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Abstract. The workshop addressed the interplay between theory and appli-
cations of cluster expansions. These expansions, historically geared towards
the study of systems in statistical mechanics, thermodynamics, and physical
chemistry, have recently found applications in different areas of current math-
ematical research, such as point processes, random graphs, coloring issues,
logics and inverse problems in numerical analysis. The workshop developed
both directions of the theory–application interplay. On the one hand, speak-
ers presented advances in the theoretical foundations of the abstract polymer
model and improved tree-graph inequalities, and explored their consequences
for the theory of liquids and other applied issues. On the other hand, re-
searchers in stochastic modelisation exposed needs and challenges brought
by concrete models of liquids and liquid crystal to the theory of cluster ex-
pansions. In addition other complementary methods were discussed, such as
disagrement percolation —an expansion-free approach to uniqueness and de-
cay of correlations— and lace expansions —an expansion technique popular
for its applications to random walks and percolation problems.
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Introduction by the Organisers

Originally, cluster expansions have been devised by Mayer and collaborators in
order to derive the equation of state for a non-ideal gas. Rigorous results first
appeared in the 60’s with convergence proofs built on a combinatorial identity
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between graphs and trees. The same decade saw further expansions being devel-
oped for correlation functions as a means to describe the liquid state. Subsequent
developments took place both in mathematics and applied disciplines.

The abstract polymer model gave a boost to rigorous cluster expansions, estab-
lishing a broadly applicable framework and removing the need of case-by-case con-
vergence proofs. The abstract polymer model paved the way for connections with
combinatorics, e.g., Lovász lemma and graph enumeration formulas. It inspired
similar techniques in probability to calculate two-point functions for self-avoiding
random walks, e.g., lace expansions and connectivity functions in Boolean models.
Cluster expansions have also been a precious tool in mathematical statistical me-
chanics, notably in establishing uniqueness of Gibbs states and defining effective
potentials.

Numerous applied techniques were built on expansion methods leading to the
modern liquid state theory; surprisingly, these approaches are still on a formal
level. With the advancement of computational power, methods shifted to direct
simulations via Monte Carlo or molecular dynamics. For complex molecules, how-
ever, the computational cost of direct simulations spurred the development of
new coarse-graining methods, which in turn brings back theoretical treatments of
atomistic degrees of freedom in order to define effective potentials.

The meeting brought together scientists from several fields within or outside
mathematics, contributing different points of view on problems, challenges and so-
lutions. The workshop program combined forefront research with survey talks,
which successfully fostered lively cross-disciplinary discussions that took place
around the talks as well as in dedicated discussion sessions.

The meeting started with an introduction to the abstract polymer model by
R. Kotecký, one of the founders of this approach. A. Procacci presented a new
partition scheme for the tree-graph inequality and deduced an improved radius
of convergence for potentials with both attractive and repulsive parts. His proof
was spontaneously taken up by D. Ueltschi, who presented possible simplifications,
giving us the opportunity to deepen our understanding of technical intricacies.

A second group of talks investigated applications, correlation functions, and liq-
uid state theory, for which direct correlation functions and the Ornstein-Zernike
equation are key. Existence and convergence theorems for the latter, albeit in the
gas regime, were presented by T. Kuna, including refined combinatorial consid-
erations of graphs and connectivity concepts. Going beyond the reach of current
rigorous results, L. Lue surveyed some practical applications of expansion methods
and made a case for incorporating modern rigorous developments into modelisa-
tion; one challenge raised was how higher order correction terms may help predict
clustering of particles from first principles. Continuum models for liquid crys-
tals, object of a significant body of analytical literature, still lack a satisfying
atomistic derivation. In this spirit E. Virga presented some elements to make rig-
orous a program going back to Onsager. M. Hanke addressed the validity of the
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inverse Boltzmann iteration, a method underpinning numerical approaches, by for-
mulating an inverse problem and establishing Fréchet differentiability of relevant
operators between suitably constructed spaces.

Lace expansions are closely related to, but somewhat different from, cluster ex-
pansions, and enjoy a slightly bigger, though more recent, popularity in probability
theory. A pioneer in both cluster and lace expansions, D. Brydges explained key
concepts and gave a glimpse into selected applications, among them random walks
with repulsive self-interaction and the ϕ4-model. R. Fitzner reviewed percolation
results in higher dimensions and commented on the mean field character attained
by the system. T. Helmuth in a similar context discussed the self-attractive and
the self-avoiding walk as a model for linear polymers in good/bad solvent.

Statistical mechanics for point particles in Rd can benefit from stochastic ge-
ometry and point process theory; conversely, equations first devised in statistical
mechanics may pop up in genuinely stochastic problems. G. Last gave a helpful
tutorial on key concepts from point processes (Palm measure, Campbell formula)
and presented existence and analyticity results for the Ornstein-Zernike equation
in the context of the random connection model. C. Temmel spoke about disagree-
ment percolation for hard spheres and decay of correlations beyond the radius of
convergence of the associated cluster expansion. Still in the continuum, but in
a language closer to traditional statistical mechanics, E. Pulvirenti discussed a
variant of the LMP model (named after Lebowitz, Mazel, Presutti) and in partic-
ular how to derive an effective Hamiltonian for a coarse-grained version. M. Yin
brought cluster expansions into yet another area of probability, random graphs,
and situated her results within the context of graph limits and graphons.

The workshop included ample time for topical discussions among the partici-
pants. Issues discussed include: resummations for two-connected graphs, analytic
extensions, limiting regimes in high dimensions, Lee-Yang singularity and existing
results for the classical hard-sphere gas. There was also a session on prioritary
new directions of research. A consensus emerged on the need to develop cluster
and lace expansion techniques for quantum models.

Acknowledgement: The MFO and the workshop organizers would like to thank
the National Science Foundation for supporting the participation of two junior
researchers by the grant DMS-1641185. Moreover, MFO and the workshop orga-
nizers would like to thank the Simons Foundation for supporting David Brydges
and Aldo Procacci in the “Simons Visiting Professors” program at the MFO.
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Abstracts

The Lace expansion for the |ϕ|4 model with n = 0, 1, 2 components

David C. Brydges

This is a report on work in progress with Tyler Helmuth and Mark Holmes. The
lace expansion is a standard method for studying critical behaviour in statistical
mechanics [5]. It is of possible use in cases where mean field theory is expected to be
a good approximation and is a method to prove this in the sense of determining the
asymptotics of the decay of the two point function. In this presentation I outline
our proof that the critical two-component |ϕ|4 model admits a convergent lace
expansion, for weak coupling, or all coupling for high dimensions. In particular
the high dimensional O(2) model is also included. This is the first time the lace
expansion has been shown to exist and converge for a model with a continuous
symmetry.

Akira Sakai has shown that a convergent lace expansion exists for the Ising
model [3] and the one component ϕ4 model [4]. His derivation uses the current
representation for the Ising model to convert the system to a percolation. Our
starting point is instead the Symanzik local time isomorphism [6], [1] [2] and it
results in expansions that are not the same as those found by Sakai, although we
used essential ideas from his work. Our lace expansion exists for |ϕ|4, O(n) models
and the continuous time lattice Edwards model (n = 0), but we can only prove
convergence for n = 0, 1, 2 because our proof relies on GHS and Ginibre correlation
inequalities that are not known to hold for n > 2. As in all lace expansions, for
convergence a small parameter is required. Thus the method gives information
on critical exponents for the listed models in high dimensions, or for finite but
sufficiently long-range coupling, or for weak coupling.
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Mean-field behavior using the lace expansion

Robert Fitzner

(joint work with Remco van der Hofstad)

The lace expansion is a powerful perturbative technique to analyze the critical
behavior of random spatial processes. Its major application is to prove that a
model shows mean-field behavior in dimensions above the so-called upper critical
dimension. We present recent result on the nearest-neighbor square lattice and
explain its implication. Most prominently, F. and van der Hofstad proved that
nearest-neighbor percolation shows mean field behavior in all dimension d¿10.

