the fluid
mixture, µε is a chemical potential and cε is related to the concentration difference
of the fluids. The sharp interface limit of (1)-(5) is the system

−∆v +∇p = 0 in Ω±(t), t ∈ [0, T0],(6)

div v = 0 in Ω±(t), t ∈ [0, T0],(7)

[2Dv − pI]nΓt
= −σHΓt

nΓt
on Γt, t ∈ [0, T0],(8)

[v] = 0 on Γt, t ∈ [0, T0],(9)

v|∂Ω = 0 on ∂Ω× [0, T0],(10)

VΓt
− nΓt

· v|Γt
= HΓt

on Γt, t ∈ [0, T0].(11)

Here Ω is the disjoint union of Ω+(t),Ω−(t), and Γt for every t ∈ [0, T0], Ω
±(t)

are smooth domains, Γt = ∂Ω+(t), nΓt
is the interior normal of Γt with respect to

Ω+(t). Moreover,

[u](p, t) = lim
h→0+

[u(p+ nΓt
(p)h)− u(p− nΓt

(p)h)]

is the jump of a function u : Ω × [0, T0] → R2 at Γt in direction of nΓt
, HΓt

and VΓt
are the curvature and the normal velocity of Γt, both with respect to nΓt

.
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Furthermore, Dv = 1
2 (∇v+(∇v)T ) and σ =

∫
R
θ′0(ρ)

2 dρ, where θ0 is the so-called
optimal profile that is the unique solution of

−θ′′0 (ρ) + f ′(θ0(ρ)) = 0 for all ρ ∈ R,(12)

lim
ρ→±∞

θ0(ρ) = ±1, θ0(0) = 0.(13)

In the following we assume that (v, p,Γ) is a smooth solution of the limit equa-
tion (6)-(11) for some T0 > 0, where (Γt)t∈[0,T0] is a family of smoothly evolving
compact, non-self-intersecting, closed curves in Ω. More precisely, we assume that

Γ :=
⋃

t∈[0,T0]

Γt × {t}

is a smooth two-dimensional submanifold of Ω×R (with boundary), and v|Ω± ∈
C∞(Ω±)2, p|Ω± ∈ C∞(Ω±), where

Ω± =
⋃

t∈[0,T0]

Ω±(t)× {t}.

In particular, we assume that Γt ⊆ Ω for every t ∈ [0, T0], which excludes contact
angle problems. Moreover, for T1 ≥ T0 let (vε, pε, cε) be the (classical) solution
of (1)-(5) with smooth initial values c0,ε : Ω → R, which will be specified in the
main result below.

For the statement of our main result, we need tubular neighborhoods of Γt. For
δ > 0 and t ∈ [0, T0] we defined

Γt(δ) := {y ∈ Ω : dist(y,Γt) < δ}, Γ(δ) =
⋃

t∈[0,T0]

Γt(δ)× {t}.

Moreover, we define the signed distance function

dΓ(x, t) := sdist(Γt, x) =

{
dist(Ω−(t), x) if x 6∈ Ω−(t)

− dist(Ω+(t), x) if x ∈ Ω−(t)

for all x ∈ Ω, t ∈ [0, T0]. Since Γ is smooth and compact, there is some δ > 0
sufficiently small, such that dΓ : Γ(3δ) → R is smooth.

Now our main result is:
Theorem (Sharp Interface Limit for Short Times, [1, Theorem 1.1])
Let N = 2, (v,Γ) be a smooth solution of (6)-(11) for some T0 ∈ (0,∞) and let

c0A,0(x) = ζ(dΓ0
(x))θ0

(
dΓ0

(x)

ε

)
+ (1− ζ(dΓ0

(x)))
(
χΩ+(0)(x)− χΩ−(0)(x)

)

for all x ∈ Ω, where dΓ0
= dΓ|t=0 is the signed distance function to Γ0 and

ζ ∈ C∞(R) such that

(14) ζ(s) = 1 if |s| ≤ δ; ζ(s) = 0 if |s| ≥ 2δ; 0 ≤ −sζ′(s) ≤ 4 if δ ≤ |s| ≤ 2δ.

Moreover, let c0,ε : Ω → R, 0 < ε ≤ 1, be smooth such that

‖c0,ε − c0A,0‖L2(Ω) ≤ CεN+ 1
2 for all ε ∈ (0, 1]
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and some C > 0, sup0<ε≤1 ‖c0,ε‖L∞(Ω) < ∞ and (vε, cε) be the corresponding
solutions of (1)-(5). Then there are some ε0 ∈ (0, 1], R > 0, T ∈ (0, T0], and
cA : Ω× [0, T0] → R, vA : Ω× [0, T0] → R2 (depending on ε) such that

sup
0≤t≤T

‖cε(t)− cA(t)‖L2(Ω) + ‖∇(cε − cA)‖L2(Ω×(0,T )\Γ(δ)) ≤ RεN+ 1
2

‖∇τ (cε − cA)‖L2(Ω×(0,T )∩Γ(2δ)) + ε‖∂n(cε − cA)‖L2(Ω×(0,T )∩Γ(2δ)) ≤ RεN+ 1
2

and for any q ∈ [1, 2)

(15) ‖vε − vA‖L2(0,T ;Lq(Ω)) ≤ C(q, R)ε2

hold true for all ε ∈ (0, ε0] and some C(q, R) > 0. Moreover,

lim
ε→0

cA = ±1 uniformly on compact subsets of Ω±.

and

vA = v +O(ε) inL∞(Ω× (0, T )) as ε→ 0.

We note that the result is comparable to results known for single phase field
models like the Allen-Cahn, the Cahn-Hilliard, or the volume preserving Allen-
Cahn equation, cf. De Mottoni and Schatzman [5], Alikakos et al. [2], Chen et
al. [4], respectively.

More precise information on the approximate solutions (vA, cA) can be found in
[1, Theorem 1.3] and its proof. These approximate solutions are constructed with
the aid of three levels of terms calculated with the method of formally matched
asymptotic expansions. After the construction of these solutions, the main step
in the proof of our result is to estimate the difference of approximate and exact
solutions with the aid of a suitable refinement of a spectral estimate of the lin-
earized Allen-Cahn operator, which was proven by Chen [3]. Moreover, a careful
treatment of the coupling terms is needed.
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Phase-field Modeling of Fluid-Structure-Interaction

Sebastian Aland

(joint work with Dominic Mokbel)

Traditional approaches to Fluid-Structure-Interaction (FSI) use an interface-
matched numerical grid where deformations of the solid-fluid interface are real-
ized by a movement of the corresponding grid points. While this methodology
provides a sound mathematical description and leads to a very accurate domain
representation, it also comes with a some limitations. For example technically
complicated re-triangulations are necessary to realize rotations or translations of
the two domains with respect to each other.

Consequently, there are some efforts to provide alternative Eulerian formula-
tions of FSI [1]. A first approach for an implicit interface description has been
developed for the Level-Set method in [2]. In my talk, we derive an other ap-
proach that involves a phase field method for the coupling of a fluid domain with
incompressible elastic bodies. The main results are summarized in the following.

Let φ denote a phase field that distinguishes between the fluid domain (φ ≈ 0)
and the solid domain (φ ≈ 1). Balance laws for mass and momentum yield the
evolution equations

∂•(ρ(φ)v) = ∇ · S0(φ) +∇p+ F in Ω(1)

∇ · v = 0 in Ω(2)

∂•φ = −∇ · J in Ω(3)

where v, p, S denote the (volume-averaged) velocity, pressure and phase- dependent
stress. The force F and flux J are specified later to meet the requirement of non-
increasing energy. The density is chosen as a linear combination of the densities
in the two phases: ρ(φ) = φρ1 + (1 − φ)ρ0.

To describe the elastic stress in the Eulerian framework we introduce the left
Cauchy-Green strain tensor B. In a viscoelastic Maxwell fluid, S = µ(B − I),
where µ is the shear modulus of the elastic material. The strain tensor follows the
evolution equation

∂•B = ∇vT · B+ B · ∇v −
1

α
(B− I) in Ω(4)

where α is the relaxation time that controls the dissipation of elastic stress. The
limiting case of a purely elastic solid can be described by 1/α = 0, while 1/α→ ∞
corresponds to zero elastic stress. Hence, the total phase-dependent stress can we
written as

S(φ) = ν(φ)(∇v +∇vT ) + µ(φ)(B − I)(5)

where ν is the viscosity. With this choice, different material laws are obtained
depending on the parameters ν, µ, α as shown in the following table. Hence, the
modeling of FSI boils down to choosing the physical parameters of the fluid and
the elastic domain in the two phases.
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material ν(φ) µ(φ) 1/α(φ)
viscous fluid > 0 0 arbitrary
elastic solid 0 > 0 0
viscoelastic Kelvin-Voigt > 0 > 0 0
viscoelastic Maxwell 0 > 0 > 0

To close the system of equations, it remains to specify the flux J and force F to
obtain a thermodynamically consistent evolution. We define the total energy E of
the system as sum of kinetic, elastic and surface energy as follows,

E =

∫

Ω

ρ (φ)

2
|v|2 dx+

∫

Ω

µ (φ)

2
tr (B− lnB− I) dx

+

∫

Ω

σ

(
ǫ

2
|∇φ|2 +

1

ǫ
W (φ)

)
dx.

Here, ’tr’ is the trace operator, σ the (scaled) surface tension, ǫ the interface
thickness and W (φ) = φ2(1 − φ)2 a double-well potential. Inserting (1)-(5) leads
to the energy time evolution

dtE =

∫

Ω

−
ν(φ)

2

∣∣∇v +∇vT
∣∣− µ(φ)

2α(φ)
tr(B− B

−1 − 2I)

+ v · [F+∇ · (ρ′(φ)v ⊗ J) + ǫσ∇ · (∇φ⊗∇φ)]

+ J · ∇

[
µ′(φ)

2
tr(B− lnB− I) + σ

(
1

ǫ
W ′(φ)− ǫ∆φ

)]
dx.

Hence, with the choice

F = −∇ · (ρ′(φ)v ⊗ J)− ǫσ∇ · (∇φ⊗∇φ),(6)

J = −γW (φ)∇

[
µ′(φ)

2
tr(B− lnB− I) + σ

(
1

ǫ
W ′(φ) − ǫ∆φ

)]
(7)

for some mobility γ ≥ 0, we obtain non-increasing energy,

dtE =

∫

Ω

−
ν(φ)

2

∣∣∇v +∇vT
∣∣− µ(φ)

2α(φ)
tr(B− B

−1 − 2I)− |J|2 dx ≤ 0.

If the flux J is used as defined in Eq. (7), the resulting φ does not provide a
good description of the interface layer because of the contributions of the elastic
strain. Since the primary purpose of φ is to track the two-phase interface, we
use a modified version of the flux J without the strain term, which amounts in a
classical advected Cahn-Hilliard equation for φ.

∂•φ = γ∇ ·

[
W (φ)∇

(
1

ǫ
W ′(φ) −∆φ

)]
.(8)

Although the resulting system is no longer variational and does not necessarily de-
crease the energy, this effect tends to be higher order since away from the interface
W (φ) ≈ 0 and near the interface φ locally equilibrates yieldingW ′(φ) ≈ ǫ2∆φ and
thus J ≈ 0. Note that if J = 0 then dtE = 0.
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In my talk we motivate these modified evolution equations and present first
numerical results. A benchmark problem for elastic solids in a flow channel is
used to assess the accuracy of the method. We use this problem to address the
influence of the interface thickness ǫ and the parameter α that is undetermined in
the fluid domain.

Measuring the deformation of the elastic objects, we find very good agreement
between our phase field method and an ALE method [3]. This is also confirmed in
an experimental comparison to the deformation of elastic beads in a viscous fluid
that shows the applicability of our method to real-world problems. We further
illustrate the potential of the method to include contact of an elastic object with
a rigid wall by simulating a bouncing ball.

As a last part of the talk we consider a novel approach for elastic membranes
in flow. We present a surface Oldroyd-B model for the in-plane membrane strain
along with some first axisymmetric numerical tests. The results of the talk are
currently prepared for publication [4].
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A Numerical Method for Fractional Elliptic Quasi-Variational
Inequalities

Harbir Antil

(joint work with Carlos N. Rautenberg)

The purpose of this work is twofold: 1) To introduce and show existence, and under
certain assumptions, uniqueness of a new class of quasi-variational inequalities
(QVIs) involving fractional power, s ∈ (0, 1), of elliptic operators. 2) To develop
a solution algorithm suitable for numerical implementation, see [1]. The problem
class of interest is the following: Let Ω be an open, bounded and connected domain
of Rn, n ≥ 1, with Lipschitz boundary ∂Ω and f ∈ L∞(Ω) non-negative be given.
Consider the following fractional QVI :

(P) Find u ∈ K(u) : 〈Lsu, u− v〉−s,s ≤ 〈f, u− v〉−s,s in Ω, ∀v ∈ K(u),

where w 7→ K(w) is defined as

(1) K(w) := {v ∈ H
s(Ω) | v ≤ Ψ(w) a.e. in Ω},
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H
s(Ω) is defined as

H
s(Ω) =

{
w =

∞∑

k=1

wkϕk ∈ L2(Ω) : ‖w‖2
Hs(Ω) :=

∞∑

k=1

λsk|wk|
2 <∞

}
.

Moreover, Ψ(u) : Ω → R is measurable and non-negative for all u ∈ Hs(Ω) and
fulfills the assumptions given in the sequel.

The operator Ls, s ∈ (0, 1), is a fractional power of the second order, symmet-
ric and uniformly elliptic operator L, supplemented with homogeneous Dirichlet
boundary conditions: Lw = −divx′(A∇x′w) + cw, where 0 ≤ c ∈ L∞(Ω) and
A(x′) = Aij(x′) = Aji(x′), i, j = 1, . . . , n, is bounded and measurable in Ω and
satisfy the uniform ellipticity condition Λ1|ξ|2 ≤ A(x′)ξ · ξ ≤ Λ2|ξ|2, for all ξ ∈ Rn

for almost every x′ ∈ Ω, for some ellipticity constants 0 < Λ1 ≤ Λ2.
We emphasize that (P) is nonlocal and the classical techniques dealing with

QVIs are not applicable. Indeed existence and uniqueness of solutions for QVIs
involve, in general, ordering properties of the associated monotone operator, in
this case Ls, and/or compactness properties of the obstacle map Ψ. The former is
never available as 〈Lsu+, u−〉−s,s ≤ 0 does not hold for all u ∈ Hs(Ω) and we do
not assume the latter. A possible alternative is the Caffarelli-Silvestre extension.

The extension idea was introduced by Caffarelli and Silvestre in Rn [2], see [4]
for the bounded domain case. In the nutshell, it says that Ls can be realized as an
operator that maps a Dirichlet boundary condition to a Neumann condition via
an extension problem on the semi-infinite cylinder C = Ω× (0,∞).

Related to the nonlocal QVI given in (P), we introduce the following extended
QVI problem which is local in nature and includes one extra spatial dimension y:

(P) Find U ∈ K(U ) : a(U ,U − V ) ≤ 〈f, trΩ(U − V )〉−s,s, ∀V ∈ K(U ),

where W 7→ K(W ) is defined as

(2) K(W ) = {V ∈
◦

H1
L(y

α, C) | trΩ V ≤ Ψ(trΩ W ) a.e. in Ω},

where
◦

H1
L(y

α, C) is defined as
◦

H1
L(y

α, C) =
{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
with ∂LC = ∂Ω× [0,∞).

and

trΩ
◦

H1
L(y

α, C) = H
s(Ω), ‖ trΩw‖Hs(Ω) . ‖w‖ ◦

H1
L
(yα,C)

.

and the bilinear form a is given by

(3) a(W ,V ) :=
1

ds

∫

C

yαA(x′, y)∇W · ∇V + yαc(x′)W V ,

for W ,V ∈
◦

H1
L(y

α, C) with α = 1 − 2s ∈ (−1, 1), and ds = 2αΓ(1 − s)/Γ(s).
Moreover, A(x′, y) = diag{A(x′), 1}. We will construct the solution to (P) by u =
U |Ω×{0}, where U solves (P); further, in Lemma 1 we prove that the solution set
of (P) and (P) have the same cardinality. The result of Lemma 1 is in accordance
with [2, 4] but require extra care and does not follow immediately. However, it
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has serious consequences: It allows us to transfer the well-posedness of (P) to the
intractable (P). This initiates a new paradigm in the field of QVIs.

Towards this end, we consider a function u : Ω → R. We then define an
α-harmonic extension of u (cf. [2, 4]) to the cylinder C, as the function U solving

(4)

{
−div (yαA∇U ) + yαcU = 0 in C,

U = 0 on ∂LC, U = u on Ω× {0}.

