
Mathematisches Forschungsinstitut Oberwolfach

Report No. 15/2017

DOI: 10.4171/OWR/2017/15

Space-time Methods for Time-dependent
Partial Differential Equations

Organised by
Ricardo Nochetto, College Park

Stefan Sauter, Zürich
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Abstract. Modern discretizations of time-dependent PDEs consider the full
problem in the space-time cylinder and aim to overcome limitations of classi-
cal approaches such as the method of lines (first discretize in space and then
solve the resulting ODE) and the Rothe method (first discretize in time and
then solve the PDE). A main advantage of a holistic space-time method is the
direct access to space-time adaptivity and to the backward problem (required
for the dual problem in optimization or error control). Moreover, this allows
for parallel solution strategies simultaneously in time and space.

Several space-time concepts where proposed (different conforming and
nonconforming space-time finite elements, the parareal method, wavefront
relaxation etc.) but this topic has become a rapidly growing field in nu-
merical analysis and scientific computing. In this workshop the focus is the
development of adaptive and flexible space-time discretization methods for
solving parabolic and hyperbolic space-time partial differential equations.

Mathematics Subject Classification (2010): 65N30, 65N38, 65N12.

Introduction by the Organisers

The main motivation for developing new space-time discretization and solution
methods are the severe limitations of methods with separate constructions of space
and time approximations. The goal of this research is to develop novel methods
with respect to the following paradigms:

• Discretization: Develop and analyze discretization methods for parabolic
and hyperbolic partial differential equations on the Cartesian product of
the spatial domain with the time interval which are not necessarily of
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tensor-product form but can be flexibly adapted to the local space-time
behavior of the solution.

• Complexity: Develop and analyze fast algorithms for solving the arising
sparse systems which have less algebraic structure than those which arise
for the conventional approaches which lead often, e.g., to block-triangular,
block-circulant, or block-Toeplitz matrices.

• Adaptivity: Develop and analyze algorithms for full space-time adaptivity
on general space-time meshes.

• Regularity: Develop a detailed local space-time regularity theory for the
solution of parabolic and hyperbolic PDEs which allows to enrich the
ansatz spaces within an adaptive refinement process in a most efficient
way.

All these questions are well investigated for elliptic problems, but they are far
from being matured in the general time-dependent case. The research in space-
time methods is driven by recent developments of discretizations specially designed
for fully coupled approximation schemes, e.g., adaptive discontinuous Galerkin
methods, Petrov-Galerkin methods, boundary elements with collocation in time,
and hybrid methods.

The programme of this workshop was structured by themed days with contri-
butions to one aspect of space-time methods:

A) Discretization methods for space-time problems
(new schemes, convergence in space and time, regularity in space and time)

B) A posteriori error control
(adaptivity in space and time)

C) Integral equations for time-dependent problems
(convolution quadrature, retarded potentials)

D) Solution methods for space-time problems
(multigrid in space and time, parareal method)

E) Geometric PDEs and methods
(numerical methods for PDEs on time-dependent manifolds)

For these topics the construction of new methods, the numerical analysis of conver-
gence properties, and the application to large-scale applications where presented.

In summary, the workshop presentations yield a representative overview of the
state-of-the-art and recent progress of space-time methods and its analysis, and
the fruitful discussions will initiate further research in this area.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Maŕıa López-Fernández
Time or space adaptivity for exterior wave problems with gCQ . . . . . . . . 910

Andrea Moiola (joint with Ilaria Perugia)
Space–time Trefftz discontinuous Galerkin methods for wave problems . . 913

Martin Neumüller
Space-time multigrid methods for parabolic optimal control problems . . . . 915

Enrique Otárola
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Abstracts

Multistep methods for nonlinear parabolic equations in Hilbert spaces

Georgios Akrivis

Let T > 0 and u0 ∈ H, and consider the initial value problem, for a possibly
nonlinear abstract parabolic equation,

(1)

{
u′(t) +A(t)u(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,

in a usual triple of separable complex Hilbert spaces V ⊂ H = H ′ ⊂ V ′, with V
densely and continuously imbedded in H. Here A(t) : V → V ′, t ∈ [0, T ], is a linear
operator, whereas the operator B(t, ·) : V → V ′, t ∈ [0, T ], may be nonlinear. We
assume that (1) possesses a unique, smooth solution.

Let (α, β) and (α, γ) be implicit and explicit q-step methods, respectively, gen-
erated by three polynomials α, β and γ,

α(ζ) =

q∑

i=0

αiζ
i, β(ζ) =

q∑

i=0

βiζ
i, γ(ζ) =

q−1∑

i=0

γiζ
i,

with real coefficients αi, βi and γi.
Let N ∈ N, k := T/N be the constant time step, and tn := nk, n = 0, . . . , N,

be a uniform partition of the interval [0, T ]. For given starting approximations
U0, . . . , U q−1 ∈ V, we recursively define a sequence of approximations Um ∈ V to
the nodal values um := u(tm) of the solution u of the initial value problem (1) by
discretizing the differential equation in (1) either by the implicit scheme (α, β),

(2)

q∑

i=0

(
αiI + kβiA(t

n+i)
)
Un+i = k

q∑

i=0

βiB(tn+i, Un+i),

n = 0, . . . , N − q, or by the implicit–explicit scheme (α, β, γ),

(3)

q∑

i=0

(
αiI + kβiA(t

n+i)
)
Un+i = k

q−1∑

i=0

γiB(tn+i, Un+i),

n = 0, . . . , N − q. The implicit–explicit scheme (α, β, γ) results by employing the
implicit scheme (α, β) for the discretization of the linear part and the explicit
scheme (α, γ) for the discretization of the nonlinear part of the differential equa-
tion. The implicit scheme (2) has in general more advantageous stability properties
than its implicit–explicit counterpart (3); however, if B(t, ·) is nonlinear, (2) is a
nonlinear equation in the unknown Un+q. In contrast to (2), the unknown Un+q

appears in (3) only linearly, since γq = 0; therefore, to advance with the implicit–
explicit scheme (3) in time, we need to solve, at each time level, just one linear
equation.

We assume that the implicit method (α, β) is strongly A(0)-stable and denote
by ϑ, 0 < ϑ ≤ 90◦, the largest angle for which the method (α, β) is A(ϑ)-stable.



870 Oberwolfach Report 15/2017

We denote by (·, ·) both the inner product on H and the antiduality pairing
between V ′ and V, and by |·|, ‖·‖ and ‖·‖⋆ the norms on H,V and V ′, respectively.
We assume that the operator A(t) : V → V ′ is uniformly coercive and bounded.

Quantification of the non-self-adjointness of A(t). To take advantage of the
A(ϑ)-stability of the implicit scheme (α, β), in case ϑ < 90◦, we need to quantify
the non-self-adjointness of the operator A(t).We decompose A(t) in its self-adjoint
and anti-self-adjoint partsAs(t) :=

(
A(t)+A(t)⋆

)
/2 and Aa(t) :=

(
A(t)−A(t)⋆

)
/2,

respectively,

A(t) = As(t) +Aa(t), t ∈ [0, T ].

Then, with the bounded anti-self-adjoint operator Aa(t) := A
−1/2
s (t)Aa(t)A

−1/2
s (t)

: H → H, we have

∀v ∈ V (A(t)v, v) ∈ Sϕ ⇐⇒ |Aa(t)| ≤ tanϕ,

for any angle ϕ < 90◦ and Sϕ the sector Sϕ := {z ∈ C : z = ρeiψ, ρ ≥ 0, |ψ| ≤ ϕ};
therefore, |Aa(t)| is an exact measure of the non-self-adjointness of A(t).

Assumptions. Our key assumption on the linear operator A(t) is

(4) |Aa(t)v| ≤ λ1(t)|v| ∀v ∈ H ∀t ∈ [0, T ],

with a non-negative continuous stability function λ1. Our main assumption on the
nonlinear operator B(t, ·) : V → V ′ is that it satisfies the local Lipschitz condition

(5) |A−1/2s (t)
(
B(t, v)−B(t, ṽ)

)
| ≤ λ2(t)|A1/2

s (t)(v− ṽ)|+µ2(t)|v− ṽ| ∀t ∈ [0, T ],

for all v, ṽ in a tube Tu, Tu := {v ∈ V : mint ‖v − u(t)‖ ≤ 1}, around the solution
u, defined in terms of the norm ‖ · ‖ on V, with a non-negative continuous stability
function λ2 and a bounded function µ2.

Furthermore, we assume that the operators A(t), B(t, ·) : V → V ′, t ∈ [0, T ],
satisfy a Lipschitz condition in t,

(6) ‖
(
A(t)−A(s)

)
v‖⋆ ≤ LA|t− s| ‖v‖ ∀s, t ∈ [0, T ] ∀v ∈ V,

and a local Lipschitz-like condition, namely

(7) ‖[B(t, v)−B(t, ṽ)]− [B(s, v)−B(s, ṽ)]‖⋆ ≤ LB|t− s| ‖v − ṽ‖ ∀s, t ∈ [0, T ],

for v, ṽ ∈ Tu, respectively. Actually, the Lipschitz conditions (6) and (7) can be
relaxed to bounded variation conditions.

With K the unit circle in the complex plane, K := {z ∈ C : |z| = 1}, let

K(α,β) := sup
x>0

max
ζ∈K

|xβ(ζ)|
|(α + xβ)(ζ)| , K(α,β,γ) := sup

x>0
max
ζ∈K

|xγ(ζ)|
|(α+ xβ)(ζ)| .

The stability result. Combining spectral and Fourier stability techniques, and
using a discrete perturbation argument, we obtain the following stability result:

Theorem ([1]) Let λ1 and λ2 be the stability functions of the boundedness con-
dition (4) and of the local Lipschitz condition (5), respectively. Then, under the
linear conditions

(8) (cotϑ)λ1(t) +K(α,β)λ2(t) < 1 ∀t ∈ [0, T ]
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and

(9) (cotϑ)λ1(t) +K(α,β,γ)λ2(t) < 1 ∀t ∈ [0, T ],

respectively, on the stability functions λ1 and λ2, the implicit multistep scheme (2)
and the implicit–explicit multistep scheme (3) are locally stable in the following
sense: If U0, . . . , UN ∈ Tu satisfy (2) and (3), respectively, and V 0, . . . , V N ∈ Tu
satisfy the corresponding perturbed equations

(10)

q∑

i=0

(
αiI + kβiA(t

n+i)
)
V n+i = k

q∑

i=0

βiB(tn+i, V n+i) + kEn

and

(11)

q∑

i=0

(
αiI + kβiA(t

n+i)
)
V n+i = k

q−1∑

i=0

γiB(tn+i, V n+i) + kEn,

n = 0, . . . , N − q, respectively, then, with ϑm := V m − Um, for sufficiently small
time step k, we have

(12) |ϑn|2 + k
n∑

ℓ=0

‖ϑℓ‖2 ≤ C
{ q−1∑

j=0

(
|ϑj |2 + k‖ϑj‖2

)
+ k

n−q∑

ℓ=0

‖Eℓ‖2⋆
}
,

n = q, . . . , N, with a constant C independent of the time step k, the approximations
Un, V n, and the perturbations En. �

On the stability conditions (8) and (9). A necessary stability condition for
the implicit scheme (2) is (cotϑ)λ1(t) + K(α,β)λ2(t) ≤ 1, for t ∈ [0, T ], i.e., the
stability condition (8) is sharp. None of the coefficients cotϑ and K(α,β,γ) in (9)
can be replaced by a smaller coefficient; in other words, (9) is a best possible linear
sufficient stability condition for the implicit–explicit scheme (3).
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[8] M. Crouzeix, Une méthode multipas implicite–explicite pour l’approximation des équations
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[10] G. Savaré, A(Θ)-stable approximations of abstract Cauchy problems, Numer. Math. 65
(1993), 319–335.

Simplex space-time meshes in mold filling simulations

Marek Behr

(joint work with Violeta Karyofylli)

Abstract

We present the use of fully unstructured space-time meshes in two-phase flow
problems including surface tension effects. Our basis for constructing simplex-type
space-time meshes is the method presented in [1]. The whole approach is based on
the discontinuous-Galerkin method in time (space-time elements), details of which
can be found in [2, 3]. The interface is approximated by the level-set method [4],
which describes implicitly the interface and is able to cope with extreme topological
changes of the propagating front between the two phases. The numerical examples,
used for validating the unstructured space-time mesh solver, involve the benchmark
cases of a rising bubble in a rectangular domain, a rising droplet in a cuboid tank
and the filling of mold cavities.

Filling of a coat hanger distributer and a rectanglular cavity

Here, we demonstrate only a complicated example for verifying our numerical ap-
proach and our implementation of Navier’s slip condition, which is not trivial for
simplex-type space-time elements. If the slip boundary does not coincide with

Outflow

Inflow

Symmetry
Plane

No penetration/no slip,
except near contact region

Figure 1. Coat hanger distributer and rectangular cavity:
Computational domain.
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a Cartesian co-ordinate plane, the equations corresponding to the velocity com-
ponents at the boundary are locally aligned with the normal-tangent-bi-tangent
co-ordinate system. This procedure is described by Engelman et al. [5].

We simulate the filling stage of a coat hanger distributer and a rectanglular
cavity, considered by Rao et al. [6]. The molten material enters the mold with a
uniform velocity and displaces the air, which is initially quiescent.

Figure 2. Molten material position at t = 0.5 s (top row) and
t = 0.9 s (bottom row), obtained with a prism-type space-
time discretization (left column) and a simplex-type space-time
discretization (right column) and compared with reference data
(middle column) [6].

The computational domain is illustrated in Figure 1. The spatial discretization
of the domain consists of 98561 triangular elements. The time-slab size is ∆t =
0.0005 s. Navier’s slip boundary condition is assumed on the walls, except for those
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of the inflow, outflow and symmetry plane. The Blake wetting condition is not
taken into consideration, though. A uniform velocity of size 190 cm/s is imposed
at the inflow boundary, whereas traction-free boundary conditions are used at the
outflow boundary. Slip boundary condition is used for the symmetry plane. We
consider isothermal condition, so natural convection and phase-change effects are
disregarded. The material properties correspond to those of [6] and are as follows:
ρair = 0.0045g/cm3, ρliquid = 4.5 g/cm3, µair = 4 g/(s cm), µliquid = 4000g/(s cm).
The gravitational acceleration is equal to fy = −g = −981 cm/s2. The surface
tension effects are not neglected, so the surface tension coefficient γ is equal to
42.4 g/s2.

The molten material filled the mold first for t = 0.2 s using the usual (prismatic
space-time elements. These standard results were then compared with the filling
results obtained with a pentatope-based space-time mesh discretization of the
slab without any temporal refinement. This pentatope-based space-time mesh
was generated using the technique presented in [1]. Figure 2 illustrates the front
position of the molten material at various time instances. The results obtained
with the usual prismatic space-time discretization and with the simplex-type space-
time mesh are also compared with those reported in Reference [6]. As we can see
from Figure 2, the results show a good agreement with the reference data [6].
This benchmark case also reveals that the simulation results obtained with the
fully unstructured space-time discretization are equivalent to those obtained with
the standard discretization.
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Higher Order Estimates in Time for the Arbitrary Lagrangian
Eulerian Formulation in Moving Domains

Andrea Bonito

(joint work with Irene Kyza, Ricardo H. Nochetto)

Arbitrary Lagrangian Eulerian (ALE) formulations arise naturally in the context
of parametric representations of deformable domains. We motivate this study
by describing an ALE formulations tailored to the prediction of red blood cells
evolutions, where the Navier-Stokes systems is coupled with the Canham-Helfrich
boundary force [5]. We argue the need of ALE methods in view of the complex
streamlines generated during the relaxation of a 5 × 5 × 1 ellipsoid towards a
red-blood cell type equilibrium shape. Furthermore, higher order methods and
a-posteriori error control are of paramount importance due to presence of different
time scales.

ALE formulations on deformable domains are based on an extension of the
domain velocity from the boundary. This somewhat arbitrary extension, is selected
with the purpose of keeping mesh regularity and has no effect on the stability
of the system. However, time discrete schemes may not be able to capture the
inherent interplay between space and time, thereby exhibiting stability properties
influenced by the extended velocity. We examine this critical issue for higher order
time stepping without space discretization on time-dependent advection-diffusion
model problems in moving domains.

We advocate time-discrete discontinuous Galerkin (dG) numerical schemes be-
cause of their natural ability to couple space and time. In fact, their stability
properties hinge on the validity of the Reynolds’ identity

d

dt

∫

Ωt

v(t) dt =

∫

Ωt

∇ ·w(t) v(t) dt+

∫

Ωt

D

Dt
v(t) dt,

where Ωt ⊂ R
d is the deformable domain, w is the ALE (extended) velocity and

D
Dt is the ALE (material) derivative. Exploiting the variational structure and
assuming exact integration, we prove that, as in the continuous case, conservative
and non-conservative dG(q) schemes, q ≥ 0, are equivalent and unconditionally
stable. The same results remain true for piecewise polynomial ALE maps of any
degree as long as the quadrature guarantees the validity of the Reynolds’ identity,
i.e. exact for polynomial degree 2q + d(q + 1) − 1. We call these quadratures
Reynold’s quadratures, which generalizes the concept of geometric conservation
law (GCL) [6, 7] to higher order methods. We refer to [1] for more details.

Worth mentioning, Reynold’s quadratures require more than what is strictly
sufficient to preserve the convergence order of the dG methods. However, we also
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prove that simpler Runge-Kutta-Radau (RKR) methods based on q + 1 Radau
points are conditionally stable, that is subject to a mild ALE constraint on the
time steps. Numerical experiments are provided to corroborate and complement
our theoretical results.

We then present the optimal a priori error estimates derived in [2]. These esti-
mates are valid without any restrictions on the time steps when exact integration
or Reynolds’ quadratures are used but require a mild restriction on the time steps
for RKR methods. The key ingredients are the stability results discussed previ-
ously along with a novel ALE projection of the exact solutions on the discrete
piecewise polynomial spaces. Again, our theoretical findings are supplemented by
numerical experiments.

In the last part of the talk, we derive optimal order a posteriori error bounds for
the dG, Reynolds’, and RKR methods. These estimates generalize to moving do-
main the dG reconstruction technique of [8]. The proposed ALE time reconstruc-
tion accounts for the domain deformation and relies, once again, on the Reynolds’
identity. The provided a posteriori error control gives important information on
the behavior of the error with respect to the movement of the domain. In partic-
ular, our analysis allows variable time-steps and suggests that time adaptivity is
essential for oscillatory ALE maps. This is also seen numerically with a series of
numerical experiments. We refer to [3] and [4] for more details.

References

[1] A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: Sta-
bility. To appear in SIAM J. Numer. Anal.

[2] A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: A
priori error analysis. To appear in Numer. Math.

[3] A. Bonito, I. Kyza, and R.H. Nochetto. A dG approach to higher order ALE formulations
in time, volume 157 of 2012 Barrett Lectures, The IMA Volume in Mathematics and its
Applications. Springer, 2013.

[4] A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: A
posteriori error analysis, in preparation.

[5] A. Bonito, R.H. Nochetto, and M.S. Pauletti. Dynamics of biomembranes: Effect of the
bulk fluid. Math. Model. Nat. Phenom., 6(5):25–43, 2011.

