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Introduction by the Organisers

The conference was organized by Jean-David Benamou (INRIA), Daniel Matthes
(TUM) and Virginie Ehrlacher (Ecole des Ponts Paristech). The program consisted
of 30 lectures, given by senior and junior researchers.

The progress in the mathematical theory of optimal transportation is driven to
a large extent by applications in natural sciences. Advanced understanding of the
properties of transport maps and of Wasserstein gradient flows is going hand in
hand with a better – typically more geometric – understanding of fluid-type models
in physics, or more recently, in quantum chemistry, mathematical biology, and
many other areas. On the one hand, it is now almost two decades since one of the
most important results in optimal transport theory has been established, namely
the “geometrization” of diffusion processes by using transport techniques for the
analysis of the long-time asymptotics of particle systems. On the other hand, the
current activity on the application of optimal of transport methods is intense and
diverse, ranging from geometric optics to models for crowd motion. This was a
very favorable moment for a meeting to discuss some recent achievements of the
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theory in its applications to the natural sciences and to determine future directions
of research.

The aim of the workshop was to bring together a mixed group of experts and
young researchers from different areas of applied mathematics in which optimal
transportation plays a role. Thematically, the talks illustrated the variety of appli-
cations of optimal transport theory in the natural sciences: physics, chemistry and
biology. The diversity of the topics and participants stimulated a lot of fruitful
discussion between the persons working in the different fields and gave rise to new
collaborations, in particular for the younger generation of researchers.

In total, 52 scientists participated in this meeting; almost 40 came from coun-
tries other than Germany. The organizers and participants thank the Mathema-
tisches Forschungsinstitut Oberwolfach for providing an inspiring setting for this
conference. The abstracts are presented here in the chronological order of the
lectures during the week.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Regularity for Monge-Ampère by Benamou-Brenier

Felix Otto

(joint work with Michael Goldman)

The Monge-Ampère equation may be seen as the Euler-Lagrange equation for the
potential of the Brenier map T in optimal transportation. However, the core of the
existing regularity theory for this fully non-linear equation does not make much
use of this variational interpretation. In this note, we report on an ǫ-regularity
result for the Monge-Ampère equation that capitalizes on this variational nature.
This type of regularity result was known by work of Figalli & Kim [2], relying on
the series of works by Caffarelli. Our proof does not use the work by Caffarelli, and
directly establishes C1,α-regularity of T . In establishing such an ǫ-regularity result,
we follow the general strategy applied to many nonlinear variational problems like
the one of minimal surfaces or of harmonic maps. Such results all make a “local
flatness” assumption, which here assumes the form of a concentration of π near
the diagonal in an averaged sense as measured by

F (r) :=
1

r

( 1

|Br|

∫ ∫

(Br×Rd)∪(Rd×Br))

|x− y|2π(dxdy)
) 1

2

.

By affine invariance (see below), this may be replaced by a concentration near an
affine subspace. For simplicity, in the following formulation of our main result we
restrict to the case of densities f and g that are locally constant (and normalized
to unity).

Proposition 1. Fix a positive exponent α < 1. Let π be an optimal transference
plan for two densities f, g ≤ 1. Let the radius R be such that

f = g = 1 on BR, F (R) ≪ 1.

Then there exists a continuously differentiable map T on BR
2
such that

suppπ ∩ (BR
2
× Rd) = {(x, T (x))|x ∈ BR

2
}

and

1

R
‖T − id‖BR

2

+ ‖DT − id‖BR
2

+Rα[DT ]α,BR
2

≤∼ F (R),

where ‖ · ‖B denotes the supremum norm and [·]α,B the Hölder semi-norm over

the set B. Here
≤∼ and ≪ refer to d <∞ and α < 1.

Like in [2], Proposition 1 in conjunction with Alexandrov’s theorem on the
almost everywhere twice differentiability of convex functions yields a partial reg-
ularity result for the Brenier map T .
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Proposition 1 is the outcome of a Campanato iteration based on a one-step-
improvement formulated in Proposition 2. Passing from Proposition 2 to Propo-
sition 1 proceeds by comparing, on dyadically decreasing scales, π to affine trans-
formations as parameterized by a vector b and a matrix Q with detQ = 1:

E(r, b,Q)

:=
1

r

( 1

|Br|

∫ ∫

(Br×Rd)∪(Rd×Br)

|Qx+ b−Q−∗y|2π(dxdy)
) 1

2

,

where Q−∗ denotes the inverse of the transpose Q∗ of Q. Proposition 2 is in
the spirit of DeGiorgi’s approach to the regularity of minimal surfaces, and is
the analogue of an “excess improvement by tilting” estimate. Because of the
multiplicative nature (composition instead of addition) of the iteration, passing
from Proposition 2 to Proposition 1 requires some book-keeping but otherwise is
standard. The main structural property in this passage is the affine invariance of
optimal transport.

Proposition 2. Let the transference plan π be optimal for the densities f, g ≤ 1;
let the radius r be st

f = g = 1 on Br.

Then there exist a vector b ∈ Rd and a matrix Q with detQ = 1 st for all θ ≪ 1

E(θr, b,Q)
≤∼ θF (r) +

1

θ1+
d
2

F
d+2
d+1 (r) + F 2(r),(1)

1

r
|b|+ |Q− id| ≤∼ F (r).

Here
≤∼ means ≤ C up to a (generic) constant only depending on the dimension

d <∞.

Using the equivalence of the Lagrangian formulation of optimal transportation
through a transference plan π(dxdy) and the Eulerian formulation through a pair of
density ρ = ρ(t, x) ≥ 0 and flux j = j(t, x) ∈ Rd constrained by the (distributional)
continuity equation ∂tρ+∇· j = 0, Proposition 2 is a consequence of the following
Proposition 3.

Proposition 3. Let (ρ, j) be an optimal Eulerian transference plan that connects
densities ρ0, ρ1 ≤ 1 and

ρ0 = ρ1 = 1 on B1.(2)

Then there exists a harmonic function φ in B 1
2
with

∫ 1

0

∫

B 1
2

1

ρ
|j − ρ∇φ|2 ≤∼

( ∫ 1

0

∫

B1

1

ρ
|j|2
) d+2

d+1 ,(3)

∫

B 1
2

|∇φ|2 ≤∼
∫ 1

0

∫

B1

1

ρ
|j|2.
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The two main ingredients to pass from Proposition 3 to Proposition 2 are 1) the
Benamou-Brenier-formula [1] relating the Eulerian and Lagrangian formulations,
which we need in a local version, 2) the inner regularity estimates for harmonic
functions, and 3) the linearization of the matrix exponential, which gives rise to
the quadratic error term in (1). Because the exponent d+2

d+1 appearing on the rhs

of (3) is strictly larger than one, estimate (3) may be read as follows: Provided

the transportation cost
∫ 1

0

∫
B1

1
ρ |j|2 ≪ 1, the transportation velocity 1

ρj is close

(in the relative sense) to the gradient ∇φ of a harmonic function. This reflects the
fact that the Wasserstein distance behaves like the (homogeneous) H−1-distance
for densities close to one, cf (2). In this sense, Proposition 3 establishes in a
quantitative way that the Laplace equation is the linearization of the Monge-
Ampère equation.

Proposition 3 follows from constructing, on the space-time cylinder (0, 1)×BR

for some suitable radiusR ∈ (12 , 1), a competitor (ρ̃, j̃) with identical flux boundary
conditions f := ν · j. This competitor is a perturbation of (1,∇φ) where φ is the

harmonic function with the flux boundary conditions f̄ :=
∫ 1

0
fdt. It turns out

that the perturbation (s, q) := (ρ̃, j̃)−(1,∇φ) may be constrained to be supported
in a boundary layer (0, 1)× (BR−BR−r) of thickness r ≪ 1 and to satisfy |s| ≤ 1

2 .

In fact, (s, q) may be chosen to minimize
∫ 1

0

∫
BR

|j|2 under these constraints, which
allows to use the minimax formula to estimate

∫ 1

0

∫
BR

|j|2. Ultimately, this reduces

to a trace estimate for the cylindrical shell (0, 1)× (BR −BR−r); optimization in
its thickness r yields the crucial exponent d+2

d+1 . Proposition 3 uses McCann’s
displacement convexity to derive ρ ≤ 1 from the assumption ρ0, ρ1 ≤ 1.

References

[1] I. D. Benamou and Y. Brenier, A numerical method for the optimal time-continuous mass
transport problem and related problems, in Monge Ampére equation: applications to geome-
try and optimization (Deerfield Beach, FL, 1997), Contemp. Math. Amer. Math. Soc. 226,
Providence, RI, (1999), 1–11.

[2] A. Figalli, Y. H. Kim, Partial regularity of Brenier solutions of the Monge-Ampère equation,
Discrete Contin. Dyn. Syst. 28 (2010), 559–565.

Gradient flows for differential forms: example of the curve-shortening

flow

Yann Brenier

Optimal transport theory is largely about giving a Riemannian structure to the
space of volume forms ρdx1∧· · ·dxd in Rd and many gradient flows can be derived
accordingly, following the seminal work of Otto and collaborators. Here we discuss
the case of closed d− 1 differential forms in Rd, or, in other words, divergence-free
vector fields. An elementary example of such forms is given by

(1) B(x) =

∫

R/Z

δ(x−X(s))X ′(s)ds,
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where X is a smooth, non self-intersecting, loop X in Rd. The transport equa-
tion for such forms is the so-called induction equation (commonly used in ideal
Magnetohydrodynamics),

∂tB +∇ · (B ⊗ v − v ⊗B) = 0,

where v is a time-dependent velocity field transporting the form. Then, we may
monitor the steepest descent of a given functional F [B] according to a given Hilbert
norm v → ||v||B (possibly depending on B) on the space of velocity fields v trans-
porting B. Let us give a simple example, when

F [B] =

∫

Rd

|B(x)|dx, ||v||B2
=

∫

Rd

|v(x)|2|B(x)|dx.

Thanks to the induction equation, we get, denoting G = ∇ · B⊗B
|B| ,

d

dt
F [B] = −

∫
v · Gdx =

∫
(|B|v −G)2

2|B| dx−
∫ |B|v2

2
dx−

∫
G2

2|B|dx

and obtain the steepest descent as P = G, where P stands for |B|v, which, com-
pleted by the induction equation, provides a self-consistent evolution equation for
B of (very) degenerate parabolic type:

(2) ∂tB +∇ · (B ⊗ P − P ⊗B

|B| ) = 0, P = ∇ · B ⊗B

|B| ,

It turns out that, in the special case when B is of form (1), this exactly corresponds
to the so-called short-curvening flow [4].

(3) ∂tX =
1

|∂sX |∂s(
∂sX

|∂sX |),

for a time-dependent loop, with ∂tX(t, s) = v(t,X(t, s)). In a joint work with
Xianglong Duan, we have recently analyzed equation (2), thanks to a relative en-
tropy method borrowed from the theory of systems of first order conservation laws
with a convex entropy [3]. We have obtained a concept of “dissipative solutions”
related to the work of P.-L. Lions for the Euler equation of incompressible fluids
[8] or to the work of L. Ambrosio, N. Gigli, G. Savaré [1] for the heat equation
and, overall, quite similar to the one recently introduced in [2]. We also refer to
the works of A. Tzavaras and collaborators [5], E. Feireisl and collaborators [6] for
various concepts of “dissipative solutions”.

Definition 1. Let us fix T > 0 and denote Td = (R/Z)
d
. We say that (B,P ) with

B ∈ C([0, T ], C(Td,Rd)′w∗), P ∈ C([0, T ]× Td,Rd)′

is a dissipative solution of (2) with initial data B0 ∈ C(Td,Rd)′ if and only if:

i) B(0) = B0, ∇ · B = 0 in sense of distributions;

ii) B and P are bounded, respectively in the spaces C1/2([0, T ], (C1(Td))′w∗) and
C([0, T ]× Td,Rd)′, by constants depending only on T and

∫
Td |B0|;
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iii) for all λ > 0, θ ∈ [0, T ], for all trial functions (b∗, v∗, A) valued in Rd, with

|A| ≤ λ and b∗2 = 1, for all r ≥ c∗+ λ2

2 , where c∗ is a constant depending explicitly
on (b∗, v∗), we have:

(4)
e−rθ

∫

Td

η(θ) +

∫ θ

0

e−rσ

∫

Td

[(A− v∗ − L3) · P

+(r − c∗ +
v∗2 −A2

2
)η − (L2 + b∗

A2 − v∗2

2
) · B](σ)dσ ≤

∫

Td

η(0),

where

(5) η = |B| −B · b∗,

(6) L2 = −∂θb∗ − (v∗ · ∇)b∗ + (b∗ · ∇)v∗ + b∗v∗2 + (I− b∗ ⊗ b∗)∇(b∗ · v∗),

(7) L3 = −v∗ + (b∗ · ∇)b∗.

The “weak compactness” of such solutions (i.e. any sequence of dissipative
solutions has accumulations points, in a suitable weak sense, and each of them
is still a dissipative solution) follows almost immediately from the convexity of
our formulation. We have also established a suitable “weak-strong” uniqueness
principe for such solutions.

Acknowledgement. We are very grateful to Dmitry Vorotnikov for informing us
about the possibility of deriving mean-curvature motion in co-dimension one as a
gradient flow in optimal transportation style, in the spirit of [7]. This information
was very influential for us.
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Distances between nonnegative measures arising from optimal

entropy-transport problems

Giuseppe Savaré

(joint work with Matthias Liero, Alexander Mielke)

Consider a couple of finite and nonnegative Borel measures µi ∈ M(Xi), i = 0, 1,
in the Polish topological spaces X0, X1 (the topology of each Xi is thus induced
by a complete and separable distance). Optimal Entropy-Transport problems [3]
deal with the minimization of convex functionals of the form

(1) E (γ|µ0, µ1) :=

∫

X0×X1

c(x0, x1) dγ(x0, x1) + F0(γ0|µ0) + F1(γ1|µ1),

depending on γ ∈ M(X0 ×X1); here c : X0 ×X1 → [0,+∞] is a lower semicon-

tinuous cost function, γi = πXi

♯ γ are the marginals of γ on Xi and Fi : M(Xi) →
[0,+∞] are general entropy functionals

Fi(γi|µi) :=

∫

Xi

Fi(σi) dµi + F ′
i (∞)γ⊥i (Xi), γi = σiµi + γ⊥i ,

associated to convex and lower semicontinuous functions Fi : [0,∞) → [0,∞]
satisfying F (1) = 0. We denoted by σi the density of γi w.r.t. µi and by γ⊥i the
singular part of the Lebesgue decomposition of γi; F

′
i (∞) := sups>0 Fi(s)/s.

The variational problem associated to (1)

(2) ET(µ0, µ1) := min
γ∈M(X0×X1)

E (γ|µ0, µ1)

can be considered as a natural relaxation of the Optimal Transport problem [5]

(3) OT(µ0, µ1) := min
γ∈M(X0×X1)

{∫

X0×X1

c(x0, x1) dγ(x0, x1) : π
Xi

♯ γ = µi

}
,

where the marginals γi of γ are constrained to coincide with the given measures µi

(and therefore one has to impose the balance mass condition µ0(X0) = µ1(X1)).
In fact, (3) is a particular example of (2) when Fi are the indicator function of
{s = 1} (i.e. Fi(1) = 0 and Fi ≡ +∞ in [0,∞) \ {1}). More regular entropies
satisfying Fi(0) <∞, as the logarithmic or the Rény’s ones associated to

Fi(s) := s log s− (s− 1), Fi(s) :=
1

p(p− 1)
(sp − p(s− 1) + 1), p 6= 0, 1,

induce a wider family of optimization problems, that always admit a minimizer
even if µi(Xi) are different and the cost c takes the value +∞.

As for Optimal Transport problems, (2) enjoys an equivalent dual formulation

(4) ET(µ0, µ1) = sup
{
D(φ0, φ1|µ0, µ1) : φi ∈ Cb(Xi), φ0 ⊕ φ1 ≤ c

}
,

where (φ0 ⊕ φ1)(x0, x1) := φ0(x0) + φ1(x1) and

D(φ0, φ1|µ0, µ1) :=
∑

i

∫

Xi

F ◦
i (φi) dµi, F ◦

i (w) := −F ∗
i (−w) = inf

s≥0
Fi(s) + ws.
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Notice that F ◦
i : R → [−∞,+∞) are concave functions obtained by (the oppo-

site) Legendre transform from Fi. The duality result (4) yields general optimality
conditions and a third intrinsic formulation based on the 1-homogeneous marginal
perspective function H

H(x0, r0;x1, r1) := ET(r0δx0 , r1δx1) = inf
θ>0

(
θ c(x0, x1) +

∑

i

riFi(θ/ri)
)
,

representing the cost to connect two Dirac measures µi := riδxi
. We have

ET(µ0, µ1) = min
γ∈M(X0×X1)

∫
H(x0, ̺0(x0);x1, ̺1(x1)) dγ +

∑

i

Fi(0)µ
⊥
i (Xi),

where µi = ̺iγi + µ⊥
i is the Lebesgue decomposition of µi w.r.t. the marginals γi.

A particular interesting case arises when X0 = X1 =: X is a (complete, sepa-
rable) metric space endowed with the distance d, Fi(s) = s log s− (s− 1), and

c(x0, x1) = ℓ(d(x0, x1)), ℓ(d) :=

{
log
(
1 + tan2(d)

)
if 0 ≤ d < π/2,

+∞ otherwise.