In this process we review mean-field behavior of self-avoiding walk and perco-
lation. For these two model mean-field behavior can be loosely translated to the
statement that their spatial correlation function behaves asymptotically like the
Greens function of the simple random walk. This mean-field behavior can only be
expected if the dimension of the underlying lattice is high enough. In the talk we
give a heuristic explanation for the upper critical dimension of these models.

The lace expansion creates a characterization of the two-point function as a
perturbation of the two-point function of the simple model, in our case the simple
random walk. Using a sophisticated analysis one can use bounds on the pertur-
bation terms to obtain information on the original function, which can imply the
desired result on mean-field behavior.
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An inverse problem in statistical mechanics

Martin Hanke

Coarse-graining is a standard technique in physical chemistry for reducing the
computational burden of numerical simulations of complex materials such as poly-
mers, for example. The idea is to simplify substructures of a given molecule to
so-called “beads”, and then use effective potentials to evaluate the interaction of
these beads in a simulation. There are various techniques to derive effective poten-
tials depending on the data at hand, and we are interested in the case where the
given data is the radial distribution function, which is a rescaled pair distribution
function.

To be more specific, we work in the thermodynamical limit of a grand canonical
ensemble of particles in thermal equilibrium at fixed (inverse) temperature β >
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0 and small activity z > 0 (the so-called gas phase). It is assumed that the
interaction of the particles is determined by a pair potential u which only depends
on the distance r of the particles and satisfies

(1)
|u(r)| < C0r

−α , r ≥ r0 ,

u(r) > c0r
−α , r ≤ r0 ,

for some fixed α > 3, r0 > 0, and constants C0 > c0 > 0. As such, u belongs to
the class of Lennard-Jones type pair potentials, cf. Ruelle [4], which are known to
be stable and regular, i.e., there exists B > 0 and cβ > 0 such that

∑

1≤i<j≤N

u(|Ri −Rj |) ≥ −BN

for every configuration (R1, R2, . . . , RN ) ⊂ (R3)N of N particles, N ∈ N, and
∫

R3

|f(R)|dR < cβ ,

where f is the so-called Mayer function

f(R) = e−βu(|R|) − 1 .

Associated with this ensemble are statistical quantities like the local (number)
density ρ(1)(R) and the pair distribution function ρ(2)(R1, R2), which is a measure
for the likelihood that two particles will occupy the positions R1 and R2 simulta-
neously. Working in the thermodynamical limit, ρ0 = ρ(1) is a constant and ρ(2)

only depends on the distance |R1 − R2|, cf. [4]. Finally, one defines the radial
distribution function g as

g(r) =
1

ρ20
ρ(2)(R1, R2) , |R1 −R2| = r .

In [1] Groeneveld states that

(2) |g(r)− 1| ≤
C̺

̺(r)
, r > 0 ,

where Cρ > 0 and

̺(r) = (1 + r2)α/2 , r > 0 ,

but doesn’t provide a proof. Our proof of (2) is be based on a tree-graph inequality
by Poghosian and Ueltschi [3], and a careful analysis of an associated Ornstein-
Zernike equation. We can further show that there are constants C1 > c1 > 0, such
that

(3) c1e
−βu(r) ≤ g(r) ≤ C1e

−βu(r) , r > 0 .

Consider the operator

(4) F : u 7→ g ,
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which maps a Lennard-Jones type pair potential u onto the associated radial dis-
tribution function. On the grounds of (2) we measure perturbations of g in the
Banach space L∞

̺ (R+) of all measurable functions h, for which the norm

‖h‖L∞
̺ (R+) = ‖̺h‖L∞(R+)

is finite. Concerning the potentials we introduce the Banach space V of perturba-
tions v, for which the associated norm

‖v‖V = max
{
‖v/u‖(0,r0], ‖̺v‖[r0,∞)

}

is finite. Note that V depends on the reference potential u, and that there exists
δ > 0 sufficiently small such that u + v also satisfies (1) for every v ∈ V with
‖v‖V ≤ δ.

The following result improves upon our earlier results in [2].

Theorem 1. If u satisfies (1), and if the activity z is constrained to

(5) 0 < z <
1

cβe2βB+1
,

then the operator F of (4) is Fréchet differentiable with respect to V and L∞
̺ (R+),

i.e., there exists F ′(u) ∈ L(V , L∞
̺ (R+)) and δ > 0, such that

‖F (ũ)− F (u)− F ′(u)(ũ− u)‖L∞
̺ (R+) = O(‖ũ− u‖2V) ,

uniformly for ũ with ‖ũ− u‖V ≤ δ.

In the physical chemistry literature a standard approach to the inverse problem,
i.e., to solve F (u) = g for u when given g, is the inverse Boltzmann iteration

(6) un+1 = Φ(un) = un +
1

β
log

F (un)

g
, n = 0, 1, 2, . . . .

Here, u0 is an appropriate initial estimate of u, typically chosen to be the potential
of mean force. So far, there is no rigorous mathematical analysis of this iterative
scheme, and on a first glance it is not even clear whether the resulting approxi-
mations un of (6) will stay Lennard-Jones type pair potentials (or anything alike),
even when u0 is known to be one. Using (3) and Theorem 1 we can prove the
following result.

Theorem 2. If u satisfies (1), and if

(7) 0 < z <
1

1 + e

1

cβe2βB+1
,

then there exists δ > 0 and some Lipschitz constant L > 0 such that

‖Φ(ũ)− Φ(u)‖V ≤ L‖ũ− u‖V ,

provided that ‖ũ− u‖V ≤ δ. Moreover, Φ is Fréchet differentiable with respect to
u with Φ′(u) ∈ L(V ,V).
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Note that (7) is more restrictive than the classical interval (5) for the activity.
Theorem 2 can be used to establish local well-posedness of the inverse Boltz-

mann iteration. Assuming that the given data g in (6) is the true radial distri-
bution function associated with a Lennard-Jones type pair potential u, and that
‖u0 − u‖V ≤ δ/L, then it follows from Theorem 2 that the first iterate u1 of (6)
satisfies

‖u1 − u‖V = ‖Φ(u0)− Φ(u)‖V ≤ L‖u0 − u‖V ≤ δ ,

and hence, remains in the domain of Φ.
Detailed proofs of Theorems 1 and 2 will be published elsewhere.
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Self-attractive self-avoiding walk

Tyler Helmuth

(joint work with Alan Hammond)

Self-attractive self-avoiding walks are a simple model of linear polymers in poor
solvents. For n ∈ N and κ > 0 the model is defined by a probability measure Pn,κ

on n-step self-avoiding walks ω:

(1) Pn,κ(ω) =
(1 + κ)c(ω)

Zn,κ
, κ > 0.

The walks ω are assumed to begin at the origin of Zd, and c(ω) denotes the number
of contacts contained in a walk ω. A contact occurs when two edges of the walk ω
span a plaquette of Zd, see (1). The walks take steps from a fixed Zd-symmetric
distribution D, and Zn,κ is the normalization constant needed to make Pn,κ a
probability measure.

Suppose that instead of κ > 0 we take κ = 0 and assume the step distribu-
tion is uniform on the unit vectors of Zd. Then (1) defines the uniform measure
on nearest-neighbour self-avoiding walks; this model has attracted a great deal of
interest [1]. A challenging aspect when κ > 0 is that there is a loss of subaddi-
tivity, which is one of the few tools available in the κ = 0 case. Earlier work on
related models with κ > 0 has been restricted to step distributions D that sat-
isfy a smoothness condition, which allows subadditivity to be recovered when κ is
sufficiently small [2]. The smoothness condition has the drawback that it implies
that D has infinite range.
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Figure 1. A self-avoiding walk ω with its contacts indicated as
shaded plaquettes.

In joint work with Alan Hammond we have analyzed the behaviour of self-
attractive self-avoiding walk when κ > 0 and the step distribution D has compact
support. Our first result establishes the existence of the connective constant in
dimensions d ≥ 2, i.e., the existence of the limit

µ(κ) = lim
n→∞

Z1/n
n,κ ,

provided κ > 0 is small enough. The existence of the limit is proved by a modified
version of the Hammersley-Welsh unfolding argument [3]. The main idea is to use
an energy-entropy estimate to control the loss of attractive contacts during the
unfolding procedure. Similar entropic arguments in the context of self-avoiding
walks and self-avoiding polygons have previously appeared in [4, 5].

