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Introduction by the Organisers

Forcing and inner model theory were introduced by Godel and Cohen in their
spectacular resolution of Hilbert’s First Problem, Cantor’s Continuum Hypothesis.
Sophisticated refinements of these two methods, as well as applications of set
theory, were the major themes of this successful and diverse workshop.

1. INNER MODEL THEORY AND LARGE CARDINALS

In 1939 Godel constructed the minimal inner model of set theory, L. Fine anal-
ysis of L and other inner models of set theory was initiated and lead by Jensen.
Large cardinals form a transfinite hierarchy of axioms transcending the consis-
tency strength of ZFC. These axioms (sometimes combined with forcing) provide
the only means of resolving higher mathematical problems, such as Lebesgue mea-
surability of projective sets of real numbers. Fine structure of inner models of
large cardinals provides best known justification for consistency of these axioms.
It depends on iterability of small transitive models of fragments of ZFC (the so-
called ‘mice’). While iteration strategies provide definable well-orderings of the
reals, large cardinals provide counterbalance and imply Lebesgue measurability
of definable sets of reals. The recent introduction of hybrid structures (known
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as ‘HOD mice’) by Woodin and Sargsyan is a technical breakthrough comparable
to the 1980’s Martin—Steel proof of Projective Determinacy and introduction of
iteration trees for Woodin cardinals. In his talk Steel reported on the intrigu-
ing correlation between inner models of determinacy and HOD (the inner model
of hereditarily ordinal definable sets). Sarsgyan talked about inner models close
to the set-theoretic universe and the associated covering theorems. In his talk
Cramer explored Woodin’s AD-conjecture and Iy, possibly the strongest large
cardinal principle known to man. In his talk Wilson proved that the assertions
that every universally Baire set of reals has the perfect set property, and that ev-
ery set of reals in L(R, uB) has the perfect set property have the same consistency
strength.

Zeman talked about full iterability of the core model, and related topics were
covered in talks by Chan and Zhu.

2. APPLICATIONS

Some of the most successful talks demonstrated recent uses of set-theoretic meth-
ods in previously unexpected settings. A striking example of this was Viale’s talk
on the 1960s Schnauel’s conjecture concerning the transcendence degree of field
extensions of the rational numbers. Viale combined forcing with an absoluteness
argument, and C*-algebras as spaces of names, to prove the existence of a count-
able field that satisfies Schnauel’s conjecture. Foreman reported on joint work
with B. Weiss in which they resolved von Neumann’s isomorphism problem in er-
godic theory in its original (and arguably the most important) formulation, for the
Lebesgue measure-preserving diffeomorphisms of manifolds. Foreman and Weiss
proved that a satisfactory classification in this context is impossible. This exam-
ple of a necessary use of set theory will also be covered in ‘Snapshots of modern
mathematics from Oberwolfach.” Marks gave a completely constructive solution
to Tarski’s circle squaring problem, improving on an earlier equidecomposition
theorem due to Laczkovich. The proof—as interesting as the result—used ideas
from the study of flows in graphs, and a recent result of Gao, Jackson, Krohne, and
Seward on the hyperfiniteness of free Borel actions of Z¢. The concept of amenabil-
ity for locally compact groups was introduced in late 1920s by von Neumann and
has since permeated much of modern mathematics. Question of the amenability
and structure of Thompson’s groups has attracted attention of group theorists,
operator algebraists, and set theorists alike. In his talk Moore provided a high
lower bound for the complexity of the structure of finitely-generated subgroups of
Thompson’s group F.

3. FORCING

A special treat in this meeting was an opportunity to see two novel iterated forcing
constructions. Our meeting started with an inspiring talk by Jensen, who isolated
assumptions under which Namba forcing is subcomplete and thus obtained a new
model of the Continuum Hypothesis. In his talk Raghavan reported on a new
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method for iterating forcing via boolean ultrapowers using a supercompact car-
dinal, and its application to cardinal characteristics. The latter topic was also
explored in talks by Brendle and Horowicz. In his talk Krueger used forcing to
prove that Shelah’s approachability ideal I[xk*] consistently does not contain a
maximal set modulo the club filter. Hrusak talked about forcing, filters, and a
deep combinatorial property of trees, the Halpern-Lauchli theorem.

4. COMBINATORICS

The tree property of cardinals holds at Ry (known as Konig’s lemma) and fails at
N; (witnessed by Aronszajn trees). While true for weakly compact cardinals, it
fails for all other regular cardinals in Godel’s inner model L. In his talk Unger
blended large cardinals and forcing to construct a model in which many regular
cardinals have the tree property. Combinatorics of singular cardinals remains one
of the most intriguing and deepest areas of set theory. It involves intricate blend
of forcing and large cardinals. The main tools are the higher relative of Namba
forcing, Prikry forcing, and its refinement, Magidor forcing. In her talk Sinapova
presented a sophisticated diagonal extender-based supercompact Prikry forcing
and used it to show that the power-set of a singular strong limit cardinal need
not be included in HOD relativized to one of its subsets, providing a limiting ex-
ample to a result of Shelah. In his talk Hayut used a variation on Prikry forcing
and a supercompact cardinal to prove the relative consistency of new instances of
the two-cardinal model-theoretic transfer principle, Chang’s conjecture. New uses
and properties of Prikry forcing were given in talks by Gitik and Koepke. The
intricate connection between coloring and chromatic numbers of finite graphs is
naturally even more intricate in infinite graphs. In his talk Rinot demonstrated
how combinatorial principles such as [ isolated in inner models affect these prob-
lems. Zapletal considered anticliques in closed graphs on R. Soukup talked about
surprising properties of uncountable linear orderings.

5. TOPOLOGICAL DYNAMICS

This recurring theme in modern descriptive set theory was well-represented.
Fraissé limits are highly homogeneous structures generically constructed from fi-
nite substructures. In the recent years Fraissé constructions were generalized to
previously unexpected settings and used to analyze categories from Ramseyan cat-
egories to strongly self-absorbing C*-algebras. In his talk Solecki studied projective
Fraissé constructions and the associated homology theory, opening new alleys of
research, and Nguyen Van Thé talked about the relation between Fraissé con-
structions and Ramsey theory. Melleray and Tsankov talked about Polish group
actions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

On the subcompleteness of some Namba-type forcings
RONALD JENSEN

We show that - under the assumption of CH and 2*“' = ws - two Nambda-like
forcings N’ and N* are subcomplete.

N is the set of Nambda trees with a finite stem s = stem(7') such that for
all t € T either t = s | n for some n < |s| or ¢ D s has wy many immediate
successors. The salient feature of N’-generic sequences (7; : ¢ < w) is that whenever
F: wy; — ws is a function in the ground model then there is an n € w such that

F('Ym) < Ym+1

for all m > n.
N* is defined like N’ except that we impose the stronger requirement that if
t €T and ¢t D stem(T) then

{a<wy:t™(a) e T}

is stationary in ws. The salient feature of N*-generic sequences (7; : i < w) is
that whenever A C wy is a club in the groundmodel then there is an n € w so
that v,, € A for all m > n. Both forcings add no reals assuming CH in the
groundmodel.

N’ has been treated extensively in the literature, especially [I]. In [2], we
generalized Shelah’s notion of ”dee-complete“ and ”w;-proper* forcing to ”dee-
subcomplete“ and ”w;-subproper “. We showed that under CH, N’ had both prop-
erties and, therefore, can be iterated without adding reals. Quite recently we
introduced the notion of ”almost subcomplete forcing“ and proved an iteration
theorem. Assuming CH and 2“! = w9, we showed that N’ and N* are both almost
subcomplete. We then belatedly realized that our proof showed N’ and N* to be,
in fact, fully subcomplete.

In our talk, we will deal mainly with N* though we shall briefly indicate the
changes to be made in proving the same result for N’. For details, we refer the
reader to
https://www.mathematik.hu-berlin.de/~raesch/org/jensen.htmll

REFERENCES

[1] Shelah, Saharon. Proper and improper forcing. 1998.
[2] Jensen, Ronald. dee Subproper Forcing. Notes accessible at
https://www.mathematik.hu-berlin.de/~raesch/org/jensen.html
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Incompactness for chromatic number is compatible with many
reflection principles

ASSAF RINOT
(joint work with Chris Lambie-Hanson)

Introduction. A graph is a pair G = (V, E), where E C [V]2. The neighborhood
of a vertex x € V is denote by Ng(z) :={y € V | {z,y} € E}. For any ordering
Qof Vand z € V, denote N5 (z) :={y € Ng(z) | y < z}.

A chromatic coloring of G is a function ¢ : V. — & satisfying c(z) # c(y)
for all {z,y} € E. The chromatic number of G, denoted Chr(G), is the least
cardinal x for which such a chromatic coloring exists. The coloring number of
G, denoted Col(G), is the least cardinal k for which there exists a well-ordering
< of V satisfying [N (z)|< & for all z € V(G). Note that if < witnesses the
value of Col(G), then one can obtain a chromatic coloring ¢ : V' — Col(G) by
straight-forward recursion over (V, <1). That is, Chr(G) < Col(G) for every graph
G.

By a classic result of de Bruijn and Erdés, if G is a graph, k is a positive integer,
and all finite subgraphs of G have chromatic number < k, then Chr(G) < k.
Questions involving generalizations of this theorem (to infinite cardinal numbers,
as well as to other cardinal functions) have attracted a lot of attention. Let us list
some key results:

Fact 1. Compactness for the chromatic number:

o (essentially de Bruijn-Erdds, 1951) If x is strongly compact, 6 < x, and
G is a graph such that every subgraph of size < x has chromatic number
at most 0, then Chr(G) < 6.

e (Foreman-Laver, 1988) Relative to a large cardinal hypothesis, it is con-
sistent with GCH that any graph of size and chromatic number Ry contains
a subgraph of size and chromatic number Xy.

o (Shelah, 1990) Relative to a large cardinal hypothesis, it is consistent with
GCH that, whenever 1 < n < w and G is a graph such that every subgraph
of size < N, has chromatic number at most W, it follows that G has
chromatic number at most X,

e (Unger, 2015) Relative to a large cardinal hypothesis, it is consistent with
GCH that, whenever 1 < a < w1 and G is a graph such that every subgraph
of size < N, has chromatic number at most Ro41, it follows that G has
chromatic number at most Ng41.

Compactness for the coloring number:

o (Shelah, 1975) If G is a graph on a singular cardinal A, Xg < 0 < X,
and every subgraph of G of size < A has coloring number at most 0, then
Col(G) < 6.

IThe case n = 0 remains open to this date.
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(Magidor-Shelah, 1994) If x is strongly compact, Rg < 0 < x, and G is a
graph such that every subgraph of size < x has coloring number at most 6,
then Col(G) < 6.

Furthermore, relative to a large cardinal hypothesis, it is consistent that
the above statement holds after replacing the strongly compact x by the
first cardinal fized-point.

(Shelah, 1990’s) Relative to a large cardinal hypothesis, it consistent that
for every infinite 0, any graph of coloring number > 0 has a 07 -sized
subgraph of coloring number 7.

(Fuchino et al., 2012) FRP is equivalent to the assertion that any graph
of uncountable coloring number has an Ni-sized subgraph of uncountable
coloring number.

We say that a graph G is (0, k)-chromatic (resp. (0, k)-coloring) if Chr(G) = &
(resp. Col(G) = k) and Chr(G") < 0 (resp. Col(G’) < 0) for every strictly smaller
subgraph G’ of G.

Fact 2. Incompactness for the chromatic number:

(Erdés-Hagnal, 1968) If 2% = Ry, then there is an (Rg,N;)-chromatic
graph of size No.

(Galvin, 1973) If 2% = 2% < 282 then there is an (Ro, Ng)-chromatic
graph of size (2%1)7.

(Todorcevic, 1983) If Kk is a regular uncountable cardinal and there ex-
ists a nonreflecting stationary subset of B, then there is an (Rg, > Nyp)-
chromatic graph of size k.

(Baumgartner, 1984) GCH is consistent with an (Rg, Re)-chromatic graph
of size Ng.

(Komjdth, 1988) 280 = Rz is consistent with an (No, Ng)-chromatic graph
of size Ns.

(Todorcevic, 1986) Martin’s Axiom entails the ezistence of an (Rg,2%°)
graph of size 280

(Komjdth, 1988) 2% = R, 11 is consistent with an (Ro,N;)-chromatic
graph of size R, .

(Shelah, 1990) GCH is consistent with an (g, Rq)-chromatic graph of size
R, -

(Soukup, 1990) The existence of an (N, (2%0)F)-chromatic graph of size
(280)* s consistent with arbitrarily large value for 2%°.

(Shelah, 1990) If V = L, then (GCH holds, and) for every regular non-
weakly compact cardinal k, there is an (o, k)-chromatic graph of size k.
(Shelah, 2013) If 0 < k are reqular cardinals, k% = K, and there exists
a non-reflectioning stationary subset of Ej, then there is a (6,> 6%)-
chromatic graph of size k.

(Rinot, 2015) If X is an infinite cardinal, 2* = \*, and Oy holds, then
there is an (No,0)-chromatic graph of size AT for all infinite 6 < \. If,
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additionally, X\ is singular, then there is an (No, A\T)-chromatic graph of
size AT
Incompactness for the coloring number:

o (Shelah, 1975) If 0 < k are infinite reqular cardinals and there exists a non-
reflecting stationary subset of Ej, then there is a (6,0%)-coloring graph of
size K.

The above list makes it clear that unlike the chromatic number (for which large
gaps are known to be consistent), the only known consistency result for the coloring
number is that of gap 1.

We do not know whether gap 2 is consistent, but can prove it is an upper bound:

Question 1. Is it consistent that for some infinite 0, there exists a (0,0%2)-
coloring graph?

Theorem 1 ([LHRI6)). For any infinite 0 and o > 3, there exists no (0,07%)-
coloring graph.

We can also show that certain instances of Chang’s Conjecture give us situations
in which the preceding is not sharp. For instance, if (Ry,11,R,) = (X1, Ng) holds,
then for all infinite § and o > 2, there exists no (6,07%)-coloring graph of size
< Wyt1. Nevertheless, (R,4+1,R,) = (N1, R0) is compatible with the existence of
an (Rg, Nq)-coloring graph of size R, ;1.

Main results. The main question that motivates our research reads as follows.

Question 2. What is the relationship between compactness for the chromatic num-
ber and compactness for the coloring number?

Our main result shows that incompactness for the chromatic number — even
with very large gaps — is compatible with compactness for the coloring number
(and hence with stationary set reflection). For this, we introduce the following
variation of the square principle: O(k,C,) asserts the existence of a sequence
(Cy | @ < k) satistying the following:

e for every limit ordinal a < k, C, is a club in «;
e for every a < k and & € acc(Cy,), if otp(Cy) > x, then Cy = Cy N @&;
e for every club D in &, there exists some a € acc(D) such that DNa # C,.