The corresponding marginal perspective function H is given by the so-called
squared cone distance

H(x0, r
2
0 ;x1, r

2
1) := r20 + r21 − 2r0r1 cos(d(x0, x1) ∧ π/2),

and the corresponding Logarithmic Entropy-Transport problem LET(µ0, µ1) is the
square of a complete and separable metric HK on M(X) which induces the usual
weak topology in duality with continuous and bounded functions. Since HK results
as a sort of infinitesimal inf-convolution of the Hellinger distance

H
2(µ0, µ1) :=

∫

X

(√
̺0(x)−

√
̺1(x)

)2
dγ(x), µi = ̺γ,

and the Kantorovich-Rubinstein-Wasserstein distance

W
2
d
(µ0, µ1) := min

{∫
d
2(x0, x1) dγ : γ ∈ M(X ×X), πi

♯γ = µi

}
,

we called HK the Hellinger-Kantorovich distance; it has been independently intro-
duced by S. Kondratyev, L. Monsaingeon, and D. Vorotnikov [2], and by L. Chizat,
G. Peyré, B. Schmitzer, F.-X. Vialard [1], starting from its dynamical formulation.
HK enjoys various equivalent characterizations [3, 4], which show its geometric rel-
evance:
Static LET formulation:

HK
2(µ0, µ1) = min

γ∈M(X×X)

∫
ℓ(d(x0, x1)) dγ+

∑

i

(
σi log σi−σi+1

)
dγi, γi = σiµi.

Static dual formulation:

HK
2(µ0, µ1) = sup

φi∈Cb(X)

{∑

i

(1 − e−φi) dµi : φ0(x0) + φ1(x1) ≤ ℓ(d(x0, x1))
}
.
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Dual conical Hopf-Lax formulation:

1

2
HK

2(µ0, µ1) = sup
{∫

P1(ξ) dµ1 −
∫
ξ dµ0 : ξ ∈ Lipb(X), inf ξ > −1/2

}
,

where

(5) Pt(ξ)(x) := inf
x′∈X

1

t

(
1− cos2(d(x, x′) ∧ π/2)

1 + 2tξ(x′)

)
.

Cone formulation:

HK
2(µ0, µ1) = min

{∫ (
̺20 + ̺21 − 2̺0̺1 cos(d(x0, x1) ∧ π/2) dγ : µi = ̺iγi

}
.

Dynamic formulation “á la Benamou-Brenier” in X = Rd:

HK
2(µ0, µ1) = min

{∫ 1

0

∫ (
|vt|2 +

1

4
|wt|2

)
dµt dt : µ ∈ C([0, 1];M(Rd)),

µt=i = µi, ∂tµt +∇ ·
(
vtµt

)
= wtµt in D′(Rd × (0, 1))

}

Dynamic dual formulation in X = Rd:

HK
2(µ0, µ1) = sup

{∫
ξ1 dµ1 −

∫
ξ0 dµ0 : ξ ∈ C1(Rd × [0, 1]),

∂tξt +
1

2
|Dxξt(x)|2 + 2ξ2t (x) ≤ 0 in Rd × [0, 1]

}
.

Moreover, a curve (µt)t∈[0,1] ⊂ M(Rd) is a geodesic for HK if and only if there
exists a solution ξt = Ptξ0 of the Hamilton-Jacobi equation

∂tξt +
1

2
|Dxξt(x)|2 + 2ξ2t (x) = 0

given by (5) such that

∂tµt +∇ · (vtµt) = wtµt with vt = Dxξt, wt = 4ξt.
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Estimates on the JKO scheme for the Fokker-Planck and Keller-Segel

equations

Filippo Santambrogio

Many evolution PDEs with mass conservation, often of parabolic type, can be
expressed in the form of a gradient flow of a functional F defined on P(Ω) with
respect to the Wasserstein distance W2 (see [1]). This in particular involves the
iterated minimization scheme

(1) ρτk+1 := argminρF (ρ) +
W 2

2 (ρ, ρ
τ
k)

2τ
,

where τ > 0 is a small time-step. This iterated minimization scheme is called JKO
scheme (after Jordan, Kinderleher and Otto, [4]). By suitably interpolating the
sequence (ρτk)k and letting τ → 0, we can prove (in fairly general situations), that
we converge to a solution of

(2) ∂tρ−∇ ·
(
ρ∇

(
δF

δρ
(ρ)

))
= 0.

Note that, given a functional G : P(Ω) → R we call δG
δρ (ρ), if it exists, the unique

(up to additive constants) function such that d
dεG(ρ + εχ)|ε=0 =

∫
δG
δρ (ρ)dχ for

every perturbation χ such that, at least for ε ∈ [0, ε0], the measure ρ+ εχ belongs
to P(Ω). The function δG

δρ (ρ) is called first variation of the functional G at ρ.

The connection between the PDE and the minimization scheme comes from the
optimality conditions of the latter, since we obtain (up to some technicalities)

(3)
δF

δρ
(ρτk+1) +

ϕ

τ
= const,

where ϕ is the Kantorovich potential associated with the transport from ρτk+1 to

ρτk for the cost 1
2 |x − y|2. Indeed, we can prove that whenever we set G(ρ) :=

1
2W

2
2 (ρ, ν), then we have δG/δρ = ϕ where ϕ is the corresponding Kantorovich

potential.
In the talk, we considered functionals F of the following form

F (ρ) :=

∫
f(ρ(x))dx +

∫
V (x) dρ(x),

where f is a convex, superlinear, and increasing function, and V is aeither a given
and smooth potential, or depend on ρ in the following way: V = −uρ, where
uρ is the solution of −∆u = ρ with Dirichlet boundary conditions on ∂Ω (other
equations and b.c. are possible). In the case f(ρ) = ρ ln(ρ) these two choices give
the Fokker-Planck equation

∂tρ−∆ρ−∇ · (ρ∇V ) = 0

or the Keller-Segel system
{
∂tρ−∆ρ+∇ · (ρ∇u) = 0

−∆u = ρ
.
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When f is not of entropy type, then instead of the linear diffusion term represented
by the Laplacian we have a non-linear diffusion as in the porous medium equation
∂tρ = ∆(ρm) (see [7]).

The JKO minimization scheme allows for some iterative estimates on the min-
imizer ρτk+1 in terms of the datum ρτk. Those which can be easily iterated when
τ → 0 can be useful to prove existence or regularity properties of the solution of
the corresponding equations. In particular, we proved the following results

• L∞ estimate for the Fokker-Plank or porous medium equations with po-
tential: for any f and V ∈ C1,1, we have

||ρτk+1||L∞ ≤ (1 + Cτ)||ρτk ||L∞ .

• L∞ estimate for a Keller-Segel equation with arbitrary diffusion (any f ,
any dimension), of the form

||ρτk+1||L∞ ≤ ||ρτk||L∞

1− Cτ ||ρτk||L∞

.

This estimate can be iterated but exploses in finite time, which is not
surprising since in general solutions to Keller-Segel equations explose in
finite time.

• Lp estimates for Fokker-Plank or porous medium equations with potential:
for any f and V ∈ C1,1, we have

||ρτk+1||pLp ≤ (1 + Cτ)||ρτk ||pLp

(this proof uses, for instance, the so-called flow interchange method, see
[5])

• BV estimates for arbitrary f , when V = 0:

||ρτk+1||BV ≤ ||ρτk||BV

(using a new inequality in optimal transport first introduced, exactly for
BV purposes, in [3]: for any ρ0, ρ1 smooth enough, if ϕ0 and ϕ1 are the re-
spective Kantorovich potentials, and H is arbitrary radial convex function,
we have

∫
∇H(∇ϕ0) · ∇ρ0 +

∫
∇H(∇ϕ1) · ∇ρ1 ≥ 0;

the BV estimate is obtained by using H(z) = |z|).
• sort of W 1,p estimates: defining

Jp,V (ρ) :=

∫ ∣∣∣∣
∇ρ
ρ

+∇V
∣∣∣∣
p

dρ,

we have, for f(ρ) = ρ ln ρ and supposing D2V ≥ λI,

(1 + λτ)Jp(ρ
τ
k+1) ≤ Jp(ρ

τ
k)

(obtained by using H(z) = |z|p in the above inequality).
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• A similar estimate for the Keller-Segel case, with liner diffusion (f(ρ) =
ρ ln ρ):

Jp(ρ
τ
k+1) ≤ Jp(ρ

τ
k) + Cτ + C(F (ρτk)− F (ρτk+1)).

The presented results are taken from various works (or on-going works) in col-
laboration with G. Carlier [2], G. De Philippis, A. Mészáros, B. Velichkov, [3], J.
Carrillo and S. Di Marino. The easiest proofs are not new at all, and were already
present, for instance, in Otto’s work [6].
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Density Functional Theory and Optimal Transport with Coulomb cost

Gero Friesecke

I discussed recent developments in an exciting new application area of optimal
transport, electronic structure. One is dealing with a multi-marginal problem, and
with a Coulomb cost – not the usual positive power of the distance but a negative
power. Some phenomena can be treated with existing theory, some have been
understood by developing additional tools, and others give rise to open questions.
The optimal transport problem is the following: find

γopt ∈ argminγ∈Psym(RN·d)
γ 7→µ

∫

RNd

∑

1≤i<j≤N

1

|xi − xj |α
dγ(x1, .., xN ) (0 < α < d).

The prototypical case arising in electronic structure is d = 3, α = 1 (Coulomb
cost). The minimization is over symmetric probability measures on RNd with
equal marginals, given by an absolutely continuous probability measure µ = ρ/N .
Symmetric means γ(A1× · · ·×AN ) = γ(Aσ(1)× · · ·×Aσ(N)) for all permutations,
and the marginal condition is

γ(Rd × · · · ×Ai × · · · × Rd) =

∫

Ai

µ for all i.

(In physics notation, the marginal µ is denoted ρ/N , where ρ is the one-body
density of the system, which integrates to the number N of particles.)
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The following table contains a summary of some main results:

d = 1 d = 3

N = 2 unique minimizer, of Monge form [1, 2]

2 < N < ∞ unique min., Monge form [3, 4]
∣

∣

∣
example of non-Monge min. [5]

N = ∞ unique minimizer, non-Monge [6]

Here Monge form means γ(x1, .., xN ) = symmetrization ofµ(x1)δT2(x1)(x2) · · ·
δTN (x1)(xN ).

Let me explain how the marginal constraint in the optimal transport problem
arises in a natural way from the idea of constrained search in the electronic struc-
ture community. A central goal there is to find the lowest eigenvalue E0 and
eigenstate Ψ0 of the electronic Hamiltonian

H = −1

2
∆R3N

︸ ︷︷ ︸
=:T

+
∑

1≤i<j≤N

1

|xi − xj |
︸ ︷︷ ︸

=:Vee

+

N∑

i=1

v(xi)

︸ ︷︷ ︸
=:Vne

,

acting on N -electron wavefunctions ψ ∈ L2
anti((R

3 × Z2)
N ), where |Ψ(x1, s1, ..,

xN , sN )|2 is the probability density that the electrons are at positions x1, .., xN
with spins s1, .., sN . Here v : R3 → R is the external potential which depends
on the positions and charges of the atomic nuclei; it constitutes the only chemi-
cally specific (molecule-dependent) part of the Hamiltonian. An elementary but
important observation going back to Hohenberg and Kohn is that the quadratic
form of the electron-nuclei interaction depends only on the one-body density ρ,
〈Ψ, VneΨ〉 =

∫
R3 v ρ, where ρ(x1)/N =

∑
s1,..,sN∈Z2

∫
R3(N−1) |Ψ|2dx2..dxN . The

Rayleigh-Ritz variational together with the idea of constrained search, i.e. split-
ting the minimization over wavefunctions into minimizing first over Ψ subject to
given ρ, then over ρ yields

E0 = min
ρ

min
Ψ 7→ρ

〈
Ψ, (T + Vee + Vne)Ψ

〉

= min
ρ

(
inf
Ψ 7→ρ

〈Ψ, (T + Vee)Ψ〉
︸ ︷︷ ︸
universal part F [ρ]

Hohenberg-Kohn-Lieb-Levy fctnal

+

∫

R3

v(x)ρ(x) dx

︸ ︷︷ ︸
chemically specific part

)

Hence one can recover E0 and the ground state density from a low-dimensional
variational problem, minρ(F [ρ] +

∫
v ρ, instead of a high-dimensional one. This

fact is known as the “Hohenberg-Kohn theorem”. Moreover the unknown piece F
which needs to be approximated in practice is “universal” (molecule-independent).

The rigorous connection to optimal transport is the following. Start from a
density ρ. Scale it via ρα(x) := αdρ(αx). Let Ψ[ρα] denote the minimizer of the
variational problem in the definition of the Hohenberg-Kohn functional for the
scaled density, i.e. the minimizer of 〈Ψ, (T + Vee)Ψ〉 subject to Ψ 7→ ρα. Finally,



Applications of Optimal Transportation in the Natural Sciences 357

scale back, i.e. Ψ
(α)
0 := α−Nd/2Ψ[ρα](α

−1x1, s1, .., α
−1xN , sN ). One then has the

following theorem [1]: for any ρ, in the dilute limit α → 0 we have

∑

s1,..,sN∈Z2

|Ψ(α)
0 |2 ⇀∗ γ solution of OT with Coulomb cost,

1

α
F [ρα] → optimal cost

(where the optimal plan γ is approached in the sense of weak* convergence of
probability measures; for careful numerical comparisons of wave functions squared
and optimal plans for small α see [8]). A more heuristic derivation of the limit
problem which bypasses scaling arguments and directly studies the situation –
implied by density scaling – that the interaction energy dominates the kinetic
energy goes back to a fundamental paper by Seidl [3], who introduced the limit
problem without being aware at the time that he was talking optimal transport.

Electron densities in practical simulations are insufficiently dilute to directly
replace the Hohenberg-Kohn functional (or the electron-interaction part of it)
by the optimal Coulomb cost. For instance, the binding curve of the hydrogen
molecule turns out to be correct at long range, but far off at equilibrium [7], in
contraposition to conventional density functionals, which are remarkably accurate
near equilibrium but poor at long range. Nevertheless the fact that the functional
and the associated many-body electron density are governed by OT theory in
some limit is a very useful source of information in ongoing research to design
more accurate functionals. See the talk by Paola Gori-Giorgi.

Another interesting question associated to our OT problem is what happens
in the limit of large particle number N . In [6], together with Codina Cotar and
Brendan Pass we introduced the infinite-marginal OT problem of minimizing the
cost per particle pair,

C∞[γ] := lim
N→∞

(
N

2

)−1∫ ∑

1≤i<j≤N

ℓ(xi − xj)dγ(x1, x2, ...),

over symmetric probability measures in infinitely many variables, γ ∈ Psym((Rd)∞),
subject to γ 7→ µ ∈ P(Rd). It can be shown [6] that if the interaction potential ℓ
has positive Fourier transform (as does the Coulomb cost), the optimizer is unique
and given by the independent measure γ = µ ⊗ µ ⊗ ... This is a consequence
of the negative power cost (for positive power costs minimizers are trivially of
Monge form, and hence far from independent) together with the fact – long kown
in probability and statistics – that symmetry is a much stronger restriction on
probability measures in infinitely many variables than might be naively expected.
Technically, one uses the DeFinetti-Hewett-Savage theorem and a novel proba-
bilistic interpretation of the above cost: if ν is a representing DeFinetti measure

of a given probability measure γ, i.e. γ =
∫
P(Rd)

Q ⊗ Q ⊗ · · · dν(Q), and ℓ̂ is the

Fourier transform of ℓ, then

C∞[γ]− C∞[µ⊗ µ⊗ ...] = (2π)−d

∫

Rd

ℓ̂(z) varν(dQ)Q̂(z) dz.
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Since ℓ̂ > 0, the right hand side is minimized if and only if the variance of the
random function Q̂ vanishes, i.e. when ν = δµ, establishing independence. An
interesting open problem is to derive corrections to independence, expected at the
next order: cost per particle instead of cost per particle pair.
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[1] C. Cotar, G. Friesecke, and C. Klüppelberg, Density functional theory and optimal
transportation with Coulomb cost, Comm. Pure Appl. Math., 66 (2013), 548–599, and
arXiv:1104.0603 (2011)

[2] G. Buttazzo, L. De Pascale, and P. Gori-Giorgi, Optimal-transport formulation of electronic
density-functional theory, Phys. Rev. A, 85 (2012), 062502

[3] M. Seidl, Strong-interaction limit of density-functional theory, Phys. Rev. A, 60 (1999),
4387–4395

[4] M. Colombo, L. De Pascale, and S. Di Marino, Multimarginal optimal transport maps for
1-dimensional repulsive costs, Canad. J. Math. 67 (2015), 350–368

[5] B. Pass, Remarks on the semi-classical Hohenberg–Kohn functional, Nonlinearity 26 (2013),
2731

[6] C.Cotar, G.Friesecke, B.Pass, Infinite-body optimal transport with Coulomb cost, Calc. Var.
PDE 54, no. 1 (2015), 717–742

[7] H.Chen, G. Friesecke, Ch.Mendl, Numerical Methods for a Kohn–Sham Density Functional
Model Based on Optimal Transport, J. Chem. Theory Comput. 10 (2014), 4360–4368

[8] H.Chen, G. Friesecke, Pair densities in density functional theory, Multiscale Model. Simul.
13 (4) (2015), 1259–1289

Optimal Transport and Density Functional Theory for the quantum

many-body problem: some open questions

Paola Gori-Giorgi

Electronic structure calculations are at the very heart of predictive computational
materials science, chemistry and biochemistry. Their goal is to solve, in a reliable
and computationally affordable way, the many-electron problem, a complex com-
bination of quantum-mechanical and many-body effects. The most widely used
approach, which achieves a reasonable compromise between accuracy and compu-
tational cost, is Kohn-Sham (KS) density-functional theory (DFT) [10]. Although
exact in principle, practical implementations of KS-DFT must heavily rely on
approximations for the so-called exchange-correlation functional. As illustrated
in the talk of Gero Friesecke, it has been realized a few years ago [2, 6] that
the semiclassical limit of the Hohenberg-Kohn (HK) functional [9, 11, 12] leads
to a multimarginal optimal transport (OT) problem with cost function given by
the Coulomb repulsive potential. This allows us to investigate the mathematical
structure of the exchange-correlation functional in a well defined limiting case.