[6] L. Formaggia and F. Nobile. Stability analysis of second-order time accurate schemes for
ALE-FEM. Comput. Methods Appl. Mech. Engrg., 193(39-41):4097–4116, 2004.

[7] L. Formaggia and F. Nobile. A stability analysis for the arbitrary Lagrangian Eulerian
formulation with finite elements. East-West J. Numer. Math., 7(2):105–131, 1999.

[8] Ch. Makridakis and R.H. Nochetto. A posteriori error analysis for higher order dissipative
methods for evolution problems. Numer. Math., 104(4):489–514, 2006.



Space-time Methods for Time-dependent Partial Differential Equations 877

Discontinuous Petrov-Galerkin discretizations in space and time for
linear acoustic waves

Willy Dörfler

(joint work with Stefan Findeisen, Christian Wieners, Daniel Ziegler)

A space-time setting for acoustic waves. We consider linear acoustic waves
in the form of a first-order hyperbolic systems of conservation laws on a bounded
domain Ω ⊂ RD and for some time T > 0,

Lu = f on Q := Ω× (0, T ) , u(·, 0) = u0 ,

where u = (p, v) : Q→ R1+D, M(p, v) = (κ−1, ρ) and A(p, v) = (∇ · v,∇p).
Following [4, 3] this can be analyzed in a Petrov-Galerkin setting defining the

Hilbert spaces W := L2(Q)1+D with norm

‖w‖W := (Mw,w)
1/2
0,Q = ‖M1/2w‖0,Q

and V ⊂W as closure of

D(L) =
{
(p, v) ∈ C1

(
[0, T ],L2(Ω;R× R

D)
)
∩ C0

(
[0, T ],H1

0(Ω)×H(div,Ω)
)
:

p(0) = 0 , v(0) = 0
}

with respect to the weighted graph norm ‖u‖V :=
(
‖u‖2W + ‖M−1Lu‖2W

)1/2
.

Stability in this setting is achieved by the estimate ‖u‖W ≤ 2T ‖M−1Lu‖W for
u ∈ V . For given f ∈ L2(Q)1+D a unique solution u ∈ V of the variational problem

(Lu,w)0,Q = (f, w)0,Q for all w ∈W

exists [4, Thm. 2].

A space-time discontinuous Galerkin discretization. Let Q = Ω× (0, T ) be
decomposed into space-time cells R =

⋃
R with R = K × I composed from cells

K and intervals I. Choosing local degrees pR, qR we define the discontinuous test

space Wh with local spaces WR,h =
(
PpR(K) ⊗ PqR−1(I)

)1+D
. This determines

Vh ⊂ H1
(
(0, T ),L2(Ω)

1−D)
)
with uh(x, t) =

t+−t
t+−t−

uh(x, t−) +
t−t−
t+−t−

wh,R(x, t) for

(x, t) ∈ R = K × (t−, t+), where wh,R ∈WR,h and uh(x, 0) = 0.
The operator A is approximated in space by the nodal discontinuous Galerkin

method [5]. For acoustic waves we obtain Ah(ph, vh) ∈ Wh for (ph, vh) ∈ Vh by
(
Ah(ph, vh), (ϕK,h, ψK,h)

)
)0,Q =

∑

R=K×I

−
(
div vK,h, ϕK,h

)
0,R

−
(
∇pK,h, ψK,h

)
0,R

− 1

2ρc

∑

F⊂∂K

(
[ph]K,F + ρcnK · [vh]K,F , ϕK,h + ρcnK · ψK,h

)
0,F×I
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for all wh ∈Wh, where c =
√
κ/ρ is the wave speed. The Petrov-Galerkin approx-

imation uh ∈ Vh is uniquely defined by
(
M∂tuh +Ahuh, wh

)
0,Q

= (f, wh)0,Q for all wh ∈Wh .

Stability and convergence is analyzed in [4, Thm. 3 and 4].

A numerical test for space-time adaptivity. The method is realized in the
parallel finite element system M++ [6]. The linear systems are solved with a pre-
conditioned multigrid methods in space and time, and the adaptivity is controlled
by a duality based goal-oriented error estimator.

The example is motivated by an application in tunnel exploration, see the 2D ge-
ometry in Fig. 1. A smooth pulse at the tunnel boundary propagates and is
reflected at the boundary, and the reflected wave front is measured by a goal func-
tional E. We compare the results for uniform and adaptive refinement in Tab. 1.

ref-step (p, q) #DoFs (effort) GMRES steps (rate) E(uh) △Eex

uniform refinement

r = 0 (0, 1) 267 264 7 (5.64e-2) 3.4808e-4 5.6091e-3
· · · · · · · · ·

r = 3 (3, 3) 8 017 920 19 (4.15e-1) 5.9523e-3 4.8958e-6
r = 4 (4, 4) 16 035 840 26 (5.68e-1) 5.9568e-3 3.9528e-7

adaptive refinement

r = 0 267 264 7 (5.64e-2) 3.4808e-4 5.6091e-3
· · · · · · · · ·

r = 3 2 518 482 (31%) 19 (4.21e-1) 5.9524e-3 4.8069e-6
r = 4 4 642 725 (29%) 31 (6.22e-1) 5.9568e-3 3.9599e-7

Table 1. Uniform vs. adaptive refinement on 89 088 space-time cells
on 64 procs (extrapolated value of the goal functional Eex ≈ 5.9572e-3).

(a) t = 0.0 (b) t = 0.6 (c) t = 1.2 (d) t = 1.8 (e) t = 2.4 (f) t = 3.0

Figure 1. Propagation of the acoustic wave. The region of in-
terest S ⊂ Ω defines Eq(u) =

∫
S×{T} u

2 dx.
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Space-time FEM-BEM coupling methods for wave propagation
problems in unbounded domains

Silvia Falletta

Let O(t) ⊂ R2 be an open bounded domain, subject to a rigid motion, with a
sufficiently smooth boundary Γ(t) . We consider the wave propagation problem
in R2 \ Ō(t) and, for its solution by a finite element method, we introduce a
fix artificial boundary B where we impose the transparent conditions 1

2u(x, t) −
V ∂nu(x, t) + K u(x, t) = 0, being

V ψ(x, t) =

∫ t

0

∫

B

G(x − y, t− τ)ψ(y, τ)dBydτ,

and

K ϕ(x, t) =

∫ t

0

∫

B

∂nG(x− y, t− τ)ϕ(y, τ)dBydτ,

the single and double layer integral operators, and G(x, t) = H(t−‖x‖)

2π
√
t2−‖x‖2

the fun-

damental solution of the wave equation (H(·) denotes the Heaviside function).

1. The fictitious domain approach

We introduce the larger and simpler time-independent domain Ω̃ that includes
O(t) and is bounded by the artificial boundary B. The main idea of the fictitious
domain method (or domain embedding method) consists in extending artificially
the solution of the exterior problem inside the obstacle, and to solve the new

problem in the whole extended domain Ω̃. The main advantage of this approach is
the possibility of solving the problem in a simpler domain by treating the Dirichlet
boundary conditions on Γ(t) by Lagrange multipliers. Moreover, the mesh of the
enlarged domain can be chosen independent of the geometry of the obstacle, thus
allowing to use structured, regular meshes over the extended domain. For a generic
function w, we set w(t)(x) := w(x, t). Then, the problem defined in the domain

of interest Ω̃ is stated as follows:
find the unknown functions u(t) ∈ H1(Ω̃), λΓ(t) ∈ H−1/2(Γ(t)), λB(t) ∈

H−1/2(B) such that the following generalized saddle-point evolution problem
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(1)































(ü(t), v)Ω̃ + a(u(t), v) + 〈λΓ(t), v〉Γ(t) + 〈λB(t), v〉B = (f(t), v)Ω̃
〈ϕ, u(t)〉Γ(t) = 0

2〈µ,V λB(t)〉B − 〈µ, u(t)〉B − 2〈µ,K u(t)〉B = 0

u(0) = u0

u̇(0) = v0

holds in the distributional sense in (0, T ), where a : H1(Ω̃) ×H1(Ω̃) → R is the

bilinear form a(v, w) =
∫
Ω̃
∇v · ∇w, and (v, w)S =

∫
S vw, with S = Ω̃ or B. The

bilinear forms 〈λΓ(t), v〉Γ(t) and 〈λB(t), v〉B denote the duality pairing between

H−1/2(Γ(t)) and H1/2(Γ(t)), and H−1/2(B) and H1/2(B), respectively.
We discretize the space-time integral equation on B by combining a second

order (in time) BDF convolution quadrature and a Galerkin (or a collocation)
method in space. Such a discretization is then coupled with an uncoditionally
stable ODE integrator in time and a FEM in space. The finite element mesh for the

solution in the enlarged domain Ω̃ is chosen independently of the geometry of the
obstacle, and the constraint on Γ(t) is imposed by a matrix Bh(t) that represents
a discrete trace operator. A particularly useful application of this approach is the
study of waves scattered by moving rigid bodies. In this case the method avoids the
complexity of constructing at each time step a new finite element computational
mesh and requires only the construction of the discrete trace operator Bh(t). We
have applied the proposed approach to problems of waves generated by non trivial
data and scattered by rotating bodies.
Example 1. In Figure 1 we show the snapshots of a wave that, starting from a
initial value u0 with initial null velocity v0, impinges upon two scatterers, both
having helicoidal shape, that rotate around their own center with constant angu-
lar velocity and in opposite directions. The two obstacles are surrounded by an
artificial circular boundary of radius 10.

2. A mortar approach

We have tested the roboustness of the NRBC defined by the BIE as well as its
accuracy, which turns out to be superior to that of the corresponding FEM. Such
properties justify the choice of its discretization in space on a numerical grid of the
artificial boundary coarser than the one inherited by the spatial discretization of
the finite computational domain. In this context, a mortar like coupling strategy
turns out to be an approach more feasible than the conforming one, allowing to
relax the pointwise continuity of the solution and of the flux to a weak one, by
using suitable Lagrange multipliers. The main advantage of this approach is that
non matching grids can be used at the interface B of the interior and exterior
domains. In what follows, we denote by uW the solution obtained by imposing
weakly the NRBC obtained by using MW boundary points for the partition of the
artificial boundary B. To test the accuracy of uW , we compare it with uS, the
approximate solution obtained by the FEM method where the NRBC is imposed
strongly, and in this case the coupling relation is defined at the MS boundary
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Figure 1. Example 1. Snapshots of the solution at different times
(in seconds).

t = 0 t ≈ 4.6 t ≈ 6.2

t ≈ 7.4 t ≈ 10 t ≈ 14

points of B inherited by the triangulation of the finite computational domain
(see [2]). In Figure 2 we show the behavior of the solutions uS (MS = 506)
and uW (MW = 128) of Example 1 at a point P ≈ (0, 4) (left plot) and the
corresponding behavior of the energies ES and EW of system with respect to time
(right plot).

Figure 2. Example 1. Behavior of uS and uW at P ≈ (0, 4) (left)
and energy dissipations (right).
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For details on the argument see [1, 2, 3, 4, 5].
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Three Different Multigrid Interpretations of the Parareal Algorithm
and an Adaptive Variant

Martin J. Gander

Time parallel time integration methods have a long history [1], and the parareal
algorithm [2] sparked renewed interest in such methods. To define the parareal
algorithm for the ordinary differential equation

(1)
du

dt
= f(u), in (0, T ) with u(0) = u0,

one needs a coarse solver G(t2, t1, u1) which solves the differential equation in (1)
starting with initial value u1 at t1 and gives an approximate solution at time t2,
and a fine solver F (t2, t1, u1) which does the same with much more accuracy. The
parareal algorithm is then defined for a partition of the time interval (0, T ) into
subintervals 0 = T0 < T1 < T2 < . . . < TN = T by the iteration

(2) Uk+1
n+1 = F (Tn+1, Tn, U

k
n) +G(Tn+1, Tn, U

k+1
n )−G(Tn+1, Tn, U

k
n),

where k is the iteration index, Uk+1
0 = u0, and the initial approximation can be

obtained for example using the coarse solver,

(3) U0
n+1 = G(Tn+1, Tn, U

0
n), U0

0 = u0.

The values Ukn approximate the solution u(Tn) of (1). The most natural inter-
pretation of the parareal algorithm is that it is a multiple shooting method with
approximate Jacobian on a coarse grid, and its convergence properties are well un-
derstood, see [3] for linear partial differential equations, and [4] for the non-linear
case.

Because of the two grids that are often used, a fine one for F and a coarse one
for G, the parareal algorithm is also a two-grid method, and it is interesting to
consider multigrid variants. There are three ways to obtain these, see [5]:
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(1) In the linear case, one can write the parareal iteration (2) as a precon-
ditioned Richardson iteration, where the preconditioner is given by the
coarse solve, see also [6]. One can then easily apply again (2) to approxi-
mately invert the coarse solver and get a multilevel parareal method.

(2) The parareal iteration (2) can also be interpreted in the geometric multi-
grid setting as a two level method using one presmoothing step with
block Jacobi, but not updating the coarse nodes (sometimes called an
F-smoother), and using injection for the restriction R, with prolongation
P := RT , and for the coarse matrix a coarse time stepper. This holds
also in the non-linear setting using the full approximation scheme, see for
example [3]. Again then applying the algorithm recursively for the coarse
time stepper leads to a multilevel version.

(3) Finally, one can consider the parareal algorithm (2) in the framework
of algebraic multigrid, where the nodes are first partitioned into fine, so
called F-nodes, and coarse, so called C-nodes. It can then be shown that
the parareal algorithm in fact uses optimal restriction and prolongation
operators, and only approximates the optimal coarse correction by a simple
coarse solve. This interpretation, together with a modification from the
F-smoother to a so called FCF-smoother led to the MGRIT algorithm in
[7], which corresponds to a parareal algorithm with overlap, see [5].

A new idea is to use the parareal algorithm adaptively as follows: one first
determines the time intervals Tn using an adaptive coarse solver G in the initial-
ization step (3). On this time grid, one then runs the correction iteration (2),
also using adaptive fine solvers F and coarse solvers G, without changing the time
partition Tn any more. To illustrate this, we now solve an Arenstorf orbit problem.
Arenstorf orbits are non-trivial closed orbits of a light object moving in the gravity
field of two heavy objects, following the equations of motion

ẍ = x+ 2ẏ − b
x+ a

D1
− a

x− b

D2
, ÿ = y − 2ẋ− b

y

D1
− a

y

D2
,

where Dj , j = 1, 2 are functions of x and y,

D1 = ((x+ a)2 + y2)
3
2 , D2 = ((x− b)2 + y2)

3
2 .

If the parameters are a = 0.012277471 and b = 1−a, with initial conditions x(0) =
0.994, ẋ(0) = 0, y(0) = 0, ẏ(0) = −2.00158510637908, then the solution is a nice
closed orbit with period T = 17.06521656015796, see [8], which can be interpreted
as a space craft that tries to return from moon to earth and unfortunately lands
again back at the moon, as illustrated by the converged trajectory on top right in
Figure 1.

The top row in this figure represents the initial approximation and the first four
iterations of the parareal algorithm when using ode45 in Matlab with tolerance
1e−2 for the coarse integration1, determining in the first iteration also the adaptive

1A small modification was needed to reduce the minimum number of time steps Matlab takes
from 10 to 1 to avoid over-resolution
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Figure 1. Initial approximation and first four iterations of the
parareal algorithm applied to the Arenstorf problem. Top row:
adaptive variant. Bottom row: fixed step size variant.

time partition, and tolerance 1e − 10 for the fine integration. Convergence to an
error tolerance of 1e− 6 is achieved in four iterations, as one can see in Figure 2.

iteration
0 2 4 6 8

e
rr

o
r

10 -6

10 -4

10 -2

10 0

10 2

10 4

Adaptive Parareal
Fixed Step Parareal

Figure 2. Decay of the error as a function of
the iteration.

The accuracy in this con-
verged solution is also 1e−6, and
the adaptive parareal algorithm
needed a total of 36′458 func-
tion evaluations, using 121 coarse
time steps. We next use 121
equidistant coarse time steps and
one time step of the classical 4th
order Runge-Kutta method for
the coarse integrator, and found
that 4133 equidistant 4th order
Runge-Kutta steps are needed in
each coarse time interval for the
fine integrator to reach the same
error of size 1e − 6. Running
the parareal algorithm with these
fixed step sizes leads to the result
shown in Figure 1 in the bottom
row. We see that the initial guess
and the first three iterations are very far away from the solution, and only the
fourth iteration brings the trajectory closer to the recognizable shape of the Aren-
storf orbit. It takes then almost twice the number of iterations to converge, see
Figure 2, using a total of 20′011′948 function evaluations! This is about 550 times
more than the adaptive parareal algorithm, for the same accuracy. The adaptive
parareal algorithm has the same potential for parallelism and multilevel extension.
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High-order Explicit Local Time-stepping Methods for Wave
Propagation

Marcus J. Grote

(joint work with Michaela Mehlin, Stefan Sauter)

Local adaptivity and mesh refinement are key to the efficient simulation of wave
phenomena in heterogeneous media or complex geometry. Locally refined meshes,
however, dictate a small time-step everywhere with a crippling effect on any ex-
plicit time-marching method. In [4] a leap-frog (LF) based explicit local time-
stepping (LTS) method was proposed, which overcomes the severe bottleneck due
to a few small elements by taking small time-steps in the locally refined region and
larger steps elsewhere. Here convergence of the LTS-LF method is proved when
combined with a standard conforming finite element method (FEM) in space. Nu-
merical results further illustrate the usefulness of the LTS-LF Galerkin FEM in
the presence of corner singularities.

1. Introduction

We consider the classical wave equation

utt −∇ · (c2 ∇u) = f in Ω× (0, T )(1)

u|t=0 = u0 ut|t=0 = v0 in Ω,(2)

where Ω denotes a bounded domain in Rd, f a (known) source and u0, v0 pre-
scribed initial conditions. The speed of propagation, c = c(x), is assumed piecewise
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smooth and strictly positive. At the boundary, we impose appropriate boundary
conditions for well-posedness.

For the spatial discretization of (1), we consider a conforming finite element
(FE) method with mass-lumping. For the time discretization, we opt for the leap-
frog based local time-stepping (LTS-LF) method to circumvent the bottleneck
caused by the overly stringent CFL condition in the presence of local refinement
[4, 5, 6]. Hence we split the mesh into a ”coarse” and a ”fine” sub-region with
mesh size h and hf, respectively. During each time-step ∆t inside the ”coarse”
region, we use p time-steps of smaller size ∆τ = ∆t/p inside the ”fine” region,
where p ≃ h/hf — see [4] for details.

Despite the many different explicit LTS methods that were proposed and suc-
cessfully used for wave propagation in recent years – see [7] and references therein
–, a rigorous space-time convergence theory (in the PDE sense) is still lacking. In
fact, convergence has been proved only for the method of Collino et al. [1, 2] and
very recently for the locally implicit method for Maxwell’s equations by Verwer
[10, 3, 9], which combines the explicit Verlet scheme with the implicit Crank–
Nicolson, neither fully explicit. Indeed, the difficulty in proving convergence of
fully explicit LTS methods is twofold. On the one hand, classical proofs of con-
vergence for FE discretizations of the wave equation always assume standard time
discretizations, while proofs for explicit multirate schemes (in the ODE literature)
are always restricted to the finite-dimensional case. On the other hand, when ex-
plicit LTS schemes are reformulated as perturbed one-step schemes, they involve
products of differential and restriction operators, which do not commute and seem
to inevitably lead to a loss of regularity.

