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Introduction by the Organisers

The field of Quantitative Finance is not owned by mathematics: statistics, com-
puter science, economics and even physics (econophysics) all have contributed and
continue to contribute to this field. That said, there is a rich community within
mathematics that is devoted to further applications of mathematics to finance.
Early on, many efforts went into a proper understanding of the absence of arbi-
trage in models. The ultimate result in this direction-the fundamental theorem of
asset pricing (FTAP) in its most general form due to Delbaen-Schachermayer [7, 8]-
is a deep result rooted both in functional analysis and in stochastic analysis. It
has been said ironically that depending where one stands this is either the most
or least important theorem in the field, and indeed, there are many problems in
practice where general results on the absence of arbitrage yield little insight into a
concrete problem. Many of the investigations in recent years have been inspired-in
more or less direct ways-from such concrete problems. Some, such as optimal order
execution (optimal liquidation of large positions under market impact), are closely
related to the financial crisis. Others stem from the desire to extract model-free
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information from market data only (such as variance swap theory). Again others
aim to understand the impact of model-uncertainty in applications. We could not
possibly attempt to tackle all directions of ongoing research in this meeting, but
we believe it is part of the beauty of this subject that some of the most impor-
tant recent developments in the field are inspired quite directly by problems from
industry. The workshop focused on the following such topics and problems:

• For some time, fractional Brownian motion was considered an object of
limited interest in Finance. In essence, this is due to the failure of fBm (with
H 6= 1/2) to be a semi-martingale, thereby allowing arbitrage and hence making
it a poor model for a traded asset. However, recent work by Gatheral, Jaisson and
Rosenbaum [14] exhibits strong evidence that volatility is ‘rough’ (an estimate
for SPX volatility actually gives H ≈ 0.14, which translates to ‘quite rough’, also
note that there are no arbitrage problems for volatility is not a traded asset). Such
volatility regimes also turn out to be most relevant for option pricing, as they can
resolve the long-standing problem of creating (extreme) volatility smile skews, as
seen in markets, impossible to obtain with classical (finite factor Markovian) sto-
chastic volatility models without jumps (in fact, this explosion of the short-time
smile was proved earlier in [1]). We like to see fractional Brownian motion as an
infinite-dimensional Markovian object. Having said that, it is clear that formu-
las and theories developed with great finesse for finite factor Markovian models
should be carried over to this infinite dimensional setting: geometry, analysis and
numerics of infinite dimensional models with components involving, e.g., fractional
Brownian motions or, more generally, rough paths.

• In interest rate markets, in early 2000, a stochastic volatility model (SABR,
for ‘stochastic αβρ’) was proposed and quickly became industry standard for its
seemingly miraculous ‘SABR formula’, an explicit expression for implied volatility
bypassing the need for time-consuming Monte Carlo routines. Behind the miracle
are geometric properties of the model and large deviations theory of stochastic
analysis (in the spirit of Varadhan, Molchanov and many others). The decisive link
to implied volatility asymptotics is due to P. Hagan, A. Lesniewski et al. [17, 18].
Many others have explored this and related topics further, in 2014 Comm. Pure
Appl. Math. alone published three on that matter [4, 9, 10]. Still many (functional)
analytic properties of the SABR model or its relatives like (weak) second order
numerical schemes, or FEM formulations, are unclear. Some discussions about
these gaps were led in the meeting, by several leading specialists on that topic [2,
3, 11, 16].

• Non-linear PDE theory made its decisive appearance in Finance. The bril-
liant monograph [15] written by practitioners J. Guyon and P. Henry-Labordère
collects a number of ideas useful in practice (typically in form of numerical al-
gorithms), and open many mathematical questions. (A nice example is given by
the McKean-Vlasov based calibration algorithm, the practically important propa-
gation of chaos is far from clear and numerical simulations suggest ‘bad’ regimes
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in which propagation of chaos actually fails). Here many aspects are wide open:
convergence proofs and rates of convergence including complexity estimates.

• The role of information in stochastic models of Finance has been treated
traditionally by filtrations of σ-algebras. From a practical point of view it is
clear that there is a gap between the instantaneous information arriving through
price changes or news and the information entering actual trading or investment
strategies, i.e. one should split the market’s filtration and the trader’s filtration. To
consider this delay or, more generally, information gap, as a fundamental property
of markets, i.e. to develop a theory where trading decision are made with respect to
smaller filtrations whereas models are written on a larger filtration, in other words
a theory of Bayesian Finance, has only been considered in special cases. Actual
models, where such structures are reflected, could include recently introduced
uncertain volatility models [6]. Remarkably such models behave extremely well
from the point of view of calibration, but have never been considered systematically
from a fundamental point of view. In particular the corresponding FTAP for
Bayesian Finance and its connection to robust Finance is unclear.

• In recent years, particular attention has been given to model-free Finance,
where, instead of relying on a specific (class of) model(s), data provides the es-
sential structure of the pricing framework, in the form of lower and upper bounds
for option prices. Optimal transport tools therefore received a warm welcome in
quantitative finance, allowing us to free ourselves from the sometimes too narrow
applicability of models.

These fundamental topics were investigated in detail in the 42 talks (of varied
lengths) given by some of the participants during the workshop. As the above re-
search topics illustrate, 20 years after settling the fundamental theorems, the field
is sparkling with new ideas from all directions of applied mathematics and beyond.

Peter Friz, Antoine Jacquier, Josef Teichmann
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[11] L. Döring, B. Horvath and J. Teichmann. Functional analytic (ir-)regularity properties of
SABR-type processes. Forthcoming in Internat. Journal Theor. Appl. Fin., 2017.

[12] P. Friz, J. Gatheral, A. Gulisashvili, A. Jacquier and J. Teichmann. Large deviations and
asymptotic methods in finance. Springer Proceedings in Mathematics & Statistics, 110, 2015.

[13] J. Gatheral. The Volatility Surface: A Practitioner’s Guide. John Wiley & Sons, 2006.
[14] J. Gatheral, T. Jaisson and M. Rosenbaum. Volatility is rough. arXiv:1410.3394, 2014.
[15] J. Guyon and P. Henry-Labordère. Nonlinear Option Pricing. CRC Press, 2013.
[16] A. Gulisashvili, B. Horvath and A. Jacquier. On the probability of hitting the boundary of

a Brownian motion on the SABR plane. Electronic Comm. Prob., 21(75): 1-13, 2016.
[17] P. Hagan, D. Kumar, A. Lesniewski and D. Woodward. Managing smile risk. Wilmott Mag-

azine, September issue: 84-108, 2002.
[18] P. Hagan, A. Lesniewski and D. Woodward. Probability distribution in the SABR model

of stochastic volatility. Large Deviations and Asymptotic Methods in Finance (Editors: P.
Friz, J. Gatheral, A. Gulisashvili, A. Jacquier, J. Teichmann), Springer Proceedings in
Mathematics and Statistics, 110, 2015.

Acknowledgements: The MFO and the workshop organizers would like to thank
the National Science Foundation for supporting the participation of junior re-
searchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach
Fellows”. Moreover, the MFO and the workshop organizers would like to thank the
Simons Foundation for supporting Johannes Muhle-Karbe in the “Simons Visiting
Professors” program at the MFO.



Mathematics of Quantitative Finance 687

Workshop: Mathematics of Quantitative Finance

Table of Contents

Jim Gatheral
Rough volatility: An overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

Matthew Lorig (joint with Peter Carr, Roger Lee)
Robust replication of barrier-style claims on price and volatility . . . . . . . 692
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Abstracts

Rough volatility: An overview

Jim Gatheral

The scaling properties of historical volatility time series, which now appear to
be universal, motivate the modelling of volatility as the exponential of fractional
Brownian motion. This model can be understood as reflecting the high endogene-
ity of liquid markets and the long memory of order flow. The Rough Bergomi
model which is the simplest corresponding model under the pricing measure Q
fits the implied volatility surface remarkably well. Recent advances include the
computation of an explicit characteristic function for a natural fractional general-
ization of the Heston model and the construction of an efficient simulation scheme,
the so-called Hybrid BSS scheme.

Calibration of rough volatility models is still work in progress. The current
focus is on a specific model-free quantity, stochasticity, which is straightforward to
compute for each expiration both in the model and in principle from the volatility
smile. It is an open question whether or not the volatility smile can be extrapolated
from visible strikes robustly enough to permit accurate resolution of stochasticity
from market data.
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Robust replication of barrier-style claims on price and volatility

Matthew Lorig

(joint work with Peter Carr, Roger Lee)

We consider a frictionless market (i.e., no transaction costs) and fix an arbitrary
but finite time horizon T < ∞. For simplicity, we assume zero interest rates, no
arbitrage, and take as given an equivalent martingale measure (EMM) P chosen
by the market on a complete filtered probability space (Ω,F,F,P). The filtration
F = (Ft)0≤t≤T represents the history of the market. All stochastic processes
defined below live on this probability space and all expectations are with respect
to P unless otherwise stated.

Let B = (Bt)0≤t≤T represent the value of a zero-coupon bond maturing at
time T . As the risk-free rate of interest is zero by assumption, we have Bt = 1 for
all t ∈ [0, T ]. Let S = (St)0≤t≤T represent the value of a risky asset. We assume S
is strictly positive and has continuous sample paths. To rule out arbitrage, it is
well-known that the asset S must be a martingale under the pricing measure P.
As such, there exists a non-negative, F-adapted stochastic process σ = (σt)0≤t≤T
such that

dSt = σtStdWt, S0 > 0,

where W is a Brownian motion with respect to the pricing measure P and the
filtration F. Henceforth, the process σ will be referred to as the volatility process.
We assume that the volatility process σ is right-continuous and F-adapted, that
it evolves independently of W and that it satisfies

(1)

∫ T

0

σ2
t dt < c <∞,

for some arbitrarily large but finite constant c > 0. Note that σ may experi-
ence jumps and is not required to be Markovian. It will be convent to introduce
X = (Xt)0≤t≤T , the log price process Xt = logSt. As S is strictly positive by
assumption, the process X is well-defined and finite for all t ∈ [0, T ]. A simple
application of Itô’s Lemma yields

(2) dXt = −1

2
σ2
t dt+ σtdWt, X0 = logS0.

Note that a claim on (the path of) S can always be expressed as a claim on
(the path of) X = logS. For any F-stopping time τ , we define its T -bounded
counterpart

τ∗ := τ ∧ T.
Note that, by construction, τ∗ is an F-stopping time. Let Cτ∗(K) denote the
time τ∗ price of a European call written on S with maturity date T and strike
price K > 0, and let Pτ∗(K) denote the price of a European put written on S with
the same strike and maturity. By no-arbitrage arguments, we have

(3)
Cτ∗(K) = Eτ∗(ST −K)+ = Eτ∗(eXT −K)+,

Pτ∗(K) = Eτ∗(K − ST )+ = Eτ∗(K − eXT )+,
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where we have introduced the shorthand notation Eτ∗ · := E[ · |Fτ∗ ]. For conve-
nience, we will sometimes refer to a European call or put written on X rather
than S with the understanding that these are equivalent. We assume that a Eu-
ropean call or put with maturity T trades at every strike K ∈ (0,∞).

In this work, we consider claims written on the path of X in four varieties

European-style : ϕ(XT , 〈X〉T ),

knock-out : 1{τ>T}ϕ(XT , 〈X〉T ),

knock-in : 1{τ≤T}ϕ(XT −Xτ∗ , 〈X〉T − 〈X〉τ∗),

rebate : 1{τ ≤ T }ϕ(〈X〉τ∗),

where τ is the first exit time of some interval I:

τ = inf {t ≥ 0 : Xt /∈ I} .
We use the phrase ‘European-style’ to indicate that a claim payoff depends only
on the terminal values XT and 〈X〉T and not on any barrier event (e.g., knock-in
or knock-out).

The main result of this paper is to show that , under certain growth and reg-
ularity conditions on ϕ, each of path-dependent claims considered above can be
replicated by self-financing portfolio consisting of bonds, the underlying stock, and
a strip of European puts and calls. In particular, we give an explicit construction
of this portfolio.

The main open question is how to relax the assumption that the volatility pro-
cess σ is independent of the Brownian motionW that drives the stock price process.
Relaxing this assumption would enable us to consider models for S that induce
an asymmetric implied volatility smile (which is what is observed empirically in
equity markets).

On the link between the Malliavin derivative operator and the implied
volatility behaviour: Can we expect the Malliavin calculus to be useful

in applications?

Elisa Alòs

(joint work with Jorge A. León, Josep Vives)

In this talk, we will take a walk through some recent applications of Malliavin
calculus.We will see examples where the Malliavin calculus techniques have been
used to solve real problems. We will discuss about how, when and why Malliavin
calculus can become a useful tool.

More precisely, we use the Malliavin calculus techniques to obtain an expression
for the short-time behaviour of the at-the-money implied volatility skew in term
of the Malliavin derivative of the volatility process. Our techniques do not need
the volatility to be neither a diffusion, nor a Markov process. The obtained results
give us a useful tool in modelling problems. In particular, they prove that sto-
chastic volatility models based on the fractional Brownian motion (fBm) can be an
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interesting process to describe the short-time behaviour of the implied volatility
surface.

It is well-known that classical stochastic volatility diffusion models, where the
volatility also follows a diffusion process, capture some important features of the
implied volatility. For example, its variation with respect to the strike price,
described graphically as a smile or skew [6]. But the observed implied volatility
exhibits dependence not only on the strike price, but also on time to maturity (term
structure). Unfortunately, the term structure is not easily explained by classical
stochastic volatility models. For instance, a popular rule-of-thumb for the short-
time behaviour with respect to time to maturity, based on empirical observations,

states that the skew slope is approximately O((T − t)−
1
2 ), while the rate for these

stochastic volatility models is O(1) (see [3, 4, 5]). Note that in these models, for
reasonable coefficients in their dynamics, volatility behaves almost as a constant,
on a very short-time scale. Consequently, returns are roughly normally distributed
and the skew becomes quite flat. On the other hand, Fouque, Papanicolaou, Sircar
and Solna [2] have introduced continuous diffusion models again to describe the
empirical short-time skew. Their idea is to include suitable coefficients that depend
on the time till the next maturity date and that guarantee the variability is large
enough near the maturity time.

The main goal of this work is to provide a method based on the techniques
of the Malliavin calculus to estimate the rate of the short-dated behaviour of the
implied volatility stochastic volatility models, where the volatility does not need
to be neither a diffusion nor a Markov process. It is well-known that the Malliavin
calculus is a powerful tool to deal with anticipating processes. Because of the
Clark-Ocone formula, one should expect the properties of the implied volatility
to be able to be ’translated’ in terms of the Malliavin derivative of the implied
volatility. Moreover, as the future volatility is not adapted, this theory becomes
a natural tool to analyse this problem. Hence, now it is possible to deal with
a volatility in a class that includes either fractional processes with parameter in
(0, 1), Markov processes, or processes with time-varying coefficients, among others.

In this talk we will consider the following model for the log-price of a stock
under a risk-neutral probability measure Q:

(1) Xt = x+ (r − λk)t− 1

2

∫ t

0

σ2
sds+

∫ t

0

σs(ρdWs +
√

1 − ρ2dBs), t ∈ [0, T ].

Here, x is the current log-price, r is the instantaneous interest rate, W and B
are independent standard Brownian motions, ρ ∈ (−1, 1). The volatility process σ
is a square-integrable stochastic process with right-continuous trajectories and
adapted to the filtration generated by W . Moreover, we denote

• vt :=
(

Yt

T−t

) 1
2

, with Yt :=
∫ T
t σ2

sds, denotes the future average volatility.

• For any τ > 0, p(x, τ) will denote the centered Gaussian kernel with
variance τ2. If τ = 1 we will write p(x).
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• BS(t, x, σ) will denote the price of an European call option under the clas-
sical Black-Scholes model with constant volatility σ, current log stock price
x, time to maturity T − t, strike price K and interest rate r. Remember
that in this case:

BS(t, x, σ) = exN(d+) −Ke−r(T−t)N(d−),

where N denotes the cumulative probability function of the standard nor-
mal law and

d± :=
x− x∗t
σ
√
T − t

± σ

2

√
T − t,

with x∗t := lnK − r(T − t).
• LBS (σ) will denote the Black-Scholes differential operator, in the log vari-

able, with volatility σ :

LBS(σ) = ∂t +
1

2
σ2∂2xx + (r − 1

2
σ2)∂x − r·

It is well known that LBS(σ)BS(·, ·, σ) = 0.
• G(t, x, σ) := (∂2xx − ∂x)BS(t, x, σ).

The anticipating Itô’s formula allow us to prove the following extension of the
Hull and White formula that gives the price of an European call option as a sum
of the price when the model has no correlation plus one term that describes the
impact of the correlation on option prices.

Theorem 1. Assume the model (1) holds with σ ∈ L1,2. Then it follows that

Vt = E(BS(t,Xt, vt)|Ft) +
ρ

2
E(

∫ T

t

e−r(s−t)∂xG(s,Xs, vs)Λsds|Ft),

where Λs := (
∫ T
s
Dsσ

2
rdr)σs.

The above theorem is the key that, with some limit arguments, allow us to
prove the following result.

Theorem 2. Consider the model (1). Then under some regularity conditions:

(1) Assume that there exists a Ft-measurable random variable D+
t σt such that,

for every t > 0,

sup
s,r∈[t,T ]

∣∣E
((
Dsσr −D+

t σt
)∣∣Ft

)∣∣→ 0,

a.s. as T → t. Then

lim
T→t

∂It
∂Xt

(x∗t ) = − 1

σt

(
λk + ρ

D+
t σt
2

)
.

(2) Assume that there exists a Ft-measurable random variable Lδ,+t σt such
that, for every t > 0,

1

(T − t)2+δ

∫ T

t

∫ T

s

E (Dsσr| Ft) drds − Lδ,+t σt → 0,



696 Oberwolfach Report 13/2017

a.s. as T → t. Then

lim
T→t

(T − t)−δ
∂It
∂Xt

(x∗t ) = − ρ

σt
Lδ,+t σt.

Notice that the above result implies that, for models based on the fBm, the
short-time limit of the at-the-money skew tends to infinity, as observed in real
market data.
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Consistency of option prices under bid-ask spreads

Stefan Gerhold

(joint work with Ismail Cetin Gülüm)

Calibrating martingales to given option prices is a central topic of mathematical
finance, and it is thus a natural question which sets of option prices admit such
a fit, and which do not. Note that we are not interested in approximate model
calibration, but in the consistency of option prices, and thus in arbitrage-free
models that fit the given prices exactly. Put differently, we want to detect arbitrage
in given prices. We do not consider continuous call price surfaces, but restrict to the
(practically more relevant) case of finitely many strikes and maturities. Therefore,
consider a financial asset with finitely many European call options written on it.
In a frictionless setting, the consistency problem is well understood: Carr and
Madan [1] assume that interest rates, dividends and bid-ask spreads are zero, and
derive necessary and sufficient conditions for the existence of arbitrage free models.
Essentially, the given call prices must not admit calendar or butterfly arbitrage.
Davis and Hobson [3] include interest rates and dividends and give similar results.
They also describe explicit arbitrage strategies, whenever arbitrage exists.

As with virtually any result in mathematical finance, robustness with respect
to market frictions is an important issue in assessing the practical appeal of these
findings. Somewhat surprisingly, not much seems to be known about the consis-
tency problem in this direction, the single exception being a paper by Cousot [2].
He allows positive bid-ask spreads on the options, but not on the underlying, and
finds conditions on the prices that determine the existence of an arbitrage-free
model explaining them.
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The novelty of our work is that we allow a bid-ask spread on the underlying.
Without any further assumptions on the size of this spread, it turns out that there
is no connection between the quoted price of the underlying and those of the calls:
Any strategy trying to exploit unreasonable prices can be made impossible by a
sufficiently large bid-ask spread on the underlying. In this respect, the problem
is not robust w.r.t. the introduction of a spread on the underlying. However, an
arbitrarily large spread seems questionable, given that spreads are usually tight
for liquid underlyings. We thus enunciate that the appropriate question is not
‘when are the given prices consistent’, but rather ‘how large a bid-ask spread on
the underlying is needed to explain them?’ We thus put a bound ǫ ≥ 0 on the
(discounted) spread of the underlying and want to determine the smallest such ǫ
that leads to a model explaining the given prices. We then refer to the call prices
as ǫ-consistent (with the absence of arbitrage).