This talk focuses on some promising applications of the OT limit of DFT, in par-
ticular the fact that, when used as an approximation for the exchange-correlation
energy functional, it is able to address prototypical challenging problems for which
the currently available approximations fail [13, 14, 3, 19]. Unfortunately, the OT
limit is still too expensive to be computed exactly for many particles (marginals)
and used routinely in computational chemistry and materials science problems.
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Nonetheless, its mathematical structure has already inspired new approximations
[20, 21, 1, 18] totally different from traditional ones, based on integrals of the
density rather than the usual local density, local density gradients, etc. In this
context, it is clearly important to fully understand the structure of the OT limit
of DFT and to study how it is approached from the quantum regime.

Some important open questions in this respect are

(1) How is the OT limit approached by the HK functional? In Ref. [8] a
conjecture for the next leading order, the so called “zero-point energy”
(ZPE) has been presented and computed. A recent comparison with very
accurate numerical results for the exact HK functional in the case N = 2
and dimension d = 1 seems to confirm the validity of the expansion. Is
it possible to prove rigorously the ZPE conjecture at least for dimension
d = 1, and possibly for the physically relevant dimension d = 3?

(2) How does the quantum statistics effects enter in the OT limit? The OT
limit is semiclassical and does not distinguish between bosons (totally
symmetric wavefunctions with respect to permutation of the particles) and
fermions with different spin states (specified antisymmetry with respect to
permutation of the particles). In Ref. [7] it has been argued that the effects
of quantum statistics enter at orders that go exponentially to zero as ~

goes to zero. Again, a very recent comparison with numerically accurate
calculations seems to confirm the conjecture. Can this be proven?

(3) Is there always a deterministic (Monge) solution? The Monge solution is
physically appealing because it reflects the intuition that the particles in
the semiclassical limit become “strictly correlated” [15, 17], in the sense
that the position of one of them determines all the others via maps with
a cyclic structure. The question is still open [4] for the general d = 3 case
with number of particles (marginals) N > 2.

(4) How to build approximate (even if not optimal) maps whose functional
derivative has a gradient that satisfies the usual equation in terms of the
gradient of the cost evaluated on the maps [16]? This last question is very
important, because Kohn-Sham DFT needs the functional derivative (or
Kantorovich potential) as an effective potential in the KS single-particle
equations. For example, for the spherically-symmetric case it has been
shown [16] that simple approximate maps [17] even if not always optimal [5]
get numerically very close to the true minimal cost and have the expected
functional derivative. Is there a route to build similar approximations in
the general d = 3 case?
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[6] C. Cotar, G. Friesecke, and C. Klüppelberg. Comm. Pure Appl. Math., 66:548, 2013.
[7] P. Gori-Giorgi, M. Seidl, and G. Vignale. Phys. Rev. Lett., 103:166402, 2009.
[8] P. Gori-Giorgi, G. Vignale, and M. Seidl. J. Chem. Theory Comput., 5:743, 2009.
[9] P. Hohenberg and W. Kohn. Phys. Rev., 136:B 864, 1964.

[10] W. Kohn and L. J. Sham. Phys. Rev. A, 140:1133, 1965.
[11] M. Levy. Proc. Natl. Acad. Sci. U.S.A., 76:6062, 1979.
[12] E. H. Lieb. Int. J. Quantum. Chem., 24:24, 1983.
[13] F. Malet and P. Gori-Giorgi. Phys. Rev. Lett., 109:246402, 2012.
[14] C. B. Mendl, F. Malet, and P. Gori-Giorgi. Phys. Rev. B, 89:125106, 2014.
[15] M. Seidl. Phys. Rev. A, 60:4387, 1999.
[16] M. Seidl, S. Di Marino, A. Gerolin, L. Nenna, and P. Gori-Giorgi. in preparation, 2017.
[17] M. Seidl, P. Gori-Giorgi, and A. Savin. Phys. Rev. A, 75:042511, 2007.
[18] S. Vuckovic, T. J. P. Irons, A. Savin, A. M. Teale, and P. Gori-Giorgi. J. Chem. Theory

Comput., 12:2598, 2016.
[19] S. Vuckovic, L. O. Wagner, A. Mirtschink, and P. Gori-Giorgi. J. Chem. Theory Comput.,

11:3153, 2015.
[20] L. O. Wagner and P. Gori-Giorgi. Phys. Rev. A, 90:052512, 2014.
[21] Y. Zhou, H. Bahmann, and M. Ernzerhof. J. Chem. Phys., 143:124103, 2015.

Multimarginal Optimal Transport with Coulomb Cost and the

Uniform Gas

Mathieu Lewin

In the talk I have discussed a few open problems in statistical mechanics, for what
can be called the Riesz gas. Consider a bounded domain ΩN = N1/dΩ ⊂ Rd with
|Ω| = 1. Place then N particles in ΩN and optimize their positions, such as to
minimize the Riesz energy

(1) E(s,ΩN ) := min
x1,...,xN∈ΩN

∑

1≤j<k≤N

Vs(xj − xk),

where

Vs(x) =





|x|−s for s > 0,

− log |x| for s = 0,

−|x|−s for s < 0.

We are interested in the limit N → ∞ with ρ := N/|ΩN | fixed and since Vs is
homogeneous, we have assumed ρ = 1. The general case follows by scaling.

When s > d, the system is stable, which means that the energy behaves like N .
Indeed, using the integrability of Vs at infinity, one can prove [10] that the limit

(2) lim
N→∞

E(s,N)

N
:= eR(s)

exists and does not depend on Ω. One famous conjecture [1] is that the system
crystallizes for every s > d (the particles asymptotically arrange on a periodic
lattice). This was proved in dimension d = 1 in [12], but a proof is still lacking in
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higher dimensions. Assuming that the particles sit on a lattice L, one finds

(3) eR(s) =
1

2

∑

ℓ∈L\{0}

1

|ℓ|s := ζL(s).

The right side is called the Epstein Zeta function and it is a natural generalization
of the famous Riemann Zeta function to higher dimensions. It is known that it
is minimized for the triangular lattice in dimension d = 2, and conjectured that
the Face Centered Cubic (FCC) is optimal in dimension d = 3. For s → ∞, one
finds the sphere packing problem. See [1] for a detailed description of the existing
results and open problems on ζL.

For s < d, the model is unstable. Due to the long range of Vs, the leading order
grows much faster than N and depends on Ω. More precisely, this is a mean-field
limit with

lim
N→∞

E(s,ΩN )

N1+ s
d

=
1

2
inf

ρ∈P(Ω)

∫

Ω

∫

Ω

dρ(x) dρ(y)

|x− y|s ,

the Riesz capacity of the set Ω. The optimal probability ρΩ diverges at the bound-
ary of Ω for s > d− 2 and it is supported on ∂Ω in the Coulomb case s = d − 2.

In addition, we have 1
N

∑N
j=1 δxj,N

⇀ ρΩ in the sense of measures, where the xj,N
minimize (1), so the particles concentrate very much close to the boundary, which
is a sign of instability.

To stabilize the system, it is convenient to add a neutralizing uniform back-
ground, leading to Wigner’s Jellium model :

(4) EJel(s,ΩN ) := min
x1,...,xN∈ΩN

{ ∑

1≤j<k≤N

Vs(xj − xk)−
N∑

j=1

∫

ΩN

Vs(xj − y) dy

+
1

2

∫

ΩN

∫

ΩN

Vs(x− y) dx dy

}
.

For d− 2 ≤ s < d, the background is enough to ensure the existence of the limit

lim
N→∞

EJel(s,N)

N
:= eR(s)

and its independence with respect to Ω. We have used the same notation eR(s)
for a reason that we explain in a moment.

It is again conjectured that the system crystallizes (this has only been proved
for s = −1 in dimension d = 1 but here we concentrate on s ≥ 0). If the particles
are arranged on a lattice L, it was proved in [2, 3, 5] that

eJel(s) = ζL(s)

where ζL(s) is the analytic extension of the Epstein Zeta function appearing in (3)
(the latter has an extension to C \ {d} like for the usual 1D Zeta function). The
fact that the Jellium problem is the analytic extension of the usual Riesz energy
for s > d (assuming crystallization) shows that the Jellium model is the most
natural extension for d − 2 ≤ s < d. Assuming that the system crystallizes, it is
known that the particle must be placed on a triangular lattice in dimension d = 2,



362 Oberwolfach Report 7/2017

and conjectured that it must be the FCC lattice for 3/2 ≤ s < 3 and the Body
Centered Cubic (BCC) lattice for 1 ≤ s ≤ 3/2 in dimension d = 3.

Let us finally introduce the Uniform Electron Gas which is a cornerstone of
Density Functional Theory in Quantum Chemistry and Physics. For a given den-
sity ρ with

∫
Rd ρ = N (an integer), we introduce the lowest Coulomb energy that

can be reached by a probabilistic N -particle system having this density ρ, to which
we subtract the average one-particle energy:

(5) Es(ρ) := inf
P∈⊗N

s P(Rd)
(e1)#P=ρ/N

{∫

(Rd)N

∑

1≤j<k≤N

Vs(xj − xk) dP(x1, ..., xN )

}

− 10≤s<d

2

∫

Rd

∫

Rd

Vs(x− y) dρ(x) dρ(y).

This is a multi-marginal optimal transport problem. We only fix the first marginal
(e1)#P of the N -particle probability P since the latter is assumed to be symmetric.

The Lieb-Oxford inequality [6, 7] states that

(6) Es(ρ) ≥ −eLO(s)
∫

Rd

ρ(x)1+
s
d dx.

This can be used to prove that the following limit exists

lim
N→∞

Es(1ΩN
)

N
= eUEG(s)

The quantity eUEG(s) is the one which should be used in all the DFT programs
(for s = 1 and d = 3), but it is commonly assumed that

(7) eUEG(s) coincides eR(s), for s ∈ [d− 2,∞) \ {d}.

Indeed, if the system crystallizes, one can construct a trial state with constant
density, by clamping the particles on the lattice and then average over the trans-
lations of this lattice. This amounts to choosing a Monge-type state where the
transport map is only moving the particles according to translations of the lattice.
Surprisingly, a calculation in [5] showed that this trial state has the right energy
for s > d−2, but not for s = d−2 where a positive shift appears. Recent numerical
computations in [11] for s = 1 in dimension d = 3 have shown that the Monge
state described above is not at all optimal, leaving the question (7) widely open.

Since obviously eLO(s) ≥ −eUEG(s), the Uniform Electron Gas is also a way
to get lower bounds on the best Lieb-Oxford constant (6). In [8, 9] it was even
conjectured that the two must also be equal.

In dimension d = 1, recent works [4] in optimal transportation imply that the
Monge state is indeed exact, and therefore we indeed have the equality of the UEG
and Riesz energies for s > −1 and non-equality for s = −1 (Coulomb case), with
the shift computed in [5].
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Gradient flow and functional inequalities for quantum Markov

semigroups

Eric A. Carlen

(joint work with Jan Maas)

We study a class of ergodic quantum Markov semigroups on finite-dimensional
unital C∗-algebras. These semigroups have a unique stationary state σ, and we
are concerned with those that satisfy a quantum detailed balance condition with
respect to σ. These are close, but non-commutative, analogs of the semigroups
associated to Kolmogorov equations that can be written as gradient flow with
respect to the 2-Wasserstein metric for the relative entropy, and as Felix Otto
showed, this perspective on these evolution equations is very fruitful, especially
with regard to functional inequalities governing rates of relaxation to equilibrium.
In [1] is was shown that the infinite temperature Fermi oscillator semigroup, intro-
duced by Leonard Gross in the 1970’s, is gradient flow with respect to a natural
non-commutative mass transportation metric for the relative entropy with respect
to its invariant state, which is the normalized trace, and this was used to deduce
certain functional inequalities.

The present work, [2], greatly extends [1]: We provide the appropriate non-
commutative transportation metric with respect to which ergodic quantumMarkov
semigroups satisfying detailed balance are gradient flow for the relative entropy
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with respect to their unique invariant state σ. In finite dimensions, this trans-
portation metric is a smooth Riemannian metric on the set of density matrices,
and is a non-commutative analog of the 2-Wasserstein metric. In several interest-
ing cases we are able to show, in analogy with work of Otto on gradient flows with
respect to the classical 2-Wasserstein metric, that the relative entropy is strictly
and uniformly convex with respect to the Riemannian metric introduced here. As
a consequence, we obtain a number of new inequalities for the decay of relative
entropy for ergodic quantum Markov semigroups with detailed balance.
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New results on discrete Bakry-Emery methods and displacement

convexity

Ansgar Jüngel

Several numerical schemes which preserve the entropy structure of the underlying
evolution equations are discussed. Three different techniques are presented: the
discrete gradient flow scheme of the 1D Fokker-Planck equation; the Bochner-
Bakry-Emery method for stochastic processes; and a systematic summation-by-
parts approach which also allows to treat nonlinear equations and which may lead
to a general discrete Bakry-Emery method.

Least action principles for incompressible flows and optimal transport

between shapes

Dejan Slepčev

(joint work with Jian-Guo Liu an Robert L. Pego)

Arnold observed in the 1960s, [1], that the Euler equations of incompressible fluid
flow correspond formally to geodesic equations in a group of volume-preserving
diffeomorphisms. Working in an Eulerian framework, we discuss [5] incompressible
flows of shapes as critical paths for action (kinetic energy) along transport paths
constrained to be shape densities (characteristic functions). The geodesic paths
correspond to critical paths for the action

(1) A =

∫ 1

0

∫

Rd

ρ|v|2 dx dt ,

where ρ = (ρt)t∈[0,1] is a path of shape densities transported by a velocity field

v ∈ L2(ρ dx dt) according to the continuity equation

(2) ∂tρ+∇ · (ρv) = 0 .
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Here, saying that ρt is a shape density means that ρt is constrained to be a
characteristic function of a fluid domain Ωt:

(3) ρt = χΩt
, t ∈ [0, 1].

The velocity is divergence free in the interior of Ωt.
We study the action (1) subject to given endpoint conditions of the form

(4) ρ0 = χΩ0 , ρ1 = χΩ1 .

These conditions differ from Arnold-style conditions that fix the flow-induced
volume-preserving diffeomorphism between Ω0 and Ω1, and correspond instead
to fixing only the image of this diffeomorphism. It turns out that the geodesic
equations that result are precisely the Euler equations for potential flow of an
incompressible, inviscid fluid occupying domain Ωt, with zero pressure and zero
surface tension on the free boundary ∂Ωt. In short, the geodesic equations are
classic water wave equations with zero gravity and surface tension.

The problem of minimizing this action exhibits an instability associated with
microdroplet formation, with the following outcomes: Any two shapes of equal
volume can be approximately connected by an Euler spray—a countable superpo-
sition of ellipsoidal droplet solutions of incompressible Euler equations with zero
pressure on the droplet boundaries. The infimum of the action is the Wasser-
stein distance squared, and is almost never attained except in dimension 1. Every
Wasserstein geodesic between bounded densities of compact support provides a
solution of the (compressible) pressureless Euler system that is a weak limit of
(incompressible) Euler sprays. Each such Wasserstein geodesic is also the unique
minimizer of a relaxed least-action principle (introduced by Brenier [3]; see also
[4]) for a two-fluid mixture theory corresponding to incompressible fluid mixed
with vacuum.
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[5] J-G. Liu, R.L. Pego, and D. Slepčev, Least action principles for incompressible flows and
optimal transport between shapes, arXiv preprint arXiv:1604.03387, (2016).



366 Oberwolfach Report 7/2017

A gradient flow to the Boltzmann equation

Matthias Erbar

Since the pioneering work of Otto [8] it is well know that many diffusion equations
can be cast as gradient flows in the space of probability measures with the relevant
geometry being induced by the L2 Wasserstein distance. Otto’s approach has
been widely used in the study of the trend to equilibrium, stability questions and
construction of solutions.

In this talk, I presented a characterization of the spatially homogeneous Boltz-
mann equation as a gradient flow of the entropy based on [3]. Crucial for this is
the identification of a novel geometry on the space of probability measures that
takes the collision process between particles into account.

The spatially homogeneous Boltzmann equation is given as

∂tf =

∫

Rd

∫

Sd−1

[
f ′f ′

∗ − ff∗
]
B(v − v∗, ω)dv∗dω ,

where f is a probability density on Rd. The shorthand f∗, f ′, f ′
∗ stands for

f(v∗), f(v′), f(v′∗) with v, v∗ and v′, v′∗ denoting the pre- and post-collisional veloc-
ities respectively related according to v′ = v−〈v− v∗, ω〉ω, v′∗ = v∗ + 〈v− v∗, ω〉ω
with ω ∈ Sd−1. The collision kernel B encodes the microscopic details of the par-
ticle interaction and we assume it to be continuous and to satisfy c−1 ≤ B ≤ c for
some constant c > 0.

Boltzmann’s H-Theorem asserts that the entropy H(f) =
∫
f log f is non-

increasing along solutions, i.e. d
dtH(ft) = −D(ft) ≤ 0 , where

D(ft) =
1

4

∫
log

f ′f ′
∗

ff∗
(f ′f ′

∗ − ff∗)B(v − v∗, ω)dωdv∗dv .

Our goal is to characterize the homogeneous Boltzmann equation as the evolution
that decreases the entropy as fast as possible. This gradient flow structure rests
on a novel geometry on the space of probability measures. Given probabilities f0
and f1 we solve (a suitable relaxation of) the minimization problem

WB(f0, f1)
2 = inf

{
1

4

∫ 1

0

∫
|∇̄ψt|2Λ(ft)B(v − v∗, ω)dωdv∗dvdt

}
,

where the infimum runs over all curves of probability densities (ft)t connecting f0
and f1 and all functions ψ : [0, 1]× Rd → R related via

∂tft(v) +
1

4

∫
∇̄ψtΛ(ft)B(v − v∗, ω)dωdv∗ = 0 .

Here, we have set ∇̄φ = φ′ + φ′∗ − φ− φ∗ and Λ(f) is shorthand for Λ
(
ff∗, f ′f ′

∗
)
,

where Λ(s, t) = (s− t)/(log s− log t) denotes the logarithmic mean.
It turns out that WB defines an extended, separable and complete distance on

the set P∗(Rd) of probabilities with zero mean and unit variance. Moreover, each
pair of densities at finite distance can be joined by a geodesic, i.e. an optimal curve
(ft)t in the problem above.