2. Convergence theory

To develop a general convergence theory for explicit LTS methods, we first define
finite-dimensional restriction operators to the ”fine” grid and formulate the leap-
frog (LF) based LTS method from [4] in a Galerkin conforming finite element
setting. Next, we prove continuity and coercivity estimates for the LTS operator
that are robust with respect to the number of local time-steps p, provided a genuine
CFL condition is satisfied. Here, new estimates on the coefficients that appear
when rewriting the LTS-LF scheme in ”leap-frog manner” play a key role. Those
estimates pave the way for the stability estimate of the time iteration operator,
for which we then prove a stability bound independently of p.

Due to the local restriction, however, a judicious splitting of the iteration opera-
tor and its inverse is required to avoid negative powers of h via inverse inequalities.
By combining our analysis of the semi-discrete formulation, which takes into ac-
count the effect of local time-stepping, with classical error estimates, we eventually
obtain optimal space-time convergence rates.

Let uh denote the fully discrete Galerkin solution with continuous piecewise
polynomial finite elements of order ℓ. Under standard smoothness assumptions on
the solution u of (1)–(2), we rigorously prove that for ∆t, h→ 0:

‖u− uh‖L∞([0,T ];L2(Ω)) ≤ C(1 + T )(hℓ+1 +∆t2),
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Figure 1. Left: Computational mesh with two levels of local
refinement. The ”fine” region (in green) always corresponds to the
innermost 30 elements; right: Comparison of run times between
LTS-LF and standard LF vs. number of global refinements, with
constant coarse/fine mesh size ratio p = 4.

where the constant C depends only on u, but not on h, ∆t, p or T .

3. Numerical experiment

We consider (1)–(2) in an L-shaped domain Ω, shown in Fig. 1, and set c = 1, f = 0
and the final time T = 1. Next, we impose homogeneous Neumann conditions
on the boundary. For the spatial discretization we opt for P2 continuous finite
elements with mass lumping.

First, we partition Ω into equal triangles of size hinit. Towards the re-entrant
corner, we then locally refine the mesh by subdividing twice the three elements
nearest to the corner – see Fig. 1. Hence the mesh refinement ratio, that is the ratio
between smallest elements in the ”coarse” and the ”fine” regions, in the resulting
mesh is 4:1. We therefore choose a four times smaller time-step ∆τ = ∆t/p with
p = 4 inside the ”fine” region.

Clearly, this time-stepping strategy, albeit local, is not optimal as the region of
local mesh refinement itself contains a sub-region of even smaller elements. Thus,
any local time-step will again be overly restricted due to even smaller elements
inside the ”fine” region. To remedy the repeated bottleneck caused by hierarchical
mesh refinement, multi-level local time-stepping methods were proposed in [5, 6],
which permit the use of the appropriate time-step at every level of mesh refinement.
For simplicity, however, we restrict ourselves here to the original (two-level) LTS-
LF scheme from [4].

In Fig. 1 we compare the runtime of the LTS-LF method on a sequence of
meshes with the runtime of a standard LF scheme with a time-step ∆t/4 through-
out the entire domain. As expected, the LTS-LF method is faster than the stan-
dard LF scheme, in fact increasingly so, as the number of refinement levels in-
creases.



888 Oberwolfach Report 15/2017

References

[1] F. Collino, T. Fouquet and P. Joly, A conservative space-time mesh refinement method for
the 1-D wave equation. II. Analysis, Numer. Math. 95 (2003), 223–251.

[2] P. Joly and J. Rodriguez, An error analysis of conservative space-time mesh refinement
methods for the one-dimensional wave equation, SIAM J. Numer. Anal. 43 (2005), 825–859.

[3] S. Descombes, S. Lanteri and L. Moya, Locally implicit time integration strategies in a
discontinuous Galerkin method, J. Sci. Comput. 56 (2013), 190–218.

[4] J. Diaz and M.J. Grote, Energy Conserving Explicit Local Time-stepping for Second-order
Wave Equations, SIAM J. Sci. Comp. 31 (2009), 1985–2014.

[5] J. Diaz and M.J. Grote, Multilevel Explicit Local Time-stepping For Second-order Wave
Equations, Comp. Meth. Appl. Mech. Engin. 291 (2015), 240–265.

[6] M. Rietmann, M.J. Grote, D. Peter and O. Schenk, Newmark Local Time Stepping on
High-Performance Computing Architectures, J. Comp. Phys. 334 (2017) 308–326.

[7] M.J. Grote, M. Mehlin and T. Mitkova, Runge-Kutta Based Explicit Local Time-Stepping
Methods for Wave Propagation, SIAM J. Sc. Comp. 37 (2015), A747–A775.

[8] M.J. Grote, M. Mehlin, and S. Sauter, Convergence Analysis of Energy Conserving Explicit
Local Time-stepping Methods for the Wave Equation, submitted for publication.

[9] M. Hochbruck and A. Sturm, Error analysis of a second-order locally implicit method for
linear Maxwell’s equations, SIAM J. Numer. Anal. 54 (2016), 3167–3191.

[10] J.G. Verwer, Component splitting for semi-discrete Maxwell equations, BIT Numer. Math.
51 (2010), 427–445.

On the error analysis of full discretizations of linear Maxwell’s
equations

Marlis Hochbruck

(joint work with Andreas Sturm)

1. Introduction

In this paper we sketch the key ingredients of an error analysis of the full dis-
cretization of linear Maxwell’s equations. Our analysis covers space discretization
with the discontinuous Galerkin (dG) method and time integration with the Ver-
let, the Crank–Nicolson, and the implicit midpoint method. We show that the
Verlet and the implicit midpoint method can be analyzed by interpreting them
as perturbations of the Crank–Nicolson scheme. The same holds true for locally
implicit variants, for which detailed results can be found in [2, 3, 4].

2. Maxwell’s equations and their spatial discretization

Let Ω ⊂ R
3 be a bounded domain and T be a finite time. We consider Maxwell’s

equations in a linear, isotropic material with a perfectly conducting boundary

(1)

µ∂tH = − curlE, (0, T )× Ω,

ε∂tE = curlH− J, (0, T )× Ω,

H(0) = H0, E(0) = E0, Ω,

n×E = 0, (0, T )× ∂Ω.
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Here, H and E denote the magnetic and electric field, respectively, J is a given
external current density, and ε and µ are piecewise constant material parameters.
We discretize Maxwell’s equations in space with a central fluxes discontinuous
Galerkin (dG) method [1] resulting in the semidiscrete problem

(2)

∂tHh(t) = −CEEh(t),

∂tEh(t) = CHHh(t)− Jh(t),

Hh(0) = πhH
0, Eh(0) = πhE

0,

where πh denotes the L2-orthogonal projection onto the approximation space of
the dG method, and where Jh = πh(ε

−1J). Here, CE and CH denote the spatially
discretized curl-operators, whereby CE includes the boundary condition on Eh. In
the following, we use

uh =

(
Hh

Eh

)
, jh =

(
0

−Jh

)
, C =

(
0 −CE

CH 0

)
,

to keep a short notation.

3. Time integration

Given a time stepsize τ we approximate the solution at times tn = nτ , i.e., unh ≈
uh(tn). Suitable implicit time integrators for the semidiscrete Maxwell’s equations
(2) are e.g. the Crank–Nicolson method

(3a) un+1
h − unh =

τ

2
C(un+1

h + unh) +
τ

2
(jn+1
h + jnh),

where jnh = jh(tn), or the implicit midpoint method

(3b) un+1
h − unh =

τ

2
C(un+1

h + unh) + τj
n+1/2
h .

A popular explicit time integration scheme for (2) is the Verlet (or leap frog)
method

(3c)

H
n+1/2
h −Hn

h = −τ
2
CEE

n
h,

En+1
h −Enh = τCHH

n+1/2
h − τ

2
(Jn+1
h + Jnh),

Hn+1
h −H

n+1/2
h = −τ

2
CEE

n+1
h .

Introducing the operators

R± = I ± τ

2
C, R̂± = R± − τ2

4

(
0 0
0 CHCE

)
,

we can rewrite the schemes (3) as

R−u
n+1
h = R+u

n
h +

τ

2
(jn+1
h + jnh),(4a)

R−u
n+1
h = R+u

n
h + τj

n+1/2
h ,(4b)

R̂−u
n+1
h = R̂+u

n
h +

τ

2
(jn+1
h + jnh),(4c)
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respectively. We have the following bounds [2, Lemmas 3.2, 4.1, 4.2]: The opera-
tors R− and R+ satisfy

‖R−1− ‖µ×ε ≤ 1, ‖Rm‖µ×ε = 1, where R = R
−1
− R+,

where ‖·‖µ×ε is a weighted L2-norm. For the bounds on the operators R̂− and

R̂+ we assume the following CFL condition

(5) τ ≤ Cθhmin, θ ∈ (0, 1),

where hmin is the smallest mesh width of the spatial grid and C depends on the
regularity of the mesh, the polynomial degree employed in the dG method and on
the material parameters. Then, we have that

‖R̂−1− ‖µ×ε ≤ (1 − θ2)−1, ‖R̂m‖µ×ε ≤ (1− θ2)−1/2, where R̂ = R̂
−1
− R̂+.

These bounds imply the stability of the Crank–Nicolson and the implicit midpoint
method and, under assumption of the CFL condition, of the Verlet method.

4. Error analysis

Let u = (H,E) be the exact solution of Maxwell’s equations (1) and assume that
u is sufficiently smooth. We consider the full discretization error

en = enπ − enh, enπ = u(tn)− πhu(tn), enh = unh − πhu(tn).

For the methods (3) we obtain the error recursions

R−e
n+1
h = R+e

n
h + τdnπ + δn,(6a)

R−e
n+1
h = R+e

n
h + τ d̄nπ + δ̄n + (R− −R+)πhξ̄

n,(6b)

R̂−e
n+1
h = R̂+e

n
h + τ d̂nπ + δn + (R̂− − R̂+)πhξ̂

n,(6c)

respectively. Here, dnπ, d̄
n
π, and d̂nπ are projection errors, which are of order hk

when using polynomials of degree k in the space discretization, while δn and δ̄n

correspond to quadrature errors of order τ3. The remaining defects

ξ̄n = −1

2
(u(tn+1)− 2u(tn+1/2) + u(tn)), ξ̂n =

τ

4

(
∂t(H(tn+1)−H(tn))

0

)

are of lower order and have to be investigated further. The key idea to prove full
order is to split the defect into ηn + (R− −R+)ξ

n, where, e.g., for the implicit
midpoint method we have

ηn = τ d̄nπ + δ̄n, ξn = πhξ̄
n.

This results in an error recursion of the form

en+1
h =

n∑

m=0

R
n−m

R
−1
− ηm +

n∑

m=0

R
n−m(I −R)ξm

= ξn −R
n+1ξ0 +

n∑

m=0

R
n−m

R
−1
− ηm −

n−1∑

m=0

R
n−m(ξm+1 − ξm).



Space-time Methods for Time-dependent Partial Differential Equations 891

The same representation holds with the operators R̂− and R̂+ if the CFL condi-

tion (5) is satisfied. Because both ξ̄m+1 − ξ̄m and ξ̂m+1 − ξ̂m are of order τ3 we
obtain for all methods the error bound

‖en‖µ×ε ≤ C(hkmax + τ2), nτ ≤ T,

where the constant C is independent of the mesh width h and the time step τ .
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Propagation of acoustic waves in fractal networks

Patrick Joly

(joint work with Maryna Kachanovska, Adrien Semin)

Sound propagation in lungs is a useful tool for diagnostics of lung diseases. It
is modelled by the wave equation in a network of thin slots, the latter being
asymptotically reduced to a self-similar fractal one-dimensional tree. Efficient
resolution of this problem constitutes the subject of the present work.

Given a compact self-similar p-adic tree T consisting of a countable set of edges
and vertices, we study the wave equation defined on its edges

µ∂2t u− ∂x(µ∂xu) = 0,(1)

with the condition u(M∗, t) = f(t) at the root vertex M∗ of T . The weight µ is
constant along every edge Σ. Provided the length ℓ of an edge Σ at a generation
k ≥ 0, the length of each of its p children Σj , j = 0, . . . , p − 1, located at the
generation (k + 1), is αjℓ with 0 < αj < 1. Moreover, the value of µ along
Σj is µj times its value along Σ, with µj > 0. The tree T has infinitely many
such generations, defined inductively. The problem (1) is completed with the

Figure 1. Transmission conditions on the non-root vertices.
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transmission conditions on non-root vertices, cf. Figure 1. One of its difficulties
and originalities of this problem is the treatment of the ’infinity’ (notice however
that the tree is compact). Particularly, (1) is equipped with Neumann/Dirichlet
BCs, incorporated into the variational formulation. E.g., for the Neumann BCs:

d2

dt2
(µu, v)T + (µ∂xu, ∂xv)T = 0, v ∈ H1

µ, u ∈ C1(0, T ;L2
µ) ∪ C0(0, T ;H1

µ),(2)

and for the Dirichlet BCs H1
µ is substituted by H1

µ,0. For the definition of spaces

L2
µ, H

1
µ, H

1
µ,0 and scalar products, see [1]. We consider the case when Dirichlet

and Neumann problems differ and the embedding H1
µ ⊂ L2

µ is compact, or, cf. [1],

(3)
∑

i

µi αi < 1,
∑

i

µi/αi > 1.

In order to perform the computation, we truncate the tree at a certain level using
a transparent boundary condition at each end point M :

∂xu(M, ·) =
p−1∑

i=0

µiΛi(∂t)u(M, ·)

where Λi(∂t) = ℓ−1i Λ(ℓi ∂t), Λ(∂t) is the DtN operator associated with a reference
tree (whose root edge has length 1) and ℓi are the lengths of the p edges of the
truncated subtree terminating atM . Λ(∂t) is a convolution operator whose symbol
Λ(ω) (through ∂t ↔ −iω) is not known explicitly, but satisfies the equation

(4) Λ(ω) cos(ω) + ω sinω =
(
cosω − Λ(ω)

sinω

ω

)( p−1∑

i=0

µi
αi

Λ(αiω)
)
.

We look for an even meromorphic solution [1] to the above problem, whose unique-
ness is ensured provided the value Λ(0) (which is 0 for the Neumann problem and(
1−
(∑

i µi/αi
)−1)

for the Dirichlet problem). In [1] the authors proposed trans-
parent BCs based on the Laurent expansion of Λ(ω) near ω = 0. Such BCs require
truncating the tree at the level where |ℓω| ≪ 1. In this work we relax this condition
using two methods: a) construction of transparent BCs for the discretized problem
(convolution quadrature (CQ)); b) approximation of Λ(ω) by rational functions.

Approach 1: Convolution Quadrature (CQ). We apply a trapezoid CQ
[2] for the approximation of Λ(∂t), coupled with an explicit leap-frog scheme for
the discretization of the volumetric terms. Given Ti the subtree for which the
computation is done using FEM (w.l.o.g. we assume that all the end edges have
the same length ℓ), and by Te = T \ Ti, we rewrite (2):

d2

dt2
(µu, v)Ti + (µ∂xu, ∂xv)Ti +

d2

dt2
(µu, v)Te + (µ∂xu, ∂xv)Te = 0, v ∈ H1

µ.(5)
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After the space discretization along Ti (not along Te) we discretize in time, with
constant ∆t, u|

Ti
with leapfrog and u|

Te
with the trapezoidal rule:

(
µ
un+1 − 2un + un−1

∆t2
, v

)

T

+ (µ∂xun, ∂xv)Ti +
(
µ∂xun, 1

4
, ∂xv

)
Te

= 0,

where un, 1
4
= (un+1 + 2un + un−1) /4. Denoting u∆t = (un)

N
n=1 the semi-discrete

solution, this can be rewritten as, provided {Mk} the set of the end nodes of Te,
(
µ
un+1 − 2un + un−1

∆t2
, v

)

Ti

+ (µ∂xun, ∂xv)Ti

+
∑

k

p−1∑

j=0

µj
(
Λ∆t
j u∆t(Mk)

)
n, 1

4

v(Mk) = 0.

Here Λ∆t
j are the discrete DtN operators with the symbols (with abuse of notation)

Λ∆t
j (ω) = ℓ−1j Λ

(
ℓj Ω∆t(ω)

)
, Ω∆t(ω) =

2i

∆t

1− eiω∆t

1 + eiω∆t
.

Defining the convolution weights λnj by Λ∆t
j (ω) =

+∞∑
n=0

λnj (∆t) e
inω∆t, we obtain

(
Λ∆t
j u∆t

)
n
=

n∑

q=0

λn−qj (∆t)uq(Mk).

The computation of λni (∆t), n ≥ 0, requires a procedure of the evaluation of Λ(ω)
in the complex plane; one way to do so is described in [3]. The stability of the
scheme can be shown by energy techniques.

Approach 2: Rational Approximations. From coercivity properties of the
DtN, it follows that −ω−1Λ(ω) is a Herglotz function (i. e. an analytic map from
the upper complex half-space into itself). Moreover, Λ(ω) is of the form

Λ(ω) = Λ(0)−
∞∑

j=0

ajω
2

Ω2
j − ω2

, Ωj 6= 0, aj > 0, Λ(0) ≥ 0.(6)

We will look for rational approximations of Λ(ω) in a class of rational Herglotz
functions (obtained, for example, by truncating at the order N the above sum).
In this case (5) becomes: for all v ∈ Hµ(T ),

d2

dt2
(µu, v)

Ti
+ (µ∂xu, ∂xv)Ti +

∑

k

p−1∑

j=0

µj Λ
N
j (∂t)u(Mk, ·) v(Mk) = 0,(7)

where the operators ΛNj (∂t) are given by

ΛNj (∂t)u(Mk, .) = ℓ−1j
(
Λ(0)u(Mk, .) +

N−1∑
i=0

ai ∂tψ
k
j,i

)
,

∂ttψ
k
j,i + ℓ−2j Ω2

i ψ
k
j,i = ∂tu(Mk, .), 0 ≤ i ≤ N − 1.

(8)
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The stability of (7) coupled with (8) follows from the energy conservation:

d

dt
(Ei + Eb) = 0, Ei =

1

2
((µu, u)Ti + (µ∂xu, ∂xu)Ti) ,

Eb =
∑

k

p−1∑

j=0

µjℓ
−1
j

(
Λ(0)|u(Mk)|2 +

N−1∑

i=0

ai
(
|∂tψkj,i|2 + ℓ−2j Ω2

i |ψkj,i|2
)
)
.