We assume discrete trading times and finite probability spaces throughout; no
gain in tractability or realism is to be expected by not doing so. In the case of
a single maturity, we obtain necessary and sufficient conditions for ǫ-consistency.
The multi-period problem, on the other hand, seems to be challenging. We provide
two partial results: necessary (but presumably not sufficient) conditions for ǫ-
consistency, and necessary and sufficient conditions under simplifying assumptions.
The latter, in particular, drop the bid-ask spread on the options, retaining only
the spread on the underlying.

Recall that the main technical tool used in the papers [1, 2, 3] mentioned
above to construct arbitrage-free models is Strassen’s theorem [5], or modifica-
tions thereof. In the financial context, this theorem essentially states that option
prices have to increase with maturity. This property breaks down if a spread on
the underlying is allowed. We will therefore employ a recent generalization of
Strassen’s theorem, obtained in [4]. It gives necessary and sufficient conditions for
the existence of martingales within a prescribed distance, measured in terms of
the infinity Wasserstein distance. This generalized Strassen theorem will be the
key to obtain the ǫ-consistency conditions under simplified assumptions mentioned
above.

Open problem: As mentioned above, we did not succeed in finding necessary
and sufficient conditions for ǫ-consistency for option price data with more than
one maturity. However, this seems to be a difficult problem, and we are not sure
whether simple conditions exist.
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[4] S. Gerhold and I. C. Gülüm. A variant of Strassen’s theorem: Existence of martingales
within a prescribed distance. arXiv:1512.06640, 2015.

[5] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist,
36: 423-439, 1965.

Smoothing the payoff for efficient computation of Basket option prices

Christian Bayer

(joint work with Raul Tempone, Markus Siebenmorgen)

In quantitative finance, the price of an option on an underlying S can typically–
disregarding discounting–be expressed as E[f(S)] for some (payoff) function f
on S and the expectation operator E induced by the appropriate pricing measure.
Hence, option pricing is an integration problem. The integration problem is usually
challenging due to a combination of two complications:

• S often takes values in a high-dimensional space. The reason for the
high dimensionality may be time discretization of a stochastic differential
equation, path dependence of the option (i.e., S is actually a path of an
asset price, not the value at a specific time), a large number of underlying
assets, or others.

• the payoff function f is typically not smooth.

In this work, we focus on the problem of pricing basket options in models, where
the distribution of the underlying is explicitly given to us. Specifically, we consider
multivariate Black-Scholes and Variance-Gamma models, i.e., models, for which
no time discretization is required. We consider a basket option on a d-dimensional
underlying asset ST =

(
S1
T , . . . , S

d
T

)
with payoff function

f(ST ) =

(
d∑

i=1

wiS
i
T −K

)+

for some positive weights w1, . . . , wd, a maturity T and a strike price K. Observe
in passing that one could also allow some weights to be negative, an option type
known as ‘spread option’. Note that in addition, (discrete) Asian options also fall
under this framework.

Even in the standard Black-Scholes framework, closed-form expressions for bas-
ket option prices are not available, since sums of log-normal random variables are
generally not log-normally distributed.

Efficient numerical integration algorithms are even available in high dimensions,
but they usually require smoothness of the integrand. Hence, they are a priori not
applicable in many option pricing problems. We will specifically focus on (adap-
tive) sparse-grid methods [1]. Even for quasi Monte Carlo methods, smoothness
of the integrand is required in theory, even though the method seems to work well
in many practical examples lacking smoothness.

From a numerical analysis point of view, the most obvious solution to the
problem is to smoothen the integrand using standard mollifiers, and there is a
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prominent history of successful application of mollification in quantitative finance.
For many financial applications, there seems to be a more attractive approach
that avoids the balancing act between providing the smoothness needed for the
numerical integration algorithm and introducing bias in the integrand. Indeed, we
suggest using the smoothing property of the distribution of the underlying itself
for regularizing the integrand. This technique is quite standard in a time-stepping
setting, and we indeed plan to explore its applicability in that context in the future.

In this work, however, the regularization will be achieved by integrating against
one factor of the multivariate geometric Brownian motion first–conditioning on all
the other factors. More specifically, we show that we can always decompose

d∑

i=1

wiS
i
T

L
= HeY

for two independent random variables H and Y . Here, the random variable Y is
normally distributed. Therefore, by computing the conditional expectation given
H , the basket option valuation problem is reduced to an integration problem in
H (corresponding to an integration in Rd−1) with a payoff function given in this
case by the Black-Scholes formula, a smooth function. The key observations are:

• the mollified integrand is explicitly given and analytic;
• the mollification procedure does not introduce any bias.

At this stage, efficient numerical integration procedures become available. For
instance, adaptive sparse grids can be constructed for the mollified integrand and
lead to very good performance in low and moderate dimensions (of up to around
35 in our experiments).

Figure 1. Acceleration of the (Q)MC quadrature with a sparse-
grid control variate for d = 3 and d = 25 with volatilities selected
randomly from the interval [0.3, 0.4]. Depicted are: adaptive
sparse grid with (turquoise) and without (blue) mollified inte-
grand, MC (red) and QMC (green) without mollified integrand.
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For instance, in Figure 1, we see that the adaptive sparse grid construction
without smoothing breaks almost completely even in dimension 3, whereas the
adaptive sparse grid with mollified payoff still performs better than MC and QMC
in dimension d = 25.
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Short dated option pricing under rough volatility

Blanka Horvath

(joint work with Philipp Harms, Antoine Jacquier and also with Christian Bayer,
Peter Friz, Archil Gulishashvili, Benjamin Stemper)

Implied volatility, as a unit-less indicator of option prices, is at the very centre of
quantitative finance, and understanding its precise behaviour has been the focus
of pratictioners’ and academics’ for several decades. Recently Gatheral, Jaisson
and Rosenbaum [11] proposed a new class of models able to remarkably accurately
fit and forecast volatility time series. Following this seminal paper, Bayer, Friz
and Gatheral [3] studied the pricing problem in this class of models. Specifically,
Bayer, Friz and Gatheral [3] report on striking aptitudes of a natural model in
this class in reproducing some distinctive features of the implied volatility which
traditional volatility models so far were notoriously unable to capture. Asymptotic
results in this direction [1, 8, 9, 10] arrive at similar conclusions, reinforcing the
potential prowess of this class of models. In this model class, the instantaneous
volatility of the price process is stochastic, but driven not by a standard Brownian
motion, but by a fractional Brownian motion, hence allowing for memory (aka non
Markovianity) of the volatility process. Generalising their model slightly, the stock
price process satisfies the following system of stochastic differential equations:

(1)
dSt = σtStdBt, S0 > 0,
dσt = b(σt)dt+ a(σt)dW

H
t , σ0 > 0,

where the Hurst coefficient H ∈ (0, 1) determines the degree of smoothness (or
roughness) of the continuous fractional Brownian motion WH and where the coef-
ficients b(·) and a(·) are assumed to be regular enough. The two Gaussian driversB
and WH are correlated via the Volterra representation of the latter.

In this talk I report on two lines of research of this class of models from an as-
ymptotic point of view: One line of results (obtained jointly with Philipp Harms
and Antoine Jacquier) focusses on density asymptotics for this class of models,
the other line of results (obtained jointly with Christian Bayer, Peter Friz, Archil
Gulisashvili and Benjamin Stemper) studies the asymptotics of call prices near the
money directly, when the time to maturity becomes small.
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• Density asymptotics for rough stochastic volatility models: For
models in the fractional volatility family, where the existence and smooth-
ness of the density is given, we revisit small-noise expansions in the spirit
of Benarous, Baudoin-Ouyang, Deuschel-Friz-Jacquier-Violante for bivari-
ate diffusions driven by fractional Brownian motions with different Hurst
exponents. We derive suitable expansions in these fractional stochastic
volatility models and infer corresponding expansions for implied volatility.
This sheds light (i) on the influence of the Hurst parameter in the time-
decay of the smile and (ii) on the asymptotic behaviour of the tail of the
smile, including higher orders.

• Extending density results within the fractional volatility family:
for a fixed time t ≥ 0, existence and smoothness of the density of St or of
the couple (St, σt) is by now classical when H = 1/2 (standard Brownian
motion), or when the other driver B is also fractional with the same Hurst
exponent. These results go back to Malliavin [14] and have been extended
by many authors, including Baudoin-Hairer [2], Cass-Friz [5]. However, in
this mixed class of models, no precise results exist, and we aim at extend-
ing this literature in this direction. We intend to follow two approaches:
first following the classical steps of Malliavin’s proof, via Hörmander’s the-
orem (combining results by Nualart [16] and Baudoin-Hairer [2]), second
via the theory of rough paths-albeit with possibly stronger conditions on
the coefficients of the process (σt)t≥0. Regarding the latter, in the uncor-
related case, it is possible to build upon results Cass-Friz’s results [5]. The
correlated hypoelliptic case is less ‘obvious’ and requires some more work,
currently in progress.

• Call price asymptotics near the money: With Christian Bayer, Peter
Friz, Archil Gulishashvili and Benjamin Stemper, we explore an intrigu-
ingly direct novel way of addressing (uniformly with respect to the strike)
the asymptotic behaviour of vanilla options as time to maturity becomes
small. This general approach applies to a large class of ‘classical’ (rang-
ing from the Black Scholes to stochastic volatility) models, and carries
over to the setting of rough models (as in (1). Both in the standard and
in the fractional setting, this approach somehow extends the results by
Deuschel-Friz-Jacquier-Violante [6, 7] in the sense that it bypasses the
need for the (so far ubiquitously prevalent) derivation of asymptotic ex-
pansions of the density of the process. That said, our approach applies in
a regime where options are ‘moderately out of the money’ (with maturity-
dependent strike), which interpolates between the ‘at-the-money’ and the
‘out-of-the-money’ regimes of option prices.
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On small time asymptotics for rough differential equations driven by
fractional Brownian motions

Cheng Ouyang

(joint work with Fabrice Baudoin, Xuejing Zhang)

Stochastic differential equations driven by fractional Brownian motions have been
introduced to model random evolution phenomena whose noise has long range de-
pendence, and have found successful applications in biotechnology and biophysics.
Fox example, it is used to model the sub diffusion of electrons within a protein
molecule.

In this talk, we survey some results on the small time asymptotics of the density
function of the solutions to such SDEs, such as Varadhan asymptotics and full
expansion of the density function.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2509457
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Markovian representation of fractional Brownian motion

Philipp Harms

(joint work with David Stefanovits)

Carmona, Coutin, Montseny and Muravlev [1, 2, 4] observed that fractional Brown-
ian motion (fBm) can be represented as a superposition of infinitely many Ornstein-
Uhlenbeck (OU) processes. The key idea is to express the fractional integral in
the Mandelbrot-Van Ness representation of fBm by a Laplace transform. Indeed,
for each H < 1/2, one has by the stochastic Fubini theorem that
∫ t

0

(t− s)H− 1
2 dWs ∝

∫ t

0

∫ ∞

0

e−x(t−s)
dx

xH+ 1
2

dWs =

∫ ∞

0

∫ t

0

e−x(t−s)dWs
dx

x
1
2+H

.

Note that the stochastic integral on the right-hand side is an OU process with
speed of mean reversion x. Similar representations exist also in the case H > 1/2
[1, 2, 4], but one has to work around the fact that the function s 7→ sH−1/2 is not
the Laplace transform of any measure. We found a way of doing this such that
the collection of representing processes can be interpreted as a time-homogeneous
affine process on a state space of integrable functions (cf. Theorem 2).

Theorem 1 ([3]). For each H ∈ (0, 1) and t ∈ [0,∞) let

WH
t =

1

Γ(12 +H)

∫ t

−∞

(
(t− s)

H− 1
2

+ − (−s)H− 1
2

+

)
dWs,

where (Wt)t∈R is a two-sided Brownian motion. Then

WH
t =





∫ ∞

0

(Y xt − Y x0 )µ(dx), if H <
1

2
,

∫ ∞

0

(Zxt − Zx0 )ν(dx), if H >
1

2
,

where

dY xt = −xY xt dt+ dWt, dZxt = −xZxt dt+ Y xt dt,(1)

Y x0 =

∫ 0

−∞
esxdWs, Zx0 = −

∫ 0

−∞
sesxdWs,(2)

µ(dx) =
dx

x
1
2+HΓ(12 +H)Γ(12 −H)

, ν(dx) =
dx

xH− 1
2 Γ(12 +H)Γ(32 −H)

.(3)

Our main contribution is to show that (Yt, Zt)t∈[0,∞) is an affine process on

L1(µ) × L1(ν), where the spatial variable x is suppressed in our notation.
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Theorem 2 ([3]). The stochastic differential equation (1) defines an affine process
with continuous sample paths on L1(µ) × L1(ν), where µ and ν are given by (3).

The affine structure exhibited by this result allows one to construct some
tractable financial models with fractional features. For example we construct
in [3] a fractional extension of the Stein-Stein stochastic volatility model [5]. The
extended model can be brought into an affine form by expressing the SDE for the
log price Xt in terms of the tensor product Yt ⊗ Yt.

Theorem 3 ([3]). Let (Yt)t∈[0,∞) be the affine process of Theorem 2, let (W̃t)t∈[0,∞)

be a Brownian motion, possibly correlated with (Wt)t∈[0,∞), and let (Xt)t∈[0,∞) be
given by

dXt = −1

2

(∫ ∞

0

Y xt µ(dx)

)2

dt+

∫ ∞

0

Y xt µ(dx)dWt, X0 = 0.

Then (Xt, Yt ⊗ Yt)t∈[0,∞) is an affine process on R× {u⊗ u : u ∈ L1(µ)}.

These results led to many questions, which were discussed during the work-
shop and could be investigated in future research. First, it might be of interest
to replace the Brownian driver by some Lévy process; conceptually, this should
be possible. Second, it is of practical importance to determine the convergence
rate when (µ, ν) is replaced by a sum of Dirac measures; Carmona and Coutin
[2] obtained some results in this direction. Third, it would be nice to obtain a
Markovian representation for the fractional Cox-Ingersoll-Ross process which ap-
pears in the works of J. Gatheral, M. Rosenbaum and O. El Euch; it was shown by
J. Teichmann and C. Cuchiero during the workshop that this works for a Hawkes
process approximations, but it is unclear otherwise. Fourth, it was asked wether
the Markovian representation leads to a natural notion of stochastic integral with
respect to fBm; this led to extensive and ongoing discussions with F. Biagini and
P. Krühner.

References

[1] P. Carmona and L. Coutin. Fractional Brownian motion and the Markov property. Electronic
Communications in Probability, 3:95-107, 1993.

[2] P. Carmona, L. Coutin and G. Montseny. Approximation of some Gaussian processes. Sta-
tistical Inference for Stochastic Processes, 3(1):161-171, 2000.

[3] P. Harms and D. Stefanovits. Affine representation of fractional processes with applications
in mathematical finance. arXiv:1510.04061, 2016.

[4] A. Muravlev. Representation of a fractional Brownian motion in terms of an infinite-
dimensional Ornstein-Uhlenbeck process. Russian Math. Surveys, 66(2):439-441, 2011.

[5] E. M. Stein and J. C. Stein. Stochastic volatility: an analytic approach. Review of Financial
Studies, 4(4):727-752, 1991.



Mathematics of Quantitative Finance 705

Pathwise large deviations for the rough Bergomi model

Henry Stone

(joint work with Antoine Jacquier, Mikko Pakkanen)

In this presentation we study the small-time behaviour of the correlated rough
Bergomi model, introduced by Bayer, Friz and Gatheral [1]. We show that a
rescaled version of the log stock price process satisfies a large deviations princi-
ple, where the rate function is defined in terms of the reproducing kernel Hilbert
space of the Gaussian measure on C([0, 1],R2) induced by the two dimensional
process (Z,B). We then use the large deviations principle to deduce the small-
time asymptotic behaviour of the implied volatility in the rough Bergomi model,
where log-moneyness is time dependent. Finally, we provide a numerical scheme to
compute the rate function as the solution to an infinite dimensional minimisation
problem; we then use this scheme to numerically compute the small-time implied
volatility.
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Rough paths, Signatures and the modelling of functions on streams

Terry Lyons

Rough path theory allows a new way to describe streamed data; instead of the
Kolmogorov perspective of saying what is the state at given times one aims to give
consistent if approximate ‘descriptions’ of the stream over intervals in a partition.
This is achieved by looking at the controlling effect of the stream on certain highly
canonical nonlinear systems. This description of the stream through the low or-
der terms in the signature over any interval allows effective description of highly
complex data streams with a small number of coefficients.

Moreover, these very coordinate signatures are the analogue of monomials and
the way that the linear combinations of monomials approximate smooth functions
on Rd has its analogue for functions on stream space. They span an algebra.

As a result they form an ideal local feature set for describing and learning
functions on data based around paths and evolving systems.

Recent work of Weixin Yang et al. [1] which achieves state of the art in classify-
ing human behaviour in moving images by reducing people to skeletal structures of
strokes reduced by the signature to new strokes capturing the evolution and uses
the signature feature set twice as well as a fully connected neural net to achieve
these highly competitive results.
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Bounds for VIX Futures given S&P 500 smiles

Julien Guyon

(joint work with Romain Menegaux, Marcel Nutz)

We derive sharp bounds for the prices of VIX futures by using the full informa-
tion of S&P 500 smiles at two maturities. The VIX (short for volatility index) is
published by the Chicago Board Options Exchange (CBOE) and used as an indica-
tor of short-term options-implied volatility. By definition, the VIX is the implied
volatility of the 30-day variance swap on the S&P 500; see [4]. Equivalently, us-
ing the well-known link between realized variance and log-contracts [10], the VIX
at date T1 is the implied volatility of a log-contract that delivers ln(ST2/ST1) at
T2 = T1 + τ , where τ = 30 days and STi is the S&P 500 at date Ti:

(VIXT1)2 = − 2

τ
PriceT1

[
ln

(
ST2

ST1

)]
;

we are assuming zero interest rates, repos, and dividends for simplicity. The log-
contract can itself be replicated at T1 using call and put options on the S&P 500
with maturity T2. The VIX index cannot be traded, but VIX futures can: the
VIX future expiring at T1 is an instrument that pays VIXT1 at T1. While VIX2

T1

can be replicated, its square root VIXT1 cannot; instead, sub/superreplication in
the S&P 500 and its options leads to model-free lower/upper bounds on the price
of the VIX future.

The classical sub/superreplication argument is based on the fact that one can
replicate any affine function of VIX2

T1
at T1 using cash and log-contracts with

maturities T1 and T2. Thus, one searches for the sub/superreplication of the square
root function by an affine function that gives the maximum/minimum portfolio
price. Since the square root is a concave function, it is below all its tangent lines,
and the classical superreplication boils down to selecting the line that gives the
minimum portfolio price. This argument shows that, in the absence of arbitrage,
the price of the VIX future at time T0 = 0 cannot exceed the implied volatility
σ12 of the forward-starting log-contract on the index, starting at the VIX future’s
expiry T1 and maturing at T2,

σ2
12 ≡ − 2

τ
PriceT0

[
ln

(
ST2

ST1

)]
.

Subreplicating the VIX future using the same instruments corresponds to subrepli-
cating the square root by an affine function. This yields zero as a lower bound for
the future’s price, which is clearly a poor estimate.
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These classical bounds are suboptimal in the sense that they only use the prices
of log-contracts. Our aim is, instead, to extract the full information contained in
the S&P 500 smiles at T1 and T2, by also including all vanilla options at these
maturities as (static) hedging instruments, as well as trading (dynamically, i.e.,
at T1) in the S&P 500 itself and the log-contract. Moreover, we allow the deltas
at T1 to depend on the information available, that is, the S&P 500 and the VIX
index at T1.

