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Introduction by the Organisers

The theory of optimal function and density estimation has been fundamental to
mathematical statistics for many decades. However, it is well understood nowa-
days that for many modern complex statistical models the full reconstruction of
the underlying function is an overly ambitious task. Similarly, this problem arises
for the recovery of the full parameter vector in high and ultra high dimensional
(generalized) linear models. This becomes particularly apparent if rigorous statis-
tical inference is targeted, e.g. confidence statements for the underlying object to
be recovered. There is a variety of results available nowadays which detail these
limitations: as one concrete example, it has been shown that adaptive confidence
bands (in sup norm) for functions with different smoothness index (e.g. for Sobolev
scales) cannot exist as this function space is too complex.

Currently, two possible routes out of this dilemma are being developed, and
both have been discussed in this workshop to elucidate a unifying perspective:
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(1) To restrict the object of interest by prior information on its geometry,
in particular for discrete structures. This leads to new challenges for
geometrically-constrained inference at the cutting edge of statistical effi-
ciency and efficient computation. This includes the estimation of discrete
structures such as the active nodes in graphical models, networks, or rank-
ings.

(2) To focus on partial information of the structure which potentially allows
for inference uniformly over the underlying set of models.

In this workshop a large variety of new results on geometric and invariant inference
acquired in seemingly different directions have been reflected from this unifying
point of view. The following aspects of geometric and invariant inference jave been
in the focus of the proposed meeting.

High dimensional Inference. Various aspects, including optimal shrinkage of
covariance matrices (D. Donoho), the relationship between Slope estimation and
the Lasso estimator (A. Tsybakov), and compatibility constants for the Lasso (S.
van de Geer) have been discussed.
Recovery of Algebraic Structures. P. Rigollet reported on recent results for
estimation under algebraic constraints, S. Mukherjee on the geometry of synchro-
nization problems and learning group actions, and M. Yuan on how to analyze
large data tensors.
Statistical Optimal Transport. V. Panaretos discussed Fréchet means and pro-
crustes analysis in Wasserstein space and M. Cuturi surveyed recent methods for
computation of regularized optimal transport. M. Sommerfeld addressed inference
issues for the empirical Wasserstein distance.
Recovery of Networks. S. Olhede surveyed statistical issues of network recovery
with combinatorical and nonparametric methods and E. Levina discussed predic-
tion issues in networks with cohesion. In his talk, A. Rinaldo addressed Markov
properties of networks models, including attention to their geometry and exchange-
ability issues.
Inference for Complex Structured Data. E. Candes discussed model-free
knockoff methods for replicable selections and S. Balakrishnan discussed local min-
imax results for hypothesis testing of densities and high-dimensional multinomials.
W. Polonik reported on recent results to extract multiscale geometric information
extraction and its use for classification.
Causal Inference. T. Richardson discussed how to identify nonparametrically
causal effects in the presence of unobserved variables and P. Jonas gave a survey
talk on causality and novel ways of exploiting invariance for causal inference.
Multidimensional Regularization. This topic has been addressed by L. Dümb-
gen, who related geodesic convexity and regularized scatter estimation; by R.
Samworth who talked on efficient multivariate entropy estimation; and by V. Vu
who prsented recent results on group invariance and computational sufficiency for
regularized M-estimators.
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Clustering and Classification. V. Spokoiny presented a novel methodology for
nonparametric clustering using adaptive weights and H. Zhou talked on statis-
tical and computational guarantees for Lloyd’s algorithm and variants thereof.
Finally J. Schmidt-Hieber discussed nonparametric Bayesian analysis for support
boundary recovery and M. Belkin gave a talk on eigenvectors of orthogonally de-
composable functions.

The workshop was complemented by a young researchers late night session,
where a total of 11 PhD students and early postdocs presented their work in short
talks. This was accompanied by wine and cheese served by the organizers, which
created a particularly relaxed atmosphere.

In summary, this was an extremely fruitful and lively workshop where many
ideas around geometric and invariant inference have been exchanged between dif-
ferent communities. This includes experts in network analysis, sparse recovery,
function estimation, statistics for metric structures and causality, to mention a
few.

Acknowledgement: The organizers would like to cordially thank the MFO and its
staff for its support and hospitality. The MFO and the workshop organizers would
like to thank the National Science Foundation for supporting the participation
of junior researchers in the workshop by the grant DMS-1049268, “US Junior
Oberwolfach Fellows”. Moreover, the MFO and the workshop organizers would
like to thank the Simons Foundation for their support.
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Abstracts

Optimal Shrinkage of Covariance Matrices in light of the spiked
covariance model

David Donoho

(joint work with Matan Gavish, Behrooz Ghorbani, and Iain Johnstone)

In recent years, there has been a great deal of excitement about ’big data’ and
about the new research problems posed by a world of vastly enlarged datasets.

In response, the field of Mathematical Statistics increasingly studies problems
where the number of variables measured is comparable to or even larger than the
number of observations. Numerous fascinating mathematical phenomena arise in
this regime; and in particular theorists discovered that the traditional approach to
covariance estimation needs to be completely rethought, by appropriately shrink-
ing the eigenvalues of the empirical covariance matrix.

This talk briefly reviews advances by researchers in random matrix theory who
in recent years solved completely the properties of eigenvalues and eigenvectors
under the so-called spiked covariance model. By applying these results it is now
possible to obtain for the spiked model the exact optimal nonlinear shrinkage of
eigenvalues for certain specific measures of performance, as has been shown in the
case of Frobenius loss by Nobel and Shabalin, and for many other performance
measures by Donoho, Gavish, and Johnstone. Our presentation at Oberwolfach
discussed results of [3] on optimal shrinkage for a range of performance ‘decom-

posable’ performance measures including operator norm of Σ̂−Σ, Stein Loss, and
Frobenius norm of Σ̂−1 − Σ−1.

The last part of the talk focused on recent results [4] of the author and Behrooz
Ghorbani on optimal shrinkage for the condition number of the relative error
matrix; this presents new subtleties as this loss is not decomposable in the sense of
[3]. The exact optimal solutions were described, and stylized applications to Muti-
User Covariance estimation and Multi-Task Discriminant Analysis were developed.

In more detail, Ghorbani and Donoho considered the following loss function:

L(Σ̂,Σ) = κ(Σ−1/2Σ̂Σ−1/2)

where κ(∆) = ‖∆‖/∆‖−1 is the condition number. We assumed data Xi ∼iid

N(0,Σ) i = 1, . . . , n, and Xi ∈ Rp, and assume n, p → ∞ with p/n → γ ∈ (0,∞).
We worked in the spiked model asymptotic where Σ = diag(ℓ1, . . . , ℓr, 1, 1, . . . , 1)
and ℓi > 1, with r ≥ 1 fixed. Let X denote the n by p data matrix and S = 1

nX
′X

be the usual empirical second-moment matrix and let S = V ΛV ′ be its usual
eigendecomposition, where V is orthogonal and Λ is diagonal with the ordered
eigenvalues λ1 ≥ λ2 · · · ≥ λp along the diagonal. We say that Σ̂ is orthogonally

equivariant if Σ̂(U ′SU) = U Σ̂(X)U ′ for all U ∈ O(p). Orthogonally-equivarant
procedures are in a certain sense coordinate free.
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Figure 1.1. Optimal shrinkage in the nonlinear multispike case.

There are two parameters: γ and λ1. The red curve describes the

shrinkage function for the top eigenvalue. The blue area is the

range of η(λ, λ1, γ) where λ1 varies from λ to infinity.

Theorem 1. (Optimal Asymptotic Loss) The following limit exists almost
surely:

lim
n→∞

inf
Σ̂∈OE

L(Σ̂,Σ) =a.s. L
∗(ℓ1, . . . , ℓr; γ);

say. Here the infimum is over orthogonally equivariant procedures. We define in
closed form a function κ∗

1 depending only on the aspect ratio γ and on the top spike
eigenvalue ℓ1, for which:

L∗(ℓ1, . . . , ℓr; γ) = κ∗
1(ℓ1; γ).

Theorem 2. (Asymptotically Optimal Nonlinearity) We define a closed-
form shrinkage nonlinearity λ 7→ η∗(λ;λ1,n, γ) having two tuning parameters: γ =
p/n and λ1,n the top empirical eigenvalue. Applying this nonlinearity to each of
the empirical eigenvalues (λi), produces the diagonal matrix η∗(Λ) = diag(η∗(λi)).
These shrunken eigenvalues induce the orthogonally-equivariant covariance estima-
tor Σ̂∗ = V η∗(Λ)V ′; this estimator is asymptotically optimal among orthogonally
equivariant procedures under relative condition number loss:

lim
n→∞

L(Σ̂∗,Σ) =a.s. κ
∗
1(ℓ1; γ).

While the exact closed forms of κ∗
1 and η∗ are given in our paper, they would take

too much space to describe here. The results are quantitatively quite similar to
those one would obtain by the generalized soft threshold rule η(λ) = 1+b·(λ−λ+)+,
where λ+ = (1 +

√
γ)2 is the upper edge of the bulk distribution of eigenvalues

and b = 1/(1 + γ). The maximal regret of this thresholding rule as compared to
the optimal rule is only a few percent, for γ ≤ 2.
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Slope meets Lasso and improved oracle bounds for least squares
estimators with convex penalty

Alexandre Tsybakov

We show that two polynomial time methods, a Lasso estimator with adaptively
chosen tuning parameter and a Slope estimator, adaptively achieve the exact min-
imax prediction and ℓ2 estimation rate (s/n) log(p/s) in high-dimensional linear
regression on the class of s-sparse target vectors in Rp. This is done under the
Restricted Eigenvalue (RE) condition for the Lasso and under a slightly more
constraining assumption on the design for the Slope. The main results have the
form of sharp oracle inequalities accounting for the model misspecification error.
The minimax optimal bounds are also obtained for the ℓq estimation errors with
1 ≤ q ≤ 2 when the model is well-specified. The results are non-asymptotic,
and hold both in probability and in expectation. One notable difference from the
previous studies of the Lasso and related methods is in the fact that the tuning
parameters of the estimators do not depend on the confidence level. In particular,
this allows one to derive oracle inequalities in expectation for any moments, which
was not possible with the previously known techniques. The assumptions that
we impose on the design are satisfied with high probability for a large class of
random matrices with independent and possibly anisotropically distributed rows.
We give a comparative analysis of conditions, under which oracle bounds for the
Lasso and Slope estimators can be obtained. In particular, we show that several
known conditions, such as the RE condition and the sparse eigenvalue condition
are equivalent if the ℓ2-norms of regressors are uniformly bounded. Finally, the
techniques and the results are extended to the study of more general penalized
least squares estimators in a Hilbert space setting, covering as specific cases the
group Lasso, and the nuclear norm penalized estimation. The talk is based on a
joint work with Pierre C. Bellec and Guillaume Lecué [1]-[3].
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Some exercises with the Lasso and its compatibility constant

Sara van de Geer

Let X ∈ R
n×p be an n× p matrix and β0 ∈ R

p be a fixed vector. We examine the
Lasso for the noiseless case

β∗ := arg min
β∈Rp

{
‖X(β − β0)‖22 + 2λ‖β‖1

}

and compare it with the noisy Lasso

β̂ := arg min
β∈Rp

{
‖Y −Xβ‖22 + 2λ‖β‖1

}

where Y = Xβ0 + ǫ is a noisy version of Xβ0. The prediction error ‖X(β̂− β0)‖2
depends on a “bias” term ‖X(β∗ − β0)‖2 and a square-root “

√
variance” term

‖X(β̂ − β∗)‖2. Theorem 1 below shows that under some conditions the “bias”

term is the dominating one. The Gram matrix is Σ̂ := XTX . Let Σ0 be some
(other) p×p matrix Σ0 (for instance in the case of random design Σ0 could be the

expected value IEΣ̂ of Σ̂). The largest eigenvalue of Σ0 is denoted by Λmax(Σ0).

