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Abstract. Understanding the geometric structure of systems involving a
huge amount of parameters is a central problem in mathematics and applied
sciences today. Here, geometric and analytical ideas meet in a non-trivial way
and powerful probabilistic tools play a key role in many discoveries. Two es-
sentially independent areas of mathematics concerned with high-dimensional
problems are asymptotic geometric analysis and information-based complex-
ity. In this Mini-Workshop we brought together researchers from both fields
to explore the connections and form synergies to develop new perspectives.
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Introduction by the Organisers

The mini-workshop: Perspectives in high-dimensional probability and convexity

was organized by Joscha Prochno (Hull, UK), Christoph Thäle (Bochum, Ger-
many) and Elisabeth M. Werner (Cleveland, USA). In total, 16 participants at-
tended the workshop.

High-dimensional systems are frequent in mathematics and applied sciences,
and understanding of high-dimensional phenomena has become an increasingly
important topic. Mathematical disciplines that are most strongly related to such
phenomena are functional analysis, convex geometry and probability theory. In
fact, a new area emerged, now called asymptotic geometric analysis, which is at the
very core of the crossroads of these disciplines and bears connection to mathemat-
ical physics and theoretical computer science as well. The last two decades have
seen a tremendous growth in this area. Far reaching results were obtained and



500 Oberwolfach Report 10/2017

various powerful techniques, mainly of a probabilistic flavor, have been developed.
A major stimulus and impulse for the theory is the famous hyperplane conjecture
which stays unsolved till the present day. Against this background, we explored
new perspectives during this workshop and brought together three different groups
of researchers working on problems involving high-dimensional set-ups, and thus
contributing different angles on high-dimensional phenomena.

To enable participants with different background to form synergies, we kept the
number of talks at a minimum and restricted ourselves to 6 survey talks, each
ending with a set of possible open problems for group work. Three of the lectures
were given on Monday and three on Tuesday. The speakers were:

- Olivier Guédon (Paris):
Perspectives on the Kannan-Lovász-Simonovits conjecture

- Aicke Hinrichs (Linz):
Discrepancy and dispersion of point distributions

- Carsten Schütt (Kiel):
Random polytopes and approximation

- David Alonso-Gutiérrez (Zaragoza):
Random convex sets verifying the hyperplane and variance conjectures

- Jan Vybiral (Prague):
IBC: Approximation problems and lower bounds

- Matthias Reitzner (Osnabrück):
High-dimensional random polytopes

Monday and Tuesday afternoon ended with an open problem session. In those
two sessions, the already mentioned potential problems from the survey talks were
discussed in more detail and new problems were added. After agreeing on a final
set of problems, the participants selected a particular question of their interest and
we split up in essentially two groups. For the remainder of the week, the groups
worked on and discussed these respective problems (a detailed description of the
problems and the outcome of the group discussion is given below). This resulted in
additional short talks in the smaller working groups to clarify certain aspects of the
theory or to present some important results related to the question. On Thursday
morning, each of the groups gave a 15 minutes talk, addressing the progress they
had made, stating results and/or presenting the (technical) problems they had run
into as well as the different approaches they had tried. On Friday before lunch,
the groups gathered for a final update on their work. These presentations also
formed the closure of the mini-workshop.

One special focus in this workshop was on the connections between asymptotic
geometric analysis and information-based complexity (IBC), two young and es-
sentially independent areas dealing with high-dimensional problems. A group of
participants from both areas decided to work on questions in this direction. At the
center of attention was the problem of the minimal dispersion of point sets. This
is a classical problem in computational geometry, which is related to the notion
of discrepancy and the approximation of rank-one tensors. The goal is to find the
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largest empty axis-parallel box amidst a point set Pn = {t1, . . . , tn} inside the unit
cube [0, 1]d (in high dimensions). If we denote by Bax the set of axis-parallel boxes
inside [0, 1]d, then the minimal dispersion of this set is defined to be

dispBax
(n, d) = inf

Pn⊆[0,1]d

|Pn|=n

sup
B∈Bax

B∩Pn=∅

vold(B) .

There are two very recent notable results providing upper and lower bounds in
this setting and, as part of the group work and discussions, two members prepared
short talks of 30 minutes to explain their proofs to the other participants. In fact,
the two bounds are of a different order in d and n and the gap is quite huge.
For instance, the lower bound is logarithmic in d, but is expected to display a
linear behavior in d (in fact, this linear term can be seen in the upper bound
up to a logarithmic factor). The participants of the workshop who focused on
that particular problem are still working on improving both best known lower and
upper bound. For more details we refer to the group work report below.

Another aspect that has been addressed during the week was the central limit
problem for the volume of random simplices in high dimensions. For 1 ≤ r ≤ d let
X0, X1, . . . , Xr be independent random points that are uniformly distributed in the
normalized d-dimensional cube [−

√
3,
√

3]d and denote by Vr the r-volume of their
convex hull, which is almost surely a simplex of dimension r. It is known from the
literature that for fixed r, the random variables Vr satisfy a central limit theorem,
as d → ∞. One of the open problems in this area is to show asymptotic normality
for Vr also in the high-dimensional regime, where r = r(d) → ∞. During the
workshop we considered the particularly attractive and extremal full-dimensional
case r = d. While in this situation there is no central limit theorem for Vd itself, it
turns out that the random variables logVd are asymptotically Gaussian. To show
this new central limit theorem, the participants working on this problem have split
up into further subgroups to work on the details of the proof. In particular, after
having connected the question to already existing result in random matrix theory
(more precisely, random determinants), it has become necessary to understand
certain details in the literature. These were afterwards presented in short talks
in order to put together all pieces for the proof. Currently, the participants from
this working group are writing down their result and try to extend it in different
directions. We expect that this will eventually lead to a joint publication.
More details on this aspect of the mini-workshop will be explained in the group
work report below.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Perspectives on the Kannan-Lovász-Simonovits conjecture

Olivier Guédon

After recalling the problem of the computational complexity of the volume of a
convex body (with randomized algorithms), I have presented a conjecture due to
Kannan, Lovász and Simonovits about isoperimeters of the measure uniformly
distributed on a convex body. This is related to the problem of evaluating the
conductance of a convex body and we refer to [20] for a survey of these problems.