The first part of the paper analyzes this problem for general smiles. We formu-
late the sub/superreplication as a linear programming (LP) problem and define
absence of arbitrage in this setting. The latter leads to the existence of risk-neutral
joint distributions µ for (ST1 , ST2 ,VIXT1) which constitute the domain of an op-
timization problem dual to sub/superreplication. The first two marginals µ1 and
µ2 are given by the market smiles at T1 and T2, whereas the distribution of VIXT1

merely satisfies a certain constraint. The dual problem is thus reminiscent of a
(constrained) martingale optimal transport problem, but falls outside the trans-
port framework because the third marginal is not prescribed. This necessitates a
novel argument for our duality theorem which establishes the absence of a duality
gap, i.e., primal and dual problem have the same value. This theorem holds, more
generally, for an option payoff f(ST1 , ST2 ,VIXT1) rather than just the VIX. As a
last abstract contribution, we characterize those smiles µ1, µ2 for which the classi-
cal bounds for the VIX future are optimal. The lower bound is optimal if and only
if µ1 = µ2, which never happens in practice. The characterization for the upper
bound is more subtle, it states that a convex-order condition in two dimensions
holds, or equivalently that a model with constant forward volatility is contained
in the dual domain.

While our theoretical bounds are sharper than the classical ones, the corre-
sponding hedging portfolios can only be found numerically, and the numerical
problem is far from trivial. Aiming for a balance between flexibility and tractabil-
ity, we introduce a family of functionally generated portfolios that are determined
by a one-dimensional convex/concave function and a constant. The space of one-
dimensional convex functions is easy to search numerically, and the generated
portfolios are guaranteed to satisfy the sub/superhedging conditions at all values
of the underlying, by our construction. We show that the lower price bound ob-
tained by functionally generated portfolios improves the classical one as soon as
µ1 6= µ2 and here the generating function can be chosen explicitly of an inverse
‘hockey stick’ form.

In the second part of the paper, we study specific families of smiles µ1, µ2

and corresponding portfolios. The case where µ2 is a Bernoulli distribution gives
rise to a ‘complete market’ where the VIX future can be replicated. While the
classical upper bound is not sharp unless µ1 has a very particular form, we show
how functionally generated portfolios lead to the sharp bound as given by the
unique risk-neutral expectation. When µ2 is a general distribution with compact
support, we present various sufficient conditions for the classical upper bound to
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be suboptimal. Finally, we discuss a family of examples for which the classical
upper bound is already sharp.

The third part of the paper presents numerical experiments using smiles from
market data as well as smiles generated by a SABR model. We compare the
classical bounds, the bounds obtained from functionally generated portfolios, and
the bounds computed by an LP solver that correspond to the theoretical, optimal
bounds modulo discretization error. For the generating functions, we use piecewise
linear maps and a cut square root; the latter yields the best approximation in our
experiments. The results suggest that the classical lower bound can be improved
dramatically by functionally generated portfolios; the bound from the LP solver
is only slightly better. On the other hand, the classical upper bound is already
surprisingly sharp for typical smiles.

Turning to the existing literature on volatility derivatives, the most closely
related work is due to De Marco and Henry-Labordère [6] who investigate bounds
for VIX options, i.e., calls and puts on the VIX, given the smile of the S&P 500 and
the VIX future as liquidly tradable instruments. Thus, compared to [6], we take a
step back by investigating bounds for the VIX future itself, given the smile of the
S&P 500. The sub/superreplication problem in [6] leads to a linear program with
a dual akin to (constrained) martingale optimal transport. The numerical results
show that, for typical market smiles, the optimal upper bound on VIX options is
equal to an analytical (a priori suboptimal) bound that the authors derive. For a
further discussion of numerical solutions to sub/superreplication problems, we also
refer to [9], and to [1, 8] for background on martingale optimal transport. While [6]
and the present paper consider derivatives on options-implied volatility, previous
literature has studied derivatives on realized volatility. Using power payoffs, Carr
and Lee [2] show that, if the returns and the volatility of an asset are driven by
independent Brownian motions, the asset smile at a given maturity T determines
the distribution of the realized variance at T , hence allowing perfect replication of
derivatives on realized variance. Using business-time hedging, Dupire [7] derives a
lower bound for a call on realized variance at a given maturity T , given the asset
smile at T . Carr and Lee [3] extend Dupire’s idea to tackle the cases of puts on
realized variance as well as forward-starting calls and puts on realized variance.
More recently, Cox and Wang [5] have derived the optimal portfolio subreplicating
convex functions of realized variance.
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Why rough volatility?

Mathieu Rosenbaum

(joint work with Omar El Euch, Jim Gatheral)

It can be nowadays considered a stylized fact that volatility is rough. Indeed,
on all types of assets, one typically obtains that the time series of historical log
volatilities is very well approximated by a fractional Brownian motion with Hurst
parameter of order 0.1. This finding is confirmed in the derivatives world, where
implied volatility surfaces can be remarkably fitted by rough volatility models.
Our goal here is to understand the origins of this universal property.

In the first part of this work, we propose some microstructural foundations of
rough volatility models based on the structure of modern financial markets. More
precisely we consider a market where the four following properties are satisfied:

• High degree of endogeneity, meaning that most of the orders are only sent
by reaction to other orders, with somehow no economic value.

• No statistical arbitrage.
• Asymmetry in liquidity on buy and sell sides of the order book.
• Significant presence of metaorders, which are large orders whose execution

is split in time.

These four properties are clear features of modern markets in the context of
high frequency trading. To combine them in a high frequency price model, we
use Hawkes processes. More precisely, our microscopic price process is given by
the difference of the two components of a bidimensional Hawkes process. Indeed,
each of these properties is very easily translated in term of the parameters of the
model. In particular, high degree of endogeneity corresponds to a Hawkes kernel
with L1 norm of its largest eigenvalue close to one and the metorders splitting
phenomenon can be obtained with a kernel with fat tails.

We show that after suitable renormalization, our microscopic Hawkes based
price model converges in the long run to a rough volatility model, more precisely
a rough Heston model. This shows that when the four stylized facts mentioned
above are combined (here thanks to the framework of Hawkes processes), rough
volatility can naturally arise.

In the second part of this work, we provide even more fundamental explanations
for the rough behavior of the volatility. We start from the two following postulates:
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• If there is some permanent market impact, it has to be linear (to prevent
roundtrip arbitrages).

• The impact of metaorder with volume V right after execution is square
root of V (to ensure diffusive prices).

These two postulates are nowadays well admitted and understood. Assuming
the order flow is governed by a Hawkes process, we show that under the two pre-
ceding postulates, volatility is necessary rough. This result is a first step towards
understanding why volatility is systematically rough. Such feature seems in fact
related to some type of no-arbitrage principle at high frequency.

References

[EFR16] O. El Euch, M. Fukasawa and M. Rosenbaum. The microstructural foundations of
leverage effect and rough volatility. arXiv:1609.05177, 2016.

[ER16] O. El Euch and M. Rosenbaum. The characteristic function of rough Heston models.
arXiv:1609.02108, 2016.

[GJR14] J. Gatheral, T. Jaisson and M. Rosenbaum. Volatility is rough. arXiv:1410.3394, 2014.

Option market making with competition

Johannes Muhle-Karbe

(joint work with Bruno Bouchard, Martin Herdegen)

Option pricing models typically consider either monopolistic market makers, or
settings with infinite competition. Real markets, however, are often dominated by
a few large dealers with substantial market power. We study how such imperfect
competition is reflected in equilibrium option prices.

To this end, we study a three-stage Stackelberg game of the following form.
The dealers move first and quote competitive price schedules. The clients in turn
decide how many shares of the option to buy or sell from each dealer. Finally, the
dealers hedge their option positions in a market for the underlying of the option,
where they interact through their common price impact.

The corresponding hedging strategies can be characterized in terms of a system
of coupled but linear forward-backward stochastic differential equations; explicit
formulas obtain in the limit for small price impact. These formulas allow to derive
the ‘effective’ risk aversions used by the dealers to determine their optimal price
schedules.
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A Black-Scholes inequality: applications and generalisations

Michael Tehranchi

1. The semigroup of call prices: binary operation and involution

This note studies the structure of the family of functions

C =
{
C : [0,∞) → [0, 1] : convex, C(κ) ≥ (1 − κ)+ for all κ ≥ 0

}

Elements of the set C can be given a probabilistic interpretation:

Proposition 1. The following are equivalent:

(1) C ∈ C.
(2) There is a non-negative random variable S with E(S) ≤ 1 such that

C(κ) = E[(S − κ)+] + 1 − E(S) = 1 − E(S ∧ κ) for all κ ≥ 0.

We say that S is a primal representation of C.
(3) There is a non-negative random variable S∗ with E(S∗) ≤ 1 such that

C(κ) = E[(1 − S∗κ)+] = 1 − E[1 ∧ (S∗κ)] for all κ ≥ 0.

We say that S∗ is a dual representation of C.

The connection between the function C ∈ C and its representations is given by
the Breeden-Litzenberger formulae

P(S > κ) = −C′(κ) and P(S∗ < 1/κ) = C(κ) − κC′(κ) for all κ > 0,

where C′ denotes this right-hand derivative.
For C ∈ C, let C∗(0) = 1 and

C∗(κ) = 1 − κ+ κC (1/κ) for all κ > 0.

The probabilistic meaning of the operation ∗ is that S is a primal representation
of C if and only if S is a dual representation of C∗.

When C(∞) = 0 or equivalently the primal representation has E(S) = 1, the
quantity C(κ) can interpreted as the price of a call. Consider a market with
a stock whose forward price is (Ft,T )0≤t≤T for a fixed maturity date T > 0.
We assume that there exists an equivalent measure (a T -forward measure) such
that the forward price of every claim is just the expected value of its payout. In
particular we have E(FT,T ) = F0,T and hence the normalised initial price of a call
with strike K is E[(FT,T −K)+]/F0,T = E[(S−κ)+] = C(κ) where S = FT,T /F0,T

and κ = K/F0,T .
The case where C(∞) > 0 is more subtle, but still can be interpreted in terms

of call prices in the context of certain continuous-time arbitrage-free markets ex-
hibiting a bubble in the sense of [1] in which the forward price (Ft,T )0≤t≤T of the
underlying asset is a non-negative strictly local martingale.

We now introduce a binary operation • on C defined by

C1 •C2(κ) = inf
η>0

[C1(η) + ηC2(κ/η)] for κ ≥ 0.

This operation has a probabilistic interpretation:
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Theorem 1. Let S1 be a primal representation of C1 ∈ C, and S∗
2 a dual repre-

sentation of C2 ∈ C, where S1 and S∗
2 are defined on the same space. Then we

have

C1 • C2(κ) ≥ 1 − E[S1 ∧ (S∗
2κ)] for all κ ≥ 0,

with equality if S1 and S∗
2 are countermonotonic.

Note that when E(S1) = 1 we have

C1 •C2(κ) = max
S1,S∗

2

E[(S1 − S∗
2κ)+] for all κ ≥ 0,

where the maximum is taken over all primal representations S1 of C1 and dual
representations S∗

2 of C2 defined on the same probability space. In particular, the
quantity C1 • C2(κ) gives the upper bound on the no-arbitrage price of an option
to swap κ shares of an asset with price S∗

2 for one share of another asset with price
S1, given all of the call prices of both assets. This is interpretation is related to
the upper bound on basket options found in [4].

We now come to the key observation of this note. To state it, we distinguish
two particular elements E,Z ∈ C defined by

E(κ) = (1 − κ)+ and Z(κ) = 1 for all κ ≥ 0.

Note that the random variables representing E and Z are constant, with S = 1 =
S∗ representing E, and S = 0 = S∗ representing Z.

Theorem 2. The set C of call functions is a noncommutative semigroup with re-
spect to the binary operation •, with involution ∗, identity element E and absorbing
element Z.

2. One-parameter semigroups and peacocks

We now study the family of sub-semigroups of C indexed by a single parameter
y ≥ 0. We will make use of the following notation. For a probability density
function f , let

Cf (κ, y) =

∫ ∞

−∞
(f(z + y) − κf(z))+dz = 1 −

∫ ∞

−∞
f(z + y) ∧ [κf(z)]dz

for y ∈ R and κ ≥ 0. Note that Cϕ is the Black-Scholes call pricing function where

ϕ(z) = 1√
2π
e−z

2/2 is the standard normal density.

The one-parameter sub-semigroups of C can be characterised completely:

Theorem 3. Suppose C(·, y) ∈ C for all y ≥ 0, where C(·, 0) = E and C(·, y) 6= E
and C(·, y) 6= Z for some y > 0. The following are equivalent

(1) {C(·, y) : y ≥ 0} is a one-parameter semigroup.
(2) C = Cf for a log-concave density f .

We can introduce a partial order ≤ on C by

C1 ≤ C2 if and only if C1(κ) ≤ C2(κ) for all κ ≥ 0.

The operation • interacts well with this partial ordering:
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Proposition 2. For any C1, C2 ∈ C, we have C1 ≤ C1 • C2 and C2 ≤ C1 • C2.

The partial order can be given a useful probabilistic interpretation when re-
stricted to the family C1 of call functions C with C(∞) = 0 whose primal repre-
sentation S satisfies E(S) = 1. The following is well-known; see [3].

Proposition 3. Given C1, C2 ∈ C1 with primal representations S1, S2. Then the
following are equivalent

(1) C1 ≤ C2

(2) S1 is dominated by S2 in the convex order.

Combining Theorem 3 and Propositions 2 and 3 yields the following tractable
family of peacocks.

Theorem 4. Let f be a log-concave density with f(z) > 0 for all z < 0, let be a
random variable Z have density f and let Y : [0,∞) → [0,∞) be increasing. Set

St =
f(Z + Y (t))

f(Z)
for t ≥ 0.

The family of random variables (St)t≥0 is a peacock.

Define the function Yϕ by

y = Yϕ(κ, c) ⇔ Cϕ(κ, y) = c.

The quantity Yϕ(κ, c) denotes the implied total standard deviation in the Black-
Scholes model of an option of moneyness κ whose normalised price is c. The upshot
of Theorem 4 is that we can define a family of arbitrage-free implied volatility
surface by

(κ, t) 7→ 1√
t
Yϕ(κ,Cf (κ, Y (t))).

Given f and Y , the above formula is reasonably tractable, and could be seen to be
in the same spirit as the SVI parametrisation of the SVI implied volatility surface
[2]. We can recover the Black-Scholes model by setting f = ϕ and

Y (t) = σ
√
t,

where σ is the volatility of the stock.
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Model-free Pricing of multivariate derivatives

Carole Bernard

(joint work with Oleg Bondarenko, Steven Vanduffel)

Short summary of the talk: There are well developed techniques to infer
the risk neutral distribution of an asset return when a wide range of options
prices written on this asset is available ([1], [5], [4]). In this paper, we develop
a new algorithm to infer the ‘implied’ dependence among asset returns (i.e. the
dependence under the risk neutral probability) by using the information available
in the market from index options and options on its components. It is model-free,
non parametric, consistent with maximum entropy principle. Our method allows
to price any path-independent multivariate derivatives. Our method is inspired
by the rearrangement algorithm (RA) of [13] that was originally used to minimize
the variance of a portfolio in which the distributions of the components are known
but their interdependence is not.

A more detailed presentation is as follows:

Introduction
The goal of this paper is to model dependence among asset prices using information
from option prices only. We can find two ways in the literature to answer this
question depending on whether we want to make assumptions about a model or
we opt for a model-free approach. The first approach consists of building an
appropriate model for the multidimensional underlying process. Constructing a
multi-asset model consistent with observed index options and individual stock
options is a challenging task. For instance, [9] propose a mixture of models that
can reproduce some set of multivariate option prices and individual options. They
then derive a notion of implied correlation as the correlation matrix such that they
can fit their model. They find that there is a set of such matrices and show evidence
of model risk and estimation risk for the implied correlation. Other studies are
conducted by [2] and [12]. The second approach is model-free and seeks to measure
the implied dependence among assets without making model assumptions. This
is the direction that we are taking.

An attempt to measure the implied correlation in a model-free way is proposed
by the CBOE S&P 500 Implied Correlation Indexes. The CBOE started to dissem-
inate such indexes in July 2009, with historical values back to 2007. They are now
well accepted measures based on individual implied volatilities and index implied
volatility and thus driven by option prices only. The white paper of [7] describes
the CBOE implied correlation indexes in full detail. We show that the CBOE
implied correlation has some limitations that we want to overcome. The CBOE
implied correlation seeks to be model-free. However, we show using examples that
the correlation parameter that is obtained from this procedure is consistent with
a very strong assumption that each component of the index as well as the index
itself is modeled by a LogNormal distribution.
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[11] propose to price correlation risk. [10] is a companion paper in which the
authors propose a stochastic correlation model. They then use it to extract an im-
plied correlation within their model assumptions. [10] have a definition of implied
correlation inspired by the same expression as in the CBOE implied correlation
index formula but the volatilities are not implied volatilities but model free implied
variances from index and individual options. Their model is relatively simple as
all pairwise correlation are driven by the same correlation ρ(t) at time t that is a
mean reverting process (in the same spirit as [8]). Some extensions are proposed
by [6].

Model-free Approach to Infer Dependence
In this paper, we propose to use the methodology studied in [3] to infer a depen-
dence (copula) among the assets in the market using the information conveyed by
option prices only.

To do so, we need option prices on individual assets, as well as multivariate
options such as basket options or spread options, or options on a weighted sum
of the individual assets. Using this information, we infer a dependence structure
among the assets that is consistent with maximum entropy (in the sense of Shannon
entropy of the resulting multivariate distribution) and that is consistent with the
option prices.

Consider an index defined as

(1) S =
d∑

i=1

ωiXi

where the weights ωi are constant over some period of time.
Inputs: Marginal distributions of individual components and of index

• X1 ∼ F1, ..., Xd ∼ Fd
• the cdf of ω1X1 + ...+ ωdXd ∼ G is known for some ωi ∈ R

The above input distributions include the case of baskets options and spread
options.
Output: A dependence structure (copula) that is consistent with this given set of
information.

The methodology can be described concisely as follows

• Fit risk neutral marginal distributions of individual components Xi using
3-month options for example.

• Fit the marginal distribution of the index (with known components Xi,
i.e., S =

∑
ωiXi) using 3-month options on the index.

• Then, run the BRA (Algorithm described in [3]). The algorithm con-
structs a copula that is consistent with the marginal distributions and the
distribution of the sum (or the weighted sum).

Note that the algorithm identifies one particular dependence among all possible
candidate solutions that are consistent with prices of individual options and prices
of index options. As shown by [3], the resulting dependence has the property of
maximum Shannon entropy when marginal distributions are normally distributed
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(Gaussian copula and correlation matrix with maximum determinant). When
margins are skewed or heavier tailed, only the property on the correlation matrix
with maximum determinant is satisfied.
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Perfect Hedging with rough Heston models

Omar El Euch

(joint work with Mathieu Rosenbaum)

It has been recently shown that rough volatility models, where the volatility is
driven by a fractional Brownian motion with small Hurst parameter, provide very
relevant dynamics in order to reproduce the behavior of both historical and implied
volatilities. However, due to the non-Markovian nature of the fractional Brownian
motion, they raise new issues when it comes to derivatives pricing and hedging.

We use an original link between nearly unstable Hawkes processes and fractional
volatility models to build a microscopic model based on Hawkes processes which
behaves on the long run as a rough version of the Heston model. Thanks to this
convergence result and by computing the characteristic function of the microscopic
price we pass to the limit to derive the characteristic function of rough Heston log
price. In the classical Heston model, the characteristic function is expressed in
terms of the solution of a Riccati equation. Here we show that rough Heston
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models exhibit quite a similar structure, the Riccati equation being replaced by a
fractional Riccati equation.