In high dimensions it is reasonable to expect that when κ > 0 is small the
effect of the self-attraction is negligible. We prove that this is true using the lace
expansion, a tool which has been developed to prove mean field behaviour for
statistical mechanical models like self-avoiding walk. A key step in lace expansion
arguments is to establish diagrammatic bounds [6]. These bounds are usually
established by using a model-specific monotonicity property. Self-attractive self-
avoiding walk lacks the monotonicity properties of self-avoiding walk, and this
makes obtaining diagrammatic bounds more complicated.

It is possible, however, to use energy-entropy ideas to overcome the lack of
monotonicity. The resulting diagrammatic bounds are compatible with the lace
expansion analysis of [7]. This allows us to analyze the critical behaviour of the
model when d ≥ 5 for sufficiently spread out step distributions and small enough
κ > 0. One particular conclusion is that the critical two-point function has Gauss-
ian asymptotics, which verifies the mean field behaviour of self-attractive self-
avoiding walk under these hypotheses.

References

[1] R. Bauerschmidt, H. Duminil-Copin, J. Goodman, and G. Slade, “Lectures on self-avoiding
walks,” in Probability and statistical physics in two and more dimensions, vol. 15 of Clay
Math. Proc., pp. 395–467, Amer. Math. Soc., Providence, RI, 2012.

[2] D. Ueltschi, “A self-avoiding walk with attractive interactions,” Probab. Theory Related
Fields, vol. 124, no. 2, pp. 189–203, 2002.



Cluster Expansions: From Combinatorics to Analysis through Probability 429

[3] J. M. Hammersley and D. J. A. Welsh, “Further results on the rate of convergence to the
connective constant of the hypercubical lattice,” Quart. J. Math. Oxford Ser. (2), vol. 13,
pp. 108–110, 1962.

[4] N. Madras, “A rigorous bound on the critical exponent for the number of lattice trees,
animals, and polygons,” J. Statist. Phys., vol. 78, no. 3-4, pp. 681–699, 1995.

[5] A. Hammond, “On self-avoiding polygons and walks: counting, joining and closing,” arXiv
preprint arXiv:1504.05286, 2015.

[6] G. Slade, The lace expansion and its applications, vol. 1879 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2006. Lectures from the 34th Summer School on Probability Theory
held in Saint-Flour, July 6–24, 2004, Edited and with a foreword by Jean Picard.

[7] T. Hara, R. van der Hofstad, and G. Slade, “Critical two-point functions and the lace
expansion for spread-out high-dimensional percolation and related models,” Ann. Probab.,
vol. 31, no. 1, pp. 349–408, 2003.

Disagreement percolation for the hard-sphere model

Christoph Hofer-Temmel

Disagreement percolation by van den Berg and Maes [5] is a sufficient condition
on the activity of a discrete Gibbs specification on a graph for uniqueness of the
Gibbs measure. It implies the absence of phase transitions and the analyticity of
the free energy in the high-temperature case. It has also been used to derive the
Poincaré inequality in the context of lattice Ising spin systems [1]. I extend disagree
percolation to the hard-sphere model on Rd. This results in a sufficient condition
lower bound on the activity guaranteeing uniqueness of the Gibbs measure and
exponential decay of the reduced pair correlation function in the high temperature
regime.

The core idea behind disagreement percolation is to control the competing in-
fluence of two differing boundary conditions on the finite volume specification by
an iid Bernoulli site percolation. In a second step, it uses the subcriticality of site
percolation to derive the uniqueness of the Gibbs measure and additional proper-
ties. This approach generalises straightforward to the continuum setting, with the
Boolean disc model taking the role of Bernoulli site percolation.

In practice, a lower bound on the critical intensity for percolation of the Boolean
model translates into a lower bounds on the extent of the uniqueness region of the
infinite volume Gibbs measure. These lower bounds improve upon the radius
of the best known cluster expansions [2] and exceed even their theoretically best
obtainable radius. In one dimension, where the hard-sphere model is called Tonk’s
gas, this shows the absence of phase transition for all activities as in [6], whereas
cluster expansion has a radius of convergence of 1

e . In principle, one is be able to
use the exponential decay of percolation clusters in the subcritical Boolean model
to bound all higher order reduced correlations, too.

In the discrete case, the coupling between the two realisations of the finite
volume specification and the controlling site percolation proceeds step-by-step in
a recursive fashion along the finite number of sites. It uses a perfect coupling
between the disagreement of the two specifications on a site and couples this
generically to the site percolation. This approach breaks down in the continuum.
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If one turns around the setup, though, one starts with a realisation of the Boolean
model, which controls where disagreement may take place. The construction of
the coupling then becomes a simultaneous thinning from the Boolean model to
the two hard-sphere realisations. The hard-sphere property, already exploited by
van den Berg en Steif [4] for the hard-core model, simplifies the construction to a
thinning from the Boolean model to a single hard-sphere realisation. The recursive
construction of the coupling demands that the thinning is not only recursive in
the domain, but also measurable under changes of the boundary condition. The
solution is a recursive dependent thinning, where the thinning probability of a
point corresponds to the derivative of the free energy of the unexplored part of
the domain subject to the already chosen points, as one progresses through the
domain.

Two questions came up during the workshop. First of all, does an exponen-
tial decay of all higher order reduced correlations functions imply analyticity of
the free energy, and is this even needed? Second, is there a direct comparison
between the pinned series in the cluster expansion of the hard-sphere model and
the connection function in the Boolean model, as detailed in recent work on the
Ornstein-Zernike function [3]? This would clarify their relation and explain why
disagreement percolation admits larger activities than cluster expansions in all
known cases.
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Abstract cluster expansion—the simplest proof

Roman Kotecký

I present here a quintessence of cluster expansion for abstract polymer models.
The standard Dobrushin statement is proven, adapting from [D] as well as other
sources [M, SS]. Notice that a full proof of cluster expansion convergence is given.
I leave out, for additional discussions, the further extensions of the standard result
proven by Proccaci, Fernández and others.

Abstract polymer models are most easily formulated in terms of a simple graph
G = (V,E) (without edges that connect a vertex to itself). Here, abstract polymers
are the vertices v ∈ V with (v, v′) ∈ E whenever the corresponding polymers are
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incompatible (no loops: only distinct vertices may be incompatible).1 Given a mo-
del weight w : V → C of the abstract polymers, we define the partition function

(1) ZL(w) =
∑

I⊂L

∏

v∈I

w(v) = 1 +
∑

∅6=I⊂L

∏

v∈I

w(v).

The sum is running over all independent sets I of vertices in L (no two vertices in
I are adjacent). In other words: all collections I of compatible abstract polymers.

The partition function ZL(w) is an entire function in w = {w(v)}v∈L ∈ C|L|

and ZL(0) = 1. Hence, it is non-vanishing in some neighbourhood of the origin
w = 0 and its logarithm is, on this neighbourhood, an analytic function yielding
a convergent Taylor series

(2) logZL(w) =
∑

X∈X (L)

aL(X)wX .

Here, X (L) is the set of all multi-indicesX : L → {0, 1, ...} and wX =
∏

v w(v)
X(v).

Inspecting the Taylor formula for the coefficients aL(X) in terms of corresponding
derivatives of logZL(w) at the origin w = 0, it is easy to show that the coefficients
aL(X) actually do not depend on L:

aL(X) = asuppX(X), where suppX = {v ∈ V : X(v) 6= 0}.

As a result, one is getting the existence of coefficients a(X) for each X ∈ X =
{X : V → {0, 1, . . .}, |X | =

∑
v∈V |X(v)| < ∞} such that, for every finite L ⊂ V ,

(3) logZL(w) =
∑

X∈X (L)

a(X)wX

with convergence on a small neighbourhood of the origin depending on L.
Notice that a(X) ∈ R for all X (consider ZL(w) with real w) and a(X) = 0

whenever the graph G(suppX) (induced by G on suppX) is not connected: just
notice that, from definition, ZsuppX(w) = ZL1(w)ZL2(w) once suppX = L1 ∪ L2

with no edges between L1 and L2.
The multi-indices X with connected G(suppX) are called clusters.
In addition, the coefficients a(X) have alternating signs,

(4) (−1)|X|+1a(X) ≥ 0 for any X ∈ X .