Definition 1 ([Rinlf]). To any sequence C' = (Cy | a < k), we attach a graph
G(C) := (acc(k), E), by letting aES iff min(Cy) > sup(Cs N ) > min(Cs) or
min(Cg) > sup(Cq N B) > min(Cly).

Theorem 2 ([LHRI6)). If C is a O(x, C,)-sequence, then Chr(G(C) 1 a) < x for
all o < k.

Now, let £(k, x) stand for the assertion that there exists a O(k, T, )-sequence
C for which Chr(G(C)) = k. In |[LHRI6), it is proved that O(A*,C,) + GCH
entails £(AT, x) for every singular cardinal A. In addition, we have the following
consistency results.
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Theorem 3 ([LHR16]). Relative to various large cardinal hypotheses, the following
are consistent:
(1) FRP(NQ) together with €(Na, Rg);
(2) Ryt1,Ny) = (N, Ng) together with €(Ry41,No);
(3) RC /FRP / MM together with E(k,Ne) holding for all reqular £ > No;
(4) x is a supercompact cardinal together with E(k,x) holding for all regular
K> X5
(5) Reflection of stationary subsets of k together with £(k,Rg), where k is the
least inaccessible cardinal;
(6) (a) Ax_,x_,,, together with E(Nyz41,No0);
(b) A, together with E(k,Ng), where K is inaccessible.

To motivate Clause (6) of the preceding, we mention:

Fact 3 (Magidor-Shelah, 1994). Suppose 6 < x < k are infinite cardinals such
that K is singular or A, . holds. Then every graph of size k and coloring number
> 0 has a strictly smaller subgraph of coloring number > 6.

REFERENCES

[LHR16] Chris Lambie-Hanson and Assaf Rinot. Reflection on the coloring and chromatic num-
bers. submitted 2016.

[Rinl5] Assaf Rinot. Chromatic numbers of graphs - large gaps. Combinatorica, 35(2):215-233,
2015.

Projective Fraissé limits and homology
SLAWEK SOLECKI
(joint work with Aristotelis Panagiotopoulos)

The point of view described below allows one to approach certain problems in topo-
logical dynamics and topology using purely combinatorial/model theoretic meth-
ods. Certain important compact topological spaces E are obtained as canonical
quotients of a “generic” inverse limits of a family of finite structures. This pro-
cedure was first described in [5]. One defines a family of finite structures and a
family of epimorphisms among them. We denote by £ the family of epimorphsims
assuming that the class of structures is remembered by £. The language of the
structures contains a distinguished binary relation symbol R. The family &, in
the situations of interest, fulfills the projective amalgamation property, that is, for
f1: B1 — Aand f3: By — A coming from &, there exist g1: C — B and g2: C — By
such that fiog1 = faogs in €. (Note that the arrows are reversed when compared
with the standard Fraissé set-up.) One then produces the projective Fraissé
limit
E = @15

by an infinite, generic amalgamation procedure analogous to the classical Fraissé
construction. The underlying set of the structure E carries a compact zero-dimen-
sional topology. In the situations of interest, the interpretation of R in E, R,
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turns out to be a compact equivalence relation. Then the topological space E
is the canonical quotient E/R®. We often refer to E the pre-E. Several impor-
tant compact, second countable spaces have been produced this way for natural
combinatorially defined classes € [1, [3], [4], [3], [7].

Two aspects of this situation are significant to us:

— properties of the space £ = E/RF and its homeomorphism group can be
often established by transferring properties of E and its automorphism
group; the latter situation is easier to handle because it is essentially com-
binatorial with the complications of the topology on E being translated
into combinatorics of the zero-dimensional space E and the equivalence
relation RE:

— the structure E is of independent interest, much like the structure of cer-
tain objects produced by applications of the standard Farissé method, for
example, the random graph or the Urysohn universal metric space..

The aim of the work described below is to develop the right notion of the sim-
plex and the boundary operation for homology theory of projective Fraissé limits
and their quotients. A homology theory that is appropriate for projective Fraissé
limits needs to fulfill certain conditions: the simplexes should themselves be pro-
jective Farissé limits; the epimorphisms in the projective Fraissé class that define
simplexes should be combinatorial; on the other hand, they should be coinitial in a
larger class of epimorphisms that is flexible enough to make applications possible.

Recall that a simplicial complex C' is a family of non-empty subsets of a
set with the family assumed to be closed under taking non-empty subsets. The
elements of the underlying set V(C') are called vertices and the elements of the
family are called faces. For two simplicial complexes C' and D, a simplicial map
f:C — D is afunction from the vertices of C to the vertices of D that maps faces of
C to faces of D. Recall that the barycentric subdivision of a simpicial complex
C is a simplicial complex SC whose vertices are faces of C' and whose faces are
sets of faces of C' that are linearly ordered by inclusion. For each simplicial map
f:C — D there exists a simplicial map 8f: BC — BD defined by (8f)(s) = f[s].
Note that s being a vertex of SC is a face of C, so taking its pointwise image f|s]
makes sense and gives a face of D, so a vertex of 8D, as its result.

We fix a natural number n. We define a class D,, of structures and epimorphisms
among them. Let A, be the n-dimensional simplex, that is, A, is a simplicial
complex whose set of vertices has n+ 1 elements and whose family of faces consist
of all non-empty subsets of the vertex set. Now, our class of finite structures
consists of all barycentric subdivisions 8¥A, of A,, k € N. The distinguished
binary relation R holds on a pair of vertices if they belong to a face. A function
§: BFHLA,, — BFA,, k €N, is called a selection if, for each face s of BFT1A,,, we
have §(s) € s. The class of epimorphisms in D,, is the smallest class of simplicial
maps from some B'A, to f*A,, for some k,I € N, that contains the identity
map from A, to A,, contains all selections, and is closed under composition and
operation f.

We have the following theorem.
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Theorem 1 (Panagiotopoulos-S.). (i) The class Dy, is a projective Fraissé
class, that is, the projective amalgamation holds for D,,.
(ii) The projective Fraissé limit D,, of D,, is such that D, /R is homeomor-
phic to the geometric n-dimensional simplex.

The next theorem identifies the broadest (in a precise sense not specified here)
class of maps H, in which D, is coinitial. Recall that a function is called a
near-homeomorphism if it is a uniform limit of homeomorphisms. A function
f from a geometric n-dimensional simplex to itself is called a restricted near-
homeomorphism if, for each face S (of each dimension k£ < n), f maps S to S
and f [ S:S — S is a near-homeomorphism. We put a simplicial function from
BA, to BEA,,, for some k,l € N, in H,, if its geometric realization is a restricted
near-homeomorphism.

Theorem 2 (Panagiotopoulos—S.). The class D,, is coinitial in H,, that is, for
each morphism f in H, there exists a morphism g in H, such that fog is in D,.

The proof of the above theorem crucially uses the combinatorial/topological
tools from stellar subdivision theory as exposed in [6].

The theorem above implies that H,, is a projective Fraissé class whose limit is
equal to D,. Class H, appears to be flexible enough for applications we have in
mind to Menger universal compacta [2].

Open problems. The immediate open problem is to investigate the interaction of
homology coming from the notion of simplex as defined above with the operation of
projective Fraissé limit. There is a test case here: the development of the universal
Menger compacta through projective Fraissé limits. Jointly with Panagiotopoulos,
we found projective Fraissé classes that lead to projective Fraissé limits whose
canonical quotients appear to be the Menger compacta. A verification of this
fact seems to require appropriate homology theory for projective Fraissé limits.
If successful this development would lead to a fully combinatorial treatment of
Menger compacta and their homogeneity; see Bestvina’s work [2].

REFERENCES
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Halpern-Lauchli property of filters
MICHAEL HRUSAK
(joint work with Osvaldo Guzmén and David Chodounsky)

We study the existence of Sacks-indestructible ultrafilters. To that end we consider
the following related notions - idealized versions of the Halpern-L&auchli property
according to Laver [2]: An ideal Z C P(w) is
e Halpern-Lauchli (HL) if for every ¢ : 2<% — 2 there is an X € ZT and a
perfect tree T C 2<“ such that ¢ [ T'NJ,,c x 2" is constant, and
e w-Halpern-Léuchli (HL® ) if for every ¢ : @®pe,2<% — 2 thereisan X € T+
and perfect trees T;, C 2<% such that ¢ | ®peuTh N UneX 2™ is constant,
where
@nEan = U HzSnTz nam.
necw
We note that Sacks-indestructible ultrafilters exist generically, i.e. any filter
of size < ¢ can be extended to a Sacks-indestructible ultrafilter if and only if the
cardinal invariant hl = min{cof(Z) : Z is not HL} is equal to ¢. By analyzing the
Halpern-Léauchli property in Borel ideals we prove d < hl < cof (NV). In the process
we note that

e Every Pt-ideal is HL.

Every ideal extendible to an F,-ideal is HL,

nwd, Fin® are HL

(essentially due to Steprans) Z is not HL.
triM)={AC2<%:{ze€2¥:3®°n (x|ne A} e N}is HL.

If U is Sacks-idestructible ultrafilter then Z £, U*, i.e. Sacks-indestruc-
tible ultrafilter is a Z-ultrafilter (in the sense of Baugartuner [I]).

There is no difference between HL vs. HL® in all of these results, in particular:
e If a definable Z is HL* then Con(t(P(w)/Z) < ¢).

We conclude with a list of related open problems:

e (A. Miller) Is there a Sacks-indestructible ultrafilter in ZFC?

e Is there (consistently) an ultrafilter which is Sacks-indestructible but not
S“-indestructible?

Is there a Z-ultrafilter in ZFC?

Is there a (Borel) ideal which is HL but not HL*?

Is 0 < bl consistent?

Is bl < cof (NV) consistent?
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Uncountable strongly surjective linear orders
DANIEL T. SOUKUP

The starting point of this project is the simple observation that if L, K are linear
orders and f : L — K is order preserving and surjective then K embeds into L.
In [7], the authors initiated the study of linear orders for which this implication is
reversible:

Definition 1. A linear order L is strongly surjective iff L — K for all K C L.

That is, L maps onto any of its suborders in an order preserving way. It is easy
to see that w, —w or Q is strongly surjective but w + 1 is not. Indeed, suppose
that K C Q. Form the ordered sum K* = ", ;- Q, that is blow up each point
in K to a copy of the rationals. This linear order is countable, dense and has no
endpoints (no matter what K is). So K* is isomorphic to Q; furthermore, K* can
be clearly mapped onto K by collapsing back the copies of Q.

The main question we tackle is the following: are there any strongly surjective
linear orders which are not countable? If yes, what are the possible order types of
these linear orders?

It was proved in [7] already that, in the class of separable linear orders, this
question is independent: if the Continuum Hypothesis holds then every separable,
strongly surjective linear order is actually countable; if the Proper Forcing Axiom
holds then any N;-dense set of real numbers is strongly surjective. In particular,
uncountable strongly surjective linear orders may exist.

Our first result generalizes the above significantly; recall that a linear order
L is Aronszajn iff L is short (contains no copies of wy or —w;) and contains no
uncountable separable suborders. It is easy to see that any strongly surjective
linear order is short.

Theorem 1. Any strongly surjective linear order is Aronszajn if 2% < 281 or in
the Cohen-model.

Now, is it possible that there are strongly surjective Aronszajn orders? Baum-
gartner [2] showed that any Aronszajn order can be realized as a lexicographically
ordered Aronszajn tree.

Theorem 2. Under {T, there is a strongly surjective, lexicographically ordered
Suslin tree.

In [2], Baumgartner constructs a minimal Suslin tree which gives such an ex-
ample (this was already noted in [7]), in fact a lexicographically ordered Suslin
tree which is doubly isomorphic to all large subtrees. By doubly isomorphic we
mean that both the lexicographic and tree order are preserved by the maps. How-
ever, recently Hossein Lamei Ramandi pointed out that Baumgartner’s crucial [2]
Lemma 4.14] is false. Our proof fills this gap using a similar construction from [3].

Finally, it is possible that there are no uncountable strongly surjective linear
orders at all.
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Theorem 3. Suppose that 280 = Xy and axiom (A) holds. Then every strongly
surjective linear order is countable.

Axiom (A) was introduced by J. Moore [5] and says that any ladder system
colouring on w; can be uniformized on any Aronszajn tree T. CH together with
(A) was used in [5] to show that consistently, the only minimal uncountable linear
orders are wy; and —w;. One can force axiom (A) from a model of CH by a
countable support iteration of proper posets which do no add new reals (see [5]
for details).

We believe that there are still plenty of interesting open problems in this topic.
Some are listed below:

Problem 1. Is it consistent that there is a strongly surjective linear order of size
>Ny ?

Such an order necessary has large real suborders so this problem could be as
hard as proving that all x-dense sets of reals are isomorphic for some x > No.

Problem 2. Is it consistent that there is a strongly surjective linear order which
contains no minimal (strongly surjective) linear orders?

Let us mention that not every stronly surjective linear order is minimal:

Theorem 4. Consistently, there is a strongly surjective suborder of R which is
not minimal and not homogeneous.

Indeed, one can make use of a model from [I] where MAy, and OCA holds and
there is an increasing set of reals A i.e. for any uncountable set of pairwise disjoint
n-tuples from A (with n € w), one can select (a; : i < n) and (b; : i < n) so that
a; < b; for all i < n.

Problem 3. Does MAy, imply that there is an uncountable strongly surjective
L CR?

We conjecture that the answer is no. To support this recall that MAy, is
consistent with the statement that every uncountable set of reals contains a 2-
entangled set [I] while 2-entangled sets cannot be strongly surjective.

Problem 4. Suppose that L is strongly surjective and x € L. Is L\ {x} strongly
surjective?

A particularly fascinating class of Aronszajn orders are the Countryman lines.
L is Countryman if the poset L? can be covered by countably many chains. It is
well known that Countryman lines are Aronszajn, exist in ZFC but cannot have
Suslin suborders.

Problem 5. Are there strongly surjective Countryman lines? What about under
MAy, or PFA?