Theorem 1. Let 0 < α < 1 and 0 < α1 < 1 be fixed, write λ0 :=
√
2 log(2p/α)/n

and let ηλ > λ0 for some 0 ≤ η < 1.
Suppose
- the columns of X are normalized to have length at most 1,
- the noise ǫ consists of i.i.d. Gaussians with mean zero and variance 1/n,

- the matrices Σ̂ and Σ0 are close enough in the sense that

ξ := ‖Σ̂− Σ0‖∞‖β∗ − β0‖1 < λ(1 − η).

Then with probability at least 1− α− α1

‖X(β̂ − β∗)‖2 ≤
Λ
1/2
max(Σ0)

(
‖X(β∗ − β0)‖22 + ξ‖β∗ − β0‖1

)1/2

(
λ(1 − η)− ξ

) +

√
2 log(1/α1)

n
.

Next, we study the noiseless Lasso. For S ⊂ {1, . . . , p}, and β ∈ R
p, the vector

βS denotes the vector β with its entries in the set S set to zero. Moreover, we
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write β−S := β − βS . The compatibility constant is

φ̂2(S) := min

{
|S|‖Xβ‖22 : ‖βS‖1 = 1, ‖β−S‖1 ≤ 1

}
.

Then

‖X(β∗ − β0)‖22 + 2λ‖β∗
−S0

‖1 ≤ λ2|S0|
φ̂2(S0)

,

where S0 is the support set of β0 (see for example [1] and its references). To see
whether this bound is tight, one may study several particular cases.

Lemma 1. Suppose that

Σ̂ =




1 −ρ̂1
−ρ̂1 1

. . .

1 −ρ̂N
−ρ̂N 1




.

where 0 ≤ ρ̂k < 1 for all k = 1, . . . , N . Let S0 = {1, . . . , p} (p = 2N). Write
ϕ̂2
k := 1− ρ̂k and assume that β0

2k−1 ≥ β0
2k ≥ λ/ϕ̂2

k for each k. Then it holds that

‖X(β∗ − β0)‖22 =
λ2|S0|
φ̂2(S0)

,

and

φ̂2(S0) =
N

∑N
k=1 1/ϕ̂

2
k

.

Thus in the situation of Lemma 1 the upper bound and lower bound match.
Note that the compatibility constant can be much larger than the minimal eigen-

value of Σ̂ (which is mink ϕ̂
2
k in the case of Lemma 1).

In Lemma 1 there are no inactive variables. One can consider various scenario’s
with inactive variables. One such (simple) scenario is the following.

Lemma 2. Suppose that

Σ̂ =




1 −ρ̂ Cϕ̂2/2
−ρ̂ Cϕ̂2/2

Cϕ̂2/2 Cϕ̂2/2 1




where 0 ≤ ρ̂ < 1, ϕ̂2 := 1− ρ̂ and 1 < C < 2/ϕ̂2. Let τ̂2 := 1− C2ϕ̂2/2. Assume
that β0

1 ≥ β0
2 ≥ λC(C − 1)/(2τ̂2) and β0

3 = 0. Then

‖X(β∗ − β0)‖22 + 2λ‖β∗
−S0

‖1 =
λ2|S0|
φ̂2(S0)

− λ2

τ̂2
.
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Optimal rates of estimation for the multi-reference alignment problem

Philippe Rigollet

(joint work with Afonso S. Bandeira, Jonathan Weed)

The multi-reference alignment problem and its variants arise in various scientific
and engineering applications such as structural biology [SVN+05, TS12, Sad89],
image recognition [Bro92], and signal processing [ZvdHGG03]. A striking feature
of this class of problems is that each observation is not only observed in a noisy
setting but is also altered by an latent transformation that reflects underlying
heterogeneity of the data. The precise nature of this transformation depends on
the specific application, but it can often be characterized as the action of the
unknown element of a known group.

Concretely, one observes n independent vectors Y1, . . . , Yn ∈ R
d given by

Yi = Riθ + σξi ,

where θ is an unknown parameter of interest, ξi ∼ N (0, Id) is independent Gauss-
ian noise, and Ri is an unknown element from a known compact subgroup G
of the orthogonal group in d dimensions. The multi-reference alignment prob-
lem [BCSZ14] takes G to be the group of cyclic shifts of the coordinates of θ: given
ℓ ∈ [d], the jth coordinate of the vector Rℓθ is given by (Rℓθ)j = θj+ℓ (mod d).
This group has a simple representation in the Fourier domain, where it acts on
the phases of the Fourier coefficients.

We focus on a slightly different group isomorphic to the circle group U(1) of
unit-norm complex numbers, which is both slightly easier to analyze and better
corresponds to the situation in practice. By analogy with the action of the group
of cyclic shifts on the phases of the Fourier coefficients, it is most convenient to
define this group in the Fourier domain. Given z ∈ U(1) we define the operator

Rz on R
d by its action on the Fourier transform θ̂:

R̂zθj = zj θ̂j for −⌊d/2⌋ ≤ j ≤ ⌊d/2⌋.
We define the group of such operators by F and call Rz a fractional cyclic shift.
For the sake of exposition, in the sequel, we will focus on F and omit the adjective
“fractional” when referring to shifts.

We propose to analyze the multi-reference alignment problem as a continuous
mixture of Gaussians. Since the Gaussian distribution is invariant under cyclic
shift, we can without loss of generality assume that the shifts Ri are independent
and uniformly (i.e., according to the Haar probability measure) distributed over
F .

We are interested in recovering the unknown parameter θ, which we can clearly
only do up to cyclic shift. Define the pseudo-metric ρ on R

d by

ρ(θ, φ) = min
R∈F

‖θ −Rφ‖ .

We assume throughout that the noise variance σ2 is known, and we are interested in
signals θ for which a parametric rate is achievable. Hence we assume the existence
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of an absolute constant c not depending on n such that c−1 ≤ |θ̂j | ≤ c for all j

such that θ̂j 6= 0, and denote the set of such vectors by T . Surprisingly, even under
this assumption, the multi-reference alignment problem suffers from the curse of
dimensionality.

Theorem 1. Let 2 ≤ s ≤ ⌊d/2⌋. Let Ts be the set of vectors θ ∈ T such that the

support of θ̂ lies in {−s, . . . , s}. Then,

inf
Tn

sup
θ∈Ts

Eθ[ρ(Tn, θ)] ≍
σ2s−1

√
n

(1 + on(1)) ,

where the infimum is taken over all estimators Tn of θ and where the symbol ≍
hides constants depending on d but on no other parameter. A modified MLE
achieves this rate.

The worst case bounds appearing in Theorem 1 contrast sharply with the typical
case: in a companion paper [PWB+17], we show that signals θ whose Fourier
transform has full support may be estimated as the same rate as signals in T2.

The proof of Theorem 1 relies on tight control of the Kullback-Leibler diver-
gence between two probability distributions via their moment tensors. Our main
technical result makes this connection precise. Note that this Theorem holds for
any compact subgroup of the orthogonal group and is not specific to cyclic shits.

Theorem 2. Let θ be a fixed vector in R
d such that ‖θ‖ ≤ 1. Let φ ∈ R

d be
such that ρ(θ, φ) = ε ≤ ‖θ‖. Let R be a random element drawn according to the
Haar probability measure on any compact subgroup G of the orthogonal group in d
dimensions. For all m ≥ 1, let ∆m = E[(Rθ)⊗m − (Rφ)⊗m]. If there exists k ≥ 1
such that, as ε → 0,

‖∆m‖ = o(ε) for m = 1, . . . , k − 1, and ‖∆k‖ = Ω(ε) ,

then ‖∆k‖ = Θ(ε). Moreover, for σ ≥ 1 there exist universal constants c and C̄
and constant Cd that depends only on d, all positive and such that

ck

σ2kk!
‖∆k‖2 − Cd

ε2

σ2k+2
≤ D(θ ‖ φ) ≤ 2

σ2kk!
‖∆k‖2 + C̄

ε2

σ2k+2
.

In particular, there exists positive σ0, ε0 that depend on d such that for all
σ ≥ σ0, and θ, φ such that ‖θ‖ ≤ 1, ρ(θ, φ) ≤ ε0, it holds

D(θ ‖ φ) ≍ σ−2kρ2(θ, φ) ,

where the symbol ≍ hides constants depending on d but on no other parameters.

Theorem 2 immediately implies minimax lower bounds via LeCam’s method
[LeC73]. On the other hand, we also show how to transform lower bounds on
D(Pθ ‖ Pφ) into uniform upper bounds on the performance of the MLE. Note
that this analysis departs from the classical pointwise rate of convergence for MLE
that guarantees a rate of convergence n−1/2 for each fixed choice of parameter as
n → ∞. Our tools strengthen this result considerably. Indeed, we show that for
reasonable choices of θ, the MLE achieves a rate of n1/2 uniformly over all choices
of θ, with an optimal dependence on the noise level σ.
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To prove the lower and upper bounds in Theorem 1 we use Fourier-theoretic
arguments to show that, if θ ∈ Ts, then for any φ with the same support as θ such
that ρ(θ, φ) = ε, there exists k ≤ 2s − 1 such that ‖∆k‖ = Ω(ε). Conversely, we
show how to exhibit vectors θ and φ in Ts for which ‖∆m‖ = 0 for all m < 2s− 1.
These two results, combined with Theorem 2, imply tight lower and upper bounds
on on D(Pθ ‖ Pφ) over the class Ts. LeCam’s method and our new analysis of the
maximum likelihood estimator then imply Theorem 1.
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The Geometry of Synchronization Problems and Learning Group
Actions

Sayan Mukherjee

(joint work with Tingran Gao, Jacek Brodzki)

We develop a geometric framework that characterizes the synchronization prob-
lem — the problem of consistently registering or aligning a collection of objects.
The theory we formulate characterizes the cohomological nature of synchronization
based on the classical theory of fibre bundles. We first establish the correspon-
dence between synchronization problems in a topological group Gover a connected
graph Γ and the moduli space of flat principal G-bundles over Γ, and develop
a discrete analogy of the renowned theorem of classifying flat principal bundles
with fix base and structural group using the representation variety. In particular,
we show that prescribing an edge potential on a graph is equivalent to specifying
an equivalence class of flat principal bundles, of which the triviality of holonomy
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dictates the synchronizability of the edge potential. We then develop a twisted co-
homology theory for associated vector bundles of the flat principal bundle arising
from an edge potential, which is a discrete version of the twisted cohomology in
differential geometry. This theory realizes the obstruction to synchronizability as
a cohomology group of the twisted de Rham cochain complex. We then build a
discrete twisted Hodge theory — a fibre bundle analog of the discrete Hodge the-
ory on graphs — which geometrically realizes the graph connection Laplacian as a
Hodge Laplacian of degree zero. Motivated by our geometric framework, we study
the problem of learning group actions — partitioning a collection of objects based
on the local synchronizability of pairwise correspondence relations. A dual inter-
pretation is to learn finitely generated subgroups of an ambient transformation
group from noisy observed group elements. A synchronization-based algorithm is
also provided, and we demonstrate its efficacy using simulations and real data.
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On Polynomial Time Methods for Low Rank Tensor Completion

Ming Yuan

(joint work with Dong Xia)

Let T ∈ R
d1×···×dk be a kth order tensor. The goal of tensor completion is

to recover T based on a subset of its entries {T (ω) : ω ∈ Ω} for some Ω ⊂
[d1] × · · · × [dk] where [d] = {1, 2, . . . , d}. The problem of tensor completion has
attracted a lot of attention in recent years due to its wide range of applications.
In particular, the second order (matrix) case has been extensively studied. One
of the main revelations from these studies is that, although the matrix completion
problem is in general NP-hard, it is possible to develop tractable algorithms to
achieve exact recovery with high probability. Naturally one asks if the same can
be said for higher order tensors. This seemingly innocent task of generalizing from
second order to higher order tensors turns out to be rather delicate.