Rewriting (3) for the weights −|w|,

− logZL(−|w|) = −
∑

X∈X (L)

a(X)(−1)|X||w|X

and taking into account that every X has suppX ⊂ L for some finite L, the
condition (4) is equivalent to the claim that for any finite L ⊂ V , all coefficients
of the expansion of − logZL(−|w|) in powers |w|X are nonnegative.

1Notice that in applications, typically, such graph has infinite degree—any polymer is incom-
patible with infinitely many polymers (think about polymers, say, as cycles on Zd, with two of
them incompatible if they intersect).
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The latter claim is easy to prove by induction in |L|. Indeed, for |L| = 0 and
L = 1, we have Z∅(−|w|) = 1 and Z{v}(−|w|) = 1− |w(v)| with

− logZ∅(−|w|) = 0 and − logZ{v}(−|w|) =
∞∑

n=1

|w(v)|n

n

(the latter valid for sufficiently small |w(v)|). For |L| ≥ 1 and v /∈ L, we use
N (v) to denote the set of vertices adjacent to the vertex v in graph G. From the
definition (1), we have ZL∪{v}(−|w|) = ZL(−|w|)− |w(v)|ZL\N (v)(−|w|) yielding

− logZL∪{v}(−|w|) = − logZL(−|w|)− log

(
1− |w(v)|

ZL\N (v)(−|w|)

ZL(−|w|)

)

(here we consider |w| sufficiently small on L ∪ {v} so that all concerned Taylor
expansions for logZW (−|w|) with W ⊂ L ∪ {v} converge). The first term on the
RHS has nonnegative coefficients by induction hypothesis. Taking into account
that − log(1 − z) has only nonnegative coefficients and that

ZL\N (v)(−|w|)

ZL(−|w|)
= exp

{ ∑

X∈X (L)\X (L\N (v))

|a(X)||w|X
}

has also only nonegative coefficients, all the expression on the RHS has necessarily
only nonnegative coefficients.

What can we say about the diameter of convergence of series (3)?
For each finite L ⊂ V , consider the polydiscs

DL,R = {w : |w(v)| ≤ R(v) for v ∈ L} with the set of radii R = {R(v); v ∈ V }.

The most natural for the inductive proof is the Dobrushin’s condition2:

There exists a function r : V →[0, 1) such that, for each v ∈ V,

R(v) ≤ r(v)
∏

v′∈N (v)

(
1− r(v′)

)
.(∗)

Using this, we can summarise the cluster expansion claim for an abstract poly-
mer model in the following way:

Theorem (Cluster expansion). There exists a function a : X → R that is
nonvanishing only on clusters, so that for any sequence of diameters R satisfying
the condition (∗) with a sequence {r(v)}, the following holds true:

(i) For every finite L ⊂ V , and any contour weight w ∈ DL,R, one has
ZL(w) 6= 0 and

logZL(w) =
∑

X∈X (L)

a(X)wX ;

(ii)
∑

X∈X :suppX∋v |a(X)||w|X ≤ − log
(
1− r(v)

)
.

2Observe that choosing r(v) = 1− exp(−R(v)α(v)) and using ex − 1 ≥ x, the condition (∗) is

implied by the assumption that for any v ∈ V we have R(v)eα(v)+
∑

v′∈N (v′) R(v)eα(v′) ≤ α(v)

(which is the condition from [KP]), making thus the claim from [KP] weaker then that from [D].
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Proof. Again, by induction in |L| we prove (i) and (ii)L obtained from (ii) by
restricting the sum to X ∈ X (L):

Assuming ZL 6= 0 and
∑

X∈X (L):suppX∩N (v) 6=∅

|a(X)||w|X ≤ −
∑

v′∈N (v)

log
(
1− r(v′)

)

obtained by iterating (ii)L, we use

ZL∪{v}(w) = ZL

(
1 + w(v)

ZL\N (v)(w)

ZL(w)

)

and the bound
∣∣∣∣1 + w(v)

ZL\N (v)(w)

ZL(w)

∣∣∣∣ ≥ 1− |w(v)| exp

{ ∑

X∈X (L)\X (L\N (v))

|a(X)||w|X
}

≥

≥ 1− |w(v)|
∏

v′∈N (v)

(1− r(v′))−1 ≥ 1− r(v) > 0

to conclude that ZL∪{v} 6= 0. To verify (ii)L∪{v}, we write

∑

X∈X (L∪{v}),suppX∋v

|a(X)||w|X = − logZL∪{v}(−|w|) + logZL(−|w|) =

− log

(
1− |w(v)|

ZL\N (v)(−|w|)

ZL(−|w|)

)
≤ − log(1 − r(v)).

�
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Density expansion of the truncated and the direct correlation function

Tobias Kuna

(joint work with Dimitrios Tsagkarogiannis)

Particle systems interacting via translation invariant pair potentials are among the
most intractable point processes if one is outside the high temperature low activity
regime (HTLAR), cf. the talks of Christoph Hofer-Temmel and Daniel Ueltschi
for approximation theorems for recent progress. In particular, the liquid regime
is of paramount interest in chemistry and engineering, but the available theory is
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phenomenological. Chemists and physicists have derived a rather satisfactory de-
scription for the thermodynamics of simple liquids which is far outside the HTLAR
exploiting correlation functions and postulation relations between them based on
formal expansion in the density, cf. the talk of Leo Lue. A candidate for deriv-
ing such relations is the Ornstein-Zernike (OZ) equation, which, however, cannot
be solved as an equation as it contains two unknown quantities, namely the sec-
ond correlation function and the direct correlation function, cf. also the talk by
Günter Last. Hence one has to postulate a relation between them, that is a closure
scheme. A lot of effort has been made in this direction and various suggestions
have appeared. In [7], G. Stell relates the most popular closure schemes (such as
the Born-Green-Yvon (BGY) hierarchy, the Hyper-Netted Chain (HNC) and the
Percus-Yevick (PY) equation to graphical expansions and tries to motivate them
in this way. However, it is also acknowledged that “the manipulations involved in
obtaining these infinite sums ... have been carried out in a purely formal way and
we have not examined the important but difficult questions of convergence and the
legitimacy of the rearrangement of terms”.

Following techniques of Elena Pulvirenti and Dimitros Tsagkarogiannis, we de-
rived the convergence of the expansion in the density in the high temperature
regime for the direct and the truncated correlation function. As the density is the
natural parameter in the canonical ensemble, it is natural to start the expansion
from the canonical ensemble, cf. [3]. We show that the series is absolutely conver-
gent with respect to a norm in the argument. An indirect approach could be based
on [2] but would require a careful investigation of inversion theorems in infinite
dimensional convex analysis which may be more difficult than one may think at a
first glance, cf. [1].

The main difficulty for making this approximation scheme rigorous and even just
to establish the order of approximation in ρ is that the nth-term in the graphical

expansion is the sum of ecn
2

3n-dimensional integrals, one for each graph. To show
convergence, one has to bound this term by an expression of the order en lnn+c′n.
To achieve that, one has to show that a large group of graphs cancel exactly due
to a combinatorial relation among the graphs exploiting the tree structure. The
slightest violation of the cancelation may easily destroy any attempt to control the
expansion. Hence, as pointed out by the previously cited comment of Stell, it is a
priori far from clear, if a re-summation has any meaning even when it converges
but not absolutely converge in a suitable sense. Thus even deep in the gas phase
the convergence of this alternative expansion is far from clear and requires careful
estimations and exact combinatorial identities. We see in our treatment, that the
combinatorial structure slightly changes and in the case of the direct correlation
function we have to consider an integral norm in the distance variable in order to
restore the cancelation.

