
Mathematisches Forschungsinstitut Oberwolfach

Report No. 9/2017

DOI: 10.4171/OWR/2017/9

Mini-Workshop: Stochastic Differential Equations:
Regularity and Numerical Analysis in Finite and Infinite

Dimensions

Organised by
Martin Hutzenthaler, Essen
Annika Lang, Göteborg
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Abstract. This Mini-Workshop is devoted to regularity and numerical anal-
ysis of stochastic ordinary and partial differential equations (SDEs for both).
The standard assumption in the literature on SDEs is global Lipschitz conti-
nuity of the coefficient functions. However, many SDEs arising from applica-
tions fail to have globally Lipschitz continuous coefficients. Recent years have
seen a prosper growth of the literature on regularity and numerical approx-
imations for SDEs with non-globally Lipschitz coefficients. Some surprising
results have been obtained – e.g., the Euler–Maruyama method diverges for
a large class of SDEs with super-linearly growing coefficients, and the lim-
iting equation of a spatial discretization of the stochastic Burgers equation
depends on whether the discretization is symmetric or not. Several positive
results have been obtained. However the regularity of numerous important
SDEs and the closely related question of convergence and convergence rates
of numerical approximations remain open. The aim of this workshop is to
bring together the main contributers in this direction and to foster significant
progress.
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Introduction by the Organisers

The workshop Mini-Workshop: Stochastic Differential Equations: Regularity and

Numerical Analysis in Finite and Infinite Dimensions was organised by Martin
Hutzenthaler (Universität Duisburg-Essen), Annika Lang (Chalmers University,
Göteburg), Lukasz Spruch (University of Edinburgh), and Larisa Yaroslavtseva
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(University of Passau). It was attended by 16 participants from France, Germany,
the Netherlands, Sweden, Switzerland, and the United Kingdom. Most partic-
ipants were young researchers working on numerical analysis for ‘non-standard’
SDEs (i.e., SDEs with coefficients that do not satisfy global Lipschitz or mono-
tonicity conditions).

Denis Talay, Stig Larsson, and Arnulf Jentzen agreed to give overview talks
(2x45 minutes), in which they also presented some open problems. Arnulf Jentzen
gave an overview of positive and negative results regarding both strong and weak
convergence (rates) for approximations of non-linear SDEs. He also posed a great
number of open problems of varying (presumed) difficulty. Examples include char-
acterizing the strong/weak convergence rates of the Heston model in terms of the
model parameters, and determining optimal weak convergence rates for non-linear
stochastic partial differential equations (e.g., the non-linear heat equation). One
open problem was also mentioned in the talk of Stig Larsson: it concerns obtain-
ing (optimal) strong convergence rates for temporal discretisations of the Cahn–
Hilliard–Cook equation. Stig Larsson discussed the Cahn–Hilliard–Cook equation
(physical interpretation, well-posedness) and presented some recent results regard-
ing convergence of numerical schemes for this equation. Denis Talay gave a brief
introduction to McKean–Vlasov particle interaction systems with smooth kernels,
explaining how — when letting the number of particles involved go to infinity —
the solution converges weakly to the solution of the McKean–Vlasov SDE. He then
continued to discuss the case of singular kernels and to explain how these arise
naturally in certain neurological models, and concluded his talk with a discussion
of the occurance of blow-ups in such equations.

All other participants also contributed a talk on recent research questions, and
some additionally presented open problems. The small scale of the workshop
allowed for a very informal atmosphere, leading to numerous discussions during
and after the talks and excellent group dynamics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Approximation and simulation of infinite-dimensional Lévy processes

Andrea Barth

(joint work with Andreas Stein)

Uncertainty quantification plays an increasingly important role in a wide range of
problems in the Engineering Sciences and Physics. Examples of sources of uncer-
tainty are imprecise or insufficient measurements and noisy data. In the underlying
dynamical system this is modeled via a stochastic operator, stochastic boundary
conditions and/or stochastic data. As an example, to model subsurface flow more
realistically the coefficients of an (essentially) elliptic equation are assumed to be
stochastic. A common approach in the literature is to use correlated random fields
that are built from uniform distributions or colored log-normal fields. The result-
ing marginal distributions of the field are (shifted) normally, resp. log-normally
distributed. Neither choice is universal enough to accommodate all possible types
of porosity, especially not if fractures are incorporated. In some applications, as
for modeling forwards in electricity markets, it might even be necessary that the
marginal distribution of the (time-dependent) random field is a pure-jump process
(see [3]).

In the case of a (time-dependent) Gaussian random field, the approximation and
simulation via its Karhunen-Loève expansion is straightforward. Almost sure and
Lp-convergence in terms of the decay of the eigenvalues has been shown for trun-
cated KL-expansions in [4]. For infinite-dimensional Lévy processes, also called
Lévy fields, the approximation may still be attempted via the KL expansions.
In contrast to the Gaussian case, the one-dimensional processes in the spectral
representation are not independent but merely uncorrelated. If one were to use
independent Lévy processes, the resulting field would not have the desired mar-
ginal distributions and would, therefore, not converge to the desired Lévy field.
One may circumvent this issue by the use of correlated processes. To this end,
one of the main contributions of this work is to introduce a class of Lévy processes
that can be expressed in terms of subordinated Brownian motions and derive the
corresponding correlation structure. From a simulatory point of view this entails
the generation of a certain number of one-dimensional processes with a given set
of parameters. To account for the specific structure of the subordinated Brown-
ian motions a second approach is introduced, where one multidimensional process
with decorrelated marginals are generated.

In both aforementioned cases it is, however, necessary to simulate one-dimensional
Lévy processes. A common way to to do so, is to employ the so called compound

Poisson approximation (CPA) (see [1],[8] and [9]). Although it is possible to
achieve convergence in distribution of the approximation, it is in general not pos-
sible to derive mean-square convergence results and obtain error bounds in terms
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of the approximation parameters. As a further contribution a novel approxima-
tion method for one-dimensional Lévy processes is developed. This new approach,
based on Fourier inversion, addresses the abovementioned problems. Lp- and al-
most sure convergence of the approximation under relatively weak assumptions
are proved and precise error bounds are derived. Further, mean-square conver-
gence of the approximation to a given infinite-dimensional Lévy process is shown
by combining the Fourier inversion method with an appropriate truncation of the
KL expansion.

As a class of subordinated processes, generalized hyperbolic Lévy processes, that
are based on the generalized hyperbolic distribution and cover for example normal

inverse Gaussian and hyperbolic processes are considered. These processes are
widely used in applications such as mathematical Finance, Physics and Biology
(see, for instance, [2, 3, 5, 6, 7]). With its fat-tailed distribution a generalized
hyperbolic field may also be of value in the modeling of subsurface flows (see [10]
for a discussion on fat-tailed distributions).

The corresponding generalized hyperbolic Lévy fields are approximated via trun-
cated Karhunen-Loève expansions with generalized-hyperbolically distributed mar-
ginals. Further, it is shown that the approximation converges to an infinite-
dimensional generalized hyperbolic process. By the fact that generalized hyper-
bolic Lévy processes can be represented as subordinated Brownian motions, one
is able to simulate generalized hyperbolic fields efficiently using the Fourier in-
version method, even if a large number of one-dimensional generalized hyperbolic
processes is necessary. Some of the implementational details of the algorithm
are highlighted and normal inverse Gaussian and hyperbolic fields as numerical
examples conclude.
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Regularization by noise for the stochastic transport equation

Lisa Beck

(joint work with Franco Flandoli, Massimiliano Gubinelli, Mario Maurelli)

We discuss several aspects of regularity and uniqueness for weak (L∞-) solutions
to the (deterministic and) stochastic transport equation

(sTE) du = b · ∇udt+ σ∇u ◦ dWt

on [0, T ]×R
d with initial values u0 : R

d → R for t = 0. Here, b : [0, T ]×R
d → R

d

is a deterministic vector field (the drift), σ a real number, (Wt)t≥0 a Brownian
motion in R

d, u : [0, T ]×R
d → R the (random) unknown, and the stochastic term

is interpreted in the Stratonovich sense.
For the deterministic equation (σ = 0) the following dichotomy is well-known.

If the drift b is sufficiently regular, then the associated equation of characteristics
generates a flow Φt : R

d → R
d of diffeomorphisms and the initial value prob-

lem to (sTE) admits (in suitable function spaces) a unique solution, which pre-
serves C1-regularity of the initial values and allows for the representation formula
u(t, x) = u0(Φ

−1
t (x)), see [2]. In contrast, if b is not regular enough (such as only

Hölder continuous in space), then multiple solutions may exist and solutions may
blow up from smooth initial data in finite time (which, on the level of the equa-
tion of characteristics, means non-uniqueness or coalescence of the trajectories).
For the stochastic equation (σ 6= 0) it turns out that noise can lead to a non-
trivial regularization effect, namely that the formation of non-uniqueness and of
singularities is prevented.

Similar phenomena of regularization due to noise were observed for different
types of partial differential equations, for instance, for reaction diffusion equations
in [6], for the transport equation (sTE) in [4, 3, 8] or for stochastic conservation
laws in [5]. The main goal in these papers consists in understanding the effect
of regularization due to the stochastic term. This requires in particular to find a
suitable noise term, as simple as possible, for which the regularization effect takes
place, while imposing as little regularity as possible on the deterministic terms.

In the case of the stochastic transport equation (sTE) we work in [1] with
multiplicative Stratonovich noise and a mere integrability assumption on the drift
(known from fluid dynamics as the Ladyzhenskaya–Prodi–Serrin condition). More
precisely, we assume

b ∈ Lq([0, T ];Lp(Rd,Rd)) for p, q ∈ (2,∞) such that
d

p
+

2

q
≤ 1

and in particular, we do not assume any kind of differentiability or Hölder conti-
nuity. A scaling argument shows that this integrability condition is subcritical for
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strict inequality and critical for equality in d
p + 2

q ≤ 1, meaning that the Gaussian

velocity field dominates the drift or that it is comparable to the drift, which sug-
gests its optimality. In this setting, we prove in the purely stochastic case σ 6= 0
the conservation of Sobolev regularity of the initial values in the sense of

u0 ∈W 1,2m(Rd) ⇒ sup
t∈[0,T ]

E
[
‖u(t, ·)‖mW 1,m(Rd)

]
<∞

for m ∈ 2N (up to a restriction of the growth at infinity). The techniques needed
to reach the critical case are of analytic nature and rely crucially on parabolic
equations satisfied by moments of first derivatives of the solution. This is opposite
to the previous works [4, 3, 8] based on stochastic flows and their regularity in
terms of weak differentiability (which, by means of the result [7], is only known to
be true in the subcritical case). Our approach covers in fact stochastic generalized
transport equations, containing in particular the stochastic continuity equation

dv = div(bv)dt+ σdiv(v ◦ dWt)

which is in duality correspondence with the stochastic transport equation. By
a duality approach in the stochastic setting, this allows to apply our regularity
results in order to prove also the restoration of wellposedness for (sTE) provided
that both b and div b satisfy the integrability assumption Lq([0, T ];Lp(Rd,Rd))
(which in fact guarantees weak differentiability of the solutions to the stochastic
continuity equation).
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Computable a-posteriori bounds for SPDEs

Dirk Blömker

The main question in this work is “How to numerically compute something that

might not exist?”. Based on a-posteriori error estimates we present a method to
obtain existence of globally unique solutions together with error estimates, for
equations where this is analytically not known.