Given u ∈ Hs(Ω) this problem has a unique solution U ∈
◦

H1
L(y

α, C). We define

the solution mapping u 7→ U of (4) as Hα : Hs(Ω) →
◦

H1
L(y

α, C), i.e., U = Hαu.
Next we state our main results, we refer to [1] for details.

Lemma 1. Let SP and SP denote the set of solutions to (P) and (P), respectively.
Then, the maps

trΩ : SP → SP, and Hα : SP → SP ,

are bijections.

Assumption 2 (first assumption on Ψ).
(i). If 0 ≤ u1 ≤ u2, then 0 ≤ Ψ(u1) ≤ Ψ(u2) a.e. in Ω.
(ii). For every non-negative u and ζ ∈ [0, 1), there exists β ∈ (ζ, 1) such that

Ψ(ζu) ≥ βΨ(u) a.e. in Ω.

Theorem 3. Let the obstacle map Ψ satisfy (i) in Assumption 2. Then, the set of
solutions SP of (P) is non-empty, it satisfies trΩ SP ⊂ L∞(Ω). Further, it holds
that SP ≡ trΩ SP ⊂ L∞(Ω) and if U ∈ SP

0 ≤ trΩ U ≤ u∗, a.e. in Ω

where u∗ solves (weakly) the problem: Find u ∈ H
s(Ω) such Lsu = f . If in

addition to (i), Ψ satisfies also (ii) in Assumption 2, SP is a singleton.

Direct discretization of (P), via finite elements, requires to deal with a stiffness
matrix Ki,j := 〈Lsui, uj〉−s,s which is dense, and hence the dimension of the

associated discretized problem is bounded by memory limitations (similar situation
occurs when we use the integral definition [2]). In addition, directly using the
spectral definition needs access to eigenvalues and eigenvectors of L which is,
again, intractable in general domains. The discretization of problem (P) is a more
suitable choice for numerical methods. In this case, although the dimension is
increased by one, the stiffness matrix Ki,j := a(Ui,Uj) is sparse [3]. The evident
limitation here is that the domain associated to (P) is not finite. In this vein,
we consider a truncation of the domain C, i.e., we define Cτ = Ω × (0, τ). For

W ∈
◦

H1
L(y

α, C), we define S(Kτ (W )) to be the unique solution to the variational
inequality

(5) Find U ∈ Kτ (W ) : a(U ,U − V ) ≤ 〈f, trΩ(U − V )〉−s,s,

for all V ∈ Kτ (W ) where W 7→ Kτ (W ) is given by

Kτ (W ) := {V ∈ K(W ) | V ≤ 0 a.e. in Ω× (τ,+∞)}.
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Although (5) is posed on the infinite domain C, given that f ≥ 0, we have that
S(Kτ (W )) ≡ 0 in Ω× (τ,+∞). Hence, for implementation we only need to solve
the problem on the finite domain Cτ which is bounded.

The following additional assumption on Ψ allows us to develop a convergent
numerical method. The convergence is shown using Mosco convergence of sets.

Assumption 4 (second assumption on Ψ). (i). Ψ(u) ≥ ν > 0 a.e. in Ω, for
all u ∈ H

s(Ω).
(ii). For un, u

∗ ∈ Hs(Ω) with n ∈ N: If un → u∗ in Lp(Ω), for all p > 1 then
Ψ(un) → Ψ(u∗) in L∞(Ω).

Theorem 5. Let the obstacle map Ψ satisfy (i) in Assumption 2 and Assump-
tion 4. Further, let {τn} be a positive sequence such that τn → ∞ for n → ∞.
Then the sequence {Un}∞n=0 defined as Un := S(Kτn(Un−1)) with U0 ≥ 0 and
n→ ∞, satisfies

Un → U , in
◦

H1
L(y

α, C),

where U solves (P ).
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Numerical methods for optimal transportation

Sören Bartels

(joint work with Stephan Hertzog, Marijo Milicevic and Patrick Schön)

Optimal transport is a classical problem in mathematics that concerns the optimal
rearrangement of a given measure µ ∈ M(X) into another measure ν ∈ M(Y )
describing, e.g., the transport of available goods from suppliers to recipients under
minimal total cost, cf., e.g., [4]. The goal is thus to minimize a cost functional

I[s] =

∫

X

c(x, s(x)) dµ(x)

among bijections s : X → Y satisfying
∫

X

h ◦ s dµ =

∫

Y

h dν
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for all h ∈ C(Y ). Existence of solutions is established by considering a relaxation
which seeks a transport plan π ∈ M(X × Y ) whose projections onto X and Y
coincide with µ and ν, respectively, and for which

J [π] =

∫

X×Y

c(x, y) dπ(x, y)

is minimal. Under appropriate conditions on µ and ν optimal transport plans are
related to optimal transport maps. The discretization of this formulation leads to
large linear programs.

In the case of linear transport costs, e.g., X = Y = Ω and c(x, y) = |x− y|, the
optimization problem can be reduced to computing a potential φ ∈ C(Ω) which is
maximal for

K[φ] =

∫

Ω

fφ dx

among functions φ that are Lipschitz continuous with constant 1. The function
f is the difference of densities for the measures µ and ν. This maximization
problem can be discretized with low order C(Ω)-conforming finite elements and
solved iteratively with splitting methods [2]. Due to nonuniqueness of solutions
and degeneracy of the functional K error estimates can only be expected for the
approximation of the optimal cost. The rate of convergence is formally quadratic
in the maximal mesh size. A posteriori error estimates follow from considering the
dual formulation and controlling the primal-dual gap [3]. For this to be optimally
convergent the dual problem cannot be discretized with piecewise affine vector
fields. Instead, higher order H(div; Ω)-conforming methods and related adaptive
approximation algorithms turn out to lead to improved experimental convergence
rates.

For cost functions c : X × Y → R with superlinear cost we consider discretiza-
tions of the relaxed formulation which seek an optimal matrix πh ∈ RN×N for

πh 7→
N∑

i,j=1

c(xi, yj)π
ij
h

subject to the constraints

πij
h ≥ 0,

N∑

i=1

πij
h = νj ,

N∑

j=1

πij
h = µi.

We exploit the fact that exact transport plans are sparse, i.e., only O(N) entries
in the matrix πh are different from zero. Within an active set strategy we activate
entries using the optimality conditions. By successively enlarging an activation
tolerance we obtain a convergent numerical scheme. Numerical experiments show
that the devised method leads to nearly linear complexity with respect to the
number N of employed atoms, see [1].
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A phase field ansatz for multi-material topology optimization solved
with a variable metric projection type method

Luise Blank

(joint work with Christoph Rupprecht)

Multi-material topology optimization can be formulated with a phase field ansatz.
This model allows for areas where there exists a mixture of materials, which makes
e.g. the change in topology during the iteration process for finding a solution
possible. The phase field ϕ = (ϕi)i=1,...,N describes the fractions of the materials
with ϕi the fraction of the i−th material. The weak formulation of the linear
elasticity equation then reads as

∫

Ω

C(ϕ)E(u) : E(ξ) =

∫

Γg

g · ξ ∀ξ ∈ H1(Ω;Rd) ∩ {ξ|ΓD
= 0},

with the displacement field u : Ω → Rd, a stiffness tensor C(ϕ) which is constant
in each pure material and the linearized strain tensor E(u) = 1

2 (Du+DuT ).
In addition we prescibe the mass of the materials for the optimal distribution of

N elastic isotropic homogeneous materials. Here the aim is to minimize the mean
compliance F (u) :=

∫
Γg

g ·u. Due to ill posedness of the problem F is regularized

in the sharp interface model with the perimeter. Using phase fields the perimeter
is replaced by the Ginzburg-Landau energy

E(ϕ) :=

∫

Ω

ε

2
|∇ϕ|2 +

1

ε
ψ(ϕ)

where the potential ψ can be a smooth double well or an obstacle potential with
minima at zero and which forces the model to pure phases apart from diffuse
interfaces with thickness proportional to ε > 0. This model is analytically studied
in [2, 3] including its sharp interface limit.

For interface evolution the phase field approach is well known and analysed.
There it is also known that the pure phases are represented by ϕ ≈ 1 for the
double well potential and ϕ = 1 in case of the obstacle potential. However, we
show in numerical studies that this classification of pure phases does not hold any
longer for the double well potential in the topology optimization problem. Here a
significant shift of the values giving the pure phases occurs which depend on ε and
are not a priori known. Consequently, the given mass constraints

∫
Ω

−ϕi = mi do not
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result into the property that material i has volume mi. Therefore, allthough the
smooth potential is preferable for numerical optimization due to smoothness and
due to the absence of inequality constraints, they cannot be used in this context
but leads to missleading numerical results. Hence, the obstacle potential has to
be employed.

Considering now the optimization problem reduced to the phase field ϕ using
the solution operator S : ϕ −→ u we are faced with a nonlinear problem with
convex constraints in function spaces. To obtain a mesh independent, efficient
algorithm for the discretized problem one wishes to have a convergent method in
function spaces. Moreover, since the topology and in general good initial data
are not known, we are interested on a global convergent method. For convexly
constrained optimization problem the projected gradient method is well known in
Hilbert spaces. However in many PDE constrained problems the differentiability
is not given with respect to an Hilbert space. In our problem differentiability is
given with respect to H1(Ω,RN ) ∩ L∞(Ω,RN ).

For these kind of problems we present the VMPT (variable metric projection
type) method. Here back tracking along a search direction v is performed, where v
is the minimal solution of a quadratic approximation of the original cost functional
with the given convex constraints. The quadratic term can vary from a reflexive
Banach space norm (as it would be the case for the projected gradient method)
to some positive symmetric bilinear form, which for example may approximate
the second derivative. The last allows for superlinear convergence. The following
convergence result we obtain in [1] where also the detailed assumptions are given
and discussed.

Theorem 1. Given the problem min j(ϕ) s.t. ϕ ∈ Φad where Φad is a convex
set bounded in D and j is differentiable in X∩D with a reflexive real Banach space
X and D isometrically isomorphic to a separable real Banach space. Furthermore
the bilinear forms in the subproblems for the search directions vk have to fulfill
m‖x‖2X ≤ ak(x, x) ≤ Mk‖x‖2X∩D. Let {ϕk} ⊆ Φad be the sequence generated by
the VMPT method and under some additional technical assumptions it holds:
1. lim j(ϕk) exists.
2. Every (X ∩D)-accumulation point of {ϕk} is stationary.
3. Let ϕki

→ ϕ in X ∩D. Then ‖vki
‖X → 0.

4. If j ∈ C1,γ(Φad) for some 0 < γ ≤ 1, then ‖vk‖X → 0.
5. If j ∈ C1,γ(Φad) for some 0 < γ ≤ 1, j is convex and {ak} is uniformly bounded
in X. Then every X-weak accumulation point of {ϕk} is stationary (thus a global
minimum).

We can show that this method can be applied to the given structural optimiza-
tion problem using H1 ∩ L∞ and various bilinear forms ak, as e.g. the H1-norm
or a positive part of the second derivative. Numerically we discuss that the use
of scaling the H1-norm by ε is important to obtain independency of the interface
thickness parameter ε. This approach is even more adapted to each iteration for
fixed ε taking into account that the interfaces do not necessarily have thickness ε
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in the first iterations. We also give evidence and explanations that it is important
not to choose a linear interpolation of the elasticity tensor on the diffuse interface.
A quadratic interpolation leads to far better numerical results and in combination
with appropriate scaling to a speed up for the classical cantilever beam in two di-
mensions with grid size 2−8 from 5d 8h 12m to 2h 44m and with a nested approach
even to 17m. Further speed up can be obtained with an L-BFGS update of the
bilinear form or with a positive part of the second derivative. With the last choice
we obtained always smaller local minimal cost values. We also give examples for
4 phases and in three dimensions.

Comparison with the often used pseudo time stepping, also called gradient flow
approach, where either an Allen-Cahn or a Cahn-Hilliard ansatz is employed, is
given. The VMPT method is in all tested examples more efficient than these
methods even when they are used with appropriate adapted time steps.

Finally also numerical applications of the VMPT method for phase field models
in compliant mechanism problems, drag minimization of the Stokes flow and in an
inverse problem for a discontinuous diffusion coefficient are given.
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Recent results on the crystalline curvature flows

Antonin Chambolle

(joint work with Massimiliano Morini, Matteo Novaga and Marcello Ponsiglione)

An anisotropic mean curvature flow is an evolving set E(t) whose boundary evolves
with a law of the form

Vn = −F (x, t, νE , κφ)

where F is increasing with respect to κφ, the “anisotropic divergence” defined
by κφ = div∇φ(νE), where φ is a norm (a convex, one-homogeneous and even
function). We focus on the particular case where F = ψ(νE)(κφ+g(x, t)) where ψ
(the “inverse mobility”) is also a norm and g is bounded, Lipschitz in space. Our
goal is to study this equation when φ is merely Lipschitz, such as the “crystalline
case” which is when {φ ≤ 1} is a polytope. The equation thus reads

(1) Vn ∈ −ψ(νE)
(
div∂φ(νE) + g(x, t)

)
.

Thanks to a new notion of “distributional super/subflows”, which are tubes E(t)
such that the distance function to E(t) in the ψ◦-norm satisfies an appropriate
inequality in the distributional sense, one can establish comparison results for
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degenerate geometric equations such as (1) including when φ is crystalline. While
this notion requires a compatibility condition between φ and ψ (namely, that
φ = φ′ + εψ for φ′ a norm and ε > 0), we are also able to show that the flows
generated by this approach converge, as ε → 0, to a unique limit. The presented
paper [3] contains deeper results, such as the convergence, as the discretization
step goes to zero, of the anisotropic time-discrete flows built by Almgren-Taylor-
Wang [1] to a unique limit, for any φ even crystalline.
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Numerical analysis of a diffuse interface approach to an
advection–diffusion equation on a moving surface

Klaus Deckelnick

(joint work with Vanessa Styles)

Given a family {Γ(t)}t∈[0,T ] of evolving closed hypersurfaces in Rn+1(n = 1, 2) we
consider the advection–diffusion equation

∂•t u+ u∇Γ · v −∆Γu = 0 on ST(1)

u(·, 0) = u0 on Γ(0).(2)

Here, ST =
⋃

t∈(0,T )

(
Γ(t) × {t}

)
, v : ST → Rn+1 is a given velocity field and

∂•t = ∂t+v ·∇ denotes the material derivative. Furthermore, ∇Γ is the tangential
gradient and ∆Γ = ∇Γ · ∇Γ denotes the Laplace Beltrami operator.

Numerical approaches that have been proposed in the literature in order to ap-
proximate solutions of (1), (2) include the evolving surface finite element method
([4, 6, 7]), level set methods based on an extension of the PDE to an open neigh-
bourhood ([1, 13, 5]) as well as trace/cut finite element methods ([10, 11, 9]). In
[3, Section 5] a hybrid method combining trace and narrow band techniques is
proposed, while diffuse interface approaches have been introduced in [12] and [8].
In this note we propose a variant of the method in [8] and summarize results on
the numerical analysis of the resulting scheme. We refer the reader to [2] for a
detailed exposition including proofs of the stability and error bounds that we state
below.

Let us assume that the hypersurfaces {Γ(t)}t∈[0,T ] are described implicitly, i.e.
there exists a smooth function φ : Ω× [0, T ] → R such that

Γ(t) = {x ∈ Ω |φ(x, t) = 0} and ∇φ(x, t) 6= 0, x ∈ Γ(t), 0 ≤ t ≤ T.
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It can be shown that there are extensions ve of v and ue of u such that

φt + ve · ∇φ = 0, ∇ue · ∇φ = 0,(3)

∂•t u
e + ue∇φ · ve −∆φu

e = φR(4)

in a space–time neighbourhood of ST . In the above, ∇φ =
(
I − ∇φ

|∇φ| ⊗
∇φ
|∇φ|

)
∇,

∆φ = ∇φ · ∇φ, while R is a smooth function depending on φ and u. In order to
localize (4) we introduce for small ǫ > 0 the function

ρ(x, t) :=

{
cos2

(
φ(x,t)

ǫ

)
, |φ(x, t)| ≤ ǫπ

2 ,

0, |φ(x, t)| > ǫπ
2

and a calculation shows that for all η ∈ H1(Ω)

(5)
d

dt

∫

Ω

ueη ρ |∇φ|+

∫

Ω

∇ue ·∇η ρ |∇φ| =

∫

Ω

uev ·∇η ρ |∇φ|+

∫

Ω

φR η ρ |∇φ|.