The challenges in dealing with higher order tensors comes from both computa-
tional and theoretical fronts. On the one hand, many of the standard operations
for matrices become prohibitively expensive to compute for higher order tensors.
A notable example is the computation of tensor spectral norm. For second order
tensors, or matrices, the spectral norm is merely its largest singular value and
can be computed with little effort. Yet this is no longer the case for higher order
tensors where computing the spectral norm is NP-hard in general. On the other
hand, many of the mathematical tools, either algebraic such as characterizing the
subdifferential of the nuclear norm or probabilistic such as concentration inequali-
ties, essential to the analysis of matrix completion are still under development for
higher order tenors. There is a fast growing literature to address both issues and
much progresses have been made in both fronts in the past several years.
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When it comes to higher order tensor completion, an especially appealing idea
is to first unfold a tensor to a matrix and then treat it using techniques for matrix
completion. As shown recently, these approaches, although easy to implement,
may require an unnecessarily large amount of entries to be observed to ensure
exact recovery. As an alternative, nuclear norm minimization can recover a d ×
d × d tensor with multilinear ranks (r, r, r) with high probability with as few as
O((r1/2d3/2 + r2d)(log d)2) observed entries. Perhaps more surprisingly, it was
later showed that the dependence on d (e.g., the factor d3/2) remains the same
for higher order tensors and we can reconstruct a kth order cubic tensor with as
few as O((r(k−1)/2d3/2 + rk−1d)(log d)2) entries for any k ≥ 3 when minimizing
a more specialized nuclear norm devised to take into account the incoherence.
These sample size requirement drastically improve those based on unfolding which
typically require a sample size of the order r⌊k/2⌋d⌈k/2⌉polylog(d). Although both
nuclear norm minimization approaches are based on convex optimization, they are
also NP hard to compute in general. Many approximate algorithms have also been
proposed in recent years with little theoretical justification. It remains unknown if
there exist polynomial time algorithms that can recover a low rank tensor exactly
with similar sample size requirements. The goal of the present article is to fill in
the gap between these two strands of research by developing a computationally
efficient approach with tight sample size requirement for completing a third order
tensor.

In particular, we show that there are polynomial time algorithms that can
reconstruct a d1 × d2 × d3 tensor with multilinear ranks (r1, r2, r3) from as few as

O
(
r1r2r3(rd1d2d3)

1/2 log7/2 d+ (r1r2r3)
2rd log6 d

)

entries where r = max{r1, r2, r3} and d = max{d1, d2, d3}. This sample size
requirement matches those for tensor nuclear norm minimization in terms of its
dependence on the dimension d1, d2 and d3 although it is inferior in terms of
its dependence on the ranks r1, r2 and r3. This makes our approach especially
attractive in practice because we are primarily interested in high dimension (large
d) and low rank (small r) instances. In particular, when r = O(1), our algorithms

can recover a tensor exactly based on O(d3/2 log7/2 d) observed entries, which is
nearly identical to that based on nuclear norm minimization.

It is known that the problem of tensor completion can be cast as optimization
over a direct product of Grassmannians. The high level idea behind our develop-
ment is similar to those used earlier for matrix completion: if we can start with
an initial value sufficiently close to the truth, then a small number of observed
entries can ensure the convergence of typical optimization algorithms on Grass-
mannians such as gradient descent to the truth. Yet the implementation of this
strategy is much more delicate and poses significant new challenges when moving
from matrices to tensors.

At the core of our method is the initialization of the linear subspaces in which
the fibers of a tensor reside. In the matrix case, a natural way to do so is by
singular value decomposition, a tool that is no longer available for higher order
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tensors. An obvious solution is to unfold tensors into matrices and then applying
the usual singular value decomposition based approach. This, however, requires
an unnecessarily large sample size. To overcome this problem, we propose an
alternative approach to estimating the singular spaces of the matrix unfoldings
of a tensor. Our method is based on a carefully constructed estimate of the
second moment of appropriate unfolding of a tensor, which can be viewed as a
matrix version U-statistics. We show that the eigenspace of the proposed estimate
concentrates around the true singular spaces of the matrix unfolding more sharply
than the usual singular value decomposition based approaches, and therefore leads
to consistent estimate with tighter sample size requirement.

The fact that there exist polynomial time algorithms to estimate a tensor
consistently, not exactly, with O(d3/2polylog(r, log d)) observed entries was first
recognized recently based on sum-of-square relaxations of tensor nuclear norm.
Although polynomial time solvable in principle, their method requires solving a
semidefinite program of size d3 × d3 and is not amenable to practical implementa-
tion. In contrast, our approach is essentially based on the spectral decomposition
of a d× d matrix and can be computed fairly efficiently.

Once a good initial value is obtained, we consider reconstructing a tensor by
optimizing on a direct product of Grassmannians locally. To this end, we consider a
simple gradient descent algorithm adapted for our purposes. The main architect of
our argument is similar to those for matrix completion. We argue that the objective
function, in a suitable neighbor around the truth and including the initial value,
behaves like a parabola. As a result, the gradient descent algorithm necessarily
converges locally to a stationary point. We then show that the true tensor is indeed
the only stationary point in the neighborhood and therefore the algorithm recovers
the truth. To prove these statements for higher order tensors however require a
number of new probabilistic tools for tensors, and we do so by establishing several
new concentration bounds.

Fréchet Means and Procrustes Analysis in Wasserstein Space

Victor M. Panaretos

(joint work with Yoav Zemel)

We consider three interlinked problems at the intersection of functional and geo-
metrical data analysis, involving distributions of finite variance:

(1) Constructing the optimal multicoupling of marginal distributions;

Let Λ1, . . . ,Λn be measures on R
d. Construct random variables

{Xi}ni=1 such that {Xi ∼ Λi; i = 1, ..., n} and
∑n

i=1

∑n
j=i+1 E|Xi −

Xj |2 ≤ ∑n
i=1

∑n
j=i+1 E|Yi − Yj |2 for any other collection of random

variables Yi ∼ Λi, i = 1, ..., n.
(2) Determining the Fréchet mean of random probability measures;

Let Λ1, . . . ,Λn be measures on R
d. Find the minimiser of the func-

tional γ 7→ 1
n

∑n
i=1 d

2
W (γ,Λi) over probability measures γ on R

d,
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where dW (Λ1,Λ2) = infX1∼Λ1,X2∼Λ2

√
E‖X1 −X2‖2 is the quadratic

Wasserstein distance, a.k.a. the Fréchet distance.
(3) Registering collections of randomly deformed point processes.

Let Π1, . . . ,Πn be iid point processes on [0, 1]d, with mean measure
µ = τλ, for λ a probability measure and τ > 0. Letting Ti : [0, 1]

d →
[0, 1]d be unobservable random homeomorphisms, recover {Πi}ni=1 and

{Ti}ni=1 from observation of the n warped processes Π̃i = (Ti)#Πi.

The common thread is that all three problems are canonically related to the op-
timal transportation geometry of the Wassertein space of measures on R

d. And,
consequently, the solution of these problems and corresponding nonparametric
statistical properties bifurcate according to whether d = 1 or d > 1.

The case d = 1. In the one-dimensional case, Wasserstein space is flat, and the
solutions of (1) and (2) are straightforward by means of the probability integral
transform, at least for absolutely continuous measures. For (1), observe that
each term E‖Xi − Xj |2 can be minimised by defining Xi = F−1

Λi
(U) ∼ Λi, for a

common uniform random variable U on [0, 1]. Given this, (2) reduces to finding
the minimiser of

∑n
i=1 d

2
W (γ,Λi) =

∑n
i=1 E|F−1

Λi
(U) − F−1

γ (U)|2 =
∑n

i=1 ‖F−1
Λi

−
F−1
γ ‖2L2 , which is attained uniquely at the measure Λ̄ with quantile function F−1

Λ̄
=

n−1
∑n

i=1 F
−1
Λi

.
To solve (3), we use the structure of (1) and (2). We show that under the

canonical assumptions that E[Ti(x)] = x (unbiased deformations) and that T is
increasing (no time pause or reversal), the structural mean measure λ can be
uniquely identified as the population Fréchet mean of the random measure Λ =
T#λ, i.e. the unique minimiser of γ 7→ Ed2W (γ, T#λ); the unobservable Ti are
then uniquely identified as the optimal maps from λ to Λi.

We then show how λ, {Πi}ni=1 and {Ti}ni=1 can be recovered non-parametrically
by exploiting this structure: first one estimates each Λi = (Ti)#λ separately

by smoothing Π̃i, obtaining Λ̂i (say); then, one estimates λ by the Fréchet–

Wasserstein mean of the Λ̂i, say λ̂; and, finally, one estimates Ti as the optimal

coupling T̂i of λ̂ to each Λ̂i, registering the point processes by taking (T̂−1
i )#Π̃i.

The resulting estimators can be shown to be consistent as τ and n diverge. In
the case where the {Πi} are Poisson processes, convergence rates are obtained and
shown to be essentially optimal, and a tangent space central limit theorem is also
obtained.
For more details, see Panaretos & Zemel [2].

The case d > 1. In this case, Wasserstein space is positively curved, and neither
(1) nor (2) can be solved explicitly. For (2), Agueh & Carlier [1] show that a
unique Fréchet mean will exist, when assuming that the {Λi} are diffuse and with
bounded density. They also show that if (1) can be solved, yielding optimally
coupled random variables {X1, ..., Xn}, then the law of n−1

∑n
i=1 Xi will yield

the Fréchet mean of {Λ1, ...,Λn}. We go in the opposite direction. Assuming
that the measures are diffuse and of bounded density, we show that if Λ̄ is the
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Fréchet mean of {Λ1, ...,Λn}, and if Z ∼ Λ̄, then Xi := tΛi

Λ̄
(Z) yields the optimal

multicoupling solution to (1), where tνµ denotes the optimal coupling map between
diffuse measures µ and ν, i.e.

tνµ#µ = ν & d2W (µ, ν) =

∫

Rd

‖tνµ(x) − x‖2µ(dx).