Motivation. Our result is motivated by equations where the global existence
of solutions is not known, and thus global a-priori estimates are not available
for numerical analysis. The final goal of this approach is the three-dimensional
Navier–Stokes equation. But for the first deterministic results we focused on a
somewhat simpler equation [3] from surface growth with similar properties.

For the latter in [2, 10] a-posteriori analysis was used for the deterministic
surface growth PDE to prove numerically the regularity of solutions and thus the
global existence and uniqueness. The residual was evaluated using numerical data
and analytically an error estimate in terms of the residual was given.

Stochastic Example. In [4] we consider the following simpler SPDE on the
Hilbert space H = L2([0, π])

(1) du = [Au+ F (u)]dt+ dW u(0) = u0 .

subject to Dirichlet boundary conditions for the Laplacian A. The perturbationW
is some cylindrical Q-Wiener process with bounded covariance operator. Finally,
F is the locally Lipschitz nonlinearity F (u) = −u3.

For (1) the asymptotic convergence results of numerical schemes are well known,
see for example [9, 8, 6] or [1] for a truncated scheme. Moreover, there is no problem
with existence and uniqueness of solutions. See for example [5]. Nevertheless, we
study it as a starting point for stochastic results.

Discretization. For the spatial discretization we use the spectral Galerkin
scheme, where PN is the projection onto the first N Fourier modes. Moreover,
for the time-discretization we use an accelerated exponential scheme introduced
in [7, 6]. Unfortunately, no sharp asymptotic rate is known for our scheme.

We use a fixed step-size h > 0 and for a fixed realization ω we obtain by a
random number generator in principle exact values of {PNZ(hk)}k∈N , defined by

Z0 = 0 , Zk+1 = ehAZk +Xk+1 =

k+1∑

j=1

eh(k+1−j)APNXj

with i.i.d. RN -valued Gaussian random variables

Xk+1 = PN

∫ h(k+1)

hk

e(h(k+1)−s)AdW (s) ∼ N (0, PN

∫ h

0

e2sAdsPN ) .
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Given the Zk, the numerical method provides a realization of the approximation
{uk}k=1,...,M ⊂ PNH , which is defined recursively as

un = eAhPNun−1 +

∫ h

0

eA(h−s)dsFN (un−1) +Xn .

Interpolation linearly in time yields the approximation ϕ. The main result is a
bound on the conditional mean-square error given the numerical data:

E[‖u− ϕ‖2 | {Xk}k∈N] = E[‖u− ϕ‖2 | {Zk}k∈N] = small ,

which is not an asymptotic result, but one that holds for the given approximation.
The term “small” depends on the the numerical data, and we evaluate this part
numerically. The general philosophy is to evaluate as much as possible of the
error bounds using the numerical data, and only rely on analytic estimates if no
numerical evaluation is possible.

Residual. The residual measures the quality of an arbitrary numerical approxi-
mation ϕ. For t ∈ (0, T ) it is defined as

(2) Res(t) = ϕ(t) − eAtϕ(0)−
∫ t

0

eA(t−s)F (ϕ(s))ds − Z(t).

This contains terms depending on . . .

• . . . the data uk and Zk, which we evaluate only numerically
• . . . infinite dimensional parts from the stochastic convolution, which is in-
dependent of the data and expectations are evaluated analytically.

• . . . an Ornstein–Uhlenbeck bridge between discretization times, which is
also independent of the data and Gaussian.

Approximation. The numerical data mainly comes into play via the residual.
We additionally need to quantify the continuous dependence of solutions on addi-
tive perturbations like the residual. By putting d(t) = u(t)− ϕ(t) we have

d(t) = u(t)− ϕ(t) = eAtd(0) +

∫ t

0

eA(t−s)(F (u(s))− F (ϕ(s)))ds +Res(t)

with d(0) = (I − PN )u0. Let r = d − Res which is the solution of the following
differential equation

∂tr = Ar + F (r + ϕ+Res)− F (ϕ).

Recall that Res(0) = 0, so r(0) = d(0) = QNu0. Now we use standard a-priori
estimates for the equation for r.
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Exponential integrators for stochastic Schrödinger equations driven by
Itô noise

David Cohen

(joint work with Rikard Anton)

In the first part of the presentation, we consider the numerical discretisation in
time of stochastic Schrödinger equations by exponential integrators [1].

We start with the linear case and discuss strong convergence of the exponential
integrator as well as its long-time behaviour. In particular, we show that the
expected values of the mass, the energy, and the momentum drift linearly with
time along the exact solution of the linear stochastic Schrödinger equation as well
as along the numerical one. This is not the case for the Euler–Maruyama scheme,
the backward Euler–Maruyama scheme or the Crank–Nicolson scheme from [4].

Next, we study the discretisation of linear stochastic Schrödinger equations with
a multiplicative potential and driven by multiplicative noise. Especially, we show
strong convergence of the exponential method and analyse the behaviour of the
numerical discretisation with respect to the expected value of the mass and energy.

Numerical simulations are provided in order to confirm the above theoretical
results.

In the second part of the presentation, we discuss some open problems related
to long-time behaviour of numerical schemes for Hamiltonian and Poisson systems
[3, 8, 7, 5] as well as for stochastic partial differential equations [6, 2, 1].
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Convergence in Hölder norms with applications to Galerkin
approximations and Monte Carlo methods

Sonja Cox

(joint work with Martin Hutzenthaler, Arnulf Jentzen, Jan van Neerven, Timo
Welti)

We demonstrate that if a sequence of piecewise affine linear processes converges
in the strong sense with a positive rate to a stochastic process which is strongly
Hölder continuous in time, then this sequence converges in the strong sense even
with respect to much stronger Hölder norms and the convergence rate is essentially
reduced by the Hölder exponent. This principle has a number of applications: it
may be used e.g. to derive strong convergence rates of multilevel Monte Carlo ap-
proximations of expectations of Banach space valued stochastic processes. Another
application is to obtain pathwise convergence rates of spectral Galerkin approxi-
mations of non-linear stochastic partial differential equations. This in turn can be
used to extend regularity results for SODEs to SPDEs.

1. An estimate for Hölder regularity

Some basic yet subtle manipulations (in combination with the Kolmogorov–Chent-
sov continuity criterion) allow us to prove the following lemma:

Lemma 1 (A variant of Corollary 2.11 in [1]). Let T ∈ (0,∞), p ∈ (1,∞),
β ∈ (1/p, 1), (Ω,F ,P) be a probability space, E a Banach space, X ∈ Cβ([0, T ],
Lp(P;E)), Y N : [0, T ]×Ω → E, N ∈ N stochastic processes with continuous sample

paths, assume

sup
N∈N

(
Nβ sup

t∈{kT/N : k=0,1,...,N}

‖Xt − Y N
t ‖Lp(P;E)

)
<∞,
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and assume at least one of the following two conditions holds:

(1) supN∈N |Y N |Cβ([0,T ],Lp(P;E)) <∞,

(2) ∀N ∈ N : Y N = [Y N ]N .

Then for all α ∈ [0, β − 1/p), ε ∈ (0,∞) it holds that

sup
N∈N

[
Nβ−α−1/p−ε‖X − Y N‖Lp(P;Cα([0,T ],E))

]
<∞.

By considering the Brownian motion, one may check that the convergence rate
in the lemma above is essentially optimal (see [1, Lemma 2.14]). Extensions to
non-equidistant grids may also be obtained (see [1, Corollary 2.11]), and the proof
techniques will also work for processes indexed by e.g. a bounded domain D ⊆ R

d,
d ∈ N, with piecewise affine boundary instead of processes indexed by [0, T ].

2. Application 1: Monte Carlo methods

Let (X, ‖·‖X) be a Banach space and let ξ ∈ L2(P; ‖·‖X). When using Monte Carlo
approximations to approximate E(ξ), the convergence rate in L2(P; ‖·‖X) depends
on the so-called (Rademacher) type p ∈ [1, 2] — indeed, it was demonstrated in [3]
(see also [4]) that the the rate is given by 1 − 1

p (it has also been shown that

this is essentially optimal). In particular, if X has only trivial type (p = 1), then
convergence is not guaranteed. For T ∈ (0,∞) the space (C([0, T ],R), ‖·‖∞) is
an example of a Banach space that fails to have type p for any p ∈ (1, 2]. This
is problematic if one wishes to approximate e.g. t 7→ E(Xt) uniformly by means
of Monte Carlo approximations, where (Xt)t∈[0,T ] is a stochastic process. This
problem may be overcome if (Xt)t∈[0,T ] allows for additional spatial regularity,

e.g., if (Xt)t∈[0,T ] ∈ L2(P,Wα,p([0, T ],R)) for some α ∈ (0, 1) and some p ∈
( 1
α ,∞) (the space Wα,p([0, T ],R) has type min(p, 2)). If moreover (Xt)t∈[0,T ]

cannot be sampled exactly, then naturally one also needs that (Xt)t∈[0,T ] can

be approximated in L2(P;Wα,p([0, T ],R)). Approximations in L2(P;Cα([0, T ]))
clearly suffice — which is precisely the topic of Lemma 1. For details see [1,
Section 4], in which also the multi level Monte Carlo method is discussed in the
Banach space setting.

3. Application 2: pathwise convergence of Galerkin approximations

for non-linear SPDEs

Lemma 1 is useful for the study of stochastic partial differential equations (SPDEs).
In general, a solution of an SPDE fails to be a semimartingale. As a consequence,
Doob’s maximal inequality cannot be applied to obtain estimates with respect to
the L2(P; ‖·‖C([0,T ],‖·‖E))-norm. However, it is often feasible to obtain convergence

rates with respect to the C([0, T ], ‖·‖L2(P;‖·‖E))-norm, after which Lemma 1 can be

applied to obtain convergence rates with respect to the L2(P; ‖·‖C([0,T ],‖·‖E))-norm.