The volumetric terms in (7) can be semidiscretized in time using the leapfrog
scheme, and the boundary terms with the help of the implicit trapezoid rule, simi-
larly to how it is done for the Maxwell equations in dispersive media. The resulting
scheme can be reformulated in an explicit manner.
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Stable Perfectly Matched Layers for a Class of Anisotropic Dispersive
Models

Maryna Kachanovska

(joint work with Eliane Bécache)

For many applications in physics (modelling of plasmas in tokamaks, or super-
lenses made of metamaterials), it is required to model the wave propagation in
unbounded anisotropic dispersive media. There exist numerous techniques to deal
with the unboundedness of the domain in practical computations, e.g. boundary
integral equations, absorbing/transparent boundary conditions, pole conditions
etc., but, to our knowledge, none of them can be applied as is in this context.
Here we concentrate on the method of perfectly matched layers (PMLs), proposed
by Bérenger [1, 2]. The advantages of PMLs include the ease of implementation
and effortless treatment of corners, however, PMLs are known to exhibit instabil-
ities when applied to problems with anisotropy and/or dispersion [3, 4]. In this
talk we show how to construct stable PMLs for a particular class of 2D Maxwell
anisotropic dispersive problems. All the presented results can be found in [5].

1. Problem Setting

We consider the wave propagation in 2D dispersive anisotropic media modelled by
the Maxwell’s equations

∂tD− curlHz = 0, ∂tBz + curlE = 0,(1)
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complemented with constitutive relations, which we write in the Laplace domain.
Denoting by û(s, x), s ∈ C+ = {z ∈ C : ℜz > 0}, the Laplace transform of a
causal tempered u(t, x), we assume that

D̂ = ε(s)Ê, B̂z = µ(s)Ĥz , ε(s) =

(
εx(s) 0
0 εy(s)

)
.(2)

In the time domain the above corresponds to convolutions.

Assumption 1. The dielectric permittivity εx(s), εy(s) and the magnetic perme-
ability µ(s) satisfy the following assumptions, see [5, 6] for the justification:

(1) εx(s), εy(s), µ(s) are analytic in C+, and ℜ (sεx(s)) > 0, ℜ (sεy(s)) > 0,
ℜ(sµ(s)) > 0 for all s ∈ C+. We will call this property of the analyticity
and the sign condition in C+ passivity.

(2) they are even rational functions with real coefficients;
(3) εx(s), εy(s), µ(s) → 1 as |s| → +∞.

It is known [7, 8] that the only generalized Lorentz materials satisfy the above.

Theorem 1. Assume c(s) = 1 + p(s2)
q(s2) , where p, q are polynomials with real

coefficients, and deg p < deg q. Then c(s) is passive if and only if

c(s) = 1 +

n∑

ℓ=0

cℓ
s2 + ω2

ℓ

, cℓ > 0, ωℓ ∈ R.

In the time domain, (1-2) can be written as the Maxwell’s equations with cur-
rents, coupled with the ordinary differential equations for currents [4, 5].

To (1-2) we associate the following sesquilinear form

A (Ĥz , v) = εy(s)
−1(∂xĤz, ∂xv) + εx(s)

−1(∂yĤz, ∂yv)

+ s2µ(s)(Ĥz , v), Ĥz, v ∈ H1(R2).

Here (u, v) =
∫
R2

uv̄dx. It can be shown [5] that

Passivity of εx, εy, µ =⇒ Stability of (1-2) in the time domain(3)

Definition 1. A sesquilinear form A(u, v) = a(s)(∂xu, ∂xv) + b(s)(∂yu, ∂yv) +
s2c(s)(u, v), u, v ∈ H1(R2), is called passive if a(s)−1, b(s)−1, c(s) are passive.

2. Perfectly Matched Layers for Dispersive Models

The main idea of the PML method is to surround the computational domain by
an absorbing layer, inside which the solution would decay fast, so that this layer
can be truncated by vanishing boundary conditions. Importantly, it is constructed
so that no reflection on the boundary between the computational domain and the
absorbing layer is produced.
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Let us assume that the PML is constructed in the half-space x > 0. Then it
amounts to performing the change of variables, cf. [4]

x→ x+
ψ(s)

s

x∫

0y

σ(x′)dx′, x > 0,(4)

where σ(x′) ≥ 0 for x ≥ 0 and σ(x′) ≡ 0 for x < 0. In the traditional Bérenger’s
PMLs ψ(s) ≡ 1, however, for many dispersive models it is necessary to choose
ψ(s) 6= 1 in order to ensure the stability of the resulting PML model [4].

Performing the PML change of variables results in the following form

Ãσ(Ĥz, v) = εy(s)
−1

(
1

1 + s−1ψ(s)σ(x)
∂xĤz, ∂x

(
v

1 + s−1ψ(s)σ(x)

))

+ εx(s)
−1(∂yĤz, ∂yv) + s2µ(s)(Ĥz , v), Ĥz , v ∈ H1(R2).

The first step of the PML analysis consists in taking in the above σ(x) ≡ σ ≡
const ≥ 0, and studying the well-posedness and stability of the resulting time-
domain problem [5]. The corresponding sesquilinear form then reads

Aσ(Ĥz , v) =
εy(s)

−1

(1 + s−1ψ(s)σ)
2

(
∂xĤz, ∂xv

)
+ εx(s)

−1(∂yĤz, ∂yv)

+ s2µ(s)(Ĥz , v), Ĥz , v ∈ H1(R2), σ ≥ 0.

This amounts in substituting (4) by

x→ x(1 + s−1ψ(s)σ), σ ≥ 0, x ∈ R.(5)

In view of (3), for the stability of the PMLs it suffices to study the passivity
properties of the above sesquilinear form. Before doing this, let us limit the class
of the functions ψ(s). We suggest to choose ψ(s) that satisfy the same hypothesis
as εy(s)

−1. Such functions are characterized in the following result.

Theorem 2. Assume ψ(s) = 1 + p(s2)
q(s2) , where p, q are polynomials with real

coefficients, and deg p < deg q. Then ψ(s)−1 is passive if and only if

ψ(s) = 1−
n∑

ℓ=0

ψℓ
s2 + ω2

ℓ

, ψℓ > 0, ωℓ ∈ R \ {0}, ψ(0) ≥ 0.

Given a (meromorphic) function r : C → C, let us denote r̃(ω) = r(−iω),
ω ∈ R. The following result provides an easy characterization of the functions
ψ(s) leading to stable PMLs, where the stability is ensured by passivity (3).

Theorem 3. Let ψ(s) = 1+ p(s2)
q(s2) , where p, q are polynomials with real coefficients,

and deg p < deg q. Let also ψ(s)−1 be passive. Additionally, we assume that
εx, εy, µ satisfy Assumption 1. Then the following two conditions are equivalent:

(1) the sesquilinear form ψ(s)εy(s)Aσ(Ĥz, v) is passive;
(2) for all ω ∈ R, s.t. ε̃x(ω)ε̃y(ω) < 0 or ε̃y(ω)µ̃(ω) > 0, it holds that

ψ̃(ω)ε̃y(ω) ≥ 0.
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A function ψ(s) satisfying the above theorem always exists, for instance, ψ(s) =
εy(s)

−1.
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Space-Time Discretisation and Solver Technology for Biot’s Model of
Poroelasticity

Uwe Köcher

The accurate, reliable and efficient numerical approximation of multi-physics pro-
cesses in heterogeneous porous media with varying media coefficients that include
fluid flow and structure interactions is of fundamental importance in energy, envi-
ronmental, petroleum and biomedical engineering applications fields for instance.
Important applications include lithium-ion polymer battery simulations, carbon
sequestration, subsurface compaction drive, hydraulic and thermal fracturing and
oil recovery. Biomedical applications include the simulation of vibration therapy
for osteoporosis processes of trabeculae bones, estimating stress levels induced by
tumour growth within the brain or next-generation spinal disc prostheses.

Variational space-time methods offer some appreciable advantages such as the
flexibility of the triangulation for complex geometries in space and natural local
time stepping, the straightforward construction of higher-order approximations
and the application of efficient goal-oriented (duality-based) adaptivity concepts.
In addition to that, uniform space-time variational methods appear to be advan-
tageous for stability and a priori error analyses of the discrete schemes. Especially
(high-order) discontinuous in time approaches appear to have favourable proper-
ties due to the weak application of the initial conditions.



898 Oberwolfach Report 15/2017

The Biot poroelasticity equation system characterise a multi-physics problem of
slightly compressible single-phase diffusive porous media flow coupled with quasi-
static deformation as structure interaction. The fully-coupled partial differential
equations system in strong form for the approximation of displacement u, fluid
flux q and fluid pressure p is given by

−∇ · (σ0 +C : ǫ(u− u0)− b (p− p0)1) = (φρf + (1− φ)ρs) g ,

ηK−1q +∇p = ρf g ,

b
Kdr

∂tσv(u, p) +
(

1
M + b2

Kdr

)
∂tp+ div q = f ,

with ǫ(u) = 1
2 (∇u+∇uT ), and denoting by C elasticity tensor, by φ the porosity,

by ρs and ρf the solid and fluid densities, by η the fluid viscosity, by K the
permeability tensor and using the volumetric mean stress

σv(u, p) = σv,0 +Kdr∇ · (u− u0)− b (p− p0) ,

in Ω× I, Ω ⊂ Rd, I = (0, T ) and equipped with appropriate initial and boundary
conditions. The coupling between the deformation and fluid flow is described by
Biot using a coupling coefficient b = 1−Kdr/Ks, 0 < b < 1, and modulus M > 0.

A discontinuous in time discretisation is applied in order to approximate the
solution by employing Bochner spaces V with values in Hilbert spaces H , e.g.

V r
τ (I,H ) =

{
v ∈ L2(I,H )

∣∣∣ v|In ∈ Pr(In,H )
}
,

Pr(In,H )=
{
p : In→H

∣∣∣ p=
∑r

j=0 p
j
n t

j, pjn ∈ H
}
,

with In=(tn−1, tn) of a partition of the time domain. This construction allows to
solve the discrete schemes in the sense of time marching schemes, due to the appli-
cation of discontinuous Bochner spaces as test spaces. The discretisation in space
yields a stable, high-order and locally mass conservative discrete scheme. Pre-
cisely, a Raviart-Thomas-Nédélec mixed finite element {Ncf (p)-dQ(p-1)} for the
approximation of the flux and pressure combined with a continuous finite element
method cQ(p)d, employing Gauß-Lobatto quadrature points for the construction
of the piecewise polynomial tensor product basis functions, for the approximation
of the displacement u is applied.

The development of monolithic multi-physics schemes, instead of iterative cou-
pling methods between the physical problems, is a key component of the research
to reduce the modeling error. Special emphasis is on the development of effi-
cient multi-physics and multigrid preconditioning technologies and their imple-
mentation. State of the art monolithic schemes commonly deploy (low-order)
distributional time integration. Arising block systems are solved with Schur-
complement technologies using standard preconditioning strategies. Monolithic
high-order dG(r) variational time discretisations allow and need the development
of sophisticated solver and preconditioning technologies. An efficient precondi-
tioning technology of the outer iterative solver GMRES for fully-coupled dG(0),
or even dG(1), block systems is based on an optimised truncated fixed-stress solver
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technology. The optimised fixed-stress iterative coupling method (as solver) for
high-order continuous and discontinuous variational time discretisations is anal-
ysed in [1, 2].

The numerical simulation software DTM++ is a modularised framework written
in C++11 and builds on top of deal.II toolchains; cf. [4, 6]. The implementation
allows parallel simulations from notebooks up to cluster scale, cf. [1, 2, 3, 4, 5, 6].
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Aposteriori analysis of fully discretized wave equation via leap-frog
type schemes

Omar Lakkis

(joint work with E.H. Georgoulis and C.G. Makridakis and J.M. Virtanen)

1. Set-up

Let Ω be an open domain in Rd, d = 1, 2, 3, and T > 0, we are interested in
the aposteriori error ananlysis of discretizations of the initial value problem of the
wave equation for a space-time scalar function u : Ω× [0, T ] → R

∂ttu+ A u = f on Ω× (0, T ]

u(0) = u0 and ∂tu(0) = v0
(1)

(φ(t) = φ(t, ·) is the snapshot of a space-time function φ at time t) for a given
space-time function f : Ω× [0, T ] → R, and space functions u0, v0 : Ω → R and a
self-adjoint linear second-order elliptic operator A : V → V ′, where the domain
of A , V , is a Hilbert subspace of a pivot space H forming the Gel’fand triple
V →֒ H →֒ V ′, which is realized as a Sobolev space on the domain Ω, e.g.,
V := H1

0(Ω), H = L2(Ω) and V ′ := H−1(Ω). Analysis of the scalar linear wave
equation IVP (1) in such a setting can be found in textbooks such as [Eva10] or
[Bré11].
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1.1. The leap-frog scheme. Consider a uniform time-grid

(2) t0 := 0 and tn := tn−1 + τ where τ := T/N,

for some fixed N ∈ N and a family V0, . . . ,VN , of finite dimensional subspaces,
corresponding to the discrete time instants t0, . . . , tN . The leap-frog scheme

∂2Un+1 +AnU
n = fn

U0 = P 0
H u0 and ∂U0 = P 0

H v0
(3)

where ∂·n+1 and ∂2·n+1 respectively denote the first and second backward differ-
ence operators with respect to the time-grid (tn)n=0,...,N , namely

(4) ∂Un+1 =
Un+1 − Un

τ
and ∂2Un+1 =

∂Un+1 − ∂Un

τ
.

Also Pn
H
φ is the H -orthogonal projection onto Vn for n = 0, . . . , N .

The IVP (1) and scheme (3) may be reformulated by introducing an auxilliary
variable v := ∂tu in the continuous case and

(5) V n+
1/2 := ∂Un+1 and tn+ 1

2
= (tn+1 + tn)/2 for n = 0, . . . , N − 1

in the discrete case where the half-index indicates a time-grid staggered with re-
spect to (tn)n=0,...,N , we also define

(6) V −
1/2 := 2P 0

H v0 − V +1/2 and ∂V n+
1
2 :=

V n+1/2 − V n−1/2

k
,

which allows us to rewrite (3) as a system of two first order difference equations

(7) ∂Un+1 − V n+
1/2 = 0, and ∂V n+

1
2 −AnU

n = fn.

This method was known to Newton, and has been rediscovered many times, e.g.,
by Delambre, Cowell & Crommelin, Størmer, Newmark and Verlet [HLW03].

1.2. Cosine schemes. The analysis we present here is valid also for more general
leap-frog type schemes, known by some authors as the cosine schemes. Details
being provided in [GLMV16], we stick to the leap-frog scheme in this abstract for
simplicity’s sake.

1.3. Time-discrete schemes. For exposition’s sake, we drop the spatial dis-
cretization in this report and replace all occurences of An by A and all the pro-
jectors Pn

H
by the identity.

2. Aposteriori error analysis

2.1. Continuous extension of the leap-frog scheme. Given our main goal is
aposteriori error analysis, our first step is to rewrite the leap-frog system (7) as
an V ′-valued system of ordinary differential equations (ODEs). For this we need
to extend the discrete functions Un and V n−1/2, for n = 0, . . . , N to the whole
interval [−k, T ]. Let û1 : [−k,N ] → R be the piecewise linear extension of time-
grid nodal points (tn, U

n), for n = −1, . . . , N , and v̂1 : [−k/2, N − k/2] → R the
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piecewise linear extension of staggered time-grid nodal points (tn−1/2, V
n−1/2) for

n = 0, . . . , N . Using the convention that

(8) φi = φ(ti) for i integer or half-integer,

we obtain

(9) û
n+1/2
1 = (Un+1+Un)/2 and v̂n1 = (V n+

1/2+V n−
1/2)/2 for n = 0, . . . , N − 1,

and thus we rewrite scheme (7) as

∂Un+1 − (v̂n+1
1 + v̂n1 )/2 = −(V n+

3/2 − 2V n+
1/2 + V n−

1/2)/4 =: RV
n+1/2,

∂V n+
1
2 + A (Un+

1/2 + Un−
1/2)/2 = fn + (Un+1 − 2Un + Un−1)/4 =: RU

n,
(10)

where the newly introduced aposteriori residuals satisfy RU
n = O(k2) = RV

n+1/2,
which makes (10) a second-order perturbation of (7). We compress notation fur-
ther by introducing second-level piecewise linear extension û2 :

[
t−1/2, tN−1/2

]
→

R of staggered time-grid nodal points (tn−1/2, û
n−1/2
1 ), n = 0, . . . , N , and v̂2 :

[0, tN−1] → R piecewise-linear interpolation of time-grid nodal points (tn, v̂
n
1 ),

n = 0, . . . , N − 1. This finally allows us to write the following system of Hilbert-
space-valued ODEs

(11) ∂tû1 − Iv̂2 = RV and ∂tv̂1 + A I1/2û2 = I1/2f +RU ,

where I and I1/2 are the piecewise constant mid-point interpolators, respectively,
on the time-grid and the staggered time-grid.

2.2. Time reconstructions.

(12)

ṽ(t) := V n−
1/2 +

∫ t

tn−1/2

[−A û2 + I1f +RU ] for tn−1/2 ≤ t ≤ tn+1/2,

ũ(t) := Un−1 +

∫ t

tn−1

[v̂2 +RV ] for tn−1 ≤ t ≤ tn,

where I1 is the piecewise linear interpolator with nodes on the staggered time-grid.
The functions ũ and ṽ are thus piecewise quadratic that coincide with U and V ,
respectively, on the time-grid and the staggered time-grid. Therefore the error
ũ−U and ṽ− V is just interpolation error, which is fully computable from U and
V , of third order in k because of the quadratic. To estimate the remaining errors
ẽu := ũ − u and ẽv := ṽ − v we subtract memberwise system (10) from (7) as to
obtain the error-residual partial differential relation system

(13)
∂tẽu − ẽv = ṽ − v̂2 − RV =: R2, and

∂tẽv + A ẽu = F ′−A [ũ− û2]− RU + F ′f − I1f =: R1 + Rf ,

where the residuals defined on the right-hand side are piecewise quadratic combi-
nations of computed quantities and therefore computable.
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2.3. Energy estimates. Introducing the following energy inner product

(14) 〈(φ0, φ1), (ψ0, ψ1)〉e := 〈φ0,A ψ0〉+ 〈φ1, ψ1〉 ,
and the corresponding norm ‖(φ0, φ1)‖e, enables us to obtain an energy estimate
for the error–residual relation (13) in the form

(15)
1

2

d

d t
‖(ẽu, ẽv)‖2e ≤ ‖(R,R1 + Rf )‖e ‖(ẽu, ẽv)‖e .

Manipulations lead to the main result.

2.4. Main result. Let u be the solution of (1), with the notation introduced
hitherto the following aposteriori error result holds

(16) sup
[0,T ]

‖(ẽu, ẽv)‖2e ≤ 2 ‖(ẽu(0), ẽv(0))‖2e + 4
(∫ T

0

‖(R2,R1 + Rf)‖e
)2
.
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Space-Time Isogeometric Analysis of Parabolic Diffusion Problems

Ulrich Langer

(joint work with S. Moore, M. Neumüller, I. Toulopoulos)

We present and analyze new stable single and multi-patch space-time Isogeometric
Analysis (IgA) schemes of the form,

(1) find uh ∈ V0h : ah(uh, vh) = ℓh(vh) ∀vh ∈ V0h,

for solving linear parabolic initial-boundary value problems like

(2) ∂tu−∆u = f in Q = Ω× (0, T )

with Dirichlet boundary conditions u = uD := 0 on Σ = ∂Ω × (0, T ) and initial
conditions u = u0 := 0 on Σ0 = Ω× {0}, and the spatial domain Ω ⊂ Rd.