We obtain the following variational characterization of the Boltzmann equation
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Theorem 1: For any curve (ft)t≥0 of probability densities in P∗(Rd) with H(f0) <
∞ we have that

JT (f) := H(fT )−H(f0) +
1

2

∫ T

0

D(ft) + |ḟt|2WB
dt ≥ 0 ∀T ≥ 0 .

The solution (ft)t to the homogeneous Boltzmann equation is the unique curve
with JT (f) = 0 for all T .

Here |ḟt|WB
denotes the metric speed w.r.t. WB . In this sense, the Boltzmann

equation is a steepest descent of the entropy, decreasing it as fast as possible. To
motivate this result, note that for a smooth function E on Rn and any smooth
curve x we have

E(xT )− E(x0) =

∫ T

0

∇E(xt)ẋtdt ≥ −1

2

∫ T

0

|∇E|2(xt) + |ẋt|2dt .

with equality if and only if x is a gradient flow curve of E, i.e. ẋt = −∇E(xt). In
metric spaces this characterization can be used to define gradient flows by replacing
|ẋt|with the metric speed of the curve and |∇E| by an upper gradient. We refer
to [1] for a detailed account on gradient flows in metric spaces. Thus, Theorem
1 characterizes the Boltzmann equation as the gradient flow of the entropy in the
space (P∗(Rd),WB).

As a first application, we obtain a time-discrete variational approximation
scheme for the Boltzmann equation related to the implicit Euler scheme for the
gradient flow structure. Given a time step τ > 0 and an initial datum f0 ∈ P∗(Rd)
with H(f0) <∞ define iteratively

f τ
0 = f0 , f τ

n+1 ∈ argmin
g

[
H(g) +

1

2τ
WB(g, f

τ
n)

2
]
.

and let f τ
t = f τ

n for t ∈ ((n− 1)τ, nτ ] be the piecewise constant interpolation.

Theorem 2: As τ goes to zero, f τ
t converges weakly to the solution ft of the

Boltzmann equation with initial datum f0.

As a second application the gradient flow structure can be used to give a new
and simple proof of the convergence of Kac’s random walk, an N -particle stochas-
tic dynamics, to the solution of the spatially homogeneous Boltzmann equation
recovering results of Sznitman [10] (see also Mischler–Mouhot [6] and Norris [7]
for quantitative results). It has been shown recently that Kac’s random walk (in
fact any continuous time Markov chain) has a gradient flow structure induced by
a suitable transportation distance, see [4, 5, 2], i.e. a characterization similar to
Theorem 1 holds. The crucial idea is to note that these gradient flow structures are
consistent in the limit N → ∞. Using the approach of Sandier–Serfaty [9] of evolu-
tionary Γ-convergence this boils down to proving simple lim inf-estimates between
the constituent elements of the gradient flow structure, the entropy, dissipation
and metric speed, yielding the convergence of the gradient flows.
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Heat flows on time-dependent metric measure spaces

Eva Kopfer

(joint work with Karl-Theodor Sturm)

Motivation. Let us start by describing the heat flow on a closed manifold equip-
ped with a family of Riemannian tenors (gt)t∈[0,T ]. We need to define two objects;
firstly, the heat flow which solves

∂tut = ∆tut on (0, T )×M

and the adjoint heat flow which solves

∂tvt = −∆tvt −
1

2
tr(∂tgt)vt, on (0, T )×M

where ∆t denotes the Laplace Beltrami operator wrt the metric gt. These objects
are adjoint in the following sense
∫ T

0

∫

M

(∂t −∆t)ut · vt dvolt dt =
∫ T

0

∫

M

ut · (−∂t −∆t −
1

2
tr(∂tgt))vt dvolt dt

+

[∫

M

utvt dvolt

]T

0

.

Note that the adjoint heat equation has to be interpreted backwards in time.
We investigate tensors which evolve as a super-Ricci flow, cf. [1]. A smooth

closed manifoldM equipped with a family of Riemannian tensors (gt)t∈[0,T ] is said
to be a super-Ricci flow if

Ric(gt) ≥ −1

2
∂tgt
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provided that g is differentiable in t.
Possible examples may include Ricci flows, i.e. Ric(gt) = − 1

2∂tgt and, of course,
the static case Ric ≥ 0. Let us recall the well-known fact that Ric ≥ 0 is equivalent
to geodesic convexity of the relative entropy functional on the space of Borel
probability measures equipped with the L2-Kantorovich distance W

Ent(µt|vol) ≤ (1− t)Ent(µ0|vol) + tEnt(µ1|vol) ∀W -geodesics µt,

transport estimates for the heat flows Ptµ, Ptν on measures

W (Ptµ, Ptν) ≤W (µ, ν),

and Bakry-Émery type gradient estimates

|∇Pt(u)|2 ≤ Pt(|∇u|2).
In the same manner as Sturm, Lott and Villani defined lower Ricci curvature
bounds for metric measure spaces, Sturm [3] introduced super-Ricci flows on metric
measure spaces.

Definition 1. We say that a family of metric measure spaces (X, dt,mt)t∈[0,T ] is
a super-Ricci flow if for each Wt-geodesic (µa)a∈[0,1]

∂aEnt(µa|mt)|a=1 − ∂aEnt(µa|mt)a=0 ≥ −1

2
∂tWt(µ

0, µ1)2.

We give two examples as an illustration.
Consider the spherical suspension Σ(S2(1/

√
3) × S2(1/

√
3)) over the product

of the two-spheres with radius 1/
√
3. It can be shown that outside of the north

and south pole this space is a 5-dimensional (incomplete) Riemannian manifold
with constant Ricci curvature Ric(g0) = 4. Then gt = (1−8t)g0 prescribes a Ricci
flow and (M, gt) shrinks homothetically to a point in finite time. We obtain a
super-Ricci flow if we include the north and the south pole again and consider the
associated sequence of metric measure spaces. Intuitively, the reason for this is
justified by the fact that the optimal path measure assigns zero mass to geodesics
which cross the poles.

Figure 1. Surface of revolution of a piecewise hyperbolic space
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An example of a surface is depicted in Figure 1. Under the evolution of a Ricci
flow regions with negative Ricci curvature will inflate, while the edges will smooth
out, whereas a super-Ricci flow may keep the edges but regions with negative
curvature still have to inflate.

Main results. Let (X, dt,mt)t∈[0,t] be a family of metric measure spaces such

that the map t 7→ log dt(x, y) is Lipschitz continuous and mt = e−ftm for some
suitable function f : [0, T ]×X → R presumed to be Lipschitz continuous in time
and space. Moreover we assume that each (X, dt,mt) is a RCD(K,N) space, i.e.
the space satisfies the curvature dimension condition CD(K,N) in the sense of
Lott, Sturm and Villani and for each t the Cheeger energy defines a strongly local
Dirichlet form Et(u, v) =

∫
Γt(u, v) dmt = −

∫
∆tuv dmt.

Theorem 1 (cf. [2]). (1) There exists a unique solution (Pt,su)t≥s to ∂tut =
∆tut on (s, T )×X with us = u in a weak distributional sense.

(2) There exists a unique solution (P ∗
t,sv)t≥s to ∂svs = −∆svs + ∂sfsvs on

(0, t)×X with vt = v in a weak distributional sense.

Now we are ready to state our main theorem which can be thought of as a time-
dependent version of lower Ricci curvature bounds Ric ≥ 0 and a generalization
of the results obtained in [1].

Theorem 2 (cf. [2]). The following are equivalent

(1) (X, dt,mt)t∈[0,t] is a super-Ricci flow.
(2) For each nonnegative u, h with the same mass

Ws(P
∗
t,sums, P

∗
t,shms) ≤Wt(umt, hmt)

(3) For each Lipschitz function u
Γt(Pt,su) ≤ Pt,s(Γsu)

(4) ”Bochner’s inequality“ 1
2∆tΓt(u)− Γt(u,∆tu) ≥ 1

2∂tΓt(u).
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An entropic gradient structure for quantum Markov semigroups

Markus Mittnenzweig

(joint work with Alexander Mielke)

We describe a recently discovered entropic gradient structure for quantum Markov
semigroups, see also the reports by Eric Carlen and Tryphon Georgiou on this
topic. By a quantum Markov semigroup, also known as Lindblad equations, we
mean an equation of the type

(1) ρ̇ =
i

~

[
ρ,H

]
+ Lρ with LA =

N2−1∑

n=1

γn
(
[Qn, AQ

∗
n] + [QnA,Q

∗
n]
)
.

for arbitrary operators Qn ∈ L(h, γn > 0 and h being some finite-dimensional
complex Hilbert space. Such equations arise for instance in the fields of quantum
optics and quantum information theory, where one needs to describe the influence
of the environment on the quantum system, which is modeled by the dissipative
term Lρ. Here, we also ask the generator L to satisfy a detailed balance condition
(DBC) with respect to the thermal equilibrium ρβ = Z−1

β exp(−βH), by which
we mean that Lρβ = 0 and that L∗ is symmetric with respect to the weighted
operator inner product (A,B) 7→ tr(A∗Bρβ), also called GNS inner product. This
class of Lindbladians arises naturally as the weak coupling limit of a quantum
system coupled to a heat bath.

Moreover, the relative entropy (or free energy)

F = tr
(
ρ(log ρ− log ρβ)

)

is a Liapunov function for (1). Here we want to show more, namely that L can be
written as

L = −K(ρ)DF(ρ)

where DF(ρ) = log ρ− logρβ and K(ρ) is a positive symmetric operator, which we
will simply call Onsager operators. Thus, our aim is the construction of an Onsager
operatorK which generalizes the Wasserstein operatorKWass(u) : µ 7→ −div

(
ρ∇µ

)

for the Fokker-Planck equation. The crucial point is that K(ρ) has to depend on
ρ in a very specific way to obtain the relation

−K(ρ)
(
log ρ+ βH

)
= Lρ,

where the right-hand side is linear in ρ. In the Fokker-Plank equation this is
achieved by the chain rule u∇

(
log u + V ) = ∇u + u∇V . In the quantum case, a

similar relation exists. it involves the use of the Kubo-Mori operator

Cρ : L(h) → L(h); A 7→ CρA :=

∫ 1

0

ρsAρ1−sds,

which satisfies for all Q ∈ L(h) the fundamental relation

(2) Cρ
[
Q, log ρ

]
=
[
Q, ρ

]
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which we will call the miracle relation. The idea is, that in the noncommutative
case, commutators replace derivatives, because they satisfy all the algebraic prop-
erties of derivatives, in particular the product rule ∇(ab) = (∇a)b + a(∇b).
However, we cannot directly apply the miracle relation (2) to (1) since we need to
use log ρ − log ρβ as the thermodynamic driving force. But then, the expression
Cρ
[
Q, log ρβ

]
is nonlinear in ρ, so this approach will not give a gradient struc-

ture for linear Lindblad generators Lρ. The solution to this problem is a suitable
generalization of the miracle identity (2) as will be described in the following.

The starting point is a tensor-product representation of Lindblad operators. We
set h1 = h and choose an arbitrary second Hilbert space h2 assuming that h1 and
h2 are both finite-dimensional. For an arbitrary Hermitian Q ∈ L(h1⊗h2) and a
σ̂ ∈ L(h2) with σ̂ = σ̂∗ > 0 one sees that

(3) Lρ = −trh2

([
Q, [Q, ρ⊗σ̂]

])

is indeed a Lindblad operator. Here trh2 is the partial trace over h2, i.e. trh2(A⊗B)
= A tr(B). Moreover, it can be shown easily that this L satisfies the DBC with
respect to ρβ, if the commutation relation

[
Q , ρβ⊗σ̂

]
= 0

holds in addition. Under this condition it is then straightforward to show the
following generalization of the miracle identity:

(4) Cρ⊗σ̂

[
Q , (log ρ+βH)⊗ 1h2

]
=
[
Q , ρ⊗σ̂

]
.

Indeed, it suffices to use the fact that Q also commutes with

log(ρβ⊗σ̂) = −βH⊗1h2 + 1h1⊗ log σ̂

and then apply the classical miracle identity (2). With this, we can define the
Onsager operator

K(ρ)ξ = trh2

([
Q, Cρ⊗σ̂[Q, ξ⊗1h2 ]

)
,

which is a symmetric and positive semidefinite operator and satisfies the desired
relation

−K(ρ)
(
log ρ+ βH

)
= −trh2

([
Q, [Q, ρ⊗σ̂]

])
= Lρ.

Finally let us mention, that the following generalization Dα
ρ of the Kubo-Mori

operator lies at the core of this gradient structure:

Dα
ρA := e−α/2

∫ 1

0

esαρsAρ1−sds

This operator satisfies the following generalization of the identity (2):

Dα
ρ

(
[Q, log ρ]− αQ

)
= e−α/2Qρ− eα/2ρQ.

If we assume additionally that [Q,H ] = αQ, then again we obtain a noncommu-
tative variant of the chain rule:

Dα
ρ

(
[Q, log ρ+ βH ]) = e−βα/2Qρ− eβα/2ρQ.
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Convergence to equilibrium for renormalised solutions to

reaction-diffusion systems

Bao Q. Tang

(joint work with Klemens Fellner)

Consider N chemical substances S1, . . . , SN reacting in R reactions of the form

(1) yr,1S1 + . . .+ yr,NSN
kr−→ y′r,1S1 + . . .+ y′r,NSN or shortly yr

kr−→ y′r

for all r = 1, . . . , R, where yr, y
′
r ∈ NN are stoichiometric coefficients, and kr > 0

is the reaction rate constant . Denote by ui the concentration of Si and u =
(u1, . . . , uN) the vector of concentrations, the considered reaction-diffusion system
is of the form

(2)

∂tui − di∆ui = fi(u), x ∈ Ω,

∇ui · ν = 0, x ∈ ∂Ω,

ui(x, 0) = ui,0(x), x ∈ Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, di > 0 is the
diffusion coefficient, and the nonlinearities fi : R

N → R are defined through the
reactions (1) by using law of mass action,

fi(u) =

R∑

r=1

kr(y
′
r,i − yr,i)u

yr with uyr =

N∏

i=1

u
yr,i

i .

The aim of this work is to study the convergence to equilibrium for solutions to
(2) with the complex balance condition. A spatial homogeneous state u∞ ∈ [0,∞)N

is called a complex balanced equilibrium for (2) if the total-inflow and total-outflow
are balanced at any complex, that is for any y ∈ {yr, y′r : r = 1, . . . , R} the
following holds ∑

{r: yr=y}
kru

yr
∞ =

∑

{r: y′
r=y}

kru
yr
∞.

System (2) is said to satisfy the complex balance condition, and consequently
is called a complex balanced system, if it has a complex balanced equilibrium.
Moreover, it is well-known that for each initial data u0 = (u1,0, . . . , uN,0) there
exists a unique strictly positive equilibrium u∞ ∈ (0,+∞)N and possibly additional
boundary equilibria u∗ ∈ ∂[0,+∞)N .

It is remarked that the global existence of (classical, strong, weak) solutions to
(2) is widely open in general since the nonlinearities can have arbitrary polynomial
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growth (in terms of concentrations). Recently, it was proved in [5] that under
certain physical assumptions, system (2) possesses a global renormalised solution.
Our aim is to prove that under the complex balance condition and (2) has no
boundary equilibrium, then any renormalised solution converges exponentially to
the complex balanced equilibrium. Moreover, the proof is explicit up to a finite
dimensional inequality.

The main tool used is the so-called entropy method, which was initiated in ki-
netic theory, and has recently proved very useful in investigating reaction-diffusion
systems. If (2) is complex balanced, and thus possesses a unique strictly positive
complex balanced equilibrium u∞, then the relative entropy functional defined by

E(u|u∞) =

N∑

i=1

∫

Ω

(
ui log

ui
ui,∞

− ui + ui,∞

)
dx

is decreasing along any trajectory of (2), with the entropy-dissipation functional

0 ≤ D(u) := − d

dt
E(u|u∞) =

N∑

i=1

∫

Ω

di
|∇ui|2
ui

dx+

R∑

r=1

kru
yr
∞

∫

Ω

Ψ

(
uyr

uyr∞
;
uy

′

r

u
y′
r∞

)
dx

in which Ψ(x; y) = x log(x/y)−x+y ≥ 0. The main goal is to establish an entropy
entropy-dissipation inequality of the form

(3) D(u) ≥ λE(u|u∞)

for some λ > 0. Once this is proved, then thanks to a Gronwall inequality one ob-
tains first the decay to zero of relative entropy, and consequently the convergence
of solutions to the equilibrium u∞, thanks to a Csiszár-Kullback-Pinsker inequal-
ity. Note that this functional inequality only holds when one takes into account
all the conservation laws of (2). Many works were been carried out to prove (3)
in special cases, see e.g. [1, 2, 3, 4] and references therein. The mentioned works
proved (3) either explicitly in special cases or implicitly in the general case. This
work fills in the gap, i.e. (3) is proved in general case explicitly, up to an explicit
finite dimensional inequality.

The main ideas to prove (3) are stated in the following steps:

step 1: By using the additivity of the relative entropy, we have

E(u|u∞) = E(u|u) + E(u|u∞)

where u = (u1, . . . , uN ) with ui =
1
|Ω|
∫
Ω
uidx. The Logarithmic Sobolev

inequality easily implies, for some λ1 > 0,

1

2
D(u) ≥ λ1E(u|u)

step 2: By elementary inequality and the bound of solution in L1-norm, one
obtains first

E(u|u∞) ≤ K1

N∑

i=1

[√
ui
ui,∞

− 1

]2
.



Applications of Optimal Transportation in the Natural Sciences 375

On the other hand, by using a domain composition technique the entropy-
dissipation is estimated below as

1

2
D(u) ≥ K2

R∑

r=1

[√
u

u∞

yr

−
√

u

u∞

y′

r
]2
.