Estimates with respect to the L2(P; ‖·‖C([0,T ],‖·‖E))-norm are essentail for the

standard localisation arguments used to extend results for SPDEs with globally
Lipschitz continuous nonlinearities to results for SPDEs with nonlinearities that
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are only Lipschitz continuous on bounded sets. This is demonstrated in detail
in [1, Section 3], where essentially sharp pathwise convergence rates for spatial
Galerkin and noise approximations for a large class of SPDEs with non-globally
Lipschitz continuous nonlinearities are obtained. Examples include the stochas-
tic Burgers, stochastic Ginzburg–Landau, stochastic Kuramoto–Sivashinsky, and
Cahn–Hilliard–Cook equations. The pathwise convergence of the Galerkin approx-
imation is then used in [2] to prove that the aforementioned SPDEs are locally
Lipschitz continuous with respect to their initial value.
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On arbitrarily slow convergence rates for strong numerical
approximations of Cox–Ingersoll–Ross processes and squared Bessel

processes

Mario Hefter

(joint work with Arnulf Jentzen)

Stochastic differential equations (SDEs) are a key ingredient in a number of mod-
els from economics and the natural sciences. In particular, SDE based models are
day after day used in the financial engineering industry to approximately compute
prices of financial derivatives. The SDEs appearing in such models are typically
highly nonlinear and contain non-Lipschitz nonlinearities in the drift or diffusion
coefficient. Such SDEs can in almost all cases not be solved explicitly and it has
been and still is a every active topic of research to approximate SDEs with non-
Lipschitz nonlinearities; see, e.g., Hu [17], Gyöngy [9], Higham, Mao, & Stuart [14],
Hutzenthaler, Jentzen, & Kloeden [20], Sabanis [26], Hutzenthaler & Jentzen [19],
Sabanis [27], and the references mentioned therein. In particular, in about the last
five years several results have been obtained that demonstrate that approximation
schemes may converge arbitrarily slow, see Hairer, Hutzenthaler, & Jentzen [11],
Jentzen, Müller-Gronbach, & Yaroslavtseva [21], Müller-Gronbach & Yaroslavt-
seva [23], Yaroslavtseva [28], and Gerencsér, Jentzen, & Salimova[8]. For example,
Theorem 1.2 in [21] demonstrates that there exists an SDE that has solutions with
all moments bounded but for which all approximation schemes that use only eval-
uation points of the driving Brownian motion converge in the strong sense with an
arbitrarily slow rate; see also [11, Theorem 1.3], [23, Theorem 3], [28, Theorem 1],
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and [8, Theorem 1.2] for related results. All the SDEs in the above examples are
purely academic with no connection to applications. The key contribution of this
work is to reveal that such slow convergence phenomena also arise in concrete
models from applications. To be more specific, in this work we reveal that Cox–
Ingersoll–Ross (CIR) processes and squared Bessel processes can in the strong
sense in general not be solved approximately in a reasonable computational time
by means of schemes using equidistant evaluations of the driving Brownian motion.
The precise formulation of our result is the subject of the following theorem.

Theorem 1 (Cox–Ingersoll–Ross processes). Let T, a, σ ∈ (0,∞) satisfy 2a <
σ2, let b, x ∈ [0,∞), let (Ω,F ,P) be a probability space with a normal filtration

(Ft)t∈[0,T ], let W : [0, T ]×Ω→ R be a (Ft)t∈[0,T ]-Brownian motion, let X : [0, T ]×
Ω → [0,∞) be a (Ft)t∈[0,T ]-adapted stochastic process with continuous sample paths

which satisfies for all t ∈ [0, T ] P-a.s. that

(1) Xt = x+

∫ t

0

(a− bXs) ds+

∫ t

0

σ
√
Xs dWs.

Then there exists a real number c ∈ (0,∞) such that for all N ∈ N it holds that

(2) inf
ϕ : RN→R

Borel-measurable

E

[∣∣XT − ϕ(W T
N
,W 2T

N
, . . . ,WT )

∣∣
]
≥ c ·N−(2a)/σ2

.

Upper error bounds for strong approximation of CIR processes and squared
Bessel processes, i.e., the opposite question of Theorem 1, have been intensively
studied in the literature, see, e.g., Delstra & Delbaan [6], Alfonsi [1], Higham &
Mao [15], Berkaoui, Bossy, & Diop [3], Gyöngy & Rásonyi [10], Dereich, Neuenkirch,
& Szpruch [7], Alfonsi [2], Hutzenthaler, Jentzen, & Noll [18], Neuenkirch &
Szpruch [25], Bossy & Olivero Quinteros [4], Hutzenthaler & Jentzen [19], Mil-
stein & Schoenmakers [22], Chassagneux, Jacquier, & Mihaylov [5], Hefter &
Herzwurm [12], and Hefter & Herzwurm [13]. Below we relate our result to these
results. Using the truncated Milstein scheme with the corresponding error bound
from Hefter & Herzwurm [13] we get that the the lower bound obtained in (2) is
essentially sharp. The precise formulation of this observation is the subject of the
following corollary.

Corollary 2 (Cox–Ingersoll–Ross processes). Let T, a, σ ∈ (0,∞) satisfy 4a <
σ2, let b, x ∈ [0,∞) let (Ω,F ,P) be a probability space with a normal filtration

(Ft)t∈[0,T ], let W : [0, T ]×Ω→ R be a (Ft)t∈[0,T ]-Brownian motion, let X : [0, T ]×
Ω → [0,∞) be a (Ft)t∈[0,T ]-adapted stochastic process with continuous sample paths

which satisfies for all t ∈ [0, T ] P-a.s. that

(3) Xt = x+

∫ t

0

(a− bXs) ds+

∫ t

0

σ
√
Xs dWs.

Then there exist real numbers c, C ∈ (0,∞) such that for all N ∈ N it holds that

(4) c ·N− 2a
σ2 ≤ inf

ϕ : RN→R

Borel-measurable

E

[∣∣XT − ϕ(W T
N
,W 2T

N
, . . . ,WT )

∣∣
]
≤ C ·N− 2a

σ2 .
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The lower bound in (4) is an immediate consequence of Theorem 1 and the upper
bound in (4) is an immediate consequence of Hefter & Herzwurm [13, Theorem 2]
using the truncated Milstein scheme. We conjecture that in the full parameter
range a, σ ∈ (0,∞) the convergence order in (4) is equal to min{2a/σ2, 1}, since
for scalar SDEs with coefficients satisfying standard assumptions a convergence
order of one is optimal, see, e.g., Hofmann, Müller-Gronbach, & Ritter [16] and
Müller-Gronbach [24].

References
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A perturbation theory and exponential moments for SDEs

Martin Hutzenthaler

(joint work with Sonja Cox, Martin Hairer, Arnulf Jentzen, Xiaojie Wang)

If the coefficients of an SDE grow superlinearly and the diffusion coefficient is
nontrivial, then the moments of the Euler–Maruyama approximations are un-
bounded on every finite time interval (see [9, 11]) and the nonadaptive multilevel
Monte Carlo Euler approximations are conjectured to diverge almost surely (see
[11]). Drift-implicit Euler approximations do not have this divergence property
and converge with a positive L2-rate (see [6, 5]) but are essentially only appli-
cable if the drift coefficient is globally one-sided Lipschitz continuous. Recently,
[10] introduced explicit tamed Euler-type approximations and these approxima-
tions converge in L2 essentially if the coefficients satisfy the global monotonicity
assumption (see also [19]). Subsequently many tamed Euler-type methods have
been proposed for SODEs, see, e.g., [22, 8, 21, 18, 19, 20, 16], and for SPDEs, see,
e.g., [3, 17, 15, 1, 13].

Multi-dimensional SDEs from applications, however, rarely satisfy the global
monotonicity assumption and it remained an open problem to prove L2-conver-
gence rates for such SDEs. For solving this problem we estimate the L2-distance
between the solution X of the SDE and an arbitrary Itô process Y with the L2-
distance at time zero and with Lp-distances between the local characteristics of
Y and the coefficients evaluated at Y for a suitable p ∈ [2,∞), see [7]. The prob-
lematic part of this estimate is an exponential moment on the right-hand side in
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which the local monotonicity constant appears in the exponent and which require
sufficient uniform exponential integrability properties of X and Y . Sufficient expo-
nential moments of the exact solution X are implied by a Lyapunov-type condition
on the coefficients which many SODEs from applications satify, see [2]. Sufficient
uniform exponential moments of tamed Euler-type approximation processes are
implied by essentially the same Lyapunov-type condition, see [14]. We also show
an example of an SDE with globally bounded and smooth coefficients which do
not satisfy the Lyapunov-type condition from [2] and where the solution process is
not locally Hölder continuous in the initial value with respect to the L2-distance,
see [4].
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A review on stochastic differential equations with arbitrarily slow
convergence rates for strong approximation in two space dimensions

Arnulf Jentzen

(joint work with Máté Gerencsér and Diyora Salimova)

In the recent article [10] it has been established that for every arbitrarily slow con-
vergence speed and every natural number d ∈ {4, 5, . . .} there exist d-dimensional
stochastic differential equations (SDEs) with infinitely often differentiable and
globally bounded coefficients such that no approximation method based on finitely
many observations of the driving Brownian motion can converge in absolute mean
to the solution faster than the given speed of convergence. More specifically, The-
orem 1.3 in [10] implies the following theorem.

Theorem 1. Let T ∈ (0,∞), d ∈ {4, 5, . . .}, ξ ∈ R
d, m ∈ N, (εn)n∈N ⊆ (0, T ],

(δn)n∈N ⊆ R satisfy lim supn→∞ δn ≤ 0. Then there exist infinitely often differ-

entiable and globally bounded functions µ : Rd → R
d and σ : Rd → R

d×m such

that for every probability space (Ω,F ,P), every normal filtration F = (Ft)t∈[0,T ]

on (Ω,F ,P), every standard (Ω,F ,P,F)-Brownian motion W : [0, T ] × Ω → R
m,

every continuous F-adapted stochastic process X : [0, T ] × Ω → R
d with ∀ t ∈

[0, T ] : P(Xt = ξ +
∫ t

0 µ(Xs) ds +
∫ t

0 σ(Xs) dWs) = 1, every n ∈ N, every mea-

surable function u : (Rm)n × C([εn, T ],R
m) → R

d, and all t1, . . . , tn ∈ [0, T ] it
holds that

E

[∥∥XT − u(Wt1 , . . . ,Wtn , (Ws)s∈[εn,T ])
∥∥
Rd

]
≥ δn.(1)
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In the article Gerencsér et al. [1] the above result has been strengthened in
the sense that [1, Theorem 1.2] proves that for every arbitrarily slow convergence
speed and every natural number d ∈ {2, 3, . . .} there exist d-dimensional SDEs
with infinitely often differentiable and globally bounded coefficients such that no
approximation method based on finitely many observations of the driving Brow-
nian motion can converge in absolute mean to the solution faster than the given
speed of convergence. More precisely, in Gerencsér et al. [1, Theorem 1.2] the
following theorem has been established.