Next, let (Th)0<h<h0
be a regular triangulation of Ω with h = maxT∈Th

diam(T )
and 0 = t0 < t1 < . . . < tM = T be a partitioning of [0, T ] with maximal time
step τ . We define our computational domain and the corresponding finite element
space at time level m by Dm

h := suppIhρ̃(·, tm) and

V m
h := {ηh ∈ C0(Dm

h ) | ηh|T ∈ P1(T ) for all T ⊂ Dm
h }.

Here, Ih is the usual Lagrange interpolation operator and

ρ̃(x, t) :=

{
cos2

(
φ(x,t)
2ǫ

)
, |φ(x, t)| ≤ ǫπ,

0, |φ(x, t)| > ǫπ.

Integrating (5) with respect to t ∈ [tm−1, tm] and neglecting the perturbation term
involving R we are led to the following finite element approximation of (1), (2):
Find umh ∈ V m

h such that for all ηh ∈ V m
h

∫

Ω

umh ηh ρ
m |∇φm| −

∫

Ω

um−1
h ηh ρ

m−1 |∇φm−1|+ τm

∫

Ω

∇umh · ∇ηh ρ
m |∇φm|

−τm

∫

Ω

umh ve,m · ∇ηh ρ
m |∇φm|+ γτ2m

∫

Ω

Imh ρ̃
m∇umh · ∇ηh = 0.(6)

Here, Imh is the Lagrange interpolation operator for V m
h . The last term on the

left hand side of (6) introduces additional artificial diffusion into the method. The
scheme is initialised by choosing u0h ∈ V 0

h as the L2-projection of ue(·, 0) onto V 0
h .

Remark: a) In order to obtain a fully practical scheme the integrals in (6) have
to be evaluated using numerical integration. As a result, the method tracks the
moving hypersurfaces via the evaluation of the phase–field funtion ρ.

b) Given um−1
h ∈ Vm−1

h , the scheme has a unique solution umh ∈ V m
h provided that

0 < h ≤ h0, 0 < τ ≤ τ0.
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c) Conservation of mass for (1), (2) ( d
dt

∫
Γ(t) u(·, t) = 0) is satisfied at the discrete

level in the sense that

2

ǫπ

∫

Ω

umh ρm |∇φm| =
2

ǫπ

∫

Ω

u0h ρ
0 |∇φ0|, m = 1, . . . ,M,

where 2
ǫπ

∫
Ω
· ρ(·, t) |∇φ(·, t)| can be viewed as an approximation of

∫
Γ(t)

·.

Our main results are the following stability and error estimates:

Theorem (Stability) There exist γ1 > 0 and τ1 ≤ τ0 such that

max
m=1,...,M

2

ǫπ

∫

Ω

|umh |2 ρm |∇φm|+
M∑

m=1

τm
2

ǫπ

∫

Ω

|∇umh |2ρm |∇φm| ≤ C

∫

Γ(0)

|u0|
2,

provided that γ ≥ γ1, h ≤ cǫ and τ ≤ min
(
τ1, ǫ

2
)
.

Theorem (Error bounds) Let em := ue(·, tm)− umh , m = 0, . . . ,M . Then

max
m=1,...,M

2

ǫπ

∫

Ω

|em|2 ρm |∇φm|+
M∑

m=1

τm
2

ǫπ

∫

Ω

|∇em|2ρm |∇φm| ≤ Cǫ2,

max
m=1,...,M

∫

Γ(tm)

|em|2 +
M∑

m=1

τm

∫

Γ(tm)

|∇Γe
m|2 ≤ Cǫ2,

provided that γ ≥ γ1, h ≤ cǫ, τ ≤ min
(
τ1, ǫ

2
)
and that the solution u of (1), (2) is

sufficiently smooth.
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On the computation of harmonic maps by unconstrained algorithms
based on totally geodesic embeddings

Hans Fritz

The computation of harmonic maps, and respectively, of the harmonic map heat
flow between two closed Riemannian manifolds is a challenging problem, since the
solution has to satisfy a constraint, which is, in general, non-linear. Different nu-
merical schemes to tackle this problem have been proposed in the last decades,
see, for example, [1, 2, 5, 6]. Another interesting approach can be found in [4],
where the authors reformulate the original problem in order to remove the con-
straint. Using an idea by Richard Hamilton from [3], we propose algorithms for
the computation of harmonic maps, and respectively, of the harmonic map heat
flow between two closed Riemannian manifolds. Our novel approach is based on
the totally geodesic embedding of the target manifold into RN . This approach
is widely applicable, since embeddings of Riemannian manifolds into Euclidean
spaces can easily be made totally geodesic by extending the Riemannian metric
in a certain way. Totally geodesic embeddings allow to reformulate the harmonic
map heat flow in a neighbourhood of the embedded target manifold. The extended
flow has the important advantages that it is still described by a non-degenerate
parabolic PDE and that it is unconstrained at the same time. Instead of assuming
a priori that the solution to the flow maps into the target manifold this fact be-
comes a property of the solution to the extended flow for special initial data. The
solution space to the reformulated problem therefore exists of maps which are also
allowed to map into the ambient space of the target manifold, that is into RN .
This fact simplifies the discretization of the problem enormously. Our algorithms
for the computation of the harmonic map heat flow and of harmonic maps are
based on this reformulation. In contrast to previous schemes, we do not make use
of projection techniques, tangential deformations, geodesic finite elements or of
Lagrange multipliers. Our algorithms are therefore very easy to implement. We
have also proved error estimates for harmonic maps into spherical targets. Finally,
numerical tests show that the distance to the target remains small.

Our main result is the development of the following new algorithm for the com-
putation of the harmonic map heat flow from a closed d-dimensional hypersurface
Γ ⊂ R

d+1 into the unit sphere in R
n+1 in the time interval [0, T ): Let Γh ⊂ R

d+1

be a polyhedral approximation of Γ and f0
h ∈ (Vh)

n+1, where Vh is the set of
continuous and piecewise affine functions on Γh. Suppose that ||f0

h |−1| < δ on Γh

for some δ ∈ (0, 1). Then, for all m ∈ N0 with (m+ 1)τ < T find fm+1
h ∈ (Vh)

n+1
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such that∫

Γh

fm+1

h
−fm

h

τ · ψh

(
1
2 + 1

2|fm
h

|4

)
do+

∫

Γh

∇Γh
fm+1
h : ∇Γh

ψh

(
1
2 + 1

2|fm
h

|4

)
do

=

∫

Γh

fm
h · ψh

|∇Γh
fm
h |2

|fm
h

|6 do for all ψh ∈ (Vh)
n+1.
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Using evolving interface techniques to solve network problems

Yves van Gennip

(joint work with many people, acknowledged through references in this abstract)

In recent years there has been increasing interest from applied analysts in apply-
ing the models and techniques from variational methods and partial differential
equations (PDEs) to tackle problems on networks. This talk gave an overview of
some of the recent developments in this young and growing area.

For the purposes of the talk, [1] kicked off the research in this area. In this paper
the authors use graph versions of the Ginzburg-Landau functional for data clus-
tering, data classification, and image segmentation. Minimisation of the classical
continuum Ginzburg-Landau functional,

F (u) := ε

∫

Ω

|∇u|2 dx +
1

ε

∫

Ω

W (u) dx,

provides a model for phase separation. Here W (u) = u2(1 − u)2 is a double well
potential with minima at u = 0 and u = 1, and u describes the relative presence of
the two phases {u ≈ 0} and {u ≈ 1} in the domain Ω. When F is minimised under
some suitable constraints on u (e.g. a mass constraint of the form

∫
Ω u dx = M)

and for small values of the parameter ε, u will take values close to 0 and 1, with
transitions between those values occurring in small regions of width O(ε).

In [1] the graph functional

f(u) :=
∑

i,j∈V

ωij(ui − uj)
2 +

1

ε

∑

i∈V

W (ui)
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was introduced. This is a functional whose input argument u is a function on the
nodes of a given graph, instead of on a continuum set Ω ⊂ Rn and which serves as
a graph counterpart of F . Here V is the node set of the (finite, simple, undirected)
graph, ωij is a nonnegative weight on the edge between nodes i and j in the graph,
and ui is the value of the function u on node i. In [1] this functional was used in
combination with either a mass constraint or an additional data fidelity term to
cluster or classify the nodes of a graph into two groups (‘phases’ where u ≈ 0 and
u ≈ 1) based on the pairwise node similarity encoded in the edge weights ωij . By
treating the pixels of an image as nodes in a graph, data classifcation can be used
for image segmentation as well.

We can now ask a number of questions:

(1) Can we find graph analogues of properties of the continuum functional?
(2) Is the continuum functional a limit of the graph functionals in some sense?
(3) What can we say about the resulting algorithm and its usage for data

analysis/image processing?
(4) Are there other network problems that can be tackled by a PDE inspired

approach?
(5) Are there other PDE/variational systems that have interesting network

analogues?
• If the inspiring PDEs are related, are their graph analogues related?

This talk gave a short overview addressing (some aspects of some of) these
questions.

(1) Does f have similar properties as F? In [2] we proved that f Γ-converges,
when ε→ 0, to the graph total variation functional

TV (u) :=
1

2

∑

i,j∈V

ωij |ui − uj |,

with as domain the set of node functions u which take values in {0, 1}.
This mirrors the well-known continuum result [3, 4]. Moreover, for such
{0, 1}-valued functions u, TV (u) reduces to the graph cut [5] of the node
partition V0 = {i : ui = 0}, V1 = {i : ui = 1}, i.e. the sum of the edge
weights ωij corresponding to edges that have one node in V0 and the other
in V1.

(2) Furthermore, when f or TV are defined on certain graphs of which a
sensible continuum limit can be defined, they Γ-converge to the continuum
total variation in the continuum limit, e.g. on 4-regular graphs obtained by
ever finer discretisations of the flat torus [2] and on point clouds obtained
by sampling ever more points from an underlying subset of Rn [6, 7, 8].

(3) Minimisation of f is in practice (approximately) achieved either by solving
a gradient flow equation of Allen-Cahn type,

dui
dt

= −
∑

j∈V

ωij(ui − uj)−
1

ε
W ′(ui)
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(plus additional terms coming from a mass constraint or fidelity term) or
by a graph version of the threshold dynamics (or MBO) scheme [9]:

uk+1 =

{
0, if ũ(τ) < 1

2 ,

1, if ũ(τ) ≥ 1
2 ,

where ũ(t) solves

{
ũ(0) = 0,
dũi

dt = −
∑

j∈V ωij(ũi − ũj).

In the (spectral) graph theory literature [5, 10] (∆u)i :=
∑

j∈V ωij(ui −

uj) is known as the unnormalised or combinatorial graph Laplacian of u.
The equations above can also be formulated and solved with normalised
versions of the graph Laplacian.

On a given graph, these equations can be solved quickly and accurately
using a truncated spectral decomposition based on the eigenfunctions of
the graph Laplacian (in combination with a convex splitting scheme in the
case of the graph Allen-Cahn equation) [1, 11].

The construction of the underlying graph in the first place can pose
a significant computational problem, especially when the number of data
points (and thus nodes in the graph) is very large. Matrix completion
techniques such as the Nyström extension [12, 13] and fast eigenvalue
computation algorithms such as the Rayleigh-Chebychev algorithm [14]
make such computations feasible.

This graph Ginzburg-Landau method has found many applications,
for example in data clustering and classification and image segmentation
[1, 11, 15] and has also been extended to deal with clustering and classifi-
cation into more than two classes [16, 17, 18, 19, 20]. Recent papers prove
convergence of the graph Allen-Cahn algorithm (both the spectrally un-
truncated and truncated versions) and extend the method to non-smooth
potentials and hypergraphs.

This shows that such PDE driven techniques can provide fast approxi-
mative alternatives to combinatorial problems whose exact solution is too
computationally complex.

(4) Another example of such a problem is the computation of a maximum cut
in graphs, i.e. to find a partition of the node set into two sets such that
the sum of the edge weights corresponding to edges with one node in each
set is maximal. If the graph is bipartite, this corresponds to partition-
ing the node set according to the bipartite structure. The exact solution
of this classical problem is known to be computationally unfeasible for
large graphs. Work currently in preparation introduces a fast approxi-
mate solution method for this problem using an adaptation of the graph
Ginzburg-Landau functional f [21].

(5) The continuum counterparts of both the graph Allen-Cahn equation and
graph MBO scheme from point (3) can be viewed as approximating mean
curvature flow [22, 23, 24, 25, 26]. This suggests that graph curvature and
graph mean curvature flow are interesting concepts to consider as well. In
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[27] we introduced both. The graph curvature of a node set S is given by

κi :=

{∑
j∈Sc ωij , if i ∈ S,

−
∑

j∈S ωij , if i ∈ Sc,

and the related graph mean curvature flow has a variational formulation
along the lines of [28, 29, 30] which leads to a time discrete evolution of
node subsets S (given an initial set S0),

Sn+1 ∈ argminŜF(Ŝ, Sn),

where

F(Ŝ, Sn) :=
∑

i∈S,j∈Sc

ωij +
1

ðt

∑

i∈Ŝ

disd
n
i .

Here di is the degree of node i and sdni is the signed graph distance from
node i to the boundary of node set Sn. In [27] we started studying the
very interesting question if the graph Allen-Cahn equation, graph MBO
scheme, and graph mean curvature flow are as intimately connected as
their continuum counterparts, but establishing such connections is still
mostly an open problem.

Other current work studies a graph version of the Ohta-Kawasaki func-
tional [31], which was originally introduced as a variational model for
pattern formation in diblock copolymers [32].

The research on these novel methods has shown that new PDE inspired graph
procedures can efficiently (approximately) solve complex graph problems, while at
the same time offering fertile ground for proving theoretical connections between
the various graph problems (inspired by similar connections their continuum coun-
terparts have) and between the graph problems and their continuum analogues.
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A discrete deterministic game approach for the planer motion by
crystalline energy

Mi-Ho Giga

(joint work with Yoshikazu Giga)

Objective: We shall consider a deterministic game in discrete time, so that its value
function approximates a solution of a level-set crystalline curvature flow equation
([2], [3], [4]) as the time grid tends to zero. This work is a first nontrivial extension
to crystalline case of the approach given by [5] for motion by smooth interfacial
energy.

Background: It is well known that a large class of first order Hamilton-Jacobi
equations is obtained as a governing equation of the value function of a control
problem or a differential game problem of ODEs. On the other hand a large class
of second order elliptic or parabolic equations is obtained as a governing equation
of the value function of a stochastic control or stochastic differential game. For
example, to derive the level set mean curvature flow, a stochastic game has been
proposed by [1], [7] and [8]. A remarkable aspect of the work of [5] is that the
level set mean curvature flow, although it is of the second order, is obtained as
an equation for a limit of the value function of a time-discrete deterministic game
without no stochastic effect. See also [6].

Goal: We would like to extend their result to crystalline flow equations, which
have a typical non-local diffusion effect.

Summary: (1) We extend the discrete deterministic two-person game approach
by [5] to a smooth anisotropic flow (including degeneracy).
(2) We propose a way of approximation by a discrete deterministic two-person
game to the crystalline curvature flow of the form V = γκγ when the Wulff shape
of γ is regular polygon rotationally symmetric with respect to the origin. Expected
result is the following (work in progress) : Consider a crystalline flow whose crys-
talline energy has a regular polygonal Wulff shape symmetric with respect to the
origin. We approximate the crystalline energy density by an anisotropic energy
whose Wullf shape is piecewise circular shape with constant curvature µ. We con-
struct a discrete deterministic game for its anisotropic curvature flow with discrete
time grid parameter ε2 as in [5] with necessary modification. We conclude that if
µ tends to zero as ε does i.e. µ(ε) → 0 as ε→ 0, then our discrete game approxi-
mates the crystalline flow provided that µ(ε) ≥ εβ for some β ∈ (0, 2/3). In some
sense, we require that approximation parameter tends to zero slowly.
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Moving particles in biological membranes

Carsten Gräser

(joint work with T. Kies, R. Kornhuber and M.-W. Wolf)

We consider a biological membrane composed by a lipid bilayer with embedded
particles, like, e.g., transmembrane proteins, BAR-domain proteins, or partially
wrapped nano-particles.

The membrane is modeled by a linearized Canham–Helfrich energy for a graph
representation over a suitable flat parameter domain Ω ⊂ R2 leading to a bihar-
monic energy

JΩ′(u) =
κ

2

∫

Ω′

|∆u|2 +
σ

2

∫

Ω′

|∇u|2.