Note that all estimates in step 1 and step 2 are explicit.
step 3: It remains in this step to prove the finite dimensional inequality

R∑

r=1

[√
u

u∞

yr

−
√

u

u∞

y′

r
]2

≥ K3

N∑

i=1

[√
ui
ui,∞

− 1

]2

under the conservation laws of (2) and the assumption that (2) does not
have boundary equilibria. This inequality is then proved in general by a
contradiction argument, and hence implicit. However, for concrete sys-
tems, for instance

α1S1 + . . .+ αNSN ⇌ β1S1 + . . .+ βNSN

or

α1S1 → α2S2 → . . .→ αNSN → α1S1,

the finite dimensional inequality can be explicitly proved.

In the case when (2) has (possibly many) boundary equilibria, the entropy
entropy-dissipation inequality (3) does not hold in general. In such a case, we look
for a weaker version, that is, along any trajectory u(t) of (2) it holds

D(u(t)) ≥ λ(t)E(u(t)|u∞) for all t > 0,

where λ(t) is a function of time such that
∫ +∞
0

λ(τ)dτ = +∞. This generalised
entropy entropy-dissipation estimate is then verified in a special case

S1 → αS2 + S3 → (α+ 1)S2 → S1

in which α ≥ 1 is a constant. The convergence to equilibrium for general systems
having boundary equilibria remains as an important open question.
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Discrete minimisers are close to continuum minimisers for the

interaction energy

Francesco Saverio Patacchini

(joint work with José Alfredo Cañizo)

Consider N ∈ N particles x1, . . . , xN in Rd interacting via a potential W : Rd →
(−∞,+∞]. If the particles have equal masses 1/N then, if one writes X =
(x1, . . . , xN ), their total interaction energy is given by

EN (X) :=
1

2N2

N∑

i=1

N∑

j=1
j 6=i

W (xi − xj).

We call EN the discrete interaction energy of the configuration X. A natural
question regards the existence and shape of global minimisers of this interaction
energy among all possible particle configurations as N → ∞; we refer to them
as discrete minimisers. We show that, for large N , these minimisers are closely
related to those of the continuum interaction energy defined by

E(ρ) =
1

2

∫

Rd

∫

Rd

W (x− y) dρ(x) dρ(y)

for any ρ ∈ P(Rd), where P(Rd) is the set of Borel probability measures on Rd.
The existence of continuum minimisers, i.e., global minimisers of E, have been
shown to be almost equivalent to the instability of the potential W [2, 6]: we say
that W is unstable if there exists ρ ∈ P(Rd) such that E(ρ) < 1

2 lim|x|→∞W (x),
whenever this limit exists. This concept of stability (or instability) is very close to
the classical concept of H-stability as used in statistical mechanics [10]. In [2, 6] it
was proved that, under some technical assumptions, continuum minimisers exist
if and only if there exists a probability measure ρ with E(ρ) ≤ 1

2 lim∞W ; that is,

if and only if W is unstable or there is ρ with E(ρ) = 1
2 lim∞W . Quite naturally

this notion of instability plays a central role in the study of discrete minimisers
and, leaving out for now the technical assumptions on W , our main result is the
following [3]: for every N there exists a discrete minimiser XN and

(1) if W is unstable, then the diameter of XN is uniformly bounded for all
N and (XN )N , that is, its empirical measure, has a subsequence which
converges in the weak sense, up to translations, to a minimiser of the
continuum energy E as N → ∞;

(2) if W is strictly stable, then the diameter of XN tends to ∞ as N → ∞.

The main assumptions on W in this result are that it is locally integrable, and
that it is either continuous and bounded or has a singularity behaving like |x|2−β

close to the origin for some 2 < β < d (i.e., W is β-repulsive for 2 < β < d). The
power-law potentials

W (x) =
|x|a
a

− |x|b
b
, with

{
0 < b < a when d ∈ {1, 2},
2− d < b < a, b 6= 0, when d ≥ 3,



Applications of Optimal Transportation in the Natural Sciences 377

and the Morse potentials

W (x) = Cre
−|x|/ℓr − Cae

−|x|/ℓa, with ℓr < ℓa and Cr/Ca < (ℓa/ℓr)
d,

are all included in our main result and are unstable.

Understanding the shape of discrete minimisers when the number of particles is
very large is of great interest in statistical mechanics. For physically relevant po-
tentials such as the Lennard-Jones potentialW (x) = |x|−12−|x|−6 the conjectured
behaviour is that crystallisation takes place as N → ∞. Even if showing a crys-
tallisation property is remarkably hard, one can make a weaker observation: for
certain potentials, including Lennard-Jones, the diameter of ground states seems
to increase without bound as N → ∞, while for others the diameter seems to tend
to a fixed value. This is part of the content of our result, whose main restriction
in this setting is that it requires the potential W to be less singular than |x|2−d

at x = 0. When the singularity is stronger, between |x|−d and |x|2−d, we expect
our main result still to be true, although we are unable to show it. Hence our
statement does not say anything about the Lennard-Jones case, but does show
that minimisers grow in diameter without bound for a range of stable potentials
with a possible singularity at x = 0.

A more recent motivation for our result comes from the field of collective be-
haviour, where shapes of self-organised structures in some individual-based models
exhibit very interesting phenomena and are closely related to those of discrete min-
imisers. In this context, models aim at capturing the behaviour of a large number
of individuals, with applications to fish, cattle, birds, ants, and crowds of people.
In very simplified models, interaction through a potential reflects a tendency in
individuals to avoid close contact while staying close to the group. In this field
there is an interest in the shape of minimisers for potentials which are very differ-
ent from those found in physics, including potentials with a mild or no singularity
at the origin or which tend to infinity at large distances. The paper [4] is the
first example we know of where the link was made between the stability properties
of the potential and the size of stationary states. It was observed that their size
increases with N for stable potentials while it does not for unstable ones. This is
precisely the behaviour which our result justifies rigorously.

The general strategy to prove our main result in the singular case (the contin-
uous and bounded case being much easier) is to draw a parallel discrete version
of several results which have been recently obtained for continuum minimisers.
A first one is the regularity of continuum minimisers. If the potential W is β-
repulsive with 2 < β < d, then one obtains that any minimiser ρ is in the Morrey
space of measures which satisfy

ρ(Br) ≤ Crβ for any ball Br of radius r > 0

for some C > 0 independent of the ball Br. This implies that any component of
the support of ρ which has Hausdorff dimension n satisfies n ≥ β, as already noted
in [1]. An analogue of this regularity is needed for discrete minimisers: we prove
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that there exists a constant C > 0 depending only on W such that any minimiser
X = (x1, . . . , xN ) satisfies

µX

(
Br(xi)

)
≤ Crβ + 1

N for any r > 0 and i ∈ {1, . . . , N},
where µX is the empirical measure associated to X. This motivates an interesting
definition of empirical Morrey measures which serves as a discrete version of the
Morrey spaces. Another important property of continuum minimisers is that they
satisfy the following Euler–Lagrange condition: if ρ is a continuum minimiser then

W ∗ ρ(x) = 2E(ρ) for ρ-almost every x ∈ Rd.

The quantity corresponding toW ∗ρ(x) in the discrete case, for a particle distribu-

tion X = (x1, . . . , xN ), is Pi(X) := 1
N

∑N
j=1,j 6=iW (xi − xj) for all i ∈ {1, . . . , N}.

Interestingly, for a discrete minimiser this does not seem to be constant at all sites
i, but we show a bound on its variation across sites which decays asymptotically
as N → ∞: there exist A > 0 and 0 < k ≤ 1 such that any minimiser X satisfies

(1) |Pi(X)− Pj(X)| ≤ AN−k for all i, j ∈ {1, . . . , N}.
Again another property is that continuum minimisers are known to be compactly
supported if W is increasing at long range [2]. Analogously, we can give a uniform
bound on the diameter of discrete minimisers. Finally, our proof of convergence of
minimisers contains the fact that the discrete energy Γ-converges to the continuum
energy in the weak topology.
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Computing certain invariants of topological spaces of dimension three

Gabriel Peyré

(joint work with J-D. Benamou, L. Nenna, G. Carlier, L. Chizat, M. Cuturi, J.
Solomon, F-X. Vialard)

Optimal transport (OT) has become a fundamental mathematical tool at the inter-
face between calculus of variations, partial differential equations and probability.
It took however much more time for this notion to become mainstream in numer-
ical applications. This situation is in large part due to the high computational
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cost of the underlying optimization problems. There is however a recent wave of
activity on the use of OT-related methods in fields as diverse as computer vision,
computer graphics, statistical inference, machine learning and image processing.
In this talk, I will review an emerging class of numerical approaches for the ap-
proximate resolution of OT-based optimization problems. These methods make
use of an entropic regularization of the functionals to be minimized, in order to
unleash the power of optimization algorithms based on Bregman-divergences ge-
ometry (see [2] for a theoretical analysis and a litterature review). This results in
fast, simple and highly parallelizable algorithms, in sharp contrast with traditional
solvers based on the geometry of linear programming. For instance, they allow for
the first time to compute barycenters (according to OT distances) of probabil-
ity distributions discretized on computational 2-D and 3-D grids with millions of
points [1]. This offers a new perspective for the application of OT in machine
learning (to perform clustering or classification of bag-of-features data represen-
tations) and imaging sciences (to perform color transfer or shape and texture
morphing [6]). These algorithms also enable the computation of gradient flows for
the OT metric, and can thus for instance be applied to simulate crowd motions
with congestion constraints [4]. We will also discus various extensions of classi-
cal OT, such as handling unbalanced transportation between arbitrary positive
measures [3] (the so-called Hellinger-Kantorovich/Wasserstein-Fisher-Rao prob-
lem), and the computation of OT between different metric spaces (the so-called
Gromov-Wasserstein problem) [7, 5].
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Dynamic optimal transport and applications in imaging

Carola-Bibiane Schönlieb

(joint work with Yoeri Boink, Christoph Brune, Martin Burger, Hendrik Dirks,

Jocelyn Etienne, Lukas Lang, Sebastian Neumayer, Ozan Öktem)

The problem of optimal transport and its dynamic formulation due to Benamou-
Brenier is classical by now and since the seminar paper [1] has resulted in the
spread of optimal transport into various applications. In this talk I focused on two
applications of optimal transport in imaging: (1) generalized optimal transport
for the interpolation of images [3] and for indirect image matching [this is work

in progress with S. Neumayer and O. Öktem]; (2) optimal transport for motion
estimation in videos [this includes joint work with M. Burger and H. Dirks [2];
work in progress with C. Brune and Y. Boink on joint optimal transport and seg-
mentation; and work in progress with Jocelyn Etienne and L. Lang on convective
optimal transport for simulating dynamics of cell boundaries] .
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Discrete Geodesic Paths in the Space of Images

Martin Rumpf

(joint work with Benjamin Berkels, Alexander Effland, Florian Schfer)

In this extended abstract the space of images is considered as a Riemannian mani-
fold using the metamorphosis approach [2, 4, 5], where the underlying Riemannian
metric simultaneously measures the cost of image transport and intensity varia-
tion. A robust and effective variational time discretization of geodesics paths is
proposed and a variational scheme for a time discrete exponential map is inves-
tigated as well. The approach requires the definition of a discrete path energy
consisting of a sum of consecutive image matching functionals over a set of im-
age intensity maps and pairwise matching deformations. For square-integrable
input images the existence of discrete and interpolating geodesic paths defined as
minimizers of this variational problem is shown.

Metamorphosis. The metamorphosis model [2, 5] generalizes the flow of diffeo-
morphism approach allowing for intensity variations along transport paths and
associates a corresponding cost functional with these variations. In [4], Trouvé
and Younes rigorously analyzed the local geometry of the resulting Riemannian
manifold and proved the existence of geodesic curves for square-integrable images
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and the (local) existence as well as the uniqueness of solutions of the initial value
problem for the geodesic equation.

Let us suppose that the image domain D ⊂ Rn for n ∈ {2, 3} has Lipschitz
boundary. For a flow of diffeomorphisms φ(t) : D̄ → Rn for t ∈ [0, 1] driven by

the Eulerian velocity v(t) = φ̇(t) ◦φ−1(t) we take into account a quadratic form L
subject to certain growth and consistency conditions, which can be considered as
a Riemannian metric on the space of diffeomorphisms and thus on the space of dif-
feomorphic transformations u(t) = u0 ◦φ−1(t) of a given reference image u0. Now,
the metamorphosis approach allows for image intensity variations along motion
paths and penalizes the integral over the squared material derivative. In fact, the
path energy in the metamorphosis model for an image curve u ∈ L2((0, 1), L2(D))
and δ > 0 is defined as

(1) E [u] :=
∫ 1

0

inf
(v,z)

∫

D

L[v, v] +
1

δ
z2 dxdt ,

where the infimum is taken over all pairs (v, z) which fulfill the transport equation
D
∂tu = u̇ + v · ∇u = z. Here, we consider L[v, v] := Dv : Dv + γ∆mv ·∆mv with
γ > 0 and 2m > 1 + n

2 . To formulate this rigorously, one has to take into account

the weak material derivative z ∈ L2((0, 1), L2(D)) defined via the equation
∫ 1

0

∫

D

ηz dxdt = −
∫ 1

0

∫

D

(∂tη + div(vη))u dxdt

for all η ∈ C∞
c ((0, 1)×D). Geodesic curves are defined as minimizers of the path

energy (1).

Time discrete pathenergy and discrete geodesics. In what follows we con-
sider the time discretization of the path energy (1) proposed in [1]. To this end,
we define for arbitrary images u, ũ ∈ L2(D) the discrete matching energy
(2)

W [u, ũ] := min
φ∈A

{
WD[u, ũ, φ] :=

∫

D

|Dφ− Id|2 + γ|∆mφ|2 + 1

δ
(ũ ◦ φ− u)2 dx

}
,

which is composed of a rescaled thin plate regularization term (first two terms) and
a quadratic L2(D)-mismatch measure (cf [1, (6.2)]). The set of admissible defor-
mations A is defined as A :=

{
φ ∈ H2m(D,D) : φ− Id ∈ H2m

0 (D,D)
}
. Now, we

consider discrete curves u = (u0, . . . , uK) ∈ (L2(D))K+1 in image space and define
a discrete path energy as the sum of pairwise matching functionals W evaluated
on consecutive images of these discrete curves as follows

(3) EK [u] := K

K∑

k=1

W[uk−1, uk] .

We refer to [3] for the introduction of such a variational time discretization on
shape manifolds.

Let uA, uB ∈ L2(D) and K ≥ 1. A discrete geodesic connecting uA and uB is
a discrete curve in image space that minimizes EK over all discrete curves u =
(u0, . . . , uK) ∈ (L2(D))K+1 with u0 = uA and uK = uB. For this discretization
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Mosco-convergence of the underlying discrete path energy to the continuous path
energy can be proved. This includes a diffeomorphism property for the induced
transport and the existence of a square-integrable weak material derivative in space
and time. For details we refer [1].

The time discrete exponential map. Let us briefly recall the definition of the
continuous exponential map on a Riemannian manifold. Let u : [0, 1] → L2(D) be
the unique geodesic curve for a prescribed initial position u(0) = uA and an initial
velocity u̇(0) = v on a Riemannian manifold. The exponential map is then defined
as ExpuA

(v) = u(1). Furthermore, one easily checks that ExpuA
( k
K v) = u( k

K ) for
0 ≤ k ≤ K. Now, we ask for a time discrete counterpart of the exponential map
in the metamorphosis model. To this end, we consider an image u0 as the initial
data and a second image u1 such that ζ1 = u1 − u0 represents a small variation
of the image u0. For varying values of K ≥ 2 we now ask for a discrete geodesic
(u0, u1, u2, . . . , uK) described as the minimizer of the discrete path energy (3).

Next, we define Expk∗( · ) as the discrete counterpart of Exp∗(
k
K · ), i.e. we set

Expku0
(ζ1) := uk

for k = 1, . . . ,K. Taking into account k = 2 we immediately observe that the
sequence of discrete exponential maps (Expku0

(ζ1))k=1,... can iteratively be defined
as follows

(4) Expku0
(ζ1) = uk := Exp2uk−2

(ζk−1)

for k ≥ 2, where ζk−1 = uk−1 − uk−2, and for the sake of completeness we define
Exp0u0

(ζ1) = u0 and Exp1u0
(ζ1) = u1 = u0 + ζ1. Thus, it essentially remains

to compute Exp2 for a given input image uk−2 and an image variation ζk−1 =
uk−1 − uk−2. For a detailed discussion of the discrete exponential map in the
simpler model of Hilbert manifolds we refer to [3]. The particular challenge here
is that the matching energy W cannot be evaluated directly, but requires to solve
the variational problem (2) for the matching deformation.

There are two major restrictions regarding the input images u0 and u1: Firstly,
the existence and uniqueness result for the discrete exponential map will require
weakly differentiable input images. Secondly, the initial variation ζ1 = u1 − u0
is assumed to be sufficiently small in L2(D) in order to ensure the existence of
the initial deformation φ1 and guarantee the convergence of a suitable fixed point
algorithm. We will also see that for fixed K the variations uk−1 − uk−2 for k ≤
K will remain small provided that ζ1 is small. Thus, for fixed K the discrete
exponential map Expku0

( · ) will be well-posed for sufficiently small initial variation
ζ1.

For a given weakly differentiable initial image and an initial image variation,
the exponential map allows to compute a discrete geodesic extrapolation path in
the space of images. One can show that a time step of this shooting method can be
formulated in the associated deformations only. For sufficiently small time steps
local existence and uniqueness can be established.
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Generalised finite difference methods for Monge-Ampère equations

Brittany D. Froese

We consider the development and analysis of numerical methods for equations of
Monge-Ampère type,

(1)

{
det(A(x, u(x),∇u(x)) +D2u(x)) = G(x, u(x),∇u(x))
A(x,∇u(x)) +D2u(x) ≥ 0.

1. Generalised finite difference schemes

First, we rely on Hadamard’s inequality to find an alternative expression for the
determinant of a symmetric, positive-definite matrix.