Recall that under MAy, every Countryman line is minimal and under PFA, each
Aronszajn order contains a Countryman line [4]. Furthermore, Moore [6] contructs
a linear order n¢ from a Countryman line which is universal for Aronszajn orders
under PFA.
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Problem 6. Is no strongly surjective under PFA?
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Borel circle squaring
ANDREW MARKS
(joint work with Spencer Unger)

We give a completely constructive solution to Tarski’s circle squaring problem.
More generally, we prove a Borel version of an equidecomposition theorem due to
Laczkovich. If k > 1 and A, B C R* are bounded Borel sets with the same positive
Lebesgue measure whose boundaries have upper Minkowski dimension less than
k, then A and B are equidecomposable by translations using Borel pieces. This
answers a question of Wagon. Our proof uses ideas from the study of flows in
graphs, and a recent result of Gao, Jackson, Krohne, and Seward on special types
of witnesses to the hyperfiniteness of free Borel actions of Z2.
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Woodin’s AD-Conjecture for Iy
ScoTrTt CRAMER

In this talk we discuss the definition, motivation, aspect of the proof and con-
sequences of Woodin’s AD-Conjecture for Iy. This conjecture comes out of the
relationship between models of the Axiom of Determinacy (AD) and models of
large cardinal axioms which exists, for instance, at the level of Woodin cardinals.
In this case, there is a method for obtaining from a model of large cardinals, a
model for AD, by considering the derived model, and there is a method for obtain-
ing a model of large cardinals from a model of determinacy, by considering HOD
of the determinacy model. One interpretation of Woodin’s AD-Conjecture is that
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it gives evidence that one can continue to obtain strong determinacy models even
for the strongest large cardinals known.
Iy is the statement that there exists a nontrivial elementary embedding

J: L(Vas1) = L(Vat)

with critical point below A. This large cardinal is stronger than strong, supercom-
pact, huge, I; and I, and is one of the strongest large cardinals not known to be
inconsistent. The AD-Conjecture deals with the existence of a certain represen-
tation for subsets of V)41 called a U(j)-representation, due to Woodin[I]. These
representations are very similar to weakly homogeneously Suslin representations,
which in the presence of large cardinals, allow one to obtain determined sets of
reals. Hence it is natural to think that the existence of U(j)-representations is
connected with the existence of models of determinacy. Our main theorem is the
following.

Theorem 1 (C.). Assume Iy holds at \. Then every subset of Vay1 has a U(j)-
representation in L(Vxi1) and hence the AD-Conjecture holds at Iy.

There are a number of consequences of this result which we highlight. First of
all, in terms of models of determinacy we have the following.

Theorem 2 (C., Woodin). Suppose that X is a limit of supercompact cardinals
and there is a proper class of Woodin cardinals. Also assume that Iy holds at .
Let G C Coll(w, \) be V-generic. In V[G], let TY be the set of universally Baire
sets which are in L(Vx41)[G]. Then

(1) LI'E) = LSA (a strong determinacy axiom, which includes AD),
(2) OLTE) = @L(Vat1)

The key point for showing (2) is that ©L(T'&) ¢ @L(Vat1),

One also obtains the consistency of I with I and the failure of SCH at A (due
independently to Woodin and Dimonte-Friedman).

The proof of the AD-Conjecture for Ij yielded some interesting additional struc-
ture, and we obtained a new type of representation for subsets of V41 called a
j-Suslin representation. These representations have a simple definition, which we
can give.

Definition 1. Fiz j : L(Vay1) = L(Vag1). A C Vag1 has a (4, k)-Suslin repre-
sentation T if the following hold for some X increasing cofinal in .

(1) T is a tree on Vx x L (Vag1) such that for all (s,a) € T

5=(50,---15n), s; € Vi, s; = si+1 NV,
(2) ‘A=p[T)’, that is, T is (basically) a tree representation for A.
(3) for all (s,a) € T there is an n such that for j, the nth iterate of j,
Jn(s,a) = (s,a).
(4) for all s there exists an n such that j,(Ts) = Ts.
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These representations do not follow directly from the existence of U (j)-represen-
tations, and they seem more analogous to Suslin representations in the context of
Iy, as they do not involve the concept of a tree augmented with measures. Their
existence in fact implies a generic absoluteness result which is slightly stronger
than the generic absoluteness implied by U (j)-representations. We have the cor-
responding existence theorem for j-Suslin representations as well.

Theorem 3 (C.). Assume Iy holds at A. Then every subset of Va1 has a j-Suslin
representation in L(Vii1).

Whether these results can be extended beyond throughout the E9-hierarchy, is
still open.
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Least branch hod pairs
JouN R. STEEL

We describe some results on the structure of HOD in models of the axiom of deter-
minacy. Our results apply to models which have not reached iteration strategies
for mice with long extenders.

Definition 1. “No long extenders” (NLE) is the assertion: there is no wy iteration
strategy for a countable pure extender mouse with a long extender on its sequence.

We show that below long extenders, there is a simple general notion of least
branch hod pair, and a general comparison theorem for them. They have a fine
structure. Modulo the existence of iteration strategies, they can be used to analyze
HOD, and they can have subcompact cardinals:

Theorem 1. [I] Suppose that k is supercompact, and there are arbitrarily large
Woodin cardinals. Suppose that V is uniquely iterable above k; then

(1) for any T C Home, such that L(T',R) = NLE, HODY'®) = GCH, and
(2) there is a T C Homs such that HODET®) = “there is a subcompact
cardinal”.

The large cardinal and iterability hypotheses on V are used to show that there
are enough hod pairs that HOD is their direct limit. “Enough” is made precise
by:

Definition 2. (AD') HOD pair capturing (HPC) is the statement: for every
Suslin, co-Suslin set of reals A, there is an lbr hod pair (P,X) such that A is
Wadge reducible to Code(X).

HPC is a cousin of Sargsyan’s “Generation of full pointclasses”. It holds in the
minimal model of ADg + “0 is regular”, and beyond, by Sargsyan’s work.
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Theorem 2. [2,[4] Assume there is a supercompact cardinal, and arbitrarily large
Woodin cardinals. Suppose V' is uniquely iterable. Let I' C Homy, be such that
L(T,R) = NLE ; then L(T',R) = HPC.

Theorem 3. Assume ADT +V = L(P(R))+HPC; then HOD|0 is an least branch
premouse. Thus HOD = GCH.

The main open problem is, as it has been for a long time, how to eliminate the
iterability hypothesis. This would be done by a proof of the following conjecture:

Conjecture. (AD" 4 NLE) = HPC.
We have two results of a general nature on this conjecture. First, HPC localizes:

Theorem 4. [2] Assume ADT + HPC, and let T C P(R); then L(T',R) |= HPC.

The key to localization of HPC is to compute optimal Suslin representations for
the iteration strategies in lbr hod pairs. This suggests a proof of the conjecture
that goes by induction on scaled pointclasses. It turns out that crossing gaps in
scales is not the problem:

Theorem 5. [4] Assume ADY, and let T' be an inductive-like pointclass with the
scale property. Suppose that the iteration strategies of lbr hod pairs are Wadge

cofinal in T' NT, and that all sets in ' are Suslin; then there is an lbr hod pair
(P, %) such that Code(X) is not in T.
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The higher sharp revisited
YIZHENG ZHU

The collection of projective sets of reals is the smallest one containing all the
Borel sets and closed under complements and continuous images. The Axiom
of Projective Determinacy (PD) is the correct axiom that settles the regularity
properties of projective sets. For instance, PD implies that every projective set is
Lebesgue measurable, has the Baire property and is either at most countable or
equinumerous with the continuum. Further exploration of PD relies on tools from
both inner model theory and higher-level descriptive set theory.

Assuming A} 41-determinacy, Moschovakis shows that there is a I3, ;-norm
¢ on a good universal 11}, ; set G onto 5%n+1. We define the universal X3, ,,
subset of Jénﬂ by

Osi  ={(0,a):0isaXx}, , formula, Jw(p(w) = a A O(w))}.

2n+42
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The canonical structure associated to this level is L(;;nﬂ[(?g%n”]. It does not
depend on the choice of ¢ and G by Moschovakis. Steel gives an inner-model-
theoretic meaning of this structure: Let M}, o, be the direct limit of all the iterates
of M}, via countable iteration trees and let d; o be the least Woodin of M}, .
Then Jénﬂ is the least < d2p, oo-strong cardinal in May, o and L5§n+1 [Ozén“] =
MZn,oowén-i-l-

In this talk, we show that a similar pattern holds at odd levels. Let WO,, be
standard coding set of ordinals in u, i.e., the set of (r,z#) for which 7 is a Skolem
term for a ordinal. The ordinal coded by (r,z#) is |(1, 2#)|= 75 (&, uy, . . ., up),
where 7 is k + 1-ary. We define the universal 3} subset of u,, by

Os1 ={(0,a):0isa ¥ formula, 3w € WO, (jw|= a A 0(w))}.

The canonical structure associated to this level is L, [Ox1]. It is equal to Ly, [15]N
Va., by Q-theory, where L., [T5] is the admissible closure of the Martin-Solovay tree
projecting to II3. We show that this structure is also a canonical model in inner
model theory:

Theorem 1. Assume Aj-determinacy. Then M |61 oo = Ly, [Os1].

Theorem 1 generalizes to arbitrary odd levels with Ms,_1 o and Ozé - by
Zhu [T]. A natural question on the uniqueness of L, [Ox;] arises:

Question 1. Let @ be a A}-scale on a good universal 115 set such that each ¢;
is O(< w?-I1}). Let Os1.5 be the universal 1 subset of u,, relative to G. Does
L, [Ozé] = Ly, [02%,95] ?

Based on Theorem [I] and its generalization, we are able to prove the existence
of the mouse M;i from determinacy principles:

Theorem 2. Assume that both boldface Aénﬂ and lightface X3, ., games are
determined. Then there is a countable iterable M;fl

We do not know if A%nﬂ can be replaced by X3, in Theorem On the
other hand, Zhu [2] proves the existence of a countably iterable M;fl 41 from the
determinacy of boldface 33, +1 and lightface X3, , games.

Assuming AJ}-determinacy, Woodin shows that for a Turing cone of z, w2L ] s
a Woodin cardinal in HOD"[*l. The internal structure of HOD*I*! has been a
mystery. In particular, we don’t know whether HOD**! is a model of GCH. The
proof S[f ]Theorem [ includes the following result which suggests a candidate for
HOD*"™,

Theorem 3. Assume Aé—determinacy. There is an iterate N of My via a count-
able iteration tree with the following properties: Let N oo : N — My o be the
direct limit of iteration maps and let 6" be the Woodin of N. Then there is
(Yn 1 n < W), cofinal in 6N, such that each TN oo |V € N and is definable over N
from parameters in v, U {ug, ..., un}.
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Let N be as in Theorem 2l Let 7, be defined over N by the same formula as

TN,00 | ¥n but replacing the parameters (ui,...,u,) by the first n indiscernibles
above 0. Let #* = (J,_,, 7. Then 7* is a cofinal map from 6" to the w-th

indiscernible of N above 6%. L[N|6",7*] is our candidate model.
Question 2. Is L[N|0",7*] elementarily equivalent to HOD™ ! for a cone of x?

A positive answer to Question 2] would suggest a form of the least non-trivial
hybrid mouse: It could be the structure obtained from adding into M; a certain
cofinal map from the Woodin of M; to the w-th indiscernible of Mj.
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On metrizable universal minimal flows
TODOR TSANKOV

Let G be a topological group. A G-flow is a continuous action of G on a compact
Hausdorff space. A flow is minimal if it has no proper subflows, or equivalently,
if every orbit is dense. It is an old result of Ellis that there exists a minimal G-
flow that maps onto every other minimal flow of the group and that this universal
property characterizes the flow up to isomorphism. This flow is called the universal
minimal flow (UMF) of G and will be denoted by M (G). For some groups G (for
example discrete or locally compact), M (G) is not metrizable and does not admit
a concrete description. However, for many “large” Polish groups, the UMF is
metrizable, can be computed, and carries interesting combinatorial information.

The group G is called extremely amenable if M(G) is reduced to a point, or
equivalently, if every G-flow has a fixed point. It turns out that many large Polish
groups are extremely amenable: for example, the unitary group of an infinite-
dimensional Hilbert space (Gromov-Milman), the automorphism group of the or-
der (Q, <) of the rationals, or the orientation-preserving homeomorphisms of the
reals (Pestov [6]). The proof for the latter two groups uses the classical Ramsey
theorem; this approach was generalized by Kechris, Pestov, and Todorcevic [4],
who found a precise correspondence between structural Ramsey theory on the one
hand and extreme amenability of automorphism groups on the other.

One can use large extremely amenable subgroups to construct more interesting
metrizable UMFs as follows. Let G be a Polish group and H < G be a closed
subgroup. We equip the homogeneous space G/H with the quotient of the right
uniformity of G whose entourages are given by

Z/{V :{(’UgH,gH)ZQEG,’UEV},

where V' varies over symmetric neighborhoods of 14. We say that H is co-
precompact in G if the uniform space G/H is precompact; in that case, we denote
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by CT/TJ its compact completion. Then G ~ CT/?I is a G-flow that has the fol-
lowing universal property: whenever G ~ X is a G-flow and xg € X is such that

H - xy = x0, there is a natural G-map G/H — X that sends the coset H to zg. In

particular, if H is extremely amenable, any minimal subflow of G/H is isomorphic
to M(G). This construction is due Pestov.
Two easy examples where this applies are given by

—

M(Soo) = Soo/Aut(Qv <) =LO,
the compact space of linear orderings of a countable set, and
M (Homeo™ (S')) = Homeo™t (S')/Homeo ' (R) = S*.

The first of these is due Glasner and Weiss [3] (by a different method), and the
second to Pestov.

Our main theorem states that this construction is the only way to produce
metrizable universal minimal flows. It is joint work with Itai Ben Yaacov, Julien
Melleray, and Lionel Nguyen Van Thé and is obtained as the union of the results
of the two papers [5] and [I].

Theorem 1. Let G be a Polish group. Then the following are equivalent:

(1) M(G) is metrizable;
(2) There exists a closed, co-precompact, extremely amenable subgroup H < G
such that M(G) = G/H.

A version of Theorem [[lwhere G is assumed to be a closed subgroup of S, was
proved by Zucker [7].

The main open problem that remains is to find a general sufficient condition
on the group G, that can be verified more easily than item 2l above, which implies
that M (G) is metrizable. A natural candidate for such a condition was Roelcke
precompactness (cf. [2] Problem 30] and [5] Question 1.4]), however this was
refuted by Evans. It is open whether if G is the automorphism group of a countable
structure homogeneous in a finite relational language, M (G) must necessarily be
metrizable [2, Problem 29].
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Anticliques in closed graphs
JINDRICH ZAPLETAL
(joint work with Francis Adams)

Let G be a graph on a Polish space X. Write non(G) for the smallest possible size of
a subset of X which cannot be covered by countably many compact G-anticliques.
We propose to characterize the graphs for which non(G) is consistently smaller
than the bounding number b.

In order to limit the problem to manageable size, we consider only closed graphs
on compact spaces. For those, there is a canonical poset that adds a large compact
G-anticlique:

Definition 1. The poset Pg consists of conditions p = (ap,0p) where ap, C X is
a finite G-anticlique and o, is a function assigning to each x € a, an open set
op(x) containing x such that if © # y € a, implies op(x) X 0,(y) NG = 0. The
ordering is defined by ¢ < p if ap C aq and for each x € a4 there is y € a, such
that oq(x) C op(y).