The single-patch scheme was proposed and investigated in [3]. It was assumed

that the space-time cylinderQ = Φ(Q̂) is the image of one single parameter domain

Q̂ = (0, 1)d+1 via some IgA mapΦ, which has the formΦ(ξ) =
∑

i∈I
Piϕ̂i(ξ) with

the control points {Pi}i∈I
and the B-spline or NURBS basis functions {ϕ̂i}i∈I

.
This approach allowed us to include moving spatial domains Ω(t) yielding a fixed
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computational domain Q = {(x, t) ∈ R
d+1 : x ∈ Ω(t), t ∈ (0, T )} = Φ(Q̂) in the

space-time continuum Rd+1 by means of a suitable IgA map Φ.
In this paper, we assume that the space-time cylinder Q has a multi-patch

representation of the form Q = ∪Nn=1Qn that consists of N subcylinders (patches
or time slices) Qn = Ω × (tn−1, tn), n = 1, . . . , N , where 0 = t0 < t1 < . . . <
tN = T is some subdivision of the time interval [0, T ]. The time faces between
the time patches are denoted by Σn = Qn+1 ∩Qn = Ω×{tn}. We obviously have

ΣN = ΣT = Ω×{T }. Every time patch Qn = Φn(Q̂) in the physical domain Q can

be represented as the image of the parameter domain Q̂ by a sufficiently regular

IgA map Φn : Q̂→ Qn that is defined in the same way as in the single-patch case.
Now, we can construct the finite-dimensional IgA (B-Spline, NURBS etc.) space
V0h = {vh : vn = vh|Qn ∈ V0n, n = 1, . . . , N}, the functions of which are smooth
in each time patch Qn in correspondence to the smoothness of the splines, but in
general discontinuous across the time faces Σn, n = 1, . . . , N − 1. The smooth
IgA spaces V0n = V0hn = span{ϕn,i}i∈In are spanned by the IgA basis functions
{ϕn,i}i∈In that are nothing but the images of the basis functions {ϕ̂n,i}i∈In ,
which were already used for defining the patch Qn by the map Φn, i.e., ϕn,i =
ϕ̂n,i ◦Φ−1n . The basis functions ϕ1,i should vanish on Σ0 for all i ∈ I1. Therefore,
all functions vh from V0h fulfil homogeneous boundary and initial conditions. The
discretization parameter hn denotes the average mesh-size of the mesh induced

by the corresponding mesh in the parameter domain Q̂ via the map Φn. The
IgA technology of using the same basis functions for describing the patches of
the compuational domain (geometry) and for defining the approximation spaces
V0h was introduced by Hughes, Cottrell and Bazilevs in 2005. In order to derive a
consistent dG IgA scheme for defining an IgA solution uh ∈ V0h of (2), we multiply
the parabolic PDE (2) by a time-upwind test function of the form vn + θnhn∂tvn
with an arbitrary vn ∈ V0n and a positive, sufficently small constant θn, and
integrate over the space-time subcylinder Qn. Integrating by parts with respect
to (wrt) x, adding a consistent time-upwind term for stabilization, and summing
over all time patches, we finally arrive at the multi-patch space-time IgA scheme
(1) with the IgA bilinear form

ah(uh, vh) =
N∑

n=1

an(uh, vh) =
N∑

n=1

(∫

Qn

(∂tun(vn + θnhn∂tvn) +∇xun · ∇xvn

+ θnhn∇xun · ∇x∂tvn) dxdt+

∫

Σn−1

[|uh|] vn dx
)

and the linear form

lh(vh) =
N∑

n=1

ln(vh) =
N∑

n=1

∫

Qn

f(vn + θnhn∂tvn) dxdt.

where [|uh|] = un − un−1 on Σn−1 denotes the jump of uh across Σn−1. Here we
formally set [|u1|] on Σ0 to zero since we assumed homogeneous initial conditions.
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It is clear that this jump term can be used to include inhomogeneous initial con-
ditions in a weak sense. The single-patch scheme, studied in [3], is obviously a
special case of the multi-patch scheme setting N to 1.

It can be shown that the discrete bilinear form is elliptic on the IgA space V0h
wrt the mesh-dependent energy norm ‖v‖h defined by the relation

‖v‖2h =

N∑

n=1

(1
2
‖∇xv‖2L2(Qn)

+θn hn ‖∂tv‖2L2(Qn)
+
1

2
‖ [|v|] ‖2L2(Σn−1)

)
+
1

2
‖v‖2L2(ΣN ).

This property together with a corresponding boundedness property, consistency
and approximation results for the IgA spaces yields the a priori discretization error
estimates

(3) ‖u− uh‖h ≤ (1 +
µb
µe

)

N∑

n=1

cnh
rn−1
n ‖u‖Hrn(Qn)

provided that the θn are appropriately chosen, where µe is the V0h-ellipticity con-
stant that is here equal to 1, µb is the V0h-boundedness constant, cn denote generic
constants, rn = min{sn, pn + 1}, pn denotes the underlying polynomial degree of
the B-splines or NURBS used in patch Qn, and sn is defined by the regularity of
the solution u in the patch Qn, with n = 1, . . . , N . More precisely, we assume that
u|Qn ∈ Hsn(Qn). The proof of the discretization error estimate (3) can be found
in [3] and [4] for the single- and multi-patch cases, respectively.

In practical computations, we have to generate and to solve one huge system
of linear algebraic equations Lhuh = fh for determining all space-time degrees of
freedoms all at once. Fast generation techniques, fast solvers, adaptivity, and par-
allelization are the tools for making the space-time IgA technology really efficient,
in particular, if massively parallel computers with thousends of cores are available.

If the IgA map Φn : Q̂ → Qn preserves the tensor product structure of the IgA
basis functions ϕn,i = ϕ̂n,i◦Φ−1n , then the system matrix Lh can be generated very
efficiently, and one can construct fast time and space parallel multigrid precondi-
tioned GMRES solvers, cf. also [1], like the numerical results presented in Table 2
show. We solved the IBVP (2) in the unit hypercube Q = (0, 1)3+1 with a manu-
factured right-hand side f such that u(x, t) = sin(πx1)sin(πx2)sin(πx3)sin(πt)
is the exact solution of (2). We here only used the lowest order splines of the
degree p = 1 for discretization in space and time. The detailed description of
the tensor product representation of the matrix and the solver as well as a more
extensive discussion of the numerical results can be found in [4]. In more general
cases of diffusion coefficients depending on x and t or moving spatial domains, low
rank tensor methods proposed in [5] can be used to accelerate the generation and
the solution of Lhuh = fh. Functional a posteriori error estimates in connections
with efficient methods for the global minimization of the majorant on significantly
coarser, but higher-order IgA spaces of highest smoothness, and the use of THB
splines lead to very efficient adaptive IgA procedures, see [2].

This research work has been supported by the Austrian Science Fund (FWF)
under the grant NFN S117-03.
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N dofs/slice dofs L2 error eoc iter cx ct cores time [s]
1 1125 1125 1.8815E-02 - 1 8 1 8 0.00
2 6561 13122 4.8619E-03 1.95 10 8 1 8 0.06
4 44217 176868 1.2294E-03 1.98 12 8 4 32 0.30
8 323433 2587464 3.0834E-04 2.00 14 8 8 64 3.40

16 2471625 39546000 7.7092E-05 2.00 15 8 16 128 47.38
32 19320201 618246432 1.9262E-05 2.00 16 32 32 1024 159.20

Table 2. Numerical results for pn = 1: N - number of time
slices (patches); dofs/slice = (2l + 1) × (2l + 1) × (2l + 1) × 9,
l = 2, 3, 4, 5, 6, 7; dofs = total number of unknows = N ×
dofs/slice; eoc = experimental convergence rate wrt the L2(Q)
norm; iter = number of iterations; cx / ct = number of cores for
the parallelization in space / time; cores = total number of cores
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Compressive space-time Galerkin discretizations of parabolic partial
differential equations

Stig Larsson

(joint work with Christoph Schwab)

We consider the parabolic initial-boundary value problem

u̇+Au = f in R+ = (0,∞) ,

u(0) = 0 .

The linear operator A, with corresponding bilinear form a(·, ·), is assumed to have
the usual boundedness and coercivity properties with respect to a Gelfand triple
V ⊂ H ≃ H∗ ⊂ V ∗.
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A natural variational formulation of this problem, now on a finite time interval
(0, T ), is: Find u ∈ X := L2((0, T );V ) ∩H1((0, T );V ∗) such that

∫ T

0

(
V ∗〈u̇(t), y(t)〉V + a(u(t), y(t))

)
dt =

∫ T

0
V ∗〈f(t), y(t)〉V dt.

for all y ∈ Y := L2((0, T );V ). It is also possible to integrate by parts in time to
get another variational formulation, where the roles of the trial and test spaces
are interchanged. In either case, the Banach–Nečas–Babuska inf-sup theorem is
applicable to obtain well-posedness with respect to the corresponding spaces. This
was used in [7, 2] together with the adaptive wavelet methodology by Dahmen,
Cohen, and Devore to obtain adaptive algorithms with optimal complexity. We
remark that, in either formulation, this approach requires the normalization of
Riesz bases in the dual space V ∗, which is difficult.

In the present work we use a variational formulation based on time derivatives
of order one half. This was developed by M. Fontes in [3, 4, 5], although it had
been used earlier in [1]. We now use the spaces

X = H
1
2

00,{0}(R+;H) ∩ L2(R+;V ) ≃
(
H

1
2

00,{0}(R+)⊗H
)
∩
(
L2(R+)⊗ V

)
,

Y = H
1
2 (R+;H) ∩ L2(R+;V ) ≃

(
H

1
2 (R+)⊗H

)
∩
(
L2(R+)⊗ V

)
.

We also use the Riemann–Liouville fractional order derivatives D
1
2

+ and D
1
2

−. The
variational problem is to find u ∈ X such that

∫

R+

(
(D

1
2

+u,D
1
2

−v)H + a(u, v)
)
dt =

∫

R+

V ∗〈f, v〉V dt

for all v ∈ Y .
This problem satisfies the Banach–Nečas–Babuska inf-sup theorem. One ad-

vantage over the other formulations mentioned above is that the trial and test
spaces are almost the same and, in particular, that the dual space V ∗ is not used.
Hence, the adaptive wavelet approach is easier to apply. Another advantage is
that the method of proof suggests a way to construct stable trial and test spaces
based on tensorized wavlets or piecewise polynomials to be used in a non-adaptive
Galerkin approximation. This is reported in [6].
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Discrete maximal parabolic regularity for Galerkin finite element
methods and the fully discrete best approximation results

Dmitriy Leykekhman

(joint work with Boris Vexler)

Let Ω be a Lipschitz domain in Rd, d = 2, 3 and I = (0, T ). As a model of a
parabolic second order partial differential equation we consider the heat equation,

(1)

∂tu(t, x)−∆u(t, x) = f(t, x), (t, x) ∈ I × Ω,

u(t, x) = 0, (t, x) ∈ I × ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

with a right-hand side f ∈ Ls(I;Lp(Ω)) for some 1 ≤ p, s ≤ ∞ and u0 ∈ Lp(Ω),
1 ≤ p ≤ ∞.

The maximal parabolic regularity for u0 ≡ 0 says that for f ∈ Ls(I;Lp(Ω))
there exists a constant C such that,

‖∂tu‖Ls(I;Lp(Ω)) + ‖∆u‖Ls(I;Lp(Ω)) ≤ C ‖f‖Ls(I;Lp(Ω)), 1 < p, s <∞.

The maximal parabolic regularity is an important analytical tool and has a number
of applications, especially to nonlinear problems and in general to problems when
sharp regularity results are required.

We investigate maximal parabolic regularity for a family of time discontinuous
Galerkin (dG) methods. To introduce the time discontinuous Galerkin discretiza-
tion for the problem, we partition I = (0, T ) into subintervals Im = (tm−1, tm] of
length km = tm − tm−1, where 0 = t0 < t1 < · · · < tM−1 < tM = T . The maxi-
mal and minimal time steps are denoted by k = maxm km and kmin = minm km,
respectively. We impose the following conditions on the time mesh:

(1) There are constants c, β > 0 independent on k such that

kmin ≥ ckβ.

(2) There is a constant κ > 0 independent on k such that for all m =
1, 2, . . . ,M − 1

κ−1 ≤ km
km+1

≤ κ.

(3) It holds k ≤ 1
4T .

The semidiscrete space Xq
k of piecewise polynomial functions in time is defined

by

Xq
k = {uk ∈ L2(I;H1

0 (Ω)) : uk|Im ∈ Pq(H
1
0 (Ω)), m = 1, 2, . . . ,M},
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where Pq(V ) is the space of polynomial functions of degree q in time with values
in a Banach space V . We will employ the following notation for functions in Xq

k

(2) u+m = lim
ε→0+

u(tm + ε), u−m = lim
ε→0+

u(tm − ε), [u]m = u+m − u−m.

Next we define the following bilinear form
(3)

B(u, ϕ) =

M∑

m=1

〈∂tu, ϕ〉Im×Ω + (∇u,∇ϕ)I×Ω +

M∑

m=2

([u]m−1, ϕ
+
m−1)Ω + (u+0 , ϕ

+
0 )Ω,

where (·, ·)Ω and (·, ·)Im×Ω are the usual L2 space and space-time inner-products,
〈·, ·〉Im×Ω is the duality product between L2(Im;H−1(Ω)) and L2(Im;H1

0 (Ω)). We
note, that the first sum vanishes for u ∈ X0

k . The dG(q) semidiscrete (in time)
approximation uk ∈ Xq

k of (1) is defined as

(4) B(uk, ϕk) = (f, ϕk)I×Ω + (u0, ϕ
+
k,0)Ω for all ϕk ∈ Xq

k .

There is a number of important properties making the dG schemes attractive
for temporal discretization of parabolic equations. For example, such schemes
allow for a priori error estimates of optimal order with respect to the regularity
requirements for the solution, different systematic approaches for a posteriori er-
ror estimation and adaptivity developed for finite element discretizations can be
adapted for dG temporal discretization of parabolic equations, an efficient and
easy to implement approach that avoids complex coefficients, which arise in the
equations obtained by a direct decoupling for high order dG schemes were devel-
oped recently, for the treatment of optimal control problems, Galerkin methods
are particularly suitable since they have an important property that the two ap-
proaches optimize-then-discretize and discretize-then-optimize approaches lead to
the same discretization scheme.

In [1], we established the corresponding discrete maximal parabolic regularity,
i.e., when u0 = 0,

(5) ‖∆uk‖Ls(I;Lp(Ω)) +

(
M∑

m=1

km

∥∥∥∥
[uk]m−1
km

∥∥∥∥
s

Lp(Ω)

) 1
s

≤ C ln
T

k
‖f‖Ls(I;Lp(Ω)),

for 1 ≤ s ≤ ∞ and 1 ≤ p ≤ ∞, with obvious notation changes in the case of
s = ∞. In the case of the lowest order piecewise constant method, i.e., q = 0, the
first terms on the left-hand sides of the above estimates vanish. We would like to
point out that in the discrete setting the critical values of s and p, i.e. s = 1,∞
and p = 1,∞ are allowed, which explains the logarithm. The fully discrete analog
of (5) also holds.

Similarly to the continuous case, the above discrete maximal parabolic regular-
ity result has a number of applications. Thus, for the fully discrete approximation
of the equation (1) assuming that the domain Ω is a polygonal/polyhedral convex
domain we can establish best approximation property of the fully discrete solution
in L∞(Ω× I) norm.
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Let h ∈ (0, h0]; h0 > 0, and T denote a quasi-uniform triangulation of Ω with
mesh size h, i.e., T = {τ} is a partition of Ω into cells (triangles or tetrahedrons)
τ of diameter hτ such that for h = maxτ hτ ,

diam(τ) ≤ h ≤ C|τ | 1d , ∀τ ∈ T , d = 2, 3,

hold. Let Vh be the set of all functions in H1
0 (Ω) that are polynomials of degree r

on each τ , i.e., Vh is the usual space of conforming finite elements. To obtain the
fully discrete approximation we consider the space-time finite element space

(6) Xq,r
k,h = {vkh : vkh|Im ∈ Pq(Vh), m = 1, 2, . . . ,M, q ≥ 0, r ≥ 1}.

We define a fully discrete analog ukh ∈ Xq,r
k,h of uk introduced in (4) by

(7) B(ukh, ϕkh) = (f, ϕkh)I×Ω + (u0, ϕ
+
kh)Ω for all ϕkh ∈ Xq,r

k,h.

The fully discrete maximal parabolic regularity results can be used to show best
approximation property of cG(r)dG(q) Galerkin solution in L∞(I × Ω) norm [2].

Theorem (Global best approximation)
Let u and ukh satisfy (1) and (7) respectively. Then, there exists a constant C
independent of k and h such that

‖u− ukh‖L∞(I×Ω) ≤ C ln
T

k
| lnh| inf

χ∈Xq,r
k,h

‖u− χ‖L∞(I×Ω).

For the error at the point x0 we can obtain a sharper result, that shows more
localized behavior of the error at a fixed point. For elliptic problems similar results
were obtained in the work of Schatz and Wahlbin. Let Bd = Bd(x0) be the ball
of radius d centered at x0.

Theorem (Interior best approximation)
Let u and ukh satisfy (1) and (7), respectively and let d > 4h. Let t̃ ∈ Im with
somem ∈ {1, 2, . . . ,M} and Bd ⊂⊂ Ω, then there exists a constant C independent
of h, k, and d such that

|(u− ukh)(t̃, x0)| ≤ C ln
T

k
| lnh| inf

χ∈Xq,r
k,h

{
‖u− χ‖L∞((0,tm)×Bd(x0))

+ d−
N
2

(
‖u− χ‖L∞((0,tm);L2(Ω)) + h‖∇(u− χ)‖L∞((0,tm);L2(Ω))

)}
.

We would like to point out that the above results do not require any relationship
between the space mesh size h and time steps k. This is important for example
for problems on graded meshes.

Such error estimates in the form of the best approximation results for three
dimensional problems are new are can be used for problems where regularity of
the problem is low, for example for state contstained optimal control problems.
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Time or space adaptivity for exterior wave problems with gCQ

Maŕıa López-Fernández

The application of Lubich’s Convolution Quadrature (CQ) for the time discretiza-
tion of exterior wave problems formulated as boundary integral equations is nowa-
days well understood [1, 2, 3]. The CQ method is however restricted by construc-
tion to use uniform time steps. More recently this limitation of the CQ method
has been overcome and the so-called generalized Convolution Quadrature (gCQ)
method has been developed [5, 6, 8], which allows to use a non uniform sequence
of time steps. The gCQ method actually decouples time and space integration,
allowing in principle to change the spatial grid from one time step to the next one
[9] and also to use a quite general sequence of time points.

Once the use of nonuniform time grids is possible, the next step is the devel-
opment of an adaptive scheme and thus of some mechanism to control the error.
We address two possible strategies which are based on the a priori error estimates
proven in [5] and [8]. We have tested the performance of the new methods with
a scalar model problem arising from the resolution of the wave problem outside a
sphere.