(2) det+(M) = min
(ν1,...,νd)





d∏

j=1

max{νTj Mνj , 0}+min{νTj Mνj, 0}





over orthonormal ν1, . . . , νd. Substituting M = D2u, we obtain a globally ellip-
tic extension of the Monge-Ampère equation in terms of the second directional
derivatives of u in the directions νj [FO11]. Consistent, montone schemes for the
second directional derivatives uνν can then be combined to create an appropriate
scheme for general Monge-Ampère type equations.

Next we consider a discrete set of discretisation points Gh, where h is the spatial
resolution of the point cloud. To approximate the PDE at a point x0 ∈ Gh, we
consider all discretisation points living within a distance

√
h of x0. We select four

points x1, x2, x3, x4 in this search ball that best align with the direction ν, each
living in a different quadrant (Figure 1). We then approximate derivatives by

(3) uνν(x0) =
4∑

j=1

aj(u(xj)− u(x0)) +O(
√
h), aj ≥ 0,
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where the coefficients aj are determined through Taylor expansion [Fro15].

θ

x1

x3

x2

x4

x0

(a)

∂Ω

x2

x3

x4

x1

x0 θ

(b)

Figure 1. A finite difference stencil chosen from a point cloud
(a) in the interior and (b) near the boundary, where higher reso-
lution is needed.

2. Convergence

Construction of consistent, monotone approximations of Monge-Ampère operators
is not sufficient to guarantee convergence to the viscosity solution of the PDE. The
difficulty here is that the Barles-Souganidis convergence result [BS91] only applies
to PDEs that satisfy a strong form of the comparison principle, which may not be
valid for the PDE in question.

As an example, we consider the Dirichlet problem for the equation of prescribed
Gaussian curvature.

(4)

{
det+(D2u(x)) = κ(x)(1 + |∇u(x)|2)(d+2)/2, x ∈ Ω

u(x) = g(x), x ∈ ∂Ω.

Even in the simple one-dimensional setting with constant curvature κ(x) = 1
and boundary data u(0) = −1, u(1) = 1, no continuous solution exists. Conse-
quently, the boundary conditions need to be interpreted in a weak sense, the stan-
dard comparison principle fails (i.e. sub-solutions can lie above super-solutions),
and the Barles-Souganidis convergence proof fails.

We prove an interior comparison principle for this problem.

Theorem 1 (Interior Comparison Principle). Let u be a sub-solution and v a
super-solution of (4). Then u(x) ≤ v(x) at interior points x ∈ Ω.

This result allows us to modify the Barles-Souganidis proof in order to obtain
convergence in the interior of the domain [Fro16].

Establishing a similar convergence result for more general Monge-Ampère equa-
tions and boundary conditions (e.g. the second boundary value problem) remains
an important open problem.
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3. Computational Examples

We conclude by illustrating several optimal transportation maps computed with
this method. See Figures 2-4.

(a) (b)

-1 -0.5 0 0.5 1
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1
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-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(d)

Figure 2. (a) Source and (b) target densities that vanish on the
boundary. (c) Non-uniform mesh that resolves boundary layers
and (d) computed quadratic optimal transport map.
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Figure 3. Computed quadratic optimal transport maps from
(a) non-convex to (b) convex or (c) convex to (d) non-convex.

Figure 4. Computed L1 optimal transport map between mea-
sures supported on parallel planes.
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A variational approach for multiphase porous media flows

Clément Cancès

(joint work with Thomas O. Gallouët, Léonard Monsaingeon)

Since Otto’s seminal paper [4], it has been understood that the equation governing
the motion of a gaz within a porous medium can be interpreted as the gradient flow
of the osmotic energy in the metric space of probability measures endowed with
some Wasserstein distance. The goal of our work [2] is to extend this beautiful
interpretation to more complex models used to model flows in the subsurface. In
order to ease the presentation, we make some simplifying assumptions, assuming
for instance the homogeneity and the isotropy of the porous medium Ω. We refer
to [1, 2] for a more general presentation.

In what follows, Ω denotes an open convex subset of Rd. We consider the flow of
N + 1 incompressible and immiscible phases in Ω. For i ∈ {0, . . . , N}, we denote
by si(x, t) ∈ [0, 1] the proportion of the phase i in the fluid at time t ≥ 0 and
position x ∈ Ω, and by s = (s0, . . . , sN ). Since the fluid if fully composed by the
N + 1 phases, we get the constraint

(1)

N∑

i=0

si = 1 a.e. in Ω× R+.

In what follows, we denote by X =
{
s ∈ L1(Ω;RN+1

+ )
∣∣ (1) holds a.e.

}
. On the

other hand, each phase is convected by its own speed vi, i.e.,

(2) ∂tsi +∇ · sivi = 0 in Ω× (0,∞).

The phase velocities vi are prescribed by Darcy’s law

(3) vi = −∇(pi +Ψi), i ∈ {0, . . . , N},
pi being the (unknown) pressure of phase i, and Ψi its gravitational potential. The
phase pressures are linked to the fluid composition through N capillary pressure
relations

(4) pi − p0 = πi(s), i ∈ {1, . . . , N},
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where the capillary functions πi are supposed to derive from a smooth uniformly
convex potential

Π :



(s1, . . . , sN) ∈ RN

+

∣∣∣∣∣∣

∑

i≥1

si ≤ 1



→ R

in the sense that πi = ∂siΠ. No-flux boundary conditions are imposed, i.e.,

(5) sivi · n = 0 on Ω× (0,∞),

as well as the initial saturation configuration

(6) s|t=0
= s0 ∈ X .

We endow the set

A =

{
s ∈ L1(Ω;RN+1

+ )

∣∣∣∣
∫

Ω

sidx =

∫

Ω

s0idx for i ∈ {0, . . . , N}
}

(where the solution to (1)–(6) lives) with the squared Wasserstein distance

W 2(s, ŝ) =

N∑

i=0

W 2(si, ŝi), ∀s, ŝ ∈ A.

where W denotes the usual Wasserstein distance with quadratic cost. The energy
corresponding to saturation configurations fulfilling the constraint (1) is defined
by

E(s) =
∫

Ω

(
Π(s) +

N∑

i=0

siΨi

)
dx, ∀x ∈ X .

Then we interpret the system (1)–(6) as the generalized gradient flow of the sin-
gular energy E with respect to the Wasserstein metric W . This claim was for-
mally established thanks to heuristic arguments in our note [1]. In order to make
it rigorous, we prove in [2] that the minimizing movement scheme à la Jordan-
Kinderlehrer-Otto [3] converges. More precisely, for any given time step τ > 0, we
consider the sequence (sn)n≥0 defined by

sn = Argmin
s∈X∩A

(
W 2(s, sn−1)

2τ
+ E(s)

)

and the corresponding piecewise constant function sτ : R+ → X ∩A by

sτ (0) = s0, sτ (t) = sn if t ∈ ((n− 1)τ, nτ ].

We have now introduced all the necessary material to state our main result:

There exist s ∈ C(R+;A) and p = (pi)0≤i≤N ∈ L2
loc

(R+;H
1(Ω)) fulfilling (1)–(6)

such that, up to the extraction of an unlabeled subsequence, sτ converges almost
everywhere and in C(R+,A) towards s.

The interests of this result are twofold: it provides both a new existence result
and a variational interpretation for a well-established model for subsurface flows.
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Multiphase Optimal Transport

Gershon Wolansky

The subject of multiphase transport deals with a transport of a given vector-
valued measure into another, such that the same transport plan applies to all
components. Possible applications are computer vision (transportation distance
between colored images), microeconomics (exchange of multiple goods between
agents), incompressible flows (when on of the components in each space is the
Lebesgue measure), etc..

Given vector (Rk
+) valued, atomless measures (X,~σ), (Y, ~η): ~σ := (σ1, . . . σk)

are k positive measures on a sigma algebra (X,AX). Likewise, ~η := (η1, . . . ηk) are
k positive measures on a sigma algebra (Y,AY ).

A multiphase transport is defined by a measurable family x ∈ X → Px(dy) ∈
AX(Y ) such that

∫

X

Px(dy)σi(dx) = ηi(dy) 1 ≤ i ≤ k .

If such a transport exists then (~σ,X) is said to dominate (~η, Y ): (~σ,X) � (~η, Y ).
An equivalent condition [1]:

∫

X

F

(
d~σ

d|σ|

)
d|σ| ≥

∫

Y

F

(
d~η

d|η|

)
d|η|

for any convex F : Rk → R. The necessary condition is ~σ(X) = ~η(Y ) (corresponds
to linear F ). In general, this condition is not sufficient (unless k = 1).

Open Question: If both (~σ,X) � (~η, Y ) and (~η, Y ) � (~σ, Y ), then there exist
deterministic transports T : X → Y , S : Y → X such that T#σi = ηi and
S#ηi = σi for i = 1, . . .N?

Let SN
~σ ⊂ RN×k be the subset of all k−valued measures on a finite set Y of

cardinality N which are dominated by ~σ.

TheoremSN
~σ is a compact and convex set in RN×k.

We define (X,~σ) �N (Y, ~η) iff SN
~η ⊂ SN

~σ .
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Theorem (X,~σ) � (Y, ~η) iff (X,~σ) �N (Y, ~η) for any N ∈ N.

Let θ ∈ C(X × Y ). A multi-(~σ, ~η) transport {Px(dy);x ∈ X} is said to be a
(maximizing) optimal iff

∫

X

∫

Y

Px(dy)θ(x, y)σ(dx) ≥
∫

X

∫

Y

P̄x(dy)θ(x, y)σ(dx)

for any multi-(~σ, ~η) transport {P̄x}. If (X,~σ) � (Y, ~η) are Borel andX is a compact
space then there exists an optimal multi transport. In case Y is of finite cardinality
it reduces to an optimal partition.

Let θ ∈ C(X,Y ) be given by θ(x, y) = infz∈Z θ1(x, z) + θ2(y, z), where Z is a
separable space and θ1 (resp. θ2) is continuous on (X,Z) (resp. (Y, Z)). Assume

σ (x ∈ X ; ~p · d~σ/d|~σ|(x) = θ1(x, z)− θ2(y, z)) = 0

for any ~p 6= 0 ∈ Rk and any z ∈ Z. Let Ẑ := {z1, z2 . . .} ⊂ Z be an enumeration of
a dense set in Z and ZN := {z1, . . . zN}, we define θN (x, y) := maxi∈ZN

θ1(x, zi)+
θ2(y, zi), and consider the optimal multi-phase transport with respect to θN . In
the dual formulation we define

ΞN
~σ (~P ) :=

∫

X

[max
i∈N

~pi · d~σd|~σ|(x) + θ1(x, zi)]d|σ| ,

ΞN
~η (~P ) :=

∫

X

[max
i∈N

~pi · d~η/d|~η|(x) + θ2(x, zi)]d|η| .

where ~P ∈ RN×k := (~p1, . . . ~pN ), ~pi ∈ Rk.

Theorem There exists a unique minimizer to ~P → ΞN
~σ (~P )+ΞN

~η (− ~P ) in RN×k. If,

in addition, (X,~σ) �N (Y, ~η) then this minimizer induces an optimal θN transport
form (X,~σ) to (Y, ~η):

min
~P∈RN×k

ΞN
~σ (~P ) + ΞN

~η (− ~P ) = max
{Ai,Bi}

N∑

i=1

∫

Ai

θ1(x, zi)d|σ|(x) +
∫

Bi

θ2(y, zi)d|η|(y)

where Ai, Bi are mutually disjoint measurable partitions of X (resp. Y ) such that
~σ(Ai) = ~η(Bi) for i = 1, . . .N . In particular,

PN
x (dy) :=

N∑

i=1

1Ai
(x) (1Bi

(y)/|η|(Bi)) d|η|(y)

is an optimal multiphase transport with respect to θN .

The main result is:

Theorem: If (X,~σ) � (Y, ~η) then the weak-* limit PN → P exists, and P is an
optimal multiphase transport for θ.
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The gradient flow of microstructure

David Kinderlehrer

(joint work with Patrick Bardsley, Katayun Barmak, Eva Eggeling, Maria
Emelianenko, Yekaterina Epshteyn, Xin Yang Lu, Shlomo Ta’asan)

Cellular networks are ubiquitous in nature. They exhibit behavior on many dif-
ferent length and time scales and are generally metastable. Most technologically
useful materials are polycrystalline microstructures composed of a myriad of small
monocrystalline grains separated by grain boundaries, and thus comprise cellular
networks. The energetics and connectivity of the grain boundary network plays a
crucial role in determining the properties of a material across a wide range of scales.
A central problem is to develop technologies capable of producing an arrangement
of grains that provides for a desired set of material properties. The traditional
focus has been on distributions of geometric features, like cell size, and a pre-
ferred distribution of grain orientations, termed texture. Attaining these gives the
configuration order in a statistical sense. More recent mesoscale experiment and
simulation permit harvesting large amounts of information about both geometric
features and crystallography of the boundary network itself, [3, 2, 16, 18, 19]. This
has led us to the notion of the Grain Boundary Character Distribution (GBCD).
The GBCD is an empirical distribution of the relative length (in 2D) or area (in
3D) of interface with a given lattice misorientation and grain boundary normal.
It is a leading candidate to characterize texture of the boundary network.

In the special situation where given interfacial energy depends only on lattice
misorientation, our simulations show that the steady state GBCD and the inter-
facial energy density are related via a Boltzmann distribution. This is among
the simplest non-random distributions, corresponding to independent trials with
respect to the density. Such a straightforward dependence between the character
distribution and the interfacial energy offers evidence that the GBCD is a material
property. For this GBCD statistic, we develop a theory that relies on mass trans-
port and entropy, see [10, 7, 8, 11, 13, 12] for a more detailed discussion and [9] for
a discussion directed to materials researchers. To further develop this, we seek to
identify it as a gradient flow in the sense of De Giorgi as developed by Ambrosio,
Gigli, and Savaré, [5, 4]. In this way, the empirical texture statistic is revealed as a
solution of a Fokker-Planck type equation whose evolution is determined by weak
topology kinetics and whose limit behavior is the observed Boltzmann distribution
for the prescribed interfacial energy density, [6]. To achieve this we must deter-
mine first an appropriate dissipation relation, for which we introduce the discrete
iteration principle first noted in [15]. Further viewing the GBCD as samples of
a process motivates us to adjust the time scale in a nontrivial manner, precisely
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matching the evolution of a Fokker Planck Equation. That the simulation time
scale must be coordinated to the physical time scale is a challenging yet persistent
problem. It arises even in the simulation of the simplest systems, like the Ehren-
fest Urn. This identification as a gradient flow is tantamount to exhibiting the
harvested statistic as the iterates in a JKO implicit scheme, [15].

Enroute to the GBCD results, we also study a simpler 1D model coarsening sys-
tem that shares many qualitative features with the GBCD, omitted in this report.
The development exposes the question of how to understand the circumstances
under which a harvested empirical statistic is a property of the underlying pro-
cess. Both the GBCD and the simpler 1D model coarsening system are ‘gradient
flows found in nature’: they arise from complex systems, perhaps even outside of
mathematics. We gave brief attention to two other such systems in our Oberwol-
fach discussion. These are the Ehrenfest Urn and the Wright-Fisher formulation of
(neutral) genetic drift, in collaboration with Laurent Dietrich and Léonard Mon-
saingeon. For the latter, we have yet to achieve adequate success.

The GBCD viewpoint on texture and texture dependent properties is an active
area of materials research [1, 14]. Viewing the evolution of complex systems as
gradient flows is also discussed in the very interesting work [17].
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Transport Metrics for Vlasov Hierarchies

Martin Burger

Strong progress has been made in the geometric understanding of macroscopic
evolution equations for probability densities in the last decades, which often lead
to gradient structures in transport metrics (cf. e.g. [2, 6]). Since frequently
microscopic evolution laws can be formulated in a similar way, it is a natural ques-
tion how to proceed from the microscopic to the macroscopic structures. Strong
progress has been made recently e.g. via large deviation functionals (cf. [1, 3]),
but we want instead take a standard route in statistical mechanics and consider
equation hierarchies for marginals and define a (at this point formal) gradient flow
structure on them.

1. Microscopic Models and Gradient Structure

For simplicity consider a system of N indistinguishable random particles on the
d-dimensional torus T, with positions Xi(t) ∈ T evolving via

dXi

dt
= −∇V (Xi)−

1

N

∑

j 6=i

∇W (Xi −Xj).
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The joint probability measure µN on TN evolves via Liouville equation (in the
sense of a measure valued weak solution)

∂tµN =

N∑

i=1

∇xi
·


µN∇V (xi) +

1

N

∑

j 6=i

µN∇W (xi − xj)


 .

With the above scaling, the Liouville equation is a gradient flow in the 2-
Wasserstein metric on P2(T

N ), the space of probability measures with finite second
moment on TN . The energy functional is given by

EN [µN ] =

∫ 


N∑

i=1

V (xi) +
1

2N

N∑

i=1

∑

j 6=i

W (xi − xj)


 dµN .

Following [2, 6] the metric can be written as

d(µ0
N , µ

1
N )2 = inf

∫ 1

0

∫

TN

|∇λN |2 dµN

with the infimum carried out over all vector fields λ and measures µN ∈
C(0, T ;P2(T

N )) such that µN (t = 0) = µ0
N , µN (t = 1) = µ1

N , and

∂tµN =
N∑

i=1

∇xi
· (µN∇xi

λN )

in a weak sense on TN × (0, 1). In order to keep notation simple we will as-
sume in the following that all measures are absolutely continuous with respect to
the Lebesgue measure and denote the probability density with fN , by abuse of
notation we will use the Wasserstein metric as a metric on probability densities.

2. The Vlasov Hierarchy

In order to perform mean-field limits in systems such as the Liouville equation
above, it is a common approach to consider the marginals of fN (cf. [4] and
references therein), defined by

fN :k =

∫
. . .