It is not difficult to see that if H C Pg is a generic filter, then the closure of Up€  Op
is a compact G-anticlique. The question now becomes, how do combinatorial
properties of the graph G influence the forcing properties of the poset Pg?

In order to answer this question, we introduce several properties of graphs, some
old, some new:

Definition 2. Let G be a graph on a Polish space X .

(1) The chromatic number x(G) is the smallest number of G-anticliques cov-
ering X ;

(2) The loose number A\(G) is the smallest number of G-loose sets covering X .
Here, a set A C X is G-loose if every point x € X has a neighborhood
containing no elements of A connected with x.

(3) The coloring number 0(G) is the smallest cardinal such that G has an
orientation in which the outflow of all points has size less than 6.

It is not diificult to show that x(G) < A(G) < 6(G) holds, and there are elementary
examples of closed graph on compact spaces that show that the inequalities cannot
be reversed. It is not easy to evaluate the cardinals x(G) and A(G) even for closed
graphs G, and it is not clear if the status of x(G) < X or A(G) < Vg is absolute
among models of ZFC containing the code for the graph G. On the other hand,
the status of 0(G) < g is fairly easy to check, it is a coanalytic question about
the graph G. Some examples are described in the following:

Example 1. (1) Ewvery locally countable graph has 6(G) < Ng.
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(2) Ewvery acyclic graph has 0(G) < Yq.

(3) Letn < 4, let d be the usual metric on [0,1]", let a C RT be a set with 0
as its only accumulation point, and let G connect elements x,y € [0,1]™ if
d(z,y) € a. Then 0(G) < N,.

(4) In the previous example, if n > 4 is a natural number, then \(G) < g but
Q(G) > Ng.

(5) In the previous example, if one deals with the Hilbert cube and arbitrary
compatible metric d on it, then x(G) > 0.

We also introduce a useful property of c.c.c. forcing notions.

Definition 3. Let P be a poset.

(1) A set A C P is liminf-centered if for every infinite subset B C A there is
a condition p € P forcing that infinitely many elements of B belong to the
generic filter.

(2) The poset P is o-LIP if it is a union of countably many liminf-centered
sets.

Zapletal and Chodounsky proved that posets with this property do not add
dominating reals, and their finite support iterations maintain this feature as well.
o-LIP is similar to o-centeredness, but there are no implications between the two
notions: the random forcing is o-LIP but not o-centered, and the Hechler forcing
is o-centered but not o-LIP.

Theorem 1. Let G be a closed graph on a compact metrizable space X .

(1) (Todorcevic) Pg is c.c.c. iff G contains no perfect cliques;
(2) (Todorcevic) Pg is o-centered iff x(G) < Ro;
(3) Pg is o-LIP iff A(G) < No.

Corollary 1. If G is an locally countable or acyclic closed graph on a compact
space, then in some c.c.c. extension b < non(G) holds.

The AIM forcing
DiMA SINAPOVA

(joint work with James Cummings, Sy Friedman, Menachem Magidor and Assaf
Rinot)

The results were obtained during a SQuaRE program at the American Institute
of Mathematics (AIM) in San Jose, CA.

It is a familiar phenomenon in the study of singular cardinal combinatorics
that singular cardinals of countable cofinality can behave very differently from
those of uncountable cofinality. For example, we may contrast Silver’s theorem
[3] with the many consistency results producing models where GCH first fails at
a singular cardinal of countable cofinality [2]. We show that there is a similar
sharp dichotomy involving questions about the definability of subsets of a cardinal
rather than the size of its powerset.
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A remarkable result by Shelah [4] states that if x is a singular strong limit
cardinal of uncountable cofinality then there is a subset 2 C & such that P(k) C
HOD,. We develop a version of diagonal extender-based supercompact Prikry
forcing, and use it to show that singular cardinals of countable cofinality do not
in general have this property [I]:

Theorem 1. Suppose that k < A where cf(k) = w, X is inaccessible and k is a
limit of A-supercompact cardinals. There is a forcing poset P such that if G is
P-generic then:

The models V' and V|G| have the same bounded subsets of k.

Every infinite cardinal p with p < K or p > X is preserved in V[G].

A= (k+)VIG],

For every x C x with x € V[G], (k¥)HOPs < A,

From stronger assumptions we can use P to obtain a model in which & is a
singular strong limit cardinal of cofinality w, and s is supercompact in HOD,
for all x C k.

The idea is to use many supercompact measures to add w sequences through
Py, () for unboundedly many o < A. To do this we define an extender based
diagonal supercompact Prikry forcing.

Let k < A with A strongly inaccessible and k& = sup,, kp, where (kp)n<w 1S a
strictly increasing sequence of A\-supercompact cardinals. Fix U, a k,-complete
fine normal ultrafilter on P, A, and for k < o < A let U, o be the projection
of Uy, to Py, « via the map x — = N a. We will use the sequence of measures
(Un,a | n < w) to add sequences (z% | n < w) for many a’s below A. More
precisely, we define a forcing P, such that if G is P-generic, then G adds:

e An unbounded F' C A, and

e For all o € F, a C-increasing sequence (z% | n < w) with union «a, wit-
nessing that « is collapsed to .

e For ao < 8 both in F, for all large n, zf = xfj N a.

Also, for each « € F, there is forcing poset Q,, which adds precisely the se-
quence (z& | n < w). The main forcing P projects to Q,, and P/Q,, is homogeneous.

Let us give the actual definition of the main forcing. Conditions in P are of the
form:

D= "{f0, fr—1,{@n, An, fr), (@nt1, Ant1, fat1)s ),
where
e cach f; is a function with
— dom(f) C [k, A) of size less than A, and

— each fy(n) € Py, (1),
each ay, C [k, A) of size less than X\ and is disjoint from dom(f%),
Ay is a measure one set in Ug max(ay)s
ap C apy1 C ...

The forcing has the AT c.c. and the Prikry property, i.e. for any p, and ¢,
there is ¢ < p with the same length, such that ¢ decides ¢. It follows that no new
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bounded subsets of x are added and that cardinals greater than or equal to \ are
preserved. Then in the forcing extension, A becomes the successor of k. Moreover,
for any subset * C k in the generic extension, there some a € F, such that x
is in the extension by Q.. This together with homogeneity of P/Q, gives that
(KJr)HODI <\

We conclude with the following open problems:

e Can we obtain the above for every singular cardinal of countable cofinality
on an interval?

e Can we interleave collapses to make k be W, or X, 27 The main obstacle
is the big gap between x and A.

e Can we combine this forcing with simultaneously adding subsets of k7
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Towards a model where every regular cardinal greater than N; has the
tree property

SPENCER UNGER

A tree is a wellfounded partial order where the predecessors of every point are
linearly ordered. The height of a node in a tree is just the order type of the set of
its predecessors. For an ordinal ¢, the a'” level of a tree is the set of nodes with
height a. The height of a tree is the least o for which the ot level is empty.

An old theorem of K&nig states that every tree of height ¥y with finite levels has
a cofinal branch, that is, a linearly ordered subset whose order type is the height of
the tree. The analogous theorem for N; is false. A construction due to Aronszajn
shows that there is a tree of height X; with countable levels and no cofinal branch.

Konig’s theorem is an instance of the compactness of Xy and Aronszajn’s con-
struction shows that N; is not compact in the analogous sense. These notions
generalize in the obvious way to larger cardinals. For a cardinal p we call a tree of
height 1 with levels of size less than p and no cofinal branch, a p-Aronszajn tree.
The natural question is “Which cardinals carry Aronszajn trees?”.

Some early theorems provide connections with the generalized continuum hy-
pothesis and large cardinals. Specker showed that if kK<* = k, then there is a
special k-Aronszajn tree. Here special means that there is a function f : T — &k
such that s < t implies f(s) # f(t). On the other hand, the nonexistence of -
Aronszajn trees is connected with large cardinals. Theorems of Erdos and Tarski,
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and Monk and Scott show that p is inaccessible and has no u-Aronszajn trees if
and only if p is weakly compact.

The modern tool of forcing provides a method for resolving the above question.
The first theorem in this direction is due to Mitchell who proved that the theory
ZFC + “there is a weakly compact cardinal” is consistent if and only if the theory
ZFC + “there are no No-Aronszajn trees” is consistent. In particular, modulo the
consistency of a weakly compact cardinal one cannot prove in ZFC that there is
an No-Aronszajn tree.

To give a complete answer to the above question, we seek to produce a model
where for every regular cardinal p greater than X there are no pu-Aronszajn trees.
Of course the existence of such a model will require the consistency of large cardi-
nals. Significant partial progress has been made towards such a model. We refer
the reader to [4] and [5] for a summary of known results.

We present the following partial result:

Theorem 1 (U. [6]). Modulo the consistency of large cardinals, there is a model
of ZF'C where there are no special Aronszajn trees for every regular cardinal in the
interval [Rg, V23] and Ny is strong limit.

The following question looks quite difficult.
Question 1. Can the above result be improved to “no Aronszajn trees”?
Motivated by [I], we ask:

Question 2. Is there a Radin forcing which adds a club C' C k such that for all
cardinals 1 € C, there are no special p+-Aronszajn trees?

Motivated by [2], we ask:

Question 3. Is it consistent that for all limit o < wq, there are no Ry y1-Aronszajn
trees?
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New results and open problems on the non-existence of mad families
HamvM HOROWITZ
(joint work with Saharon Shelah)

As the axiom of choice is needed for the construction of mad families, we may
regard them as pathological sets of reals and investigate models of ZF where no
mad families exist. The first result along this line was obtained by Mathias, who
proved the following:

Theorem 1. [5] There are no mad families in the Solovay model constructed from
a Mahlo cardinal.

Two years ago, the above result was improved by Toernquist, who proved the
following:

Theorem 2. [7] There are no mad families in Solovay’s model.

Finally, we were recently able to find the exact consistency strength of the
non-existence of mad families:

Theorem 3. [I] ZF + DC + "there are no mad families” is equiconsistent with
ZFC.

As for the non-existence of mad families under determinacy hypotheses, the
following results are known:

Theorem 4. [5] There are no mad families under ADg.
Theorem 5. [6] There are no mad families under AD™.
Our motivating problem is the following:

Question 1. How does the non-existence of mad families interact with other reg-
ularity properties?

Of particular interest are the following more specific questions:
Question 2. [7] Does AD imply that there are no mad families?

Question 3. [5] Does ZF + DC + ” every set of reals has the Ramsey property’
imply that there are no mad families?

We may ask more generally:

Question 4. What are the connections/similarities/differences between the Ram-
sey property and the non-existence of mad families?

By an old result of Mathias, if every set of reals has the Ramsey property, then
every filter on w is meager. The following question naturally arises:

Question 5. [6] If there are no infinite mad families, does it follow that every
filter is meager?

We answer the above question negatively:
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Theorem 6. [2] ZF+ DC + 7 there are no mad families” +” there is a non-meager
filter on w” s consistent relative to ZFC'.

Remark: A similar result was obtained independently by Larson and Zapletal
in [4] under large cardinal assumptions.

Returning to the AD problem, we might consider the following approach to
attacking the problem: Find a regularity property I" such that AD implies that all
sets of reals have the property I', and such that “all sets of reals have the property
I implies that there are no mad families. The next result shows that this is
impossible for a natural family of regularity properties:

Theorem 7. [3] Let P be an w®-bounding arboreal forcing notion, the following
is consistent relative to an inaccessible cardinal: ZF + DC + 7 all sets of reals are
P—measurable” + 7 there exists a mad family’.

Question 6. Can we extend the above result to include other reqularity properties
(such as the Ramsey property)?

We expect the answer to be positive, which should provide a solution to the
question of Mathias mentioned above.
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Covering with derived models
GRIGOR SARGSYAN

A fundamental belief among inner model theorists is that no matter how complex
the universe is, there is a canonical inner model that is close to the universe. As
is traditionally the case, we measure complexity by the kind of large cardinals
that could exist in inner models of V. The large cardinals naturally split into two
classes that can be characterized as short and long. The short ones correspond to
the so-called short extenders and the long ones correspond to the long extenders.
The talk was about the short region, and so we assume there are no inner models
with long large cardinals.

Taking a rather liberal view, we say that a transitive set M is close to V at an
uncountable cardinal & if

(1) M = ZFC — Powerset
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In many situations, inner model theorists isolated an extender model M, i.e.
a model build from a sequence of extenders, such that for every x, M|(kT)M is
close to V' at k. One such celebrated result is due to Mitchell-Shimmerling-Steel-
Jensen who showed that the core model is close to V' at every x. However an
insight from Woodin showed that the core model theory is not the route towards
the identification of the canonical model that is close to V. The talk started by
asking what can be done and presented some new structures that can be close to
V.

In recent years, inner model theorists, out of necessity, started considering struc-
tures that are not only build from extender sequences but also are closed under
their own iteration strategies. Such structures naturally occur in models of deter-
minacy. The covering properties that were explored in this talk had to do with
this sort of hybrid structures. First the speaker introduced the Lp covering with
derived models.

Suppose k is a measurable cardinal that is a limit of Woodin cardinals and
strong cardinals. Let H~ be V@’)C where K is HOD of the derived model at x and ©
is © of the derived model. Let X be the strategy of H~ and let H be the union of
all Y-extender models that extend H, are sound and project to ©. It is customary
to write H = Lp™(H ™).

Lp-covering with der models: H is close to V at k.

Unfortunately, the speaker has shown that Lp-covering with der models fails
in many “small” extender models, like the minimal one that contains a Woodin
cardinal that is itself a limit of Woodin cardinals. The talk proceeded to describe
a generalized version of the covering that the speaker believes must hold at least
below Woodin limit of Woodins. Here is the conjecture presented during the talk.

Conjecture 1. Suppose there is mo inner model with a Woodin cardinal that is
a limit of Woodin cardinals. Suppose k is a measurable cardinal that is a limit
of Woodin cardinals and strong cardinals. There are then two hybrid structures
Mo <My C H,+ such that whenever g C Coll(w, < k) is generic and T' = {A C
RVl L(A,RVI9)) = AD*} then

(1) H™ aMo,
(2) L(M§,T,R) E AD™,
(3) letting n = Ord N Mo, n is the largest cardinal of M,
(4) My is close to V at k.

The author then consider a similar conjecture, the Generation of Pointclasses
and outline the proof of the following recent theorem. Here “Generation of Point-
classes” refers to the statement that under AD™ every set of reals is Wadge re-
ducible to one coding an iteration strategy of a hybrid extender model.
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Theorem 1. Assume there is no hybrid extender model with a non-domestic car-
dinal. Then Generation of Pointclasses holds.

Here non-domestic cardinal is one that has a measure concentrating on strong
cardinals that are limit of Woodin cardinals.