The convergence is essentially nothing else than a rigorous estimation of the
error terms of the expansion, that is the contribution of the graphs one neglects in
the expansion, either because one tries to approximate the correlation functions
by a few terms or one tries to use one of the closure schemes.
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A very intriguing question would be whether some expansions have a better
radius of convergence than others.
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The Ornstein-Zernike equation for stationary cluster processes

Günter Last

(joint work with Sebastian Ziesche)

In a seminal paper Ornstein and Zernike proposed in [7] to split the interaction
between molecules in a liquid into a direct and an indirect part. While the resulting
spatial convolution equation is of great importance in physics, it seems to be hardly
known among mathematicians. The aim of this talk is to bridge this gap and to
lay a rigorous mathematical foundation for further studies.

We consider a stationary point process of clusters in Rd. Let η denote the union
of all clusters. The direct connectedness function P (x) is the probability that the
origin and the point x ∈ Rd belong to the same cluster given that both points
belong to η, weighted by the pair-correlation function of η. We are interested in
the solution Q of the Ornstein-Zernike convolution equation

P = Q+ ρQ ∗ P,(1)

where ρ denotes the intensity (number density) of η. Let P0
η denote the Palm

probability measures of η (describing η under the condition that the origin 0
belongs to η; see e.g. [4]) and let C(0) be the cluster containing the origin. We
consider a subcritical cluster process, that is we assume that

E
0
η|C(0)| < ∞,(2)

where E0
η denotes expectation with respect to P0

η. We shall also assume that

P
0
η

( ∑

x∈C(0)

eiwx 6= 0

)
> 0, w ∈ R

d,(3)
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where wx is the Euclidean scalar product of x,w ∈ R
d and i is the imaginary unit.

This is a very weak regularity assumption on the cluster process.

Theorem 1. Under the assumptions (2) and (3) there is a unique integrable
solution Q of (1).

The proof of this theorem is based on Palm calculus for stationary point pro-
cesses (see e.g. [3]) and a classical theorem by Wiener on the inversion of Fourier
transforms

In the second part of the talk we discuss a subcritical random connection
model based on a stationary Poisson process and a symmetric connection function
ϕ : Rd → [0, 1]; see e.g. [6]. In this case both P and Q are analytic functions of
the intensity. Moreover, for small intensities, P and Q are given by closely related
diagram formulae. Such diagram formulae are quite popular in the physics liter-
ature (see e.g. [2]) and resemble formulae for the cluster expansion of statistical
physics with a pair potential − logϕ. More details can be found in [5].
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Approaches to modelling classical fluids

Leo Lue

An overview on modelling classical fluids is presented, starting with a review of
the grand partition function, its Legendre transform, and their relations to the
pair correlation function, the direct correlation function, and the Ornstein-Zernike
equation. The representation of these quantities as cluster expansions is reviewed
[1]. The development of approximate integral equations based on partial resum-
mations of the cluster expansion (e.g., hypernetted chain and Percus-Yevick equa-
tions), their accuracy, and limitations are discussed. These approaches are able to
accurately represent the structure and thermodynamics of simple fluids for a broad
range of systems and over a wide range of conditions, from gas to liquid densities;
they can even be used to describe the vapor-liquid phase transition. However,
these approximate theories do have several shortcomings, such as inconsistencies
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in the correlation functions and various thermodynamic properties due to these
approximations (e.g., the pressure calculated from the virial and compressibility
routes). Real solutions to the integral equations may vanish without any apparent
physical reason. The main difficulty with this approach, however, is that there
is no clear manner to improve the accuracy of the theories without the need for
computationally intensive calculations.

An alternate representation of the partition function as a functional integral is
introduced, where the focus of the theory is not on the particles themselves, but
rather on the interaction fields that they generate [2]. There are a broad range
of approximation schemes that can be used to evaluate the functional integral,
including cluster expansions and which have fairly clear physical interpretations.
An example is the mean field approximation for the development of the Poisson-
Boltzmann theory. Approximation schemes that start from the functional integral
representation generally work well for describing large wavelength phenomena,
however, when short wavelength phenomena become important, it tends to break-
down. The advantages and disadvantages of this approach, as compared to typical
“particle-based” approaches are discussed.

Ongoing work on developing an approximation method where these two per-
spectives are combined is briefly presented [3, 4]. This is motivated by analogy
to the Ewald summation method, where the convergence of a slowly converging
series is accelerated by splitting it into a series in position space and a series in
“Fourier” space. In this approach, the particle view is taken at short length scales
and plays the role of the real space summation of the series; the field view is taken
at large length scales and plays the role of the Fourier space summation. In this
manner, the strengths of both perspectives are combined, leading to a significant
improvement of the theory.

Finally, the practical importance of the Legendre transform in developing ap-
proximate theories for describing phase transitions (e.g., vapor-liquid or isotropic-
nematic [5, 6]) is emphasized. The presentation ends with a motivation of the need
to develop approximate theories for the second Legendre transform of the grand
potential (from the two-body potential to the two-body correlation function) in
order to describe the formation of physical clusters in isotropic systems, such as
micellar aggregates in aqueous surfactant solutions. This theoretical approach of-
fers a conceptual advantage over conventional approaches [7] in that the formation
of aggregates emerge naturally from the theory, rather than needing to presume
their presence.
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The Mayer series and the Penrose tree-graph identity

Aldo Procacci

(joint work with Sergio Yuhjtman)

This is an extended abstract of the paper [4].

1. Model and results

We consider a gas of classical pointwise identical particles enclosed in a box Λ ⊂ Rd

with volume |Λ|. We denotes by xi ∈ Λ the position vector of the ith particle and
|xi| is its Euclidean norm. Particles interact via a pair potential v(xi − xj) with
v(x) being a function from R

d to R∪{+∞}, such that v(x) = v(−x) and satisfying
the following two assumptions.
1. Stability. There exists C ≥ 0 such that, for all n ∈ N and all (x1, . . . , xn) ∈ Rdn,

(1)
∑

1≤i<j≤n

v(xi − xj) ≥ −nC

2. Temperedness. There exists r0 ≥ 0 such that
∫
|x|≥r0

|v(x)|dx < ∞.

The optimal constant in (1) is called stability constant of v and denoted ahead by
Bv.
The Grand Canonical partition function of the system is given by

ΞΛ(β, λ) = 1 +

∞∑

n=1

λn

n!

∫

Λ

dx1· · ·

∫

Λ

dxn e−β
∑

1≤i<j≤n v(xi−xj)

where β > 0 is the inverse temperature and λ > 0 is the activity of the system.
Thermodynamics is recovered via the formula

βPΛ(β, λ) =
1

|Λ|
ln ΞΛ(β, λ)

with PΛ(λ, β) being the thermodynamical pressure.
It is long known [1] that 1

|Λ| ln ΞΛ(β, λ) can be written (formally) in terms of a

power series of λ, the so called Mayer series. Namely,

(2)
1

|Λ|
ln ΞΛ(β, λ) = λ+

∞∑

n=2

Cn(β,Λ)λ
n
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with

(3) Cn(β,Λ) =
1

n!

1

|Λ|

∫

Λ

dx1· · ·

∫

Λ

dxn

∑

g∈Gn

∏

{i,j}∈Eg

[
e−βv(xi−xj) − 1

]

where Gn is the set of the connected graphs in [n] and Eg denotes the edge set of
g ∈ Gn.
Penrose [2] and Ruelle [5] established in 1963 a celebrated lower bound for the
convergence radius of the Mayer series of a classical gas of pointwise particles
interacting via a stable and tempered pair potential. Namely, the convergence
radius Rv of the Mayer series (2) admits, according to Penrose and Ruelle, the
following lower bound

Rv ≥ RPR
.
= e−(2βBv+1)[C(β)]−1

where Bv is the stability constant of the potential v and C(β) =
∫

Rd dx

∣

∣

∣
e−βv(x)

− 1
∣

∣

∣
.

Here we present the following result which is an improvement of Penrose and
Ruelle.

Theorem 1. Let v be a stable and tempered pair potential with stability constant
Bv. Then the n-order Mayer coefficient Cn(β,Λ) defined in (3) is bounded by

(4) |Cn(Λ, β)| ≤ eβBvnnn−2 [C̃(β)]n−1

n!

where C̃(β) =
∫
Rd dx

(
1− e−β|v(x)|

)
.