Here, Ω′ = Ω\
⋃N

i=1 Bi is the area incorporated by the membrane, whereas Bi ⊂ Ω
is the area incorporated by the i-th of N rigid particles. Since particles are allowed
to move and rotate freely in the plane, we consider the parameterized particle
domains

Bi(pi, α) = Φpi,αi
(B0

i )

obtained by a rigid body motion rotating the reference particle domain B0
i by

the angle αi ∈ [0, 2π] and translating it to the position pi ∈ Ω. Denoting by
ω ⊂ (Ω, [0, 2π])N the set of configurations such that particles do not touch or
overlap with each or the boundary we obtain the coupled minimization problem
[1]: Find u ∈ H2(Ω) and (p, α) ∈ ω such that u minimizes JΩ′(p,α) subject to the
coupling conditions

u = hi,
∂

∂ν
u = si on ∂Bi(pi, αi).(1)
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By showing that the reduced functional

(p, α) 7→ E(p, α) = inf
v∈H2(Ω),s.t.(1)

JΩ′(p,α)(v)

is lower semi-continuous on ω we establish existence of a minimizer to the coupled
problem [3]. Shape calculus allows to compute the gradient ∇E(p, α) in terms
of a deformation field for Ω′(p, α) and up to second order partial derivatives of
the minimizer u(p, α) of J for fixed (p, α). To compute local minimizers we use a
scaled gradient flow with explicit Eule time stepping [3].

In oder to avoid remeshing for the stationary problems with varying domain
Ω′(p, α) we follow to approaches: By extending these problem to the whole domain
Ω we make them accessible to discretization with simple rectangular Bogner–Fox–
Schmitt C1-finite elements. The former boundary constraints (1) are incorporated
by penalization on the now interior curve Γi(pi, αi) = ∂Bi(pi, αi). For mesh
dependent penalty parameters we are able to show convergence of order O(h1/2)
which is also numerically observed [2]. The reduced convergence order is due to
a lack of regularity of solutions for the extended problem across Γi(pi, αi). As
a remedy we introduce a stabilized fictitious domain Nitsche method on Ω′(p, α)
which leads to optimal convergence order O(h2).
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Two approaches to an approximation of a distance function to moving
interfaces

Nao Hamamuki

(joint work with Eleftherios Ntovoris)

On the basis of the theory of viscosity solutions, we introduce two kinds of im-
proved level set equations whose solutions are close to the signed distance function
d(x, t) to an evolving interface {Γt}t.

We consider the first order Hamilton-Jacobi equation:

(1) wt(x, t) +H(x,∇w(x, t)) = 0

with a geometric Hamiltonian H , and denote by Γt the zero level set of a viscosity
solution w of the initial value problem of (1); namely, Γt = {w(·, t) = 0}. Also,
the signed distance function to Γt is denoted by d(·, t). An improved equation we
introduce is of the form

(2) ut(x, t) +H(x,∇u(x, t)) = β(u(x, t))G(x,∇u(x, t)).
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Here β is assumed to satisfy β(0) = 0. It then turns out that this assumption
guarantees that the zero level set is not distorted by changing the equation. In
other words, we have Γt = {u(·, t) = 0} for the viscosity solution u of the initial
value problem of (2). This fact is shown by constructing barrier functions having
the same zero level set as Γt and applying the comparison principle.

1st approach [1]: In the first approach to an approximation of d, we derive
an improved equation via Taylor expansion of the equation for d near Γt. The
equation for d is given by

dt(x, t) +H(x− d(x, t)∇d(x, t),∇d(x, t)) = 0.

Since the difference between H(x,∇d(x, t)) and the second term on the left-hand
side is approximated by d(x, t)〈∇xH(x,∇d(x, t)),∇d(x, t)〉, we take β(u) = u and
define G on the basis of the inner product above. Under the assumption that d is
smooth near Γt, we give an upper- and lower bound, which are close to d, for the
solution u of (2) near Γt. More precisely, we prove that for all ε > 0, there exists
ρ(ε) > 0 such that,

{
e−εtd(x, t) ≤ u(x, t) ≤ eεtd(x, t) if 0 ≤ d(x, t) ≤ ρ(ε),

eεtd(x, t) ≤ u(x, t) ≤ e−εtd(x, t) if − ρ(ε) ≤ d(x, t) ≤ 0.

For the proof we show that the functions e±εtd(x, t) are viscosity sub- and super-
solutions of (2) near Γt. The time derivatives of them play an important role since
they absorb the error term of the Taylor expansion.

2nd approach [2]: Our second improved equation is derived by taking the limit
of a time step appearing in the so-called reinitialization algorithm. The idea of
the reinitialization is, as in [3], to solve the original level set equation (1) and a
corrector equation

(3) vt(x, t) = β(v(x, t))(1 − |∇v(x, t)|)

periodically in time. Here a typical choice of β is the (smooth) sign function. We
first solve (1) for a period of k1∆t and then (3) for k2∆t, where k1, k2 and ∆t are
positive constants. Sending ∆t→ 0 and rescaling the time variable, we are led to
the equation (2) with G(x, p) = θ(1 − |p|) (θ := k2/k1 > 0). We prove that, as
the parameter θ tends to infinity, the solution u = uθ of (2) converges to d. When
d is continuous as a function of (x, t), this convergence is locally uniform. Our
result is applied to more general case where d can be discontinuous. For a possibly
discontinuous d we establish

lim
(y,s,θ)→(x,t,∞)

s≤t

uθ(y, s) = d(x, t) for all (x, t) ∈ Rn × (0, T ).

This weak notion of convergence is shown by introducing an upper- and lower
half-relaxed limit from below in time.
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Optimal control of two-phase flow with different densities

Christian Kahle

(joint work with Harald Garcke and Michael Hinze)

We consider the optimal control of a two-phase fluid that is described by the
thermodynamically consistent diffuse interface model proposed in [1]. As key
ingredient we present an energy stable scheme introduced in [2]. It allows us to
simulate two-phase fluids in an energy stable way and provides enough regularity
to apply classic theory from optimal control. More results and references can be
found in [3].

1. The governing equations

Let Ω ⊂ Rn, n ∈ {2, 3}, denotes an open, convex and polygonal (n = 2) or
polyhedral (n = 3) bounded domain with outer unit normal νΩ, and I = (0, T ]
with 0 < T <∞ is a time interval. The primal variables are the phase field ϕ, the
chemical potential µ, and the solenoidal velocity field v. We state the fully discrete
scheme presented in [2] for the numerical approximation of the thermodynamically
consistent model for two-phase flow proposed in [1].

Let 0 = t0 < t1 < . . . < tM = T denote an equidistant time grid with mesh
size τ := t1 − t0. For the spatial discretization we use piecewise linear and glob-
ally continuous finite element functions denoted V 1

m for the phase field and the
chemical potential while we use piecewise quadratic and globally continuous finite
element functions denoted V 2

m for the velocity field. Functions from V 2
m are addi-

tionally weakly solenoidal with respect to V 1
m. Then ϕm

h approximates ϕ(tm), µm
h

approximates µ(tm), and vmh approximates v(tm). The proposed scheme reads:

Given ϕm−2
h ∈ V 1

m−2, ϕ
m−1
h ∈ V 1

m−1, µ
m−1
h ∈ V 1

m−1, v
m−1
h ∈ V 2

m−1, find v
m
h ∈

V 2
m, vmh |∂Ω = Πm(BBu

m
B ), ϕm

h ∈ V 1
m, µm

h ∈ V 1
m such that for all w ∈ V 2

m, Ψ ∈ V 1
m,

Φ ∈ V 1
m it holds:

1

τ

(
ρm−1
h + ρm−2

h

2
vmh − ρm−2

h vm−1
h , w

)
+ a(ρm−1

h vm−1
h + Jm−1

h , vmh , w)

+(2ηm−1
h Dvmh , Dw)− (µm

h ∇ϕm−1
h + ρm−1

h g, w)− (BV u
m
V , w) = 0,(1)

1

τ
(ϕm

h − Pmϕm−1
h ,Ψ) + (b∇µm

h ,∇Ψ) + (vmh ∇ϕm−1
h ,Ψ) = 0,(2)

σǫ(∇ϕm
h ,∇Φ) +

σ

ǫ
(W ′

+(ϕ
m
h ) +W ′

−(P
mϕm−1

h ),Φ)− (µm
h ,Φ) = 0,(3)
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where Jm−1
h := − ρ2−ρ1

2 b∇µm−1
h , and for u ∈ L3(Ω), v, w ∈ H1(Ω) we define

a(u, v, w) = 1
2

∫
Ω((u · ∇)v)w − ((u · ∇)w)v dx.

The free energy density is denoted by W and is assumed to be of double-well
type with exactly two minima at ±1. For W we use a splitting W = W+ +W−,
whereW+ is convex andW− is concave. We refer to [3] for the precise assumptions
on W . We refer to [4] for optimal control with a non-smooth free energy density.
The linear density function is denoted by ρ = ρ(ϕ) with individual densities ρ1 and
ρ2 for the two different fluids, and the viscosity function is denoted by η = η(ϕ)
while the constant mobility is denoted by b and the gravitational acceleration is
denoted by g. By Dv = 1

2 (∇v + (∇v)t) we denote the symmetrized gradient. The
scaled surface tension is denoted by σ and the interfacial width is proportional to
ǫ. We further apply a volume force BV u

m
V ∈ L2(Ω)n and Dirichlet boundary data

BBu
m
B ∈ H1/2(∂Ω)n, and require an initial phase field ϕ0

h = uI ∈ H1(Ω) ∩ L∞(Ω)
and a solenoidal initial velocity field v0h ∈ H1(Ω)n ∩ L∞(Ω)n. The operator Pm :
V 1
m−1 → V 1

m denotes an H1-stable prolongation, e.g. Lagrange interpolation.
Further we introduce V 2

m,b := {v|∂Ω | v ∈ V 2
m,

∫
∂Ω
v|∂Ω · νΩ ds = 0} and define Πm

for m = 1, . . . ,M as the L2(∂Ω) projection onto the trace space of V 2
m,b. This

projection is used to incorporate the boundary data.
Finally we note that (1)–(3) is a two-step scheme and that an initialization step

is required, see [2, 3].

Theorem 1 ([3, Thm. 16]). For given uI , uV , uB, ϕ
m−2 ∈ V 1

m−2, ϕ
m−1 ∈ V 1

m−1,
µm−1 ∈ V 1

m−1, v
m−1 ∈ V 2

m−1 there exist unique vmh ∈ V 2
m, vmh |∂Ω = Πm(BBu

m
B ),

ϕm
h ∈ V 1

m, and µm
h ∈ V 1

m solving (1)–(3). It further holds

‖µm
h ‖W 1,3(Ω) + ‖ϕm

h ‖W 1,4(Ω) + ‖vmh ‖H1(Ω)n

≤ C
(
‖vm−1

h ‖H1(Ω)n , ‖µ
m−1
h ‖W 1,3(Ω), ‖ϕ

m−1
h ‖W 1,4(Ω), ‖ϕ

m−2
h ‖W 1,4(Ω),

‖BV u
m
V ‖L2(Ω)n , ‖BBu

m
B‖

H
1
2 (∂Ω)n

)
,

and the constant depends polynomially on its arguments.

2. The optimal control problem

In the following we consider uV ∈ L2(0, T ;RsuV ), uB ∈ L2(0, T ;RsuB ), and uI ∈
H1(Ω)∩L∞(Ω) as control variables, together with suitable operators BV ,BB and
we state the optimal control problem

(Ph)

min
uV ,uB ,uI ,ϕM

h

J(uV , uB, uI , ϕ
M
h ) :=

1

2
‖ϕM

h − ϕd‖
2
L2(Ω)

+ α

(
αI

∫

Ω

ǫ

2
|∇uI |

2 +
1

ǫ
WI(uI) dx

+
αV

2
‖uV ‖

2
L2(0,T ;RsuV ) +

αB

2
‖uB‖

2
L2(0,T ;RsuB )

)

subject to (1)− (3).
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Figure 1. Numerical results for the control of a rising bubble.

This is a tracking type functional for minimizing the mismatch between ϕM
h and

a desired phase field ϕd. The additional terms penalize strong controls with a
parameter α > 0, while αI +αV +αB = 1 are the positive weights of the different
types of control. To obtain a phase field structure for uI we use the Ginzburg–
Landau energy as penalisation for uI . Here we use a double-obstacle free energy
for WI , i.e. WI(ϕ) :=

1
2 (1 − ϕ2) if |ϕ| ≤ 1 and WI(ϕ) = +∞ else.

Theorem 2 ([3, Thm. 20]). There exists at least one solution to (Ph), i.e. at
least one minimizer. First order optimality conditions can be derived by Lagrangian
calculus.

Finally, in [3], the limit h → 0 is considered and we show that in the limit the
variables fulfil the time discrete correspondence to (1)–(3). Moreover we show the
following strong convergence results:

ϕm
h → ϕm in H1(Ω), µm

h → µm in W 1,3(Ω),

uI,h → uI in H1(Ω), vmh → vm in H1(Ω)
n, (div(vm), q) = 0 ∀q ∈ L2(Ω).

3. A numerical example

We finally support our results by a numerical example. Here, we aim at steering
a bubble against buoyancy forces using tangential boundary control. In Figure 1
we show the numerical results. The zero level lines of the initial and desired phase
field are shown on the left plot together with the domain of control, which is the
left and right boundary. The evolution of the optimally controlled phase field
and velocity field at times t = 0.25, 0.5, 0.75, 1.0 are the second to fifth plot. The
pictures show |vmh | on the left and ϕm

h on the right. For t = 1.0 we additionally
indicate the zero-level line of ϕd by a black line. Note that vmh coincides with
BBu

m
B on the boundary.
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Mathematical Model for Biofilm Development (Application of a New
Compactness Theorem)

Nobuyuki Kenmochi

(joint work with M. Gokieli and M. Niezgódka)

1. Motivation

Our motivation is the completion of mathematical model of biofilm development
in a fluid flow and its analysis. This model includes a variational inequality of the
Navier-Stokes type with obstacles.

For the solvability of quasi-linaer PDEs we use some compactness theorems in
time, for instance, of J.P. Aubin type [1] and J. Simon type [8]. However they
are not available for nonlinear variational inequalities of parabolic type with time-
dependent convex (interior) constraints, such as u(x, t) ≥ ψ(x, t) or |u(x, t)| ≤
ψ(x, t).

We discuss a new compactness theorem from this point of view. The main idea
is to consider the operator of time-derivative with convex constraints K(t), 0 ≤
1 ≤ T :

u −→
du(t)

dt
+ ∂IK(t)(u(t)).

2. A compactness theorem for variational inequalities

Let H be a Hilbert space, V a Banach space (with strictly convex dual V ∗) and
W be a Banach space such that V is densely and compactly embedded in Hand
W is continuously embedded in V , and suppose that all spaces are separable and
reflexive:

W →֒ V →֒ (compact)H, V →֒ H = H∗ →֒W ∗, compact embeddings.

We are given a family of closed, convex subset K(t), t ∈ [0, T ], in V such that
K(t) is smooth in t (for instance, K(t) is Lipschitz continuous in t ∈ [0, T ] with
respect to the Hausdorff distance in V ) and define the the class of test functions

K := {v ∈ Lp(0, T ;V ) | v(t) ∈ K(t) a.e. t ∈ [0, T ]}, 1 < p <∞,

and the smooth one

K0 := {η ∈ K | η′ ∈ Lp′

(0, T ;V ∗)},
1

p
+

1

p′
= 1.
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Given u0 ∈ K(0)
H
, the operator Lu0

(≈ d
dt + ∂IK(t)(·)) is defined by:

f ∈ Lu0
u⇐⇒





f ∈ Lp′

(0, T ;V ∗), u ∈ K;

∫ T

0

〈η′ − f, u− η〉 ≤
1

2
|u0 − η(0)|2H , ∀η ∈ K0,

where 〈·, ·〉 is the duality between V ∗ and V . We know [3, 7]that Lu0
is maxi-

mal monotone from Lp(0, T ;V ) into Lp′

(0, T ;V ∗) and D(Lu0
) ⊂ {u | u ∈ K ∩

C([0, T ];H), u(0) = u0}.

Theorem 1. Assume: ∃κ > 0 such that

(∗) κBW (0) ⊂ K(t), ∀t ∈ [0, T ], where BW (0) := {w ∈ W | |w|W ≤ 1}.

Then, ∀M > 0,

ZM := {u ∈ D(Lu0
) | |u|Lp(0,T ;V ) ≤M, inf

f∈Lu0
u
|f |Lp′(0,T ;V ∗) ≤M}

is relatively compact in Lp(0, T ;H).