The isoperimetric problem for convex bodies is the following. Let K be a convex
body in R

n and µ be the uniform measure on K. Let S be a subset of K and
define the boundary measure of S as

µ+(S) = lim inf
ε→0

µ(S + εBn
2 ) − µ(S)

ε
.

ε

S K \ S

This definition is also valid for any measure on R
n with log-concave density. The

question is to find the largest possible h such that

(1) ∀S ⊂ K : µ+(S) ≥ hµ(S)
(
1 − µ(S)

)
.

Without any assumption on the measure, we can easily imagine a situation where
h may be as close to 0 as we wish. In our situation, we made the assumption that
the measure is isotropic and log-concave. This avoids many non regular situations.
Kannan, Lovász and Simonovits [10] conjectured that there is a universal constant
such that inequality (1) holds, and the extremal set S should be a half space of
the same measure as K \ S.

Conjecture 1 (KLS Conjecture). There exists c > 0 such that for any dimen-

sion n and any isotropic log-concave probability measure µ on R
n,

∀S ⊂ R
n : µ+(S) ≥ c µ(S)

(
1 − µ(S)

)
.

We refer to [1, 8] for a detailed survey of various conjectures related to this
problem. In this talk, I presented results due to E. Milman [19] who proposed
several functional versions of this problem, which lead to equivalent questions. In
particular he proved the following

Theorem 1. Let X be the random vector distributed according to a log-concave

probability measure µ and let D∞ be the largest constant such that for every 1-
Lipschitz function F : Rn → R we have Var F (X) ≤ 1

D∞

. Then h2 ≈ D∞.

Even the case of F being the Euclidean norm is not known. There were sev-
eral attempts due to Klartag [13], Fleury, Guédon, Paouris [6], Fleury [5] and
Guédon-Milman [9] to prove this inequality for the Euclidean norm. We refer to
Chapter 3 in [16] and to [7] for a more detailed description of the links between the
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Poincaré inequality and concentration of measure and we just emphasize the fact
that Conjecture 1 implies a very strong concentration inequality of the Euclidean
norm.

Conjecture 2 (Thin Shell Conjecture). There exists c > 0 such that for any

random vector X, distributed according to a log-concave isotropic probability, we

have

∀t > 0 : Prob
(∣∣|X |2 −

√
n
∣∣ ≥ t

√
n
)
≤ 2e−ct

√
n.

Such concentration inequalities are related with reverse Hölder (or Khintchine)
inequalities for the Euclidean norm, which we even don’t know in the following
weak form.

Conjecture 3 (Weak Thin Shell Conjecture). There exists c > 0 such that

for every log-concave random vector X, we have

∀p ≥ 1 :
(
E|X |p2

)1/p ≤ E|X |2 + c σp(X).

Two months ago, Lee and Vempala posted on arXiv.org a paper [18] where,
developing the approach of Eldan [3], they prove the following

Theorem 2. Let X be the random vector distributed according to an isotropic

log-concave probability µ, then for every 1-Lipschitz function F : Rn → R,

(2) Var F (X) ≤ C
√
n,

where C is a universal constant.

Up to now this is the best known upper bound in this Poincaré type inequality.
To emphasize the depth of this result, it should be noted, that using a result of
Eldan and Klartag [4], it is known that (2) implies that the isotropic constant of a
convex body is bounded above by Cn1/4. Up to now, this is the best upper bound
for the isotropic constant due to Klartag [12], which he obtained with a completely
different approach.

In another direction, it is interesting in probability to understand which family
of random vectors X satisfy for any norm ‖ · ‖

(
E‖X‖p

)1/p ≤ C E‖X‖ + c sup
‖z‖⋆≤1

(
E〈z,X〉p

)1/p
,

where ‖ · ‖⋆ is the dual norm of ‖ · ‖ and C, c > 0 are numerical constants. It is
known to be true with C = 1 for Gaussian [2] or Rademacher (see [17, Thm. 4.7])
random vectors. We refer to [15] and [14] where such questions are discussed. In
the area of log-concave measures, Lata la and Wojtaszczyk [15] asked the following.

Conjecture 4 (Weak and Strong Moments Conjecture). There exists

c > 0 such that for any log-concave random vector X and any norm ‖ · ‖ we

have for all p ≥ 2,
(
E
(
‖X‖ − (E‖X‖2)1/2

)p)1/p ≤ c sup
‖z‖⋆≤1

(
E〈z,X〉p

)1/p
,
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where ‖ · ‖⋆ is the dual norm of ‖ · ‖.
The approach suggested in [15] to tackle such inequality is to prove a strong

concentration inequality CI(β) for log-concave measures

Conjecture 5 (Concentration Inequality). There exist β > 0 such that for

any random vector X distributed according to a log-concave probability µ, we have,

for every p ≥ 2 and every set A ⊂ R
n with µ(A) > 1/2,

µ
(
A + βZp(µ)

)
≥ min

{
epµ(A), 1/2

}
,

where Zp(µ) is the convex body defined by its support function

hZp(µ)(θ) =
(
E|〈X, θ〉|p

)1/p
.