The class of problems under consideration can be very generally described as
follows: Let B and D denote some normed vector spaces and let L (B,D) be the
space of continuous, linear mappings. As a norm in L (B,D) we take the usual
operator norm

‖F‖D←B := sup
u∈B\{0}

‖Fu‖D
‖u‖B

.

For given φ : R≥0 → B, we consider the evaluation of the time convolution

(1) c(t) =

∫ t

0

k (t− τ)φ (τ) dτ in D for all t ∈ [0, T ] ,

where the kernel operator

k : [0,∞) → L (B,D) ,

is defined as the inverse Laplace transform of a given transfer operator K. For
σ ∈ R we introduce

Cσ = {z ∈ C | Re z > σ}
and assume that K : CσK → L (B,D), for some σK ∈ R, and that K is analytic
in CσK . We also assume that there exists µ ∈ R such that, for any σ > σK , there
is a constant C(σ) satisfying

(2) ‖K (z)‖D←B ≤ C(σ) (1 + |z|)µ , ∀z ∈ Cσ.
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For j ∈ Z, we define

(3) Kj (z) := z−jK (z)

and

Cj0 ([0, T ] , B) :=
{
ψ ∈ Cj ([0, T ] , B) | ∀ 0 ≤ r ≤ j − 1 : ψ(r) (0) = 0

}
.

Then (1) is well-defined for any φ ∈ Cν0 ([0, T ] , B), with ν = ⌈µ + 1⌉. Further-
more, by using the inverse Laplace transformation, the original problem (1) can
be rewritten as

(4) c(t) =
1

2π i

∫

σ+iR

Kν(z)uν (z, t) dz

with uν the solution of the IVP

(5) ∂tuν(z, t) = zuν(z, t) + ∂νt φ(t) ; uν(z, 0) = 0.

The gCQ method is derived from (4). More precisely, given a sequence of time
points 0 < t1 < · · · < tN = T , and a A-stable method for the approximation of
the IVP (5), the gCQ approximates (1) at tn, n = 1, . . . , N , by

(6) c(tn) ≈ c(tn) :=
1

2π i

∫

σ+iR

Kν(z)uν,n (z)

where uν,n (z) ≈ uν (z, t) is computed by the solver of choice for (5). Possible
methods for the underlying ODEs are the implicit Euler method and the Runge–
Kutta methods of the RadauIIA and Lobatto IIIC types. The line-contour σ+ iR
in (6) is then deformed into a circle Γ in the right-half of the complex plane,
enclosing the poles of uν,n (z), and a special quadrature formula following [7] is
applied. This finally leads to the approximation

(7) c(tn) ≈ cn =

NQ∑

ℓ=1

wℓKν(zℓ)uν,n (zℓ) ,

for certain quadrature nodes zℓ and weights wℓ.
The error analysis in [5] and [8] shows that if q is the stage order of the underly-

ing Runge–Kutta method and φ ∈ Cq+1
0 ([0, T ], B) then (6) is actually well-defined

for the smaller regularization parameter ν = ⌈µ− q⌉. In particular, for ν = 0 the
following a priori estimate of the global error holds

(8) ‖c(tn)− cn‖D ≤ CeσT ‖φ‖Cp+1([0,T ],B)∆t
min{p,q−µ}
max ,

where p denotes the classical order of the Runge–Kutta solver.
Two observations now follow:

1. All ODE methods considered so far to define the gCQ are collocation meth-
ods. Thus they naturally provide a continuous approximation to the convolution,
namely

(9) c(t) ≈ c(t) :=
1

2π i

∫

Γ

K(z)pn(z, t) dz, t ∈ [tn−1, tn),
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where pn(z, t) denotes the collocation polynomial associated to the ODE method
for the interval [tn−1, tn).

2. In the applications to wave problems it is typically µ > 0 in (2) and thus the
convergence of the Runge–Kutta based gCQ is determined by the stage order q
rather than the classical order p of the Runge–Kutta method.

The first observation leads naturally to an estimate of the error based on the
comparison between c(tn−1 + θ(∆t)n) and c̃(tn−1 + θ(∆t)n), for some θ ∈ (0, 1),
with c̃ defined as in (9) but with pn replaced by a lower/higher order interpolant of
the numerical solution un,ν(z). For the gCQ based on the implicit Euler method
this leads to compare the piecewise constant interpolant with the piecewise linear
interpolant of the numerical values cn at some intermediate point tn−1 + θ(∆t)n,
for instance the middle point tn− 1

2
of the n-th time-interval. Numerical results for

the gCQ of the first order implemented with this approach were found satisfactory.
For higher order versions of the gCQ this approach has not been properly tested
yet but preliminary numerical results were not promising. Further analysis and
testing is required.

The second observation suggests to use two different gCQ approximations to
advance the solution from cn−1 to cn, based on two different Runge–Kutta methods
of stage order q and q − 1, respectively. As an example, we choose the pair based
on the RadauIIA methods of classical order 3 and 5, for which it is q = 3. The
difference between the two approximations at tn can be used to estimate the local
error, which is assumed to behave like O(∆q+1−µ

n ), according to the estimate (8).
This procedure is very similar to what is typically done to control the steps in
the approximation of ODEs [4], but it is expensive due to the lack of embedded
formulas. Good numerical results are obtained by following this approach up to
relatively short times T . As T increases the step controller forces to integrate
with a quasi uniform (minimal) step. Further understanding of this phenomenon,
which might be related with the dissipation introduced by the underlying A-stable
method, is required and remedies need to be devised, analyzed and tested.
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Space–time Trefftz discontinuous Galerkin methods for wave problems

Andrea Moiola

(joint work with Ilaria Perugia)

When solving a linear initial or boundary value problem with a standard finite
element or discontinuous Galerkin method, one approximates the solution with a
discrete function picked from a finite-dimensional linear space of piecewise polyno-
mials. If the equation is homogeneous, i.e. no volume source term is present but the
forcing is due to the initial and boundary conditions, then similar accuracy might
be obtained using, on each mesh element, a much smaller discrete space formed
by particular solutions of the PDE under consideration. This is the essential idea
of Trefftz methods, named after the work [13] of Erich Trefftz in 1926.

For example, when approximating the homogeneous Laplace equation, one can
use a discrete space of piecewise harmonic polynomials of a given maximal degree,
as opposed to the full space of polynomials of the same degree [6]. Trefftz meth-
ods have been extensively studied in the case of linear (acoustic, electromagnetic
and elastic) waves in time-harmonic regime; we refer to [5] for a survey of the
scalar case modelled by the Helmholtz equation −∆u − k2u = 0, where k > 0 is
the wavenumber. In time-harmonic problems, no polynomial Trefftz spaces are
possible: typical basis functions are plane and circular waves.

Much less work has been devoted to Trefftz methods for time-domain partial
differential equations. The first results on space–time Trefftz methods for wave
problems are due to Macia̧g and coworkers, e.g. [9], followed more recently by few
works on the scalar wave equation [1, 12, 14] and on Maxwell equations [3, 4, 7, 8].

Following [10], we present the error analysis of a space–time Trefftz discontin-
uous Galerkin (DG) scheme for the first-order acoustic wave equation:

∇v + ∂tσ = 0 in Ω× (0, T ),

∇ · σ + c−2∂tv = 0 in Ω× (0, T ),

v(·, 0) = v0, σ(·, 0) = σ0 on Ω,

v = g, on ∂Ω× (0, T ),

where Ω is a bounded, Lipschitz, open set in Rn, T > 0, n ∈ N, the wave speed c
is positive, piecewise-constant and independent of time t, and v0,σ0 and g are the
problem data. Neumann and Robin boundary conditions can also be considered.
Given a solution U of the second-order scalar wave equation ∆U − c−2∂2tU = 0,
its derivatives (v,σ) = (∂tU,−∇U) satisfy the first-order system.

The proposed Trefftz-DG scheme is posed on an unstructured polytopic mesh
partitioning the space–time cylinder Ω × (0, T ) and is determined by the choice
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of upwind numerical fluxes on space-like mesh interfaces and penalised centred
fluxes on the time-like ones. Since trial and test fields are taken to be elementwise
solutions of the first-order wave equation, the variational formulation of the Trefftz-
DG scheme is written in terms of integrals on the element faces only. The discrete
solution can either be found by solving a linear system coupling all elements in the
space–time cylinder, or as an implicit time-stepping method if the elements can
be collected in time-slabs, or as an explicit method if the mesh constructed with
the tent-pitching algorithm of e.g. [11].

We show that the scheme is well-posed, stable and quasi-optimal in a suitable
mesh-dependent norm, for any choice of the discrete Trefftz space. Using a special
duality technique we prove a priori error bounds in space–time mesh-independent
Sobolev norms, under some further conditions on the problem and the mesh.

The simplest discrete Trefftz space can be defined as the space of fields that
restricted to each mesh element are degree-p polynomial solutions of the first-order
wave equation. Simple bases for this space can be constructed. For this discrete
space we prove high orders of convergence in the meshwidth h. The Trefftz space
has the same approximation properties of the full polynomial space of the same
degree but much smaller dimension: this leads to faster convergence in the number
of degrees of freedom. Convergence orders in p are proved in one space dimension.

The method can be extended to Maxwell equations [7] and to a class of sym-
metric hyperbolic first-order systems with piecewise-constant coefficients.

Formally, the Trefftz-DG scheme can be written similarly to the ultra weak
variational formulation of [2] as the operator equation (I − F ∗Π)u = f on a
suitable trace space, where I is the identity, F is an isometry defined in terms of
local initial boundary value problems and Π is a trace-flipping operator.

For more details on the Trefftz-DG method and its analysis we refer to [10].
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Space-time multigrid methods for parabolic optimal control problems

Martin Neumüller

We present a new space-time multigrid method for solving an optimal control
problem of the following form: We want to minimize the functional

J (y, u) :=
1

2
||y − y||2L2(Q) +

λ

2
||u||2L2(Q)(1)

under the constraint

(2)

∂ty(x, t)−∆y(x, t) = u(x, t) for (x, t) ∈ Q := Ω× (0, T ),

y(x, t) = 0 for (x, t) ∈ Σ := ∂Ω× (0, T ),

y(x, 0) = y0(x) for (x, t) ∈ Σ0 := Ω× {0}.
Here Ω ⊂ Rd, d = 1, 2, 3 is a bounded domain with Lipschitz boundary ∂Ω, T > 0
is some given simulation time and y0 ∈ L2(Ω) is some given initial datum. We want
to reach some desired state y ∈ L2(Q) by using a distributed control u ∈ L2(Q).
The cost of the control u is scaled by some given cost coefficient λ > 0. For the
problem (1)–(2) we obtain the following optimality system in strong form (see also
[9]):

(3)

∂ty(x, t)−∆y(x, t) = − 1

λ
p(x, t) for (x, t) ∈ Q,

y(x, t) = 0 for (x, t) ∈ Σ,

y(x, 0) = y0(x) for (x, t) ∈ Σ0,

−∂tp(x, t)−∆p(x, t) = y(x, t)− y(x, t) for (x, t) ∈ Q,

p(x, t) = 0 for (x, t) ∈ Σ,

p(x, T ) = 0 for (x, t) ∈ ΣT := Ω× {T }.
Note that we eliminated the control u ∈ L2(Q) by using the optimality condition
p+ λu = 0. Moreover we note that the optimality system (3) is a coupled system
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of parabolic boundary value problems, where the adjoint problem is a backward
problem. So we have to solve the problem (3) in the whole space-time domain
Q. This motivates to use space-time methods, i.e. all at once methods in space
and time, see for example [7, 8, 6]. Combining such methods with parallel solvers
with respect to space and time result in very fast and efficient solvers for time
dependent parabolic problems, see [3, 4] and their references therein. Here we will
use space-time discretization schemes based on tensor product space-time finite
elements. In detail we will combine a standard finite element approach in space
with a dG-time stepping scheme with respect to time (forward and backward).
For a scalar ODE like

∂ty(t) + y(t) = f(t), for t ∈ (0, T ) and y(0) = y0,

the dG-time stepping scheme for one time interval τk := (tk−1, tk) reads: Find
yk ∈ P

pt(tk−1, tk), such that

(4)

−
∫ tk

tk−1

yk ∂tvkdt+ yk(tk)vk(tk) +

∫ tk

tk−1

yk vkdt

=

∫ tk

tk−1

f vkdt+ yk−1(tk−1)vk(tk−1),

for all vk ∈ Ppt(tk−1, tk). Using a basis representation for the space Ppt(tk−1, tk)
results in the equivalent linear system

[Kτ +Mτk ] yk = f
k
+Nτyk−1.(5)

Note that the matrices Kτ and Nτ do not depend on the time step size |τk| :=
tk−1 − tk, which we indicate with the index τ only. Similar we obtain for the
backward problem

−∂tp(t) + p(t) = f(t), for t ∈ (0, T ) and p(T ) = pN ,

the dG-time stepping scheme: Find pk ∈ Ppt(tk−1, tk), such that

(6)

∫ tk

tk−1

pk ∂tvkdt+ pk(tk−1)vk(tk−1) +

∫ tk

tk−1

pk vkdt

=

∫ tk

tk−1

f vkdt+ pk+1(tk)vk(tk),

for all vk ∈ P
pt(tk−1, tk). Using the same basis representation as for the forward

problem (4) the variational problem (6) results in the linear system
[
K⊤τ +Mτk

]
p
k
= f

k
+N⊤τ pk+1

.(7)

Using a standard finite element approach in space and the above dG-time stepping
schemes for the forward and backward problem results for the time interval τk =
(tk−1, tk) in the following linear system

(8)
(

1
λMh ⊗Mτk Mh ⊗Kτ +Kh ⊗Mτk

Mh ⊗K⊤τ +Kh ⊗Mτk −Mh ⊗Mτk

)(
p
k
y
k

)
=

(
Mh ⊗Nτyk−1

Mh ⊗N⊤τ pk+1
+ g

k

)
,
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where the vector g
k
corresponds to the functional induced by the negative value

of the desired state y ∈ L2(Q). Moreover Kh is the usual stiffness matrix and Mh

is the standard mass matrix with respect to the computational domain Ω. The
linear system (8) is coupled via the right hand side with the unknown value y

k−1

coming from the past and the value p
k+1

coming from the future. Hence we have

to combine all equations for each time steps together into one big linear system
and we obtain

(9)




Aτ1,h B⊤τ,h
Bτ,h Aτ2,h B⊤τ,h

Bτ,h Aτ3,h
. . .

. . .
. . . B⊤τ,h
Bτ,h AτN ,h







x1
x2
x3
...
xN




=




f
1
f
2
f
3
...
f
N



,

with the matrices and vectors

Aτk,h :=

(
1
λMh ⊗Mτk Mh ⊗Kτ +Kh ⊗Mτk

Mh ⊗K⊤τ +Kh ⊗Mτk −Mh ⊗Mτk

)
,

Bτ,h :=

(
0 −Mh ⊗Nτ
0 0

)
,

xk :=

(
p
k
y
k

)
, f

k
:=

(
0
g
k

)
.

We will solve the linear system (9), in short Lt,hx = f , by applying the multigrid
method in time and space. Which will result in a method which is fully parallel
in space and time. Other multigrid methods for such optimality systems can be
found for example in [5, 2, 1]. To obtain a parallel method with respect to time we
will use an additive smoothing procedure, i.e. an (inexact) damped block Jacobi
scheme given by

x(n+1) = x(n) + ωtD
−1
τ,h

[
f − Lt,hx

(n)
]

for n = 0, 1, . . . ,(10)

where Dτ,h := diag{Aτk,h}Nk=1 is the block diagonal matrix of Lτ,h. Since the
exact inversion of Dτ,h is in general costly we approximate the exact inverse by
one multigrid V-cycle with respect to space, where we use a geometric tensor
product multigrid method or an algebraic multigrid method, which can be also
be applied in parallel. For the coarsening in space and time we consider the two
following strategies:

• Coarsening in time only, i.e. we combine two time steps together into one
time step.

• Coarsening in space and time, i.e. standard coarsening in space combined
with the above coarsening in time.

Applying the local Fourier mode analysis to the two-grid operators obtained by
the smoothing iteration (10) in combination with the two coarsening strategies
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cost coefficient log(λ)
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

sp
a
ce

le
v
el
s

0 10 10 9 9 9 9 9 9 9 9 9 9 9
1 10 10 10 10 10 9 9 9 9 9 9 9 9
2 10 10 10 10 10 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10 10 10 10 10 10
4 10 10 10 10 10 10 10 10 10 10 10 10 10
5 11 11 11 10 10 10 10 10 10 10 10 10 10
6 11 11 10 10 10 10 10 10 10 10 10 10 10
7 11 11 10 10 10 10 10 10 10 10 10 10 10
8 11 10 10 10 10 10 10 10 10 10 10 10 10

Table 3. Space-time multigrid iterations for Example 1.

above with respect to the discretization parameter µ := τ
h2 and the cost coefficient

λ results in small two-grid contraction numbers (≪ 1) in the following cases:

• Coarsening in time only: for any µ > 0, any λ > 0 and any pt ∈ N0.
• Coarsening in space and time: for µ ≥ µ∗ ≈ 1, any λ > 0 and any pt ∈ N0.

With this knowledge we define the space-time coarsening in the multilevel setting
based on the discretization parameter µ = τ

h2 similar as in the work [4]. Hence we
have all ingredients to test this method in the following examples.

Example 1. In this example we test the robustness of the proposed method
with respect to the cost coefficient and the discretization with respect to space.
To do so we consider the domain Ω = (0, 1)2 discretized with piecewise linear
elements based on a triangular subdivision. Moreover we set T = 1 and use a time
discretization with N = 256 uniform time steps and set pt = 1. For the geometric
tensor product multigrid method with respect to space we use a damped Jacobi
scheme with a damping ωx = 2

3 and two pre- and post-smoothing steps. For
the time multigrid settings we use also two pre- and post-smoothing steps with
ωt =

1
2 . For a zero right hand side f = 0 and a random initial guess x(0) with

values between zero and one we apply the proposed space-time multigrid method
until we reach a relative residual error reduction of ε = 10−8. In Table 3 we show
the used iteration numbers for different refinement levels in space and different
cost coefficients λ from 10−6 to 106. We observe that the proposed method results
in small and robust iteration numbers.