Therefore the new lower bound for the convergence radius Rv of the Mayer
series (2) is

Rv ≥ R∗ .
= e−(βBv+1)[C̃(β)]−1

Note that R∗/RPR = eβBv [C(β)/C̃(β)] ≥ 1 and the equality only holds for non-
negative potentials.

2. Sketch of the proof of Theorem 1

The proof of Theorem 1 starts from the so-called Penrose tree-graph identity [3].

Penrose identity. Let M : Tn → Gn be a map (partition scheme) such that
Gn =

⊎
τ∈Tn

[τ,M(τ)] where
⊎

means disjoint union and [τ,M(τ)] = {g ∈ Gn :

τ ⊆ g ⊆ M(τ)}, then, given v pair potential and (x1, ..., xn) ∈ Rdn, the following
identity holds.

∑

g∈Gn

∏

{i,j}∈Eg

[
e−βv(xi−xj) − 1

]
=

∑

τ∈Tn

e
−β

∑
{i,j}∈E

M(τ)\Eτ
v(xi−xj)

∏

{i,j}∈Eτ

(
e−βv(xi−xj) − 1

)
(5)

where Tn denotes the set of all trees with vertex set [n].
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Set now E+
τ = {{i, j} ∈ Eτ : v(xi − xj) ≥ 0}, then from (5) one immediately gets

∣∣∣∣∣∣

∑

g∈Gn

∏

{i,j}∈Eg

[
e−βv(xi−xj) − 1

]
∣∣∣∣∣∣
≤

∑

τ∈Tn

e

−β
∑

{i,j}∈E
M(τ)\E

+
τ

v(xi−xj) ∏

{i,j}∈Eτ

(
1− e−β|v(xi−xj)|

)
(6)

To get this inequality from (5) just observe that, for any τ ∈ Tn, it holds the
identity:∏

{i,j}∈Eτ
|e−v(xi−xj) − 1| = e

−
∑

{i,j}∈Eτ\E
+
τ

v(xi−xj) ∏
{i,j}∈Eτ

(1− e−|v(xi−xj)|) .

Definition of the partition scheme M . For fixed v and (x1, . . . , xn) ∈ Rdn, choose
a total order ≻ in the set of edges En of the complete graph Kn such that {i, j} ≻
{k, l} =⇒ v(xi − xj) ≥ v(xk − xl). Consider the map T : Gn → Tn that associates
to g its unique minimum spanning tree T (g), constructed by starting from ∅ and
keeping adding the lowest edge in g that does not create a cycle (this procedure
is known as Kruskal algorithm). Then the following lemma holds.

Lemma 2. Let M : Tn → Gn be the map that associates to τ ∈ Tn the graph
M(τ) ∈ Gn whose edges are the {i, j} ∈ En such that {i, j} � {k, l} for every
edge {k, l} ∈ Eτ belonging to the path from i to j through τ . Then T−1(τ) = {g ∈
Gn : τ ⊂ g ⊂ M(τ)} and therefore M is a partition scheme in Gn.

Proof. Let g ∈ T−1(τ). We have τ = T (g) ⊂ g. Now take {i, j} ∈ Eg, and let
e ∈ Eτ be any edge belonging to the path from i to j in τ . Consider the tree
τ ′ obtained from τ after replacing the edge e by {i, j}. By minimality of τ we
must have {i, j} ≻ e, i.e. {i, j} ∈ EM(τ), whence g ⊂ M(τ). Conversely, let τ ⊂
g ⊂ M(τ). We must show T (g) = τ . By contradiction, take {i, j} ∈ ET (g) \ Eτ .
Consider the path pτ ({i, j}) in τ joining i with j. Since T (g) ⊂ M(τ), {i, j} is
greater (w.r.t. ≻) than any edge in the path pτ ({i, j}). If we remove {i, j} from
T (g), the tree T (g) splits into two trees. Necessarily, one of the edges in the path
pτ ({i, j}) joins a vertex of one tree with a vertex of the other. Thus, by adding
this edge we get a new tree which contradicts the minimality of T (g). �

The advantage of this new partition scheme is manifestly clear in the following
key lemma.

Lemma 3. Let v be stable with stability constant Bv, and let τ ∈ Tn. Let
(x1, ..., xn) ∈ Rdn and let M be the partition scheme given in Lemma 2, then

(7)
∑

{i,j}∈EM(τ)\E
+
τ

v(xi − xj) ≥ −Bn

Proof. The set of edges Eτ \ E+
τ forms the forest {τ1, ..., τk}. Let us denote Vτs

the vertex set of the tree τs of the forest. Assume i ∈ Vτa , j ∈ Vτb . If a 6= b, the
path from i to j through τ involves an edge {k, l} in E+

τ . Thus, if in addition
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{i.j} ∈ EM(τ), we have {i, j} � {k, l} and therefore v(xi − xj) ≥ v(xk − xl) ≥ 0.
If a = b, the path from i to j through τ is contained in τa. Thus, if in addition
{i, j} /∈ EM(τ), there must be at least one edge {r, s} in that path such that
{i, j} ≺ {r, s} and therefore v(xi − xj) ≤ v(xr − xs) < 0. This allows to bound:

∑

{i,j}∈EM(τ)\E
+
τ

v(xi − xj) ≥
k∑

s=1

∑

{i,j}⊂Vτs

v(xi − xj) ≥
k∑

s=1

−|Vτs |Bv ≥ −nBv �

From Lemma 3, inserting (7) into (6), one gets the following decisive Lemma.

Lemma 4. Let v be a stable pair potential with stability constant Bv. Then, for
any n ≥ 2 and any (x1, . . . , xn) ∈ Rdn, the following inequality holds

(8) |
∑

g∈Gn

∏

{i,j}∈Eg

(e−βv(xi−xj) − 1)| ≤ eβBvn
∑

τ∈Tn

∏

{i,j}∈Eτ

(1− e−β|v(xi−xj)|)

Now Theorem 1 follows easily from Lemma 4 and the observation that, for any
τ ∈ Tn, it holds

(9)

∫

Λ

dx1· · ·

∫

Λ

dxn

∏

{i,j}∈Eτ

(
1− e−β|v(xi−xj)|

)
≤ |Λ|

[
C̃(β)

]n−1

Indeed, using first (8) and subsequently (9) we get

|Cn(Λ, β)| ≤
1

n!

1

|Λ|

∫

Λ

dx1· · ·

∫

Λ

dxn

∣∣∣
∑

g∈Gn

∏

{i,j}∈Eg

[
e−βv(xi−xj) − 1

] ∣∣∣ ≤

≤
eβBvn

n!

1

|Λ|

∑

τ∈Tn

∫

Λ

dx1· · ·

∫

Λ

dxn

∏

{i,j}∈Eτ

(
1− e−β|v(xi−xj)|

)
≤

≤
eβBvn

n!

[
C̃(β)

]n−1 ∑

τ∈Tn

1 =
eβBvn

n!

[
C̃(β)

]n−1

nn−2
�

which is the bound (4).
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Cluster expansion for the LMP - hard spheres model

Elena Pulvirenti

(joint work with Dimitrios Tsagkarogiannis)

In a paper by Lebowitz, Mazel and Presutti [1], the existence of a phase transition
in d ≥ 2 has been proven for a continuum model with long range Kac interaction.
In this talk a generalization of the LMP model is considered, where a small short
range repulsive interaction (for instance hard-core) is added to the already existing
Kac potential. We show that, choosing the radius of the hard-core small enough,
the behaviour of the LMP model persists in the region where the liquid-vapor
transition is present. In particular, using a perturbative argument, we show that
for β larger than some βc we still get two equilibrium measures with two different
values of the density, which are close to those for the LMP model. This is the
content of a paper in preparation [2].