Theorem 2. Let T ∈ (0,∞), τ ∈ (0, T ), d ∈ {2, 3, . . .}, ξ ∈ R
d, m ∈ N, (εn)n∈N ⊆

(0, τ ], (δn)n∈N ⊆ R satisfy lim supn→∞ δn ≤ 0. Then there exist infinitely often

differentiable and globally bounded functions µ : Rd → R
d and σ : Rd → R

d×m such

that for every probability space (Ω,F ,P), every normal filtration F = (Ft)t∈[0,T ]

on (Ω,F ,P), every standard (Ω,F ,P,F)-Brownian motion W : [0, T ] × Ω → R
m,

every continuous F-adapted stochastic process X : [0, T ] × Ω → R
d with ∀ t ∈

[0, T ] : P(Xt = ξ+
∫ t

0
µ(Xs) ds+

∫ t

0
σ(Xs) dWs) = 1, every n ∈ N, every measurable

function u : (Rm)n × C([εn, T ],R
m) → R

d, and all t1, . . . , tn ∈ [0, T ], a, b ∈ [0, τ ]
with b− a ≥ εn it holds that

E

[∥∥XT − u(Wt1 , . . . ,Wtn , (Ws)s∈[0,a]∪[b,T ])
∥∥
Rd

]
≥ δn.(2)

Related results concerning lower error bounds for strong and weak numerical
approximation schemes for SDEs with non-globally Lipschitz continuous coeffi-
cients can be found in [7, 9, 3, 10, 12, 17]. Hairer et al. [3, Theorem 1.3] and
Müller-Gronbach & Yaroslavtseva [12, Theorems 1–3] deal with lower bounds for
weak approximation errors and Yaroslavtseva [17, Corollary 2] extends [10, The-
orem 1.3] (cf. also Theorem 1 above) to numerical approximation schemes where
the driving Brownian motion can be evaluated adaptively. Each of the references
[3, 10, 12, 17] assumes beside other hypotheses that the dimension d of the consid-
ered SDE satisfies d ≥ 4. The main contribution of Gerencsér et al. [1] is to reveal
that a slow convergence phenomena of the form (2) also arises in two (d = 2) and
three (d = 3) space dimensions. Upper error bounds and numerical approximation
schemes for SDEs with non-globally Lipschitz continuous coefficients can, e.g., be
found in [5, 2, 4, 8, 16, 6, 13, 14, 15] and the references mentioned therein. Lower
error bounds for strong approximation schemes for SDEs with globally Lipschitz
continuous coefficients can, e.g., found in the overview article Müller-Gronbach &
Ritter [11] and the references mentioned therein.

This Oberwohlfach report is a slightly modified version of Section 1 in Gerencsér,
Jentzen, & Salimova [1]. Máté Gerencsér and Diyora Salimova are gratefully ac-
knowledged for their permission to use [1, Section 1] for this Oberwohlfach report.

References

[1] Gerencsér, M., Jentzen, A., and Salimova, D. On stochastic differential equations
with arbitrarily slow convergence rates for strong approximation in two space dimensions.
arXiv:1702.03229 (2017), 31 pages.
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On a stochastic version of the Prothero–Robinson problem

Raphael Kruse

In 1974 Prothero and Robinson [4] characterized stiffness in some nonlinear or-
dinary differential equations by studying suitably linearized versions of these sys-
tems. Hereby they generalized the notion of A-stability and introduced the concept
of stiffly accurate one-step methods. See also [2, Section IV.15] for more details.
In this note we discuss a stochastic version of their problem, illustrating that
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their considerations also have significance for the numerical solution of stochas-
tic differential equations (SDEs). In the case of a somewhat extreme choice of
the parameter values it will turn out that the standard Euler–Maruyama method
amplifies round-off errors exponentially for all practical choices of the step size,
while its implicit counterpart is unconditionally stable. This has relevance, for
example, in the numerical solution of stochastic partial differential equations or
for multi-level Monte Carlo algorithms [1].

1. Derivation of the stochastic Prothero–Robinson problem

Let T ∈ (0,∞) and (Ω,F ,P) be a complete probability space endowed with a right
continuous filtration (Ft)t∈[0,T ] satisfying the usual conditions. By Y : [0, T ]×Ω →
R we denote an (Ft)t∈[0,T ]-adapted Itō process that is a solution to the SDE

dY (t) = f(Y (t)) dt + g dW (t), t ∈ [0, T ],

Y (0) = Y0 ∈ R.
(1)

Here W : [0, T ]× Ω → R is a standard (Ft)t∈[0,T ]-Wiener process, g ∈ R, and the
drift coefficient function f : R → R is assumed to be sufficiently smooth to ensure
that Y is uniquely determined with existing exponential moments. For further
details on SDEs we refer, for instance, to [3].

Next, we introduce a further Itō process U : [0, T ]×Ω → R that also solves the
SDE (1) but with a different initial value U0 ∈ R. More precisely,

U(t) = U0 +

∫ t

0

f(U(s)) ds+ gW (t), t ∈ [0, T ].

In order to compare Y and U we apply a first order Taylor expansion on the drift
coefficient function along the trajectory of Y and obtain

U(t) = U0 +

∫ t

0

f(Y (s)) +
(
f(U(s))− f(Y (s))

)
ds+ gW (t)

= Y (t) +
(
U0 − Y0

)
+

∫ t

0

f ′(Y (s))
(
U(s)− Y (s)

)
+ ξ(s) ds.

If U0 is close to Y0 and if f ′(Y (s)) ∈ (−∞, 0) for all s ∈ [0, T ] it is reasonable
to assume that typical trajectories of U and Y will also stay close to each other
and that the higher order term ξ can be neglected. Therefore, at least in a close
proximity to Y , the dynamics of U should already be captured by the following
linear SDE

dX(t) = −λ(t)
(
X(t)− Y (t)

)
dt+ g dY (t), t ∈ [0, T ],

X(0) = X0 := U0 ∈ R,
(2)

where λ(t) := −f ′(Y (t)) for all t ∈ [0, T ]. Note that (2) is a stochastic generaliza-
tion of the equation studied by Prothero and Robinson in [4]. In fact, if g = 0 we
recover their original deterministic problem. In order to simplify the presentation
we assume in the following that λ(t) ≡ λ ∈ (0,∞) is some positive given constant.
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Before we discuss the numerical approximation of X let us briefly collect a few
properties of X . First, due to

d(X − Y )(t) = −λ
(
X(t)− Y (t)

)
dt, t ∈ [0, T ], (X − Y )(0) = X0 − Y0,

we obtain that
∥∥X(t)− Y (t)

∥∥
L2(Ω;R)

= e−λt|X0 − Y0|(3)

for all t ∈ [0, T ]. In particular, if we have X0 = Y0, then the Itō process Y is also
the uniquely determined solution to (2). Moreover, the relationship (3) stays true
on the level of single sample paths. Hence, if Y possesses exponential moments
then X will too.

2. Stability of numerical approximations

In this section we investigate the stability of the standard Euler–Maruyamamethod
and its implicit counter-part. To this end, we assume that |X0 − Y0| ≤ ǫ ∈ (0, 1).
Let say ǫ ≈ 10−16 is on the level of a typical value for the machine precision. Then,
due to (3) we know that the solution X to (2) always stays in an ǫ-neighborhood
of Y . This raises the question, if this property is reproduced by a numerical
approximation of (2).

We easily find this to be true for the implicit version of the Euler–Maruyama
method. For its formulation let h ∈ (0, 1) denote the step size and set Nh = ⌊T

h ⌋ ∈
N. Then, the backward Euler-Maruyama method for the numerical solution of (2)
is determined by Z0 = X0 and the recursion

Zn = Zn−1 − hλ
(
Zn − Y (tn)

)
+∆Y n, n ∈ {1, . . . , Nh},(4)

with ∆Y n := Y (tn)− Y (tn−1). From (4) and λ ∈ (0,∞) we directly obtain for all
values of h ∈ (0, 1) and n ∈ {1, . . . , Nh} the estimate

‖Zn − Y (tn)‖L2(Ω;R) =
1

1 + hλ
‖Zn−1 − Y (tn−1)‖L2(Ω;R) = · · · = |X0 − Y0|

(1 + hλ)n
< ǫ.

Moreover, an application of the triangle inequality and (3) also yields

‖Zn −X(tn)‖L2(Ω;R) ≤ 2ǫ,

for all n ∈ {1, . . . , Nh}.
On the other hand, it is not very surprising that the standard (explicit) Euler–

Maruyama method fails to have the same unconditional stability property. To be
more precise, the explicit version of (4) is given by X0 := X0 and

Xn = Xn−1 − hλ
(
Xn−1 − Y (tn−1)

)
+∆Y n, n ∈ {1, . . . , Nh}.(5)

In this case we easily compute

‖Xn − Y (tn)‖L2(Ω;R) = |1− hλ| ‖Xn−1 − Y (tn−1)‖L2(Ω;R)

= · · · = |1− hλ|n|X0 − Y0|.
Then, exactly as in the deterministic situation described in [4], we distinguish
between two important cases: If |1−hλ| ≤ 1, then the standard Euler–Maruyama
method will also stay in an ǫ-neighborhood of Y for all time steps. However,
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if |1 − hλ| > 1 then a rounding error in the initial condition will be amplified
exponentially with the number of steps n. Thus, if we want to avoid this very
unfavourable behavior we need to choose h ∈ (0, 2

λ ]. Depending on the value of
λ ∈ (0,∞) this can lead to a very restrictive condition on the step size. To make
this point clear, set λ = ǫ−1 ≈ 1016. If T = 2 then we need at least Nh > 1016

steps before the explicit Euler–Maruyama method gives a stable approximation of
X(T ). Assuming that each step takes about 1 ms on a computer, this sums up to
a total computing time of about 316887 years.

3. Conclusions

In this note we have seen that the problem studied by Prothero and Robinson
in [4] can easily be generalized to SDEs. If λ ∈ (0,∞), then the solution Y to
(2) is asymptotically stable. In particular, we have seen in (3) that solutions to
(2) depend Lipschitz continuously on the initial condition. While this stability
property is just more pronounced if the value for λ increases, the effect of large
values for λ is sometimes reversed for the numerical solution. As we have seen
above, the standard Euler–Maruyama method only gives a stable approximation
if h ∈ (0, 2

λ ). Depending on the value of λ this might constitute a very restrictive
condition on the choice of the step size h. On the other hand, this kind of step
size restriction does not apply to the backward Euler–Maruyama method.

In many applications, this can be an important difference. For instance, for
multi-level Monte Carlo algorithms [1] it is decisive to apply one-step methods
that give stable approximations already for rather large values of h.
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Mean-square stability analysis of SPDE approximations

Annika Lang

(joint work with Andreas Petersson, Andreas Thalhammer)

The goal of mean-square stability analysis is to describe the longtime dynamics
of a stochastic partial differential equation (SPDE) with initial condition in the
neighborhood of an equilibrium, i.e., a constant solution of the SPDE. One can
think of this property as continuity in mean-square with respect to the initial
condition in the equilibrium. This subject has been studied in the literature, see,
e.g., [1]. In what follows we investigate under which conditions approximations of
solutions preserve the mean-square stability properties of the SPDE. Therefore, we



Stochastic Differential Equations: Regularity and Numerical Analysis 477

first set up the framework and consider the theory from an abstract point of view
before applying it to frequently used approximation schemes. For more details,
the reader is referred to [2].