Improved upper bounds for the consistency strength of Chang’s
Conjecture with gaps

YAIR HAYUT
(joint work with Monroe Eskew)

The talk is based on the paper [IJ.

Definition 1. Let k < A\, u < v be cardinals. We say that Chang’s Conjecture
holds between the pair (v, u) and the pair (A, k) if for every countable language
with distinguished unary predicate R, £, and a model A over L, |Al= v, |RA|= u,
there is an elementary submodel B < A, with |B|= A, |RB|: K.

Instances of Chang’s Conjecture for pairs of the form (k%,x) — (u™,pu) are
equivalent to variants of Lowenheim-Skolem Theorem for the extension of the
first order logic by Chang’s quantifier. Thus, they belong naturally to the zoo of
reflection principles.

Theorem 1. Assume GCH. Let k be k™1 -supercompact cardinal and let i < & be
a regular cardinal. There is a generic extension in which (p¥3, p*) — (ut, u).

The proof is similar to Neeman’s proof of the consistency of the tree property
at Nerl.

Proof. Let us sketch the proof. We show that there is a cardinal p < x such that
in the generic extension by the forcing Col(u, p™) x Col(p™™, k), the desired result
holds.

Assume that this is not the case. Then, for every p < k, there is a name for
a counterexample f,. Namely, f,: (k*+)<“ — kT such that whenever I C x++,
otp I = p*F, Ik |/, 7 (I<9)|= p*.

Let j:V — M be a kT T-supercompact embedding. In M, we know that if we
apply the function j(f), on all finite subsets of j 7 kT, we should get x*7 different
outputs. Using the properties of the forcing, one can construct a sequence of
length £ of conditions (p4, ¢¢) € Col(u, ) xCol(k*T, j(k)) and finite sequences

in k7", a; such that for every & < ¢, (peqc) I 5(f)e(i(ae)) < 3(f)x(ilac))-
Reflecting this back to V, we obtain for every pair of ordinals £ < ¢ < kT

3p <k, Ir € Col(u, pT) x Col(p™, k), r - foae) < fo(ac) < kT

This is a coloring from pairs of ordinals below ™ to V,,. By Erdés-Rado Theorem,
there is a homogeneous set of order type k™ + 1. Using this homogeneous set, one
can find in the generic extension an increasing sequence of length x* + 1 below
kT - a contradiction. O
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Using similar methods, one can prove also:

Theorem 2. Let k be k™ -supercompact cardinal and let u < x be reqular. There
is a generic extension in which (uT*T2 pTetl) — (ut u).

Theorem 3. Let k be kT -supercompact cardinal. There is a generic extension
in which (Nerl, Nw) —» (Nl, No)

The following questions remain open:

Question 1. Assume that k is supercompact. Is there a generic extension in
which (Ng, NQ) —» (Ng, Nl)?
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The structure of finitely generated subgroups of Thompson’s Group F
JUSTIN MOORE

(joint work with Collin Bleak, Matthew Brin, Martin Kassabov and Matthew
Zaremsky)

Richard Thompson’s group F' and, more generally, the group of piecewise linear
homeomorphisms of the interval PL, (I) have played an important role in group
theory. Thompson himself, for instance, has shown that F' is not elementarily
amenable and yet does not contain a nonabelian free group. The question of
whether F' or PL (I) are amenable has been well known and well studied since it
was first popularized by Geoghegan in the 1980s. Brin and Sapir have conjectured
that every non elementarily amenable subgroup of F' (or of PL,(I)) contains an
isomorphic copy of F.

Recently we have initiated a program of parametrizing the biembeddability
classes of finitely generated subgroups of F' and of PL(I). This can be regarded
as an extension of Bleak’s work in [I]. In order to be satisfactory, such a pa-
rameterization should be sufficiently effective and illuminating so as to make the
embeddability relation between finitely generated subgroups of F' more transpar-
ent and tractable. A confirmation of Brin and Sapir’s conjecture stated above,
for instance, should be an immediate corollary of a successful completion of this
program. In fact, we make the following conjecture:

Conjecture 2. The finitely generated subgroups of F are well quasi-ordered by
the embeddability relations: if (G; | i < o0) is a sequence of finitely generated
subgroups of F', then there is an i < j such that G; embeds into G;.

While this does not have the Brin-Sapir conjecture as a corollary, it seems highly
likely that a proof of this conjecture would allow for an inductive verification of
the Brin-Sapir conjecture. Currently we seem a long way from the verification of
Conjecture 2l We have, however, developed some of the internal structure within
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the finitely generated subgroups of F' which seems to suggest that the conjecture
should be true. It also provides tools and heuristics for how to proceed with the
program in general.

The first stage of our project has been to develop a method for describing
subgroups of F. We say that a finite subset X of PL (I) is fast if the boundaries
of the supports of its elements are disjoint and for any n > 1 the map f — f"
defined on X extends to a monomorphism of groups. The qualitative dynamics
of the elements of a fast generating set are encoded in its dynamical diagram —
specifically this diagram records the orientation and relationship of the components
of the supports of the elements of X. We have proved in [2] (the first result depends
on the second):

Theorem 1 (Bleak, Brin, Kassabov, M., Zaremsky). If X and Y are finite
fast subsets of PLi(I) which have isomorphic dynamical diagrams, then the iso-

morphism induces a bijection from X to Y which extends to an isomorphism
(X) = (Y).

Theorem 2 (Bleak, Brin, Kassabov, M., Zaremsky). If X C PL,(I) is finite
and fast and M C I intersects every support component of an element of X, then
f = f 1 M(X) defines a monomorphism of groups on (X) where M(X) is the
orbit of M under (X).

These results show that every finitely generated subgroup of PL (I) with a fast
generating set embeds into F. It is currently unclear whether every subgroup of F’
is biembeddable with a group admitting a fast generating set, but we conjecture
this is true.

In the course of studying the fast generated subgroups of F', we have isolated a
certain subclass and showed that it is highly structured.

Theorem 3 (Bleak, Brin, M.). There is a sequence (Ge | § € €o) of elementary
amenable groups, each with finite fast generating sets, such that:
o if £ € n, then G¢ embeds into G, but Gy, does not embed into Ge¢;
o if £ € €g, then there is an n € €y such that G, is 2-generated and has
EA-class greater than & (and less than € );
o if £ € €q, then Gey1 1s isomorphic to G¢ @ Z.

(Recall that the ordinal eg is the supremum of the sequence of ordinals w,w®,
we L .) Previously Brin had proved that for each o € w?, there is an elementarily
amenable subgroup of F' of EA-class o+ 1 [3]; until the proof of Theorem [3it was
unknown if there was an EA-subgroup of F of class at least w? + 2.

In fact the class of groups in Theorem [3] seems likely to play a central role in
developing an understanding of all finitely generated subgroups of F'. For instance,
we conjecture that every finitely generated elementarily amenable subgroup of F
(or even PL, (I)) embeds into G¢ for some £ € €. This would show, in particular,
that ey + 1 is the maximum EA-class of a subgroup of F. In fact we conjecture
that if G is a finitely generated subgroup of PL (I) which does not contain a copy
of F, then G embeds into G¢ for some & € €.
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The proof of Theorem [3] hinged on developing a new way of representing the
ordinal €y in terms of an ordering on certain symmetric matrices with nonnegative
integer entries. In addition to the immediate use of this representation in the proof
of Theorem [3 it seems likely that it will provide a useful tool for future analysis
of the subgroups of F' with fast generating sets.

This research was supported by NSF grant DMS-1600635.
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Generalized cardinal invariants
JORG BRENDLE

Cichon’s diagram describes the order relationship between cardinal invariants char-
acterizing the meager and null ideals, M and N, on the real numbers 2%, as well
as the unbounding and dominating numbers b and 0.

In joint work with Andrew Brooke-Taylor, Sy Friedman, and Diana Mon-
toya [BBEM] we develop a version of Cichoii’s diagram for cardinal invariants
on the generalized Cantor space 2% or the generalized Baire space x" where & is
an uncountable regular cardinal. The global behavior of the generalizations of b
and 9, b, and ?,, was investigated by Cummings and Shelah [CS]. The meager
ideal has a natural analogue M, on 2" if we equip 2" with the topology generated
by basic open sets of the form [s] = {f € 2% : s C f} where s € 2<%, and call
a subset of 2% k-meager if it is a k-union of nowhere dense sets in this topology.
With these notions we obtain analogues of classical ZFC-results like the easy in-
equalities b, < non(M,) and cov(M,) < 0, and the more tricky add(M,) < b,
and 9, < cof(M,). In fact, the proof for k = w for the latter generalizes to the
case when £ is strongly inaccessible, while for general uncountable regular x a new
argument is necessary. These ZFC-results, as well as further results mentioned
below, are obtained by Galois-Tukey reductions.

An important dividing line is whether or not 2<% = k holds. Landver [Lal re-
marked that 2<% > x implies add(M ) = cov(M,;) = T while the same argument
shows that non(M,) > 2<" as observed by Blass, Hyttinen, and Zhang [BHZ].
Furthermore cof (M) > 2<* holds. Still generalizing results for w to arbitrary un-
countable regular k, we obtain add(M,;) = min{b,,cov(M,)} and, if in addition
2<% = k holds, cof (M) = max{0,,non(M,)}. The latter assumption is neces-
sary for, assuming GCH and adding x* Cohen reals, one obtains a model where
cof(M,) = KT+ = 25" (because of the inequality cof(M,) > 2<%) while all other
cardinal invariants are equal to kT = 2% = 2<% = 2% In fact, in the — somewhat
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degenerate — case that 2<% > k holds, one can quite freely monkey around with
these cardinal invariants in forcing extensions, e.g., add(M,;) = cov(M,;) = kT,
by, = T+, 0, = k7T, non(M,,) = 2 = 2 = k™ and cof(M,) = xk*° is
consistent: start with a model of GCH, first force the statement about b, and 0,
and then add k*4 Cohen reals.

In the interesting 2<% = k context, however, generalizing independence results
about the order relationship of the cardinal invariants is a much harder problem
and only two models separating the cardinal invariants are known so far: the gen-
eralized Cohen model, obtained by adding at least k™ x-Cohen subsets of x to a
model of GCH, which yields the consistency of x™ = add(M,) = non(M,;) and
cov(My) = cof (M) = 2¥ > k*; and a very complicated model of Shelah [Sh]
with s being supercompact, cov(M,) = kT and 9, = xTT. Dualizing his con-
struction one should obtain the consistency of b, = T and non(M,,) = k*+ for
supercompact k. We conjecture that, unlike for w, for uncountable regular x with
2<% = g, both add(M,) = b, and ?, = cof(M,) hold. Also, for successor x
with 2<% = k, b, = non(M,) and cov(M,) = d,. may well be a theorem of ZFC.
The main problem with consistency results in this context is that attempts to
generalize preservation theorems break down in limit steps of cofinality less than
K.

While it is unclear how to generalize the null ideal, many of the cardinal invari-
ants in Cichoni’s diagram have combinatorial characterizations which can be easily
generalized to the uncountable context. One such generalization goes as follows:
let x be inaccessible and let h € k" be a function converging to x. A function ¢
with domain x and p(a) € [5]"¥) for a < & is called an h-slalom. Let by (€*) be
the least size of a family F' of functions in k" such that for all h-slaloms ¢, there is
f € F such that f(a) ¢ p(«a) for cofinally many a. Dually, 05(€*) is the smallest
cardinality of a set ® of h-slaloms such that for all f € k" there is ¢ € ® such that
f(a) € p(a) for a final segment of . Note that if & is successor, b, (€*) = b,, and
0, (€*) = 0,. For k = w, a classical result of Bartoszynski says by, (€*) = add(N)
and 0, (€*) = cof(N). If k is strongly inaccessible, we obtain a natural gener-
alization of the Bartoszyriski-Raisonnier-Stern Theorem (add(N) < add(M) and
cof (M) < cof(N)) saying that by, (€*) < add(M,,) and cof (M) < d,(€*) and,
thus, the following version of Cichont’s diagram.

non(./\/fﬁ) — COTC(M,{) 0,(€%) 2

|

k+——bp(€*) — add(M,) —— cov(M,)

Furthermore bj,(€*) < add(M,) and cof(M,) < d,(€*) are both consistent for
strongly inaccessible . Finally, in the generalized Sacks model, obtained by adding
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k1T k-Sacks subsets of k to a model of GCH, either with an iteration or a product
with supports of size k, 0,(€*) = kT while 0;4(€*) = kT = 2% where id is the
identity and h is the power set function h(«) = 2¢. This is different from the case
k = w where all 95 (€*) are the same (and equal to cof(N)).
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An anti-classification result for measure preserving diffeomorphisms
MATTHEW FOREMAN
(joint work with Benjamin Weiss)

The isomorphism problem in ergodic theory was formulated by von Neumann in
1932 in his pioneering paper [1]. It has been solved for various classes of transfor-
mations that have concrete representations. In 1942, Halmos and von Neumann
used the unitary operators defined by Koopman to completely characterize ergodic
measure preserving transformations with pure point spectrum, the transforma-
tions that can be concretely realized (in a Borel way) as translations on compact
groups. Another notable success is the use of Kolmogorov-Sinai entropy to distin-
guish between measure preserving systems. Ornstein’s work showed that entropy
classifies a large class of highly random systems, such as geodesic flows on surfaces
of negative curvature and i.i.d. stochastic processes.

However the problem remained open (as originally formulated) for Lebesgue
measure preserving diffeomorphisms of manifolds. This talk presented joint work
with B. Weiss showing that such a classification is impossible, at least using inher-
ently countable methods.

The precise result is as follows.

Theorem 1. The collection G of diffeomorphisms T € Diff*(T?,\) such that:

(1) T is ergodic,
(2) T is isomorphic to T—!
is not Borel in the C*°-topology.

This has as an immediate corollary:

Corollary 1. The collection of pairs (S, T) € Diff*(T?,\) x Diff**(T?,\) such
that S and T are ergodic and isomorphic is not a Borel set in the product topology
on Diff>* (T2, \) x Diff*(T?,\)
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The theorem is proved using the Anosov-Katok method of Approzimation by
Conjugacy. As a byproduct of the proof we get new examples of diffeomorphisms:

Theorem 2. For all countable ordinals o, there is a measure-distal ergodic dif-
feomorphism of the 2-torus of distal height .
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An isometric action of a Polish group which induces a universal
equivalence relation

JULIEN MELLERAY

Recall that, when F,F are equivalence relations on standard Borel spaces X,Y
respectively, one says that E is Borel reducible to Y if there exists a Borel map
f: X — Y such that

Ve, € X (xEx') & (f(x)Ff(z))) .

Intuitively, the classification problem which induced the equivalence relation E has
been reduced, by applying f, to the classification problem which gave birth to F;
the fact that f is computable is important, otherwise one would just be comparing
the cardinalities of the quotient spaces X/FE and Y/F. We say that E and F are
Borel bireducible if E Borel reduces to F' and F' Borel reduces to E.