Our proof will follow Pirogov-Sinai theory in the version proposed by Zahradńık,
[5]. The analysis requires first of all the notions of coarse-graining and contour
model in the continuum and subsequently, with an argument á la Peierls, one has
to prove that contours are improbable. In this scenario we are able to compute
the effective Hamiltonian for the coarse-grained system with a multi-canonical
constraint (given by the fixed density in each cell). This computation involves
an integration over the positions of the particles in each cell leading to a new
measure on the density at the cells. The computations which lead to the effective
Hamiltonian are in general very complicated, nevertheless due to the choice of the
interaction they can be carried out. The crucial point here is to show convergence
of a cluster expansion in the canonical ensemble with hard-core, Kac 2 and 4 body
interaction and contour weights.

In the first step we show the convergence of the cluster expansion for the hard
spheres gas in the canonical ensemble when the density is small. This is the content
of a paper written in collaboration with D. Tsagkarogiannis [3], in which we prove
the cluster expansion in the canonical ensemble in the more general case of stable
and tempered potentials. Another crucial step relies on the possibility to control
the difference between the finite-volume and infinite-volume free energy. This is
addressed in another paper written in collaboration with D. Tsagkarogiannis [4].

References

[1] Lebowitz, J. L., Mazel, A., Presutti, E. Liquid-vapor phase transitions for systems with
finite-range interactions. J. Statist. Phys. 94 (1999), no. 5-6, 955–1025.

[2] Pulvirenti, E., Tsagkarogiannis, D., A unified model for phase transition in the continuum,
manuscript in preparation.

[3] Pulvirenti, E., Tsagkarogiannis, D., Cluster expansion in the canonical ensemble, Comm.
Math. Phys., 2012, Vol. 316, Issue 2, pp 289-306.

[4] Pulvirenti, E., Tsagkarogiannis, D., Finite volume corrections and decay of correlations in
the canonical ensemble, J. Statist. Phys., 2015, 159 , 1017-1039

[5] Zahradnik, M., An Alternate Version of Pirogov-Sinai Theory, Comm. Math. Phys. 93,
559-581 (1984).



Cluster Expansions: From Combinatorics to Analysis through Probability 443

An improved tree-graph bound

Daniel Ueltschi

The day before my talk, Aldo Procacci told us about the beautiful new bound
for the convergence of the cluster expansion, which he obtained recently with S.
Yuhjtman [5]. This suggested a way to improve the tree-graph bounds stated in [3].
Additional comments by David Brydges and Tyler Helmuth during Procacci’s talk
were illuminating; they noticed in particular the relevance of Kruskal’s algorithm.

The goals of my talk were to turn the result of [5] as an explicit tree-graph
bound, and to provide a simplified, streamlined proof. It turns out that the result
is immediately useful for the work of another participant, Martin Hanke [2] (who
suggested the extension to complex numbers).

The difficulty with the convergence of cluster expansions is to estimate a sum
over connected graphs of arbitrary sizes. One needs to use cancellations in order
to make it convergent. It turns out that the sum over connected graphs can be
reduced to a sum over spanning trees; this sum is considerably smaller.

Here, we state the result with minimal setting. Cn and Tn denote the sets of
connected graphs and of trees with n vertices.

Theorem 1. Let ui,j ∈ R and bi ∈ [0,∞), 1 ≤ i, j ≤ n, be numbers such that for
all subsets I ⊂ {1, . . . , n}, we have the “stability condition”

(1)
∑

i,j∈I,i<j

ui,j ≥ −
∑

i∈I

bi.

Then

(2)
∣∣∣
∑

g∈Cn

∏

ij∈g

(
e−ui,j − 1

)∣∣∣ ≤ e
∑n

i=1 bi
∑

t∈Tn

∏

ij∈t

(
1− e−|ui,j |

)
.

A similar theorem can be found in [3] with two different upper bounds. The
first one follows Ruelle’s algebraic method. The second one is motivated by the
tree-graph identity of Brydges and Federbush [1], combined with an extension of
Procacci [4]. The two bounds in [3] are strictly larger than the one above, so this
constitutes an improvement indeed.

In the case of complex numbers, ui,j ∈ C, the stability assumption (1) is re-
placed by

∑
Re ui,j ≥ −

∑
i∈I bi. One can generalise the tree-graph bound as

(3)
∣∣∣
∑

g∈Cn

∏

ij∈g

(
e−ui,j − 1

)∣∣∣ ≤ e
∑n

i=1 bi
∑

t∈Tn

∏

ij∈t

∣∣1− e−|Re ui,j |+i Im ui,j
∣∣.

Notice that the last term is smaller than |1 − e−ui,j |. We now give a proof of
Theorem 1.

Recall that a partition scheme is given by a map T : Cn → Tn with the property
that, for each t ∈ Tn, there corresponds a set of edges E(t) such that

(4) T−1(t) =
{
g ∈ Cn : t ⊂ g ⊂ t ∪ E(t)

}
.

(We suppose that E(t) ∩ t = ∅.)
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Kruskal’s algorithm provides just such a partition scheme. One is given an
arbitrary order on all edges of the complete graph of n vertices. Given g ∈ Cn, we
define a spanning tree by adding edges in increasing order, provided the new edge
does not form a loop (if it does, we ignore the new edge). For t ∈ Tn, the set E(t)
contains exactly all edges ij /∈ t such that ij is bigger than all the edges in the
path from i to j in t. This characterisation of the set E(t) is important.

Given (ui,j), we choose an order on edges such that ui,j is nondecreasing. Using
Hamlet’s lemma (to be or not to be, this is the expansion), we have

∑

g∈Cn

∏

ij∈g

(
e−ui,j − 1

)
=

∑

t∈Tn

∏

ij∈t

(
e−ui,j − 1

) ∏

ij∈E(t)

e−ui,j ,

∣∣∣
∣∣∣ ≤

∑

t∈Tn

∏

ij∈t

∣∣ e−ui,j − 1
∣∣ ∏

ij∈E(t)

e−ui,j .
(5)

A key trick in [5] is to use the identity

(6)
∣∣ e−ui,j − 1

∣∣ = e(ui,j)−
(
1− e−|ui,j |

)
.

The upper bound in Eq. (5) becomes
(7)∏

ij∈t

∣∣ e−ui,j − 1
∣∣ ∏

ij∈E(t)

e−ui,j =
∏

ij∈t

(
1− e−|ui,j |

)
exp

{
−

∑

ij∈t−

ui,j −
∑

ij∈E(t)

ui,j

}
.

Here, t− denotes the set of edges of t where ui,j < 0. This subgraph is a forest and
is illustrated in Fig. 1. Let us denote the forest {t1, . . . , tk}, with tm, m = 1, . . . , k,

Figure 1. The tree t with bold edges when ui,j < 0 and light
edges when ui,j ≥ 0. Edges of E(t) are shown with dashed lines.

being the subtrees. With K(tm) the complete graph on the vertices of tm, we have
the lower bound (which we justify below)

(8)
∑

ij∈t−

ui,j +
∑

ij∈E(t)

ui,j ≥
k∑

m=1

∑

ij∈K(tm)

ui,j ;
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this is larger than −
∑n

i=1 bi by the stability condition. The claim of the theorem
follows immediately.

The lower bound (8) is the clever observation of [5]. It follows quite easily from
the partition scheme of Kruskal’s algorithm, because

• If ij is an edge between distinct subtrees, we necessarily have ui,j ≥ 0,
since it is bigger than at least one nonnegative edge; we neglect them in
the lower bound.

• All positive edges within K(tm) belong to E(t); indeed, they are bigger
than all edges in the path between i and j, which are all negative. Thus
no extra positive ui,j have been added in the right side.

• We have perhaps added a few negative ui,j in the right side, which can
only make it smaller.

This is illustrated in Fig. 1; this completes the proof of Theorem 1.
In the case of complex numbers, we can order the edges according to Re ui,j ;

we use | e−ui,j − 1| = e−Re ui,j |1− eRe ui,j+i Im ui,j | for ij ∈ t−; then we prove the
inequality (8) with Re ui,j instead of ui,j, and we get (3).
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Toward Onsager density functional via Penrose’s tree identity

Epifanio G. Virga

(joint work with P. Palffy-Muhoray, X. Zheng)

Onsager’s celebrated theory for liquid crystals, put forward between the years 1942
and 1949 [8, 9], showed that purely steric, repulsive interactions between molecules
can explain the ordering transition that underpins the formation of the nematic
phase. Often Onsager’s theory is considered as the first successful instance of
modern density functional theory. It was however a theory rooted in its time, in
the theory that Mayer had proposed in the late 1930’s with the aim of explaining
condensation of real gases [3, 5, 6, 2, 4, 12].