Framework. Let H be a real, separable Hilbert space and (Ω,A, (Ft, t ≥ 0), P )
be a complete filtered probability space satisfying the “usual conditions”. In the
framework of [3], we consider the linear S(P)DE

(1) dX(t) = (AX(t) + F (X(t))) dt+G(X(t)) dM(t)

for t ∈ R+ with F0-measurable initial condition X(0) = X0 ∈ L2(Ω;H). Here,
A : D(A) → H is the generator of a C0-semigroup S = (S(t), t ≥ 0) on H and
F ∈ L(H). Let us further assume that M = (M(t), t ≥ 0) is a U -valued, càdlàg,
square-integrable martingale such that

〈〈M,M〉〉t − 〈〈M,M〉〉s ≤ (t− s)Q,

whereQ ∈ L(U) is a self-adjoint, positive semidefinite trace class operator. Finally,
let G ∈ L(H ;LHS(Q

1/2(U);H)).
To approximate solutions of (1), let (Vh, h ∈ (0, 1]) be a family of finite-

dimensional subspaces Vh ⊂ H with dim(Vh) = Nh ∈ N indexed by a refinement
parameter h for the space approximation. In time we choose time steps tj = j∆t,
j ∈ N0, with fixed time step size ∆t > 0. For a given time point tj , we de-

note an approximation of X(tj) in Vh by Xj
h, which is obtained by a numerical

approximation scheme given by the recursion

Xj+1
h = Ddet

∆t,hX
j
h +Dstoch,j

∆t,h Xj
h(2)

with initial condition X0
h approximating X0. The linear operator Ddet

∆t,h ∈ L(Vh)

approximates the deterministic linear (partial) differential equation

∂

∂t
u(t) = (A+ F )u(t).

Furthermore, let Dstoch,j
∆t,h be an L(Vh)-valued approximation of the stochastic Itô

integral on the time interval [tj , tj+1). We assume that the family of stochastic

approximation operators (Dstoch,j
∆t,h , j ∈ N0) is F -compatible.

(Asymptotic) mean-square stability. We are interested in the qualitative be-

havior of the zero solution of (2), where the zero solution is the solution Xj
h,e = 0

of (2) that is induced by the zero initial condition X0
h = 0.

Definition 1. Let Xh = (Xj
h, j ∈ N0) be the numerical approximation given

by (2) for fixed time step size ∆t and refinement parameter h. Then, the zero

solution (Xj
h,e = 0, j ∈ N0) of (2) is called mean-square stable if, for every ε > 0,

there exists δ > 0 such that for all j ∈ N0, E[‖Xj
h‖2H ] < ε whenever E[‖X0

h‖2H ] < δ.
It is called asymptotically mean-square stable if it is mean-square stable and

there exists δ > 0 such that E[‖X0
h‖2H ] < δ implies limj→∞ E[‖Xj

h‖2H ] = 0. Fur-
thermore, it is asymptotically mean-square unstable if it is not asymptotically
mean-square stable.
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In the considered abstract framework of approximation schemes, we are able
to specify sufficient conditions in terms of tensor products of the approximation
operators that ensure asymptotic mean-square stability.

Theorem 2. Let Xh = (Xj
h, j ∈ N0) be given by (2). Furthermore, let

Sj = Ddet
∆t,h ⊗Ddet

∆t,h + E[Dstoch,j
∆t,h ⊗Dstoch,j

∆t,h ].

Then, the zero solution of (2) is asymptotically mean-square stable if

lim
j→∞

‖Sj · · · S0‖L(V
(2)
h )

= 0.

If we assume additionally that the stochastic operators (Dstoch,j
∆t,h , j ∈ N0) are

independent and identically distributed (iid), we obtain an equivalence instead of
a sufficient condition.

Corollary 3. Let Xh = (Xj
h, j ∈ N0) be given by (2) with (Dstoch,j

∆t,h , j ∈ N0) iid.

Then, the zero solution of (2) is asymptotically mean-square stable if and only if

S = Ddet
∆t,h ⊗Ddet

∆t,h + E[Dstoch,1
∆t,h ⊗Dstoch,1

∆t,h ] ∈ L(V
(2)
h )

satisfies ρ(S) < 1, where ρ(S) is the spectral radius.

Galerkin approximation. Let us consider next the specific case that −A is
densely defined, self-adjoint, and positive definite with compact inverse as, e.g., the
Laplace operator on a smooth domain. Then, −A has a non-decreasing sequence of
positive eigenvalues (λi, i ∈ N) for an orthonormal basis of eigenfunctions (ei, i ∈
N) in H . Furthermore, we restrict ourselves to a Lévy process L with covariance
operator Q as the specific martingale M .

Assume that (Vh, h ∈ (0, 1]) is a nested sequence of subspaces of H that sat-
isfies Vh ⊂ D((−A)1/2) ⊂ H . Denote by Ph the orthogonal projection onto Vh.
We define the discrete operator −Ah : Vh → Vh by the Galerkin projection of −A
onto Vh. This implies that also −Ah has a sequence of orthonormal eigenfunctions
(eh,i, i = 1, . . . , Nh) and positive non-decreasing eigenvalues (λh,i, i = 1, . . . , Nh).

Let R(∆tAh) = r−1
d (∆tAh)rn(∆tAh) be a rational approximation of the semi-

group, where rn and rd are polynomials. Then, the Euler–Maruyama scheme is
given by

Xj+1
h =

(
R(∆tAh) + r−1

d (∆tAh)(∆tPhF + PhG(·)∆Lj)
)
Xj

h,

X0
h = PhX0

(3)

for j ∈ N0, where the increments of the Lévy process L are denoted by ∆Lj =
L(tj+1)−L(tj). For this type of numerical approximation, the result from Corol-
lary 3 can be specified.
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Theorem 4. Consider the approximation scheme (3).

(1) (Backward Euler scheme, R(z) = (1 − z)−1). A sufficient condition for

the asymptotic mean-square stability of the zero solution is

(1 + ∆t‖F‖L(H))
2 +∆t tr(Q)‖G‖2L(H;L(U ;H))

(1 + ∆tλh,1)2
< 1.

(2) (Crank–Nicolson scheme, R(z) = (1− z/2)−1(1 + z/2)). A sufficient con-

dition for the asymptotic mean-square stability of the zero solution is
(

max
k∈{1,Nh}

∣∣∣∣
1−∆tλh,k/2
1+∆tλh,k/2

∣∣∣∣+∆t
‖F‖L(H)

(1+∆tλh,1/2)

)2

+∆t
tr(Q)‖G‖2

L(H;L(U;H))

(1+∆tλh,1/2)2
< 1.

(3) (Forward Euler scheme, R(z) = 1 + z). A sufficient condition for the

asymptotic mean-square stability of the zero solution is
(

max
ℓ∈{1,Nh}

|1−∆tλh,ℓ|+∆t‖F‖L(H)

)2

+∆t tr(Q)‖G‖2L(H;L(U ;H)) < 1.

Similar conditions can be obtained for Milstein schemes. Simulations of the sto-
chastic heat equation with spectral and finite element methods confirm the theo-
retical findings [2].
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On the convergence of numerical approximations of the stochastic
Cahn–Hilliard equation

Stig Larsson

(joint work with Daisuke Furihata, Mihály Kovács, Fredrik Lindgren, and Ali
Mesforush)

In two talks I surveyed methods for proving convergence of numerical schemes
for the stochastic Cahn–Hilliard equation, also known as the Cahn–Hilliard–Cook
equation: 




du−∆v dt = dW in D × (0, T ];

v +∆u− f(u) = 0 in D × (0, T ];

∂u

∂n
=
∂v

∂n
= 0 on ∂D × (0, T ];

u(0) = u0 in D.
Here D ⊂ Rd, d ≤ 3, is a convex polygonal domain and

f(s) = F ′(s), F is a polynomial of degree 4,

F (s) ≥ c0s
4 − c1, c0 > 0; F ′′(s) ≥ −β2,

Typically: F (s) = 1
4 (s

2 − β2)2, f(s) = s3 − β2s.
Eliminate v = −∆u + f(u) and set X = u ∈ H = L2(D). Let A = −∆ be the

Neumann Laplacian in H and W (t) – a Q-Wiener process in H with respect to
(Ω,F ,P, {Ft}). Then we have

{
dX +

(
A2X +Af(X)

)
dt = dW, t > 0;

X(0) = X0.

A mild solution satisfies the equation:

X(t) = e−tA2

X0 −
∫ t

0

e−(t−s)A2

Af(X(s)) ds+

∫ t

0

e−(t−s)A2

dW (s).

We first consider spatial discretization by a standard finite element method:
{
dXh +A2

hXh dt+AhPhf(Xh) dt = Ph dW, t > 0;

X(0) = PhX0.

Its mild formulation is:

Xh(t) = e−tA2
hPhX0 −

∫ t

0

e−(t−s)A2
hAhPhf(Xh(s)) ds+

∫ t

0

e−(t−s)A2
hPh dW (s).

The implicit Euler method is:
(1){

Xj
h −Xj−1

h + kA2
hX

j
h + kAhPhf(X

j
h) = Ph∆W

j , tj = jk, j = 1, 2, . . . , N ;

X0
h = PhX0.
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Let Rn
k,h = (I + k A2

h)
−n. Then the mild formulation is:

Xn
h = Rn

k,hPhX0 −
n∑

j=1

Rn−j+1
k,h AhPhf(X

j
h) +

n∑

j=1

Rn−j+1
k,h Ph∆W

j .

A first step towards showing convergence is to prove an error estimate for the
stochastic convolutions:

WA(t) =

∫ t

0

e−(t−s)A2

dW (s), Wn
Ah

n∑

j=1

Rn−j+1
k,h Ph∆W

j .

The most advanced result goes as follows: Let γ ∈ (0, 12 ], β ∈ [1, 2], and p > 2
γ .

Then there is C = C(p, γ, T ) such that

(
E
(

sup
tn∈[0,T ]

‖WA(tn)−Wn
Ah

‖p
))1/p

≤ C(hβ + kβ/4)‖A(β−2)/2+γQ1/2‖HS.

The proof is based on a ”factorization argument” from Da Prato–Zabczyk and
error estimates for the semigroup.

The challenge in estimating the remaining part of the error X(tn) − Xn
h is

to control the Lipschitz constant of the nonlinear term G(u) = Af(u). It is
not globally Lipschitz and does not have a linear growth. Instead we have local
Lipschitz conditions, for example,

‖G(u)−G(v)‖H−3/2 ≤ C‖f(u)− f(v)‖H−1 ≤ C‖f(u)− f(v)‖L6/5

≤ C‖(1 + u2 + v2)(u − v)‖L6/5
≤ C(1 + ‖u‖2L6

+ ‖v‖2L6
)‖u− v‖L2

≤ C(1 + ‖u‖2H1 + ‖v‖2H1)‖u− v‖L2 .

This indicates the need for moment bounds for u = X(tn) and v = Xn
h .

To obtain such bounds, we introduce the energy functional:

J(u) = 1
2‖∇u‖2 +

∫

D

F (u) dx = 1
2‖u‖2H1 + F(u).

In the deterministic equation (W = 0),

u̇+Av = 0, v = Au+ f(u),

we multiply by v:

〈u̇, v〉 + 〈Av, v〉 = 0.

Here 〈u̇, v〉 = DtJ(u), so that after integration

J(u(t)) +

∫ t

0

‖v‖2H1 ds = J(u(0)),

that is, we have a Lyapunov functional: J(u(t)) ≤ J(u(0)). Since F(u) is equivalent
to ‖u‖4L4

, we now have a bound for ‖u‖2H1 + ‖u‖4L4
. This was extended to the



482 Oberwolfach Report 9/2017

stochastic equation by [4] and to its time-continuous spatial discretization by [2, 3].
The result is: If ‖A1/2Q1/2‖2HS <∞, then

E
[

sup
t∈[0,T ]

(
‖X(t)‖2H1 + ‖X(t)‖4L4

+ ‖Xh(t)‖2H1 + ‖Xh(t)‖4L4

)]
≤ KT .