The theorem is proved, based on the uniform estimate of total variation of
functions in ZM , with the help of Helly selection lemma and Riesz representation
theorem. See [6] for the detailed proof.

3. Application to biofilm development in a fluid flow

We consider a mathematical model for biofilm development which is governed by
three nonlinear evolution equations or inequalities. They are biomass density equa-
tion (B), nutrient transport equation (N) and Navier-Stokes variational inequality
(H)ε including a relaxation parameter ε; in this model ε is a small positive number
and fixed. We denote by u := u(x, t), 0 ≤ u ≤ 1, w := w(x, t), 0 ≤ w ≤ 1, and
v := v(x, t) the biomass density, nutrient concentration and velocity field of the
fluid flow.

Let Ω be a bounded smooth domain (container in which biomass growth takes
places) in R3, Q := Ω×(0, T ), Γ := ∂Ω and Γ0 a compact subset of Γ. We suppose
that

β(·) is a maximal (strictly) monotone mapping in R such that

D(β) = [0, 1), β(0) = (−∞, 0], lim
r↓0

β(r)

r
= 0 (degeneracy);

d(·) is a strictly positive and smooth function on [0, 1];
f(·) is of C1 and Lipschitz continuous on R with f(0) ≤ 0, f(1) ≥ 1;
p0(·) is a non-negative continuous function on (0, 1] such that

lim
r↓0

p0(r) = ∞, p0 is decreasing on (0, δ0), p0(r) = 0, ∀r ∈ [δ0, 1],

where δ0 is a fixed number in (0, 1).
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With the above data β, d, p0 and appropriate initial data u0, w0 and v0 our
model for biofilm development is formulated as follows.

(B) u′ −∆β̃ + v · ∇u+ bu = f(w)u in V ∗
Γ0
, β̃ ∈ β(u) in Q,

u(0) = u0, β̃ = 0 on Γ0 × (0, T ),
∂β̃

∂n
= 0 on (Γ− Γ0)× (0, T ),

VΓ0
:= {z ∈ H1(Ω) |z = 0 a.e. on Γ0}, V

∗
Γ0

= dual of VΓ0

(N) w′ − dvi(d(u)∇w) + v · ∇w = −f(w)u in H1(Ω)∗, 0 ≤ w ≤ 1 on Q,

w(0) = w0 (0 ≤ w0 ≤ 1 a.e. on Ω),
∂w

∂n
= 0 on Γ× (0, T ).

On account of the degeneracy of β(u) at u = 0, the biomass front ∂{x | u(x, t) >
0} ∩ Ω moves slowly in time. In our relaxation model, using the spatial-average

uε(x, t) :=

∫

Ω

ρε(x− y)u(y, t)dy, (ρε is the usual spatial−mollifier),

of biomass density u(x, t), we formulate the hydrodynamics by the following weak
variational inequality of the Navier-Stokes type with biomass density dependent
obstacle p0(u

ε(x, t)).

(H)ε v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), |v| ≤ p0(u
ε) a.e. on Q,

t→ (v(t), η(t))H is of BV on [0, T ], ∀η ∈ K0(u
ε),

v(0) = v0 in H,

∫ t

0

∫

Ω

η′ · (v − η)− ν

∫ t

0

∫

Ω

∇v · ∇(v − η) +

∫ t

0

∫

Ω

(v · ∇)v · (v − η)

+
1

2
|v(t)− η(t)|2H ≤

1

2
|v0 − η(0)|2H , ∀t ∈ [0, T ], ∀η ∈ K0(u

ε),

where

K0(u
ε) := {η ∈ C1([0, T ];W ) | supp(η) ⊂ {p0(u

ε) > 0}, |η| ≤ p0(u
ε) on Q}.

This coupled system {(B), (N), (H)ε} is a relaxed version of [2] and it can be
solved by the compactness method based on our compactness theorem; see [4,5]
for the detailed proof. Major difficulty in the analysis of this system arises from
the quasi-variational structure of the coupling (cf. [3]).
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Interface dynamics in biological tissue growth

John King

(joint work with Joe Eyles and Vanessa Styles)

Biological tissue growth (in its broadest sense – i.e. including populations of single
cell organisms (such as in bacterial biofilms), as well as multicellular ones (embryo
development, tissue engineering, cancer growth etc.)) exhibits many features not
shared by non-biological growth processes. At the macroscale, the most significant
of these is probably the presence of cell division (and degradation), leading to
the need to encompass sources (and sinks) of material. The simplest spatially
structured models for such processes (see e.g. [1] and references therein) introduce
an internal velocity field v(x, t), whereby within the tissue

(1) ∇ · v = k(c) in Ω(t)

holds, where k is the net growth rate (so will be negative where degradation exceeds
division) and c(x, t) is the concentration of a generic nutrient. At the tissue edge
the kinematic condition

(2) Vn = v · n̂ on ∂Ω(t)

holds, where Vn is the outward-normal velocity of the interface and n̂ is the unit
outward normal. In the radially symmetric case with c prescribed, (1)–(2) suffice to
specify moving-boundary evolution, but many effects (notably multi-dimensional
instabilities) require a constitutive assumption on v to be formulated in order
to close the system (see [2], for example). In many cases, the simplest plausible
such assumption is that of Stokes flow, but here we focus on the one which has
the longest pedigree historically and is the most tractable mathematically, namely
Darcy flow – this is applicable to growth in a porous tissue-engineering scaffold,
may be relevant to growth through a relatively static extracellular matrix (for
example) and can in rather special circumstances [3] be shown to coincide with
Stokes flow. Thus we set

(3) v = −K∇p in Ω(t)

for some internal pressure field p(x, t) and permeability K, together with

(4) p = γκ on ∂Ω(t),
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where κ is the mean curvature of the interface and γ is a cell-adhesion parameter.
Our focus here is on the thin-rim limit, relevant in a number of circumstances,

whereby growth is confined to a narrow proliferating rim close to the tissue edge,
with a necrotic core, in which degradation is taking place, occupying the bulk of
the tissue. Applying formal-asymptotic methods to this limit, the rim collapses
onto the interface and generates (see [4]) two additional terms in the moving-
boundary conditions that replace (2) and (4), namely a constant surface source
term Q in (2), giving

(5) Vn = Q−K∇p · n̂ on ∂Ω(t),

capturing growth within the rim and (in a relevant distinguished limit) an addition
regularising term of kinetic-undercooling type in (4), namely

(6) p = γκ+ νVn on ∂Ω(t),

the constant ν being associated with the mechanical behaviour of the rim. In the
simplest case, (1), (3) lead to

(7) K∆p = λ in Ω(t),

where the constant λ describes degradation (i.e. the volumetric sink) within the
core. (5)–(7), together with the specification of the initial tissue domain, describe
the moving-boundary problem of interest here. An immediate consequence of the
divergence theorem is that

(8)
dV

dt
= QA− λV,

where V is the tissue volume and A its surface area, so if the tissue is to maximise
its growth it should seek to increase its surface area for given volume (i.e. to avoid a
spherical morphology): such matters can be clarified by a linear stability analysis.
A limit complementary to that of such linearisation about the radially symmetric
state is the thin-film limit: the PDE that results from this approach itself exhibits
a number of interesting features. In addition, we have obtained extensive numer-
ical solutions (by both sharp- and diffuse-interface methods) to (5)–(7) in both
two and three dimensions: these exhibit strong instabilities, reflected in striking
surface morphologies, if γ is not too large. There is also considerable scope for
further mathematical investigations, with central questions (such as the existence
or otherwise of non-radial steady states) being open.
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Emerging Developments in Interfaces and Free Boundaries 307

On Cahn–Hilliard models for tumour growth

Kei Fong Lam

(joint work with Harald Garcke)

In recent years there has been an increased focus on the mathematical modelling of
tumour growth with phase field models. In Garcke et al. [7] a Cahn–Hilliard–Darcy
system is used to model the evolution of a two-component mixture consisting of
tumour and healthy cells, in the presence of a chemical species acting as nutrient.
The system of equations reads as follows:

(P)

div~v = H,

~v = −K(∇p− (µ+ χσ)∇ϕ),

∂tϕ+ div (ϕ~v) = ∆µ+M,

µ = AΨ′(ϕ)−B∆ϕ− χσ,

∂tσ + div (σ ~v) = ∆σ − χ∆ϕ+ S.

Here, ϕ is an order parameter distinguishing between the tumour ({ϕ = 1}) and
the healthy cells ({ϕ = −1}), with corresponding chemical potential µ, σ is the
nutrient density, ~v is the volume-averaged velocity, and p is the pressure. Ψ is a
potential with minima at ±1. The positive parameters A, B are related to the
interfacial thickness and the surface tension, while K > 0 is the permeability, and
χ ≥ 0 is a parameter accounting for the mechanisms of chemotaxis (movement of
tumour towards regions of high nutrient density) and active transport (movement
of nutrient across the tumour-healthy cell interface that is persistently maintained
even in the presence of diffusion). The terms H,M,S model for example nutrient
consumption and growth of tumour cells.

Under certain choices of parameters and source terms, many of the previous dif-
fuse interface models for tumour growth in the literature can be recovered. While
numerous numerical simulations have been performed, there has been relatively
few analytical results. A chief difficulty in the analysis comes from deriving a
priori estimates in the presence of source terms in the Cahn–Hilliard equation,
and when χ is positive, the nutrient equation contains a cross-diffusion-type term,
which seems to an obstacle in applying classical results for second order parabolic
equations such as weak comparison principles. Hence, previous works focus on the
cases where χ = 0 and the source terms are prescribed functions [8, 9] or chosen
such that the total energy is a Lyapunov function [1, 2].

In [5] we studied the system (P) with Neumann boundary conditions for ϕ and
µ, zero velocity ~v = 0, positive χ and the following choice of source terms that is
motivated from biological intuition:

M = h(ϕ)Pσ, S = −h(ϕ)Cσ.

Here, h is an interpolation function such that h(1) = 1 and h(−1) = 0, P ≥ 0 is a
growth rate and C ≥ 0 is a consumption rate. It turns out that the well-posedness
of the system can be established only when the potential Ψ has quadratic growth.
The result is not applicable to the classical quartic potential Ψ(s) = (s2 − 1)2
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which is often used in diffuse interface models, and is attributed to the fact that
the first a priori estimate derived from the energy identity

d

dt

∫

Ω

AΨ(ϕ) +
B

2
|∇ϕ|2 +

1

2
|σ|2 − χσ(1 − ϕ) dx

+

∫

Ω

|∇µ|2 + |∇(σ − χϕ)|2 dx =

∫

Ω

µM + (σ − χϕ)S dx

requires control on the square of the mean of µ in order to control the right-
hand side with the left-hand side. In the case of Dirichlet boundary conditions,
this restriction on the potential can be overcome by the Poincaré inequality, and
well-posedness of the system for potentials of higher polynomial growth and also
singular potentials has been established in [3].

For the system with Darcy’s flow, the source term H is typically related to
the term M. Furthermore, the choice of boundary conditions for the velocity or
the pressure may impose compatibility conditions on H. For instance, Neumann
boundary conditions for ϕ and p require that H must have mean zero. However, if
H depends on ϕ or σ, then the zero mean condition may not be satisfied in general.
In [4] the global weak existence in 2D and 3D for (P) with prescribed function H
and source terms M and S that can be functions of ϕ, µ and σ with at most linear
growth is established. Asymptotic limits K → 0 and χ → 0 are also investigated,
which serve to recover previous weak existence results in the literature. To allow
for H to be a function also depending on ϕ and σ, in [6] we studied (P) with Robin
and Dirichlet boundary conditions for the pressure, and showed the existence of
weak solutions in 3D.

The above analytical results serve as a foundation for future in-depth analysis of
diffuse interface models of tumour growth, as well as applications towards optimal
control and parameter estimation.
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Higher order unfitted finite element methods for interface problems

Christoph Lehrenfeld

(joint work with A. Reusken)

In the recent decade unfitted finite element methods have drawn an increasing
amount of attention. The possibility to handle complex geometries without the
need for complex and time consuming mesh generation is very appealing. The
methodology of unfitted finite element methods, i.e. methods which are able to
cope with interfaces or boundaries which are not aligned with the grid, has been
investigated for different problems. However, The development of numerical meth-
ods which are flexible with respect to the geometrical configuration, robust and
higher order accurate at the same time is still challenging.

In unfitted finite element methods, for the representation of the geometry most
often an implicit description with a scalar indicator function, e.g. a level set
functions, is used. One major issue in the design and realization of higher order
finite element methods is the problem of accurate and stable numerical integration
on arising level set domains.

We present a new approach which allows for a higher order accurate and robust
numerical treatment of domains that are prescribed by level set functions. The
approach is based on isoparametric mappings that are specifically tailored. Adding
together components from isoparametric (fitted) finite element methods and low
order (second order) unfitted finite element methods we obtain a method that is
robust and fairly simple to implement. The method is geometry-based and can
be applied to unfitted interface or boundary value problems as well as to partial
differential equations on surfaces. We outline the main aspects of the method for
the following elliptic interface model problem. Let Ω be a polygonal domain and
Ω1 ∪ Ω2 = Ω a nonoverlapping partitioning with Γ = Ω̄1 ∩ Ω̄2 a smooth interface.
We seek for a solution u to the PDE:

−div(α∇u) = f in Ωi, i = 1, 2,

[[α∇u · n]]Γ =0 on Γ, [[u]]Γ = 0 on Γ,

where α is domain-wise constant and [[·]]Γ denotes the usual jump operator on Γ.
We assume that the interface is described via a level set function φ as Γ = {φ = 0}.

1. The construction of the isoparametric mapping

The basic idea of the new isoparametric method is the application of a mapping
that improves the approximation quality of a robust but only low order accu-
rate geometry approximation, the reference configuration. On simplicial meshes a
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piecewise linear approximation φ̂h (which can be obtained by nodal interpolation)

provides a geometry approximation Γlin := {φ̂h = 0} which is planar on each el-
ement T of a triangulation Th of Ω. Exploiting that an explicit representation of
Γlin is easily obtained, for this kind of geometry approximation numerical integra-
tion (of arbitrary high order) has been developed based on a decomposition of cut
elements into simple geometries, e.g. simplices. This integration approach forms
the basis for the new method.

With a mesh transformation Θh we improve the quality of the approximation
corresponding to Γlin so that Γh := Θh(Γ

lin) defines the new geometry approxi-
mation with an explicit representation. A detailed description of the construction
of Θh can be found in [1]. The crucial properties of Θh are the following:

• φ̂h ◦Θ−1
h ≈ φ in a small (mesh-dependent) neighborhood of Γ.

• Θh is a homeomorphism on Ω.
• Θh = id away from Γlin, i.e. the most part of the mesh remains untouched.
• Θh is a finite element function, i.e. Θh andDΘh are efficiently computable.

• Θh(xV ) = xV for all vertices xV in the mesh as φ̂(xV ) = φ(xV ).
• The transformation is a perturbation to the identity, ‖DΘh‖L∞(Ω) ≤ h.
• Higher derivatives are uniformly bounded, maxT∈Th

‖DmΘh‖L∞(T ) ≤ 1,
m = 1, .., k + 1.

We note that the cut topology does not change under the transformation, this
means that the triangulation consisting of curved elements {Θh(T )}T∈Th

has the
same cut configuration as Th. Further, we note that the first property ensures
Θh(Γ

lin) ≈ Γ.

2. An unfitted isoparametric finite element method for the elliptic

interface model problem

According to the mesh transformation we adapt the usual unfitted finite element
spaces. Let V Γ

h be an appropriate (possibly higher order) finite element space for a
stable discretization of a PDE problem with respect to the geometry approximation
Γlin. Then, we define the finite element space for the discretization with respect
to the geometry approximation to Γh as VΓ

h := {ϕ ◦Θ−1
h , ϕ ∈ V Γ

h }.
For the elliptic interface model problem we take the usual cut finite element

space with respect to the piecewise planar geometry approximation Γlin, V Γ
h :=

Vh|Ωlin
1
⊕Vh|Ωlin

2
where Vh is the space of continuous piecewise polynomial functions

of degree k > 0 and Ωlin
i , i = 1, 2 are the piecewise planar approximations to

Ωi, i = 1, 2.
Using Nitsche’s method in the context of unfitted finite element methods to

weakly impose the interface conditions, cf. [2], we obtain an unfitted isoparametric
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finite element discretization: Find uh ∈ VΓ
h such that

∑

i=1,2

∫

Θh(Ωlin
i

)

αi∇uh∇vh dx−

∫

Θh(Γlin)

{{α∇uh · n}}[[vh]] ds

−

∫

Θh(Γlin)

{{α∇vh · n}}[[uh]] ds+
λ

h

∫

Θh(Γlin)

[[uh]][[vh]] ds =

∫

Ω

fv dx for all vh ∈ VΓ
h ,

where {{·}} is the averaging operator also taken in [2] and λ is a sufficiently large
stabilization parameter the choice of which depends only on α, k and the shape
regularity of the underlying triangulation Th of Ω. We note that in an implemena-
tion of the method the integration in the discrete variational formulation can be
transformed to integrals on the reference domains Γlin, Ωlin

i , i = 1, 2 which (only)
involve additional factors depending on Θh which are explicitly computable.