In my talk, I have tried to explain the connections between these different
problems.
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Discrepancy & dispersion of point distributions

Aicke Hinrichs

The topic of this survey lecture is the study of uniform distribution of finite point
sets and its connections to complexity and tractability problems for integration of
functions from Sobolev spaces of dominating mixed smoothness. We concentrate
here on the geometric notions of discrepancy and dispersion of finite point sets in
the unit cube [0, 1]d and, in particular, present important open problems.

Uniform distribution theory has its historical origins in Weyl’s equidistribution
theory presented in [9]. That it is still a vibrant area of research has two main
reasons. First, there are still some basic open questions with historical roots.
Second, the close connection to the complexity of numerical integration revived
and extended the interest of researchers to high dimensional problems not present
in the classical literature.

The classical discrepancy function (in the unit cube, for anchored axis parallel
boxes) of a point set Pn of n points in the unit cube [0, 1]d is defined as

disc(Pn, x) =
#Pn ∩ [0, x]

n
− x1 · · ·xn

for x ∈ [0, 1]d. The bridge between the geometric notion of uniform distribution
and discrepancy of point sets to worst case integration errors for functions from
spaces with dominating mixed smoothness is provided by Koksma-Hlawka type
inequalities.

Different norms of the discrepancy function describe the uniform distribution
properties of the point set and in turn the quality of the associated quasi-Monte
Carlo integration rule for numerical integration of functions from related Sobolev
spaces of dominating mixed smoothness. Most of the research until about 15
years ago was focused on fixed dimension d and on classical norms like the Lp-
norms of the discrepancy function. Here the picture is fairly complete for the
range 1 < p < ∞. The celebrated result of Roth [8] for the L2-discrepancy
and the subsequent adaption of harmonic analysis methods like Littlewood-Paley
inequalities and Haar series lead to a unified approach for the correct lower bounds
in this case. We present the proof of Roth in a modern harmonic analysis language.

For p = 1 and p = ∞, known lower and upper bounds, for a survey see [3],
are still far apart and give rise to the two grand old open problems of discrepancy
theory.

Problem 1. For fixed dimension d, what is the optimal order of the L1- and L∞-

norms of the discrepancy function?
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Equally important problems arise for tractability questions about the L∞-norm
of the discrepancy, the star discrepancy. Let us denote by

disc∗(n, d) = inf
Pn⊂[0,1]d

sup
x∈[0,1]d

disc(Pn, x)

the minimal L∞-norm of the discrepancy of an n-point subset Pn ⊂ [0, 1]d.
The best known upper bound was first shown in [5]:

(1) disc∗(n, d) ≤ c

√
d

n
.

The point sets achieving this are independent uniformly distributed points, it is a
probabilistic argument. The best known lower bound is

(2) disc∗(n, d) ≥ c
d

n

for n at least proportional to d, see [6]. To close the gap between upper and lower
bound is a more recent, but nevertheless very exciting and important problem.

Problem 2. Improve either the upper bound (1) or the lower bound (2).

Even if the upper bound (1) already turns out to be the right one, it is highly
important to find explicit constructions of point sets satisfying this estimate.

Problem 3. Find explicit constructions satisfying the upper bound (1) for the star
discrepancy or, at least, find random constructions involving ”less” randomness

than the known constructions.

A quantity closely related to the discrepancy of a point set is the dispersion of
the point set. The dispersion deals with the problem of finding the largest empty
axis-parallel box, i.e. the largest box not containing any point of the set in the
interior. In dimension two, this is a standard problem in computational geometry
and computational complexity theory. Here the emphasis is on the word finding,
that is, researchers are actually interested in the complexity of algorithms whose
output is the largest empty rectangle.

The problem has probably been introduced by Naamad, Lee and Hsu [7], and
generalizes in a natural way to the multi-dimensional case, where one has to
find the largest empty axis-parallel box amidst a point configuration in the d-
dimensional unit cube. Given the prominence of the problem, it is quite surprising
that, until recently, very little was known about the size of the largest empty box.
Again, there are actually two problems, a “lower bound problem” and an “upper
bound problem”: one asking for the minimal size of the largest empty box for any
point configuration, and one asking for the maximal size of the largest empty box
for an optimal point configuration. Obviously, the dispersion is also a lower bound
for the star discrepancy.

For a point set Pn of n points in the unit cube [0, 1]d, let disp(Pn) denote its
dispersion. Naturally, we are in particular interested in the minimal dispersion of
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point sets; thus we set

disp∗(n, d) = inf
Pn⊂[0,1]d

|Pn|=n

disp(Pn).

It is known that this minimal dispersion is of asymptotic order 1/n as a function of
n. So the remaining interesting problems here are tractability problems concerning
the dependence on the dimension d.

Problem 4. Improve the known upper bound

disp∗(n, d) ≤ min

(
cd1
n
,
c2d log(n/d)

n

)

for the dispersion on the unit cube.