The proof is based on Ito’s formula for J(X(t)) and J(Xh(t)). In the time-discrete
case we cannot use Ito’s formula but instead we follow the deterministic argument
above and multiply the equation

Xj
h −Xj−1

h + kAhY
j
h = Ph∆W

j , Y j
h = AhX

j
h + Phf(X

j
h),

by Y j
h to get

〈Xj
h −Xj−1

h , Y j
h 〉 + k|Y j

h |21 = 〈Y j
h , Ph∆W

j〉
Here:

〈Xj
h −Xj−1

h , Y j
h 〉 ≥ J(Xj

h)− J(Xj−1
h ) + 1

2 |X
j
h −Xj−1

h |21 − β2‖Xj
h −Xj−1

h ‖2.

Sum up (with ∆Xj
h := Xj

h −Xj−1
h ):

J(Xn
h ) + k

n∑

j=1

|Y j

h |
2

1 +
1

2

n∑

j=1

|∆X
j

h|
2

1 ≤ J(X0

h) +
n∑

j=1

〈Y j

h , Ph∆W
j〉 + β

2

n∑

j=1

‖∆X
j

h‖
2
.

Raise to power p, take sup1≤n≤N and then E. The most difficult term is:

n∑

j=1

〈∆Y j
h , Ph∆W

j〉 =
n∑

j=1

〈Ah(X
j
h −Xj−1

h ) + Ph(f(X
j
h)− f(Xj−1

h )), Ph∆W
j〉.

This leads to a delicate calculation of the Lipschitz constant of f using auxiliary
moment bounds. The result is, [1]: Let p ≥ 1. If ‖A1/2Q1/2‖HS ≤ L and |X0

h|1 +
F(X0

h) + |Y 0
h |1 ≤ L, then there exists C, k0 > 0, depending on p, T and L, such

that

E sup
1≤j≤N

|Xj
h|

2p
1 +E sup

1≤n≤N
F(Xn

h )
p +E

( N∑

j=1

k|Y j
h )|21

)p
≤ C, k ≤ k0.

With such bounds we can use Chebyshev’s inequality to obtain bounds that are
uniform on sets of arbitrarily large probability, P(Ωǫ

h,k) > 1−ǫ. Then deterministic
error analysis applies and we obtain error estimates. However, the information of
the rate of convergence is lost when ǫ→ 0.
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On stochastic Brinkman–Forchheimer anisotropic 3D Navier–Stokes
equations

Annie Millet

(joint work with Hakima Bessaih)

The talk is divided in two parts.
We at first recall some results about the stochastic 2D Navier–Stokes equations

and more general 2D hydrodynamical models such as the general Bénard problem,
the 3D α-model, ... and some known results about their numerical approximations.
Well-posedness holds for a general multiplicative noise directed by some infinite
dimensional Brownian motion when the bilinear term satisfies some assumptions
stated in terms of some Hilbert spaces V ⊂ H and some interpolation space (see
e.g. [5]). Much more is needed for the convergence of numerical schemes. In
[4], E. Carelli and A. Prohl study an implicit time discretization of a periodic 2D
Navier–Stokes equation on [0, D]2. They impose more restrictive regularity on the
initial condition as well as larger moments, and some stronger assumptions on
the diffusion coefficient σ. Furthermore, due to the non linearity of the equation,
the L2 convergence is stated localized on large subsets of the probability space.
The same is true for the sightly different semi-implicit time scheme coupled with
some finite elements discretization in space. In [7] P. Dörsek studies the weak
speed of convergence of a spectral Galerkin approximation in space coupled with a
Strang time splitting scheme when the stochastic perturbation is driven by a finite
dimensional noise. Once more the Navier-Stokes equation is studied on a torus
with an H1-valued initial condition and the function for which the semi-group of
the solution and that of the approximation are compared is extremely regular.
In [1], we obtain a speed of convergence in probability and a localized speed of
convergence in L2 under conditions similar to those of [4]. One may wonder if
some better results could not be obtained for more general 2D hydrodynamical
models.

In the setting of ”classical” (that is isotropic) Navier–Stokes equations on R
3

or on a bounded domain of R3 subject to a random perturbation, M. Röckner,
T. Zhang and X. Zhang have written several papers (see e.g. [9], [8]) where they
study the ”tamed” model with the usual incompressibility property ∇ · u = 0:

∂tu+
[
− ν∆u+ (u · ∇)u + gN(|u|2)u +∇p

]
dt = σ(t, u)dWt.

The function gN satisfies: gN(r) = (r − N)/ν for r > N + 1, gN(r) = 0 if
r ∈ [0, N ] and 0 ≤ g′N (r) ≤ 2/(ν ∧ 1). Under proper growth and Lipschitz
conditions on the diffusion coefficient σ(t, u) for Hilbert–Schmidt norms in H0

and H1, they prove that if u0 ∈ L2(Ω, H1) is independent of the driving noise
W , the stochastic tamed 3D Navier–Stokes equation has a unique solution in
L2(Ω;L∞(0, T ;H1)) ∩ L2(Ω × [0, T ];H2). In [9] the authors prove that if σ = 1,
that is in case of an additive noise, there exists a unique invariant measure.

In [2] we study an anisotropic Navier–Stokes equation in dimension 3, that
is with different viscosity in the horizontal and vertical directions, and subject
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to some random forcing with intensity that may depend on the solution. More
precisely, we consider the following model of a modified 3D anisotropic Navier–
Stokes system on a fixed time interval [0, T ] which can be written as follows for
(t, x) ∈ [0, T ]× R

3: ∇ · u = 0 and

∂tu+
[
− ν∆hu+

(
u · ∇

)
u+ a

∣∣u
∣∣2α u+∇p

]
dt = σ(t, u) dW (t),(1)

with the initial condition u0 independent of the driving noiseW . Here the viscosity
ν and the coefficient a of the nonlinear convective term are strictly positive, α > 1,
∂t denotes the time partial derivative, ∆h := ∂21 + ∂22 and ∂i denotes the partial
derivative in the direction xi, i = 1, 2, 3. As usual the fluid is incompressible, p
denotes the pressure. The forcing term σ(t, u) Ẇ is a multiplicative noise driven
by an infinite dimensional Brownian motionW which is white in time with spatial
correlation. The relevance of the anisotropic viscosity is explained through the
Ekeman law. The extra term a|u|2αu is of Brinkman–Forchheimer extended Darcy
type and has a regularization effect which can balance on one hand the vertical
partial derivative of the bilinear term to prove existence, and on the other hand
provide some upper bound to obtain uniqueness. Note that the space L2α+2(R3)
appears naturally in the analysis of the equation; it is equal to L4(R3) if α = 1.

Furthermore, the homogeneous critical Sobolev space Ḣ1/2(R3) for the Navier–
Stokes equation is included in L4(R3). Hence it is natural to impose α > 1.

We set H =
{
u ∈ L2(R3;R3) ; ∇ · u = 0 in R

3
}
and project the equation on di-

vergence free fields. Due to the anisotropic feature of the model, we use anisotropic
Sobolev spaces defined as follows: given s, s′ ∈ R let Hs,s′ denote the set of tem-
pered distributions ψ ∈ S ′

(R3) such that

‖ψ‖2s,s′ :=
∫

R3

(
1 +

∣∣(ξ1, ξ2)
∣∣2s) (1 +

∣∣ξ3
∣∣2s′) ∣∣Fψ(ξ)

∣∣2 dξ <∞,

where F denotes the Fourier transform. For non negative indices s, s′ we set

H̃s,s′ :=
(
Hs,s′

)3 ∩H and again ‖ · ‖s,s′ for the corresponding norm.

The deterministic counterpart of (1) (that is the equation with σ = 0), has been
studied by H. Bessaih, S. Trabelsi and H. Zorgati in [3]. The authors have proved

that if the initial condition u0 ∈ H̃0,1, for any T > 0 there exists a unique solution
in L∞(0, T ; H̃0,1) ∩ L2(0, T ; H̃1,1) which belongs to C([0, T ];H). We generalize
this result by allowing the system to be subject to some random external force
whose intensity may depend on the solution u and on its horizontal gradient ∇hu.

Note that in the deterministic setting (that is σ = 0), replacing the Brinkman–
Forchheimer term a|u|2αu by 1

ǫu×e3 in (1), J.Y. Chemin, B. Desjardin, I. Gallagher
and E. Grenier [6] have also studied an anisoropic modified Navier Stokes equation
on R

3 with a vertical viscosity νv ≥ 0, which is allowed to vanish. Using some
homogeneous anisotropic spaces, they have proved that if u0 ∈ H0,s with s > 3

2 ,
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there exists ǫ0 depending only on ν and u0 such that for ǫ ∈ (0, ǫ0],

∂tu− ν∆hu+
(
u · ∇

)
u+

1

ǫ
u× e3 +∇p = 0, for (t, x) ∈ [0, T ]× R

3,

with ∇ · u = 0, has a unique global solution in L∞(0, T ;H0,s) ∩ L2(0, T ;H1,s).
The dispersive Brickman–Forchheimer term is ”larger” than that used in [6] but
the regularity required on the initial condition is weaker and we allow a stochastic
forcing term. The power we insert in the Brinkman–Forchheimer term is also
larger than that in [8] but our anisotropic setting is not covered by the tamed
model. Furthermore, we require more integrability with respect to the probability
but for a weaker norm of the initial condition.

We ask the noise intensity σ to satisfy growth conditions for some Hilbert–
Schmidt norms from H̃0,1 to H and to H̃0,1 and some Lipschitz condition for
a Hilbert–Schmidt norm from H̃0,1 to H . Examples of such coefficients σ of
Nemytski type are provided; σ may be a function of u and of a ”small multiple”
of its horizontal gradient ∇hu related to the horizontal viscosity ν. We prove that
if u0 ∈ L4(Ω, H̃0,1) is independent of W , our stochastic anisotropic equation has

a unique solution in L4(Ω;L∞(0, T ; H̃0,1)) ∩ L2(Ω;L2(0, T : H̃1,1)) ∩ L2α+2(Ω ×
[0, T ]× R

3), which is almost surely continuous from [0, T ] to H .

Under stronger assumptions on σ (which may no longer depend on the hori-
zontal gradient ∇hu), we also prove a large deviations principle in C([0, T ];H) ∩
L2(0, T ; H̃1,0) when the noise intensity is multiplied by a small parameter

√
ǫ

converging to 0.
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Simulating rough volatility models

Andreas Neuenkirch

(joint work with Taras Shalaiko)

Let B = {Bt, t ∈ R} be a fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1/2), i.e. B is a zero mean Gaussian process with continuous sample paths,
B0 = 0 and mean square smoothness

E|Bt −Bs|2 = |t− s|2H , s, t ∈ R.