Noticing that the conditional law of a rough-Heston model is still of a rough-
Heston dynamic with same parameters but with a different forward variance curve,
we are also able to compute explicitly the conditional characteristic function of the
log price which is a deterministic function of the spot price and the forward variance
curve. Hence, we derive the dynamics of the characteristic function process and
therefore the dynamics of any Vanilla option price showing that the theoretical
hedging instruments are the spot price and the forward variance curve.
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Probability density of lognormal fractional SABR model

Tai-Ho Wang

(joint work with Jiro Akahori, Xiaoming Song)

The celebrated Black and Black-Scholes-Merton models have been the benchmark
for European options on currency exchange, interest rates, and equities since the
inauguration of the trading on financial derivatives. However, empirical evidences
have shown that the main drawback of these models is the assumption of constant
volatility; the key parameter required in the calculation of option premia under
such models. The volatility parameters induced from market data are in fact non-
constant across markets; dubbed as volatility smile. The Stochastic αβρ (SABR
for short hereafter) model, suggested by Hagan, Lesniewski, Woodward [7], is one
of the models, such as local volatility models, stochastic volatility models, and
exponential Lévy type of models etc, that attempts to capture the volatility smile
effect. Furthermore, as opposed to local volatility models, in SABR model the
volatility smile moves in the same direction as the underlying with time [6].

The SABR model is depicted by the following system of stochastic differential
equations (SDEs):

dFt = αtF
β
t dWt, F0 = F,(1)

dαt = ναtdZt, α0 = α,(2)

with β ∈ [0, 1], where Ft is the forward price and αt is the instantaneous volatility.
Wt and Zt are correlated Brownian motions with constant correlation coefficient ρ.
The SABR model is at times referred to as the lognormal SABR model when β = 1.
The SABR formula is an asymptotic expansion for the implied volatilities of call
options with various strikes in small time to expiry. Let σBS(K, τ) be the implied
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volatility of a vanilla option struck at K and time to expiry τ . The SABR formula
to the lowest order states

(3) σBS(K, τ) = ν
log(F/K)

D(ζ)
{1 +O(τ)}

as time to expiry τ approaches 0. The function D and the parameter ζ involved
in (3) are defined respectively as

D(ζ) = log

(√
1 − 2ρζ + ζ2 + ζ − ρ

1 − ρ

)

and

ζ =





ν
α
F 1−β−K1−β

1−β if β 6= 1;

ν
α log

(
F
K

)
if β = 1.

Generally, the SABR formula is given one order higher, up to order τ .
The geometry of SABR model is isometrically diffeomorphic to the two dimen-

sional hyperbolic space or the Poincaré plane. This isometry leads to a derivation
of the SABR formula (3) based on an expression of the heat kernel, known as the
McKean kernel, on Poincaré plane. In particular, the lowest order term in (3)
has a geometric interpretation. The function D is the shortest geodesic distance
from the spot value (F0, α0) to the vertical line F = K in the upper half plane
{(F, α) ∈ R2 : α ≥ 0}. Hence, the lowest order term in (3) is indeed the ratio
between the absolute value of logmoneyness, i.e., log(K/F0), and the shortest geo-
desic distance from (F0, α0) to the vertical line F = K in the upper half plane. As
expression for heat kernel on hyperbolic space is concerned, Ikeda and Matsumoto
in [8] provided a probabilistic approach and obtained, among other interesting
results, a representation for the transition density of hyperbolic Brownian motion,
i.e., the heat kernel over the Poincaré plane.

The volatility process is generally conceived behaving ‘fractionally”in that the
driving noise is a fractional process, e.g., a fractional Brownian motion with Hurst
exponent other than a half. Models that attempt to incorporate the fractional
feature of volatility include: the ARFIMA model in [5] and the FIGARCH model
[1] for discrete time models; the long memory stochastic volatlity model in [2] and
the affine fractional stochastic volatilility model in [3] for continuous time models.
Somewhat on the contrary, in a recent study in [4], the Hurst exponent H is
estimated as being less than a half; thereby indicating antipersistency as opposed
to persistency of the volatility process.

In order to embed the empirically observed fractional feature of the volatility
process into the classical SABR model, we suggest a fractional version of the SABR
model as

dSt
St

= αt(ρdBt + ρ̄dWt),(4)

αt = α0e
νBH

t ,(5)
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where ρ ∈ (−1, 1) and ρ̄ =
√

1 − ρ2. BHt is a fractional Brownian motion with
Hurst exponent H driven by Bt. Modulo a mean-reversion component, this model
aligns with the model statistically tested in [4]. The main observation in [4] is that,
using square root of the realized/integrated variance as a proxy for the instanta-
neous volatility, the logarithm of the volatility process behaves like a fractional
Brownian motion in almost any time scale of frequency. The Hurst exponent H
inferred from the time series data is less than a half; indeed, H ≈ 0.1. This ob-
servation of small Hurst exponent in the volatility process makes the analysis of
the model more technical and challenging from stochastic analysis point of view.
To our knowledge, most of the small time asymptotic expansions for processes
driven by fractional Brownian motions have restrictions on the Hurst exponent H
of the driving fractional Brownian motion, mostly H ≥ 1

4 . One of the advantage of
the approach undertaken in the current paper is that it works without restriction
on the Hurst exponent H . The key ingredient is a representation in a Fourier
space, which we call the bridge representation, for the joint density of log spot and
volatility, in the spirit of [8].

A small time asymptotic expansion of the joint density is readily obtained from
the bridge representation. The idea is to approximate the conditional expecta-
tion in the bridge representation by a judiciously chosen deterministic path since,
conditioned on the initial and terminal points, at each point in time a Gaussian
process will not wander too far away from its expectation. As long as an asymp-
totic expansion for the density of the underlying asset is available, obtaining an
expansion for implied volatility is almost straightforward by basically comparing
the coefficients with a similar expansion obtained by using the lognormal density
on the Black or the Black-Scholes-Merton side.

The methodology of deriving the bridge representation can be generalized di-
rectly to obtain a bridge representation for the joint density of multiple times;
hence inducing a representation for finite dimensional distributions of the frac-
tional SABR model. Based on this bridge representation for finite dimensional
distributions, we present a heuristic yet appealing derivation of sample path large
deviation principle for the fractional SABR model in small time. This large devi-
ations principle in a sense can be regarded as defining a ‘geodesic distance’ over
the fractional SABR plane since it recovers the energy functional on the Poincaré
plane when H = 1

2 . An immediate consequence of this sample path large deviation
principle is the fractional SABR formula to the lowest order which recovers the
classical SABR formula with H = 1

2 . The fractional SABR formula pertains the
guiding principle that the lowest order term in the implied volatility expansion is
given by the ratio between the absolute value of the logmoneyness and the geodesic
distance to the vertical line F = K.
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On VIX Futures in the rough Bergomi model

Aitor Muguruza

(joint work with Antoine Jacquier, Claude Martini)

The rough Bergomi model introduced by Bayer, Friz and Gatheral [1] has been
outperforming conventional Markovian stochastic volatility models by reproducing
implied volatility smiles in a very realistic manner, in particular for short maturi-
ties. We investigate here the dynamics of the VIX and the forward variance curve
generated by this model, and develop efficient pricing algorithms for VIX futures
and options. We further analyse the validity of the rough Bergomi model to jointly
describe the VIX and the SPX, and present a joint calibration algorithm based on
the hybrid scheme by Bennedsen, Lunde and Pakkanen [2].
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Volatility and arbitrage

Johannes Ruf

(joint work with Bob Fernholz, Ioannis Karatzas)

The capitalization-weighted cumulative variation
∑d

i=1

∫ ·
0 µi(t)d〈log µi〉(t) in an

equity market consisting of a fixed number d of assets with capitalization weights
µi(·), is an observable and a nondecreasing function of time. If this observable
of the market is not just nondecreasing but actually grows at a rate bounded
away from zero, then strong arbitrage can be constructed relative to the market
over sufficiently long time horizons. It has been an open issue for more than ten
years, whether such strong outperformance of the market is possible also over
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arbitrary time horizons under the stated condition. We show that this is not
possible in general, thus settling this long-open question. We also show that,
under appropriate additional conditions, outperformance over any time horizon
indeed becomes possible, and exhibit investment strategies that effect it.

In this talk, we highlight an open question concerning the precise bounds on
the time horizon for which arbitrage can be guaranteed (see also Section 7 in [1]).
Discussions with the workshop participants Paul Gassiat and Mete Soner seem to
indicate that this gap can be closed.
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A random surface description of the capital distribution in large
markets

Mykhaylo Shkolnikov

(joint work with Praveen Kolli)

We study the capital distribution in the context of the first-order models of Fern-
holz and Karatzas. We find that when the number of companies becomes large the
capital distribution fluctuates around the solution of a porous medium PDE ac-
cording to a linear parabolic SPDE with additive noise. Such a description opens
the path to modeling the capital distribution surfaces in large markets by systems
of a PDE and an SPDE and to understanding a variety of market characteristics
and portfolio performances therein.
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PV and XVA Greeks for Callable Exotics by Algorithmic
Differentiation

Alexandre Antonov

(joint work with Numerix R&D)

Greeks, or sensitivity calculations, are complicated and time-consuming operations
performed by financial libraries. Traditionally, Greeks have been used by traders
who needed them to hedge their risk. After the financial crisis, an extra layer of
complexity was added as banks began systematically hedging different valuation
adjustments, starting with the Credit Valuation Adjustment (CVA). These valu-
ation adjustments, often referred to as XVAs (with FVA, KVA, and MVA being
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other major constituents), depend on the future exposure of a portfolio of instru-
ments (at the netting set level and above in the hierarchy). As a result, we require
a distribution of future prices for even a simple swap position; this can be handled
using Monte Carlo (MC) methods.

The most common method of computing a sensitivity is the bump-and-reprice
method, which is widely used due to the simplicity and universality of its imple-
mentation. The main drawback of the bump-and-reprice method is its slow speed:
to compute an extra Greek, one needs to rerun the pricing calculation of sensitive
instruments. Modern methods for computing Greeks, such as payoff differentiation
or likelihood methods, are much faster than the bump-and-reprice method but are
more complicated and less universal. They deliver a Greek as a mathematical
derivative of a PV or XVA over a given parameter and must be tailored to the
specific model or payoff.

A traditional payoff differentiation is applied path-by-path to forward instru-
ments. It can either be direct (i.e., forward in time) or adjoint (i.e., backward in
time). Direct differentiation is more efficient when the number of results (outputs)
is greater than the number of parameters. Adjoint differentiation (AD) is more
efficient in the opposite case and is more natural in finance, where we seek the
sensitivity of a single output (the CVA) against the many risk factors influencing
the portfolio.

Following the seminal paper by Giles and Glasserman in 2006 [7], AD was
introduced to mathematical finance by Capriotti and Giles [5, 6] and Joshi and
Yang [8] as a general method for the efficient calculation of sensitivities and has
gained wide popularity. Andreasen [1] was the first to apply AD to the complicated
world of XVA.

Another important aspect of AD is that it is an adjoint action, meaning that
it takes place after the main (pricing) calculation. Therefore, it is necessary to
record information that is generated during pricing that will be utilized later on for
the AD. All of the pricing operations are recorded in a data structure commonly
referred to as the tape. During the adjoint pass, the tape is ‘played back’ to
perform the differentiation using the recorded information. The tape adds a lot of
complexity to the AD implementation in the form of potential memory issues due
to large storage demands, coding, debugging, and maintenance difficulties, etc.

Callable instrument prices and XVA measures are generally calculated using
Monte Carlo regression (also known as least-squares Monte Carlo or American
Monte Carlo). The value of a given path at a particular point in time can depend
on the values of all paths (including itself) at previous time steps. This property
makes a direct AD application difficult. The first detailed description of AD for
exotic instruments with full regressions appeared in [3]. In that paper a technical
recipe was given for the traditional application of the AD approach to general
instruments. As the main result of that paper, a new differentiation technique,
named ‘backward differentiation” (BD), was proposed. It is applied at the time of
pricing and completely avoids the instrument tape and its related complications.
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In this presentation we generalize this backward differentiation method to XVA
Greeks (details can be found in [4]). We start by treating cases where cashflow
derivatives are sufficient for computing PV/XVA Greeks, i.e., where the differen-
tiation of conditional expectations (or regression functions) is not necessary. For
example, PV Greeks for Bermudan swaptions can be computed without having
to perform the complicated step of regression function differentiation. We modify
the BD algorithm to calculate Greeks for such instruments: the method is applied
during the backward pricing procedure and has almost no overhead with respect
to a pure backward pricing (without the Greeks).

A general XVA calculation cannot be done using only the cashflow derivatives–
some exceptions are listed in this article–instead, the differentiation of future in-
strument values that are results of the regression may be required. We leverage
the algorithmic calculation of future values (algorithmic exposures) proposed in [2]
and describe adjoint differentiation (AD) and the new BD for XVA Greeks. The
latter algorithm is much simpler than the former, in particular, it does not require
the use of the instrument tape, i.e., it does not require the storage of certain payoff
derivatives during the pricing procedure as is the case for AD. At the same time,
both AD and BD enjoy a similar level of performance.
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Maximum Likelihood Estimation for Wishart processes

Aurélien Alfonsi

(joint work with Ahmed Kebaier, Clément Rey)

Wishart processes have been introduced by Bru [4] and take values in the set of
positive semidefinite matrices. Let d ∈ N∗ denote the dimension, Md be the set of
real d-square matrices, S+

d be the subset of positive semidefinite matrices. Wishart
processes are defined by the following Stochastic Differential Equation (SDE)

(1)

{
dXt =

[
αa⊤a+ bXt +Xtb

⊤] dt+
√
XtdWta+ a⊤dW⊤

t

√
Xt, t > 0

X0 = x ∈ S+
d ,



724 Oberwolfach Report 13/2017

where α ≥ d− 1, a ∈ Md, b ∈ Md and (Wt)t≥0 denotes a d-square matrix made
of independent Brownian motions. We recall that for x ∈ S+

d ,
√
x is the unique

matrix in S+
d such that

√
x
2

= x. Existence and uniqueness results for the SDE (1)
are given by Bru [4] and Cuchiero et al. [5] in a more general affine setting.

In the last decade, there has been a growing interest to use Wishart processes
for modelling, especially for financial applications. In equity, Gourieroux and Su-
fana [10] and Da Fonseca et al. [7] have proposed a stochastic volatility model for a
basket of assets that assumes that the instantaneous covariance between the assets
follows a Wishart process. This extends the well-known Heston model with many
assets. Wishart processes have also been used for interest rates models: affine
term structure models involving these processes have been proposed for example
by Gnoatto [8] and Ahdida et al. [1]. For all these models, the question of esti-
mating the parameters of the underlying Wishart process is relevant for practical
purposes. However, there are still few studies on the estimation of its parameters.
This issue has been considered by Da Fonseca et al. [6] by considering the mo-
ments, while the Maximum Likelihood Estimator (MLE) of the Cox-Ingersoll-Ross
process (d = 1 case) has been recently by Ben Alaya and Kebaier [2, 3].

Here, following Lipster and Shiryaev [12] and Kutoyants [11], we study the
Maximum Likelihood Estimator (MLE) assuming that we observe the full path
(Xt, t ∈ [0, T ]) up to time T > 0. Thanks to this assumption, a⊤a can be obtained
from the quadratic covariations of X and, up to a linear transformation, the esti-
mation problem boils down to estimate the drift parameters (b, α) when a = Id.
We then calculate the likelihood of a path (Xt, t ∈ [0, T ]) and show that this func-

tion has a unique global maximum, which defines the MLE (b̂T , α̂T ). We study the
convergence of this estimator toward (b, α) and obtain precise convergence rates
and limits for this estimator in the ergodic case and in some nonergodic cases.
We check that the MLE achieves the optimal convergence rate in each case by
looking at local asymptotic properties. Motivated by this study, we also present
new results on the Laplace transform that extend the recent findings of Gnoatto
and Grasselli [9] and are of independent interest.
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Optimal Reward for a Mean Field Game of Racing

Yuchong Zhang

(joint work with Marcel Nutz)

We look at a tractable mean field game of exit time control, where players com-
pete to finish their given projects, and are rewarded based on the ranking of their
completion times. Such a model features relative performance evaluation, an im-
portant topic in contract theory. They can be applied to various settings such as
firms competing to be the first to develop a new product or employees competing
to be the first to achieve a certain quantity of sales. Specifically, we model the
completion time of each player as the first jump time τ of a doubly stochastic
Poisson process with controlled jump intensity λ. The representative player aims
at maximizing the expected reward minus the cost of effort:

sup
λ

E

[
R(1 − ρ(τ)) −

∫ τ

0

c(1 − ρ(t))λ2t dt

]
,

where ρ(t) is the fraction of players that have not finished the game at time t,
and R and c are functions of rank, describing the reward scheme and the cost
parameter, respectively.

Our goal here is to understand the equilibrium behavior and study the problem
of optimal reward design which is of great interest to the central planner. Two
specific problems we considered are:

(1) Minimum quantile problem: Given reward budget R0 and a number α ∈
(0, 1), what rank-based reward scheme minimizes the α-quantile of the
equilibrium completion times?

(2) Minimum budget problem: What is the minimum total reward the planner
needs to provide in order to secure a completion rate of α ∈ (0, 1) by a
given deadline T ?

In a one-stage Poisson race without common noise, closed-form solutions to both
problems can be found by solving a constrained calculus of variation problem, and
the solutions appear to be time inconsistent. When common noise is added to the
cost parameter, we obtain a pair of stochastic Hamilton-Jacobi and Kolmogorov
equations in equilibrium, which admits a strong mean field game solution.
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On uniqueness and blowup properties for a class of second order SDEs

Eyal Neumann

(joint work with Alejandro Gomez, Jong Jun Lee, Carl Mueller, Michael Salins)

1. Uniqueness

The basic conditions for uniqueness of partial differential equations (PDE) are the
same as for ODE: coefficients must be Lipschitz continuous. But the corresponding
results for stochastic partial differential equations (SPDE) have only appeared
recently. These results are restricted to the stochastic heat equation,

∂tu = ∆u+ f(u)Ẇ(1)

u(0, x) = u0(x).

Here x ∈ R, Ẇ = Ẇ (t, x) is two-parameter white noise, and f is Hölder continuous
with index γ. In this case, strong uniqueness holds for γ > 3/4 [7], but fails for
γ < 3/4 [5]. One can also replace white noise by colored noise, which may allow x
to take values in Rd for d > 1, and may change the critical value of γ.

Types of SPDE other than the stochastic heat equations are still unexplored
with regard to uniqueness, except for the standard fact that uniqueness holds
with Lipschitz coefficients. For example, there is no information about the critical
Hölder continuity of σ(u) for uniqueness of the stochastic wave equation:

∂2t u(t, x) = ∆u(t, x) + σ(u(t, x))Ẇ ,(2)

u(0, x) = u0(x), ∂tu(0, x) = u1(x).

Here again x ∈ R and Ẇ = Ẇ (t, x) is a two-parameter white noise.
In order to shed light on uniqueness for the stochastic wave equation, we pro-

posed in [1] studying the corresponding SDE, Ẍt = σ(Xt)Ḃt. By making this
equation into a system of first-order equations, we get

dXt = Ytdt,(3)

dYt = |Xt|αdBt,
X0 = x0, Y0 = y0.

Here again (Bt) is a standard Brownian motion.

In [1] we proved that if α > 1/2 and the initial condition (x0, y0) 6= (0, 0), then
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(3) has a unique solution in the strong sense. Moreover the solution to (3) never
reaches the origin with probability 1. On the other hand, when 0 < α < 1 and
(x0, y0) = (0, 0), we proved that both strong and weak uniqueness fail for (3).