We expect that an upper bound of the form

disp∗(n, d) ≤ c
d

n
for n ≥ d

holds. An approach to remove the logarithmic term in the known estimate can
be oriented on the similar successful approach for the discrepancy [5, 1]. This
approach is based on the consideration of random point sets and on a chaining ar-
gument, or the corresponding estimates for suprema of empirical processes based
on chaining. Hence this would again give a probabilistic proof of the existence
of such point sets. It is not immediately clear how this can be adapted for the
dispersion, since the dispersion is not directly visible as an empirical process. Nev-
ertheless, the geometry of the problem admits different chaining type approaches.
It would already be interesting to compute the discrepancy of more explicit low
discrepancy point sets such as lattices. The known upper bound 27d/n due to G.
Larcher, see [2], is based on digital nets with a t value linear in the dimension.

Problem 5. Improve the known lower bound

disp∗(n, d) ≥ log2 d

4(n + log2 d)
.

for the dispersion on the cube.

Although this bound may be far from the truth, we do not immediately see a
way for improvement using the combinatorial approach from [2]. The method was
already refined in the recent work of Dumitrescu and Jiang [4] without a further
improvement in the rate. Only the constant is slightly better. It is conceivable
that some kind of discrete or continuous volume argument should be involved.
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Random polytopes and approximation

Carsten Schütt

This is the first part of a survey on random polytopes and approximation of convex
bodies by polytopes. The second part was given by M. Reitzner.

An important invariant of convex bodies that is relevant here is the affine surface
area of a convex body K in R

n

as(K) =

∫

∂K

κ
1

n+1 (x) dµ∂K (x)

where κ is the generalized Gauss-Kronecker curvature and µ∂K the Lebesgue mea-
sure on the boundary of K. We discuss its properties and its relation to the convex
floating body. The convex floating body Kt of a convex body K in R

n is the inter-
section of all halfspaces whose defining hyperplane cuts off a set of volume t from
K, i.e.,

Kt =
⋂

voln(K∩H−)=t

H+.

The convex floating body and the affine surface area are related in the following
way

lim
t→0

voln(K) − voln(Kt)

t
2

n+1

=
1

2

(
n + 1

voln−1(Bn−1
2 )

) 2
n+1

∫

∂K

κ(x)
1

n+1 dµ∂K(x).

This formula was first shown by Blaschke for convex bodies with smooth bound-
aries and later for all convex bodies by Schütt and Werner [17]. Other extensions
of the affine surface area to general convex bodies were given by Leichtweiss [8]
and Lutwak [9].

A random polytope in a convex body K is the convex hull of finitely many
points in K that are chosen at random with respect to a probability measure P on
K or ∂K. For a fixed number N of points we are interested in the expectation of
the volume of that part of K that is not contained in the convex hull [x1, . . . , xN ]
of the chosen points

E(K,N,P) =

∫

K×···×K

voln([x1, . . . , xN ]) dP(x1) . . . dP(xN ).
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We have the following asymptotic formula

c(n) lim
N→∞

voln(K) − E(K,N, µK)
(voln(K)

N

) 2
n+1

=

∫

∂K

κ(x)
1

n+1 dµK(x)

where µK is the normalized Lebesgue measure on K and κ is the generalized
Gauß-Kronecker curvature and

c(n) = 2

(
voln−1(Bn−1

2 )

n + 1

) 2
n+1 (n + 3)(n + 1)!

(n2 + n + 2)(n2 + 1)Γ
(
n2+1
n+1

) .

For dimension 2 this formula was proved by Rényi and Sulanke [13, 14]. This
was actually the starting point for the research on random polytopes. For general
dimensions the formula was first proved by Bárány for bodies with C2-boundaries
[1] and later for arbitrary convex bodies by Schütt [15].

Related to these problems and formulae is the economic cap covering of Bárány
and Larman [2]: let ǫ > 0 and let K be a convex body with voln(K) > 0. Then
there are caps C1, . . . , Cm of K and pairwise disjoint subsets W1, . . . ,Wm such
that

(i) ∀i = 1, . . . ,m : Wi ⊆ Ci,
(ii)

⋃m
i=1 Wi ⊆ K \Kǫ ⊆

⋃m
i=1 Ci,

(iii) ∀i = 1, . . . ,m : voln(Ci) ≤ 6nǫ,
(iv) ∀i = 1, . . . ,m : voln(Wi) ≥ (6n)−nǫ.

For random polytopes whose vertices are chosen from the boundary of the convex
body K with respect to a probabilty measure with density f we have the following
asymptotic formula

lim
N→∞

voln(K) − E(f,N)
(

1
N

) 2
n−1

= cn

∫

∂K

κ(x)
1

n−1

f(x)
2

n−1

dµ∂K(x),

where

cn =
(n− 1)

n+1

n−1 Γ
(
n + 1 + 2

n−1

)

2(n + 1)!
(
voln−2(∂Bn−1

2 )
) 2

n−1

.

This formula was shown by Reitzner for bodies with a C2-boundary [12] and,
independently, for a more general class of bodies by Schütt and Werner [18, 19].

Gruber studied best approximation of smooth convex bodies by polytopes [4, 5,
6, 7]. Among other things he showed for the symmetric difference metric dS that
the quantity

inf
{
dS(K,PN ) : PN ⊆ K and PN has at most N vertices

}

is asymptotically equivalent to

1

2
deln−1

(∫

∂K

κ
1

n+1dµ∂K

)n+1

n−1

N− 2
n−1
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Using the formulae for best and random approximation we can show that random
approximation of convex bodies by polytopes is almost as good as best approxi-
mation. To accomplish this we need precise formulae for the approximation of the
Euclidean ball by polytopes [3, 10, 11].