Moreover, let V = {Vt, t ≥ 0}, W = {Wt, t ≥ 0} be two independent Brownian
motions (i.e. fBms with H = 1/2), µ ∈ R, λ, θ, s0 > 0, ρ ∈ (−1, 1) and consider

St = s0e
Xt ,

Xt = −1

2

∫ t

0

e2Ysds+ ρ

∫ t

0

eYsdVs +
√
1− ρ2

∫ t

0

eYsdWs,(1)

Yt = µ+ θe−λt

∫ t

−∞

eλsdBs.

Here X = {Xt, t ≥ 0} is the log-price of an asset, whose log-volatility Y = {Yt, t ≥
0} is given by the stationary solution of the Langevin equation

dYt = λ(µ− Yt)dt+ θdBt,

i.e. Y is a stationary fractional Ornstein–Uhlenbeck process. The fractional Brow-
nian motion B and the Brownian motion V are correlated, i.e.

EBtVs = γ(t, s), t ∈ R, s ≥ 0,

for some suitable covariance function γ : R × [0,∞) → R, while B and W are
independent, i.e.

EBtWs = 0, t ∈ R, s ≥ 0.

Such a model has been proposed by Gatheral, Jaisson and Rosenbaum based on
striking empirical evidence that the log-volatility of assets behaves essentially as
fBm with H ≈ 0.1, see [3]. This model has been further analysed in [1].

In this talk, we will give a complexity result for the strong approximation of
the log-asset price and we will present a covariance structure γ, which allows the
efficient simulation of the corresponding rough volatility model.

1. The complexity Result

[These results can be found in [4].] Here we consider the optimal mean square
approximation of XT based on

(2) V0, VT/n, . . . , VT , W0,WT/n, . . . ,WT , Y0, YT/n, . . . , YT .

The fractional Ornstein–Uhlenbeck process (fOUp) Y is a Gaussian process with
known mean and covariance functions and thus exact joint simulation of V,W, Y
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at a finite number of time points is possible. Clearly, the optimal mean square
approximation of XT using (2) is given by

Xopt
n = E

(
XT

∣∣VkT/n,WkT/n, YkT/n, k = 0, . . . , n
)

and the corresponding minimal errors are

e(n) =
(
E|XT −Xopt

n |2
)1/2

.

Rough volatility models are numerically challenging in the sense that they ad-
mit only low convergence rates for the mean square approximation based on the
information given by (2). We will show that

lim inf
n→∞

(n
T

)2H
e(n)2 ≥ (1− ρ2)

1

(2H + 1)(2H + 2)
Tθ2E|eY0 |2.

The optimal convergence rate n−H is obtained by the Euler method

XE
n = −1

2

n−1∑

k=0

e2Yk∆∆+ ρ

n−1∑

k=0

eYk∆∆kV +
√
1− ρ2

n−1∑

k=0

eYk∆∆kW,

where ∆ = T/n and

∆kV = V(k+1)∆ − Vk∆, ∆kW =W(k+1)∆ −Wk∆, k = 0, . . . , n− 1,

and also if a trapezoidal type discretization (instead of the Euler discretization) is
applied to the Riemann integral and the Itō integral with respect to W .

For the Euler scheme we have

lim
n→∞

( n
T

)2H
E|XT −XE

n|2 =
1

2H + 1
Tθ2E|eY0 |2,

while for the trapezoidal type scheme, we obtain a slightly smaller asymptotic
constant. Note that

E|eYt − eYs |2 = θ2E|eY0 |2 · |t− s|2H + o(|t− s|2H) for |t− s| → 0,

i.e. the limiting constants on the right hand side of the above expression depend
on the Hölder constant of the mean square smoothness of the volatility process
{eYt , t ≥ 0}.

2. Efficient Simulation

The only known exact method for the simulation of

V0, VT/n, . . . , VT , W0,WT/n, . . . ,WT , Y0, YT/n, . . . , YT

is the Cholesky method, which has after precomputation of the Cholesky decom-
position of the covariance matrix still computational cost O(n2), which makes the
above complexity result even worse.

Here we discuss the choice of the covariance function γ and how this may
simplify the simulation of a rough volatility model. Bayer, Friz and Gatheral [1]
use

γ(t, s) =
G(H)

H + 1/2

(
tH+1/2 − (t−min{t, s})H+1/2

)
1[0,∞)×[0,∞)(t, s),
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which arises from the fact that their fBm is given by the Mandelbrot–van Ness
representation

Bt = G(H)

∫

R

((t− s)
H−1/2
+ − (−s)H−1/2

+ )dVs,

where V is a two-sided extension of the original Bm. However, the choice

γ(t, s) = min{t, s},
as in standard (i.e. Brownian) stochastic volatility models, leads to the simple
structure

E∆kB∆ℓV =

{
∆ if k = ℓ,
0 else,

where ∆kB = B(k+1)∆ −Bk∆. So setting

∆kB
V = ∆kB −∆kV, k = −m, . . . , n− 1,

the Gaussian vector

∆0V, . . . ,∆n−1V,∆0W, . . . ,∆n−1W,∆−mB
V , . . . ,∆n−1B

V

has independent components, and due to stationarity

∆−mB
V , . . . ,∆n−1B

V

can be simulated with computational cost O((n+m) log(n+m)) using the Davies-
Harte algorithm. The increments of the fBm can be then reconstructed via ∆kB =
∆kB

V +∆kV.
Using an exponential Euler scheme for the log-volatility, this leads to the fol-

lowing approximation scheme

X̂E,exp
n = −1

2

n−1∑

k=0

e2Ŷk∆+ ρ

n−1∑

k=0

eŶk∆kV +
√
1− ρ2

n−1∑

k=0

eŶk∆kW

for the log-asset price, where

Ŷk = µ+ θe−λk∆
k−1∑

ℓ=−m

eλℓ∆∆ℓB, k = −m+ 1, . . . , n.

If m = ⌈n log(n)/λ⌉, then we have

lim
n→∞

(n
T

)2H
E|XT − X̂E,exp

n |2 =
1

2H + 1
Tθ2E|eY0 |2,

and X̂E,exp
n has computational cost O(n log(n)2).

Thus, in the case of γ(t, s) = min{t, s} simulating the fBm and approximating
the log-volatility instead of simulating the log-volatility exactly leads to a more
efficient method.
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Multilevel Monte Carlo for McKean–Vlasov SDEs.

Lukasz Szpruch

(joint work with Shuren Tan)

The theory of mean field interacting particle systems was pioneered by the work of
H. McKean [1], where he gave a probabilistic interpretations of a class of nonlinear
(due to dependence of the coefficients on the solution itself) PDEs arising in fluid
dynamics. A general d-dimensional nonlinear McKean–Vlasov PDEs (understood
in a weak form) is given by

{
∂
∂t 〈Pt, f〉 = 〈Pt,

1
2

∑d
i,j=1 aij(x,Pt)

∂2f
∂xi∂xj

(x) +
∑d

i=1 bi(x,Pt)
∂f
∂xi

(x)〉
P0 = P ◦X−1

0 = Law(X0),
(1)

where f(·) ∈ C∞
K (Rd), a(x,Pt) = σ(Xt,Pt)

Tσ(Xt,Pt) and Pt is a probability
measure on R

d and the solution to the equation. One can derive a probabilistic
representation of (1), in the form of the SDEs

dXt = b(Xt,Pt)dt+ σ(Xt,Pt)dWt, Pt = P ◦X−1
t = Law(Xt), t ∈ [0, T ],(2)

where {Wt}t≥0 is k-dimensional Brownian motion and P is a probability measure
on C([0, T ],Rd). We refer to (2) as the McKean–Vlasov SDEs (MV-SDEs). MV-
SDEs provide new mathematical tools to tackle key questions such as regularity
of (1) and are themselves of independent interest. Crucially, MV-SDEs enable the
use of probabilistic numerical methods that alleviate the so-called curse of dimen-
sionality (the exponential increase in computational effort with the dimension).
The theory of the propagation of chaos, [2], states (under appropriate conditions)

that (2) is a limiting equation of the system of stochastic interacting particles X i,N
t

which are the solution to (Rd)N dimensional SDEs

(3)

{
dX i,N

t = b(X i,N
t ,PN)dt+ σ(X i,N

t ,PN
t )dW i

t , i = 1, . . . , N,

P
N
t := 1

N

∑N
i=1 δXi,N

t
, t ≥ 0,

where {X i,N
0 }i=1,...,N are i.i.d samples with law P0 and {W i

t }i=1,...,N are indepen-
dent Brownian motions. It can be shown, under sufficient regularity conditions on

the coefficients, that the convergence of the empirical measures (of {X i,N
· }i) on

the path space holds in law, i.e P
N = {PN

t : t ∈ [0, T ]} → P, N → ∞. This is a
truly spectacular result as the particles are not independent and the standard Law
of Large Numbers does not apply. Moreover, (3) can be thought of as a first step
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towards numerical schemes for (2) and is also of independent interest (to (2)) as
it offers a very rich and versatile modelling framework. On one hand interactions
allow us to capture complex dependent structure, on the other provide a great
challenge for Monte Carlo simulations. The non-linear dependence of the approx-
imation bias on the statistical error makes classical variance reduction techniques
fail in this setting. In this work, we will devise a strategy that will allow us to
overcome this difficulty. In particular, we will establish Multilevel Monte Carlo es-
timator for MV-SDEs and demonstrate it computational superiority over standard
Monte Carlo techniques.
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On some singular McKean–Vlasov particle systems

Denis Talay

During these three survey lectures I shortly presented standard techniques to an-
alyze McKean–Vlasov particle systems with smooth interaction kernels: Given N

independent Brownian motions (W
(i)
t ), multi-dimensional coefficients B and S,

and McKean interaction kernels b and σ, the particle dynamics is given by

X
(i)
t = X

(i)
0 +

∫ t

0

B(s,X(i)
s ,
∫
b(X

(i)
s , y)νNs (dy))ds

+

∫ t

0

S(s,X(i)
s ,
∫
σ(X

(i)
s , y)νNs (dy))dW

(i)
s ,

(1)

where νNs is the marginal distribution at time s of the empirical distribution νN

of the trajectories of the particles

ν̄N :=
1

N

N∑

j=1

δX(j) .

We shortly summarized the seminal techniques developed by Sznitman [5] and the
non-linear martingale technique to show that the particle system propagates chaos
in the sense that the probability distribution of ν̄N converges weakly when N goes
to infinity. The limit distribution is concentrated at the probability law of the
process (Xt), solution to the McKean–Vlasov SDE

(2)





Xt = X0 +
∫ t

0 B(s,Xs,
∫
b(Xs, y)νs(dy))ds

+
∫ t

0
S(s,Xs,

∫
σ(Xs, y)νs(dy))dWs,

νs(dy) := probability distribution of Xs.
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In addition, the flow of the probability distributions νt solves the non-linear
McKean–Vlasov–Fokker–Planck equation

(3)
d

dt
νt = L∗

νtνt,

where, A denoting the matrix S · S∗ , L∗
ν is the formal adjoint of the non-linear

differential operator

(4) Lν :=
∑

k

Bk(t, x,
∫
b(x, y)ν(dy))∂k +

1

2

∑
j,k A

j
k(t, x,

∫
σ(x, y)ν(dy))∂jk .