Example 2. In this example we test the parallel performance of the proposed
method with respect to space and time. For the space solver we use a parallel alge-
braic multigrid method coming from the hypre-package. For the problem in space
we consider the three-dimensional domain Ω = (0, 1)3 decomposed into 262 144
tetrahedra which are equipped with piecewise linear functions for the approxima-
tion. For the discretization with respect to time we use 512 time steps with a
uniform time step size of τ = 10−2 and use pt = 0. We use a fixed cost coefficient
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processors space
4 8 16 32 64 128 256 512

p
ro
ce
ss
o
rs

ti
m
e

4 − 20 057.5 12 666.6 6 490.8 3 633.4 2 010.4 1 569.1 1 083.3
8 18 834.6 10 030.7 6 519.3 3 354.0 1 828.4 1 011.4 796.3 553.9

16 9 439.4 5 037.7 3 216.7 1 719.3 921.6 510.4 410.4 291.0
32 4 740.3 2 529.4 1 601.4 868.6 466.2 261.0 217.7 160.8
64 2 388.7 1 279.3 828.6 442.7 239.5 136.3 122.6 90.7

128 1 213.2 653.3 425.5 228.2 117.9 68.2 71.4 62.4
256 627.1 341.5 219.2 121.9 69.6 40.4 50.3 48.9
512 327.9 183.8 119.8 70.5 41.7 27.5 41.4 -

Table 4. Solving times in [s] for Example 2.

of λ = 10−2 and for the time multigrid we use the same settings as in Exam-
ple 1. This results in a problem with 549 250 unknowns in space and 281 216 000
unknowns overall. In Table 4 we solved always the same problem with different
numbers of processors in space and time. We observe that in the most cases it is
better to use all the processors available for the time parallelization. The reason
for this can be explained by the fact that the communication with respect to time
is much simpler than the communication with respect to space, since we only have
to communicate forward and backward in time. Moreover we see excellent strong
scalings with respect to the time parallelization and also with respect to space
when the problem size per core is large enough. At the end we can solve the huge
linear system in 27.5 seconds by using 128 processors in space and 512 processors
in time, i.e. overall we use 65 536 cores.
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A PDE approach to space–time fractional parabolic problems

Enrique Otárola

We consider the numerical approximation of an initial boundary value problem
for a space–time fractional parabolic equation. Let Ω ⊂ Rd be a bounded domain
with Lipschitz boundary. Given s ∈ (0, 1), γ ∈ (0, 1], a forcing function f , and an
initial datum u0, the parabolic problem reads as follows: find u such that

(1) ∂γt u+ L su = f in Ω× (0, T ), u(0) = u0 in Ω, u = 0 on ∂Ω× (0, T ).

The second order elliptic operator L is defined by

Lw = −divx′(A∇x′w) + cw,

where 0 ≤ c ∈ L∞(Ω) and A ∈ C0,1(Ω,GL(d,R)) is symmetric and positive def-
inite; L is supplemented with homogeneous Dirichlet boundary conditions. The
fractional powers of the operator L are defined on the basis of spectral theory.
The latter yields the existence of a countable collection of eigenpairs {ϕk, λk}k∈N
such that Lϕk = λkϕk in Ω and ϕk = 0 on ∂Ω. The eigenfunctions {ϕk}k∈N form
an orthonormal basis in L2(Ω). We thus define the fractional powers of L by

L sw :=

∞∑

k=1

λskwkϕk, w ∈ C∞0 (Ω), wk =

∫

Ω

wϕkdx
′, s ∈ (0, 1).

By density this definition can be extended to Hs(Ω) = [L2(Ω), H1
0 (Ω)]s [NOS15].

For s ∈ (0, 1) we denote by H−s(Ω) the dual space of Hs(Ω).
The fractional derivative ∂γt for γ ∈ (0, 1) is understood as the left-sided Caputo

fractional derivative of order γ with respect to t, which is defined by [SKM93]

(2) ∂γt u(x
′, t) :=

1

Γ(1− γ)

∫ t

0

1

(t− r)γ
∂u(x′, r)

∂r
dr,

where Γ is the Gamma function. For γ = 1, we consider the usual derivative ∂t.
One of the main difficulties in the study of problem (1) is the nonlocality of

the fractional time derivative and the fractional space operator [CS07, SKM93].
A possible approach to overcome the nonlocality in space is given by the semi-
nal result of Caffarelli and Silvestre in Rd [CS07] and its extensions to bounded
domains. Set α = 1− 2s, C = Ω× (0,∞) and consider the elliptic equation:

(3) L U − α

y
∂yU − ∂yyU = 0 in C , U = 0 on ∂LC , ∂αν U = dsf on Ω× {0},

where ∂LC = ∂Ω × (0,∞), ∂ναU = − limy↓0 y
α∂yU , and ds = 2αΓ(1 − s)/Γ(s).

The localization result of [CS07] yields that u = trΩ U = U (·, 0) solves
(4) L su = f in Ω.

On the basis of this localization technique, we have proposed in [NOS15] a sim-
ple strategy to find the solution of problem (4) in general polytopal domains Ω in
Rd (d ≥ 1). Moreover, we have derived a quasi-optimal a priori error analysis, in
the context of weighted Sobolev spaces, valid for tensor product elements which
may be graded in Ω and exhibit a large aspect ratio in y (anisotropy) to fit the
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behavior of U (x′, y) with x′ ∈ Ω, y > 0. The a priori error analysis combines
asymptotic properties of Bessel functions, a polynomial interpolation theory on
weighted Sobolev spaces [NOS16b] and weighted regularity estimates for the solu-
tion to (3). Since the scheme of [NOS15] is based on local techniques, the ensuing
linear systems can be efficiently solved using multilevel techniques [CNOS16].

The result of [NOS15] can be applied to analyze and propose numerical tech-
niques for the parabolic problem (1). We rewrite (1) as a quasi-stationary elliptic
problem with dynamic boundary condition:
(5){

−div (yαA∇U ) + yαcU = 0 in C × (0, T ), U = 0 on ∂LC × (0, T ),

ds∂
γ
t U + ∂αν U = dsf on (Ω× {0})× (0, T ), U = u0, on Ω× {0}, t = 0,

where for all (x′, y) ∈ C , A(x′, y) := diag{A(x′), 1}; A ∈ C0,1(C ,GL(d+ 1,R)).

1. Time discretization

Let K ∈ N denote the number of time steps. We define the uniform time step as
τ = T/K > 0, and set tk = kτ for 0 ≤ k ≤ K . We also define Ik = (tk, tk+1] for
0 ≤ k ≤ K −1. If X is a normed space with norm ‖·‖X , then for φ ∈ C([0, T ],X )
we denote φk = φ(tk) and φ

τ = {φk}K
k=0.

1.1. Case γ = 1. For γ = 1 the time discretization is based on the backward
Euler scheme.

1.2. Case γ ∈ (0, 1). We discretize ∂γt using the finite difference scheme proposed
in [LX07]: Taylor’s formula with integral remainder yields, for 0 ≤ k ≤ K − 1,

(6) ∂γt u(·, tk+1) =
1

Γ(2− γ)

k∑

j=0

aj
u(·, tk+1−j)− u(·, tk−j)

τγ
+ rk+1

γ (·),

where

(7) aj = (j + 1)1−γ − j1−γ , rk+1
γ =

1

Γ(1− γ)

k∑

j=0

∫

Ij

1

(tk+1 − t)γ
R(·, t) dt

denotes the remainder and R is defined by

(8) R(·, t) = ∂tu(·, t)−
1

τ

(
u(·, tj+1)− u(·, tj)

)
∀t ∈ Ij .

On the basis of (6) we consider an implicit semi–discrete scheme for problem
(5). The proposed scheme is unconditionally stable and satisfies

I1−γ‖ trΩ V τ‖2L2(Ω)(T ) + ‖V τ‖2
ℓ2(

◦

H1
L(yα,C ))

. I1−γ‖u0‖2L2(Ω)(T ) + ‖f τ‖2ℓ2(H−s(Ω)).

Deducing an energy estimate for problem (5) is nontrivial due to the nonlocal-
ity of the fractional time derivative. In this sense, the previous discrete energy
estimate has an important consequence at the continuous level:

I1−γ‖ trΩ U ‖2L2(Ω)(T ) + ‖U ‖2
ℓ2(

◦

H1
L(yα,C ))

. I1−γ‖u0‖2L2(Ω)(T ) + ‖f τ‖2ℓ2(H−s(Ω)).
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The regularity assumptions usually made in the literature to analyze the consis-
tency error of the discretization (6) are unrealistic [LX07]. For γ < 1 the behavior
of ∂ttu is very singular as t→ 0+. In fact, in [NOS16], we showed that

∂tu ∈ L logL(0, T ;H−s(Ω)), ∂2ttu ∈ L2(tσ; 0, T ;H−s(Ω)), σ > 3− 2γ.

Using these refined results we analyzed the consistency error: The fractional resid-
ual rτγ = {rkγ}K

k=0 satisfies

(9) ‖rτγ‖L2(0,T ;H−s(Ω)) . τθ, 0 < θ = 2− γ − σ

2
<

1

2
.

2. A fully discrete scheme for γ ∈ (0, 1)

The space discretization hinges on the finite element method on a truncated cylin-
der discussed in [NOS15]. The discretization in time uses an implicit finite differ-
ence scheme based on (6) for γ ∈ (0, 1); the backward Euler scheme is used when
γ = 1. We proved that the proposed scheme is unconditionally stable, obtaining
an estimate similar to (1.2) and obtained the following error estimates.

Let γ ∈ (0, 1), u be the solution to (1) and trΩ V
τ
TY

be its fully discrete approx-

imation [NOS15]. Then

[I1−γ‖uτ − trΩ V
τ
TY

‖2L2(Ω)(T )]
1
2 . τθ + | logN |2sN− 1+s

d+1 ,

and
‖uτ − trΩ V

τ
TY

‖ℓ2(Hs(Ω))) . τθ + | logN |sN −1

d+1 ,

where N denotes the number the degrees of freedom of the graded mesh in space,
0 < θ < 1

2 and the hidden constants blow up as θ ↑ 1
2 .
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[NOS15] R. H. Nochetto, E. Otárola, and A. J. Salgado. A PDE approach to fractional diffusion
in general domains: a priori error analysis. Found. Comput. Math., 15(3):733–791,
2015.
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Space-time Trace Finite Element Methods

Arnold Reusken

(joint work with Jörg Grande, Sven Groß, Christoph Lehrenfeld,
Maxim Olshanskii, Igor Voulis)

We present different recent applications of trace and unfitted space-time finite
element methods to classes of problems that are motivated by the simulation of
two-phase incompressible flow problems. More precisely, we address the following
topics:

a. Space-time trace finite element methods for parabolic PDEs on evolving
surfaces. These methods are applicable to the so-called surfactant trans-
port equation that occurs in two-phase flow models with surfactants.

b. CutFEM for the discretization of mass transport equations in two-phase
flows.

c. CutFEM for the discretization of a time dependent Stokes interface model
problem.

ad. a. Recently, several numerical approaches for the discretization of partial
differential equations on (evolving) surfaces have been introduced. We refer to [2]
for a recent overview of such methods. In this presentation we outline an Eulerian
surface finite element method studied in [4, 5, 6]. The key idea of this method
is to use restrictions of (usual) space-time volumetric finite element functions to
the space-time manifold. This trace finite element technique was introduced for
stationary surfaces in [7]. We address the key ideas of this space-time trace-FEM
and some main results of the error analysis, in particular a result on second order
accuracy of the method in space and time. These results are derived in [4, 5].
Results of numerical experiments show that the method is extremely robust and
that even for the case with a topological singularity (droplet collision) accurate
results can be obtained on a fixed Eulerian (space-time) grid with a large time
step.
ad b. In the mass transport equations in two-phase flow, which model the trans-
port of a solute between the two-phases, a so-called Henry condition is used. Due
to this condition, the solution has a discontinuity across the evolving interface.
Furthermore, due to the use of a level set technique for interface capturing, the
grids that are applied for the discretization of this transport equation are not fit-
ted to the interface. In this setting a particular class of unfitted FEM, namely
the so-called CutFEM [1], turns out to be a very efficient approach. We present a
space-time variant of this CutFEM approach which has a second order accuracy
(with linears both in space and time) for this class of time dependent convection-
diffusion equations with moving discontinuities. The results of the error analysis
that we present are derived in [3].
ad c. In the sharp interface models for two-phase incompressible flows the fluid
dynamics is modeled by a Navier-Stokes equation which has discontinuous density
and viscosity coefficients across the interface. Furthermore, the pressure and the
derivative of the velocity are in general discontinuous across the evolving interface.
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Due to the use of a level set technique for interface capturing, the grids are not
fitted to the interface. In such a setting, due to the moving discontinuities, it is
very difficult to obtain a finite element method that has optimal discretization
accuracy. In current research we try to extend the approach developed for the
scalar mass transport equation, cf. topic b. above, to such a flow system. For this
we consider a model problem of a time-dependent Stokes equation with a given
smoothly evolving interface. Both the density and viscosity coeffient are allowed
to jump across this interface and the effect of (surface tension) forces localized at
the interface is included. For such a problem a new space-time weak formulation
is presented. In recent work we proved well-posedness of this weak formulation.
We briefly introduce the space-time CutFEM that we currently develop for this
Stokes interface problem.
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Nonlinear evolution problems involving fractional operators

Abner J. Salgado

We discuss two nonlinear evolution problems governed by nonlocal models. The
nonlocality in space will be given by the spectral fractional Laplacian (−∆)s: Let
Ω ⊂ Rd be a bounded domain with Lipschitz boundary. The Laplacian −∆,
supplemented with homogeneous Dirichlet boundary conditions, has a countable
collection of eigenpairs {ϕk, λk}∞k=1: −∆ϕk = λkϕk in Ω and ϕk = 0 on ∂Ω. The
eigenfunctions form an orthonormal basis in L2(Ω). In this basis, we have

(1) u =

∞∑

k=1

ukϕk
(−∆)s7−→ (−∆)su =

∞∑

k=1

λskukϕk,

which is well defined for every u ∈ Hs(Ω) = [H1
0 (Ω), L

2(Ω)]1−s.
(−∆)s is a nonlocal operator. To localize it, we employ the Caffarelli-Silvestre

extension [CS07]: Set α = 1− 2s, C = Ω× (0,∞) and let u ∈ ◦

H1
L(y

α,C ) solve

(2) − div(yα∇u) = 0 in C , u = 0 on ∂LC , ∂ναu = dsf on Ω× {0},
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where ∂LC = ∂Ω × (0,∞), ∂ναu = − limy↓0 y
α∂yu, and ds = 2αΓ(1 − s)/Γ(s).

Then, as shown in [CS07] the function u = trΩ u = u(·, 0) solves
(3) (−∆)su = f in Ω.

Based on (2) we developed, in [NOS15b], a finite element method on tensor
product meshes. We showed that the method is nearly optimal provided the
meshes are suitably graded. In addition, since this is now a local problem, the en-
suing linear systems can be efficiently solved using multilevel techniques [CNOS16].

A space-time fractional optimal control problem. The first problem is a
PDE constrained optimization problem where the state is governed by a space-
time fractional evolution equation. We must find the minimum of

(4) J(u, z) =
1

2

∫ T

0

(
‖u− ud‖2L2(Ω) + µ‖z‖2L2(Ω)

)
dt,

subject to

(5) ∂γt u+ (−∆)su = f + z, u|t=0 = u0

and, for a, b ∈ R with a < b:

(6) z ∈ Zad =
{
z ∈ L2(0, T ;L2(Ω)) : a ≤ z ≤ b

}
.

In (5) ∂γt denotes the Caputo derivative of order γ ∈ (0, 1), defined by

∂γt u(x, t) =
1

Γ(1− γ)

∫ t

0

∂ru(x, r)

(t− r)γ
dr = I1−γ [∂tu(x, ·)](t).

Based on definition (1) of (−∆)s one can show that the solution to (5) reads

u(x, t) =

∞∑

k=1

uk(t)ϕk(x),

uk(t) = Eγ,1(−λsktγ)u0,k +
∫ t

0

rγ−1Eγ,γ(−λskrγ)(fk + zk)(t− r) dr,

provided f + z ∈ L∞(0, T ;H−s(Ω)) and u0 ∈ L2(Ω). Here Eγ,δ denotes the
Mittag-Leffler function. In addition to existence and uniqueness, we can use this
representation formula to study the regularity of the solution to (5). In particular,
in [NOS16], we showed that

(7) ∂tu ∈ L logL(0, T ;H−s(Ω)), ∂2ttu ∈ L2(tσ; 0, T ;H−s(Ω)), σ > 3− 2γ,

provided f + z ∈ H2(0, T ;H−s(Ω)) and u0 ∈ Hs(Ω). With these properties at
hand we can propose an analysis of the discretization of the state equation. To
discretize the Caputo derivative we consider the L1 scheme. In [NOS16] we showed
stability of this scheme, which combined with the regularity results given in (7)
allows us to provide error estimates for the state equation (5).

However, when dealing with the optimal control problem (4)–(6), the most
natural way to discretize the cost is via space-time piecewise constant functions,
i.e., we introduce a simplicial triangulation T = {K} of Ω and a uniform time
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partition T = {Ik = [tk, tk+1)}K
k=0 with tk = kτ for a time-step τ > 0. The space

of discrete controls is then given by

Z =
{
Z ∈ L2(0, T ;L2(Ω)) : Z|K×Ik ∈ P0

}
, Zad = Z ∩ Zad.

This, in particular, implies that the data regularity required for (7) to hold is not
valid. In addition, due to time discretization and the localization of the fractional
Laplacian as in (2), the cost functional must be replaced by

JT
T (V τT , Z

τ ) =
1

2
τ

K∑

k=1

(
‖ trΩ V τT − uτd‖2L2(Ω) +

µ

2
‖Zτ‖2L2(Ω)

)
,

where V τ
T

is a discrete state obtained with a finite element discretization in space
as in [NOS15b] and the L1 scheme in time. In summary, the cost is being modified
and the data of the state does not possess enough smoothness to assert rates of
convergence.

Instead of the standard approach, we showed in [AOS16] that JT
T

Γ−→ J , i.e.
the discrete cost Γ-converges to the continuous one. This in particular required to
show the adjoint consistency of the L1 scheme. As a consequence, we obtain that
Zτ ⇀ z in L2(Ω) and a similar result for the state.

The fractional obstacle problem. Our second problem is

(8) min {∂tu+ (−∆)su− f, u− ψ} = 0, u|t=0 = u0,

which can also be rewritten as the complementarity conditions

∂tu+ (−∆)su ≥ f, u ≥ ψ, (∂tu+ (−∆)su− f) (u− ψ) = 0

or the evolution variational inequality

∂tu−f ∈ ∂Ψ(u), (∂tu, u−v)L2(Ω)+〈u, u−v〉H−s(Ω),Hs(Ω) ≤ (f, u−v)L2(Ω), ∀v ∈ K ,

where Ψ(v) = 1
2‖v‖2Hs(Ω) + 1K (v) with K = {v ∈ Hs(Ω) : v ≥ ψ}. With (2),

problem (8) can be recast as an evolutionary thin obstacle problem, i.e.

(9)

∫

Ω

∂t trΩ u trΩ(u− w) +

∫

C

yα∇u∇(u− w) ≤
∫

Ω

f trΩ(u− w), ∀w ∈ K

where K =
{
w ∈ ◦

H1
L(y

α,C ) : trΩw ≥ ψ
}
.

In [NOS15a] we considered the stationary version of this problem. We extended
the ideas of [NOS15b] and proposed a finite element method to discretize the
stationary analogue of (9). We showed that the proposed method is near optimal.
The analysis of this method required a fine interplay between Sobolev regularity
of the solution, as shown in [NOS15b], and the Hölder regularity for the solution
and extension shown in [CSS08] and [ALP15], respectively.