Finally, we study the floating body algorithm for approximation of convex bod-
ies by polytopes [16].
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Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1963), 75–84.
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Random convex sets verifying the hyperplane and variance conjectures

David Alonso-Gutiérrez

The hyperplane conjecture poses the question of the existence of a positive absolute
constant c such that any convex body K ⊆ R of any dimension n verifies that it
has a hyperplane section K ∩H whose (n− 1)-dimensional volume verifies

|K ∩H | ≥ c|K|n−1

n .

This question was posed by Bourgain in 1990 and has been answered in the positive
when K is restricted to several classes of convex bodies. However the best general
bound known up to now gives a constant of the order n−1/4 which is not absolute.
This estimate was proved by Klartag in [8], where he improved by a logarithmic
factor the estimate shown by Bourgain [4] and has been recently obtained using
different methods by Lee and Vempala. [11]. This problem can be formulated in
terms of the boundedness of the isotropic constant of any convex body.

A convex body K is said to be isotropic if it has volume 1, it is centered at the
origin and its covariance matrix is a multiple of the identity, i.e., |K| = 1, and for
every unit vector θ ∈ Sn−1 we have

∫

K

〈x, θ〉 dx = 0 and

∫

K

〈x, θ〉2 dx = L2
K ,

where LK is a constant independent of θ which is called the isotropic constant
of K. It is known that every convex body has a unique (up to orthogonal trans-
formations) affine image which is isotropic and thus the isotropic constant of any
convex body K can be defined as the isotropic constant of such an affine image.
This affine image appears as the solution of a minimization problem and hence
LK can be defined by the equation

nL2
K = min

{
1

|K| 2
n

1

|TK|

∫

a+TK

|x|2 dx : a ∈ R
n, T ∈ GL(n)

}
.

The hyperplane conjecture is equivalent to the existence of an absolute constant
C > 0, such that LK ≤ C for every convex body K in any dimension. Another im-
portant open problem in Asymptotic Geometry is the variance conjecture, which
appeared in the context of the central limit problem. The central limit problem
posed the question of the existence of directions θ such that if X is a random vec-
tor uniformly distributed on an isotropic convex body K then the one-dimensional
marginal 〈X, θ〉 is almost Gaussian. This was shown to be true under some as-
sumptions on the concentration of the Euclidean ball on a thin shell of radius√
nLK (cf. [3]) and this concentration was proved by Klartag in [9]. Neverthe-

less, the width of this thin shell is not yet completely understood and it is not
yet known whether the variance of the square of the Euclidean norm of a random
vector uniformly distributed on a convex body verifies the estimate

Var|X |2 ≤ C sup
θ∈Sn−1

E〈X, θ〉2 E|X |2,
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where C is an absolute constant. This is known as the variance conjecture and is
a stronger conjecture than the hyperplane conjecture (cf. [6]). The best constant
known up to now is of the order n1/4, which was proved in [11].

In [10], Klartag and Kozma showed that Gaussian random polytopes verify the
hyperplane conjecture with an overwhelming probability, i.e., a probability that
grows to 1 exponentially fast with the dimension. They also considered other
models of randomness in which the random polytopes were obtained as the convex
hull of independent random vectors with independent coordinates. In this survey
talk we will explain their aproach and how it has been adapted to cover other
models of randomness, which include the case of random polytopes generated
by independent random vectors uniformly distributed on the sphere [1], on an
isotropic convex body [5], or an arbitrary isotropic convex body [2, 7].

Regarding the variance conjecture, there are not so many families of random
convex bodies that verify it. Nonetheless, we will present some of the random
results which are known.
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IBC: Approximation problems and lower bounds

Jan Vybiral

(joint work with A. Hinrichs, A. Kolleck and J. Prochno)

High-dimensional algorithms are very often randomized. Their analysis is therefore
usually connected with probability in high dimensions and geometry of underlying
objects. This talk presents two aspects of such analysis. The first part gives a
general setting of approximation problems in high dimension and the second part
concerns with the analysis of optimality of proposed algorithms.

If f : Ω ⊂ R
d → R is a function of many (d ≫ 1) variables, we may want to

• approximate f using only function values f(x1), . . . , f(xn)
• approximate f using only values of linear functionals L1(f), . . . , Ln(f).

The first setting is called standard information, the second one linear information.
In both cases we want to achieve the smallest possible error using only a prescribed
number n of function values or linear functionals.

We show, how to formalize the notation in the setting of standard information.
Let Fd be a given class of d-variate functions on Ωd ⊂ R

d and let Y (Ωd) be
a function space on Ωd. To make the evaluations of functions meaningful, we
will assume that Fd ⊂ C(Ωd). A mapping N : Fd → R

n given by N(f) =
(f(x1), . . . , f(xn)) ∈ R

n will be called information map. For a continuous recovery
map φ : Rn → Y (Ωd) we further consider their composition, namely the sampling

operator Sn = φ ◦ N : Fd → Y (Ωd). Its approximation error in the worst-
case setting is then just e(Sn) := supf∈Fd

‖f − Sn(f)‖Y . Finally, the search for
the best sampling algorithm is expressed in the definition of sampling numbers:

gn,d(Fd, Y ) := infSn
e(Sn). It is the error of the “best algorithm” when using only

n function values. Its inverse function is then n(ε, d) = min{n ∈ N : gn,d(Fd, Y ) ≤
ε}, i.e. the minimal number of sampling points needed to achieve an approximation
of the error at most ε > 0.