In the analyses [3, 4] of the method we derived higher order (a priori) error
bounds for the discretization error based on Strang-type estimates. To this end,
we needed to ensure the above mentioned properties of the transformation Θh.

3. Extensions and future work

The idea of applying isoparametric unfitted method based on the mesh trans-
formation Θh is also applicable to other problems, e.g. unfitted Stokes interface
problems [5] and PDEs on surfaces [6]. Extensions to problems with moving do-
mains are still missing, they are the topic of current research. A combination of
space-time unfitted finite element methods [7] with the isoparametric mesh trans-
formation (in space) seems a reasonable approach which could lead to robust and
higher order accurate methods in space and time. The investigation of such meth-
ods is planned for the future. Another topic related to higher order unfitted finite
element method is the question of efficiently solving arising linear systems which
are typically very ill-conditioned. The question of optimal solution strategies is
open and requires further attention.
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Nematic Liquid Crystals with Variable Degree of Orientation

Ricardo H. Nochetto

(joint work with Shawn S. Walker and Wujun Zhang)

Complex fluids are ubiquitous in nature and industrial processes and are critical for
modern engineering systems. An important difficulty in modeling and simulating
complex fluids is their inherent microstructure. Manipulating the microstructure
via external forces can enable control of the mechanical, chemical, optical, or
thermal properties of the material. Liquid crystals are a relatively simple example
of a material with microstructure that may be immersed in a fluid with a free
interface.

There are three basic models with increasing degree of mathematical complex-
ity for the equilibrium state of liquid crystals: the Ossen-Frank model [12], the
Ericksen-Leslie model [8, 12], and the Q-tensor model [7, 12]. The former leads
to so-called harmonic maps and consists of minimizing the Dirichlet integral for a
director field n, namely a unit vector field:

E[n] =

∫

Ω

|∇n|2dx.

Several numerical methods have been proposed for this problem [1, 4, 6]. However,
E[n] does not allow for point defects of n in dimension d = 2 or line defects for
d = 3, which dictate the material properties of liquid crystals.

The Ericksen-Leslie model, or one-constant model, is a compromise between
the two extreme models and reduces to minimizing the bulk energy

E[s,n] =

∫

Ω

(
κ|∇s|2 + s2|∇n|2

)
dx

︸ ︷︷ ︸
=E1[s,n]

+

∫

Ω

ψ(s)dx

︸ ︷︷ ︸
=E2[s]

over a bounded domain Ω ⊂ Rd, with d ≥ 2, where s : Ω → (− 1
2 , 1) is a scalar

order parameter that represents the degree of orientation of the rod-like molecules
of the liquid crystal, ψ is a double-well potential that confines s to lie in the interval
(− 1

2 , 1), and κ > 0 is the only model parameter. The case s ≈ 1 corresponds to

perfect alignment of molecules with the director n, s ≈ − 1
2 signifies a right angle

between them, and s = 0 is the state of isotropic distribution of molecules or no
preferred direction. The zero level set of s determines the location of defects, which
are typically sets of dimension 1 and 2 for d = 3 where |∇n| blows up.

Since the director field n /∈ [H1(Ω)]d, the existence and structure of minimizers
of E[s,n] is far from obvious. A fundamental observation, made in [2, 9], reveals
a hidden regularity in the auxiliary variable u = sn. In fact, since ∇|n|2 =
2nT∇n = 0, we obtain the pointwise equality

|∇u|2 = |n⊗∇s+ s∇n|2 = |∇s|2 + s2|∇n|2,

because n⊗∇s and ∇n are orthogonal. This yields the equivalent form of E1[s,n]

Ẽ1[s,n] =

∫

Ω

(
(κ− 1)|∇s|2 + |∇u|2

)
dx,
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which shows that u ∈ [H1(Ω)]d but Ẽ1[s,n] contains a negative term provided
κ < 1; this is the most important regime responsible for defects.

Converging numerical methods to approximateE[s,n] require regularization [3].
We present a novel structure preserving discretization of E[s,n] within the space
of continuous piecewise linear finite elements Vh which circumvents regularization
altogether. If {φi} is the canonical basis of hat functions of Vh, the idea is to write
the Dirichlet integral for vh =

∑
i viφi ∈ Vh as

∫

Ω

|∇vh|
2 =

1

2

∑

i,j

kij(vi − vj)
2, kij = −

∫

Ω

∇φi · ∇φj

and then define the approximate energy Eh
1 [sh,nh] to be

Eh
1 [sh,nh] =

κ

2

∑

ij

kij(si − sj)
2 +

1

2

∑

ij

s2i + s2j
2

|ni − nj |
2.

We show that this method is consistent and stable provided the underlying mesh
is weakly acute: kij ≥ 0 for all i 6= j. We prove Γ-convergence of discrete global
minimizers to continuous ones as the mesh size h goes to zero [5]. We develop a
quasi-gradient flow scheme for computing discrete equilibrium solutions and prove
that it has a strictly monotone energy decreasing property. We illustrate the
method’s ability to handle non-trivial line and plane defects for d = 3 via several
simulations implemented within the software platform [13]. Moreover, we extend
both theory and numerical experiments to model colloidal and electric effects, such
as the Freedericksz transition and the so-called Saturn ring defect.

Our results are contained in [10, 11]. A music video summarizing them is also
available on YouTube: Mathematical Modeling and Simulation of Nematic Liquid
Crystals (A Montage), http://www.youtube.com/watch?v=pWWw7 6cQ-U.
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Minimizing movement approach for spirals evolving by crystalline
curvature using level set functions

Takeshi Ohtsuka

(joint work with Yen-Hsi Richard Tsai)

Let Ω ⊂ R2 be a bounded domain with smooth boundary, and a1, a2, . . . , aN ∈
Ω. We consider evolution of spirals Γt associated with a1, . . . , aN in Ω by the
crystalline curvature and eikonal equation.

It is well-known that, the anisotropic curvature Hγ of the interfacial curve
Γ = {x ∈ Ω; u(x) = c} with level set formulation u(x) is defined as the first
variation of the anisotropic perimeter functional

Jγ(u) =

∫

Ω

γ(∇u)dx

with a density function γ : R2 → [0,∞), which is convex and positively homo-
geneous of degree 1. If γ is smooth, then Hγ = −divDγ(∇u) in the sense of
L2. In particular, if γ(p) = |p|, then Hγ is the isotropic curvature of Γ. It
is well-known that the set Wγ = {p ∈ R2; γ◦(p) ≤ 1}, which is called “Wulff
shape”, satisfies that Hγ = 1 on ∂Wγ under some suitable assumptions, where
γ◦(p) = sup{p·q; γ(q) ≤ 1}. The crystalline curvature is defined as the anisotropic
curvature such that Wγ is convex polygon. Therefore, we here assume that

(A1) γ is convex,
(A2) γ is positively homogeneous of degree 1,
(A3) there exists Λ > 0 such that Λ−1 ≤ γ ≤ Λ on S1,
(A4) γ is piecewise linear.

Under these hypothesis, we consider evolution of spiral curves Γt by

(1) Vγ = f −Hγ on Γt,

where Vγ is the normal velocity of Γt with anisotropic distance distγ(x, y) =
γ◦(x − y). For evolution of interfacial curve by (1), Chambolle [1] introduced
a time-discrete approximation algorithm with level set method using signed dis-
tance function from the evolving interfaces. Oberman, Osher, Takei and Tsai [3]
introduced a numerical method for Chambolle’s algorithm. On the other hand,
Y.-H. R. Tsai, Giga and the author [4, 5] introduced a level set method for evolving
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spirals. Therefore, we propose the methods combining the Chambolle’s algorithm
with the level set method for evolving spirals.

To present our method we now introduce the level set method for spirals by

[4, 5]. Let us set W = Ω \
⋃N

j=1 Bρ(aj) with ρ > 0, where Bρ(a) = {x ∈ R2; |x−

a| < ρ}. We assume that Bρ(ai) ∩ Bρ(aj) = ∅ if i 6= j, and Bρ(aj) ⊂ Ω for

j = 1, . . . , N . Define θ : W → R as

θ(x) =
1

Lπ

N∑

j=1

mj arg(x− aj),

where mj ∈ Z \ {0} is a signed number of spirals associated with aj (see [5]
for details), and L ≥ 1 is a numerical cofficient choosing for stability of numerical
simulations. Then, we represent spiral curves Γt at time t ≥ 0 and whose direction
n ∈ S1 of the evolution as

(2) Γt = {x ∈W ; u(t, x)− θ(x) ≡ 0 mod (2/L)Z}, n = −
∇(u − θ)

|∇(u− θ)|
.

For example, evolution of Γt by (1) with smooth γ is represented as

(3) ut − γ(∇(u− θ)) {divDγ(∇(u− θ)) + f} = 0.

See [2] for derivation of the level set equation.
In [1] we consider a minimizing problem for a functional of anisotropic perimeter

and the distance between the original curve and its deformation to approximate
the motion by (1) in discrete time interval [t, t + h]. By the analogue from the
curvature term in (3), the functional for the evolution of spirals is of the form

(4) Fγ(u; Γ) =

∫

W

γ(∇(u− θ))dx −

∫

W

fudx+
1

2h
‖u− gΓ‖

2
L2 .

Note that the second term of the above denotes the driving force term. In [1] the
function gΓ should be chosen as the signed distance function dγ(x,Γ) of the form

dγ(x,Γ) :=

{
− infy∈Γ γ

◦(x− y) in n-side of Γ,
infy∈Γ γ

◦(x− y) otherwise

if Γ is interfacial curve. However, if Γ is spiral curve, the signed distance function
does not work well since Γ does not divide the domain into the ±n-side regions.

To overcome this difficulty, we introduce two methods. The first one is to
construct a signed distance function only in a neighborhood of Γ. For this purpose,
we first construct n-side and −n-side distance functions of Γ. The simplest way is
to solve two eikonal equations Vγ = ±1, i.e.,

ut = γ(∇(u− θ)), vt = −γ(∇(v − θ))

with u(0, ·) = v(0, ·) = u0 ∈ C(W ), where u0 is such that Γ = {x ∈ W ; u0(x) −
θ(x) ≡ 0 mod (2/L)Z}. Then, we define tu(x) for x ∈W as the time such that

u(tu(x), x) − θ(x) ≡ 0 mod (2/L)Z,

u(·, x)− θ(x) 6≡ 0 mod (2/L)Z on [0, tu(x))
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if u0(x)− θ(x) 6≡ 0 mod (2/L)Z, and tu(x) = 0 if u0(x)− θ(x) ≡ 0 mod (2/L)Z.
We also define tv(x) using v in the same manner. Note that tu and tv is the n-side
and −n-side distance function for Γ, respectively. Then, we now define gΓ(x) as

(5) gΓ(x) =






θΓ(x)−min{Mtu(x),
1

L
} if tu(x) < tv(x),

θΓ(x)−
2

L
+min{Mtv(x),

1

L
} otherwise

with a constantM ≥ 1, where θΓ is a branch of θ whose (2/L)-jump discontinuity
is only on Γ. One can find that

gΓ(x)− θ(x) =Mdγ(x,Γ) for x ∈ {y ∈W ; |dγ(x,Γ)| ≤ 1/(LM)}.

The constantM ≥ 1 should be chosen so that gΓ has no discontinuity on far away
region from Γ; note that gΓ may have discontinuity on {x ∈W ; tu(x) = tv(x) > 0}
if M is small. Then, we consider the minimizer u∗ of (4) with above gΓ, and set

T1(Γ) = {x ∈W ; u∗ − θ ≡ 0 mod (2/L)Z}.

For given initial curve Γ, the evolution of spirals by (1) at t > 0 which is denoted
by Γt is defined as

Γt = T
[t/(Mh)]
1 (Γ).

Note that the iteration number of this method to fixed time t > 0 is M × [t/h]
because of the coefficient M ≥ 1 in front of dγ .

The second method is just using a level set function. If Γ = {x ∈ W ; w(x) −
θ(x) ≡ 0 mod (2/L)Z} with w ∈ C(W ), then we consider the minimizing problem
of (4) with gΓ = w. Then, we define

T2(Γ) = {x ∈W ; w∗∗ − θ ≡ 0 mod (2/L)Z},

w∗∗ := w + γ(∇(w∗ − θ))(w∗ − w).

For given initial curve Γ = {x ∈ W ; w0 − θ ≡ 0 mod (2/L)Z} with w0 ∈ C(W ),
the evolution of spirals Γt by (1) at t > 0 with the second method is defined as

Γt = T
[t/h]
2 (Γ) = {x ∈ W ; w∗∗

[t/h](x) − θ(x) ≡ 0 mod (2/L)Z},

w∗∗
n+1 = w∗∗

n + γ(∇(w∗
n+1 − θ))(w∗

n+1 − w∗∗
n ),

w∗
n+1 = argmin

w
Fγ(w,Γn)|gΓ=w∗∗

n
, w∗∗

0 = w0.

The numerical results of the above two method are also presented in this talk.
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Unfitted finite element methods for PDEs on evolving surfaces

Maxim Olshanskii

(joint work with Arnold Reusken and Xianmin Xu)

Partial differential equations posed on evolving surfaces appear in a number of
applications such as two-phase incompressible flows (surfactant transport on the
interface) and flow and transport phenomena in biomembranes. Numerical ap-
proaches discussed in this report are based on Eulerian description of the surface
PDE problem and employ a time-independent background mesh that is not fitted
to the surface. The time-dependent surface Γ(t) ⊂ R3 is assumed smooth and
closed for all t ∈ [0, T ]. The evolution of the surface may be given implicitly, for
example, by the level set method. As an example of the surface PDE we consider
the transport–diffusion equation modelling the conservation of a scalar quantity
u with a diffusive flux on Γ(t), which is passively advected by a given smooth
velocity field w : R3 × [0, T ] → R3,

(1) u̇+ (div Γw)u − ν∆Γu = f on Γ(t), t ∈ (0, T ],

with initial condition u(x, 0) = u0(x) for x ∈ Γ0 := Γ(0). Here u̇ denotes the
advective material derivative, div Γ is the surface divergence, ∆Γ is the Laplace–
Beltrami operator, and ν > 0 is the constant diffusion coefficient.

In the report, we discuss two unfitted finite element methods based on restric-
tions of outer (bulk, volumetric) finite element functions to the surface. This
methodology is known as the trace finite element method (TraceFEM), see the
recent review article [4]. In the first approach from [1, 2] to problems posed on
time-dependent surfaces, one considers a space–time manifold

S =
⋃

t∈(0,T )

Γ(t)× {t}, S ⊂ R
4,

and a weak formulation of (1) as a surface PDE on S: Find u ∈W such that

(2) 〈u̇, v〉H′×H +

T∫

0

∫

Γ(t)

(uv divΓw + νd∇Γu · ∇Γv) ds dt =

T∫

0

∫

Γ(t)

fv ds dt.

for all v ∈ H , u(·, 0) = u0(x). Here the trial and test spaces are the following
Hilbert spaces of functions defined on S:

H = { v ∈ L2(S) | ‖∇Γv‖L2(S) <∞}, (u, v)H = (u, v)L2(S) + (∇Γu,∇Γv)L2(S);

W = { u ∈ H | u̇ ∈ H ′ }, ‖u‖2W := ‖u‖2H + ‖u̇‖2H′ .

Now the space–time trace finite element method builds on the weak formulation
(2). In particular, one considers space–time prismatic elements and defines finite
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element counterparts of W and H as traces of outer space–time polynomial finite
element spaces on a tetrahedral reconstruction of S. It turns out that the resulting
method can be implemented in an efficient time-marching way. It has been also
proved to be of the optimal first order (in space and time) in an energy norm and
of the second order convergence in a weaker norm.

Another unfitted finite element method we discuss is the one recently proposed
in [3]. The main motivation for this method is to avoid space–time elements
or any reconstruction of the space–time manifold. Assume that the surface is
defined implicitly as the zero level of a smooth level set function φ on Ω× (0, T ):
Γ(t) = {x ∈ R3 : φ(t,x) = 0}, such that |∇φ| ≥ c0 > 0 in a suitable neighborhood
of S. One obtains the following equivalent formulation of (1),

(3)






∂u

∂t
+w · ∇u+ (div Γw)u− ν∆Γu = f on Γ(t),

∇u · ∇φ = 0 in O(Γ(t)).
t ∈ (0, T ].