Thus (1) is solved, as long as (2) can be solved. To solve (2), we reduce the
problem of finding the Fréchet mean to the solution of successive pairwise opti-
mal transportation problems, a Procrustes analysis heuristic. Using the tangent
bundle structure of Wasserstein space, we determine the Fréchet derivative of the
functional F (γ) = n−1

∑n
i=1 d

2
W (γ,Λi), and determine the optimal step-size for a

steepest descent minimisation. It turns out that F ′(γ) = −n−1
∑n

i=1

(
tΛi
γ − i

)
, for

i the identity map, i(x) = x, and that the optimal step-size is 1. This gives rise to
the steepest descent algorithm:

(A) Set a tolerance threshold ǫ > 0.

(B) For j = 0, let γj be an arbitrary diffuse measure.

(C) For i = 1, . . . , n solve the (pairwise) Monge problem and find the optimal
transport map tΛi

γj
from γj to Λi.

(D) Define the map Tj = n−1
∑n

i=1 t
Λi
γj
.

(E) Set γj+1 = Tj#γj , i.e. push-forward γj via Tj to obtain γj+1.

(F) If ‖F ′(γj+1)‖ < ǫ, stop, and output γj+1 as the approximation of Λ̄ and

tΛi
γj+1

as the approximation of tΛi

Λ̄
, i = 1, . . . , n. Otherwise, go to (C).

We show Wasserstein convergence of the algorithm iterates γj to a critical point
of F , and provide sufficent conditions for this critical point to be the unique Fréchet
mean Λ̄. In this case, we also deduce uniform convergence of the optimal maps
tΛi
γj

to the optimal multicoupling maps tΛi

Λ̄
. The algorithm can be seen to be a

Procrustes algorithm: at each step it optimally couples every measure to the cur-
rent iterate, pairwise. It then averages the registration maps, and pushes forward
the current iterate by the average registration map. The value of this Procrustean
structure goes beyond aesthetics: contrary to the optimal multicoupling problem,
pairwise optimal coupling problems can be solved numerically, and thus both the
determination of a Fréchet mean, as well as the optimal multicoupling problem are
reduced to the computationally feasible pairwise problem of optimal transporta-
tion, just as in the one-dimensional case (albeit without closed-form expressions).

With the solution of (1) and (2) under our belt, we then attack problem (3). In
the case d > 1, we show that under the analogous canonical assumptions on the
deformations Ti, the structural mean measure λ can again be uniquely identified
as the population Fréchet mean of the random measure Λ = T#λ. The main
difference here is that Ti need to be gradients of convex functions rather than in-
creasing maps (Brenier’s characterisation). The resulting structure of the problem
is analogous to the 1-dimensional case, and estimators can be defined in a similar
way – using multivariate optimal transportation and Procrustes analysis for their
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solution. Though rates of convergence remain elusive, we still deduce consistency
of all the nonparametric estimators involved. While the results parallel the one-
dimensional case, their derivation requires entirely different techniques, related to
the structure of gradients of convex maps and their weak convergence in R

d.

For more details see Zemel & Panaretos [4, 5] and for a detailed presentation,
including an introduction to optimal transportation, we refer to the forthcom-
ing monograph by Panaretos & Zemel [3] and the PhD thesis of Zemel [6]. We
gratefully acknowledge support by an ERC Starting Grant Award to Victor M.
Panaretos.
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Review of Regularized Optimal Transport

Marco Cuturi

Monge [12] and later Kantorovich [11] built using relatively simple mathematical
blocks what is known today as optimal transport theory, a field that has drawn in
recent decades the interest of pure and applied mathematicians [10, 16, 14]. One
of the most notable results of that theory lies in the definition of a versatile dis-
tance between probability measures, known as the Wasserstein distance. Because
probability measures are widely used to model social and natural phenomena, the
toolbox of optimal transport has been increasingly adopted in a wide array of ap-
plied fields, such as economics [9], fluid dynamics [4], quantum chemistry [5, 8],
computer vision [13], or graphics [15]. Closer to the audience of this workshop,
ideas related to optimal transport are also increasingly adopted by statisticians.
The main motivation behind the work presented in this seminar was that I wanted
to study new machine learning methodologies built upon the optimal transport
geometry. The main obstacle to this goal was computational, since optimal trans-
port is notoriously costly to compute. To avoid that issue, I have proposed 3
years ago [6] a very efficient numerical scheme to solve optimal transport prob-
lems that can scale up to large scales and use recent progresses in hardware, namely
GPGPUs. This breakthrough has inspired several works in the span of 3 years, in
machine learning [17] and beyond [2, 7, 3], which I tried to survey in this talk, with

http://smat.epfl.ch/reports/1-16.pdf
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a special emphasis on the problems of Wasserstein barycenters [1] and minimum
Wasserstein distance estimation.
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[3] N. Bonneel, G. Peyré, and M. Cuturi. Wasserstein barycentric coordinates: Histogram re-
gression using optimal transport. journal=ACM Transactions on Graphics, volume=35,
number=4, year=2016.

[4] Yann Brenier. The least action principle and the related concept of generalized flows for
incompressible perfect fluids. Journal of the American Mathematical Society, 2(2):225–255,
1989.

[5] Codina Cotar, Gero Friesecke, and Claudia Klüppelberg. Density functional theory and opti-
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Distributional Limits for Wasserstein Distance on Discrete Spaces

Max Sommerfeld

(joint work with Axel Munk, Carla Tameling, Jörn Schrieber)

The empirical Wasserstein distance between distributions is an attractive tool for
statistical applications but suffers from two major obstacles: First, inference is
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hindered by the lack of distributional limits for spaces other than the real line.
Second, the computational cost is prohibitive even for moderately sized problems.
We argue that both obstacles can be overcome in the setting of finite spaces. To
this end, for probability measures supported on finitely many points, we derive
the asymptotic distribution of the Wasserstein distance of empirical distributions
as the optimal value of a linear program with random objective function. As a
consequence statistical inference for sample based Wasserstein distances becomes
doable in large generality. We introduce the concept of directional Hadamard dif-
ferentiability in this context. To approximate the limiting distribution, we discuss
bootstrapping schemes accounting for the non-linear derivative of the Wasserstein
distance and explore modifications that reduce the computational burden.

Nevertheless, when problem sizes become large, exact computation of the Was-
serstein distance as well as the bootstrap become computationally infeasible. To
facilitate inference (e.g. testing) in these situations, we lower bound the Wasser-
stein distance and stochastically upper bound the limiting distribution using tree
metrics and give efficient algorithms to compute these bounds.

For non-inferential tasks such as classification, which often require the fast
computation of a large number of Wasserstein distances but may permit an error
in each calculation, we propose a probabilistic approximation with exact solvers.
The problem size is reduces dramatically by considering only a sub-sample of the
original measures and computing the exact distance between these. This scheme
is can easily be tuned towards higher accuracy or lower computational burden,
works with any solver as a back-end, including entropy regularized versions and
comes with non-asymptotic guarantees. In the case of regular grids we show that
the expected approximation error can be bounded (for certain combinations of
cost exponent and dimension) independently of the size of the original support of
the measures.

Numerical experiments demonstrate the practical performance of the scheme.

Statistical network analysis: From combinatorics to nonparametrics

Sofia Olhede

(joint work with Patrick Wolfe)

Networks or graphs are discrete objects, representing relationships between entities
(vertices) in terms of a list of edges. The simplest form of graph has unweighted
edges, and does not allow for directed edges or self-loops. It is typical to model
each such edge as a Bernoulli random variable taking the value zero or unity.

It is standard practice to collect all these edges in a binary symmetric array, or
adjacency matrix. This array will then contain

(
n
2

)
independent random variables,

which can be modeled using up to
(
n
2

)
parameters. To understand simplified

behavior in this array, as the size of the network grows, the concept of a graph
limit has recently emerged (see, e.g., the discussion in [4].) Any infinite binary
array that is exchangeable, in the sense that its probability distribution is invariant
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under symmetric permutations of its indices, can be represented as a realization
of a graph limit function, as established by the Aldous–Hoover theorem [3].

Once a network is viewed as a realization from an infinite-dimensional limit
object, the question of recovering this limit object becomes a question of non-
parametric statistics [5]. One possible choice of estimator relates to the stochastic
blockmodel, which implies that certain groups of vertices share similar connec-
tivity properties. Different methods of estimating the parameters of stochastic
blockmodels have been proposed [1, 2], and can be shown to imply a convergent
approximation of the underlying limit object [5].

Understanding the behavior of a network at the level of groups of vertices is
crucial but does not reveal the entire picture. For example, it is possible to define
quantities analogous to moments of random variables in the setting of graph lim-
its [1, 2, 3]. We discuss other such representations and their uses in nonparametric
statistical methods for the analysis of large graphs.
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Interpretable models for prediction on network-linked data

Levina Elizaveta

(joint work with Tianxi Li, Ji Zhu)

Advances in data collection and social media have resulted in network data being
collected in many applications, recording relational information between units of
analysis; for example, information about friendships between adolescents is now
frequently available in studies of health-related behaviors. This information is of-
ten collected along with more traditional covariates on each unit of analysis; in the
adolescent example, these may include variables such as age, gender, race, socio-
economic status, academic achievement, etc. Information on friendships can play
an important role through network cohesion, the empirically observed phenome-
non of friends behaving similarly. Since cohesion suggests pooling information from
neighboring nodes, incorporating the network information is potentially helpful in
making predictions.

There is a large body of work extending over decades on predicting a response
variable of interest from covariates, via linear or generalized linear models, survival
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analysis, classification methods, and the like, which typically assume the training
samples are independent and do not extend to situations where the samples are
connected by a network. In certain specific contexts, regression with network
dependent observations has been studied. However, most of these methods either
lose the interpretability of the classic regression model or cannot make out-of-
sample predictions.

We propose a regression model with random node effects incorporating the
network information, and a network-based quadratic penalty on these node effects
to encourage similarity between predictions for linked nodes. Our model is as
interpretable as the classic regression model, in that the network information is
modeled by individual effects, decoupled from covariates effects. We show that the
method gives consistent estimates of covariate effects and derive explicit conditions
on when enforcing network cohesion in regression can be expected to perform
better than ordinary least squares. More importantly, our proposal can be directly
extended to generalized linear models and survival analysis without conceptual
difficulties, as well as to the case of high-dimensional predictors. In our framework,
out-of-sample prediction can be easily made and good prediction performance is
demonstrated through multiple numerical studies. In contrast to previous work,
we assume no specific form for the cohesion effects and require no information
about potential groups. We also derive a computationally efficient algorithm for
implementing our approach, which is efficient for both sparse and dense networks,
the latter with an extra sparsification step which we prove preserves the relevant
network properties. To the best of our knowledge, this is the first proposal of a
general regression framework with network cohesion among the observations that
is computationally feasible and can retain covariate interpretation as well as make
out-of-sample predictions.

We apply the proposed method to predict levels of recreational activity and
marijuana usage among teenagers based on both demographic covariates and their
friendship networks using the data from AddHealth, a national longitudinal study
of U.S. high schools. The superior performance of our method compared to stan-
dard methods without incorporating network information indicates that social
peer effects are indeed very important in these types of applications. In par-
ticular, we show that even using the social network information alone can make
better predictions than using all the most informative covariates. Our method also
outperforms previously proposed ad hoc approaches to incorporating network in-
formation. This demonstrates the effectiveness of our method and more generally
the practical importance of using network information in prediction problems.
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Markov Properties and Geometry of Exchangeable Random Networks

Alessandro Rinaldo

(joint work with Steffen L.. Lauritzen, Kayvan Sadeghi)

We investigate the connections among random network models, bidirected and
undirected graphical models, and exchangeability. We show that exchangeable
finite network models can be well approximated by mixtures of curved exponential
families corresponding to a distinguished class of graphical models for marginal
independence of binary data. We obtain a simple derivation of de-Finetti theorem
for exchangeable arrays, and we link it to the theory of graphons. Using this
characterization, we discuss some of the challenges and intrinsic difficulties of
fitting exchangeable network models.