We present a series of results from classical approximation theory as well as
from the area of Information Based Complexity, which is especially interested in
the influence of high dimension d ≫ 1 on the quality of approximation. We give a
survey of a couple of results by Hinrichs, Novak, and Woźniakowski which show,
that uniform approximation of analytic, monotone, or convex functions all suffer
from the curse of high dimension.

The second part of the talk concerns with Carl’s inequality and its application in
optimality of algorithms. Let us first define the necessary geometrical quantities,
usually called s-numbers. Let X,Y be two Banach spaces and let T : X → Y be
a bounded linear operator. Then we define its

• Approximation numbers

an(T ) := inf{‖T − L‖ : L : X → Y, rank(L) < n},
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• Entropy numbers

en(T ) = inf



ε > 0 : T (BX) ⊂

2n−1⋃

j=1

(yj + εBY )



 ,

• Gelfand numbers

cn(T ) = inf
M⊂⊂X

codim M<n

sup
x∈M

‖x‖X≤1

‖Tx‖Y ,

• Kolmogorov numbers

dn(T ) = inf
N⊂⊂Y
dimN<n

sup
‖x‖X≤1

inf
z∈N

‖Tx− z‖Y .

Carl’s inequality then states, that the lower bound of entropy numbers imply
corresponding lower bounds also for approximation, Gelfand, and Kolmogorov
numbers. To be more specific, we formulate it as follows.

Theorem. Let T : X → Y be a bounded linear operator between Banach spaces

X and Y . Let α > 0. Then there is cα > 0, such that for every natural number

n ∈ N

sup
1≤k≤n

kαek(T ) ≤ cα sup
1≤k≤n

kαsk(T ).

Here, sk(T ) stands for approximation, Gelfand, or Kolmogorov numbers, re-
spectively. The main message of Carl’s theorem is then, that the polynomial order
of decay of approximation, Gelfand, respectively Kolmogorov numbers, is smaller
than that of the entropy numbers.

Further, we discuss how lower bounds on Gelfand numbers imply lower bounds
for optimality of approximation algorithms. We treat in detail the setting of
Compressed Sensing, where this approach was used already in the original paper
of Donoho. It turns out that the behavior of Gelfand numbers of id : ℓNp → ℓN2 is
of interest. They are very well known and the result reads as follows.

Theorem. For 0 < p ≤ 2

cn(id : ℓNp → ℓN2 ) ≈p min

{
1,

1 + log(N/n)

n

}1/p−1/2

.

The proof of this statement goes back to the works of Kashin (’77), Garnaev &
Gluskin (’84), Donoho (’06), Foucart, Pajor, Rauhut & Ullrich (’10).

There is unfortunately one gap in this argument. Carl’s inequality was proved
by Bernd Carl [1] only for Banach spaces. Furthermore, he made a heavy use
of Hahn-Banach theorem, which is known to fail for quasi-Banach spaces ℓNp for
0 < p < 1. We fill this gap by showing the following:

Theorem ([2]). Carl’s inequality is true for quasi-Banach spaces and Gelfand,

Kolmogorov, and approximation numbers.
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Together with classical results on en(id : ℓNp → ℓN2 ) (Schütt, Kühn, Guédon &
Litvak) this gives an alternative proof of the lower bounds of Gelfand numbers
and, therefore, of the lower bound for the optimality in compressed sensing.

We further elaborate on this approach in the setting of recovery of low-rank
matrices. The corresponding analogue of ℓNp -unit balls are the unit balls of Schat-

ten classes, which are defined as follows: Let 0 < p ≤ ∞. Then SN
p is the

N2-dimensional space of all real N ×N matrices with

‖A‖SN
p

=




N∑

j=1

σj(A)p




1/p

,

where σj(A), j = 1, . . . , N are the singular values of A. The entropy numbers of
embeddings of Schatten classes were recently calculated.

Theorem ([3]). Let n,N ∈ N. If 0 < p ≤ q ≤ ∞, then

en
(

id : SN
p → SN

q

)
≍p,q






1, 1 ≤ n ≤ N,
(
N
n

)1/p−1/q
, N ≤ n ≤ N2,

2−
n

N2 ·N1/q−1/p, N2 ≤ n.

If 0 < q < p ≤ ∞, then

en
(
id : SN

p → SN
q

)
≍p,q 2−

n

N2 ·N1/q−1/p.

We close the talk by showing how to use the Carl’s inequality again to prove
lower bounds for corresponding Gelfand numbers, and therefore also for the prob-
lem of approximation of low-rank matrices.
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High-dimensional random polytopes

Matthias Reitzner

This talk surveys some of the results on random polytopes Pn ⊂ R
d which con-

cern highdimensional aspects. Hence in most cases we are interested in limits of
functionals f(Pn) where the dimension of the underlying space Rd tends to infinity.

The starting point is the connection between the slicing problem and random
polytopes. The slicing problem asks whether there exists a constant C independent
of the dimension d such that for all convex bodies K with Vd(K) = 1

max
H

Vd−1(K ∩H) ≥ C ?
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One possible way to prove this was pointed out by Mark Meckes: Choose n random
points in a convex body K ⊂ R

d according to the uniform distribution. The convex
hull of these random points is a random polytope PK

n .