Here O(Γ(t)) is a R3 neighborhood of Γ(t) for any fixed t ∈ (0, T ]. Assuming Γ(tn)
lies in the neighborhood of Γ(tn−1), where u(tn−1) is defined, one may discretize
(3) in time using, for example, the implicit Euler method (higher order differences
are equally suitable):

(4)
un − u(tn−1)

∆t
+wn · ∇un + (div Γw

n)un − ν∆Γu
n = fn on Γ(tn),

∆t = tn − tn−1. Now one applies the trace finite element method to discretize
(4) only in space. A numerical extension procedure, unh → uext,nh , and the finite
element formulation of (4) define the fully discrete numerical method. To find a
suitable extension, one can consider a numerical solver for hyperbolic systems and
apply it to the second equation in (3). Numerical results from [3] suggest that
the Fast Marching Method is suitable for building extensions in narrow bands of
tetrahedra containing Γh, but other (higher order) numerical methods can be also
used.
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Geometric variational problems with nonlocal interaction

Xiaofeng Ren

We discuss some geometric variational problems arising from the studies of diblock
copolymers, triblock copolymers, and the FitzHugh-Nagumo system. Common
in these problems the free energy is a sum of a local energy (the perimeter of
Caccioppoli sets) and a nonlocal energy given in terms of the Green’s functions
of the Poisson equation or the Helmholtz equation. Both binary systems (of two
constituents) and ternary systems (of three constituents) will be discussed. For a
binary system we show the existence of droplet assemblies as stationary points [2]
and explain the impact of the domain shape on the locations of the droplets in an
assembly [1]. For a ternary system we prove the existence of a new morphological
phase: the double bubble phase, as a stable stationary point [3].

We aslo consider recently discovered toroidal assemblies in block copolymers,
and find a solution, called a torus profile, that is a set enclosed by an approximate
torus of the major radius 1 and the minor radius q, to the profile problem of
diblock copolymers. There is a way to set up the profile problem in a function
space as a integro-partial differential equation. The linearized operator L of the
problem at the torus profile is decomposed into a family of linear integro-ordinary
differential operators Lm where the index m = 0, 1, 2, ... is called a mode. The
spectrum of L is the union of the spectra of the Lm’s. It is proved that for each
m, when q is sufficiently small, Lm is positive definite. (0 is an eigenvalue for both
L0 and L1, due to the translation and rotation invariance.) As q tends to 0, more
and more Lm’s become positive definite. However no matter how small q is, there
is always a mode m of which Lm has a negative eigenvalue. This mode grows to
infinity like q−3/4 as q → 0 [4].
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A Diffuse Interface Model for Two-Phase Ferrofluid Flows

Abner J. Salgado

(joint work with Ricardo H. Nochetto and Ignacio Tomas)

A ferrofluid is a liquid which becomes strongly magnetized in the presence of ap-
plied magnetic fields. It is a colloid made of nanoscale monodomain ferromagnetic
particles suspended in a carrier fluid. These particles are suspended by Brownian
motion and will not precipitate nor clump under normal conditions. Ferrofluids
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are dielectric and paramagnetic. They find applications in magnetic manipulation
of microchannel flows, microvalves, magnetically guided transport and other fields.
We consider the Rosensweig [Ros97] model of ferrofluids, which reads
(1)

ut + u·∇u− (ν + νr)∆u+∇p = 2νr∇×w+ µ0m·∇h, ∇·u = 0,

wt + u·∇w − c1∆w − c2∇∇·w + 4νrw = 2νr∇×u+ µ0m× h,

mt + u·∇m+
1

T
(m− κ0h) = w×m, −∆ϕ = ∇·(ha −m).

Here, u and w represent the linear and angular velocity, respectively, p is the
pressure. The magnetization is denoted by m and we model the magnetic field by
means of a scalar potential ϕ. The externally applied field is denoted by ha. The
constitutive parameters ν, νr, c1, c2,κ0, T and  are assumed constant and positive.
The constant κ0 is known as the magnetic susceptibility and µ0 is the permeability
of vacuum.

The Rosensweig model (1) couples the micropolar Navier-Stokes equations with
a transport equation for the magnetization and Maxwell’s equations for the mag-
netic field. The PDE literature for this model is rather scarce, and the existing
works add a convenient diffusion term to the magnetization equation, the physical
validity of which is questionable.

In [NST16b] we studied system (1) without the addition of any nonphysical
terms. The starting point is the realization that by multiplying the linear momen-
tum equation by u, the angular momentum by w and the magnetization equation
by m we get

1

2

d

dt

(
‖u‖2

L2 + ‖w‖2
L2 + µ0‖m‖2

L2

)
+ ν‖∇u‖2

L2 + c1‖∇w‖2
L2 + c2‖∇·w‖

2
L2

+4νr‖w−
1

2
∇×u‖2

L2 +
µ0

T
‖m‖2

L2 = µ0b(m, h, u) +µ0 〈m× h,w〉+
µ0κ0

T
〈h,m〉 .

To control the terms on the right hand side we must multiply the magnetization
equation by h = ∇ϕ, which yields

(2) 〈mt, h〉+ b(u,m, h) +
1

T
〈m− κ0h, h〉 = 〈w ×m, h〉 .

After some manipulations this allows us to obtain an energy law.
Any reasonable numerical scheme must preserve this feature, and this implies

that identity (2) must be reproducible at the discrete level. This imposes, in
particular, the requirement that if we denote by X and M the discretization spaces
for the magnetic potential and magnetization, respectively, they must obey the
relation ∇X ⊂ M. In accordance, the space M must consist of discontinuous
functions and the discretization of the magnetization equation and all the terms
that contain a magnetization must be carried out appropriately.

We developed, in [NST16b], a numerical scheme for (1) that has all the afore-
mentioned properties. We showed that the discrete scheme always has a solution
and is unconditionally stable. In addition, under the simplifying assumption that
h = ha, which is valid when κ0 is small, we showed that our scheme converges, as
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the discretization parameters tend to zero, to a solution of (1). To obtain conver-
gence we must additionally require that M = Pd, where P is the pressure space.
This, in particular, implies that the pressure space P is discontinuous. Finally
we must also assume that P ∩ C(Ω̄) 6= ∅, which imposes a requirement on the
polynomial degree of P.

While the Rosensweig model is of interest by itself, most technologically relevant
applications of ferrofluids involve the interaction of a ferrofluid and a regular one.
For this reason, in [NST16a], we developed a diffuse interface model for two phase
ferrofluid flows. Instead of trying to derive the model from energy variational
frameworks we just assemble its components based on the following principles:

1. We want the simplest PDE model, which captures the essence of partially
miscible, almost matching density, two phase flows: one is a ferrofluid and
the other a non magnetizable one.

2. The Kelvin (magnetic) force — which is µ0m·∇h in the first equation of
(1) — and capillary forces dominate the dynamics. Thus, gravity plays a
secondary role.

3. The magnetization m and magnetizing field h are close to equilibrium.
This implies that there are no torques or angular momentum.

With these guidelines in mind, we propose
(3)

θt + u·∇θ = γ∆ψ, ψ =
1

ǫ
f(θ)− ǫ∆θ,

ut + u·∇u−∇· (ν(θ)T(u)) +∇p = µ0m·∇h+
σ

ǫ
θ∇ψ, ∇·u = 0,

mt + u·∇m+
1

T
(m− κ(θ)h) = 0, −∆ϕ = ∇·(ha −m).

The variables θ and ψ are the order parameter and chemical potential, respectively,
and the interfacial density is denoted by ǫ. As usual, T(u) denotes the symmetric
gradient of u. Notice also that the material parameters ν and κ are now phase
dependent. For (3) we can show that, provided κ(θ) ≤ κ0 ≤ 4, we have the
following energy law:

1

2

d

dt

(
‖u‖2

L2+µ0‖m‖2
L2+µ0‖h‖

2
L2 + ǫσ‖∇θ‖2

L2 +
2σ

ǫ

∫

Ω

F (θ)

)
µ0

T

(
1−

κ0

4

)
‖m‖2

L2

+
µ0

4T
‖h‖2

L2 + ‖
√
ν(θ)T(u)‖2

L2 + γσ‖∇ψ‖2
L2 ≤ µ0T ‖∂tha‖

2
L2 +

µ0

T
‖ha‖

2
L2 .

As in the one phase case, an identity like (2) must be obtained. It is particular
to notice that, for commercial grade ferrofluids, κ0 ∈ [0.5, 4.3], so the obtained
energy law almost covers the whole range of interest.

We also propose numerical schemes for (3). As in the one phase case, we
must require that ∇X ⊂ M. With this structural condition, and again under the
assumption that κ(θ) ≤ κ0 ≤ 4, we can show existence of discrete solutions and
their unconditional stability. To obtain convergence, we once again must assume
that h = ha, thus showing the existence of solutions for a simplified version of (3).
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Figure 1. The Rosensweig instability

Model (3) is extremely simple minded, yet it is able to reproduce many of
interesting phenomena that one can see in ferrofluids. For instance, Figure 1
shows a simulation of the so-called Rosensweig instability, that was obtained with
the numerical scheme we developed for (3).
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On Novel Approaches Towards Shape Optimization by Usage of Shape
Manifolds

Volker Schulz

Diffuse interfaces maybe an appropriate approach towards shape optimization
problems in certain cases. However, in many practical applications, sharp in-
terfaces are required, e.g., in the presence of convection dominated flow regimes.
This talk addresses methods for carrying over SQP methods from nonlinear pro-
gramming in vector spaces to shape spaces. Since shapes are not defining a vector
space structure, this poses certain challenges. These can be partly relieved by
exploiting the shape manifold structure as developed earlier in the field of dif-
ferential geometry. In [1], the foundations for interpreting shape optimization as
optimization on shape manifolds have been laid. The publication [2] addresses
first approaches towards shape-SQP methods and [3] presents efficient methods
for sharp interface optimization problems based on the standard Hadamard form
of shape drivatives. A central question is the proper choice of a Riemannian metric
on shape manifolds. It is demonstrated [4, 5] that certain Steklov-Poincareé type
metrics are of advantage, when combining volumetric and boundary formulations
of the shape derivative, as well as for numerical accuracy. The relevant exterior
bilinear elasticity form is chosen in a way to preserve mesh quality. Practical
experiences with an inverse diffusion problem are discussed.
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Energy-dissipations for gradient systems associated with anisotropic
grain boundary motions

Ken Shirakawa

(joint work with Salvador Moll and Hiroshi Watanabe)

Summary of the results

Let Ω ⊂ R2 be a bounded domain with a smooth boundary ∂Ω. LetQ := (0,∞)×Ω
be the product space of the time-interval (0,∞) and the spatial domain Ω, and let
Σ := (0,∞)× ∂Ω.

In this talk, we consider the following system of PDEs.

(1)





ηt −∆η + g(η) + α′(η)γ(R(θ)Dθ) = 0 in Q,

α0(η)θt − div
(
α(η)R(−θ)∂γ(R(θ)Dθ) + νDθ

)

+α(η)∂γ(R(θ)Dθ) · R(θ + π
2 )Dθ ∋ 0 in Q,

(
α(η)R(−θ)∂γ(R(θ)Dθ) + νDθ

)
· n∂Ω = 0 on Σ,

η(0, x) = η0(x), θ(0, x) = θ0(x), x ∈ ∂Ω.

This system is derived as a gradient system of the following functional F :
L2(Ω)2 → [0,∞), which is a modified version of the free-energy of grain boundary
motion, proposed by Kobayashi et -al. [6]:

[η, θ] ∈ L2(Ω)2 7→ F (η, θ) :=
1

2

∫

Ω

|Dη|2 dx+

∫

Ω

ĝ(η) dx

+

∫

Ω

α(η)γ(R(θ)Dθ) dx +
ν

2

∫

Ω

|Dθ|2 dx ∈ [0,∞].(2)

In the context, ν > 0 is a fixed positive (small) constant, and n∂Ω is the unit outer
normal on ∂Ω. R ∈ C∞(R;R2×2) ∩W 1,∞(R;R2×2) is a matrix-valued function of
rotation defined as:

R : ϑ ∈ R 7→ R(ϑ) :=

[
cosϑ sinϑ
− sinϑ cosϑ

]
∈ R

2×2.

Besides, the following conditions are settled as the assumptions in (1)–(2).

(A1): 0 ≤ ĝ ∈ C3(R), g := d
dη ĝ ∈ C2(R), and g(0) ≤ 0 and g(1) ≥ 0.

(A2): α0 ∈ W 1,∞
loc (R2), α ∈ C2(R) is convex, α′(0) = 0, and δ∗ :=

inf α0(R) ∪ α(R) > 0.
(A3): γ : R2 → [0,∞) is a two-dimensional norm which provides an equiva-

lent topology to that by the standard Euclidean norm | · |, and ∂γ : R2 →

2R
2

is its subdifferential which is possibly multi-valued.
(A4): η0, θ0 ∈ L2(Ω) are given initial data, and the pair of these [η0, θ0]

belongs to a class D0, prescribed as follows:

D0 :=
{

[η̃, θ̃] ∈ H1(Ω)2 0 ≤ η̃ ≤ 1 a.e. in Ω, θ̃ ∈ L∞(Ω)
}
.
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In this study, we propose the system (1) as an expansive version of the math-
ematical model by Kobayashi et -al [6], and then, the principal modification is in
the point that we take into account the anisotropy of crystalline structures. Here,
the variables η, θ ∈ L2(Ω) are order parameters, which indicate, respectively, the
orientation order and the orientation angle in the polycrystal.

In (1)–(2), the norm γ is called “anisotropic metric”, and it is supposed to
involve the effect of anisotropy. In particular, the sublevel set Wγ := {γ◦ ≤ 1}
of the polar function γ◦ is called “Wulff shape”, which is supposed to reproduce
the unit of stable crystalline structure. The convex functions similar to γ have
been adopted in a number of previous works [1, 2, 3, 4, 5, 7] as mathematical
expressions of anisotropic metrics, and hence, the use of such function is now one
of dominant methods to analyze various anisotropic phenomena.

However, in the cases of grain boundaries, the presence of γ would not be enough
for the reproduction of anisotropy, because the Wulff shape would possibly rotate
in response to the variation of the orientation angle θ. The rotation R = R(θ) as in
(1)–(2) is to enable the reproductions of such dynamical changes of the crystalline
structures, and similar idea has been adopted in several previous works, e.g. [3].
Alternatively, the presence ofR = R(θ) brings additional difficulty in mathematics,

because it brings two multi-valued terms −div
(
α(η)R(−θ)∂γ(R(θ)Dθ)+νDθ

)
and

α(η)∂γ(R(θ)Dθ) · R(θ + π
2 )Dθ in (1), together with the lack of convexity of the

principal part
∫
Ω
α(η)γ(R(θ)Dθ) dx in (2).

The objective of this report is to show the qualitative properties of the system
(1) under the following definition of solutions.
Definition of solution. A pair of functions [η, θ] ∈ L2

loc([0,∞);L2(Ω)2)2 is called a
solution to (1), iff. the following conditions are fulfilled.

(S1): [η, θ] ∈ W 1,2
loc ([0,∞);L2(Ω))2 ∩ L∞(0,∞;H1(Ω))2, 0 ≤ η ≤ 1 a.e. in

Q, and [η(0), θ(0)] = [η0, θ0] in L
2(Ω)2.

(S2): η solves the following evolution equation:

ηt(t)−∆Nη(t) + g(η(t)) + α′(η(t))γ(R(θ(t))Dθ(t)) = 0 in L2(Ω), a.e. t > 0,

where ∆N is the Laplacian operator with the Neumann-zero boundary
condition.

(S3): There exists a function ω∗ ∈ L∞(Q)2 such that ω∗ ∈ ∂γ(R(θ)Dθ) in
R2, a.e. in Q, and

(
α0(η)θt(t), θ(t) − ϕ

)
L2(Ω)

+
(
α(η(t))ω∗(t) ·R(θ(t) + π

2 )Dθ(t), θ(t) − ϕ
)
L2(Ω)

+ν
(
Dθ(t), D(θ(t) − ϕ)

)
L2(Ω)2

+

∫

Ω

α(η(t))γ(R(θ(t))Dθ(t)) dx

≤

∫

Ω

α(η(t))γ(R(θ(t))Dϕ) dx, for any ϕ ∈ H1(Ω), a.e. t > 0.