∫
fN dxk+1 . . . dxN ,

which allow for a more suitable limit, since each fN :k is a density on the domain
Tk of fixed dimension. Integrating the Liouville equation one finds the Vlasov (or
BBGKY) hierarchy of equations satisfied by the marginals for 1 ≤ k ≤ N :

∂tfN :k =

k∑

i=1

∇xi
·


fN :k∇V (xi) +

1

N

∑

j 6=i,j≤k

fN :k∇W (xi − xj)


+

k∑

i=1

∇xi
·
(
N − k

N

∫
fN :k+1W (xi − xk+1) dxk+1

)
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As N → ∞ we may expect convergence to the infinity BBGKY-type hierarchy
with marginals f∞,k, k ≥ 1, characterized by

∂tf∞:k =

k∑

i=1

∇xi
·
(
f∞:k∇V (xi) +

∫
f∞:k+1∇W (xi − xk+1) dxk+1

)
.

We refer e.g. to [5] for quantitative convergence results.

3. Gradient Structure for the Hierarchy

In order to understand the gradient structure present in the Vlasov hierarchy, we
first rewrite the energy in terms of the hierarchy, we find

EN [µN ] = N

∫
V (x1)fN :1(x1) dx1 +

N − 1

2

∫ ∫
W (x1 − x2)fN :2(x1, x2) dx1dx2.

Thus, rescaling by 1
N in the limit N → ∞, we obtain a limiting energy functional

on the hierarchy

F =

∫
V (x)f∞:1(x) dx+

1

2

∫ ∫
W (x− y)f∞:2(x, y) dxdy.

This suggests to rewrite the hierarchy as

∂tf∞:k =
k∑

i=1

∇xi
·
(
f∞:k∇xi

∂F
∂f∞:1

(xi) + 2

∫
f∞:k+1∇xi

∂F
∂f∞:2

(xi, xk+1) dxk+1

)
,

which indicates some kind of gradient structure in the hierarchy.The fact that F
only depends on the first two marginals shadows the general structure given by

∂tf∞:k =

k∑

i=1

∇xi
· (

∞∑

m=1

m

∫
. . .

∫
f∞:k+m−1∇xi

∂F
∂f∞:m

(xi, xk+1, . . . , xk+m−1)

dxk+1 . . . dxk+m−1).

The further terms in the asymptotic can be checked using interaction terms on
triplet, quadruples and so on, but we omit the tedious computations at this point.
This observation induces a formal gradient flow structure on the hierarchy via

d(f0
∞, f

1
∞)2 = inf

(
1

2

∫ 1

0

〈λ,Kfλ〉 dt
)
,

where the infimum is taken over all f∞ = (f∞:k)
∞
k=1 with initial value f0

∞ and
final value f1

∞ and potentials λ = (λk)
∞
k=1 such that ∂tf∞ = Kfλ. The formally

self-adjoint operator Kf = (Kk
f )

∞
k=1 is given by

Kk
fλ = −

k∑

i=1

∇xi
· (

∞∑

m=1

m

∫
. . .

∫
f∞:k+1∇xi

λm(xi, xk+1, . . . , xk+m−1)

dxk+1 . . . dxk+m−1)
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with the scalar product

〈ϕ,Kfλ〉 =
∞∑

k=1

∫
. . .

∫
ϕk(x1, . . . , xk)(Kk

fλ)(x1, . . . , xk) dx1 . . . dxk.

The transport metric for the hierarchy remains an interesting subject for a
rigorous analyis and is expected to provide novel insights into continuum limits.
The mean-field limit can be interpreted as a confinement of the gradient flow to
the closed submanifold of product measures. Even more interestingly, preservation
of the gradient structure might allow to select meaningful higher-order closures.
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On the transport problem with relativistic costs

Aldo Pratelli

(joint work with J. Bertrand, J. Louet, M. Puel, F. Zeisler)

The so-called “transport problem with relativistic costs” is a particular case of the
general mass transportation problems. Basically, we are given a closed, bounded,
convex set with non-empty interior K ⊆ RN , and a function h : RN → [0,+∞]
with h(0) = 0, which is constantly +∞ on RN \ K, and it is bounded and strictly
convex in K. Then, for every t > 0 one considers that mass transport problem
with the cost

ct(x, y) = h

(
y − x

t

)
.

Such a cost is called relativistic, while it is called highly relativistic if, in addition,
the slope of h explodes on ∂K. The model case, first considered by Brenier in [3],

deals with K being the unit ball of RN , and h(z) = 1 −
√
1− |z|2 in K, which is

immediately seen to be a highly relativistic cost.
It is easy to observe that, given two probability measures with compact support

µ and ν 6= µ, there exists some T > 0, called critical time, such that the minimal
cost C(t) to transport µ onto ν with respect to the cost ct is infinite for t < T ,
and bounded for t ≥ T ; in addition, for each t ≥ T there exists a unique optimal
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transport plan (actually, a transport map), that we call γt. The function t 7→ C(t)
is obviously decreasing.

Following earlier partial results found in [5, 2], in the recent papers [1, 4] the
following properties were proved; most of the assumptions are sharp, thanks to
explicit counterexamples.
Theorem. Let µ 6= ν be two probability measures with compact support in RN ,
and assume that ct is a relativistic cost function, and that µ≪ L. Then,

(i) The function t 7→ C(t) is continuous on [T,+∞).
(ii) For every supercritical time t > T , the optimal plan γt satisfies γt

({
(x, y) :

y−x
t ∈ Θ

})
= 0, where

Θ :=
{
v ∈ ∂K : D−vh(v) = −∞

}
,

and D−vh(v) ∈ [−∞,+∞) is the slope of h at the point v in the direction
−v. In particular, if ct is highly relativistic then γt(∂K) = 0.

(iii) If ct is highly relativistic and µ has connected support, then there exists
a Kantorovich potential ϕt for every supercritical time t > T .

References

[1] J. Bertrand, A. Pratelli & M. Puel, Kantorovich potentials and continuity of total cost for
relativistic cost functions, to appear on JMPA (2017).

[2] J. Bertrand, M. Puel, The optimal mass transport problem for relativistic costs, Calc. Var.
PDEs 46 (2013), no. 1–2, 353–374.

[3] Y. Brenier, Extended Monge-Kantorovich theory, in “Optimal Transportation and Applica-
tions”, Lecture Notes in Mathematics, LNM 1813, Springer (2003), 91–121.

[4] J. Louet, A. Pratelli & F. Zeisler, On the continuity of the total cost in the mass transport
problem with relativistic cost functions, preprint (2016).

[5] R. McCann, M. Puel, Constructing a relativistic heat flow by transport time steps, Ann.
Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 6, 2539–2580.

Continuum and Discrete Models of Collective Aggregation Pattern

Klemens Fellner

(joint work with B. Hughes, E. J. Hackett-Jones, K. A. Landman, G. Raoul)

The talk discusses the behaviour of solutions of the following non-local Fokker-
Planck type equation

(1) ∂tρ = ∂x(ρ ∂x[a(ρ) +W ∗ ρ+ V ])

where we focus in particular on the one-dimensional case x ∈ R.
The above equation (1), which is also called non-local interaction equation,

or aggregation equation provides a continuum picture of the collective motion of
an ensemble of particles or individuals subject to diffusion (linear diffusion for
a(ρ) = ln(ρ)), an external potential V (x) and, most importantly, an interaction
potential W , which is assumed to be an even function.

As a first structural property, eq. (1) conserves the total mass, which shall thus
be considered normalised, i.e. mass

∫
R
ρ = 1 and ρ(x) can be interpreted as a
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probability density. Moreover, it is well known that depending on the interaction
potential W , the evolution (1) may lead to the development of measures in finite
time even for smooth initial data. A particular example is the famous Keller-Segel
model, where K ∼ log in 2D.

Thus, a suitable solutions concept of (1) is based on its gradients flow structure
in probability spaces with bounded second moment and the associated JKO scheme
with respect to the Wasserstein metric, see e.g. [1, 4]. In the one-dimensional case,
introducing a change of variables in terms of the pseudo-inverse of the accumulated
probability density, i.e. u(z) = inf

{
x ∈ R;

∫ x

−∞ ρ dx > z
}
, for z ∈ [0, 1] (see e.g.

[10, 3]) allows to transform atomic parts of ρ into constants parts of u and the
p-Wasserstein norm into a standard Lp-norm. Moreover, when only considering
the interaction potential W , eq. (1) transforms into

(2) ∂tu(z) =

∫ 1

0

W ′(u(ζ)− u(z)) dζ , z ∈ [0, 1].

In [6, 7], the authors studied (2) subject to locally repulsive, globally confin-
ing/attractive interaction potentials W . Such interaction potentials appear in
many application backgrounds: smooth power-like interaction potentials in cell-
biology, various Morse potentials in models of flocking and swarming, and also the
Lennard Jones potential in physics, see e.g. [11, 12, 14, 15].

Besides linear and local nonlinear stability of stationary states, it was shown in
[6, 7] that an increasing “singularity” of the repulsive part leads to the formation of
arbitrary many Dirac measures as stationary states, which are highly non-unique
and depend in a complicated way on the interaction potential and the initial data.

In the limit towards a singular repulsive Newtonian potential, these multitude
of atomic stationary states converges weakly (in the sense of signed measures)
towards a unique bounded and compactly supported stationary state, which are
moreover Hölder continuous for even more singular repulsive parts [5].

To the author, it is this complicated relationship between interaction potential,
initial data and aggregation pattern, which is particularly intriguing. For dou-
bly singular interaction potentials, where also attractive parts are Newtonian, a
comparison of (2) with discrete stochastic lattice models showed a complete qual-
itative correspondence between continuum and stochastic discrete models, see [8]:
Both models predicted aggregation pattern, which combine sharp aggregates with
smoothly distributed parts, both models showed similar slow-fast dynamics in the
formation of metastable aggregation pattern, which take then much larger times
to finally converge to stationary states.

In [9], motility effects like diffusion were discussed and for some particular
interaction potentials, it was possible to derive sharp thresholds between uni- and
bimodal stationary states, according to the ration of diffusion versus aggregation
parameters.

In higher space dimensions, the evolution of aggregation equation (1) leads
to a stunning variety of aggregation pattern, see e.g. [2]. In the current inter-
disciplinary research project “Mathematics and Arts: Towards a balance between
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artistic intuition and mathematical complexity”, which is located at the University
of Graz, a team of two mathematicians and two artists aims to research mathe-
matical structures and dynamical systems, which offer “contact points” to non-
mathematicians like composers, designers, artists, etc. to insert their creativity
and intuition at the “centre” of a mathematical system with inspiring complexity.

Figure 1. Two studies for [13]: layers of arranged aggregation
pattern and juxtaposition of lines and surfaces derived from bi-
modality plots.

An example can be visited at the Research Catalogue site “The intricacy of self-
similarity”, [13]. The Research Catalogue is a timely platform for artistic research
and offers a flexible online exhibition of texts, graphical contents, sound- and
video materials. The site “The intricacy of self-similarity” collects artistic material
in terms of graphical exercises such as layers of pattern of arranged aggregation
pattern redrawn from [2], see also Figure 1. A second exercise explores plots of [9]
concerning the above mentioned bi-modality threshold. Both exercises lead finally
towards a soundscape pattern and the viewer/listener is invited to play with the
various layers in relation to the graphical material.
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Optimal stability estimates for continuity equations

Christian Seis

(joint work with André Schlichting)

The continuity equation is one of the most elementary and at the same time most
important equations of motion with applications in fluid dynamics, thermodynam-
ics, engineering, biology, social sciences. It describes the conservative transport of
a quantity ρ by a vector field u. In a bounded (say, convex Lipschitz) domain Ω
in Rd, this equation takes the form

(1)

{
∂tρ+∇ · (uρ) = 0 in (0, T )× Ω,

ρ(0, ·) = ρ0 in Ω.

In many problems, both the advecting velocity field and the transported quantity
are non-smooth functions. In the following we will be concerned with the low
regularity setting investigated by DiPerna and Lions [5], that is, we suppose that

(2) ρ ∈ L∞((0, T );Lq(Ω)), ρ0 ∈ Lq(Ω),

and

(3) u ∈ L1((0, T );W 1,p(Ω)) with (∇ · u)− ∈ L1((0, T );L∞(Ω)),

where p, q ∈ (1,∞) are such that 1/p + 1/q = 1. To ensure that (1) is mass
preserving, we moreover assume that u · ν = 0 on ∂Ω. In their ground breaking
paper, DiPerna and Lions show existence, uniqueness and qualitative stability

https://www.researchcatalogue.net/view/315179/315180/0/0
https://www.researchcatalogue.net/view/315179/315180/0/0
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of distributional solutions in the class (2), (3), using their so-called theory of
renormalized solutions. In [8], quantitative stability estimates were established for
the first time. The prototype estimate is the following:

Theorem 1 ([8]). If u1, u2, . . . are an approximating vector fields in the sense
that

δk(t) := ‖u− uk‖L1((0,t);Lp(Ω))
k→∞−→ 0

uniformly in t and ρ1, ρ2, . . . are the associated solutions with initial datum ρ0,
then

(4) sup
[0,T ]

Dδk(ρ, ρk) . ‖∇u‖L1(Lp) + 1

uniformly in k ∈ N.

Here Dδ is a Kantorovich–Rubinstein distance of the form

Dδ(ρ1, ρ2) = inf
π∈Π((ρ1−ρ2)+,(ρ1−ρ2)−)

∫∫
log

( |x− y|
δ

+ 1

)
dπ(x, y).

Constance depending on ρ0 or ∇ · u are suppressed in (4).
Before discussing the statement in the theorem, we will make a connection with

previously known estimates: The estimate in (4) is a natural extension of stability
estimates for Lagrangian flows describing the motion of single particles. Indeed, in
the case of Lipschitz vector fields u, uk ∈ L1(W 1,∞) a straightforward computation
for the distance of the flows φ and φk defined by

∂tφ = u(·, φ), ∂tφk = uk(·, φk), φ(0, x) = φk(0, x) = x,

shows that

sup
[0,T ]

sup
Ω

log

( |φ− φk|
δk

+ 1

)
≤ ‖∇u‖L1(L∞) + 1,

where δk = ‖u − uk‖L1(L∞). That is, the logarithmic relative distance of two
particles transported by different flows is controlled by the velocity gradient. Here
“relative” refers to the distance of the particles relative to the distance δk of the
velocity fields. This estimate was generalized to the DiPerna–Lions setting by
Crippa and De Lellis [1]. It holds

(5) sup
[0,T ]

∫

Ω

log

( |φ− φk|
δk

+ 1

)
dx . ‖∇u‖L1(Lp) + 1.

The prototype estimate (4) in Theorem 1 is of the same form: The velocity gradient
controls the logarithmic relative distance of the densities ρ and ρk. In the case of
the transport of a single particle, estimate (4) reduces to (5).

Because Kantorovich–Rubinstein distances metrize weak convergence, the state-
ment in Theorem 1 shows that

ρk −→ ρ weakly with rate at most O(δk).

This is optimal as can be seen in the following example partially taken from [4]:



Applications of Optimal Transportation in the Natural Sciences 401

Example 1. Consider the vector fields uk(x) = sin(2πkx)/2πk on the interval
Ω = [0, 1], and the initial datum ρ0 = 1. Then ρk is an oscillating solution
converging weakly to ρ = 1. In particular

‖ρ− ρk‖L1(L1) 6−→ 0.

Moreover, the L1(Lp) distance of the vector fields uk and u = 0 (to which uk is
uniformly converging) is of order t/k. A scaling argument then yields

∀t, k : Dδk(t)(ρ(t), ρk(t)) . 1.

This example thus shows that, firstly, one cannot expect to prove stability
estimates for continuity equations in strong (Lebesgue) norms. Secondly, the order
δk of weak convergence is optimal.

The approach from [8, 9] turns out to be a helpful tool for estimating the numer-
ical approximation error of the upwind finite volume scheme. In [6] we investigate
the explicit scheme on Cartesian meshes. Using a probabilistic interpretation of
the upwind scheme analyzed earlier in [2, 3], we show that the rate of (weak)
convergence is at most 1/2 in the mesh size h:

Theorem 2. Let ρh denote the approximate solution given by the upwind scheme
on a mesh of size h. Then

sup
[0,T ]

D√
h(ρ, ρh) . 1

uniformly in h.

Also this result is optimal, as can be seen by the following example.

Example 2. Consider a constant vector field u = U > 0 and the initial datum

ρ0(x) =

{
x−s for x > 0,

0 for x ≤ 0.

Then the L1 distance of exact and approximate solution is bounded below as follows:

‖ρ− ρh‖L1(L1)) & h1−s.

Moreover, it holds

∀t : W1(ρ, ρh) &
√
h
2−s

,

if W1 is the (standard) 1-Wasserstein distance.

In the limit s → 1, this example shows that, firstly, for general merely integral
initial data, no convergence rates can be obtained in strong (Lebesgue) norms.
Secondly, the rate of weak convergence is at least 1/2− ε, which almost matches
the upper bound from Theorem 2, though with a different measure of weak con-
vergence.

In [7], we study the implicit upwind scheme and extend the result from [6] to
the case of arbitrary mesh geometries. The new result moreover relies on a priori
estimates on the scheme, so-called “weak BV estimates” rather than probabilistic
methods.
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Applications of optimal transport to meteorology

Mike Cullen

I reviewed progress of three applications of optimal transport methods to meteor-
logy.

The first application is to the semi-geostrophic equations. These model the
large-scale behaviour of the atmosphere and oceans. Much previous work is de-
scribed in [4]. The equations start from the shallow atmosphere and hydrostatic
approximations to the governing equations, which are widely used in operational
prediction. They then introduce the geostrophic momentum approximation, which
restricts the solutions to those dominated by the Earth’s rotation. No other ap-
proximations are made.

All previous rigorous work has, in addition, assumed a spatially uniform ro-
tation rate. This allows a change of variables to be made and a new conserved
quantity to be derived which is the mass as a function of the new variables. This
extra conservation property results from the symmetry of the problem about the
axis of rotation. The solutions can then by found by optimal transport between the
new variables and the original coordinates. The cost function is the energy, and
the solutions can be written in terms of a convex potential function. The convex-
ity property is fundamental in showing that a sequence of approximate solutions
converges, and thus in proving the existence of solutions.