Model-free Knockoffs: Statistical Tools for Replicable Selections

Emmanuel Candès

(joint work with Yingying Fan, Lucas Janson, Jinchi Lv)

Dramatic changes in data acquisition and sharing capabilities have informed a
new way of carrying out scientific investigation. Nowadays we routinely collect
information on an exhaustive collection of possible explanatory variables to predict
an outcome or understand what determines an outcome. For instance, certain
diseases have a genetic basis and an important biological problem is to find which
genetic features (e.g., gene expressions or single nucleotide polymorphisms) are
important for determining a given disease. Even though we believe that a disease
status depends on a comparably small set of genetic variations, we have a priori
no idea about which ones are relevant and therefore must include them all in our
search. In statistical terms, we have an outcome variable Y and a potentially
gigantic collection of explanatory variables X1, . . . , Xp: we would like to know
which of the many variables Y depends on. In fact, we would like to do this while
controlling a type-I error so that the results of our investigation do not run into
the problem of irreproducibility.

This talk introduces model-free knockoffs, a framework for finding dependent
variables while provably controlling the false discovery rate in finite samples. This
feat holds no matter the form of the dependence between Y and X , which does
not need to be specified in any way. What is required is that we observe i.i.d. sam-
ples and know something about the distribution of the covariates although we
have shown that the method is robust to unknown/estimated covariate distribu-
tions. This framework builds on the knockoff filter of Foygel Barber and Candès
introduced a couple of years ago, which was limited to linear models with fewer
variables than observations (p < n). Having said this, model-free knockoffs deal
with a range of problems far beyond the scope of the original knockoff paper—
e.g. it provides valid selections in any generalized linear model including logistic
regression—while being more powerful than the original procedure when it applies.
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We present an analysis of a genome-wide association study (GWAS) data set
with thousands of subjects and hundreds of thousands of single nucleotide poly-
morphisms (SNP) locations from a case-control study of Crohn’s disease in the
United Kingdom. Here, model-free knockoffs made twice as many discoveries as
the original analysis of the same data. A literature review provides independent
confirmation of many of the new discoveries.
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Goodness-of-fit Testing for (non)-Smooth Densities: Local Minimax
Rates

Sivaraman Balakrishnan

(joint work with Larry Wasserman)

We consider the classical one-sample goodness-of-fit testing problem of testing a
simple null hypothesis that the data are drawn from a specified distribution func-
tion, against a composite alternative separated in the total variation metric. We
consider testing a Lipschitz density, with possibly unbounded support, in the low-
smoothness regime where the Lipschitz parameter is not assumed to be constant.
In contrast to classical results, we observe that the minimax rate and critical test-
ing radius in these settings depend strongly and in a precise fashion on the null
distribution being tested. For multinomials this phenomenon was recently expli-
cated in the work of [1]. In the full version of this paper we re-visit and extend
their results by developing two novel modifications to the χ2-test whose perfor-
mance we characterize. In this short abstract we focus on the question of testing
Lipschitz densities, we observe that classical binning tests are inadequate in the
low-smoothness regime and we design a spatially adaptive partitioning scheme
that forms the basis for our locally minimax optimal tests. Furthermore, we pro-
vide the first local minimax lower bounds for this problem which yield a precise
characterization of the dependence of the critical radius on the null hypothesis
being tested.

1. Background and Problem Set-up

We begin with some basic background on hypothesis testing, the testing risk and
minimax rates. Our focus in this paper is on the one sample goodness-of-fit testing
problem. We observe samples Z1, . . . , Zn ∈ X , where X ⊂ R

d, which are indepen-
dent and identically distributed with distribution P . In this context, for a fixed

http://statweb.stanford.edu/~candes/papers/MF_knockoffs.pdf
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distribution P0, we want to test the hypotheses:

H0 : P = P0 versus

H1 : TV(P, P0) ≥ ǫ.
(1)

It is well-understood [3, 5] that without further restrictions there are no uniformly
consistent tests for distinguishing these hypotheses. In the full version of this
paper we consider restricted variants of this problem that correspond to testing
multinomials and Lipschitz densities. In this abstract we focus on the latter prob-
lem.
Minimally smooth density testing: In the density testing problem the set
X ⊂ R

d, and we restrict our attention to distributions with Lipschitz densities,
i.e. letting p0 and p denote the densities of P0 and P with respect to the Lebesgue
measure, we consider the set of densities:

L =
{
p :

∫

X

p(x)dx = 1, p(x) ≥ 0 ∀ x, |p(x)− p(y)| ≤ Ln‖x− y‖2 ∀ x, y ∈ R
d
}
,

and suppose that p0, p ∈ L. We particularly emphasize, that unlike prior work
[4, 2] we do not restrict the domain of the densities and are interested in the low-
smoothness regime where the Lipschitz parameter Ln is allowed to grow with the
sample size.

Hypothesis testing and risk: Returning to the setting described in Equa-
tion (1), we define a test φ as a Borel measurable map, φ : Xn 7→ {0, 1}. For a
fixed null distribution P0, we define the worst-case risk of the test over a restricted
class C which contains P0 as:

Rn(φ;P0, ǫ, C) = EP0 [φ] + sup
{
EP [1− φ] : ‖P − P0‖1 ≥ ǫ, P ∈ C

}
,

where the first term corresponds to the Type-I error and the second term corre-
sponds to the maximum Type-II error. With this definition in place, we can define
the minimax risk as,

Rn(P0, ǫ, C) = inf
φ

Rn(φ;P0, ǫ, C).(2)

We refer to this quantity as the local minimax risk, to emphasize its dependence
on P0. In this paper we view the minimax risk via a coarse lens, focusing on
the critical radius or the minimax separation, i.e. the smallest value ǫ for which a
hypothesis test has non-trivial power to distinguish P0 from the set of alternatives.
Formally, we define the critical radius as:

ǫn(P0, C) = inf
{
ǫ : Rn(P0, ǫ, C) ≤ 1/2

}
,

where the constant 1/2 is chosen as an arbitrary constant smaller than 1.
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2. Main Results

Our main results are briefly stated in this section. We refer the interested reader to
the full version of this paper for detailed statements of the results, a development
of their consequences and for complete proofs. For a density p0 we define its bulk
Bǫ as the set of smallest Lebesgue measure that contains 1− ǫ probability content.
For

γ =
2

3 + d
,

we define the truncated γ-norm:

‖p0‖γ,ǫ =
(∫

Bǫ

p0(x)
γ

)1/γ

.

Theorem: [Informal] Let ℓn and un be defined as solutions to the equations:

ℓ4+d
n =

L

n2
‖p0‖2γ,ℓn , u4+d

n =
L

n2
‖p0‖2γ,un/8

,

then for universal constants c, C > 0 we have that the critical radius for the
Lipschitz testing problem is bounded as:

ℓn ≤ ǫn(p0,L) ≤ un.

The upper and lower bounds are based on an adaptive partitioning scheme that
divides the domain of the null distribution into bins of a precise width. We defer
these technical aspects to the full version of this paper.

A point of emphasis that we conclude with is that this result describes in a
fairly precise manner the variation of the critical radius as a function of the null
distribution p0. In particular, it is worth noting that this rate exhibits considerable
variability over L, yielding slow rates for testing heavy tailed distributions with
large effective support and fast rates for testing spiky null distributions with small
effective support.
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Extracting multiscale geometric information from high-dimensional
and infinite-dimensional data with application to classification

Wolfgang Polonik

(joint work with Gabriel Chandler)

1. Introduction

We present a method for geometric feature extraction. The extracted features
are useful for visualizing geometric aspects of high-dimensional data sets, and
for conducting statistical inference such as classification. Our method exhibits
multiscale characteristics and is applicable to various types of data, as long as the
data live in a Hilbert space. This includes high-dimensional Euclidean data, but
also data to which the kernel trick can be applied.

The proposed method is based on the notion of Tukey (halfspace) depth, and
has relations to various other methodology known from the literature, including
local depth (e.g. see [1, 2, 4]), the shorth-plot ([5]), Choquet capacities, multi-
dimensional scaling, and the concept of mass estimation discussed in ([6]). The
latter work also inspired the developments presented here.

2. Constructions of the feature functions

Suppose we are given data X1, . . . , Xn ∈ R
d. For each pair (Xi, Xj), we construct

a real-valued function q̂ij(α), 0 < α < 1, which is a quantile function of a certain
depth distribution. The collection of

(
n
2

)
functions is then used for statistical

analysis of the data set. The depth distribution and the corresponding quantile
functions q̂ij(α) are as follows.

For a given pair of data (Xi, Xj) ∈ R
d × R

d, consider the line ℓij = {s ∈ R
d :

s = γXi+(1− γ)Xj, γ ∈ R}, and the midpoint mij =
1
2 (Xi+Xj). For s ∈ ℓij and

α ∈ (0, π), let Cij(s) denote the cone with tip s and opening angle α containing

mij . Then d̂ij(s) is the Tukey depth of mij among all the data on ℓij obtained by
projecting all the Xj lying in Cij(s) onto ℓij . Formally,

d̂ij(s) =
1

n
min

{∣∣{k : 〈Xk,
mij

‖mij‖
〉 ≤ ‖mij‖

∣∣,
∣∣{k : 〈Xk,

mij

‖mij‖
〉 ≥ ‖mij‖

∣∣
}
.

We then pick the tip s randomly, independently of the data, and according to a

distribution G. This results in a random variable d̂ij(S), and q̂ij(α) is defined as
the quantile function corresponding to this random variable. Figure 1 shows one set
of such functions for the 13-dimensional wine data set (classes 1 and 2 only) from
the UC Irvine Machine Learning Repository http://archive.ics.uci.edu/ml/.
To illustrate the usefulness of these feature functions in classification, the functions
q̂ij(α) are colored according to the class memberships of the points Xi, Xj that
are used in constructing the function qij(α).

 http://archive.ics.uci.edu/ml/
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Figure 1. Functions q̂ij(α) for
Xi, Xj running through both class
1 or class 2 of wine data.
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Figure 2. A Z1-Z2-plot corre-
sponding to one of the functions on
the left panel.

3. Classification

In the case of binary classification, the idea is to use the
(
n
2

)
feature functions to

construct, for each data point, a pair of (new) feature functions. This results in
n pairs of functions, which can be used for classification by utilizing functional
data analysis. The construction of the function pairs is as follows. Let Yi ∈ {0, 1}
denote the class label of Xi. For each given Xi, we split up the

(
n
2

)
functions

q̂ij(α) into two subsets, Ds
i = {qij(α);Yi = Yj} and Dd

i = {qij(α);Yi 6= Yj},
respectively. The average functions over these subsuts q̂si (α) = avej∈Ds

i
q̂ij(α), and

q̂di (α) = avej∈Dd
i
q̂ij(α), respectively, comprise the function pairs to be used for

classification. A simple approach is to perform functional PCA on the four classes

of functions {q̂(s)i (α), Yi = k}, k = 0, 1 and {q̂(d)i (α), Yi = k}, ℓ = 0, 1 separately,
and then to combine, for each i, the first k PCA scores from each class into a vector
of length 2k. These vectors can then be used to train an off-the-shelf classifier (such
as a kernel SVM), to classify newly incoming unlabelled data. Numerical studies
indicate, that this ad-hoc method is competitive with other classification methods.