2. Blowup of the solutions

Another interesting property of SPDE is the blowup of the solution. For example,
let a > 0 and consider the nonnegative solutions to the one-dimensional stochastic
heat equation in compact domain:

(4)





∂tu(t, x) = ∆u(t, x) + uγ(t, x)Ẇ ,

u(t, 0) = u(t, a) = 0,

u(0, x) = u0(x).

Mueller in [3] showed that if γ < 3/2, then the solution to (4) exists for all time
and is finite. On the other hand, Mueller showed in [4] that if γ > 3/2, then the
solution to (4) blows up in finite time with a positive probability.

The blowup property of the stochastic wave equation appears to be more diffi-
cult to analyse. It is still unknown what the conditions are on σ for a finite time
blowup of the solution of (2) (see [6]). As in the uniqueness case, we studied the
solutions of (3) as the first step of understanding the problem for the stochastic
wave equation. The finite time blowup of the solutions of first-order stochastic
differential equations can be checked by the Feller test for explosions (for example,
see [2]); however, there is no simple way to check in the case of higher-order equa-
tions. It is well known that the solution of (3) doesn’t blow up if the coefficients
have at most linear growth (that is α ≤ 1). In [1] we proved that when α > 1, the
solution of (3) blows up in finite time with probability one. It would be interesting
to check whether there is a critical exponent for the blowup in finite time of the
solutions to the stochastic wave equations.
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Rough volatility from an affine point of view

Josef Teichmann

(joint work with Christa Cuchiero)

Hawkes processes model self-exciting growth phenomena, where the process’ past
enters its intensity in a linear, rescaled way. These models are important in finance,
economics and population dynamics and have recently gained a lot of attention in
micro-foundation of rough volatility models, see e.g., [1].

We aim to provide a simple and computationally attractive Markovian frame-
work for Hawkes processes, which allows to understand ubiquitous limit theorems
from a different point of view and which allows to easily head for multi-variate
extensions.

We consider a process λ, called a Hawkes process lift, taking values in d-
dimensional vector measures Md(R≥0, ν) absolutely continuous with respect to
a matrix of measures ν, all supported on R≥0:

We denote by µ : R≥0 → Rd≥0 and φ : R≥0 → Rd≥0 ⊗ Rd≥0 the finite-valued
Laplace transforms of ν and λ0, i.e.

µ(t) =

∫ ∞

0

e−txλ0(dx), φ(t) =

∫ ∞

0

e−txν(dx) ,

for t > 0. Notice that φ(0) is not necessarily assumed finite here.

Definition 1. A Hawkes process lift follows the affine dynamics

dλt(dx) = −xλt(dx)dt + ν(dx)dNt

with initial value λ0 and a pure jump process N where each component N i has
instantanous predictable jump characteristics δ{1}λ

i
t−(R≥0), for i = 1, . . . , d. In

particular λt− is a finite measure for all t ≥ 0 if λ0 is a finite measure componen-
twise.

Consider a Hawkes process N with instantanous jump characteristic δ{1}λ̄t
given by the equation

λ̄t = µ(t) +

∫ t

0

φ(t− s)dNs

Then the (predictable) intensity λ̄ has the representation:

λ̄t = λt−(R≥0)

in terms of the Hawkes process lift.
The above equation defines a unique measure-valued process by explicit con-

struction for finite measures as initial values. The representation property follows
from the variation of constants formula. Notice that the caglad version of λ defines
a Markov process with vectors of finite measures as state space whereas the cad-
lag version is at jump times not necessarily finitely valued. However, both agree
outside nullsets for each t.

Affine technology easily allows to calculate the Fourier-Laplace transform of
the marginal distributions of the Hawkes process lift. Of particular interest for
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applications, in particular in variance modelling, is the affine transform formulas
with respect to term structures of intensity swaps. This turns out to be a generic
phenomenon for a large class of affine processes.

More precisely, we aim to express the Fourier-Laplace transform of (λt, Nt)

Eλs,Ns

[
e
∫

∞

0
u(x)λt(dx)+vNt

]
= e

∫
∞

0
ψ(t−s,u,v)(x)λs(dx)+vNs ,

for u ∈ Cb(R+;Cd), a lying vector of bounded continuous functions, and a lying
vector v ∈ Cd, in terms of the following term structure of intensity swap prices

Vs(T ) := Eλs,Ns

[
λT−(R≥0)

]

for T ≥ s. This works since by variation of constants

Vs(T ) =

∫ ∞

0

exp(−x(T − s))λs(dx)+

+

∫ T

s

∫ ∞

0

exp(−x(T − u))ν(dx)Vs(u)du ,

whence λs, actually its Laplace transform, can be easily expressed by means of
Vs(T ) for T ≥ s ≥ 0. So by the classical affine transform formula (and under
certain anlyticity assumptions on T 7→ Vs(T )) one obtains the announced affine
transform formula.

The previous consideration raises the question whether we can properly use
intensity swaps as coordinates of an affine process. The answer is affirmative after
a Musiela parametrization, i.e. Vs(s+y) := Ws(y). Actually intensity swaps satisfy
after a minor calculation the following equation

dWt(y) =
d

dy
Wt(y)dt+ φ̃(y)

{
dNt −Wt−(0)dt

}
,

where N is a process with instantanous jump characteristic δ{1}Wt−(0) and φ̃ :=∑
k≥1 φ

∗k.
The announced representation of Hawkes processes and their limits pave a way

towards a unified treatment of micro-foundations and their limits, see [1], from
a Markovian and affine perspective, as well as an alternative for the numerical
treatment of these roughly driven processes.
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Semimartingale preservation via causal transport

Beatrice Acciaio

(joint work with Julio Backhoff Veraguas, Anastasiia Zalashko)

From the seminal works of Monge [9] and Kantorovich [6], the theory of optimal
transport has widely developed and established itself as a fervent research area,
with growing applications in the most various areas of sciences and engineering.
Powerful connections have also been established between the theory of optimal
transport and stochastic analysis. In the recent article by Lassalle [8], the author
creates another bridge between optimal transport and stochastic analysis, consid-
ering the transport problem under the so called causality constraint. The origins
of this concept can be found in the work of Yamada and Watanabe [10] (see [2, 7]
for a generalization of the latter).

The main idea behind my presentation is the exploitation of ideas and tech-
niques from optimal transport under causality, in order to tackle the classical
stochastic analysis problem of enlargement of filtrations. The central question of
enlargements of filtrations is whether the semimartingale property is preserved
when passing from a given filtration to a larger one; see [1, 5, 4, 3] for some of
the earliest works on the subject. To describe causality, one is first given two Pol-
ish filtered probability spaces (X , {FX

t }Tt=0, µ) and (Y, {FY
t }Tt=0, ν). A transport

plan π is a probability measure on X × Y having the prescribed marginals µ, ν;
this is denoted by π ∈ Π(µ, ν). It is further called causal if a certain measurability
condition holds, roughly: the amount of ‘mass’ transported by π to a subset of the
target space Y belonging to FY

t , is solely determined by the information contained
in FX

t . Thus a causal plan transports µ into ν in an adapted way.
Given a cost function c on X×Y, the general causal transport problem is defined

as

inf{Eπ[ c ] : π ∈ Π(µ, ν), π causal}.(1)

The situation of interest for the purposes of the presentation is when both X and Y
are the space of continuous functions, possibly endowed with different filtrations.
Concretely, let B be a Brownian motion on some probability space (Ω,FB,P),
where FB is the filtration generated by B, and let H ⊇ FB be a finer filtration
(i.e., H is an enlargement of FB). If B is still a semimartingale with respect to
the larger filtration H, then its unique continuous semimartingale decomposition
takes the form

(2) dBt = dB̃t + dAt,

where B̃ is an H-Brownian motion and A is a continuous H-adapted finite variation
process. Then the joint law of (B̃, B) turns out to be a causal transport plan on
path space, when considering the canonical and an appropriate enlarged filtration.
Since B̃ is an anticipative but deterministic mapping of B, much as a Monge map
in classical transport (but mapping a target measure to the source one), one can
say that causal transport plans correspond to Kantorovich generalization of such
anticipative mappings.
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The main result I presented, is a characterization of the preservation of the
semimartingale property in an enlarged filtration, for a process which is a Brow-
nian motion in the original filtration. I showed that a necessary and sufficient
condition for this preservation property, is that the causal transport problem (1)
on continuous path space is finite, where µ is the Wiener measure, ν is some mea-
sure equivalent to µ, and the cost function is the total variation of the difference
of the coordinate processes on the product space. In addition, when considering
transport plans under which this difference is absolutely continuous with respect
to Lebesgue measure, I gave a necessary and sufficient condition not only for the
semimartingale preservation property to hold, but also to ensure that the finite
variation process in (2) is absolutely continuous (which yields the so-called in-
formation drift). When the cost function is of Cameron-Martin type, and the
filtration enlargement is done entirely at time zero, the causal transport prob-
lem can be interpreted in terms of entropy and mutual information. Therefore,
irrespective of the cost function and the kind of enlargement, the value of our
causal transport problems can be seen as a mutual information in a wider sense.
Finally, I mentioned the fact that a generalization of the definition of causality
allows to determine necessary and sufficient conditions for a general continuous
semimartingale to remain a semimartingale with respect to an enlarged filtration.
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Path-Dependent Volatility

Julien Guyon

Three main volatility models have been used so far in the finance industry: con-
stant volatility, local volatility (LV), and stochastic volatility (SV). The first two
models are complete: since the asset price is driven by a single Brownian motion,
every payoff admits a unique self-financing replicating portfolio consisting of cash
and the underlying asset, therefore its price is uniquely defined as the initial value
of the replicating portfolio, independently of utilities or preferences. Unlike the
constant volatility models, the LV model is flexible enough to fit any arbitrage-free
surface of implied volatilities (henceforth, ‘smile’)–but then no more flexibility is
left.

For their part, SV models are incomplete: the volatility is driven by one or sev-
eral extra Brownian motions, and as a result perfect replication and price unique-
ness are lost. Modifying the drift of the SV leaves the model arbitrage-free, but
changes option prices.

Using SV models allows us to gain control on key risk factors like volatility of
volatility (‘vol of vol’), forward skew, and spot-vol correlation. SV models generate
joint dynamics of the asset and its implied volatilities (spot-vol dynamics hence-
forth) that are much richer than the LV ones. For instance, using a very large mean
reversion together with a large vol of vol and a very negative spot-vol correlation,
one can generate an almost flat implied volatility surface, together with very neg-
ative short term forward skews. If an LV model were used to match this smile,
the LV surface would be almost flat as well, producing vanishing forward skew.
As a result, cliquets of forward starting call spreads would be much cheaper in the
LV model. This is still true even if the smile is not flat: the LV model typically
underprices these options. Using SV models prevents possible mispricings.

To allow SV models to perfectly calibrate to the market smile, one can use
stochastic local volatility (SLV) models, i.e., multiply the SV by an LV (the so-
called ‘leverage function’) which is fitted to the smile using the particle method; see
[6]. This modifies the spot-vol dynamics, but rather slightly: usually the leverage
function, seen as a function of the asset price, becomes flatter and flatter as time t
grows, so the SLV dynamics become closer and closer to pure SV ones [9].

At this point a natural question arises: can we build complete models that
have all the nice properties of SLV models, namely, rich spot-vol dynamics, and
calibration to the market smile? For instance, can we build a complete model that
fits a flat smile, and yet produces very negative short term forward skews? It is
tempting but wrong to quickly answer ‘no’, by arguing that the only complete
model calibrated to the smile is the LV model. This is not true: in this talk,
we show that path-dependent volatility (PDV) models, which are complete, can
produce rich spot-vol dynamics and, furthermore, can perfectly fit the market
smile. The two main benefits of model completeness are price uniqueness and
parsimony: it is remarkable that so many popular properties of SLV models can
be captured using a single Brownian motion. Although perfect delta-hedging is
unrealistic, incorporating the path-dependency of volatility into the delta is likely
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to improve the delta-hedge. Not only that: thanks to their huge flexibility, PDV
models can generate spot-vol dynamics that are not attainable by SLV models.

PDV models are those models where the instantaneous volatility σt depends on
the path followed by the asset price so far:

dSt
St

= σ(t, (Su, u ≤ t)) dWt

where, for simplicity, we have taken zero interest rates, repo, and dividends. In
practice, the volatility σt ≡ σ(t, St, Xt) will often be assumed to depend on the
path only through the current value St and a finite set Xt of path-dependent
variables, which may include for example running or moving averages, maxi-
mums/minimums, realized variances, etc.

PDV models have been widely overlooked, compared to LV and SV. The most
famous PDV models are probably the ARCH model by Engle [3] and its descen-
dants GARCH [2], NGARCH, IGARCH, etc. But these are discrete-time models
which are hardly used in the derivatives industry. The two other main contribu-
tions so far are due to Hobson and Rogers [10] and Bergomi [1]. In its discrete
setting version, Bergomi’s SV model is actually a mixed SV-PDV model in which,
given a realization of the variance swap volatility at time Ti = i∆ for matu-

rity Ti+1,
√
ξiTi

, the (continuous time) volatility of the underlying on [Ti, Ti+1]

is path-dependent: it reads σ(St/STi), where σ is calibrated to both ξiTi
and a

desired value of the forward at-the-money (ATM) skew for maturity ∆.
By contrast, the Hobson-Rogers model is a pure PDV model in which the volatil-

ity σt = σ(Xt) is a deterministic function of Xt = (X1
t , . . . , X

n
t ), where

Xm
t =

∫ t

−∞
λe−λ(t−u)

(
ln
St
Su

)m
du

When n = 1, the volatility depends only on the offset

X1
t = lnSt −

∫ t

−∞
λe−λ(t−u) lnSu du

It is determined by the local trend of the asset price over a period of order 1/λ
years. This assumption is supported by empirical studies. Here the choice of an
infinite time window and exponential weights is only guided by computational
convenience: it ensures that (St, Xt) is a Markovian process, so the time-t price
of a European payoff of the type g(ST , XT )–in particular the price of a vanilla
option–reads u(t, St, Xt) where u is the solution to a second order parabolic partial
differential equation. Note in particular that the implied volatilities at time 0 in
the model depend on all the past asset prices through X0.

At this point four natural questions arise:

(1) Can we specify σ(·) and λ so as to exactly fit the market smile? [12, 4]
only gave approximate calibration results.

(2) Does the calibrated model have desired dynamics of implied volatility, such
as large negative short term forward skews for instance?
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(3) In the definition of Xt, can we use general weights and a finite time window
[t − ∆, t] instead of (−∞, t], so that the volatility truly depends only a
limited portion of the past, e.g., the previous month? The generalization
in [5] is very partial as it requires positive weights on [0, t].

(4) Much more importantly: how do we generalize to other choices of Xt?
The generalization in [11], where the volatility depends on a particular
modified version of the offset X1

t , is also very partial.

In this talk we solve all these questions at a time: first we choose any set of path-
dependent variables Xt and any function σ(t, S,X) so that the PDV model with
σt = σ(t, St, Xt) has desired spot-vol dynamics and/or captures historical features
of volatility, and then we define a new PDV model by multiplying σ(t, S,X) by a
leverage function l(t, S) and we perfectly calibrate l to the market smile of S using
the particle method [6]. When we do not calibrate to the smile (l ≡ 1), we speak
of ‘pure’ PDV.Usually, multiplying the pure PDV σ(t, St, Xt) by the calibrated
leverage function distorts only slightly the spot-vol dynamics since leverage func-
tions typically flatten over time. This way we mimic SLV models, with the pure
PDV σ(t, St, Xt) playing the role of the SV, but we stay in the world of complete
models.

Interesting open questions include the following:

• Existence and uniqueness of a solution to the McKean stochastic differen-
tial equation that describes the calibrated model.

• For a given scalar path-dependent variable Xt, calibration of a pure PDV
σ(t,Xt) to the market smile.

• (Machine learning) Infer from the data a PDV that accurately describes
short-term implied volatility.
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Improved Fréchet-Hoeffding bounds and model-free finance

Antonis Papapantoleon

(joint work with Thibaut Lux)

We consider a random vector X = (X1, . . . , Xd) and assume that the marginal
distributions of its constituents are known, however the joint distribution is either
completely unknown or only partially known. This framework is known in the
literature as model or, more specifically, dependence uncertainty. We are then
interested in computing expectations of the form E[f(X)], for suitable functions f .
These quantities correspond to the prices of multiasset derivatives or, subject to an
additional transformation, the Value-at-Risk of X, and have several applications
in financial and actuarial mathematics.

In the present framework, since the joint distribution is not known, we cannot
actually compute E[f(X)] exactly, thus we will resort to computing bounds on
this expectation, and require that these bounds are as tight as possible. One
way to compute bounds is via the theory of copulas and the well-known Fréchet-
Hoeffding bounds. Indeed, from Sklar’s theorem we know that there exists a one-
to-one correspondence between the joint law F and the copula C of the random
vector X; it holds that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

for all (x1, . . . , xd) ∈ Rd, where F1, . . . , Fd denote the marginal distributions of
X1, . . . , Xd. Moreover, the theorem of Fréchet and Hoeffding states that each
copula C satisfies the following:

Wd(u) := max
{

0,

d∑

i=1

ui − d+ 1
}
≤ C(u) ≤ min{u1, . . . , ud} =: Md(u),

for all u ∈ [0, 1]d. Therefore, using ordering results for copulas, we can translate
these bounds into bounds on the expectation E[f(X)], for suitable functions f .
However, these bounds are typically very wide and do not provide meaningful
information. In addition, there is typically additional, partial information on the
joint law or the copula of X, available that is neglected by these bounds.

The aim of this talk is to present recent results on how to improve and sharpen
the Fréchet-Hoeffding bounds by taking advantage of additional information on
the copula C. There are various types of additional information than can be used:
(i) knowledge of the copula on a subset of [0, 1]d, (ii) knowledge of the value of
a measure of association, (iii) knowledge of bounds on lower-dimensional copulas,
and (iv) knowledge that the copula lies in the vicinity of a reference copula. The
improved Fréchet-Hoeffding bounds in case (i) are provided by the following result.

Theorem 1. Let S ⊂ Id be a compact set and Q∗ be a d-quasi-copula. Consider
the set

QS,Q∗

:=
{
Q : Q(x) = Q∗(x) for all x ∈ S

}
.
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Then, for all Q ∈ QS,Q∗

, it holds that

QS,Q
∗

(u) ≤ Q(u) ≤ Q
S,Q∗

(u) for all u ∈ Id,

where the bounds QS,Q
∗

and Q
S,Q∗

are provided by

QS,Q
∗

(u) = max
(

0,
d∑

i=1

ui − d+ 1,max
x∈S

{
Q∗(x) −

d∑

i=1

(xi − ui)
+
})
,

Q
S,Q∗

(u) = min
(
u1, . . . , ud,min

x∈S

{
Q∗(x) +

d∑

i=1

(ui − xi)
+
})
.

Assuming now that the improved Fréchet-Hoeffding bounds were copulas, we
would be able to translate them into bounds on E[f(X)] using ordering results from
Müller and Stoyan [4]. This is the case when d = 2, see Tankov [5] and Bernard
et al. [1]. However, it turns out that the improved Fréchet-Hoeffding bounds
are proper quasi-copulas for d > 2, see [2, Section 4], therefore these ordering
results do not apply. Even worse, the expectation might not be well-defined, since
quasi-copulas do not always define a (signed) measure.

In order to overcome these problems, we have developed in [2] an alternative
represenation of the expectation E[f(X)], that makes also sense when considering
quasi-copulas; this is based on an integration-by-parts idea. Moreover, we have
also proved ordering results for this new representation, for ∆-monotonic and ∆-
antitonic functions. As an application, we have derived in [2] model-free bounds
on the prices of multi-asset option prices that significantly improve known results,
while [3] contains an application to portfolio Value-at-Risk.
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[2] T. Lux and A. Papapantoleon. Improved Fréchet-Hoeffding bounds on d-copulas and appli-
cations in model-free finance. arXiv:1602.08894, 2016.

[3] T. Lux and A. Papapantoleon. Model-free bounds on Value-at-Risk using partial dependence
information. arXiv:1610.09734, 2016.