This notion was introduced by Friedman and Stanley [2] in the late eighties
and has been much studied since; the structure of definable equivalence relations,
considered up to Borel bireducibility, is now much better understood even though
many questions remain. The talk was concerned with a particular level of this
complexity hierarchy: equivalence relations which are universal among those which
are induced by a Borel action of a Polish group. It is well known [I] that there exists
one such relation (up to Borel bireducibility); in [3] Gao and Kechris proved that
the classification problem of all Polish metric spaces up to isometry sits exactly at
this level of complexity. In order to prove this result (which was also established
independently by Clemens), they used properties of the Urysohn space Uj it is the
unique Polish metric space which is :

e universal, that is, U contains an isometric copy of every separable metric
space.

e ultrahomogeneous, that is, any isometry between finite subsets of U extends
to an isometry of U.

The proof of Gao and Kechris goes through using universality of U to encode the
isometry relation of Polish metric spaces as a relation on the standard Borel space
F(U) of all closed subsets of U; and proving both that this relation is bireducible to
the relation induced by the natural action of the isometry group Iso(U) on F(U),
and that this latter relation is universal for relations induced by Borel actions of
a Polish group.
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Gao and Kechris then raised the following problem.

Question 1 (Gao—Kechris [3]). Does there exist a Polish metric space X, and a
closed subgroup G of the isometry group of X, such that the relation induced by the
action of G on X is universal for equivalence relations induced by a Borel action
of a Polish group?

The talk presented a positive answer to that question, which we proceed to
describe now: let U; denote the Urysohn space for metric spaces of diameter 1 (it
has the same properties as U above, except that it is of diameter 1 and is only
universal for separable metric spaces of diameter at most 1) and G be its isometry
group. Then, given any left-invariant metric d on G, the completion Gof G may
be identified with the space of all isometric embeddings of U; into itself; using this
fact, and the fact that the relation of isometry of Polish metric spaces of diameter
at most 1 is Borel bireducible with the universal equivalence relation for Polish
group actions, we prove the following result.

Theorem 1. The action of G on its left-completion G induces a universal equiv-
alence relation for actions induced by a Borel action of a Polish group.

Note that of course this action is by isometries, since d was assumed to be left-
invariant. So the above result answer the question of Gao and Kechris mentioned
above. Omne can even improve it somewhat, using a trick from [4] to prove the
following.

Theorem 2. There exists a Polish metric space X such that the natural action of
its isometry group on X induces a universal equivalence relation for Polish group
actions.

After my talk, T. Tsankov asked whether G is exactly the isometry group of
G (thus the first theorem above would immediately imply the second). I do not
know the answer to that question, though I suspect it is negative.

The results presented in this talk will be published in a paper accepted by
Fundamenta Mathematicae and a preprint version is available on the author’s
webpage at
http://math.univ-1lyonl.fr/-melleray/universal_isometric.pdf
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Fixed points in compactifications and combinatorial counterparts
L1ONEL NGUYEN VAN THE

In [1], Kechris, Pestov and Todorcevic established a striking correspondence be-
tween topological dynamics of non-Archimedean Polish groups and structural
Ramsey theory (for a precise statement, see Theorem [[l below). This turned out to
be an invaluable tool to produce extremely amenable groups and to reach a better
understanding of the dynamics of non-Archimedean Polish groups. The purpose of
the present work is to recast the Kechris-Pestov-Todorcevic correspondence as an
instance of a more general construction, allowing to show that Ramsey-type state-
ments actually appear naturally when expressing combinatorially the existence of
fixed points in certain compactifications of groups. As a consequence, similar cor-
respondences in fact exist in various dynamical contexts, whose landmarks appear
in the following diagram:

Compact flows

/\

Distal flows Proximal flows
Equicontinuous flows Strongly proximal flows

To each of the aforementioned classes of flows, one can associate a natural fixed-
point property: a topological group G is extremely amenable when every G-flow
has a fixed point, strongly amenable when every proximal G-flow has a fixed point,
amenable when every strongly proximal G-flow has a fixed point (equivalently, ev-
ery G-flow admits a G-invariant Borel probability measure), and minimally almost
periodic when every equicontinuous G-flow has a fixed point (which is known to
be equivalent to having a fixed point on any distal G-flow, having no non-trivial
finite-dimensional unitary representation, and admitting no non-trivial continuous
morphism to a compact group). This leads to the following “dual” form of the
previous diagram:

Extreme amenability

— T

Minimal almost periodicity Strong amenability

ﬂ

Amenability
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On the combinatorial side, the general setting is that of first-order structures,
which we restrict here to the relational case. Given a first-order relational lan-
guage, recall that a structure in that language is ultrahomogeneous when any
isomorphism between any two of its finite substructures extends to an automor-
phism. Countable ultrahomogeneous structures are called Fraissé structures. In
the recent developments of Fraissé theory, a main concern is the study of the in-
teraction between the combinatorics of the set Age(F) of all finite substructures
of F and the dynamics of the automorphism group Aut(F). The main theorem of
[1] is a striking illustration of this:

Theorem 1 (Kechris-Pestov-Todorcevic [1]). Let F be a Fraissé structure. TFAE:

i) Aut(F) is extremely amenable.
il) Age(F) has the Ramsey property.

The Ramsey property (for embeddings) referred to in the previous result means

that for every A € Age(F), every function y taking finitely many values on (X)
(such a y is usually referred to as a coloring) is necessarily constant on arbitrarily
large finite set. Precisely: given any B € Age(F), in which A typically embeds in

many ways, X is constant of some set of the form (bf)), for some b € (]F3) The
present work establishes results of the same flavor, in the context that is described
by the aforementioned diagrams.

For an example belonging to the left side of the diagram: A joint embedding
(a, z) of two structures A and Z is a pair (a, z) of embeddings of A and Z into some
common structure C. To such objects is attached a natural notion of isomorphism.
These noti(?cns can be defined in the same way in the case of finitely many structures
A, Z'.... 7"

Definition 1. Let K be a class of finite structures in some first order language,
and A, Z € K. An unstable (A, Z)-sequence is a pair of sequences (Gm)men and
(zn)nen such that there exist two different joint embeddings 7« and 7= satisfying:

Vm,neN (m<n= (am,2n) =T<)AN(Mm>n= (am, 2n) =T>)
When there is no unstable (A, Z)-sequence, the pair (A, Z) is stable.

Definition 2. Let K be a class of finite structures in some first order language.
It has the stable Ramsey property when the following holds: for every A, B € K,
every Zb, ..., ZF € K so that every pair (A, Z") is stable, there exists C € K such

that for every joint embedding (c,z',...,2*), there is b € (g) so that for every

i < k, the isomorphism type of the joint embedding {(a,z") does not depend on
b(B)
With these notions in mind, here is the characterization of minimal almost
periodicity in the spirit of the Kechris-Pestov-Todorcevic correspondence:

Theorem 2. Let F be a Fraissé structure with Roelcke-precompact automorphism
group. TFAE:
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i) Aut(F) is minimally almost periodic.
i) For every A € Age(F), every Aut(F)-invariant equivalence relation on
F) with finitely many classes is trivial.
iii) Age(F) has the stable Ramsey property.

Note that the equivalence between the first two items already follows from
the work of Tsankov [2] where unitary representations of oligomorphic groups are
classified, or of Ben Yaacov [4] where the relationship between the Bohr compact-
ification and the algebraic closure of the empty set is identified.

Here is now an example of a result belonging to the right side of the diagram:

Definition 3. Let F be a Fraissé structure and x be a coloring of (E) Say that

X 4s proximal when for every D € Age(F), there exists E € Age(F) such that for
every ey, es € (E), there exists d € (llg) such that xoey and xoes agree on (d(}l))).
Definition 4. Let F be a Fraissé structure. Say that F has the proximal Ramsey
property when for every A, B € Age(F) and every finite proximal coloring x of

(E); there is b € (g) such that x is constant on (b(f)).

Theorem 3. Let F be a Fraissé structure. TFAE:

i) Every zero-dimensional prozimal Aut(F)-flow has a fized point.
i) F has the prozimal Ramsey property.

Under additional technical assumptions, these statements are equivalent to Aut(F)
being strongly amenable.

Those results are obtained as corollaries of a single master theorem. The first
step towards it is to realize that under a suitable interpretation, every finite color-

ing x of (E) may be seen as an element of the algebra RUC,(Aut(F)) of complex
valued right-uniformly continuous functions. The second step is to realize that the
group Aut(F) acts continuously in two different ways on RUC,(Aut(F)): by left
shift (g-f(z) = f(g~'x)) in the norm topology, and by right shift (ge f(x) = f(xg))
with the pointwise convergence topology (more details can be found in [3, Chapter
IV, Sections 4 and 5]). The third step is to define a notion of the Ramsey property
that is localized to a particular kind of colorings.

Definition 5. Let F C RUC,(Aut(F)). Say that F has the Ramsey property for
colorings in F when for every A, B in Age(F), every finite set C C F of finite
colorings of (E), there exists b € (g) such that every x € C is constant on (b(f)).
With all this in mind:

Theorem 4. Let F be a Fraissé structure, X be a class of Aut(F)-flows such that
the class of X-Aut(F)-ambits is closed under suprema and factors, and that every
Aut(F) ~n X € X admits some © € X such that Aut(F) ~ Aut(F) -z € X. Let
A denote the unital, left shift invariant, closed C*-subalgebra of RUC,(Aut(F))
defined by A= {f € RUCH(G): G ~ Ge fc X} TFAE:
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i) Every zero-dimensional Aut(F)-flow in X has a fized point.
il) F has the Ramsey property for the finite colorings in A.

When the finite colorings are dense in A, those statements are equivalent to:
") Every Aut(F)-flow in X has a fixed point.

While such a general theorem is satisfactory in view of a global understanding
of the interaction between the combinatorics of F and the dynamics of Aut(F),
it remains unclear whether it will be as useful as the original Kechris-Pestov-
Todorcevic correspondence in practice.
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Counterexamples to Vaught’s Conjecture and the Admissibility
Equivalence Relation in L

WILLIAM CHAN

Definition 1. An equivalence relation E on a Polish space X is thin if and only
if for all perfect sets P C X, there exists x,y € P with x # y and x E y.

Silver showed there are no thin I} equivalence relation with uncountably many
classes:

Fact 1. (Silver’s Dichotomy, [4]) If E is a II} equivalence relation on X, then
exactly one of the following holds:

(1) E has countably many classes.

(2) There is a perfect set P C X so that ~(x E y) for all v,y € P with x # y.

31 thin equivalence relations with uncountably many classes do exist. The
following are some examples:

Definition 2. Let E,,, be the equivalence relation on “2 defined by
z By ye (¢ WOAYy ¢ WO)V (z=y)

where WO denotes the collection of reals coding well orderings and =2 is isomor-
phism in the langauge of linear orderings.

E,, is a X1 thin equivalence relation with uncountably many classes and has A}
classes except for the single X1 non-Al class consisting of the non-well-orderings.
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Definition 3. The countable admissible ordinal equivalence relation is F,,, defined
on “2 by
x By yewi =w!
where wi s the least ordinal not recursive in z.
F,,, is a X1 thin equivalence relation with uncountable many Al classes.

Definition 4. Let £ be a recursive language. Let T be a countable £ theory in
the infinitary logic L., . Define the equivalence relation Ep on “2 (considered
as coding L -structures) by

rEry<s@ETAYyET)V (=2 y)
where =g is isomorphism as £ -structures. Er is generally a X1 equivalence
relation with all Al classes.

T is a counterexample to Vaught’s conjecture if and only if Er is a thin equiv-
alence relation with uncountably many classes.

The existence of counterexamples to Vaught’s conjecture is the content of the
long standing eponymous open question known as the Vaught’s conjecture. Coun-
terexamples to Vaught’s conjecture also have characterizations using scatterness
and Morley trees.

A natural question is to compare these three types of thin X1 equivalence rela-
tions. A common form of comparison for equivalence relations is the A reduction:

Definition 5. Let E and F be equivalence relations on Polish spaces X and Y,
respectively. E is A} reducible to F', denoted E <ar F, if and only there is a A
function ® : X =Y so that x E y if and only if (z) F D(y).

Note that E,, <a! F,, and E,, <a! Er, when T is a theory in %, o, is
trivially impossible since E,, has a single class in ¥1\ Al yet F,,, and Er have
all Al classes. Also F,, <a! E,, and Ep <a1 E,,, when T'is a counterexample
to Vaught’s conjecture, are also impossible: any such reduction would yield a 31
subset of WO such that the ordinal ranks of its elements are unbounded below wy
which violates the boundedness principle.

The latter failure is global. The former is local since it is due to E,,, having a
single ¥1 but not A}l class. To accounts for local problems, Zapletal defined the
almost A} reduction, denoted E <, a1 F, which is a Al function which fails to
be a reduction of E to F' on at most countably many FE-classes.

Using results of Zapletal about equivalence relations with infinite pinned cardi-
nals which hold assuming the existence of a measurable cardinal,

Fact 2. ([5]) Assume there is a measurable cardinal. E,, <,a1 Fu,. Eu, <qa:

Er, whenever T is a counterexample to Vaught’s conjecture. (The first is provable
with just 0F.)

Therefore a natural question is whether the above result is provable in ZFC.
The answer is no:

Theorem 1. ([2]) In L and set generic extension of L, ~(Eu, <,a1 Fuy).
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Sy-David Friedman asked about comparisons of Er and F,,,, when T is a coun-
terexample to Vaught’s conjecture: Can Erp <a! EF,.?

This talk will show using infinitary logic in countable admissible fragments that
the answer can consistently be no. The material of this talk appears in [2] and [I].

Theorem 2. ([2] and [1]) In L and set-generic extension of L, =(Er <a1 Fu,),
whenever T is a counterexample to Vaught’s conjecture.

Both Theorem [Ml and Theorem Bl are shown by establishing that the existence
of such reductions imply the existence of a real z so that there is no ordinal 3 for
which all @ > 3, a is z-admissible if and only if a is admissible. Note that 0% is a
real with such properties. However, Sy-David Friedman ([3]) has shown that it is
consistent with ZFC that such a real exists.

The answer for whether E.,, <,a1 F., has been shown to be consistently no
and yes, relative to large cardinals. A natural question would then be whether the
question of Sy-David Friedman can consistently be yes:

Question 1. Assume counterezamples to Vaught’s conjecture exist, is it consistent
(possibly relative 0F or a measurable cardinal) that there is some counterexample
to Vaught’s conjecture, T, so that Ep <1 F, ?

However, the following is provable in ZFC:

Fact 3. ([11) (ZFC) If T is a non-minimal counterexzample to Vaught’s conjecture,
then =(Er <a1 Fu,).