However, in real applications, the strong radial symmetry of flows in the Earth’s
atmosphere overrides the symmetry about the Earth’s axis of rotation, and so only
the vertical component of the rotation vector is retained in the equations. This is
a function of position, and so the conservation property and associated change of
variables is lost. The variable rotation is fundamental in predicting the evolution of
large-scale atmospheric disturbances (Rossby waves), so it is essential to show that
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the semi-geostrophic equations can still be solved with variable rotation. Previous
work on this problem has shown that there still appears to be enough structure in
the equations for this to be possible. In particular, the solutions can be regarded
as local energy minimisers, and satisfy a stability condition on the pressure which
is equivalent to convexity of the potential in the uniform rotation case.

Very recent work described in [3] has exploited this structure to prove short time
existence of smooth solutions. However, the procedure for advancing the solution
in time loses spatial regularity, so a fixed point argument cannot be used to prove
existence of a solution. Instead, for a short time while the Lagrangian particle
positions can be smoothly mapped back to their initial positions, the implicit
function theorem can be used to prove that a solution exists. The challenge is
then to extend this result to long time existence of weak solutions. This is likely
to require optimal transport techniques. Some ideas were mentioned in the lecture.

The second problem that I discussed is the partitioning of an atmospheric flow
into a zonal mean and perturbations. This is important in studying the con-
straints on the evolution of large-scale anomalies which are responsible for abnor-
mal weather types. A method for doing this has been developed by [7]. Recently,
it has been shown that their technique can be written as an optimal transport
problem, where the mass is calculated as a function of angular momentum and
potential temperature, and then mapped back to physical space by minimising the
energy. This procedure ensures hydrostatic balance and the gradient wind balance
between zonal wind and the north-south pressure gradient. Optimal transport has
been used successfully in constructing an axisymmetric vortex with a free bound-
ary in an ambient rotating fluid at rest by [5] and [6]. I decsribed how their method
could be extended to the problem solved by [7].

The third problem extends previous work by including the effects of moisture.
Moisture interacts strongly with the dynamics through latent heat release when
fluid parcels become saturated. This process also generates clouds and precipi-
tation and can thus describe actual weather conditions. In semi-geostrophic dy-
namics, the large-scale flow represents a global energy minimising state. However,
once moisture is included, this is no longer true, since moisture only interacts with
the solution when saturation occurs. Thus a given state will only represent a lo-
cal energy minimiser, and may lose stability as the flow evolves, If this happens,
there may be a rapid evolution to a new stable state, in which large amounts
of precipitation may be generated. Such events are responsible for much severe
weather.

In [1] and [2] a one dimensional model was used to study this process. A
stable state is represented by a column of potential temperature and moisture
such that potential temperature is nondecreasing in height and the moisture is no
greater than its saturation value. This column can be destabilised by moving it
upwards in the atmosphere. In the simple model this was represented by imposing
a time dependence on the saturation value of the moisture content. As a result,
parcels may become supersaturated, and so increase their potential temperature
through latent heat release. It was then shown that a well-defined evolution of a
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discrete version of the problem could be found by moving supersaturated parcels
to new stable positions higher up in the column and moving the others down
to compensate. However, no parcel is allowed to rise past a parcel with higher
potential temperature. In [1] it is rigorously proved that the solutions converge as
the discretisation is refined, though the resulting solution can only be expressed
as a probability measure. This is because, though the potential temperature is
required to be nondecreasing, there is no control on the moisture distribution in
a stable column. A key aspect of the proof is showing that the rate of upward
mass transfer is bounded, even though parcels can move upwards a finite distance
in infinitesimal time.
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Long time behavior of solutions to the 2D Keller-Segel equation with

degenerate diffusion

Yao Yao

(joint work with José Carrillo, Katy Craig, Sabine Hittmeir, Inwon Kim, and
Bruno Volzone)

In this talk I discussed the Keller-Segel equation with degenerate diffusion, which
models the collective motion of cells attracted by a self-emitted chemical substance.
It is given by

(1) ρt = ∆ρm −∇ · (ρ∇(N ∗ ρ)) in Rd × [0, T ),

where m > 1, d ≥ 2, and N is the Newtonian potential in Rd. Here the degenerate
diffusion term ∆ρm models the anti-overcrowding effect of cells. It is well known
that the behavior of solutions depend on the balance of the two terms on the right
hand side. Namely, for m > 2 − 2/d (the subcritical regime), the diffusion term
dominates at high density, hence all solutions exist globally in time; whereas for
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1 ≤ m < 2−2/d (the supercritical regime) the solution may blow-up in finite time
[7, 1].

Although the blow-up/global existence criterion for (1) is well-studied, much
less is known about the asymptotic behavior of solutions. In particular, in the
subcritical regime m > 2 − 2/d, it was unknown whether solutions converge to a
stationary solution, or can a part of mass dissipate to infinity as the time goes to
infinity.

To understand the asymptotic behavior, it would be helpful to start with study-
ing the existence and uniqueness of stationary solutions to (1) for any given mass.
Formally, (1) can be understood as the gradient flow (in the space of measures
endowed by 2-Wasserstein distance) of the free energy functional

(2) Em[ρ] =
1

m− 1

∫
ρmdx+

1

2
ρ(ρ ∗ N )dx.

Using concentration-compactness arguments, Lions [6] showed that in the sub-
critical regime, (2) has a global minimizer for any given mass, and such global
minimizer is automatically a stationary solution of (1). By Riesz rearrangement
inequality, such global minimizer must be radially decreasing after a translation.
Regarding uniqueness, for any given mass, Lieb and Yau [5] proved uniqueness
of stationary solution among radial functions. However, it was unknown whether
there can be non-radial stationary solutions.

In the joint work [2] with Carrillo, Hittmeir and Volzone, we prove that every
L1 ∩L∞ stationary solution to (1) must be radially symmetric. (Indeed, we show
that this is also true if N is replaced by any attracting interaction kernel.) This is
done by combining Steiner symmetrization techniques with some a priori regularity
estimates on stationary solutions. Combining the radial symmetry result with [5],
we obtain the uniqueness of stationary solutions of (1) (for any given mass) up to
a translation.

Regarding the long time asymptotic behavior of solutions, we show that for the
2D Keller-Segel equation with degenerate diffusion m > 1, all solutions (whose
initial data has finite second moment) must converge to a translation of the global
minimizer as time goes to infinity. We show this by combining the uniqueness
result with some a priori estimate on the growth of second moment (which is
only valid in 2D). Since the convergence is done by a compactness argument, our
argument does not give us any convergence rate as t→ ∞.

In the talk I also discussed a joint work with Craig and Kim [4], where we study
the “m = ∞” limit of (1), and the equation formally becomes an aggregation
equation with a density constraint. Here our solution is defined via a gradient
flow, rather than solutions of a PDE. Namely, we consdier the gradient flow ρ(·, t)
of the energy functional E∞[ρ] in the space of probability measures endowed with
2-Wasserstein distance, where

(3) E∞[ρ] :=

{∫
ρ(ρ ∗ N ) if ‖ρ‖∞ ≤ 1,

+∞ if ‖ρ‖∞ > 1.
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Note that (3) is the limit of (2) asm→ ∞. The existence, uniqueness and stability
of such gradient flow solutions of (3) have been established by Craig [3].

In [4], we show that if the initial data is of “patch type” (i.e. ρ0 = 1Ω0), then
the gradient flow solution ρ(·, t) remains as a patch for all times, with its boundary
velocity determined by Hele-Shaw type free boundary problem. In addition, in two
dimensions, we show that ρ(·, t) converges to the characteristic function of a disk
1B (which is the global minimizer of (3)) as the time goes to infinity, where B is a
disk with same area and center of mass as Ω0. In addition, we show that the free
energy has the convergence rate

0 ≤ E∞[ρ(t)]− E∞[1B] ≤ C(ρ0)t
−1/6 for all t ≥ 0.

Both of the two asymptotic convergence results [2, 4] are in two dimensions only,
since the exact formula of Newtonian potential in two dimensions plays an impor-
tant role in controlling the second moment. For dimension d > 2, the asymptotic
behavior of solutions to (1) is still an open problem.

References
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Matrix-valued Mass Transport: a Quantum Mechanical Approach

Tryphon T. Georgiou

(joint work with Yongxin Chen and Allen Tannenbaum)

We present a possible generalization of the Wasserstein 2-metric, originally defined
on the space of scalar probability densities, to the space of Hermitian matrices and
more generally to the space of matrix-valued distributions.

Our approach in [1, 2] was influenced by [3] and relies on a suitable continuity
equation in the non-commutative spaces of matrices. It is substantially different
from our earlier attempt in [4]. We invoke certain notions for the gradient and
divergence operators on spaces of matrices that are explained below. Accordintly,
the continuity equation in the space of Hermitian matricesH (of a given dimension)
takes the familiar form

(1) ρ̇ = ∇∗
L(ρ ◦ v)
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in complete analogy with the continuity equation on scalar densities.
Here, ρ(t) ∈ H is positive-semidefinite while the velocity v is a vector of skew-

Hermitian matrices (denoted by S, of the same dimension asH , i.e., v ∈ SN ) while
ρ ◦ v denotes one of several possible choices of “non-commutative” multiplication.
We have considered specifically the following two choices:

(i) ρ ◦ v =
1

2
(ρv + vρ) and (ii) ρ ◦ v =

∫ 1

0

ρsvρ1−sds.

In the above, for ρ ∈ H and v ∈ SN ,

vρ :=




v1ρ
...

vNρ


 , and ρv :=




ρv1
...

ρvN


 .

The gradient operator with respect to L ∈ HN is defined as

∇L : H → SN , X 7→




L1X −XL1

...
LNX −XLN




and, accordingly, with respect to the standard inner product 〈X,Y 〉 = trace(X∗Y ),
the divergence operator is

∇∗
L : SN → H, Y =




Y1
...
YN


 7→

N∑

k

LkYk − YkLk.

AWasserstein distance can now be defined as the solution to a Benamou-Brenier
minimum-action-integral problem [5]:

W2,a(ρ0, ρ1)
2 := min

ρ,v

∫ 1

0

〈v, ρ ◦ v〉dt,(2)

ρ̇ =
1

2
∇∗

L(ρ ◦ v),
ρ(0) = ρ0, ρ(1) = ρ1.

In this, ρ0 and ρ1 are assumed positive definite having trace 1. The optimization
is over ρ(·) with similar properties and over v ∈ SN .

The matrix-continuity equation (1) preserves positive definiteness and trace.
Suitable generalizations for flows between boundary values of unequal trace as
well as for flows between matrix-valued distributions were considered in [1, 6].
Transport along the spatial coordinate x ∈ Rm is effected by a term ∇x · (ρ ◦ w)
in the continuity equation, with w ∈ Hm, i.e.,

ρ̇ = ∇∗
L(ρ ◦ v)−∇x · (ρ ◦ w)

Likewise, variations in the trace are effected through an added term in the conti-
nuity equation which is duly penalized in the corresponding optimization problem,
see [6].
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For the choice ρ ◦ v = 1
2 (ρv + vρ), the computation of the Wasserstein distance

is feasible from a numerical standpoint, hence the interest in this choice in our
work [1]. This is accomplished by turning (2) into a convex optimization problem
in a new set of variables (ρ, u) where u = ρv, i.e., “mass + momentum” instead of
“mass + velocity,” following [5].

However, on the other hand, the choice ρ ◦ v =
∫ 1

0 ρ
svρ1−sds in the continu-

ity equation leads to the rather remarkable result. The gradient flow of the von
Neumann entropy

S(ρ) := − trace(ρ log ρ)

is precisely the Lindblad equation of open quantum systems. In turn, in light of
the above expressions for divergence and gradient operators, the Lindblad equation
can be conveniently written in the form

ρ̇ = −∇∗
L∇Lρ =: ∆Lρ,

reminiscent of the heat equation. This result generalizes to the matrix case the well
known discovery of [7] that for scalar densities the gradient flow of the entropy is
precisely the heat equation. The matrix-valued generalization was derived in [1]
by making use of a key identity in [3] that relates the gradient of ρ to the gradient
of the logarithm of ρ. At about the same time as our work was being reported in
[1], two other closely related approaches had been formulated independently and
simultaneously by Carlen and Maas [8] and by Mittnenzweig and Mielke [9], who
derived this same result as well.

Our interest in this non-commutative counterpart of optimal transport, where
density matrices ρ (i.e., Hermitian matrices that are positive-definite and have unit
trace) replace probability distributions, stems from control and signal processing
applications. Such applications include diffusion tensor imaging (DTI), in which
one wants to interpolate spatially varying tensor fields, and spectral analysis of
multivariable time series, in which one may need to track changes in matrix-valued
power spectral distributions [4]. Other possible generalizations of the theory of
transport are motivated by corresponding flows on discrete spaces that include
graphs and networks, see [10, 11].
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Multi- to one-dimensional optimal transport

Brendan Pass

(joint work with Pierre-André Chiappori, Robert McCann)

Given probability measures µ onX ⊆ Rm and ν on Y ⊆ Rn, and a surplus function
s : X × Y → R, consider the Monge-Kantorovich problem of maximizing

∫

X×Y

s(x, y)dγ(x, y)

among probability measures γ on X × Y whose marginals are µ and ν. Most of
the research on this problem to date has focused on the case where the dimensions
m of the source and n of the target are equal. This progress is reviewed in detail
in, for example, [2], but let us recall here that, under mild conditions on s, µ and
ν, there is a unique solution γ, which is concentrated on the graph of a function
T : X → Y . In addition, under much stronger conditions, recent years have seen
the development of a deep regularity theory for the optimal map T . We also note
that in the simplest case m = n = 1, it is possible to solve the problem explicitly;
for a supermodular s, T is the unique monotone increasing function pushing µ
forward to ν.

On the other hand, problems where the dimensions of the source and target
differ have not received much attention in the literature; the existence, uniqueness
and graphical structure of the optimizer can be established exactly as in the equal
dimensional setting, but little else is known. However, these problems are very
relevant to applications in economic theory; in particular, the problem of matching
distributions of, say, women and men on the marriage market under transferable
utility can be recast as an optimal transport problem and there is no reason that
the dimensions (which represent the number of characteristics used to distinguish
between agents on different sides of the market) should coincide in these models.

In this abstract, we report on recent work on the case where m > n = 1 [1]. We
introduce a nestedness condition under which it is possible to solve this problem
uniquely, and essentially explicitly. This condition is somewhat unusual in opti-
mal transport theory in that it depends on the interaction of the surplus and the
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marginals in a subtle way. The basic idea is, for each y ∈ R, to choose the k = k(y)
which splits the population proportionately; that is, µ(X≤(y, k)) = ν(−∞, y),

where X≤(y, k) := {x ∈ X : ∂s
∂y (x, y) ≤ k}. We say the model (s, µ, ν) is nested

if these sublevel sets evolve monotonically with y: X≤(y0, k(y0)) ⊆ X<(y1, k(y1))
whenever y0 < y1 (X<(y, k) is defined analogously to X≤(y, k)). Under this con-
dition, we show that the map defined by sending each point x in X=(y, k(y)) :=
{x ∈ X : ∂s

∂y (x, y) = k(y)} to y is well defined and optimal.

We go on to establish a number of equivalent conditions for nestedness; it
is equivalent to the uniqueness of the population splitting X=(y, k(y)) passing
through each x (existence of such a y for each x is straightforward to establish
in much greater generality). This asserts that nestedness is essentially a sharp
condition for the construction of the optimal map outlined above to be well defined;
if it failed, there would exists some x sitting in two distinct population splitting
hypersurfaces X=(y0, k(y0)) and X=(y1, k(y1)), in which case our procedure would
ambiguously assign both T (x) = y0 and T (x) = y1.

On the other hand, the outward unit normal speed of X≤(y, k(y)) as y varies is
(k′(y)−syy(y, x))/|Dxsy|, and one can prove that nestedness implies that this must
always be nonnegative, and strictly positive for at least one x in each X≤(y, k(y)).
Conversely, strict positivity everywhere is sufficient (but not necessary) to imply
nestedness. We also establish the integral-differential equation for k(y),

∫

X(y,k(y))

k′(y)− syy(x, y)

|Dxsy|
f(x), dHm−1(x)

expressing the mass balance condition.
Finally, we address regularity. In the nested case, we first show that the optimal

map is continuous. Higher order regularity of the Kantorovich potential v(y) =
k′(y) on the uni-dimensional side of the market can be established by exploiting
level set dynamics, under natural conditions on the data. Under the strengthened
variant of nestedness, (k′(y) − syy(y, x))/|Dxsy| > 0, we can use this result to
establish higher regularity of the optimal map and the other Kantorovich potential
u(x) : maxy∈Y

(
s(x, y)−v(y)

)
. It is worth noting that one cannot expect a general

regularity theory in this setting; an earlier result of the present author asserts that
one cannot have regularity for all (nice) marginals µ and ν unless s is of pseudo-
index form, s(x, y) = b(I(x), y) + α(x), where I : X → R and b : I(X) × Y → R,
in which case the problem reduces to a strictly uni-dimensional optimal transport
problem with surplus b. In a follow up with R. McCann to the present work, we
show that, under certain topological conditions on s, X and Y , if both Kantorovich
potentials are C2, the modelmust be nested, indicating that nestedness is a natural
(and necessary) hypothesis for higher regularity.



Applications of Optimal Transportation in the Natural Sciences 411

References

[1] P.-A. Chiappori, R.J. McCann and B. Pass, Multi- to one-dimensional optimal transport,
To appear in Comm. Pure Appl. Math.

[2] C. Villani, Optimal transport: old and new, volume 338 of Grundlehren der mathematischen
Wissenschaften. Springer, New York, 2009.

Reporter: Virginie Ehrlacher



412 Oberwolfach Report 7/2017

Participants

Dr. Jean-David Benamou

INRIA Rocquencourt
Domaine de Voluceau
B. P. 105
78153 Le Chesnay Cedex
FRANCE

Prof. Dr. Adrien Blanchet

Toulouse School of Economics
21, Allee de Brienne
31000 Toulouse Cedex
FRANCE

Prof. Dr. Yann Brenier

C M L S
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