[4] A. Müller and D. Stoyan. Comparison methods for stochastic models and risks. Wiley, 2002.
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Robust Markowitz mean-variance portfolio selection under ambiguous
covariance matrix

Huyên Pham

(joint work with Amine Ismail)

The Markowitz mean-variance portfolio selection problem [20], initially considered
in a single period model, is the cornerstone of modern portfolio allocation theory.
Investment decisions rules are made according to the objective of maximizing the



Mathematics of Quantitative Finance 737

expected return for a given financial risk quantified by the variance of the portfolio,
and lead to the concept of efficient frontier, which proposes a simple illustration
of the trade-off between return and risk. The use of Markowitz efficient portfolio
strategies in the financial industry has become quite popular mainly due to its
natural and intuitive formulation.

In a continuous-time dynamic setting, the mean-variance criterion involves in a
nonlinear way the expected terminal wealth due to the variance term, and induces
the so-called time inconsistency. This nonstandard feature in stochastic control
problem has generated various resolution approaches. A first approach in [25] con-
sists in embedding the mean-variance problem into an auxiliary standard control
problem that can be solved by using stochastic linear quadratic theory. A second
approach relies on the observation that the dynamic mean-variance problem can
be reformulated as a control problem of McKean-Vlasov type, where the cost func-
tional may depend nonlinearly on the law of the wealth state process. It has then
been solved in [2] where the authors have derived a version of the Pontryagin max-
imum principle. More recently, the paper [22] has developed a general dynamic
programming approach for the control of McKean-Vlasov dynamics and applied
their method for the resolution of the mean-variance portfolio selection problem.
We also mention the recent paper [10], where the mean-variance problem is viewed
as the McKean-Vlasov limit of a family of controlled many-component weakly in-
teracting systems. These prelimit problems are solved by standard dynamic pro-
gramming, and the solution to the original problem is obtained by passage to the
limit.

In the above cited papers, the continuous-time Markowitz problem was essen-
tially studied in the framework of a Black-Scholes model, and abundant research
has been conducted to extend this setup by including models with random pa-
rameters. Among this large literature, we cite the recent paper [6] which uses a
stochastic correlation model for taking into account the correlation risk between
risky assets. In all these works, it is assumed that investors have a perfect knowl-
edge of the stochastic dynamics governing the price process, that is a ‘correct’
model has to be first specified, and then the parameters have to be accurately
estimated or calibrated. However, in finance, a model is clearly an approximation
of the reality, and moreover within a model, the estimation problem is a difficult
issue. For example, it is known that the estimation of correlation between assets
may be extremely inaccurate due to asynchronous data and lead-lag effect, espe-
cially when the number of assets is large, and the correlation estimate converges
to its true value less rapidly than the estimates of volatilities that are based on the
full sets of marginal observations, see e.g. [14], [13] and [1]. On the other hand,
optimal portfolios are typically sensitive to the model and the parameters, and
may perform badly when the parameters are not sufficiently accurate. Therefore,
the impact of model misspecification, due to erroneous models and measurements,
is an important issue in the practical implementation of trading strategies, and is
usually refereed to as model risk.
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In order to address the model risk related to uncertainty or ambiguous model
parameters, the robust approach, which consists in taking decisions under the
worst-case scenario over all conceivable models, is a notable research direction
in mathematical finance. A common robust modeling is to consider a family of
probability measures representing all the prior beliefs of the investor on the model
parameters. For example, drift uncertainty is modeled via Girsanov’s theorem
by a set of dominated probability measures, and has been first considered in the
context of portfolio selection in [12], and then largely studied in the literature, see
the recent paper [15] and the references therein.

We focus here on uncertainty or ambiguity on the covariance matrix of the risky
assets, assuming that the instantaneous return (drift) is known (or by considering
that we have a strong belief on its value). Uncertain volatility models have been
considered in [3], [18], or [7] in the context of option pricing, and in [19], [16] for
robust portfolio optimization with expected utility criterion. As in [11], we are
also interested in a setting with ambiguous correlation between two risky assets
since, as already mentioned above, the correlation parameter is hard in practice
to infer with accuracy from market information.

In this paper, we investigate the robust Markowitz mean-variance portfolio se-
lection under uncertainty on the volatilities and correlation of multi risky assets.
Robust mean-variance problems have been considered in the economic and en-
gineering literature, mostly on single period or multiperiod models, see e.g. [9],
[23] and [17]. Here, in our continuous-time modeling, we adopt the probabilistic
framework in [8], related to the theory of G-expectation [21] (see also [24]), in or-
der to capture model uncertainty and ambiguity on the covariance matrix, which
leads to a set of non-dominated probability measures for the prior probabilities.
We also make some concavity assumption on the set of prior covariance matrix.
From a mathematical viewpoint, and compared to robust problem with expected
utility, we face two additional difficulties: (i) it cannot be tackled a priori by
classical stochastic differential game approach due to the nonlinear variance term,
(ii) moreover, since the worst-case scenario is not the same for the mean and the
variance, it is not straightforward that it can be put into a min-max problem. We
then use the following methodology. We consider a robust mean-variance criterion,
which is actually formulated as a min-max problem, and show a posteriori how
it is connected to the robust Markowitz problem. We tackle the former problem
by a McKean-Vlasov dynamic programming approach: we first reformulate the
robust mean-variance problem into a deterministic differential game problem with
the law of the wealth process under a prior probability measure as state variable.
Then, adapting optimality arguments from dynamic programming principle, and
using recent chain rule for flow of probability measures derived in [4] and [5], we
state a verification theorem which gives the optimal strategy and performance in
terms of a Bellman-Isaacs equation in the Wasserstein space of probability mea-
sures. We next apply this analytic partial differential equation characterization of
the solution to the robust mean-variance problem, and show that the problem can
be reduced into two steps: first, we determine the worst-case scenario, and the
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remarkable point is that it corresponds to a constant variance/covariance matrix
obtained by the minimization of the risk premium, which is a direct input of the
model. Secondly, we obtain the optimal mean-variance strategy as in the Black-
Scholes model with the known instantaneous return and the worst-case constant
covariance matrix. We illustrate our results with closed-form expressions for the
optimal portfolio strategies in two examples: uncertain volatilities and ambiguous
correlation between two risky assets. Moreover, we are able to derive explicitly
the corresponding robust efficient frontier of the robust Markowitz problem. In
particular, we obtain a lower bound for the Sharpe ratio of any robust efficient
portfolio strategy, which is independent of any modelling on the covariance matrix.

How can robust mean-variance portfolio strategies help to improve performance
of investors? We address this question by using simulations to evaluate and com-
pare the Sharpe ratio of a robust investor and a simple investor who implements
mean-variance strategies with a misspecified model in two examples: (i) in the
first example, the true dynamics of the stock price is assumed to be governed by
a Heston type stochastic volatility model that makes the volatility bounded, and
the simple investor considers that the risky asset is governed by a Black-Scholes
model with constant volatility, (ii) in the second example, the two-assets price is
given in reality by a stochastic correlation model, but the simple investor considers
a constant correlation between the risky assets. Our results show that the robust
Sharpe ratio can perform noticeably better than the misspecified Sharpe ratio for
some choice of the parameters describing the true dynamics.
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Viability, Arbitrage and Preferences

Mete Soner

(joint work with Frank Riedel, Matteo Burzoni)

In this paper [2], we consider a financial market with a fixed maturity T . All
financial instruments are contracts X of cash flows up to time T . The value of Xt

at time t is the cumulative non-discounted cash payments up to time t. Agents
are presented a set of contracts that are tradable with no cost and a cloud of
possible weak orders among the contracts. A natural notion of viability is then
the existence of a preference relation that is consistent with this plausible orders
so that all contracts are weakly preferred to any position obtained by adding a
replicable contract to itself. Hence in an economy populated with agents with this
preference relation every agent is content to remain at her endowment. This is an
equivalent statement of viability defined by Harrison & Kreps [1].

We also define the notions of arbitrage and free lunches with vanishing risk.
However, these definitions require a careful construction and several definitions
which are given in [2]. Two important concepts are the negligible contracts defined
through the unanimous partial order and the set of relevant one which we assume
to be a part of the common beliefs of the agents.

We prove in this context that a market is viable if and only if there are no free
lunches with vanishing risk.
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Continuous time martingale optimal transport and the local vol model

Mathias Beiglböck

(joint work with J. Backhoff, M. Huesmann, S. Källblad, D. Trevisan)

We start by recalling the special role of the local vol model : Given a peacock,
that is, a family of distributions (µt)t∈[0,1] which increases in convex order and
for which t 7→ µt is weakly continuous, there exists a unique (almost) continuous
Markov martingale (Mt)t∈[0,1] such that Mt ∼ µt, t ∈ [0, 1].

Arguably, this martingale (i.e. the local vol model in financial terms) is a most
natural martingale with the prescribed marginals.

Question 1. Given two marginals µ ≺c ν, does there exist a ‘natural’ martingale
(Mt)t∈[0,1] such that M0 ∼ µ,M1 ∼ ν?

Of course, this is not a very precise question. Clearly we will demand that our
martingale is a continuous Markov process. To explain somewhat more specifically
what we have in mind, we consider the particular case where µ = δ{0}. In this
case a particularly simple construction of a continuous martingale terminating at
ν is as follows: pick f : R → R increasing such that f(γ) = ν, where γ denotes
the standard Gaussian measure. Then set for t ∈ [0, 1]

Mt := E[f(B1)|Ft] = E[f(B1)|Bt] = ft(Bt),(1)

where B = (Bt)t∈[0,1] denotes Brownian motion (started in B0 ∼ δ{0}), (Ft)t∈[0,1]

the Brownian filtration and ft(b) :=
∫
f(b+ y) dγ1−t(y), γs ∼ N(0, s). Clearly M

is a continuous Markov martingale such that M0 ∼ δ0,M1 ∼ ν.
Subsequently we will suggest an extension of this construction to the case where

we start in a general probability µ rather than a dirac measure.
Before that we pose another question (which is equally imprecise as Question 1

and for which we will suggest basically the same answer as for Question 1).

Question 2. Is there a natural continuous time version of the martingale transport
problem?

Before suggesting a martingale version of the classical transport problem, we
present the classical Benamou-Brenier transport problem in probabilistic terms:
given probabilities µ, ν on the Rn, n ≥ 1 consider

PBB := inf
Xt=X0+

∫ t
0
vs ds,X0∼µ,X1∼ν

E

[∫ 1

0

|vt|2 dt
]
.(BB)

Essentially based on work of Brenier we have the following result
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Theorem 1. Assume that µ is absolutely continuous with respect to Lebesgue
measure and that µ, ν have finite second moment. Then the following hold:

(1) (BB) has a unique optimizer X∗.
(2) A candidate process X is an optimizer if and only if X1 = f(X0), where

f is the gradient of a convex function φ : Rn → R and all particles move
with constant speed, i.e. Xt = tX1 + (1 − t)X0.

Given the tremendous developments in the theory of optimal transport which
followed the publication of Brenier’s theorem, it is intriguing to find a martingale
counterpart to this result. We suggest the following problem

PMBB := sup
Mt=M0+

∫ t
0
σs dBs,M0∼µ,M1∼ν

E

[∫ 1

0

σd dt

]
.(MBB)

Theorem 2. Assume that µ, ν are probabilities on the real line which have finite
second moment. Then the following hold:

(1) (BB) has a unique optimizer M∗.
(2) A candidate process M is an optimizer if it is a stretched Brownian motion.

We explain what is mean by ‘stretched Brownian motion’: let α, ν be probabil-
ities on the real line and let f : R → R be the monotone function which pushes
α ∗ γ to ν. We then take B to be Brownian motion started in B0 ∼ α. In analogy
to (1) we then define

Mt := E[f(B1)|Ft] = E[f(B1)|Bt] = ft(Bt),(2)

and call M the stretched Brownian motion between f0(α) and ν. (Note that
M0 ∼ f0(α),M1 ∼ ν.)

A particular consequence of Theorem 2 is then

Corollary 1. Given measures µ, ν in convex order, there exists a unique stretched
Brownian motion from µ to ν.

We note that without Theorem 2 the assertion of Corollary 1 does not seem
trivial to us (in particular not in the multidimensional case, see below).

We continue with some remarks on Theorem 2:

(1) The Benamou-Brenier problem gives rise to a natural, time-consistent in-
terpolation between µ and ν: simply set µt := lawX∗

t for t ∈ [0, 1]. (This
is known as displacement interpolation / McCann interpolation.)

Analogously, M∗ gives rise to a time-consistent interpolation between
measures in convex order by setting µt := lawM∗

t for t ∈ [0, 1].
(2) The optimization problems (BB) and (MBB) look rather different. How-

ever it is easy to see that both problems are equivalent to optimization
problems which look much more similar. We have

X∗ = argminX0∼µ,X1∼νW
2(X, constant speed particle),

M∗ = argminM0∼µ,M1∼νW
2
c (X, constant volatility martingale),
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where W 2 denotes Wasserstein distance with respect to squared Cameron-
Martin norm, while W 2

c denotes its causal analogue1 (in the terminology
of Lasalle).

(3) The martingale defined in (1) was used by Bass to solve the Skorokhod
embedding problem. Hobson asked whether there are natural optimality
properties related to this construction and if one could give a version with
a non trivial starting law. (MBB) could be seen as an optimality property
of the Bass construction and the stretched Brownian motion gives rise to
a version of the Bass embedding with non trivial starting law.

(4) Assume that (µt)t∈[0,1] is a peacock. Write Mn for the Markov martingale
which is for each k ∈ {1, . . . , n} a time-scaled version of the stretched
Brownian motion between µ(k−1)/n and µk/n. Then limn→∞Mn exists
and equals the local vol model. Also the optimality properties carry over
to the local vol model.

(5) The tremendous importance of Brenier’s theorem builds on the fact that
it applies to measures on Rn, n ≥ 1. Our results extend from the real line
to R2 provided that ν is absolutely continuous with respect to Lebesgue
measure and to Rn under particular assumptions on the marginals. (In
the higher dimensional case σ in (MBB) needs to be replaced by tr(σ) and
monotonicity of f has to be understood in the Brenier-sense, i.e. f will be
given as the gradient of a convex function.) Based on the recent results of
DeMarch-Touzi and Ob lój-Siorpaes we hope that our results will in fact
extend to general 2nd moment measures on Rn.

Model-free portfolio optimization in the long run

Christa Cuchiero

(joint work with Walter Schachermayer, Leonard Wong)

1. Abstract

Cover’s celebrated theorem states that the long run yield of a properly chosen
‘universal’ portfolio is as good as the long run yield of the best retrospectively
chosen constant rebalanced portfolio. We formulate an abstract principle behind
such a ‘universality’ phenomenon valid for general optimization problems in the
long run. This allows to obtain new results on model-free portfolio optimization,
in particular in continuous time, involving larger classes of investment strategies.
These results are complemented by a comparison with the log-optimal numéraire
portfolio when fixing a stochastic model for the asset prices.

1Causal transport plans generalize adapted processes in the same way as classical Kantorovich
transport plans extend Monge maps.
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2. Cover’s universal portfolio

Let us briefly recall the idea of Cover’s universal portfolio. Indeed, Cover’s insight
reveals the striking phenomenon that the ‘wisdom of hindsight’ does not give any
significant advantage as compared to a properly chosen ‘universal’ portfolio which
is constructed in a predictable way. The relevant optimality criterion here is the
asymptotic growth rate of the portfolio.

Cover considers a modelfree setting in discrete time, i.e. time t varies in N,
where investments into all constant rebalanced portfolio strategies are allowed: let

b = (b1, . . . , bd) be a fixed element of the d-simplex ∆̄d, i.e., bj ≥ 0 and
∑d

j=1 b
j =

1. The corresponding constant rebalanced portfolio (Vt(b))
∞
t=0 starting at V0(b) = 1

is inductively defined by holding the investment bjVt(b) in stock Sj during the
period (t, t+ 1), so that V0(b) = 1 and

Vt+1(b)

Vt(b)
(s) =

d∑

j=1

bj
sjt+1

sjt
,(1)

for each scenario s = ((sjt )
d
j=1)∞t=0 of strictly positive numbers modeling the evo-

lution of the prices of d stocks S1, . . . , Sd.
Fix T and define in a pathwise way the quantity V ∗

T by

V ∗
T (s) = max

b∈∆̄d
VT (b)(s),(2)

which is a function depending on the scenario s = (s1t , . . . , s
d
t )
T
t=0.

The idea is that, with hindsight, i.e., knowing the trajectory (s1t , . . . , s
d
t )
T
t=0, one

considers the best weight b ∈ ∆̄d which attains the maximum (2). Cover’s goal
is to construct a universal portfolio which performs as well as the hypothetical
portfolio process (V ∗

T )T≥0, asymptotically for T → ∞. In order to do so, let ν be
a probability measure on ∆̄d. The universal portfolio now consists of investing at
time 0 the portion dν(b) of one’s wealth into the constant rebalanced portfolio V (b)
and subsequently following the constant rebalanced portfolio process (Vt(b))

T
t=0.

The explicit formula is

V νt =

∫

∆̄d

Vt(b)dν(b),(3)

where Vt(b) is defined via (1).
Cover’s celebrated result now reads as follows.

Theorem 1. (Cover [1]): Let ν be a probability measure on ∆̄d with full support.
Then

lim
T→∞

1

T
log

V νT (s)

V ∗
T (s)

= 0,(4)
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for all trajectories s = (s1t , . . . , s
d
t )

∞
t=0 for which there are constants 0 < c ≤ C <∞

such that

c ≤ sjt+1

sjt
≤ C, for all j = 1, . . . , d and all t ∈ N.(5)

3. Universality principle

The above phenomenon can be formulated abstractly for general long run opti-
mization problems. Consider for T ∈ [0,∞) objective functions VT : G → R+, G 7→
VT (G), where G corresponds to a set of strategies. Moreover, let ν be a probability
measure on G. Define the best retrospectively chosen strategy yielding as output

V ∗
T = sup

G∈G
VT (G)

and a universal strategy yielding as output

V νT =

∫

G∈G
VT (G)ν(dG),

whenever there exists some GνT such that it is possible to make sense out of VT (GνT )
and VT (GνT ) = V νT . The following theorem gives conditions when the universal
strategy performs as well as the best retrospectively chosen strategy.

Theorem 2 (C. Cuchiero and J. Teichmann [3]). Assume that one of the following
conditions holds:

a)

sup

(
lim inf
T→∞

(
VT
V ∗
T

) 1
T

)
= 1

b) For every T > 0 and ε > 0 there exists some set AT,ε ⊂ G such that
(
VT
V ∗
T

) 1
T

≥ 1 − ε on AT,ε

and lim infT→∞(ν(AT,ε))
1
T = 1 holds true.

Then

lim
T→∞

(
V νT
V ∗
T

) 1
T

= 1.

The result remains true if the sup and V ∗
T are replaced by ess sup w.r.t ν.

4. Modelfree portfolio optimization in continuous time

Our main application of the above theorem is modelfree portfolio optimization in
continuous time for a larger class of strategies than constantly rebalanced ones,
namely so-called functionally generated portfolios introduced in [4]. In this case
portfolio wealth processes can be defined via H. Föllmer’s pathwise approach to
stochastic integration in a probability free way (see [5] and also the recent pa-
per [6]). The choice of functionally generated portfolios is in such a continuous
time setting best possible for the following two reasons: first it perfectly connects
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Cover’s theory with stochastic portfolio theory in continuous time, and second
functionally generated portfolios are in a Markovian context also the largest class
for which wealth processes can be defined in a pathwise way without passing for
instance to rough paths theory or Young integration.