Question 2. What is the consistency strength of E., <qa1r Fu, ?

Since this reduction does not exist in set-generic extensions of L, one may need
to consider class forcing extensions if one seeks to show it is consistent with ZFC.
The almost Al reduction does not exists in set-generic extensions of L since it
can be shown that such reductions imply the existence of some real z so that
the next admissible ordinal after any z-admissible ordinal is not z-admissible.
Does the existence of such an almost Al reduction imply that there is a real z
whose admissibility spectrum is so spread out that z-admissible ordinals become
L-cardinals in which case Harrington’s principle would allow 0% to be recovered?
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Boolean ultrapowers and iterated forcing
DirLip RAGHAVAN
(joint work with Saharon Shelah)

In [1], Shelah invented two different techniques for proving the consistency of 9 < a.
The first method is known as iteration along a template. It may be thought of
as a generalized version of finite support iteration. Shelah used this method to
produce a model of Ny = 0 < a = N3 without any large cardinal assumptions. The
second method involves starting with a x-complete ultrafilter &/ on a measurable
cardinal k and iterating the process of taking ultrapowers of some poset by U.
Shelah used this method to produce models of both 9 < a and u < a. These two
methods have their own advantages and disadvantages. The first method works in
ZFC and it yields models where the invariants have accessible values; the second
one requires the existence of a measurable cardinal k in the ground model and
can only produce models where the invariants lie above k. However the second
method is applicable to a larger class of forcing notions. Both methods have the
disadvantage that the posets that are used in the iterations must be either Suslin
c.c.c. or o-centered. So one test question for refining these existing techniques was
whether one could produce a model of 0 < a while having Martin’s axiom for all
c.c.c. posets of size < 0.

In [2], we develop a new method for proving consistency results on cardinal
invariants, particularly results involving the invariant a. This method can be used
with a wide range of forcings notions, including arbitrary c.c.c. posets. However the
new method always requires a supercompact cardinal 6 in the ground model and
produces forcing extensions in which the desired invariants sit above 6. Another
feature of our method is that it generalizes to cardinal invariants above w, and
can be used to give uniform consistency proofs that work at any regular cardinal.
It can also be used to treat situations where three cardinal invariants must be
separated. In particular, our technique solves various long standing open problems
about cardinal invariants at uncountable regular cardinals. The following theorems
summarize the results we are able to obtain using our technique.

Theorem 1. Suppose 0 is a supercompact cardinal. Suppose 0 < = p<f < x =
x‘ﬁ. Then there is a c.c.c. forcing extension in which d = p*, MA_ .+ holds and
a = cf(x).

Theorem 2. Suppose 0 is a supercompact cardinal. Suppose < = p<f < x =
X“++- Then there is a c.c.c. forcing extension in which b =pt <ptt =s<a=

cf(x)

Theorem 3. Suppose that Rg < k = k<" < 0 < cf(p1) = p1 < cf(p2) = pa <
cf(us) = ps < x = x** and suppose that 0 is supercompact. Then there is a forcing
extension in which p1 = p(k) < b(k) = pe < uz = 0(k) < cf(x) = a(k).

Theorem 4. Suppose that k < 0 < p = p<? < y = x‘ﬁ. Assume also that 0
s supercompact and that k s Laver indestructible supercompact. Then there is a
forcing extension in which p* = u(k) < a(k) = cf(x).
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All of these results rely on Boolean ultrapowers, studied by Keisler and other
model theorists in the 1960s. In the case of cardinal invariants on w a certain finite
support iteration of c.c.c. forcings in built. Then we take the Boolean ultrapower
of this iteration by a carefully constructed 6-complete ultrafilter on a complete
Boolean algebra B. Then we force with this ultrapower to obtain the desired
model. In the case when « is uncountable, we begin with a < x-support iteration
of < k-strategically closed posets that satisfy an iterable form of the x*-c.c. Then,
just as in the case of cardinal invariants on w, we take the Boolean ultrapower of
this iteration by a suitable ultrafilter constructed on B. In all of the above stated
theorems, B is the complete Boolean algebra for adding x many subsets of u with
conditions of size less than 6.

The ultrafilter D on B needs to be sufficiently rich to ensure that a large num-
ber of types of size u and a few types of size < x are realized in any Boolean
ultrapower by D. To this end, we introduce the notion of an optimal ultrafilter on
a complete Boolean algebra B. This notion is related to but is distinct from the
notion of an optimal ultrafilter studied by Malliaris and Shelah in [3]. One major
difference is that in [3] it was easy to realize all types of size < u, meaning that all
of the relevant ultrapowers there were ™ -saturated. However in our situation it
is impossible to make the ultrapowers p-saturated because we are in the context
of Lg ¢ logic. Hence there will always be types of size < 6 that cannot be realized
in the ultrapower. We get around this by introducing the notion of a u*-plentiful
model, which is a model in which all types of size < u that are suitably “continu-
ous” with respect to a normal fine measure on [H(A)]<? are realized, where A is a
sufficiently large regular cardinal. The definition of an optimal ultrafilter is then
appropriately modified to reflect this, and we prove that the Boolean ultrapower
by such an optimal ultrafilter is always u™-plentiful. It is further proved that
an optimal ultrafilter always exists on the complete Boolean algebra for adding
x many subsets of p with conditions of size < 6. Another difficulty is that it
becomes necessary to translate the problem of realizing types of size < p in the
Boolean ultrapower into the problem of finding multiplicative refinements of cer-
tain monotonic functions defined on the Boolean algebra. We accomplish this by
introducing the notion of a (p, 0)-regular ultrafilter on B. Finally we ensure that
certain “homogeneous” types of cardinality > u are also realized in the Boolean
ultrapower. This is needed for showing that a(x) = cf(x) in the Theorems [TH4l

Many problems remain open. The most obvious one is whether the use of a
supercompact cardinal is needed for any of these consistency results. Another
open problem is the question of whether it is possible to arrange the invariants
occurring in Theorems [[H4] to have smaller more “accessible” values. Theorems
[IH4] produce models where the invariants sit above the first supercompact cardinal
greater than x from the point of view of the ground model. Regarding Theorem [3]
we are able to show in this connection that for any uncountable regular cardinal
Kk, if b(k) = kT, then a(k) = k™. Thus if one wants to have b(x) < a(x), then the
smallest possible value for b(x) is k7. We end with two open problems that do
not seem to be amenable to the technique of Boolean ultrapowers.
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Question 1. Is b < 5 < 0 consistent? What about b < a < s?

Question 2 (Kunen). Is u(w;) < 2™ consistent?
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The approachability ideal without a maximal set
JOHN KRUEGER

Let x be an uncountable cardinal. For a given sequence @ = (a; : i < kT) of
subsets of kT with size less than x, define Sz to be the set of limit ordinals 8 < k™
for which there exists a set ¢ C 3, which is cofinal in £, and has order type equal
to cf(8), which is approximated by the sequence @ | S in the sense that for all
vy<B,enyeda; i< B}

Define the approachability ideal I[x7] as the collection of sets S C kT such that
for some sequence @ as above, and for some club C C k™, SN C C Sz. In other
words, I[xT] is the ideal on k™ which is generated over the nonstationary ideal on
kT by sets of the form Sz. The collection I[x7] is a normal ideal on x*.

The approachability ideal was introduced by Shelah in the 1970’s ([6]), and
since then it has played a role as an important tool in combinatorial set theory
and forcing. A major result on the approachability ideal is that if x is a regular
uncountable cardinal, then the set k™ Ncof(< k) is a member of I[x™] ([T, Section
4]). Hence, when k is a regular uncountable cardinal, the structure of I[xk™] is
completely determined by which stationary subsets of k™ N cof(x) are in I[x7].

Shelah [7] raised the question whether it is consistent that there are no sta-
tionary subsets of ™ N cof(x) in I[xT]. This problem was solved by Mitchell [4],
who proved that it is consistent, relative to the consistency of a greatly Mahlo
cardinal, that there is no stationary subset of wy Ncof(w;) in I{ws]. In the process
of solving this problem, Mitchell introduced a number of powerful new ideas in
forcing, including strongly generic conditions, strong properness, and a method for
using side conditions to add by forcing a club subset of ws with finite conditions
(see Friedman [2] for a similar method which was introduced independently).

Assuming that (kT)<® = kT, we can enumerate all subsets of x™ of size less
than « in a single sequence b = (b; : i < x*). It is not hard to show that if
@ = {a; : i < k") is any sequence of subsets of k™ of size less than &, then there
exists a club C' C k% such that Sz N C C S;. It follows that I[x"] is generated
over the nonstationary ideal on ™ by the single set S;. Another way of describing
this conclusion is that I[x*] has a maximal set modulo clubs.

A natural question is whether the approachability ideal I[<*] must always have
a maximal set modulo clubs, regardless of any cardinal arithmetic assumptions.
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That is, is it consistent that I[x*] does not have a single generator over the
nonstationary ideal. By the normality of I[x%], this possibility is equivalent to
having not fewer than ™ many generators. This question was first raised by
Shelah in [7], in the same place where he mentions the possibility of I[x1] not
containing any stationary subset of ™ M cof(x). The problem also appears at the
end of [4], where Mitchell suggests that the methods introduced in his paper are
likely to be useful for answering the question.

Theorem 1 (K. 2016). Assuming the consistency of a greatly Mahlo cardinal, it
is consistent that I|wa] does not have a maximal set modulo clubs.

Part of the proof involves developing a forcing poset with finite conditions for
adding a partial square sequence to a given stationary set S C woNcof(wy). Recall
that a partial square sequence on S is a sequence (¢, : « € S) satisfying that for
each a € S, ¢, is a club subset of « with order type equal to wy, and whenever ~y
is a common limit point of ¢, and cg, then ¢, Ny =cg N 7.

If there exists a partial square sequence on S, then S is in I[ws]. Namely, define
a sequence @ = (ay : v < wy) as follows. For a given ordinal v, if there exists
some « € S strictly greater than ~ such that v is a limit point of ¢, then let
ay := cq Ny. Define a¢ for all other ordinals £ in such a way as to include any
initial segment of any set of the form a., where v is an ordinal of the first type.
One can easily check that for some club C' C wq, SNC C Sz. Therefore, S € I[ws].

Forcing a square sequence with finite conditions was first achieved by Dolinar
and Dzamonja [I], using Mitchell’s style of models as side conditions [4]. Later,
Krueger [3] developed a forcing poset for adding a square sequence with finite
conditions using the framework of coherent adequate sets. And Neeman [5] defined
a forcing poset for adding a square sequence using his framework of two-type side
conditions.

The forcing poset we develop for adding a partial square sequence is similar
to the forcings of [3] and [5] for adding a square sequence. However, we need to
develop the properties of our forcing poset in much greater detail than was done
in those papers, so that we can use it to prove the consistency result.

We then develop a forcing poset Q which simultaneously adds a partial square
sequence on multiple sets. This forcing poset is similar to a product forcing, since
the different posets which are incorporated in the forcing are independent of each
other, except for the presence of a shared side condition. We believe that it is
likely that this kind of side condition product will have other applications in the
future.

A crucial property of the product forcing Q is that certain quotients of it satisfy
the wi-approximation property. More specifically, for certain uncountable models
P, PNQ is a regular suborder of Q, and the quotient forcing Q/Cme has the
wi-approximation property in V12,

A similar result about certain quotients having the w;-approximation property
was used by Mitchell [4] in his proof of the consistency that I[ws] does not contain
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a stationary subset of ws N cof(wy). This result followed from the equation

(pAq) I P=(pP)A(q]P),

where A denotes greatest lower bound, which holds below a strongly P-generic
condition which is tidy (see [4, Definition 2.20, Lemma 2.22]). Unfortunately, our
forcing poset Q does not satisfy this equation. First, our forcing poset Q@ does not
even have greatest lower bounds. Secondly, even if the definition of Q is adjusted
so that Q has greatest lower bounds, which is possible, the above equation still
fails, even on any dense set.

Nonetheless, we are able to make use of some of the ideas in Mitchell’s original
argument for the wi-approximation property [4, Lemma 2.22], by replacing the
above equation with something weaker, and more complicated, namely,

(e p) I P=(qI P)&N"" (p | P).

In this equation, a @™ b denotes the amalgam of a condition b with a condition
a which is in the model M and is below the projection b [ M. We believe that
this equation will be useful in future applications for verifying the approximation
property, in cases where Mitchell’s original tidy property fails.

Finally, we complete the proof of the consistency that Iws] does not have a
maximal set modulo clubs. Assuming that x is a greatly Mahlo cardinal, we get a
sequence (B; : i < k1) of Mahlo sets. We use the forcing poset Q to simultaneously
add partial square sequences on B; \ B;1, for each i < x™, while collapsing » to
become wq. This will place each such set in the approachability ideal Ifws]. We
make use of the approximation property of certain quotients of Q to show that
Iws] does not have a maximal set.
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Intermediate models of Prikry extensions
PETER KOEPKE
(joint work with Moti Gitik, Vladimir Kanovei)

Theorem 1. Let M be a transitive model in which U is a normal measure on the
measurable cardinal k. Let M C M[C] be a generic extension by Prikry forcing
with U. Then every intermediate transitive model N, M C N C M|[C] of ZFC is
of the form N = M[D] for some D C C. If D is finite then N = M, and if D is
infinite then N = M[D] is again a Prikry generic extension of M. Hence Prikry
forcing is a “minimal” forcing.

By Theorem [ the intermediate models of the Prikry extension M C M[C]
are parametrized by P(w) N M modulo finite; we have the following C-C /fin-
isomorphisms:

({N|M C N € M[CJ},C) = (P(C) N MIC], C /fin) = (P(w) N M, C /fin)

Since every intermediate model of M C M|C] is generated by a set of ordinals it
suffices to show

Lemma 1. VX € M[C],X C Ord3D C C,D € M[C|M[X] = M[D).
One can prove the Lemma using forcing arguments or, as we shall do below,
within the framework of iterated ultrapowers. Let
(M, Uy By T ) m<neOrd
be the iteration of My = M by Uy = U. Note that
My, = {mom (f)(Kos - -+ s Em—1)|f € Mo, f: k' = Mo}

for m < w. The sequence {x,;,|m < w} of critical points is a Prikry sequence for
the measure U,,:

VA € P(kw) N My,(A € Uy <> {km|m < w}\ A is finite).

By the elementarity of m, and the homogeneity properties of Prikry forcing it
suffices to prove the theorem for M, and {km|m < w} instead of M and C. For
simplicity we write M for M, and C for {k,|m < w}. The generic extension
MC] was identified by Patrick Dehornoy [I] as the intersection model

MIC] = () M.

Proof of Lemma [Il in the special Case: X C k,,, X € M[C]\ M.
Lemma 2. &, is singular in M[X].
Proof. For m < w let

X = mom (fm)(Koy - -, Km—1) € M.