Despite its undeniable success, Onsager’s theory lacks rigour at its onset, as no
convincing justification is given for the truncation at the first order in the number
density ρ0 of the Helmholtz free energy of a system of slender cylindrical rods in
solution [15]. Not much justice is done either to it by the cursory accounts that
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most statistical mechanics textbooks give of the same approximation for Mayer’s
expansion (see, for example, pp. 224–225 of [7]1).

Onsager’s theory of lyotropic liquid crystals is based on the following form of
the Helmholtz free energy:

(1) FO[̺] :=

∫

S2

̺(ω) ln ̺(ω)dω +
1

2
ρ0

∫

S2×S2

β1(ω, ω
′)̺(ω)̺(ω′)dωdω′,

where ̺ : S2 → R+, which is subject to the constraint

(2)

∫

S2

̺(ω)dω = 1,

represents the probability distribution of rods with orientation ω ∈ S2, and
β1(ω, ω

′) is the excluded volume of two rods with orientations ω and ω′.
The offered justification of (1) requires embracing the ingenious multi-spiecies

argument put forward by Onsager [9], an argument that regards particles dis-
tributed in their orientation as if they were belonging to different species [14]. As
questionable as this argument may be, the first-principle foundation of(1) relies
on proving under what assumptions the free energy FN of a system of N particles
in the canonical ensemble can be given the following form,

(3) lim
N→∞

FN

N
= kT

(
ln ρ0 − 1 +

1

2
ρ0β1

)
,

in the thermodynamic limit where the number density ρ0 = N
V is kept fixed.

It is proved in [10] that, under certain circumstances, (3) follows from the
general expression for FN ,

(4) FN = −kT ln

(
1

N !
GN

)
,

where the total number of states GN is given by the intergral

(5) GN =

∫

BN

∑

G∈GN

∏

(i,j)∈G

Φijdq1 . . . dqN ,

B is the region in space (of volume V ) occupied by the particles, Φij is the Mayer
function associated with the hard-core repulsion potential between particles with
coordinates qi and qj , GN is the collection of all graphs on N vertices, of which
(i, j) denotes an edge [14]. If in (5) only the forests of trees obtained through
Penroses’s partition scheme [11] are retained, which amounts to disregard all more
highly connected cyclic graphs, a result of Britikov [1] and an estimate of Temme

1There it is suggested to expand the exponential in the grand canonical partition function
Ξ = epV/kT (where p is the pressure, V is the volume, T is the temperature, and k is Boltzmann
constant), failing to realise that the exponent is expected to be proportional to the number of
particles N , which is very large.
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[13] lead us to (3). However, the function that expressesGN under this assumption
of limited connectivity is positive only if ρ0 satisfies the inequality

(6) ρ0β1 < W

(
1

e

)
.
= 0.2785,

where W is the Lambert function. This inequality makes quantitative the claim
often made in the literature on density functional theory [15] that Onsager’s theory
is only suitable in the dilute limit.

When (6) is violated, more highly connected graphs (all of which including
cycles) must be accounted for in (5) to compute correctly GN . How to achieve
this is at the moment unclear. However, there is no reason why adding more
connected graphs in (5) should lead to higher power corrections in ρ0 to (3), as
nowhere was in our development the assumption that the free energy per particle
should be a power series in ρ0. Devising an estimate of (5) based on cycles might
deliver a form of FO better suited than (1) to tackle denser systems.

Acknowledgements. This is joint work with P. Palffy-Mohoray andX. Zheng.

Most of this work was done while I was visiting the Oxford Centre for Nonlinear
PDE at the University of Oxford, whose kind hospitality is gratefully acknowl-
edged.
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Statistical physics of exponential random graphs

Mei Yin

(joint work with Charles Radin)

Exponential random graphs form one of the most prominent class of probability
models for networks, but also one for which the issue of lack of insight into their
fundamental characteristics is particularly pressing. Their popularity lies in the
fact that they capture a wide variety of common network tendencies by represent-
ing a complex global structure through a set of tractable local features. We aim at
establishing a quantitative theory of “phase transitions” in large exponential ran-
dom graphs. The main techniques that we use are variants of statistical physics,
such as cluster expansion methods and large deviation techniques, but the exciting
new theory of graph limits [6], which has rich ties to many parts of mathematics
and beyond, also plays an important role in the interdisciplinary inquiry.

In the statistical physics literature, phase transition is often associated with loss
of analyticity in the limiting normalization constant (free energy), which gives rise
to discontinuities in the observed statistics [9, 10]. In the vicinity of a phase transi-
tion, even a tiny change in some local characteristic can result in a dramatic change
of the entire system. An explicit criterion for such an asymptotic phase transition
was given in Chatterjee and Diaconis [3], and has since then led to exponentially
growing interest in exponential models and their variations [1, 2, 4, 7, 8]. In “A
cluster expansion approach to exponential random graph models” (2012) [14], we
viewed exponential random graphs from an Ising perspective, making the model
treatable by cluster expansion techniques from statistical physics. We showed
that any k-parameter exponential random graph may alternatively be viewed as
a lattice gas system with a finite Banach space norm and derived a convergent
power series expansion for the limiting normalization constant in the case of small
parameters. In “Critical phenomena in exponential random graphs” (2013) [15],
we derived the full phase diagram for a large family of 3-parameter exponential
random graph models with attraction through a detailed analysis of a maximiza-
tion problem for the normalization constant. This extends an earlier work “Phase
transitions in exponential random graphs” (with Charles Radin, 2013) [11] which
dealt with the 2-parameter framework and may be further extended to a general
k-parameter setting. The parameter space comprises a single phase with first or-
der phase transitions across one or more hypersurfaces and second order phase
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transitions along their boundaries. The transition lies within the replica symmet-
ric phase and is between graphs of similar characters but different densities and
corresponds to the gas/liquid transition in equilibrium materials.

Despite their flexibility, conventionally used exponential random graphs admit-
tedly have one shortcoming. They cannot directly model weighted networks as the
underlying probability space consists of simple graphs only, i.e., edges are either
present or absent. Since many substantively important networks are weighted,
this limitation is especially problematic. The need to enrich the existing expo-
nential framework is thus justified, and several generalizations have been pro-
posed [5, 12, 13]. An alternative interpretation for simple graphs is such that the
edge weights are iid and satisfy a Bernoulli distribution. In “Phase transitions in
edge-weighted exponential random graphs” (2016) [16], we extended the existing
exponential framework for simple graphs by proposing a generic common distri-
bution for the edge weights. The general results regarding the associated phase
transitions and critical phenomena were employed to get concrete answers in ex-
ponential random graph models where the edge weights are uniformly distributed.
Currently, my students (Danielle Larcomb and Ryan DeMuse) and I are mak-
ing progress towards recognizing the essential properties related to universality in
generic edge-weighted exponential random graphs. Though the near degenerate
graph structures depend on the specific form of the edge-weights distribution, sur-
prisingly (or not), we found that the asymptotics in the dual space constructed
via Legendre duality remain the same.
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Mathematics Institute
Zeeman Building
University of Warwick
Coventry CV4 7AL
UNITED KINGDOM

Dr. Tobias Kuna

Department of Mathematics
University of Reading
Whiteknights
Reading RG6 6AX
UNITED KINGDOM

Prof. Dr. Günter Last

Institut für Stochastik
Karlsruher Institut für Technologie
(KIT)
Englerstrasse 2
76131 Karlsruhe
GERMANY

Dr. Leo Lue

Chemical and Process Engineering
University of Strathclyde
James Weir Building
75 Montrose Street
Glasgow G1 1XJ
UNITED KINGDOM



452 Oberwolfach Report 8/2017

Prof. Dr. Aldo Procacci

Departamento de Matemática
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