When assuming additionally that the log-optimal portfolio is functionally gener-
ated, we can prove equality of the asymptotic growth rates of the best retrospec-
tively chosen, the universal and the log-optimal portfolio for certain Markovian
Itô-diffusions.
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Moment generating functions and Normalized implied volatilities:
Fukasawa’s pricing formula

Stefano De Marco

(joint work with Claude Martini)

We extend the model-free formula of Fukasawa [4] for E[Ψ(XT )], where XT =
logST /F is the log-price of an asset, to functions Ψ of exponential growth. The
resulting integral representation is written in terms of normalized implied volatili-
ties. Just as Fukasawa’s work provides rigourous ground for Chriss and Morokoff’s
[2] model-free formula for the log-contract (related to the Variance swap implied
variance), we prove an expression for the moment generating function E[epXT ]
on its analyticity domain, that encompasses (and extends) Matytsin’s formula [5]
for the characteristic function E[eiηXT ] and Bergomi’s formula [1] for E[epXT ],
p ∈ [0, 1]. Besides, we (i) show that put-call duality transforms the first nor-
malized implied volatility into the second, and (ii) analyze the invertibility of the
extended transformation d(p, ·) = p d1 + (1− p)d2 when p lies outside [0, 1]. As an
application of (i), one can generate representations for the MGF (or other payoffs)
by switching between one normalized implied volatility and the other.

1. Model-free pricing formulas

Working with dimensionless quantities, we denote k = log(K/F ) the forward log-
strike of a Call option, where F = EP[ST ] is the forward price for maturity T , and

v(k) =
√
TσBS(T, k) the dimensionless (or total) implied volatility of the option.

It is well-known that any C2 (or convex) payoff ϕ(ST ) with linear growth can
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be statically replicated with a strip of call and put options, so that its price can

be written via Carr-Madan’s formula E[ϕ(ST )] = ϕ(F ) +
∫ F
0
ϕ′′(K)P (K)dK +∫∞

F
ϕ′′(K)C(K)dK, where P (K) and C(K) denote put and call prices for the

maturity T . On the other hand, if the law of ST under P is absolutely continuous
with respect to the Lebesgue measure on [0,∞), one can write

(1) E[ϕ(ST )] =

∫ ∞

0

ϕ(K)
d2

dK2
E[(ST −K)+]dK

= F

∫

R

ϕ(K)
d2

dK2
CallBS(k, v(k))|k=log(K/F ) dK.

Applying the chain rule to the rightmost integrand in (1) leads to an integral
formula containing Black-Scholes Greeks with respect to strike and volatility, and
the derivatives of the implied volatility smile v(·) up to order two. A stream of
literature [5, 4, 1] studies the possibility of re-expressing Equation (1) in such a
way that the derivatives of the implied volatility do not appear any more on the
right hand side. This is a relevant feature in practice, because observed market
data is (in any case) discrete. Such investigations required the introduction of the
concept of normalizing transformation of the implied volatility smile, introduced
by Chriss and Morokoff [2] and Matytsin [5] and formalized in the seminal work
of Fukasawa [4], that we recall below.

1.1. Volatility derivatives. One of the most important examples in this field is
the following formula for the implied variance of the log contract1, see Chriss and
Morokoff [2]:

(2) EP

[
− 2

T
log

(
ST
F

)]
=

1

T

∫

R

v(g2(z))2φ(z)dz.

In (2), φ is the standard normal density, and g2 : R → R is the inverse of the
function (called second normalizing transformation)

f2(k) := −d2(k, v(k)) =
k

v(k)
+
v(k)

2
.

Similarly, the first normalizing transformation (used later on) is given by f1(k) :=

−d1(k, v(k)) = k
v(k) −

v(k)
2 . Apart from its appealing compactness, the formula (2)

is amenable for numerical approximations, notably in view of the use of Gauss-
Hermite quadrature. Other examples of similar formulas include: other payoffs
such as the S lnS contract (related to the Gamma Swap), and a formula for
the characteristic function of XT = log(ST /F ) due to Matytsin [5], see below.
The important property that the map f2 : R → R is actually invertible for any
arbitrage-free implied volatility v(·), implicitly assumed in the aforementioned
works, was first proven by Fukasawa [4].

1which coincides with the fair strike of the Variance Swap, under the assumption that (St)t≤T

follows a diffusion process. When T = 30 days and S is the S&P500 stock index, the left hand
side of (2) defines the (theoretical value) of VIX2 at t = 0.
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2. Moment generating functions

Denote v2(z) = v(g2(z)). Assuming that v2 is differentiable, Matytsin [5] gives
(only sketching the proof) the following formula for the characteristic function of
XT

(3) E
[
eiηXT

]
=

∫

R

e−iηv2(z)(
1
2 v2(z)−z) (1 − iηv′2(z))φ(z)dz, η ∈ R.

Building on this work, Bergomi [1, Section 4.3.1] derives a formula for the moments
of ST /F of order p ∈ [0, 1]:

(4) E

[(
ST
F

)p]
=

∫

R

e
1
2p(p−1)vp(z)2φ(z)dz, p ∈ [0, 1],

where the ‘p-normalized’ implied volatility vp(·) is defined in the following way:
consider the convex interpolation

f(p, k) = pf1(k) + (1 − p)f2(k) =
k

v(k)
+

(
1

2
− p

)
v(k)

2

of the two normalizing transformations f1 and f2. We know from Fukasawa [4]
that the two maps k 7→ f1(k) and k 7→ f2(k) are strictly increasing from R to R:
therefore, so is k 7→ f(p, k), for every p ∈ [0, 1]. Let now g(p, ·) be the inverse of
f(p, ·) on R: vp(·) is defined by

(5) vp(z) = v(g(p, z)), for all z ∈ R.

Note we have the following nice interpretation of (4): in the Black-Scholes model,

where ST = FeσWT− 1
2σ

2T is a geometric Brownian motion with constant volatil-

ity parameter σ = v√
T

, one has E
[(
ST

F

)p]
= e

1
2p(p−1)v2 =

∫
R
e

1
2 p(p−1)v2φ(z)dz.

Therefore, we can see Equation (4) as an extension of the pricing formula for
power payoffs, from the Black-Scholes world to models with non-constant implied
volatility.

The formulas (3) and (4) are the starting point of our work. As mentioned
above, Bergomi [1] derives (4) from (3). We follow a different route: our starting
point is the work of Fukasawa. We first extend the formula for expectations of
functions of XT with polynomial growth given in [4, Theorem 4.6] to exponential
functions - carrying out in details the plan addressed in [4, Remark 4.8]. This
provides a formula for the generalized characteristic function p ∈ C 7→ E[epXT ]
on its analyticity domain, written directly in terms of the implied volatility smile.
Matytsin’s (3) and Bergomi’s (4) formulas are embedded in this representation
as special cases (along with a dual version of the first, and an extension to the
complex plane of the second). By taking real values of p, this formula allows
to numerically evaluate the (finite) risk-neutral moments of the underlying asset
price from the market smile - therefore identifying model-free quantities that can
be used as targets in the calibration of a parametric model.

As addressed in [4, Remark 4.8], it is natural, when evaluating expectations

of the form E
[(
ST

F

)p]
, to exploit Lee’s moment formulas relating the critical mo-

ments of ST to the asymptotic slopes of the implied volatility for large and small
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strikes. We stress that our approach here goes the other way round: we prove
an integral representation for E

[(
ST

F

)p]
without making use of Lee’s result. As

a by-product, one can deduce sharp bounds on the exponents that appear in the
moment formulas.
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Hedging with price impact

Peter Bank

(joint work with Mete Soner, Moritz Voß)

We consider the problem of hedging a European contingent claim in a financial
model with temporary price impact as proposed by [1]. A second order expansion
of a utility indifference price asymptotics for small impact suggests to consider
the hedging problem as a linear quadratic optimal stochastic control problem with
a possibly singular state constraint which amounts to a cost optimal tracking
problem of a frictionless hedging strategy. We solve this problem explicitly first
for general predictable target hedging strategies and constant coefficients. It turns
out that, rather than towards the current target position, the optimal policy trades
towards a weighted average of expected future target positions. Our findings com-
plement a number of previous studies in the literature on optimal strategies in
illiquid markets where the frictionless hedging strategy is confined to diffusions,
see, e.g., [7], [14], [15], [3], [13], [10], [8], [9], where the frictionless hedging strategy
is confined to diffusions. We show furthermore that the general structure of the
solution actually applies in great generality, i.e. with stochastic volatility and sto-
chastic liquidity along with a possibly singular stochastic terminal state constraint
on a set with positive but not necessarily full probability. Here our optimal signal
process is built on the solution to a backward stochastic Riccati equation (see
[12], [11]. [2], [6]) and it reveals not only necessary and sufficient conditions under
which the problem admits a finite value, but also allows us to tackle the delicate
random singularity at terminal time via a suitable time consistent approximation
of the optimization problem.

We refer to our papers [4] and [5] for further details.
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[7] N. Gârleanu and L.H. Pedersen. Dynamic portfolio choice with frictions. Preprint, May 2013.
[8] P. Guasoni and M. Weber. Dynamic trading volume. Mathematical Finance, 2015.
[9] P. Guasoni and M. Weber. Nonlinear price impact and portfolio choice. Preprint, June 2015.

[10] J. Kallsen and J. Muhle-Karbe. High-resilience limits of block-shaped order books. Preprint,
September 2014.

[11] T. Kruse and A. Popier. Minimal supersolutions for BSDEs with singular terminal condition
and application to optimal position targeting. Stochastic Processes and their Applications,
126(9): 2554 -2592, 2016.

[12] M. Kohlmann and S. Tang. Global adapted solution of one-dimensional backward stochastic
Riccati equations, with application to the mean-variance hedging. Stochastic Processes and
their Applications, 97(2): 255 - 288, 2002.

[13] L. Moreau, J. Muhle-Karbe and H.M. Soner. Trading with small price impact. Mathematical
Finance, 2015.

[14] F. Naujokat and N. Westray. Curve following in illiquid markets. Mathematics and Financial
Economics, 4(4): 299-335, 2011.

[15] L. C. G. Rogers and S. Singh. The cost of illiquidity and its effects on hedging. Mathematical
Finance, 20: 597-615, 2010.

On the dynamic representation of some time-inconsistent risk
measures in a Brownian filtration

Ludovic Tangpi

(joint work with Julio Backhoff Veraguas)

Given a probability space (Ω,F , P ) equipped with the completed filtration
(Ft)t∈[0,T ] of a d-dimensional Brownian motion W with T ∈ R+ and F = FT , a

functional ρ : L∞(F) → (−∞,+∞] that is convex, increasing and cash-invariant1

is called convex risk measure. For computation purposes as well as the study of
optimization problems with objective functions ρ (e.g. risk minimization) it is of-
ten desirable to show that ρ(X) admits a dynamic representation. When ρ = ρ0,T
and (ρν,τ )0≤ν≤τ≤T (with ν, τ being stopping times) is a family of (conditional)

1ρ(X + c) = ρ(X) + c for all X ∈ L∞(F) and c ∈ R. Translation invariance is a synonym for
this.
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convex risk measures ρν,τ : L∞(Fτ ) → L∞(Fν), the main condition under which
a dynamic representation can be derived is time-consistency, which amounts to

ρσ,ν(X) = ρσ,τ (ρτ,ν(X))

for all stopping times 0 ≤ σ ≤ τ ≤ ν ≤ T and X ∈ L∞(Fν). In fact, in this case,
for every X ∈ L∞ and every t ∈ [0, T ] one has ρt,T (X) = Yt where (Y, Z) is the
unique (minimal super-)solution of the backward stochastic differential equation

(1) Yt = X +
∫ T
t gu(Zu) du −

∫ T
t Zu dWu ,

for a given function g : [0, T ] × Ω × Rd → R, see [3], [4] and [5].
However, as shown by [6], most commonly used (law invariant) risk measures,

such as the conditional value-at-risk (also referred to as tail or average value-at-
risk), do not enjoy this property. Notable exceptions are the expected value and
the so-called entropic risk measure. Our aim is to show that nevertheless many
interesting time-inconsistent risk measures can be computed dynamically.

Our analysis focuses on the so-called optimized certainty equivalents (OCE)
risk measures; see [1, 2], given by

(2) ρ(X) := inf
r∈R

(E[l(X − r)] + r),

where l : R → R is a convex increasing function. Denoting by l∗ the convex
conjugate of l, we assume

(N) : l∗(1) = 0 = l(0).
(C) : l(x) > x for all x such that |x| is large enough.

This is a class containing time-consistent risk measures such as the entropic one,
as well as time-inconsistent ones such as the conditional value-at-risk of [8], the
monotone mean-variance of [7], and more generally OCEs linked to infomation-
theoretic measures as the φ-divergence throught their dual representation. Let O
be the interior of dom(l∗). For every (s, y) ∈ [0, T ] × Rm, we consider the Itô
diffusion Y s,y given by

dY s,yt = b(t, Y s,yt )dt+ σ(t, Y s,yt )dWt, t ≥ s

Y s,ys = y

for two given (deterministic) functions b and σ assumed to be Lipschitz with linear
growth. In our main result, we prove that for every

Xy := f(Y 0,y
T ) +

∫ T
0 g(t, Y 0,y

t ) dt

where f and g are bounded and continuous functions,

ρ(Xy) = V (0, y, 1),

where V : [0, T ] × Rm ×O → R is a viscosity solution of the PDE

∂tV + b(s, y)∂yV+
1

2
tr
(
σ(s, y)σ(s, y)′∂2yyV

)

+ sup
β∈Rd

[
1

2
z2|β|2∂2zzV + z ∂2yzV σ(s, y)β

]
+ zg(s, y) = 0,(3)



752 Oberwolfach Report 13/2017

with

V (T, y, z) = f(y)z − l∗(z).

Furthermore if either dom(l∗) is bounded, or l∗ is finite and has polynomial growth,
then V is the minimal supersolution of (3) in the class of functions with polynomial
growth.

The road leading to this result starts with the dual representation of the risk
measure

(4) ρ(X) = sup
β
E
[
XZβT − l∗

(
ZβT

)]
,

where β runs throught the set of bounded predictable processes and ZβT is the
stochastic exponential of

∫
β dW , then a simple ‘enlargement of state space’ idea

which allows to interpret the evaluation of the risk measure as a stochastic optimal
control problem of its own: ρ(X) = V (0, y, 1) with

V (s, y, z) := sup
β
E
[
f(Y s,yT )Zs,z,βT − l∗

(
Zs,z,βT

)
+
∫ T
s g(t, Y s,yt )Zs,z,βt dt

]
,

Drawing from the primal formulation (2) allows us to prove the dynamic program-
ming principle in the enlarged state space:

V (s, y, z) = sup
β
E
[∫ θ
s
g(t, Y s,yt )Zs,z,βt dt+ V

(
θ, Y s,yθ , Zs,z,βθ

)]
,

y ∈ Rm, z ∈ dom(l∗). As usual in stochastic control theory, we leverage on this
DPP to obtain the aforementioned HJB equation. Here, the main difficulties lie
in that the Hamiltonian in (3) is singular (i.e. not real-valued), the domain of the
value function is unbounded and the drift term is not uniformly Lipschitz w.r.t.
the control. These make the problem unamenable to existing techniques.

Some open questions which, in our opinion deserve some attention include the
uniquess of the viscosity solution, the proof of the dynamic representation for
non-Markovian claims or non-Brownian filtrations.
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A fundamental theorem of asset pricing for large financial markets
under restricted information (Lp case)

Irene Klein

(joint work with Christa Cuchiero, Josef Teichmann)

We present a version of the fundamental theorem of asset pricing (FTAP) for large
financial markets in continuous time under restricted information in an Lp-setting.
One often accepted hypothesis in modelling financial markets is the following: Ob-
servations of prices are perfect and can be immediately included in trading deci-
sions. In the talk we consider a setting where this hypothesis is not true anymore.
We consider a financial market, where the prices of the assets are not fully revealed
to the trader (like ideas in Platon’s cave allegory) or where trading decisions are
not immediately executed. We call this a platonic large financial market, which
in mathematical terms is given by a stochastic basis together with two filtrations
F ⊂ G and a (possibly uncountable) family of càdlàg stochastic processes (Si)i∈I
adapted to G. We assume for simplicity that no issues on nullsets occur, i.e. both
filtrations are completed by the same nullsets. Trading in these assets is possible
but only with F-predictable simple strategies including an arbitrary but finite num-
ber of assets. This extends the results of Yuri Kabanov and Christophe Stricker
[4] to continuous time in a large financial market setting. On the other hand it
generalizes Stricker’s Lp version of FTAP [5] towards a setting of restricted in-
formation. We do neither assume that price processes are semi-martingales, (and
it does not follow due to trading with respect to restricted information), nor any
property of the two filtrations in question, but rather go for a completely general
result, where trading strategies are predictable with respect to a smaller filtration
than the one generated by the price processes. So our setting is completely general
and reasonable and covers, e.g., the following situations:

• Trading with an execution delay.
• Trading with observational delay.
• For some assets trading is only possible for restricted time sets (for example

static trading)
• Prices are uncertain due to liquidity issues, transaction costs.
• Model prices differ from market prices, which means in principle that one

believes market prices come with an error.
• Lack of information (e.g. discrete information versus continuous time mod-

elling).
• Model uncertainty.

To be able to prove a FTAP we use an Lp-setting including some integrability
properties of the assets, for 1 ≤ p < ∞, as in [5]. In this way we can avoid the
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use of general admissible integrands and the stochastic integral in full generality,
which does not yet exist for the F − G situation. In contrast to the case p = ∞
where general integrands would be needed (and which we therefore exclude from
our setting), for p < ∞ we only need simple integrands which pose no technical
difficulties. Our Theorem then reads as follows (leaving away exact definitions of
NAFLp(P’) and exact choice of F which can be found in the slides of the talk):

Theorem 1. The following statements are equivalent:

(1) There exists P ′ ∼ P and 1 ≤ p <∞ such that no asymptotic Lp(P ′) free
lunch (NAFLp(P’)) holds.

(2) There exists a probability measure Q ∼ P such that the F optional projec-
tions of all assets Si are Q-martingales.

Note that we do not have any dependence on the physical measure P of our
Lp-no asymptotic free lunch condition (i), which would have been expected for
an Lp-condition. However, we do not use the Lp condition for the fixed measure
P and fixed p < ∞ but only for some P ′ ∼ P and some 1 ≤ p < ∞. And the
equivalence with the condition (ii) above shows that there is no dependence on P
of condition (i). In particular, this implies that, for example for bounded assets
Si, condition (i) is in fact equivalent with no asymptotic free lunch with vanishing
risk as defined in Cuchiero, Klein, Teichmann [3]. For the measure P ′ we also
have a superreplication theorem in the Lp(P ′)-Lq(P ′)-duality setting which can
be found on the slides.

Finally, let us remark on model uncertainty. In this connection we refer in
particular to the talk of Mete Soner which was given at the present workshop in
Oberwolfach and which encouraged that this example is particularly stressed in
the present talk. We define a new variant of a robust (”model free”) setting, see
also [1] and [2].

• Given a pathspace D with canonical filtration F̃ and a family P = {P θ :
θ ∈ Θ}.

• Assume an a priori given probability measure ν on (Θ,B(Θ)) and assume

that θ → P θ(A) is measurable for each A ∈ F̃ .