Is the expected volume of a random simplex a monotone function
in K? More precisely, if EVd(PK

d+1) ≤ EVd(PL
d+1) for all K ⊂ L,

then this implies a positive solution of the slicing problem.
(Meckes [8])

This monotonicity was proved by Rademacher [13] in dimension d = 2, but
disproved for d ≥ 4! The case d = 3 was settled recently by Kunis, Reichenwallner
and Reitzner [7], where also monotonicity does not hold.

The original question by Meckes was the more general problem:

Does there exist c(d) with limd→∞ c(d)
1
d < ∞, such that for all

K ⊂ L one has EVd(PK
d+1) ≤ c(d)EVd(PL

d+1).
(Meckes [8])

Now, this is equivalent to a positive solution to the slicing problem. It would be of
interest to investigate the counterexamples to monotonicity given by Rademacher
and computing the lower bound for c(d) given by them.

Open Problem: Define

c(d) = min
K⊂L

EVd(PK
d+1)

EVd(PL
d+1)

.

Compute a lower bound for c(d)!

A possible alternative approach to the slicing conjecture via random polytopes
goes back to a paper by Blaschke [3] and a result by Milman and Pajor [11].
Blaschke proved that among all convex bodies the triangle has the property that
the expected area of an inscribed random triangle is maximized. A generalization
of his proof to higher dimensions seems to be out of reach. Milman and Pajor
showed that a solution of this problem would be equivalent to the slicing problem:

Let T d be the d-dimension regular simplex. Then the inequal-

ity EVd(PK
d+1) ≤ EVd(PTd

d+1) for all convex bodies K ⊂ R
d with

Vd(K) = Vd(T d) implies a positive solution to the slicing problem.

Since the expected volume of a random simplex in a simplex plays an important
role, it would be of interest to determine the occurring values. The planar case
d = 2 is classical, see e.g. [1, 12]), and the value for d = 3 (Buchta and Reitzner
[4]) is also known explicitly, but for higher dimensions nothing seems to be known.

Open Problem: Can one compute the asymptotic behaviour of

EVd(PTd

d+1) as d → ∞?

In a more general setting it would be of interest to determine the expected
volume of a random simplex for ‘nice’ convex bodies as T d, the unit cube Cd or
the cross polytope Cd

1 yet explicit formulae are out of reach at the moment.

Open Problem: Can one compute the asymptotic behaviour of

EVd(PCd

d+1) and EVd(P
Cd

1

d+1) as d → ∞?
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The same question concerning random polytopes in a ball has been settled
by Miles [10]. From a stochastic point of view a more detailed analysis going
beyond expectations would be highly interesting. The problem of determining
the variances and proving limit distributions seems to be hard. For the ball a
weak solution was given by Ruben [14] who used Miles’ method to compute the
characteristic function.

Open Problem: Can one prove CLTs for Vd(PBd

d+1), Vd(PTd

d+1),

Vd(PCd

d+1) and Vd(P
Cd

1

d+1) as d → ∞?

The last part of the talk dealt with Gaussian polytopes and 0-1-polytopes. Let
P d
n be a random 0-1-polytope, i.e. each coordinate of the random points is an i.i.d.

Bernoulli random variable and thus a vertex of the cube Cd = [0, 1]d and P d
n is the

convex hull of n independent random 0-1-points. The geometry of 0-1-polytopes
[9] and the asymptotics of the expected number of facets Efd−1(P d

n ) as d → ∞ is
well investigated, [2, 5, 6], but in general Efℓ(P

d
n), 2 ≤ ℓ ≤ d− 2 is unknown.

Open Problem: Determine the asymptotic behaviour of Efℓ(P
d
n )

for 2 ≤ ℓ ≤ d− 2.
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Bounds for the minimal dispersion

Workgroup report

A classical problem in computational geometry is to find the largest empty axis-
parallel box amidst a point set Pn = {t1, . . . , tn} inside the unit cube [0, 1]d. This
question is related to the notion of (minimal) dispersion. Let Pn be a set of n
points in [0, 1]d and B ⊆ B([0, 1]d), where B([0, 1]d) denotes the Borel σ-algebra
on [0, 1]d. Then we define the dispersion to be

disp(Pn,B) := sup
B∈B

B∩Pn=∅

vold(B) .

The minimal dispersion of the set B is the defined as

dispB(n, d) := inf
Pn⊆[0,1]d

|Pn|=n

disp(Pn,B).

An example of particular importance is the case where B is the set Bax of axis-
parallel boxes inside [0, 1]d. There are two very recent results providing upper and
lower bounds in this setting.

The best known lower bound was proved by Aistleitner, Hinrichs and Rudolf in
2015 [1], improving upon earlier work of Dumitrescu and Jiang [2]:

Theorem 1. For all n, d ∈ N, we have

dispBax
(n, d) ≥ 1

4
· log2 d

n + log2 d
.

The best known lower bound for moderate n was proved by Rudolf [3] in 2017
and gives the following estimate.

Theorem 2. Let n, d ∈ N and assume that n > 2d. Then,

dispBax
(n, d) ≤ 4 · d

n
log2

9n

d
.

Moreover, for very large n there is a better bound with the optimal order in n
also proved in [1].

Theorem 3. Let n, d ∈ N. Then,

dispBax
(n, d) ≤ 27d

n
.

This bound obviously has much worse dependence on the dimension d. The
large gap between upper and lower bounds was the starting point for the group
work within the Mini-Workshop 1706c and is currently work in progress.

We are trying to improve upon both upper and lower bound. However, it is not
clear what the optimal order of the minimal dispersion with respect to the number
of points n and the dimension d should be.