4. Generalizations and relations to other statistical methods

Shorth plot. The shorth plot is proposed in [5] (see also [3]). It is a concentration
measure for one-dimensional functions, geared towards mode finding. For d = 1,
the function q̂ij(α) can be shown to be closely related to the shorth plot, but rather
than mode finding being the goal, our approach is targeting antimodes.

Local depth. Local depth has been considered in the literature, for instance, in
[1, 2, 4]. The approach considered in [4] is perhaps the one closest to our approach,
although there are serval methodological differences.



Statistical Recovery of Discrete, Geometric and Invariant Structures 979

Choquet capacities. A closer investigation of the construction of the average
depth quantile functions shows that, for each α, they estimate the expected value
of a hitting function of a random closed set. If the data consist of two classes, the
functions q̂di (α) and and q̂ s

i (α) estimate expectations of two different random sets,
the distribution of which depend on whether Xi is compared to points within the
same class, or to points in a different class.

Multidimensional scaling. Given a line ℓ ⊂ R
d, depth quantile functions only

depend on the number of points in cones (with axis of symmetry being ℓ. To
determine this number, all we need are two one-dimensional quantities (depending
on line), the (signed) length of projection of a given data point Xk onto ℓ (Zk1,
say), and the length of its projection, Zk2. Plotting the pairs (Zk1, Zk2) can be
interpreted as a multidimensional scaling method. Note, however, that, each pair
(Xi, Xj) results in a line ℓ = ℓij , which results in a total of

(
n
2

)
such plots. The

functions q̂ij(α) can be considered as summaries of these plots (see Figure 2).

Non-Euclidean Data. Our method also makes sense in a general Hilbert space
setting. One can thus consider non-Euclidean data structures to which the kernel-
trick can be applied (functions, networks, etc.), and apply our method to the
elements in the corresponding RKHS. This enables an investigation of the corre-
sponding RKHS geometry.

5. Some theoretical results

Let X1, . . . , Xn ∼iid F , and suppose that both F and G have positive Lebesgue

densities. Let dij(s) and qij(α) be the theoretical counterparts to d̂ij(s) and q̂ij(α),
respectively, meaning that in finding the Tukey depth, the empirical distribution
is replaced by the true distribution F . Note, however, that both dij(s) and qij(α)
are still random quantities, as they still depend on the pair (Xi, Xj).

Theorem 1. As n → ∞, we have

max
1≤i,j≤n

sup
s∈ℓij

∣∣q̂ij(s)− qij(s)
∣∣ = OP (

√
logn
n ).

Remark. The convergence holds uniformly in the dimension d.
Multiscale nature of methodology: For a pair (Xi, Yi), let Fij denote the (one-

dimensional) distribution on the line given by (Xi, Xj), obtained by (orthogo-
nally) projecting all the mass of F onto this line. With this notation, we have
limα→1 qij(α) = min

(
Fij(mij), 1− Fij(mij)

)
is the global Tukey depth of mij for

the distribution Fij , and limα→0
qij(α)
αd → c

f(mij)
g(mij)

, where c > 0 is known, and g is

the known pdf of G. This illustrates the multiscale nature of our feature extraction
method, as small values of α contain local information about the midpoint (the
density), and large values of α contain global information (depth).
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Non-parametric identification of causal effects in the presence of
unobserved variables

Thomas S. Richardson

(joint work with Robin J. Evans, James M. Robins, Ilya Shpitser)

Building on prior work by Robins [4], Spirtes et al. [7], Pearl [2] and Tian [8],
we described a complete algorithm for the non-parametric identification of causal
effects arising from causal directed acyclic graph (DAG) models containing unob-
served variables. This algorithm leads directly to a method of deriving algebraic
constraints implied by such models. The nested Markov model [1, 3, 5] is defined
to be the set of distributions obeying these constraints.

The non-parametric identification question may be stated more precisely as
follows: We are given a joint distribution p(xH , xV ) over observed and hidden
variables, indexed by V and H respectively. Further, this distribution factors
according to a DAG G:

(1) p(xH , xV ) =
∏

t∈V ∪H

p(xt |xpa(t)),

where pa(t) is the set of vertices that are parents of t in the DAG G. We wish to
know if there is a functional of the observed distribution p(xV ) that identifies the
causal intervention distribution:

(2) p(xY | do(xA)) ≡
∑

xV \(A∪Y )

∑

xH

∏

t∈H∪(V \A)

p(xt |xpa(t)),

where A, Y are non-empty disjoint subsets of V .
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Building on prior work by Tian [8], we show that p(xY | doG(H∪V )(xA)) is
identified if and only if

p(xY | do(xA)) =
∑

xY ∗\Y

k∏

i=1

qDi
(xDi

|x(V ∩pa(Di))\Di
),(3)

where Y ∗ ⊆ V \A consists of Y and all non-endpoint vertices in V lying on directed
paths from a ∈ A to y ∈ Y ; further {D1, . . . , Dk} is a partition of Y ∗, correspond-
ing to c-components [8] in the DAG formed by cutting edges into A. Finally,
each of the kernels qDi

(· | ·) is obtained recursively from p(xV ) via a sequence of
transformations:

(4) q
(j)
i (xDi∪{vj+1,...,vpi}

| x{v1,...,vj}) ≡
q
(j−1)
i (xDi∪{vj ,...,vpi}

| x{v1,...,vj−1})

q
(j−1)
i (xj | xmbj−1(vj))

,

with q
(0)
i (xV ) ≡ p(xV ) and qDi

≡ q
(pi)
i . Here 〈v1, . . . , vpi

〉 is a ‘suitable’ order-
ing of the vertices in V \ Di and mbj−1(vj) is the Markov blanket of vj within

its c-component in the DAG G(j−1)
i in which edges have already been cut into

{v1, . . . , vj−1}. An ordering of V \ Di is suitable if, for j = 1, . . . , pi, there is
no vertex in {vj+1, . . . , vpi

} that is both a descendant of vj and in the same c-

component as vj in the graph G(j−1)
i . Results in [6] imply that if for some Di there

is no suitable ordering of V \Di then p(xY | do(xA)) is not identified.

The transformation (4) generalizes the usual operations of marginalization and
conditioning. The full paper [3] contains results concerning the preservation of
conditional independence under this transformation. The paper also describes
the Markov properties of the kernels resulting from such transformations, given a
marginal from a DAG with hidden variables. It is proved that the model resulting
from these non-parametric restrictions is equivalent to the set of distributions
obeying the constraints found by Tian’s algorithm [9].
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Causality, Invariance and Anchors

Jonas Peters

(joint work with Peter Bühlmann, Christina Heinze-Deml, Nicolai Meinshausen
and Niklas Pfister)

In the field of causality we want to understand how a system reacts under interven-
tions (e.g. in gene knock-out experiments). These questions go beyond statistical
dependences and can therefore not be answered by standard regression or classi-
fication techniques. In order to answer them, one requires a causal model of the
underlying system. A causal model entails not only an observational distribution
but also intervention distributions, i.e., it predicts the system’s behaviour under in-
terventions. In this talk, we use the language of structural causal models (SCMs)
that are also sometimes called structural equation models or functional causal
models [6]. In SCMs, each variable Xj , j = 1, . . . , d is a deterministic function of
its direct causes Xpa(j) and some noise variable Nj , that is

Xj := fj(Xpa(j), Nj), j = 1, . . . , d,

where all noise variables are assumed to be jointly independent. The corresponding
graph is obtained when drawing edges from the variables appearing on the right
hand side to variables appearing on the left hand side. This graph is assumed to
be acyclic, i.e., it does not contain any directed cycle. Due to the acyclicity, it is
apparent that an SCM entails a joint distribution P (X1, . . . , Xd) over the variables
X1, . . . , Xd. Intervention distributions are obtained when one of the structural as-
signments is replaced by the intervened version. For example, for the intervention
do(X4 := 5) we replace the fourth structural assignment with X4 := 5. In causal
discovery (or structure learning), we are given an i.i.d. data set from the joint
distribution P (X1, . . . , Xd) and try to learn the causal structure. An overview of
ideas and methods can be found in [8], for example. In this work, instead of learn-
ing the whole graph, we focus on a special subclass of this problem: We assume
that we are given a target variable Y and aim at learning the direct causes of Y ,
i.e., its causal parents from the set {X1, . . . , Xd} of covariates. In order to do so,
we propose to exploit invariances with respect to so-called anchors. We want to
illustrate this idea with three examples.

1. Discrete Set of Environments as Anchor
We assume that we are given (X1, Y1), . . . , (Xn, Yn) and a set E of finitely many en-
vironments E = {e1, . . . , ek} that describe a decomposition of the sample
{1, . . . , n}. For example, e1 = {1, 2, . . . , 40}, e2 = {41, . . . , 100}, e3 = {101, . . . , n}.
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We now make the following invariance assumption: H0,XS
is true for a set S ⊆

{1, . . . , d} if for all i = 1, . . . , n we have

Yi = Xi · γ + εi

and furthermore ε1, . . . , εn are i.i.d.. Note that for all i, Xi can have an arbitrary
distribution.

Both here, and in the two scenarios below, we assume that H0,XS∗ is satisfied
for a set S∗. For example, if the environments correspond to different intervention
distributions, and the interventions act on any variable(s) other than Y , H0,XS∗

is true for S∗ being the direct parents of Y [7]. This follows from the assumption
of modularity, autonomy or stability [3, 1, 5, 6, 10].

The key idea is to test H0,XS
for different sets S at level α (see [7] for such

tests) and then define Ŝ as follows:

(1) Ŝ :=
⋂

S:H0,XS
not rejected

S,

and Ŝ := ∅ if the index set is empty. This implies the guarantee

(2) P (Ŝ ⊆ S∗) ≥ 1− α.

The environments provide us with power in order to reject wrong sets S 6= S∗.

2. Non-descendant Variable as Anchor
If we are not given environments, we may use one of the covariates as an anchor.
More formally, we assume we are given data (X1, Y1, E1), . . . , (Xn, Yn, En), where,
again, X denotes the d-dimensional covariates and Y denotes the target variable.
We now define that a subset S ⊆ {1, . . . , d} of covariates satisfies the invariance
property H0,XS

if and only if (X1, Y1, E1), . . . , (Xn, Yn, En) are i.i.d. and

E ⊥⊥ Y |X,

where ⊥⊥ denotes statistical independence. If the joint distribution over (X,E, Y )
is induced by an SCM, then H0,XS∗ is true as long as E is a non-descendant of Y .

Again, the estimator Ŝ can be defined as in (1) and we obtain the guarantee (2).
The component that is still missing is a testing procedure for H0,XS

. One may
use a kernel-based conditional independence test [11], for example. Alternatively,
one may a priori restrict the dependence model and test whether E is significant in
a regression model Y ∼ X,E, for example (or, conversely, whether Y is significant
in a regression E ∼ X,Y ). [4] compare these and more testing procedures and
apply the methodology to a real world data set.