Define

P (A) =

∫

Θ

P θ(A)ν(dθ)

Here we assume that we do not know what our correct model is, but it depends on
the choice of a parameter θ which is chosen according to an a priori fixed measure ν
on Θ. This can be understood as a kind of robust model, where the set of possible
measures is P . By the definition of the measure P we reduce our robust setting
to the classical setting with respect to P . In order to characterize arbitrage in
this setting we have to specify X ≥ 0 P -a.s. and P (X > 0) > 0. It is clear that
X ≥ 0 P a.s. means X ≥ 0 outside a set A for which ν-almost all θ we have that
P θ(A) = 0. Compare this notion with quasi-sure nullsets as in [2], which means
P θ(A) = 0 for all P ∈ P (without the additional measure ν). This setting gives
rise to two filtrations in a natural way. On one hand we have the full information
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on D× Θ: Gt = F̃t
⊗

B(Θ). On the other hand, as we cannot observe the correct
parameter θ directly, trading will be based on a smaller filtration F. Moreover
we could include even more restrictions, for example if observations come on a
discrete time grid, this would then lead to three filtrations.
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A regularity structure for rough volatility

Paul Gassiat

(joint work with Christian Bayer, Peter Friz, Jörg Martin, Benjamin Stemper)

We are interested in rough stochastic volatility models of the form

(1) dSt/St = σdBt ≡ σ
(
ρdWt + ρ̄dW̄t

)

where W, W̄ are two independent Brownians, ρ2 + ρ̄2 = 1, more specifically, for
suitable (nice) f , we postulate

σ (t, ω) = f(Ŵt (ω)),

Ŵt =

∫ t

0

K (t, s) dWs (ω) .(2)

The example to have in mind is K (t, s) = |t− s|H−1/2
in which case Ŵ is a

(Riemann-Liouville) fractional Brownian motion, with ”rough” (i.e. rougher than
Brownian) samples paths whenever H ∈ (0, 1/2). The interest in such models is
now widely acknowledged, e.g. [3, 1]. In particular, evidence for H < 1/2 (in
fact, as low as H ≈ 0.05) is overwhelming both under the physical and the pricing
measure.

In contrast to classical stochastic volatility models in which (S, σ) is jointly

Markov, this is not so here, for Ŵ already is a non-Markovian process. As a
consequence, PDE based option pricing is no more available. The only option
then is Monte Carlo simulation. It is interesting to note that a type of quasi-
Monte Carlo on Wiener space, Kusuoka-Lyons-Victoir cubature, often applied in
the form of the popular Ninomia-Victoir scheme, relies on writing the model in



756 Oberwolfach Report 13/2017

Stratonovich form. But this does not work in the correlated (ρ 6= 0) rough case!

Indeed,one does not have existence, in general, of
∫
f
(
Ŵ
)
◦ dWt, as already

for f (x) = x, we have the (infinite) Ito-Stratonovich correction [Ŵ ,W ], due to
H < 1/2.

Another - practical - problem with the above model, (1, 2), is that it lies outside
the bulk of results known for Markovian diffusion processes. For instance, many
stochastic volatility models have been analyzed using short-time / small-noise
expansions, typically building on classical Freidlin-Wentzell estimates (That said,
the model is formulated within Ito-calculus and can be analyzed by its methods.
Indeed one can proceed by careful application of the approximate contraction
principle, mimicking the (pre-rough paths) proofs of Freidlin-Wentzell theory, as
was understood by Forde-Zhang [2].)

In this work we aim at showing how Hairer’s theory of regularity structures, [4],
a major generalization of rough path theory, is a very appropriate tool to analyze
rough volatility. Recall that this theory identifies certain polynomial functions
of the noise, which then are used as ”extended monomials” in local Taylor-like
expansions for the object of interest. In our setting, these monomials are given by
the cross-integrals

∫
Ŵ kdW,

∫
Ŵ kdW̄ k = 0, . . . ,M

In the framework of regularity structures one is then reduced to studying these
integrals under the so-called ”model topology” and the continuity results provided
by the pathwise approach then allow to find pleasing answers to both points raised
above :

• We obtain an approximation theory taking into account ”infinite” Itô-
Stratonovich correction (in the form or diverging renormalization con-
stants). More precisely, if W ε are regular approximations to W (e.g.
piecewise linear interpolation), there exist constants Cε > 0 such that

lim
ε→0

∫ t

0

f(Ŵ ε
s )dW ε

s − Cε

∫ t

0

f ′(Ŵ ε
s )ds =

∫ t

0

f(Ŵs)dWs.

• We also obtain natural proofs of small noise large deviation estimates,
recovering results of [2] (see also forthcoming work of Jacquier-Pakkanen-
Stone).

To conclude, we note that one of the advantages of the pathwise approach lies
in its robustness to small changes in the considered model. For instance, let us
now consider a stochastic volatility model as in (1), but now with σ(t, ω) = f(Zt),
where Zt is the solution to the stochastic Itô-Volterra equation

Zt = z +

∫ t

0

K(s, t) (ψ(Zs)dWs + φ(Zs)ds) .

Then (at least in the case H ≥ 1
4 ) one can directly use our ”regularity struc-

ture” results to obtain again (with essentially no further work) small-noise large
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deviation results, and approximation results, again with an (explicit) infinite Itô-
Stratonovich correction.
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Density Estimates and Applications

Paul Krühner

(joint work with Tilmann Blümmel, David Baños, Julia Eisenberg)

In this talk we try to find ’good’ upper and lower estimates for the density ρt of

Xt (t > 0) where X is an Itô-process, i.e. Xt := x +
∫ t
0
βsds +

∫ t
0
σsdWs where

x ∈ Rd, β a suitable Rd-valued process, σ a suitable Rd×d-valued process and W
is a standard d-dimensional Brownian motion. These estimates for the density
can be used to obtain estimates for expectations and to obtain error estimates for
suboptimal controls in stochastic control problems. The most relevant case for
density bounds is the so-called Markovian case, i.e.

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

c(Xs)dWs, t ≥ 0

where the density is the weak fundamental solution of the corresponding Focker-
Plank equation. The corresponding PDE does not yield good estimates for the
density of the coefficient if those coefficients are merely assumed to be measurable.
We find optimal density bounds for the cases where β is bounded by a constant

C ≥ 0 and σ is constant itself, namely ρt(x) ≤
(

1√
t
ϕ(C

√
t) + CΦ(C

√
t)
)d

for any

t > 0, x ∈ Rd. Also we find optimal density bounds for the integrated density
if β, σ are bounded R-valued and σ is elliptic, i.e. there are a, b > 0 such that
a ≤ σt ≤ b. This bound is given by
∫ t

0

ρs(x)ds ≤ b

a2

∫ t

0

[
1√
s
ϕ

(
C
√
s
b

a2

)
+ C

b

a2
Φ

(
C
b

a2
√
s

)]
ds, t > 0, x ∈ R.

Finally, we discuss the improvement in terms of travel distance, i.e. if the process
is started in a position x, then we find sharper bounds for the density in y 6= x
and show some applications.
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Semi-Static and Sparse Variance-Optimal Hedging

Martin Keller-Ressel

(joint work with Martin Haubold, Paolo Di Tella)

We consider a financial market consisting of a liquid traded asset S, a contingent
claim H0 on S which shall be hedged, and d other supplementary assets H =
(H1, . . . , Hd). Typically, the supplementary assets are European options on S
or other assets which are strongly correlated with S. As hedging strategies for
H0 we consider so-called semi-static strategies, which consist of a dynamic (i.e.
continuously rebalanced) position in S and a static (i.e. buy-and-hold) position in
the assets (H1, . . . , Hd).

There are multiple reasons to consider such semi-static strategies: First, the
supplementary assets may be substantially less liquid than S or incur large trans-
action costs, such that it is not feasible to continuously rebalance positions in
them. Second, it is well-known that in certain settings - most notably when H0 is
a variance swap and the supplementary claims are European options - semi-static
strategies with an infinite number of supplementary assets allow for perfect hedg-
ing even in incomplete markets, cf. [5, 1].

Under a minimal-variance criterion, as introduced by [2, 3], the problem of
finding the optimal semi-static hedging strategy (ϑ, v) and the optimal initial en-
dowment c can be formulated as the minimization problem

(1) ǫ2 = min
(ϑ,v)∈L2(S)×Rd,c∈R

E



(
c− v⊤E[H ] +

∫ T

0

ϑtdSt − (H 0 − v⊤H)

) 2

 .

Here, L2(S) denotes the space of admissible dynamic strategies and is given by

L2(S) :=

{
ϑ predictable and R-valued: E

[∫ T

0

ϑ2td〈S, S〉t
]
< +∞

}
.

To solve the variance-optimal semi-static hedging problem, we decompose it
into an inner and an outer minimization problem and rewrite (1) as



ǫ2(v) = minϑ∈L2(S),c∈R E

[(
c− v⊤E[H ] +

∫ T
0
ϑtdSt − (H 0 − v⊤H)

) 2
]
,

ǫ2 = minv∈Rd ǫ(v)2.

The inner problem is of the same form as the classic variance-optimal hedging
problem considered in [2, 3] and is solved by the so-called Galtchouk-Kunita-
Watanabe-decomposition of the claims (H0, . . . , Hd) with respect to S. The outer
problem, on the other hand, turns out to be a finite dimensional quadratic opti-
mization problem and hence is easy to solve.

Furthermore, we consider the problem of reducing the number of supplementary
assets used in the static part of the hedge to a smaller number k < d, without
substantially increasing the hedging error of the strategy. This problem can be
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seen as an optimal hedging problem under a sparsity constraint on the cardinality
of non-zero positions in the supplementary assets. Again, the motivation to intro-
duce such constraints is to reduce transaction and liquidity costs that are incurred
from setting up the static part of the position. We propose two mathematical for-
mulations of this problem, one where the cardinality constraint ‖v‖0 ≤ k is added
to (1), and a second one where a penalty term λ‖v‖1 with λ > 0 is added to (1).
The second formulation can be seen as a convex relaxation of the (non-convex) car-
dinality constraint and is similar to the LASSO-approach to the variable selection
problem in linear regression, cf. [4].
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Pathwise large deviations and variance reduction for affine stochastic
volatility models

Peter Tankov

(joint work with Zorana Grbac, David Krief)

1. Large deviations for affine stochastic volatility models

Definition 1. An affine stochastic volatility model [4] (Xs, Vs)s≤t, is a stochasti-
cally continuous, time-homogeneous Markov process such that

(
eXs
)
s≤t is a mar-

tingale and there exist deterministic functions φ and ψ such that

E
(
euXs+wVs

∣∣X0 = x, V0 = v
)

= eφ(s,u,w)+ψ(s,u,w)v+u x ,

for all (s, u, w) ∈ R+× C2.

The functions φ and ψ satisfy generalised Riccati equations

∂tφ(t, u, w) = F (u, ψ(t, u, w)) , φ(0, u, w) = 0

∂tψ(t, u, w) = R(u, ψ(t, u, w)) , ψ(0, u, w) = w ,

Large deviations for Xt/t as t→ ∞ have been studied in [3] using Gärtner-Ellis
theorem and limiting results from [4]. To apply Gärtner-Ellis theorem to εXt/ε as
ε→ 0, as was done in [3] one needs to compute the limit

lim
ε→0

ε logE[euXt/ε ] = lim
ε→0

ε{φ(t/ε, u, 0) + ψ(t/ε, u, 0)V0}.

The study of these limits reduces to the study of equilibrium points of the Riccati
equations. In [4] it has been shown that there exists an interval I ⊇ [0, 1] such
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that for each u ∈ I, the equation ∂tψ = R(u, ψ) admits a stable equilibrium
w(u) with basin of attraction of B(u) and therefore, for w ∈ B(u) and all t > 0,
ψ (t/ε, u, w) −→

ε→0
w(u). Further, let J = {u ∈ I : F (u,w(u)) < ∞}. Then [0, 1] ⊆

J ⊆ I and there exists a function h such that for all u ∈ J and w ∈ B(u), t > 0,

εφ (t/ε, u, w) −→
ε→0

t h (u) so that lim
ε→0

ε logE
[
euXt/ε

]
= h(u).

The functions w and h can be extended uniquely to cumulant generating functions
of infinitely divisible random variables.

Our first contribution is to extend the one-dimensional LDP of [3] to the finite-
dimensional setting.

Theorem 1. Let (X,V ) be an affine stochastic volatility model such that h is es-
sentially smooth, and assume in addition that w(u+) = w(u−), where J = [u−, u+].
Then (εXt1/ε, ..., εXtn/ε) satisfies a LDP on Rn with good rate function

Λ∗
t1,...,tn(x) = sup

λ∈Jn





n∑

j=1

λj(xj − xj−1) −
n∑

j=1

(tj − tj−1)h (λj)



 .

This result is not a direct extension of the one-dimensional LDP based on
convergence of ε logE[euXt/ε ]: here one needs convergence of ε logE[euXt/ε+vVt/ε ]
which may not hold even if the former holds due to lack of integrability. This
difference explains the presence of the condition w(u+) = w(u−) which is easy
to check but rather restrictive: for Heston model it is equivalent to having zero
correlation between stock price and volatility. It is an open problem to understand
whether and how this condition may be relaxed.

A direct application of the Dawson-Gärtner theorem allows to extend this result
to the pathwise setting. Let F([0, T ],R) be the set of all functions from [0, T ] to
R, equipped with the topology of pointwise convergence, and let τ = {t1, . . . , tn}
with 0 < t1 < · · · < tn = T .

Theorem 2. Let (X,V ) be an affine stochastic volatility model such that h is es-
sentially smooth, and assume in addition that w(u+) = w(u−), where J = [u−, u+].
Then (εXs/ε)0≤s≤T satisfies a LDP on F([0, T ],R) with good rate function

Λ∗(x) = sup
τ

Λ∗
τ (x) .

The rate function Λ∗(x) is finite only if x : [0, T ] → R is of bounded variation,
with x(0) = 0. In this case it is given by

Λ∗(x) =

∫ T

0

h∗(ẋacs ) ds+ u+ν+([0, T ]) + u−ν−([0, T ]),

where h∗(y) = sup
λ∈J

{λy − h(λ)} .

Here, xac is the absolutely continuous component of x and ν+ and ν− are the
positive and negative parts of the singular component of dx.
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2. Application to variance reduction

Consider a financial market which consists of a risk-free asset and a risky asset
with price St = S0e

Xt , where (X) is an affine stochastic volatility process under
the risk-neutral probability P. We are interested in a derivative product whose
value (pay-off) at time T is given by a functional P (S) which depends of the
entire trajectory of the stocks. To evaluate its price, we consider the importance
sampling estimator

P̂Q
N :=

1

N

N∑

j=1

[
dP

dQ

](j)
P (S

(j)
Q ),

where S
(j)
Q are sample trajectories of S under the measure Q. For our models

a natural choice of the importance sampling measure is provided by is the time-
dependent Essher transform

dPθ

dP
=

e
∫
[0,T ]

Xt·θ(dt)

E

[
e
∫
[0,T ]

Xt·θ(dt)
]

where θ is a (deterministic) bounded Rn-valued measure on [0, T ].
The optimal θ should minimize the variance of the estimator under Pθ,

VarPθ

(
P
dP

dPθ

)
= EP

[
P 2 dP

dPθ

]
− E [P ]

2

Denoting G(X) = logP (S), the minimization problem writes

inf
θ∈M

EP

[
exp

{
2G(X) −

∫

[0,T ]

Xt · θ(dt) + logE exp
( ∫

[0,T ]

Xt · θ(dt)
)}]

.

Nevertheless, this problem is as diffucult to solve numerically as the original prob-
lem of computing the option’s price. Inspired by the works of [1, 2, 5], we choose
instead to minimize a proxy for the variance computed using Varadhan’s lemma.
Under appropriate conditions, letting Xε

t = εXt/ε,

(1) lim
ε→0

ε logE

[
exp

(
2G(Xε) −

∫ T
0 Xε

s dθs + logE exp
( ∫ T

0 Xε
sdθs

)

ε

)]

= sup
x∈Vr

{
2G(x) −

∫ T

0

xsdθs − Λ∗(x)

}
+

∫ T

0

h(θ([s, T ])) ds

where Vr denotes the space of functions with bounded variation. Therefore, we say
that the variance reduction measure θ∗ is asymptotically optimal if it minimizes
the right-hand side of (1).
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In some cases, the asymptotically optimal measure may be computed more
easily. Let G : D → R+ be concave. Then, under appropriate conditions, asymp-
totically optimal measure is the solution to

inf
θ∈M

{Ĝ(θ) +

∫

[0,T ]

h(θ([t, T ]))dt}, where Ĝ(θ) = sup
x∈Vr

{G(x) −
∫

[0,T ]

xtθ(dt)}.

We have tested the method on the Heston model with and without jumps, both
for European and Asian options and obtained numerical results confirming the
efficiency of the algorithm.
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How Leverage Transforms a Volatility Skew

Roger Lee

(joint work with Ruming Wang)

To model leveraged investments such as leveraged ETFs, define the β-leveraged
product on a positive semimartingale S to be the stochastic exponential of β times
the stochastic logarithm of S.

In various asymptotic regimes, we relate rigorously the implied volatility sur-
faces of the β-leveraged product and the underlying S, via explicit shifting/scaling
transformations. In particular, a family of regimes with jump risk admit a shift
coefficient of −3/2, unlike the previously conjectured +1/2 shift. The +1/2, we
prove, holds in a family of continuous (including fBm-driven) stochastic volatility
regimes at short expiry and at small volatility-of-volatility.
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Efficient estimation of distributions of present values for long-dated
contracts

Constantinos Kardaras

(joint work with Scott Robertson, Alexandra Tsimbalyuk)

In many applications–especially in the areas of risk management, insurance and
actuarial mathematics–of interest is the distribution of present values for long-
dated contracts, modelled by random variables of the form

(PV) X0 =

∫ τ0

0

Duaudu.

Above, (Dt; t ∈ R+) denotes a (possibly, stochastic) discount factor, (at; t ∈ R+)
the cash-flow rate, and τ0 is the stopping time modelling the contract termination.

Under the understanding that the underlying drivers for the contract are typi-
cally stationary in time, we assume the existence of a potentially multidimensional
Markovian ergodic diffusion factor process1 Z = (Zt; t ∈ R) with dynamics of the
form

dZt = µ(Zt) + σ(Zt)dWt, t ∈ R,

where W is a standard (possibly, multi-dimensional) Brownian motion, for ap-
propriate functions µ and σ that ensure existence, uniqueness and ergodicity of
the solution of the above differential equation. Given this driving process Z, we
further assume that:

• −dDt/Dt = r(Zt)dt+ η(Zt)dZt + θ(Zt)dBt holds for t ∈ R, with D0 = 1,
where B is a standard Brownian motion, independent of W , and r, η and
θ are appropriate smooth functions;

• (at; t ∈ R) = (α(Zt); t ∈ R) for appropriate measurable function α;
• τ0 = inf{u ≥ 0 : ∆Nu = 1}, where N = (N(t); t ∈ R) is a Cox process

with rate (λ(Zt); t ∈ R) for given non-negative measurable function λ.

Estimation of the conditional distribution of random variables as X0 in (PV)
above given Z0 is typically difficult. Methods based on PDEs are not really appli-
cable, since they require specification of boundary conditions that are generically
unknown. When Monte-Carlo methods are utilised, simulation for each path re-
alisation can take an prohibitive amount of time, leading to extremely slow and
poor results. We propose an alternative simulation method, using ergodicity and
time-reversal, that leads to significantly better results. To wit, we first extend the
definition of X0 from (PV) to a whole process X = (Xt; t ∈ R) via

Xt =

∫ τt

t

Du

Dt
α(Zu)du, t ∈ R,

where τt = inf{u ≥ t : ∆Nu = 1}, and we note that the joint process (Z,X) =
((Zt, Xt); t ∈ R) is stationary. As such, one could simulate its paths and use the er-
godic theorem for estimation of the joint law of (Z0, X0). The issue with simulating

1Note that the time-index of Z is the whole real line, instead of only the positive half-line,
which is possible since it is ergodic.
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(Z,X) is that X is anticipative, i.e, “forward-looking’; the remedy we propose is to
consider the time-reversed process (ζ, χ) = ((ζt, χt); t ∈ R) = ((Z−t, X−t); t ∈ R).
Of course, the invariant measures of the forward and backward processes coincide.
The dynamics for ζ are available, in terms of the coefficients µ and σ, as well as
the invariant density of Z (or, equivalently, of ζ). Simple integral manipulations
also provide dynamics for the process χ, given ζ, and then the ergodic theorem
enables to obtain an estimator of the joint law of (Z0, X0) = (ζ0, χ0) by using
the occupation measure of (ζ, χ). Under additional assumptions, versions of the
central limit theorem may also be obtained.

Reporter: Benjamin Stemper
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