The proof by Rudolf for the upper bound uses points that are distributed uni-
formly at random inside [0, 1]d and requires the construction of a suitably small
delta cover. Currently we are working on improving the cardinality of such a
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net, by a kind of chaining argument that should allow us to better balance the
probability and cardinality estimates involved.

The lower bound exploits the pigeonhole principle and the fact that for suffi-
ciently large dimensions d the coordinates of a small number of points within the
cube follow a certain structure. A possible approach to improve this bound is,
given a point set Pn, we “throw” in axis-parallel boxes of conjectured (optimal)
size at random, where the distribution of the center of such a box depends on the
ℓ∞-distance to the point set. However, this makes the corresponding analysis quite
involved. Another possible approach with respect to the lower bound uses volume
covering arguments adapted to the dispersion setting. Such arguments are suc-
cessfully used in related problems for the discrepancy of point sets and complexity
of integration.

We expect that a lower bound linear in d should be true. This is supported by
the corresponding recent result of M. Ullrich for the periodic setting, i.e. dispersion
of axis parallel boxes on the d-dimensional torus, see [4].
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CLT for the logarithmic volume of a full-dimensional random simplex

in the cube

Workgroup report

By a result of Maehara [3] it can be concluded that the volume of a random simplex
of fixed dimension in a high-dimensional cube is asymptotically normal distributed.
To be more precise, let r ∈ N be fixed and consider uniformly i.i.d. random vectors
X0, . . . , Xr ∈ [−

√
3,
√

3]d, d ≥ r, and set Σd
r as the r-dimensional simplex spanned

by {X0, . . . , Xr}. Then, by the results obtained in [3] we can conclude that the
r-dimensional volume of this random simplex, volr(Σd

r), is asymptotically normal
distributed, as d → ∞, with explicitly known mean and variance.

However, if the dimension r of the random simplex is not fixed, but grows
with the dimension d of the ambient space, then the problem is wide open. We
considered the extremal case, i.e., r(d) = d: Let X0, . . . , Xd be uniformly i.i.d.

random vectors in the cube Cd = [−
√

3,
√

3]d. By construction, the random
variables Xi, i = 0, . . . , d, have zero mean and variance one. We denote by Σd

d the
full-dimensional (random) simplex generated by the (d + 1) random vectors, i.e.,

Σd
d = conv

{
X0, . . . , Xd

}
.
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The d-dimensional volume of Σd
d can be expressed as

vold
(
Σd

d

)
=

1

d!

∣∣∣∣det

(
X0 · · · Xd

1 · · · 1

)∣∣∣∣ .(1)

There is no CLT for the actual volume of Σd
d, but we believe that log vold(Σd

d)
is asymptotically normal distributed. This conjecture is based on the following
observations: In the case that X0 is fixed at the origin, i.e.,

Σ̃d
d := conv

{
0, X1, . . . , Xd

}
,

we have that

vold
(
Σ̃d

d

)
=

1

d!

∣∣det
(
X1 · · ·Xd

)∣∣ .(2)

Recently, Nguyen and Vu [1] established a Central limit theorem (CLT) for the
logarithm of the absolute value of the determinant of a random matrix. To be
more precise, let Ad ∈ R

d×d be a random matrix whose entries are independent
real random variables with zero mean, variance one and sub-exponential tails.
Then, Nguyen and Vu [1, Thm. 1.1] were able to show that

sup
t∈R

∣∣∣∣∣P
(

log |detAd| − (1/2) log (d− 1)!√
(1/2) log d

≤ t

)
− P

(
N (0, 1) ≤ t

)
∣∣∣∣∣ ≤ (log d)−

1
3
+o(1),

(3)

where N (0, 1) is a standard normal distributed random variable with zero mean

and variance one. Therefore, by (2), a CLT for log voln(Σ̃d
d) holds.

We considered different approaches to establishing a CLT for log vold(Σd
d) and

believe, that the most promising approach is the following: write the rows of the
matrix in (1) as vectors Yi ∈ R

d+1 for i = 1, . . . , d, that is,

Bd+1 :=

(
X0 · · · Xd

1 · · · 1

)
=




Y1

...
Yd

e


 ∈ R

(d+1)×(d+1),

where we set e := (1, . . . , 1) ∈ R
d+1. Moreover, we set Hd as the linear hyperplane

in R
d+1 that is spanned by {Y1, . . . , Yd} and set Fd as the d-dimensional simplex

spanned by {0, Y1, . . . , Yd} in Hd. This yields,

vold
(
Σd

d

)
=

1

d!

∣∣detBd+1

∣∣ = (d + 1) vold+1

(
conv{0, Y1, . . . , Yd, e}

)

= dist(e,Hd) vold(Fd),

where dist(e,Hd) ≥ 0 denotes the distance of e to the subspace Hd in R
d+1. The

main idea is to use the CLT of Nguyen and Vu on Bd+1. However, the matrix
Bd+1 does not a priori satisfy the needed conditions. To remedy this, we instead
consider a matrix Cd+1 where the last row e of Bd+1 is replaced by a standard
Gaussian random vector Yd+1 ∈ R

d+1, so that (3) can be applied to Cd+1. To
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control the error generated by this replacement we have to establish asymptotic
bounds for

log
∣∣detBd+1

∣∣ − log
∣∣detCd+1

∣∣ = log dist
(
e,Hd

)
− log dist

(
Yd+1, Hd

)
.(4)

We believe that bounds for (4) are well within reach, but the details will need
further investigations.
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