3. Time as Anchor
Lastly, we may also use a time index as an anchor. In this setup, we assume we are
given (X1, Y1), . . . , (Xn, Yn) and think about obtaining the data points one after
each other. We now define that a subset S ⊆ {1, . . . , d} of covariates satisfies the
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invariance assumption H0,XS
if and only if for all t = 1, . . . , n:

Yt = Xt · γ + εt

and ε1, . . . , εn are i.i.d.. Note that, again, Xt can have an arbitrary distribution.
As before, we can relate this condition to causality: If the structural assignments
change over time (but not the one for Y ), then, H0,XS∗ is satisfied for S∗ being

the set of direct parents of Y . As before, the estimator Ŝ can be defined as in (1)
and we obtain the guarantee (2). This time, the testing procedure requires some
thoughts. E.g., one may put a grid on the time axis that decomposes the time
indices {1, . . . , n} into ten segments, say. One can then construct environments
by joining neighbouring segments (which creates environments of the form {k, k+
1, . . . , ℓ − 1, ℓ}) and then test whether every pair of environments allows for the
same regression model from Y onXS . This test can be performed by a test statistic
based on [2], for example. [9] provide more details including consistency results
and applications to real data.
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Eigenvectors of Orthogonally Decomposable Functions

Misha Belkin

(joint work with Luis Rademacher, James Voss)

Eigendecomposition of quadratic forms guaranteed by the spectral theorem is the
foundation for many important algorithms in computer science, data analysis, and

http://www.math.ku.dk/~peters/
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machine learning. In this talk I will discuss our recent work on generalizations from
quadratic forms to a broad class of functions based on an analogue of the spectral
decomposition in an orthogonal basis. We call such functions “orthogonally de-
composable”. It turns out that many inferential problems of recent interest includ-
ing orthogonal tensor decompositions, Independent Component Analysis (ICA),
topic models, spectral clustering, and Gaussian mixture learning can be viewed as
recovering basis elements from non-quadratic functions of this type.

We identify a key role of convexity in extending traditional characterizations of
eigenvectors to the more generic setting of orthogonally decomposable functions.
We focus on extending two traditional characterizations of eigenvectors: First,
that the eigenvectors of a quadratic form arise from the optima structure of the
quadratic form on the sphere, and second that the eigenvectors are the fixed points
of the power iteration. Our generalization of the power iteration is a simple first
order algorithm, ”gradient iteration”.

This gradient iteration leads to efficient and easily implementable methods for
basis recovery, including such methods as cumulant-based FastICA and the tensor
power iteration for orthogonally decomposable tensors as special cases. I will
discuss our theoretical analysis of gradient iteration using the structure theory of
discrete dynamical systems to show almost sure convergence and fast (super-linear)
convergence rates.

The analysis is extended to the case when the observed function is only ap-
proximately orthogonally decomposable, with bounds that are polynomial in di-
mension and other relevant parameters, such as perturbation size. The results
can be considered as a non-linear version of the classical Davis-Kahan theorem for
perturbations of eigenvectors of symmetric matrices.

Finally, I will go over some new applications of the proposed framework to
spectral clustering.
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Geodesic convexity and regularized scatter estimation

Lutz Duembgen

(joint work with David E. Tyler, Klaus Nordhausen, Heike Schuhmacher)

As noted by [1] and [6], for a thorough understanding of estimation of covariance
matrices it may be helpful to view the space of symmetric, positive definite matrices
(‘scatter matrices’) Σ of size q × q as a Riemannian manifold with local inner
product

〈A,B〉Σ := trace(AΣ−1BΣ−1)
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of two symmetric matrices A,B of size q × q. This may be motivated by consid-
ering Wishart distributions. The resulting geodesic distance between two scatter
matrices Σ0,Σ1 is given by

Dg(Σ0,Σ1) :=
∥∥log(Σ−1/2

0 Σ1Σ
−1/2
0

∥∥
F

with ‖ · ‖F denoting the Frobenius norm, see [2]. These considerations show that
for a given scatter matrix Σ = BB⊤, a natural local parametrization of arbitrary
scatter matrices is given byB exp(A)B⊤, whereA is running through all symmetric
matrices of size q × q, see [3].

Related to this concept is the notion of geodesic convexity (g-convexity): A func-
tion f(Σ) is called (strictly) geodesically convex if f(B exp(tA)B⊤) is a (strictly)
convex function of t ∈ R for any choice of Σ = BB⊤ and A 6= 0. It turns out that
the target functions (minus log-likelihood) underlying multivariate M -functionals
of scatter are typically g-convex. Under mild regularity conditions they are even
strictly g-convex and geodesically coercive (g-coercive) in the sense that

f(Σ) → ∞ as Dg(I,Σ) = ‖ log(Σ)‖F → ∞.

see [5].
In high-dimensional settings, however, strict g-convexity or g-coercivity are no

longer satisfied unless one is using some regularization. So instead of minimizing
a g-convex function L(Σ, P ) depending on a (true or empirical) distribution P on
R

q one tries to minimize

f(Σ) = L(Σ, P ) + αPen(Σ)

for some tuning parameter α > 0 and a g-convex penalty function Pen(Σ). Exam-
ples for such penalties are

Pen0(Σ) = log trace(Σ) + log trace(Σ−1),

Pen1(Σ) = q−1 log det(Σ) + log trace(Σ−1),

Pen2(Σ) = log det(Σ) + q log λmax(Σ),

Pen3(Σ) = log
(
λmax(Σ)/λmin(Σ)

)
.

As shown by [5], (strict) g-convexity and g-coercivity of such penalized functions
f(Σ) may be verified rather easily. The explicit computation of a minimizer is
feasible via a partial Newton algorithm similar to the one of [4], and the tuning
parameter α may be chosen by a cross validation scheme.

References

[1] C. Auderset, C. Mazza and E. A. Ruh, Angular Gaussian and Cauchy estimation, J. Mul-
tivar. Anal. 93 (2005), 180–197.

[2] R. Bhatia, Positive definite matrices, Princeton University Press (2007)
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Efficient multivariate entropy estimation via k-nearest neighbour
distances

Richard J. Samworth

(joint work with Thomas B. Berrett, Ming Yuan)

Many statistical procedures, including goodness-of-fit tests and methods for in-
dependent component analysis, rely critically on the estimation of the entropy of
a distribution. In this work, we seek entropy estimators that are efficient in the
sense of achieving the local asymptotic minimax lower bound. To this end, we
initially study a generalisation of the estimator originally proposed by [2], based
on the k-nearest neighbour distances of a sample of n independent and identically
distributed random vectors in R

d. When d ≤ 3 and provided k/ log5 n → ∞ (as
well as other regularity conditions), we show that the estimator is efficient; on the
other hand, when d ≥ 4, a non-trivial bias precludes its efficiency regardless of the
choice of k. This motivates us to consider a new entropy estimator, formed as a
weighted average of Kozachenko–Leonenko estimators for different values of k. A
careful choice of weights enables us to obtain an efficient estimator in arbitrary
dimensions, given sufficient smoothness.
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Group invariance and computational sufficiency for regularized
M-estimators

Vincent Q. Vu

The estimation of high-dimensional matrices arises naturally in multivariate prob-
lems involving the inference of pairwise relationships between many variables (or
entities) based on limited samples. Examples include precision matrices, covari-
ance matrices, MRFs, and PCA. Many estimators proposed for these problems
are based on penalized likelihood or loss, because some form of regularization is
usually necessary to ensure good statistical properties. However, the computation
of these estimators may not scale well with the size of the problem—typically cu-
bic or worse time complexity. We show that in a large class of such problems,
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the efficient computation of these estimators can be enabled by symmetries of the
problem and sufficient regularization.

Adaptive nonparametric Clustering

Vladimir Spokoiny

(joint work with Kirill Efimov, Larisa Adamyan)

This paper aims at offering a novel approach to the classical problem of nonpara-
metric clustering using the idea of multiscale testing of the “no gap” hypothesis.
This idea differs significantly from the usual density based approach and allows to
distinguish overlapping or connected clusters as well as manifold structures. The
resulting procedure called Adaptive weights Clustering (AWC) is fully adaptive
and does not require to specify the number of clusters. The clustering results are
not sensitive to noise and outliers, the procedure is able to recover different clus-
ters with sharp edges or manifold structure. Our intensive numerical study shows
a state-of-the-art performance of the method for a wide range of artificial and real
life examples.

Let {X1, . . . , Xn} be the set of all samples Xi ∈ R
p. Here the dimension p can

be very large or even infinite. The proposed procedure operates with the distance
(or similarity) matrix

(
d(Xi, Xj)

)n
i,j=1

only. For every point Xi, the clustering

procedure attempts to describe its largest possible local neighborhood in which
the data is homogeneous in a sense of a spatial data separation. The clustering
structure of the data is described in terms of binary weights wij , where wij = 1
indicates being points Xi and Xj in the same cluster, whereas wij = 0 means that
these points belong to different clusters. Thus, the whole clustering structure of
the data can be described using the matrix of weights.

The proposed procedure is sequential and attempts to recover the weights wij

from the data, which explains the name “adaptive weights clustering”. It starts

with very local clustering structure C
(0)
i , that is, the starting positive weights w

(0)
ij

are limited to the closest neighbors Xj of the point Xi in terms of the distance

d(Xi, Xj). At each step k ≥ 1, the weights w
(k)
ij are recomputed by means of

statistical tests of “no gap” between C
(k−1)
i and C

(k−1)
j , the local clusters on step

k − 1 for points Xi and Xj correspondingly.
First of all we fix a growing sequence of radii h1 ≤ h2 ≤ . . . ≤ hK which

determines how fast the algorithm will come from considering very local structures
to large-scale objects. Each value hk can be viewed as a resolution (scale) of the
method at step k. The rule has to ensure that the average number of screened
neighbors for each Xi at step k grows at most exponentially with k ≥ 1.

Suppose that the first k − 1 steps of the iterative procedure have been carried

out. The resulting collection of weights
{
w

(k−1)
ij , j = 1, . . . , n

}
for each point Xi

describe a local “cluster” associated with Xi. At the next step k we pick up a

larger radius hk and recompute the weights w
(k)
ij using the previous results. Only

points with d(Xi, Xj) ≤ hk have to be screened at step k. The basic idea behind
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Figure 1. From left: Homogeneous case; N
(k)
i∧j ;N

(k)
i△j ;N

(k)
i∨j

the definition of w
(k)
ij is to check for each pair i, j with d(Xi, Xj) ≤ hk whether the

related clusters are well separated or they can be aggregated into one homogeneous
region. The test compares the data density in the union and overlap of two clusters
associated with the points Xi and Xj. The formal definition involves the weighted
empirical mass of the overlap and the weighted empirical mass of the union of two
balls B(Xi, hk−1) and B(Xj , hk−1) shown on Figure 1. The empirical mass of the

overlap N
(k)
i∧j can be naturally defined as

N
(k)
i∧j =

∑

l 6=i,j

w
(k−1)
il w

(k−1)
jl .

Similarly, the mass of the complement is defined as

N
(k)
i△j =

∑

l 6=i,j

{
w

(k−1)
il 1I

(
Xl 6∈ B(Xj , hk−1)

)
+ w

(k−1)
jl 1I

(
Xl 6∈ B(Xi, hk−1)

)}
.