We then explained the limitations of these techniques to tackle singular inter-
actions and we discussed some of the difficulties which arise from singularities.

To illustrate our discussion we examined the two following particular situations.
Bossy et al. [1] established existence and uniquess of the solution to the following

stochastic differential system

(5)





Xt = X0 +
∫ t

0
Usds,

Ut = U0 +
∫ t

0
B(s,Xs, Us)ds+ σWt,

B(s, x, u) := E[b(Us − u) | Xs = x],

where b is a bounded continuous function. Notice that this equation is very singular
because, on the one hand it involves a conditional expectation rather than the
integration of a smooth kernel w.r.t. a probability distribution, and, on the other
hand the generator of the process (Xt, Ut) is not strongly elliptic. We explained
the strategy to establish the propagation of chaos of related particle systems. We
also explained how to use estimates on the density of fundamental solutions of
ultraparabolic PDEs obtained by Di Francesco and Polidoro [3] in order to get
uniqueness of the weak solution of Eq. (5).

We then shifted to a model where interactions do not arise by means of a kernel
but arise from a geometric constraint. Consider a finite size network of N -neurons

with membrane potentials X
(i)
t :

X
(i)
t = X0 +

∫ t

0

b(X(i)
s )ds+

α

N

∑

j 6=i

M
(j)
t −M

(i)
t +W

(i)
t ,

where M
(i)
t is the number of times X

(i)
t passes the threshold value of 1, i.e. the

number of spikes and α > 0 is the strength of synaptic connection. After each
spike, the membrane potential is reset at 0 when the particle is the only one to
spike.

The Fokker–Planck equation for p(t, y) = P(Xt ∈ dy) writes




∂tp(t, y) + ∂y[(b(y) + αe′(t))p(t, y)]− 1

2
∂2yyp(t, x) = δ0(y)e

′(t), y < 1,

e′(t) = −1

2
∂yp(t, 1),

with boundary conditions p(t, 1) = p(t,−∞) = 0 and initial condition p(0, y) =
p0(y). Carrillo, Perthame and their collaborators have proven that solutions may
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blow-up if α ≥ 1 and for any α > 0 there exists an initial density p(0, y) such that
blow-up occurs in finite time.

Delarue et al. [2] have established a dual result. Suppose that b is globally
Lipschitz. For any ε > 0 there exists an α0 > 0 such that wheneverX0 = x0 < 1−ε
and α ∈ (0, α0), there exists a unique process (Xt,Mt) which is a solution to the
mean-field limit equation





Xt = x0 +
∫ t

0 b(Xs)ds+ αE(Mt)−Mt +Wt,

Mt =
∑

k≥1 I[0,t](τk),

τk = inf{t > τk−1 : Xt− ≥ 1}, τ0 = 0,

which does not blow-up, that is,

e′(t) =
d

dt
E(Mt) <∞, ∀t > 0.

Inglis and Talay [4] have introduced and analyzed the following new model with
delayed spike effects and non-constant diffusion and synaptic weigts:





U i
t = U i

0 +H(t) +
∫ t

0
b(U i

s)ds+
∑N

j=1
Jij

SN
i

∫ t

0
G(t− s)M j

sds−M i
t

+
∫ t

0 σ(U
i
s)dW

i
s ,

SN
i :=

∑N
j=1 Jij , M i

t :=
∑∞

k=1 I[0,t](τ
i
k),

τ ik := inf{t ≥ τ ik−1 : U i
t− ≥ 1}, k ∈ N\{0}, τ i0 = 0.

Their central goal was to prove, under mild assumptions on the coefficients b and
σ and on the weights Jij , the convergence of the particle system towards the limit
equation





Ut = U0 +H(t) +
∫ t

0 b(Us)ds+
∫ t

0 G(t− s)E(Ms)ds−Mt

+
∫ t

0
σ(Us)dWs,

Mt :=
∑∞

k=1 I[0,t](τk),

τk =: inf{t ≥ τk−1 : Ut− ≥ 1}, k ∈ N\{0}, τ0 = 0.

In particular, the particle system and the mean-field limit have no blow-up.
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integrate-and-fire model of McKean–Vlasov type, Ann. Appl. Probab. 25(4) (2015), 2096–
2133.

[3] M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian
lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differ. Equations
11(11) (2006), 1261–1320.

[4] J. Inglis and D. Talay, Mean-field limit of a stochastic particle system smoothly interacting
through threshold hitting-times and applications to neural networks with dendritic compo-
nent, SIAM J. Mathematical Analysis 47(5) (2015), 3884–3916.

[5] A-S. Sznitman. Topics in propagation of chaos, in École d’Été de Probabilités de Saint-Flour
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On sub-polynomial lower error bounds for strong approximation of
SDEs with smooth coefficients

Larisa Yaroslavtseva

(joint work with Arnulf Jentzen, Thomas Müller-Gronbach)

Let d,m ∈ N, consider a d-dimensional system of autonomous stochastic differen-
tial equations (SDEs)

(1)
dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t), t ∈ [0, 1],

X(0) = x0

with a deterministic initial value x0 ∈ R
d, a drift coefficient µ : Rd → R

d, a dif-
fusion coefficient σ : Rd → R

d×m and an m-dimensional driving Brownian motion
W , and assume that (1) has a unique strong solution (X(t))t∈[0,1]. Our compu-
tational task is to approximate X(1) by means of methods that use finitely many
evaluations of the driving Brownian motion W . In particular we are interested in
the following question: under which assumptions on the coefficients µ and σ does
there exist a method of the latter type which converges to X(1) in absolute mean
with a polynomial rate?

It is well-known that if the coefficients µ and σ are globally Lipschitz continuous
then the classical Euler scheme achieves the rate of convergence 1/2, see [11].
Moreover, in recent years a number of positive results has been established under
substantially weaker assumptions on the coefficients: for such equations new types
of algorithms have been constructed that achieve a polynomial rate of convergence,
see e.g. [10, 5, 15, 1] and references therein for SDEs with globally monotone
coefficients and see e.g. [7, 2, 6, 14, 9, 4] and references therein for SDEs with
possibly non-monotone coefficients.

On the other hand, it has recently been shown in [8] that for any sequence
(an)n∈N ⊂ (0,∞), which may converge to zero arbitrary slowly, there exists an
SDE (1) with d = 4 andm = 1 and with infinitely often differentiable and bounded
coefficients µ and σ such that no approximation of X(1) based on finitely many
evaluations of the driving Brownian motion W converges in absolute mean faster
than the given sequence (an)n∈N. More formally,

(2) inf
s1,...,sn∈[0,1]

inf
u : Rn→R

4

measurable

E
∥∥X(1)− u

(
W (s1), . . . ,W (sn)

)∥∥ ≥ an.

In particular, there exists an SDE (1) with infinitely often differentiable and
bounded coefficients µ and σ such that its solution at the final time cannot be
approximated with a polynomial rate of convergence based on finitely many eval-
uations of the driving Brownian motion W .

Note that the time points s1, . . . , sn ∈ [0, 1] that are used by an approxima-
tion u(W (s1), . . . , W (sn)) in (2) are fixed, and therefore this negative result does
not cover approximations that may choose the number as well as the location of
the evaluation sites of the driving Brownian motion W in an adaptive way, e.g.
numerical schemes that adjust the actual step size according to a criterion that
is based on the values of the driving Brownian motion W observed so far. It
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is well-known that for SDEs (1) with (essentially) globally Lipschitz continuous
coefficients µ and σ adaptive approximations cannot achieve a better rate of con-
vergence compared to what is best possible for non-adaptive ones, which at the
same time coincides with the best possible rate of convergence that can be achieved
by any approximation based on W ( 1n ),W ( 2n ), . . . ,W (1), see [12, 13]. However, as
has recently turned out, this is not necessarily the case anymore if the coefficients
µ and σ are not both globally Lipschitz continuous. In [3] it has been shown that
for the one-dimensional squared Bessel process, which is the solution of the SDE
(1) with d = m = µ = 1 and σ(x) = 2

√
|x| for x ∈ R the following holds: the best

possible rate of convergence that can be achieved by any approximation based on
W ( 1n ),W ( 2n ), . . . ,W (1) equals 1/2, i.e. there exist c1, c2 > 0 such that

c1 · n−1/2 ≤ inf
u : Rn→R
measurable

E
∣∣X(1)− u

(
W ( 1

n ),W ( 2n ), . . . ,W (1)
)∣∣ ≤ c2 · n−1/2,

while the best possible rate of convergence that can be achieved by approximations
based on n adaptively chosen evaluations of the driving Brownian motionW equals
infinity. More formally, for every α > 0 there exists c > 0 and a sequence of

approximations X̂n based on n adaptively chosen evaluations of W such that

E|X(1)− X̂n| ≤ c · n−α.

In view of the latter result one might hope that a sub-polynomial lower error
bound an in (2) could be overcome by using adaptive approximations. In the
first part of the talk we discuss results from [16], where we have shown that the
pessimistic alternative is true. More precisely, we have proven in [16] that for any
sequence (an)n∈N ⊂ (0,∞), which may converge to zero arbitrary slowly, there
exists an SDE (1) with d = 4 andm = 1 and with infinitely often differentiable and
bounded coefficients µ and σ such that no approximation based on n adaptively
chosen evaluations of the driving Brownian motion W on average can achieve a
smaller absolute mean error than the given number an, i.e.

E
∥∥X(1)− X̂n

∥∥ ≥ an

for any approximation X̂n of the latter type. Thus, roughly speaking, these SDEs
cannot be solved approximately in the strong sense in a reasonable computational
time by means of any kind of adaptive (or nonadaptive) method based on finitely
many evaluations of the driving Brownian motion W .

The diffusion coefficients of the pathological SDEs from [8] and [16] are globally
Lipschitz continuous, while the first order partial derivatives of the drift coefficients
are, essentially, of exponential growth. In the second part of the talk we show that
sub-polynomial rates of convergence may happen even when the first order partial
derivatives of the drift coefficient have at most polynomial growth, which is one
of the typical assumptions in the literature on numerical approximation of SDEs
with globally monotone coefficients, see e.g. [10, 5, 15, 1] and references therein.
More precisely, we show that for every p ∈ N there exists an SDE (1) with d = 4
and m = 1 and with infinitely often differentiable coefficients µ and σ such that σ
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is globally Lipschitz continuous and such that µ satisfies

4∑

i,j=1

∣∣∣∂µi

∂xj

∣∣∣ ≤ c · (1 + ‖x‖3)

and such that the following holds: the p-th moment of the supremum of the
solution is finite, i.e. E supt∈[0,1] |X(t)|p < ∞, and no approximation of X(1)
based on finitely many evaluations of the driving Brownian motion W converges
to the solution X(1) in the p-th mean with a polynomial rate. More formally, for
every α > 0,

lim
n→∞

(
nα · inf

s1,...,sn∈[0,1]
inf

u : Rn→R
4

measurable

E
∥∥X(1)− u

(
W (s1), . . . ,W (sn)

)∥∥p
)
= ∞.

We believe that the latter negative statement even holds if adaptive approxima-
tions based on finitely many evaluations of the driving Brownian motion W may
be used.
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