Then
X N Em = Tow(fm)(Kos -« -y Km—1) N Em.
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In M[X],
VC < nwﬂm < w;'fo, A 7§m71 < C XN C = WOw(fm)(fO; . ,fmfl) ﬂc

This defines regressive functions. If x,, were regular, Fodor’s theorem would yield
values mg and 7y, ..., Nm, such that for some stationary set S C x,,

V¢ e SX N ¢= 7"-Ow(f’mo)(noa ce a77m0—1) ng.
But then
X = 70w (frme) M0y -+ Mmo—1) N Kw € M,
contradiction. So k,, must be singular in M[X]. O

Wellorder sequences ap < ... < -1 and By < ... < B,—1 lexicographically
from the top:
(0 -y @m—1) < (Boy ..., Bn1) iff there is some 7 such that

Q-1 = P15+ ¥m—i = Bn—i,Bn—i—1 exists,
and if ag—i—1 exists, then ay,_i_1 < ﬂn,ifl.
Lemma 3. Let x € M,,. Let ag < ... < apm_1 be <-minimal such that there is
fe Mo, f:r]> = My such that
x = mon(f) (a0, .-, @m—1).
Then {ao,...,am-1} € {Ko,-..,kn-1}. In case that x C K, then ap < ... <
Qm_1 18 also <-minimal such that
x = ow(f) (o, -y Qm—1) N K.

The proof rests on the fact that any ordinal a; with x;_1 < a; < k; < Ky, is of
the form

a; = mon(9) (Ko, - .., Ki—1)
so that «; can be replaced by ko, ..., x;—1 whilst descending in the <-ordering.

Lemma 4. In M[X], there is an infinite subset Dy C C' (which is cofinal in k).

Proof. By Lemma [ let {a,|v < v} € M[X] be cofinal in &, where 7 < k.
Without loss of generality, v < &o.

Work in My. For v < v consider the minimal x,, such that a, < k,,. By
Lemma [B]let £, C C be a <-minimal sequence such that for some f, € M

o, = mow (fv) (Fy)-
Since v < kg
(mow (fo)lv <) = mou ((fulv <)) € M.
In M[X], R, is also defined as the <-minimal sequence such that

ay = mou (fu)(Fy).-
Ry, € M[X], Dy C C. If Dy were finite then
{avlv <~} € {mou () (R)lv <7, C Do} € M

would make k,, singular in M, contradiction. ([

Let DO = U

vy
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Work in My. Let A\g < A1 < ... enumerate Dy. For m < w let K, C C be
<-minimal such that there is a function f,, € My such that

(1) X N A = 70w () (Bm) 0 A
Let D = Do UJ,, .., Km € C. Observe that
(2) (Mo (fm)Im < w) = Tow ((fm|m <w)) € M.

By (1) and (2), X € M[D].
Conversely, Dy € M[X], and (R,,|m < w) can be defined in M[X] by: R, is
~<-minimal such that
X N A = 70w (fn) (Km) N A
Hence D € M[X]. Thus M[X] = M[D]. QED

The Proof of Lemma [I] in the general Case: X C A\, X € M[C]\ M for
A > K, by forcing methods is based on ideas by Moti Gitik, analysing M[D] C
M]C] as a forcing extension by a quotient of Prikry forcing which satisfies the
Ky-chain condition in M[D]. On the day after my talk at Oberwolfach I found an
alternative argument working with the above intersection model.
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Forcing the truth of a weak form of Schanuel’s conjecture
MATTEO VIALE

Schanuel’s conjecture states that the transcendence degree over Q of the 2n-tuple
(A1, s A, €M, o eM) s at least n for all Aj,..., )\, € C which are linearly
independent over Q; if true it would settle a great number of elementary open
problems in number theory, among which the transcendence of e over 7.

Wilkie [7], and Kirby [3, Theorem 1.2] have proved that there exists a small-
est countable algebraically and exponentially closed subfield K of C such that
Schanuel’s conjecture holds relative to K (i.e. modulo the trivial counterexam-
ples, Q can be replaced by K in the statement of Schanuel’s conjecture). We prove
a slightly weaker result (i.e. that there exists such a countable field K without
specifying that there is a smallest such) using the forcing method and Shoenfield’s
absoluteness theorem.

Specifically:

e We first use a canonical identification of the B-names for complex numbers
for a complete boolean algebra B with the space CT(St(B)) of continu-
ous functions from the Stone space of B into the one point compacti-
fication of the complex numbers with preimage of the point at infinity
nowhere dense. This characterization is due indipendently to myself and
Vaccaro [5], Jech [2], Ozawa [4].
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e Next we show, by means of Ax’s theorem on the Schanuel property for
differential fields with exponentiation [I], that a strong form of Schanuel’s
conjecture holds between CT(St(B)) and the complex numbers for any
complete boolean algebra B.

e Finally we use the forcing notion that collapses the ground model complex
numbers to become countable to argue that the above Schanuel property
holds in this generic extension between the complex numbers and a count-
able subfield. We conclude using Shoenfield’s absoluteness, since the latter
statement is 3.

This result suggests that forcing can be a useful tool to prove theorems (rather
than independence results) and to tackle problems in domains which are apparently
quite far apart from set theory.
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Full Iterability of the K¢ Construction in the Presence of Woodin
Cardinals

MARTIN ZEMAN
(joint work with Grigor Sargsyan)

In inner model theory, a K¢ construction serves, among many other things, as an
important step in the construction of the true core model K. In order to construct
K, it is necessary to prove the full iterability of K¢, that is, to find an iteration
strategy for K¢ that acts on iteration trees of arbitrary size. Typical proofs of
full iterability of K¢ are based on a reflection argument [2], which, in turn, uses a
smallness condition for the levels of K¢ in a substantial way.

If the universe does not have a proper class inner model with a Woodin cardinal,
the reflection argument can be carried out, and produces an iteration strategy for
levels of K¢ which is guided by @-structures, that is, structures which definably
destroy the Woodinness of a given ordinal. More precisely, for each iteration tree
T such a strategy assigns the unique cofinal well-founded branch b such that the
branch model M7 has the Q-structure for §(7) as an initial segment. As already
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mentioned above, this argument breaks down if the universe has a proper class
model with a Woodin cardinal. Moreover, if the universe has a Woodin cardinal
then, by an argument of Woodin, K does not exist, so K¢ is not fully iterable.

In certain type of universes, however, it is possible to prove a full iterability
of K¢ and therefore construct K. We give one such example. This universe has
a highly specific feature, namely it has a pair (P,X) where P premouse with a
Woodin cardinal and ¥ is a iteration strategy for P which is fullness preserving
and has branch condensation [I]. The existence of such a pair makes it possible to
run a reflection argument for iterability of levels of the K¢-construction, but this
time the iteration strategy for these levels is not guided only by @-structures, but
also by certain iteration maps which arise from iterating P according to 3. The
latter applies in situations where the Woodinness of §(7) cannot be destroyed. We
carry out the proof of iterability under the smallness assumption that all levels
of the K°-construction are tame [3], but conjecture that this hypothesis can be
significantly weakened.
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Ultrafilters over measurable cardinals
Mot GITIK

Aki Kanamori asked in [I] the following three questions:

(1) Is there a x—complete ultrafilter over a measurable x with an infinite
number of Rudin-Frolik predecessors?

(2) If {U; | 7 < K} is a family of distinct k—complete ultrafilters over a
measurable £ and F is any k—complete ultrafilter over x, is there an
X € E so that {U; | 7 € X} is a discrete family?

(3) If U and V are k—complete ultrafilters over a measurable s such that
UXxV <p_gV xU, is there a W and integers n and m so that U ~ W"
and V >~ W™m?

We give an affirmative answer to the first question and negative answers to the
second and the third.
Namely, the following was shown:

Theorem 1. (a) If o(k) > 2 in the core model, then there is a cardinal preserving
generic extension with a k—complete ultrafilter over k with infinitely many prede-
cessors in the Rudin-Frolik ordering.

(b) The existence of a k—complete ultrafilter over k with infinitely many predeces-
sors in the Rudin-Frolik ordering implies that o(k) > 2 in the core model.
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Kanamori showed in [I], that at least 0T is needed.

Theorem 2. (a) If o(k) > Kk + 1 in the core model, then there is a cardinal
preserving generic extension with a family {U, | 7 < k} of distinct k—complete
ultrafilters over k and a K—complete ultrafilter E over k, so that {U, | T € X} is
a not discrete family for any X € E, is at most o(k) = k + 1.

(b) Suppose that there are a family {U. | T < k} of distinct kK— complete ultrafilters
over k and a k—complete ultrafilter E over k, so that {U,; | 7 € X} is not a
discrete family for any X € E. Then {o(a) | a < k} is unbounded in k in the
Mitchell core model.

Concerning the third question, Solovay gave an affirmative answer once "U x
V <p_x V xU” is replaced by "U x V ~ V x UY”, and Kanamori once U is a
p—point, see [1] 5.7, 5.9. We show the following;:

Theorem 3. Assume o(k) = k. Then in a cardinal preserving generic extension
there are two k—complete ultrafilters U and V over k such that

(1) V>rp-rx U,

(2) VXxU>p_gUXV.

Theorem 4. Assume o(k) = k. Then in a cardinal preserving generic extension
there are two k—complete ultrafilters U and V over k such that

(1) V is a normal measure,
(2) V is the projection of U to its least normal measure,

(3) VXU>p_gUXV.

Theorem 5. Suppose that there is no inner model in which k is a measurable with
{o(a) | @ < k} unbounded in it. Then for any two k—complete ultrafilters U and
V over k, if VXU >p_x U XV, then there is an integer n such that V =g_x U".
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The consistency strength of the theory ZFC 4 “every universally Baire
set has the perfect set property”

TREVOR WILSON
(joint work with Ralf Schindler)

In joint work with Ralf Schindler, we show that the perfect set property for uni-
versally Baire sets of reals is equiconsistent, modulo ZFC, to the existence of a
virtual large cardinal that we call “Shelah for remarkability.”

The perfect set property was formulated by Cantor in an attempt to prove the
continuum hypothesis. It says that a given set of reals either is countable or has
a perfect subset. Clearly every open set of reals has this property. If every set
of reals could be shown to have this property, the continuum hypothesis would
follow. As a first step, Cantor and Bendixson showed that every closed set of reals
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has the perfect set property. However, this approach to the continuum hypothesis
failed as Bernstein proved the existence of a set of reals without the perfect set
property.

A question remained: how far beyond the closed sets of reals does the perfect
set property hold? (From now on, we will follow the custom of using “reals”
to denote w* with the product topology; the results of Cantor, Bendixson, and
Bernstein still hold in this setting.) We can then define the analytic sets of reals
as the projections of the closed subsets of w* x w*, and the coanalytic sets of reals
as the complements of the analytic sets of reals. Suslin adapted the arguments
of Cantor and Bendixson to show that every analytic set of reals has the perfect
set property. On the other hand, Gddel showed that if V' = L, then there is a
coanalytic set of reals without the perfect set property.

Regarding the extent of the perfect set property in the projective hierarchy,
these results of Godel and Suslin established the boundary of what can be proved in
ZFC. To get more, one has to assume more, namely the existence of an inaccessible
cardinal. Solovay showed that the following statements are equiconsistent modulo
ZFC: (1) there is an inaccessible cardinal, (2) every coanalytic set of reals has the
perfect set property, and (3) every set of reals in L(R) has the perfect set property.
Solovay showed that after forcing with the Levy collapse of an inaccessible cardinal,
every set of reals in L(R)—and in particular every coanalytic set—has the perfect
set property. On the other hand, if every coanalytic set has the perfect set property,
then N; is inaccessible in L. For a further exposition of the results mentioned
above, see Kanamori [2].

In order to further investigate the perfect set property along these lines, one
needs a higher complexity class of sets of reals for which the perfect set property
is not already decided. One such class is that of the universally Baire sets of
reals, defined by Feng, Magidor, and Woodin [I]. Such sets of reals have all the
symmetric regularity properties such as Lebesgue measurability and the property
of Baire, but do not necessarily have the perfect set property.

Because every coanalytic set of reals is universally Baire, the consistency
strength of “every universally Baire set of reals has the perfect set property” is
at least that of an inaccessible cardinal. On the other hand, Woodin showed that
if there is a Woodin cardinal then every universally Baire set of reals is weakly
homogeneously Suslin (see Larson [3].) Consequently, if there is a Woodin cardinal
then every universally Baire set of reals has the perfect set property, and moreover,
after forcing with the the Levy collapse of the least inaccessible cardinal, every set
of reals in L(R,uB) has the perfect set property where uB denotes the class of all
universally Baire sets of reals.

To precisely determine the consistency strength of the perfect set property for
universally Baire sets of reals and the sets of reals constructible from them, we
introduce a new large cardinal property. We call a cardinal x Shelah for remark-
ability if for every function f : k — & there are ordinals A > x and A < k such
that in some generic extension there is an elementary embedding j : V5 — V) with

j(erit(5)) =k, A > f(crit(5)) and f € ran(j).
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Like the property of remarkability introduced by Schindler [4], this is a “virtual”
large cardinal property, meaning that it asserts that certain elementary embed-
dings exist in a generic extension. It follows from x being Shelah, similarly to how
the remarkability of x follows from x being strong. Like remarkability, it is very
weak: if 0% exists then every Silver indiscernible is Shelah for remarkability in L.
It has slightly higher consistency strength than remarkability: if x is Shelah for
remarkability, then V,; has a proper class of remarkable cardinals.

We show that the following statements are equiconsistent modulo ZFC: (1)
there is a cardinal that is Shelah for remarkability, (2) every universally Baire set
of reals has the perfect set property, and (3) every set of reals in L(R, uB) has the
perfect set property. A brief outline of the argument follows.

After forcing with the Levy collapse of a cardinal that is Shelah for remark-
ability, every set of reals in L(R,uB)—and in particular every universally Baire
set—has the perfect set property. The key step here is to show that every univer-
sally Baire set in such a generic extension is definable from trees added by a proper
initial segment of the generic filter. On the other hand, if every universally Baire
set has the perfect set property, then R; is Shelah for remarkability in L. To prove
this, we assume that N; is not Shelah for remarkability in L and use a function
f Ny = Ny witnessing this, along with the axiom of choice in V, to construct a
universally Baire set of cardinality N; with no perfect subset.

Our argument also shows that after forcing with the Levy collapse of a car-
dinal that is Shelah for remarkability, every set of reals in L(R,uB) is Lebesgue
measurable and has the property of Baire. For Lebesgue measurability, we can
reverse this using a result of Shelah [5] to obtain equiconsistency. The consistency
strength of the property of Baire for all sets of reals in L(R, uB) remains open.
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