Note that N
(k)
i△j is nearly the number of points in C

(k−1)
i and C

(k−1)
j which do not

belong to the overlap B(Xi, hk−1)∩B(Xj , hk−1). Finally, mass of the union N
(k)
i∨j

can be defined as the sum of the mass of overlap and the mass of the complement:

N
(k)
i∨j = N

(k)
i∧j +N

(k)
i△j . To measure the gap, consider the ratio of these two masses:

θ̃
(k)
ij = N

(k)
i∧j

/
N

(k)
i∨j .

This value can be viewed as an estimate of the value θij which measures the ratio of

the averaged density in the overlap of two local regions C
(k−1)
i and C

(k−1)
j relative

to the average density. Under local homogeneity one can suppose that the density

in the union of two balls is nearly constant. In this case, the estimate θ̃
(k)
ij should

be close to the ratio of the volume of overlap and the volume of union of these
balls:

θ̃
(k)
ij ≈ q

(k)
ij =

V∩(dij , hk−1)

2V (hk−1)− V∩(dij , hk−1)
,

where V (h) is the volume of a ball with radius h and V∩(d, h) is the volume
of the intersection of two balls with radius h and the distance dij = d(Xi, Xj)

between centers. The new value w
(k)
ij can be viewed as a randomized test of the
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Figure 2. Left: Homogeneous case. Right: “Gap” case.

Figure 3. AWC performance on artificial datasets.

null hypothesis H
(k)
ij of no gap between Xi and Xj against the alternative of a

significant gap; see Figure 2 for two examples without and with a gap. The gap is

significant if θ̃
(k)
ij is significantly smaller than q

(k)
ij . The likelihood ratio test satistic

of “no gap” between two local clusters reads as

T
(k)
ij = N

(k)
i∨j KL

(
θ̃
(k)
ij , q

(k)
ij

) {
1I(θ̃

(k)
ij ≤ q

(k)
ij )− 1I(θ̃

(k)
ij > q

(k)
ij )

}
,

where KL(θ, η) is the Kullback-Leibler (KL) divergence between two Bernoulli
laws. Due to the famous Wilks result this likelihood ratio test statistic is nearly
χ2 which helps to measure the significance level in a unified manner using the
threshold λ.

The weights w
(k)
ij are updated for all pairs Xi, Xj with distance d(Xi, Xj) ≤ hk:

w
(k)
ij = 1I

(
d(Xi, Xj) ≤ hk

)
1I
(
T

(k)
ij ≤ λ

)

The next theorem states optimality of the proposed procedure for the case of
two close clusters separated by a hole with a lower density.

Theorem 1. 1) Let the data support V contain a fixed hole G, and the data
density f(·) be equal to f1 on the complement V \G and to f0 = (1− εN)f1 on G.
If Nε2N ≤ C,N → ∞ for a fixed constant C, then there is no method which can
consistently separate the cases with εN = 0 (no gap) and εN > 0.
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2) Let a set V be split by a hole G with δ = |G|/|V | ≥ 1/3 and f(·) fulfill

f(x) ≤ (1 − ε)f1, x ∈ G, f(x) ≥ f1 , x ∈ V \G

Let Xi ∈ V1, Xj ∈ V2 and Nε2 ≥ C log(N) for a fixed sufficiently large constant

C. Then w
(k)
ij = 0 with a high probability.

Nonparametric Bayes for an irregular model

Johannes Schmidt-Hieber

(joint work with Markus Reiß)

Suppose we observe a Poisson point process on [0, 1]×R with intensity λf (x, y) =
n1(f(x) ≤ y). The statistical problem is to recover the support boundary f from
the data. If f is constant the support boundary problem is equivalent to observing
n i.i.d. copies of Y = f + ε with ε ∼ Exp(1). This model is not Hellinger differ-
entiable. Support boundary recovery of a Poisson point process can therefore be
viewed as a nonparametric irregular model.

For parametric irregular models, it is well-known that Bayesian methods outper-
form the maximum likelihood estimator (MLE). Applying nonparametric Bayes
procedures in the support recovery model is therefore natural. Under some as-
sumptions on the parameter space the nonparametric MLE exists in this model.
This allows us to compare Bayes directly with the likelihood method. For esti-

mation of the functional ϑ =
∫
f, the MLE is ϑ̂MLE =

∫
f̂MLE. This estimator is

typically not rate-optimal. For a point process N =
∑

i δ(Xi,Yi) on [0, 1]× R the

pairs (Xi, Yi)i are called support points. A better estimator for ϑ =
∫
f is given

by

ϑ̂ =

∫
f̂MLE − number of support points on the MLE

n
.

The estimator ϑ̂ is in many cases rate-optimal and even unbiased with minimal

variance (UMVU), cf. [2]. Notice that the MLE and the estimator ϑ̂ differ by
the correction term (number of support points on the MLE)/n, which is not easy
to motivate. A natural question is to ask whether a Bayesian approach would
automatically correct the MLE.

To analyze the posterior distribution we study posterior contraction rates and
Bernstein-von Mises theorems. Since the model is irregular, the likelihood ratios
only exist under some partial ordering of the support boundary function. It can
be shown that under the frequentist distribution Pf0 the Bayes formula can be
written as

Π(B|N) =

∫
B
e−n

∫
(f0−f)+ dPf0∨f

dPf0
(N)dΠ(f)

∫
e−n

∫
(f0−f)+ dPf0∨f

dPf0
(N)dΠ(f)

,
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almost surely. The L1-distance is in the support boundary recovery model the
intrinsic loss induced by the information geometry. Because of the irregularity of
the model, the well-known general meta-theorem for posterior contraction rates
in [3] cannot be applied here. Using one-sided analogs of the conditions in the
meta-theorem it is, however, possible to prove a modification of the result that is
applicable. With this modification we can derive posterior contraction rates for
Gaussian priors and (truncated) random series priors. For a class of hyper-priors on
the truncation level, it can be shown that the contraction rate matches the adaptive
estimation rate up to logn factors. We also study compound Poisson process priors
and show that the posterior also contracts with the adaptive estimation rate for
smoothness indices at most one (again up to logn factors). For monotone support
boundaries, we consider subordinator priors and study the dependence of the jump
measure on the contraction rates.

While we can derive posterior contraction rates for various families of priors and
function classes of candidate support boundaries, results on the limiting shape of
the posterior are extremely difficult to establish. We only investigate the case of
piecewise constant functions with number of pieces Kn growing to infinity. This
allows us already to get some interesting insights into the Bayesian correction of the
MLE. For a ”nice” class of priors, it is possible to prove that the marginal posterior
on ϑ =

∫
f converges in the Bernstein-von Mises sense (in total variation under

the frequentist distribution) to a N (ϑ̂,Kn/n
2) random variable. The posterior

concentrates therefore around the corrected estimator ϑ̂ and not around the MLE.
This property is, however, lost under model misspecification. If the true function
is piecewise linear, then the posterior will still correct the MLE but by the wrong
amount. In this case there are frequentist estimators that outperform the Bayesian
approach.

References

[1] R. Reiß and J. Schmidt-Hieber, Nonparametric Bayesian analysis for support boundary
recovery, arXiv preprint 1703.08358 (2017).

[2] R. Reiß and L. Selk, Efficient estimation of functionals in nonparametric boundary models,
Bernoulli 23 (2017), 1022–1055.

[3] S. Ghoshal, J. G. and A. van der Vaart, Convergence rates of posterior distributions, Ann.
Statist. 28 (2000), 500–531.

Statistical and Computational Guarantees of Lloyd’s Algorithm and
Its Variants

Harrison H. Zhou

(joint work with Yu Lu)

Lloyd’s algorithm, proposed in 1957 by Stuart Lloyd at Bell Labs, is still one of the
most popular clustering algorithms used by practitioners, with a wide range of ap-
plications from computer vision, astronomy, and to biology. Although considerable
innovations have been made on developing new provable and efficient clustering
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algorithms in the past six decades, Lloyd’s algorithm has been consistently listed
as one of the top ten data mining algorithms in several recent surveys.

Lloyd’s algorithm is very simple and easy to implement. It starts with an ini-
tial estimate of centers or labels and then iteratively updates the labels and the
centers until convergence. Despite its simplicity and a wide range of successful
applications, surprisingly, there is little theoretical analysis on explaining the ef-
fectiveness of Lloyd’s algorithm. It is well known that there are two issues with
Lloyd’s algorithm under the worst case analysis. First, as a greedy algorithm,
Lloyd’s algorithm is only guaranteed to converge to a local minimum. The k-
means objective function that Lloyd’s algorithm attempts to minimize is NP-hard.
Second, the convergence rate of Lloyd’s algorithm can be very slow. Arthur and
Vassilvitskii construct a worst-case showing that Lloyd’s algorithm can require a
superpolynomial running time.

A main goal of this paper is trying to bridge this gap between theory and prac-
tice of Lloyd’s algorithm. We analyze its performance on the Gaussian mixture
model, a standard model for clustering, and consider the generalization to sub-
Gaussian mixtures, which includes binary observations as a special case. Specif-
ically, we attempt to address following questions to help understand Lloyd’s al-
gorithm: How good does the initializer need to be? How fast does the algorithm
converge? What separation conditions do we need? What is the clustering error
rate and how it is compared with the optimal statistical accuracy?

In this paper, we give a considerably weak initialization condition under which
Lloyd’s algorithm converges to the optimal label estimators of sub-Gaussian mix-
ture model. While previous results focus on exact recovery (strong consistency) of
the labels, we obtain the clustering error rates of Lloyd’s algorithm under various
signal-to-noise levels. As a special case, we obtain exact recovery with high prob-
ability when the signal-to-noise level is bigger than 4 logn. The signal-to-noise
ratio condition for exact recovery is weaker than the state-of-the-art result. In
contrast to previous two-stage (two-step) estimators, our analyses go beyond one-
step update. We are able to show a linear convergence to the statistical optimal
error rate for Lloyd’s algorithms and its two variants for community detection and
crowdsourcing.

We illustrate our contributions here by considering the problem of clustering
two-component spherical Gaussian mixtures, with symmetric centers θ∗ and −θ∗ ∈
R

d and variance σ2. Let n be the sample size and r = ‖θ∗‖/(σ
√
1 + 9d/n) be the

normalized signal-to-noise ratio. We establish the following basin of attractions of
Lloyd’s algorithm.

Theorem. Assume r ≥ C and n ≥ C for a sufficiently large constant C. For
symmetric, two-component spherical Gaussian mixtures, given any initial estima-
tor of labels with clustering error

A0 <
1

2
− 2.56 +

√
log r

r
− 1√

n
, w.h.p.
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Lloyd’s algorithm converges linearly to an exponentially small rate after ⌈3 logn⌉
iterations, which is the minimax rate as r → ∞ w.h.p.

The results above are extended to general number of clusters k and to (non-
spherical) sub-Gaussian distributions under an appropriate initialization condition
and a signal-to-noise ratio condition, which, to the best of our knowledge, are the
weakest conditions in literature.
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Institut für Mathematische Statistik
und Versicherungslehre
Universität Bern
Alpeneggstrasse 22
3012 Bern
SWITZERLAND

Raaz Dwivedi

Department of Mathematics
University of California, Berkeley
970 Evans Hall
Berkeley CA 94720-3840
UNITED STATES

Andreas Elsener

Seminar für Statistik
ETH Zürich
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SWITZERLAND

Prof. Dr. Alexandre B. Tsybakov

ENSAE - CREST
Timbre J 340
3, Avenue Pierre Larousse
92240 Malakoff Cedex
FRANCE

Prof. Dr. Sara van de Geer

Seminar für Statistik
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