Based on these, we report the following Theorems 1–2, associated with the
energy-dissipation property in (1), as the most advanced results at the present
time.
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Theorem 1 (Existence of solutions with energy-dissipations). Under (A1)–(A4),
the system (1) admits at least one solution which fulfills the following inequality,
implying the energy-dissipation:

(3)

∫ t

s

|ηt(τ)|
2
L2(Ω) dτ + δ∗

∫ t

s

|θt(τ)|
2
L2(Ω) dτ + F (η(t), θ(t))

≤ F (η(s), θ(s)), for a.e. s > 0 and all t ≥ s.

Theorem 2 (Large-time behavior). Let us assume (A1)–(A4), and for a solution
[η, θ] to (1) fulfilling (3), let us define the ω-limit set of [η, θ] by putting

ω(η, θ) :=

{
[η∞, θ∞]

there exists {tn} ⊂ (0,∞) such that tn ↑ ∞ and
[η(tn), θ(tn)] → [η∞, θ∞] in L2(Ω)2, as n→ ∞

}
.

Then, the following items hold.

(I): ω(η, θ) is nonempty and compact in L2(Ω)2.
(II): Any ω-limit point [η∞, θ∞] ∈ ω(η, θ) satisfies that:

−∆Nη∞ + g(η∞) = 0 in L2(Ω), and θ∞ ≡ Const. on Ω.

Acknowledgement: This study is supported by Grant-in-Aid No. 25800086, No.
26400138 and No. 16K05224, JSPS.
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Preconditioning for Cahn-Hilliard equations

Martin Stoll

(joint work with Jessica Bosch and Christian Kahle)

The solution of vector-valued Cahn-Hilliard equations is an important task with
applications across the sciences. After a suitable discretization and the choice of
an appropriate nonlinear solver, one typically has to solve a large linear system of
equations. This process typically uses up most of the computing time and making
it robust and fast is a key challenge. We here address the numerical solution of a
Cahn-Hilliard system

∂tui = (L∆w)i,(1)

wi = f(ui) + β(u)− ε2∆ui,(2)

∇ui · n = (L∇w)i · n = 0 on ∂Ω,(3)

for i = 1, . . . , N, which is obtained using a smooth potential ψ(u) and β(u) :=

− 1
N

∑N
i=1 f(ui). The matrix L = (Lij)i,j=1,...,N ∈ R

N×N is the mobility matrix
and

f(u) = (f(u1), . . . , f(uN))T :=

(
∂ψ

∂u1
, . . . ,

∂ψ

∂uN

)T

=
∂ψ

∂u
.

the fully discrete linear systems for both smooth and nonsmooth potentials reads
in matrix form as

(4)

[
I ⊗M −B
τL ⊗K I ⊗M

] [
w(k+1)

u(k+1)

]
=

[
b

(I ⊗M)u(n−1)

]
,

where k denotes the Newton step, τ the time step size, and n− 1 denotes the time
step. Note that we neglect the index for the current time step n. The first right
hand side is

b = (I ⊗M)

(

−2
(

u
(k)
)3

+
3

2

(

u
(k)
)2
)

+
1

N
(I ⊗M)

(

N
∑

j=1

2
(

u
(k)
j

)3

− 3

2

(

u
(k)
j

)2
)

1

for the use of the smooth potential and

b = 0

for the use of the nonsmooth potential. Further, K := ((∇ϕi,∇ϕj))i,j=1,...,m ∈
Rm×m is the stiffness matrix, M := ((ϕi, ϕj)h)i,j=1,...,m ∈ Rm×m is the lumped
mass matrix and I ∈ R

N×N is the identity matrix. M is a symmetric positive
definite diagonal matrix and K is symmetric and positive semidefinite. The ma-
trix B is a block matrix reflecting the contributions from the nonlinear potential
for both the smooth and nonsmooth potential. We propose the block-triangular
preconditioner

P =

[
I ⊗M 0

τL ⊗K −Ŝ

]
,
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where Ŝ is an approximation of the Schur complement S = I ⊗M + τ(L⊗K)(I ⊗
M)−1B (see [2]). In the smooth potential case, we showed that the linear system
(4) is close to

(5) K0 =

[
I ⊗M −ε2I ⊗K
τL ⊗K I ⊗M

]
,

for which we can derive a robust Schur-complement approach based on a matching
argument [5]. Unfortunately, such a close-ness result for the nonsmooth case is
very restrictive on the time-step, which makes this technique infeasible. Therefore,
we directly approximate the Schur-complement of (4) for which we obtain

Ŝ = Ŝ1(I ⊗M)−1Ŝ2

=

(

N√
ǫ(N − 1)

(I ⊗M) +
√
τ(L⊗K)

)

(I ⊗M)−1

(√
ǫ(N − 1)

N
(I ⊗M) +

√
τB
)

= I ⊗M + τ (L⊗K)(I ⊗M)−1B +

√
τ N√

ǫ(N − 1)
B +

√
τǫ(N − 1)

N
(L⊗K).(6)

While this approach provides fairly robust results in practice, we currently are
not able to prove any satisfying eigenvalue bounds for reasonable step-sizes. Addi-
tionally, we presented how such a preconditioner can be embedded into a coupled
Navier-Stokes-Cahn-Hilliard system [4] where one obtains a structured linear sys-
tem of the form

A =

(
ANS CI

CT ACH

)
,

with ANS representing the Navier-Stokes contributions, ACH the Cahn-Hilliard
contributions, and CI ,CT the coupling matrices. Using both the state-of-the-art
preconditioner for the Navier-Stokes equations [3] as well as the above described
Cahn-Hilliard preconditioners one can obtain robust preconditioners for the cou-
pled system [1]. While in many cases the performance was very satisfying there
are still many interesting questions left such as the consideration of logarithmic
potentials, nonlocal derivatives, and the solution of optimization problems subject
to Cahn-Hilliard constraints.
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Models for transport networks and their relation to inpainting

Benedikt Wirth

(joint work with Alessio Brancolini)

Classical optimal transport aims to identify the most cost-efficient transporta-
tion scheme to move material from a prescribed initial spatial distribution to a
prescribed final spatial distribution, both given as probability measures on some
compact Ω ⊂ Rn,

µ+, µ− ∈ P(Ω) .

The cost of a transportation scheme can here be thought of as the accumulated
cost for transporting each single mass particle, which only depends on initial and
final particle position.

In contrast, models of transportation networks assign each transported mass
particle a cost that does not only depend on start and end point, but also on
the path taken in between and on how many particles were transported together
(the cost per mass particle in general decreases the more particles travel together,
modelling some kind of efficiency gain or bulk discount). This automatically leads
to optimal transportation schemes in which many particles use the same travel
routes so that mass transport happens along a common flow network. Therefore,
those models lend themselves for describing for example logistic or street networks
as well as the vasculature in biological organisms.

Transportation network models have for instance been studied by Xia [1], by
Maddalena, Morel, and Solimini [2], or by Brancolini and Buttazzo [3], all based
on very different model formulations. Since the former two model formulations are
known to be equivalent [4] and the latter was found to allow a very similar formu-
lation [5], it seems worth generalizing the different models to a common framework
in which one can switch between the different formulations. This entails repeating
the analysis of the above-mentioned works for more general transportation costs
as defined below.

Definition 1 (Transportation cost). The transportation cost is a function τ :
[0,∞) → [0,∞), τ 6≡ 0, such that

(1) τ(0) = 0, (2) τ is non-decreasing, (3) τ is concave.

The transportation cost τ(w) has the interpretation of the cost per transport
distance for transporting an amount of mass w. The analysis in [1, 2] exploits
the fact that their choice τ(w) = wα for some α ∈ (0, 1) is strictly concave with
infinite slope at the origin, which we now no longer assume. Below we summarize
the different resulting model formulations and their relation.
Eulerian formulation. In this formulation, which repeats and generalizes Xia’s work
[1], we may even replace the requirement of concave τ by merely subadditivity.
Here, transportation schemes are described by weighted graphs or their limit ob-
jects.
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Definition 2 (Transport paths and cost functional). (1) A discrete transport
path is a weighted directed graph G = (V,E,w), where the weight w(e)
for any edge e ∈ E can be thought of as the mass flux through e.

(2) The flux associated with the discrete transport path G is given by the

vector-valued Radon measure FG =
∑

e∈E w(e)
~e
|~e|(H

1xe) , where ~e stands
for the vector along the edge.

(3) The cost function of the discrete transport pathG is Jτ
F(G)=

∑

e∈E

τ(w(e)) |~e|.

(4) The cost function of a transport path F (a vector-valued Radon measure
on Rn) for given initial and final measure µ+, µ− ∈ P(Ω) is defined as

J τ,µ+,µ− [F ] = inf

{
lim inf
k→∞

Jτ
F(Gk) : (µk

+, µ
k
−,FGk

)
∗
⇀ (µ+, µ−,F),

µk
+, µ

k
− ∈ P(Rn), divFGk

= µk
+ − µk

−

}
,

where the infimum of the empty set shall be infinite. Obviously, this is
the infimum cost of approximating the flux F by finite transportation
networks transporting mass from µk

+ to µk
−.

(5) The transport problem is to find the solution F of

dτ (µ+, µ−) = min
F

J τ,µ+,µ− [F ] .

(6) We shall call τ admissible, if there exists a concave function β ≥ τ with∫ 1

0 β(w)w
1
n
−2 dw <∞.

The following properties of the cost function can now be derived essentially by
standard variational arguments and by construction of appropriate hierarchical
discrete transport paths.

Theorem 3 (Properties of cost distance). If τ is admissible,

(1) J τ,µ+,µ− admits minimizers,
(2) dτ metrizes weak-* convergence in P(Ω),
(3) (P(Ω), dτ ) is a length space.

Lagrangian formulation. This formulation follows [2]. In the following we set Γ =
[0, 1] to be the set of transported particles with the Lebesgue measure as mass
distribution PΓ = LxΓ.
Definition 4 (Irrigation patterns). (1) An irrigation pattern is a measurable

function χ : Γ → AC([0, 1];Rn), where the absolutely continuous function
χp : [0, 1] → Rn indicates the travel path of particle p ∈ Γ. The irrigating
measure µχ

+ and the irrigated measure µχ
− are defined as the pushforward

of PΓ under p 7→ χp(0) and p 7→ χp(1), respectively.
(2) The flux through x ∈ Rn is mχ(x) = PΓ({p ∈ Γ : x ∈ χp([0, 1])}).
(3) The cost function for given initial and final mass µ+, µ− ∈ P(Ω) is

J τ,µ+,µ− [χ] =

{∫
Γ

∫ 1

0
τ(mχ(χp(t)))
mχ(χp(t))

|χ̇p(t)| dtdPΓ(p) if µχ
± = µ±,

∞ else.
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Static formulation. This formulation can be thought of as an extension of the
model in [3].

Definition 5 (Networks). (1) The maintenance cost ε(b) for a network with
flow resistance b ∈ [0,∞) is defined as

ε(b) = (−τ)∗(−b) = supw{−bw + τ(w)}.

(2) Let aε = inf ε−1({0}) = τ ′(0). For a rectifiable set Σ ⊂ Rn (the network)
and a function b : Σ → [0,∞) we define the network distance

dΣ,b(x, y)=inf

{∫

Σ∩γ

b(z) dH1(z)+aεH
1(γ\Σ) :γ Lipschitz curve fromx to y

}
.

(3) Given initial and final measure µ+, µ− ∈ P(Ω), the cost function is

J ε,µ+,µ− [Σ, b]=WΣ,b(µ+, µ−)+

∫

Σ

ε(b(x)) dH1(x) withWasserstein distance

WΣ,b(µ+, µ−)=inf

{∫

Ω×Ω

dΣ,b(x, y) dπ(x, y) :π∈P(Ω×Ω),
{
π(A×Ω)=µ+(A)
π(Ω×A)=µ−(A)

}
∀Ameas.

}
.

All these formulations can be shown to describe the same network structures.

Theorem 6 (Model equivalence). It holds minFJ τ,µ+,µ−[F ] = minχJ τ,µ+,µ−[χ]
= minΣ,bJ

τ,µ+,µ−[Σ, b], and the minimizers can be related with each other.

As a last formulation variant, in 2D under some addi-
tional restrictions on µ+ and µ−, one can rewrite those
models as versions of Mumford–Shah inpainting prob-
lems, which are well-known in image processing. Further-
more, quite efficient convexifications are known for these
Mumford–Shah problems which allow numerical computa-
tion of optimal inpaintings (see right), whose discontinuity
lines correspond to the network.
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Masahiro Yamamoto

We discuss three inverse problems related to free boundaries or moving boundaries.

1. Nucleation - Cahn’s time-cone method

This is a joint work with Dr. Yikan Liu (The Univ. of Tokyo) and Prof. Daijung
Jiang (Central China Normal Univ.).

As a model for nucleation, we consider Cahn’ time cone method:

u(x, t) =

∫

Ωρ(x,t)

Ψ(y, s)dyds. (1)

Here Ψ(x, t) and ρ(t) denote the nucleation rate and the growth speed respectively,
and u(x, t) is the expected number of transformation events, and we set

Ωρ(x, t) :=

{
(y, s); y ∈ R

n, 0 < s < t, |y − x| <

∫ t

s

ρ(τ)dτ

}
.

Given Ψ and ρ, we can calculate u(x, t) by (1). However the calcuations are
not light and discussions on the design and the parameter identifications look not
simple for the integration form. By a procedure similar to the D’Alembert formula
of the one dimensional wave equation, we derive a multiple hyperbolic equation
for the solution u to (1), and establish the foundation for discussing numerics and
inverse problems, control problems.

Reference: Liu, Yikan, Jiang, Daijun and Yamamoto, Masahiro, Inverse source
problem for a double hyperbolic equation describing the three-dimensional time
cone model, SIAM J. Appl. Math. 75 (2015), 2610–2635.

2. Stability for inverse obstacle scattering problem

This is a joint work with Dr. Johannes Elschner and Prof. Guanghui Hu (Chinese
Academy of Sciences).

Let D ⊂ Rn be a bounded domain. By u(x) we denote the total field and we
set uin(x) = eikα·x with α ∈ Sn−1 and k > 0. Let uS(x) = u(x) − uin(x) be the
scattering field. Then





(∆ + k2)u = 0 in Rn \D
u|∂D = 0 sound-soft

lim|x|→∞ |x|
n−1

2 (∂|x|u
S − ikuS) = 0 (Sommerfeld radiation condition).

Then we have asymptotics:

uS(x) = |x|
1−n

2 eik|x|
(
u∞(D, k, α)

(
x

|x|

)
+O

(
1

x

))

and we call u∞(D, k, α) the far field pattern. Then we discuss

Inverse obstacle scattering problem: Determine D from u∞(D, k, α)(ξ), ξ ∈
Sn−1.
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As for the the uniqueness, there are many works and we refer only to Kirsch-
Kress (1993) and Colton-Sleeman (1983) for smooth D, and Cheng-Yamamoto
(2004), Alessandrini-Rondi (2005), Liu-Zou (2006), Elschner-Yamamoto (2006,
2008), Elschner-Hu (2016) for polygonal D.

As for the conditional stability, we refer to Isakov (1993) and Sincich and Sini
(2008).

We proposed a novel method for proving the conditional stability which is ap-
plicable to a wide class of partial differential equations, not only to the Helmholtz
equations.

3. Uniqueness of moving boundary related to continuous casting

This is a joint project with Prof. Jin Cheng (Fudan Univ.).
In practice such as continuous casting, it is difficult to assume the Stefan con-

dition and thus our governing system is
{

∂tu = ∂2xu(x, t), Q := {(x, t); 0 < x < ℓ(t), 0 < t < T },
u(ℓ(t), t) = 0, t > 0.

Then we discuss:

Inverse problem: Determine ℓ(t), 0 < t < T from u(0, t), ∂xu(0, t), 0 < t < T .
We have proved:

Case A: ℓ1(0) = ℓ2(0): The uniqueness holds.
Case B: unknown ℓ1(0), ℓ2(0):
If u1(0, t) = u2(0, t), ∂xu1(0, t) = ∂xu2(0, t), 0 < t < T , then we have either

• uniqueness
• joining of ℓ1, ℓ2 after one time when ℓ′1ℓ

′
2 > 0, and then never separated

• ℓ1(t) > ℓ2(t), 0 ≤ t ≤ T or ℓ1(t) < ℓ2(t), 0 ≤ t ≤ T .

The proof is based on the unique continuation, backward uniqueness in t for heat
equation.

Reporters: Michael Hinze & Vanessa Styles
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