The available regularity results for the time dependent problem are rather lim-
ited. In fact, the only reference that deals with it is [CF13] where Hölder regularity
for the solutions is shown, under rather restrictive compatibility assumptions be-
tween the initial condition, obstacle and forcing term. Nevertheless, in [OS16]
we considered the discretization of this problem. We showed convergence with
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minimal regularity assumptions and, in the setting of [CF13], optimal rates of
convergence.
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Discrete waves in viscoelastic media

Francisco-Javier Sayas

(joint work with Thomas S Brown, Shukai Du, Hasan Eruslu)

We are addressing the numerical analysis and simulation aspects of several vis-
coelastic models. In the simplest case, with homogeneous Dirichlet boundary con-
ditions on the boundary of the viscoelastic domain at all times, we are studying
the model equations

ρ ü = divσ + f , in Ω× (0,∞),

γu = 0, on ∂Ω× (0,∞),

with vanishing initial conditions u(0) = u̇(0) = 0. Here Ω ⊂ R
d is a Lipschitz

bounded domain, ρ ∈ L∞(Ω) is a strictly positive mass density, the upper dots
denote time differentiation, and γ is the trace operator. The stress σ will be
defined in terms of the strain with a distributional convolutional law

σ = D ∗ ε̇, ε = 1
2 (∇u+∇u⊤).
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The convolutional kernel is better described through the Laplace transform

C(s) := sL {D},
as a fourth order tensor with components in L∞(Ω), well defined for s ∈ C+ :=
{s ∈ C : Re s > 0} and with the following properties: for all s ∈ C+,

C(s) = C(s),

(C(s)M) : N = (C(s)N) : M ∀M,N ∈ C
d×d,

C(s)M ∈ C
d×d
sym ∀M ∈ C

d×d,

Re(sC(s)M : M) ≥ c0Re s‖M‖2 ∀M ∈ C
d×d
sym .

The above equalities and inequalities hold almost everywhere in Ω, Cd×dsym is the
space of symmetric (not Hermitian) complex matrices, the colon represents the
Frobenius real inner product of matrices, and c0 > 0. Our work studies the
following aspects:

• Solvability of the transient model and mapping properties showing depen-
dence of u with respect to the source function f .

• Semidiscretization in space using general Finite Element schemes, includ-
ing stability (dependence of the discrete solution with respect to the data),
and semidiscrete convergence estimates (comparison of the exact and semi-
discrete solutions, depending on approximation properties).

• Extension of the above to non-homogeneous Dirichlet (given displacement)
or Neumann (given normal traction) boundary conditions, possibly mixing
them in different parts of ∂Ω.

The full discretization is achieved with Convolution Quadrature techniques [5],
which, in practice, means that we end up solving a collection of problems in the
Laplace domain (frequency domain problems with complex frequencies) and com-
bine them to produce a transient solution.

Among the models that are covered by the general hypotheses above is the
generalized Zener’s model [6, 7]. Let C0 and C1 are constant-in-time well defined
elastic tensors with the usual hypotheses in linear elasticity theory [1]: for ◦ ∈
{0, 1}

Cijkl,◦ ∈ L∞(Ω) i, j, k, l = 1, . . . , d,

Cijkl,◦ = Cjikl,◦ = Cklij,◦ i, j, k, l = 1, . . . , d,
∑

ijkl

Cijkl,◦ξijξkl ≥ c◦
∑

ij

ξ2ij ∀ξij = ξji.

If a ∈ L∞(Ω) is a strictly positive function and

Cdiff := C1 − aC0,

satisfies ∑

ijkl

Cijkl,diffξijξkl ≥ 0 ∀ξij ,
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then the transfer function

C(s) := (1 + a s)−1(C0 + sC1) = C0 + s(1 + a s)−1Cdiff

satisfies all the above hypotheses. The elastic model C0 acts as the basic or ground
elastic model, while Cdiff can be understood as the diffusive part of the model. It
can happen that Cdiff = 0 in parts of the domain, which allows for the combination
of pure elastic and viscoelastic behavior in different parts of the domain. In the
time domain, this model corresponds to the differential equation

σ + a σ̇ = C0ε+C1ε̇,

to relate strain and stress. Another model that is covered by our framework is the
fractional Zener model [7, 8, 3, 11]

Cν(s) := C(sν) = (1 + a sν)−1(C0 + sν C1), ν ∈ (0, 1),

where C satisfies the hypotheses of Zener’s model, so that viscoelastic and purely
elastic behavior can coexist in different part of the domain. In fact, one of the
nice features of the Laplace domain analysis [10], is that it allows us to show
that the fractional Zener’s model (corresponding to a fractional differential im-
plicit law to relate strain and stress) has the same properties as Zener’s model in
all aspects we are discussing: mapping properties, behavior under Finite Element
semidiscretization in space, and behavior under full discretization using Convolu-
tion Quadrature.

A direct-in-time-domain analysis for Zener’s model is also viable, using a non-
trivial first order formulation involving displacement, strain, and diffusive stress,
and adapting the equations so that the classical theory of C0-semigroups of oper-
ators can be used [9, 2].
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Boundary Element formulation with variable time steps in Acoustics
and Thermoelasticity

Martin Schanz

(joint work with Stefan A. Sauter)

In the context of Boundary Element Methods (BEM) mostly constant time step
sizes are used. For non-smooth timely behaviour of the solution an adjustable
step size could preserve the convergence rates. Further, in technical applications
solutions are sought for where often in the beginning the time behavior changes
rapidly and, afterwards, the solution becomes more or less steady. Also in this
case, an adaption of the time step size is promising.

A variable time step size for BEM has been proposed by Sauter and Veit [3]
using a global shape function in time and by Lopez-Fernandez and Sauter [1, 2]
with a generalized convolution quadrature method (gCQ). The latter approach
shares all benefits of the original convolution quadrature method but allows a
variable time step size. This approach is used here and can be summarised using

an generic convolution integral y(t) = (f ∗ g)(t) =
∫ t
0 f(t− τ)g(τ) d τ and the BDF

1 as underlying time stepping.

• First Euler step

y (t1) = f̂

(
1

∆t1

)
g1

with implicit assumption of zero initial condition
• For all steps n = 2, . . . , N two steps are performed

(1) Update the solution vector xn−1 at all integration points sℓ with an
implicit Euler step

xn−1 (sℓ) =
xn−2 (sℓ)

1−∆tn−1sℓ
+

∆tn−1
1−∆tn−1sℓ

gn−1

for ℓ = 1, . . . , NQ with the number of integration points NQ.
(2) Compute the solution of the integral at the actual time step tn

y (tn) = f̂

(
1

∆tn

)
gn +

NQ∑

ℓ=1

ωℓ
f̂ (sℓ)

1−∆tnsℓ
xn−1 (sℓ)

Within this algorithm several parameters must be set as given in [2], where sℓ
can be seen as the complex frequencies to be used. An essential parameter is
the number of integration points NQ = N log (N), which shows the almost linear
complexity in time. Further, it must be remarked that the algorithm depend on
the relation ∆tmax

∆tmin
and not on all time step sizes ∆tn.
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Acoustics with absorbing boundary conditions

The homogeneous wave equation with constant sound speed c models the sound
pressure in some domain with boundary Γ. Suitable boundary conditions have to
be prescribed. For so-called absorbing boundary conditions a Robin-type boundary
condition can be formulated. The solution for this setting can be found employing
layer potentials to express the solution in terms of retarded potentials. The ab-
sorbing boundary condition leads to the boundary integral equation for the single
layer ansatz

−
(ϕ
2
− K ′ ∗ ϕ

)
− α

c
(V ∗ ϕ̇) = f a.e. in Γ× R>0 ,(1)

using the notation V for the single layer potential and K ′ for the adjoint double
layer potential. The density is denoted with ϕ. The sound pressure is finally
determined by the single layer potential (for details see [4]). In (1), α denotes
the non-negative admittance, which is the inverse of the specific impedance of the
surface Γ. This specific impedance is scaled by the density and the wave velocity.
The mathematical analysis allows any non-negative finite value for α, however,
realistic values are in the range 0 ≤ α ≤ 1. The lower limit models a sound hard
wall and the upper limit is a totally absorbing surface.

The geometrical discretization is done with linear triangles and the data are
approximated by piecewise linear shape functions. The temporal discretisation
uses the gCQ algorithm as stated above. This allows an easy realisation of the
time derivative in (1) as a simple multiplication by the Laplace variable. For a
scattering sphere with absorbing boundary conditions an analytical solution can
be found [4]. Assuming a non-smooth function f(t) = t1/2e−ct, a graded time
step should keep the expected convergence order of 1. In Fig 1, the convergence
behaviour is shown for three different spatial discretisation and the semi-analytical

solution. The time steps are computed with tn = T
(
n
N

)2
. For a constant time

step size the convergence order would be only 1/2.

Uncoupled thermoelasticity

In uncoupled thermoelasticity only the influence of the temperature on the dis-
placements and stresses is taken into account and not vice versa. The direct
boundary integral formulation for the temperature θ (x, t) and the displacement
u (x, t) is given with

c (y) θ(y, t) =

∫

Γ

{[Θ ∗ q](x, y, t) − [Q ∗ θ](x, y, t)} dΓ(2)

cij (y)uj(y, t) =

∫

Γ

{Uij(x, y)tj(x, t) − Tij(x, y) uj(x, t)(3)

+ [Gi ∗ q](x, y, t)− [Fi ∗ θ](x, y, t)} dΓ
with the kernel functions Θ(x, y, t) andQ(x, y, t) of the heat equation, Uij(x, y) and
Tij(x, y) from elastostatics, andGi(x, y, t), Fi(x, y, t) for the one sided coupling. As
before, the convolution integrals in time are discretised with gCQ and the spatial
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Figure 1. Acoustics: Maximum error in time versus time steps
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Figure 2. Thermoelasticity: Maximum error in time versus time steps

discretisation is done with continuous linear shape functions for the temperature
and displacements and discontinuous constant shape functions for the flux and
tractions. The point wise error compared to an analytical solution is given in Fig. 2
for different time gradings. The label const denotes a computation with constant
time step size and increasing denotes a slightly increased step size. Graded denotes
the time steps computed as above in the acoustic example.
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Guaranteed energy norm a posteriori error estimates for high-order
discretizations of parabolic problems

Iain Smears

(joint work with Alexandre Ern and Martin Vohraĺık)

We present a posteriori error estimates in parabolic energy norms for space-time
discretisations based on arbitrary-order conforming FEM in space and discontin-
uous Galerkin methods in time. Using the heat equation as a model problem, we
show a posteriori error estimates in a norm of L2(H1)∩H1(H−1)-type that is suit-
ably extended to functions of the nonconforming discrete space. The estimators
give guaranteed upper bounds on the error, and locally space-time efficient lower
bounds. Furthermore, the efficiency constants are robust with respect to the dis-
cretisation parameters, including the polynomial degrees in both space and time,
and also with respect to refinement and coarsening between time-steps, thereby
removing the need for the transition conditions required in earlier works.
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Quasi-optimality in parabolic spatial semidiscretizations

Andreas Veeser

(joint work with Francesca Tantardini and, partially, Christian Kreuzer and
Rüdiger Verfürth)

We shall assess the interplay of the time derivative ∂t and the space discretization
for parabolic initial-boundary value problems.

Elliptic discretizations as benchmark. To present our approach and viewpoint, let
us first consider the homogeneous Dirichlet problem for the Poisson equation

−∆u = f in Ω ⊂ R
d, u = 0 on ∂Ω

and write V := H1
0 (Ω) and ‖·‖V := |·|1;Ω := (

∫
Ω |∇·|2)1/2. In order to approximate

the weak solution u ∈ V , let M be a simplicial and conforming mesh of Ω, let
Pk(M ) the space of piecewise polynomials of degree at most k ∈ N over M , and
let U be the Galerkin approximation to u in S := Pk(M ) ∩ V . Then

‖u− U‖V = inf
v∈S

‖u− v‖V ≈
(
∑

K∈M

inf
p∈Pk

|u− p|21;K

) 1
2

.

(
∑

K∈M

h2kK |u|2k+1;K

) 1
2

thanks to Céa’s Lemma, to best error localization from [6, Corollary 1], and to
the Bramble-Hilbert lemma applied on elements. The hidden constants depend on
the shape regularity of M . Consequently, the Galerkin approximation U is here
an optimal choice in the discrete trial space S, is quasi-optimal with respect to
the shape functions Pk(M ) (or the continuity constraint in S does not downgrade
the approximation power) and its error can be bounded with minimal regularity
within elements.

In what follows, we investigate to what extent these nice features of the elliptic
Galerkin error carry over to parabolic spatial semidiscretizations.

Inf-sup theory for parabolic problems. We recall a variational formulation casting
parabolic equations in the framework of the inf-sup theory. This is convenient
to handle the non-symmetry of the time derivative ∂t and allows one to use the
following abstract result about Petrov-Galerkin approximation from [2, 3]. Let
Hi, i = 1, 2, be Hilbert spaces with norms ‖ · ‖1, ‖ · ‖2 and let

(1) find u ∈ H1 s.th. ∀ϕ ∈ H2 b(u, ϕ) = ℓ(ϕ)

be well-posed for all ℓ ∈ H∗2 . Choosing subspaces Mi ⊂ Hi, i = 1, 2, such that the
Petrov-Galerkin approximations

(2) U ∈M1 s.th. ∀ϕ ∈M2 b(U,ϕ) = ℓ(ϕ)

are well defined, we have

‖u− U‖1 ≤ Cqopt inf
v∈M1

‖u− v‖1

with the best constant

Cqopt = sup
ϕ∈M2

supu∈H1:‖u‖1=1 b(u, ϕ)

supU∈M1:‖U‖1=1 b(U,ϕ)
.
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To illustrate the application of this result for parabolic problems, consider the
initial-boundary value problem for the heat equation

(4) ∂tu−∆u = f in Ω× (0, T ), u = 0 on ∂Ω× (0, T ) u(·, 0) = w on Ω.

In view of
∫ T
0
∂tuϕ = [uϕ]T0 −

∫ T
0
u ∂tϕ, there are (at least) two ways of dealing with

∂t in a weak formulation. This talk addresses the more common way associated
with the left-hand side, while similar results hold for the way associated with the
right-hand side; see [2, 3, 4]. Clearly, the two ways are linked by duality.

We let V ∗ = H1
0 (Ω)

∗ with dual norm ‖ℓ‖V ∗ = supϕ∈V 〈ℓ, ϕ〉/‖ϕ‖V , W = L2(Ω)

with norm ‖w‖W = (
∫
Ω
|w|2)1/2 so that V ⊂W ≃W ∗ ⊂ V ∗ is a Hilbert triple and

write 〈·, ·〉 for the scalar product in W and the duality pairing V ∗ ×V . Moreover,
we choose the Hilbert spaces H1 := L2(V ) ∩H1(V ∗) and H2 := W × L2(V ) with
respective norms

‖u‖21 = ‖u(T )‖2W +

∫ T

0

‖∂tu‖2V ∗ + ‖u‖2V , ‖ϕ‖22 = ‖ϕ0‖2W +

∫ T

0

‖ϕ1‖2V

and the continuous forms

(5) b(u, ϕ) = 〈u(0), ϕ0〉+
∫ T

0

〈∂tu, ϕ1〉+ 〈∇u,∇ϕ1〉, ℓ(ϕ) = 〈v, ϕ0〉+
∫ T

0

〈f, ϕ1〉.

Thus (1) gets a weak formulation of (4) and choosing ϕ = (u(0), u+ (−∆)−1∂tu)
shows that the inf-sup constant of b is 1, as its continuity constant.

Time-independent parabolic semidiscretizations. Let us now investigate the follow-
ing time-independent spatial semidiscretization of (4):

U(0) = PSw, ∂tU −∆SU = PSf in (0, T )

where PS denotes theW -orthogonal projection onto S = Pk(M )∩V and is defined
also on V ∗ thanks to S ⊂ V as well as ∆S = PS ◦∆ denotes the discrete Laplacian.
Then U is the Petrov-Galerkin approximation (2) corresponding to M1 = H1(S)
and M2 = S × L2(S) and satisfies

(6)

‖u− U‖1 ≤ ‖PS‖L(V ) inf
v∈M1

‖u− v‖1

≈
(
∑

z∈N

inf
v∈S|ωz

[
‖u(0)− v‖20;ωz

+

∫ T

0

|∂tu− v|2−1;ωz
+ |u− v|21;ωz

]) 1
2

.

(
∑

K∈M

h2kK

[
|u(0)|2k;K +

∫ T

0

|∂tu|2k−1;K + |u|2k+1;K

]) 1
2

where . hides also ‖PS‖L(V ), N denotes the set of vertices of M and S|ωz
the

restriction of S to the star ωz around a vertex z. The first inequality with best
constant ‖PS‖L(V ) follows from (3) by deriving a discrete inf-sup condition with

ϕ = (U(0), U + (−∆S)
−1∂tU) and by

〈ℓ, (−∆S)
−1ℓ〉 1

2 = sup
s∈S

〈ℓ, s〉
‖s‖V

≤ 〈ℓ, (−∆)−1ℓ〉 1
2 = sup

v∈V

〈ℓ, v〉
‖v‖V

≤ CS〈ℓ, (−∆S)
−1ℓ〉 1

2
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for any discrete functional ℓ ∈ S∗ ≃ S, where the best constant is

CS = ‖PS‖L(V ) = ‖PS‖L(V ∗).

The best error localization, where the inf could be applied also on the single
terms between the brackets, is in collaboration with Rüdiger Verfürth; see also [5].

Time-dependent parabolic semidiscretizations. Next, we allow for discontinuous
changes of the spatial discretization at certain instants: given 0 = t0 < t1 <
· · · < tN = T , assign to each interval In = (tn−1, tn) a mesh Mn and set Sn :=
Pk(Mn)∩V . Writing Pn, ∆n etc. for the quantities associated with Sn, we define
U : [0, T ] → V by

U(0) = P0w, ∂tU −∆nU = Pnf in In, U(t+n ) = Pn+1U(t−n ),

which corresponds to

M1 = {v = (v0, v1) | v0 ∈ S0, v1|In ∈ H1(In;Sn), v1(t
+
n ) = Pn+1v1(t

−
n )},

M2 = {ϕ = (ϕ0, ϕ1) | ϕ0 ∈ S0, ϕ1|In ∈ H1(In;Sn)}
and broken variants of (5). Notice that, while M1 is nonconforming, M2 is still
conforming. We therefore can proceed as before in a piecewise manner and obtain
a broken variant of (6) with the following important difference, see [2]: After the
second inequality, i.e. when localizing in time the best error, there arises

(
‖P1(I − P0)u(0)‖2W +

N−1∑

n=0

‖P+
n (I − Pn)u(tn)‖2W

) 1
2

.

(
N−1∑

n=0

∑

K∈Mn

h
2(k+m)
K |u(tn)|2k+m;K

) 1
2

,

where P+
n is the W -orthogonal projection onto Sn + Sn+1 and m ∈ {0, 1}. This

additional term, whose derivation relies on a novel interpolation operator, is sharp
in certain cases, overestimates in others, and is consistent with Dupont’s example
of (non-)convergence in [1].

The results of this paragraph are in collaboration with Christian Kreuzer.
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A posteriori error estimates for linear and nonlinear evolution
problems using space-time dual norms

Martin Vohraĺık

(joint work with Vı́t Doleǰśı, Alexandre Ern)

We derive a framework for a posteriori error estimates in unsteady, nonlinear,
possibly degenerate, advection-diffusion problems. Our estimators are based on
a space-time equilibrated flux reconstruction and are locally computable. They
are derived for the error measured in a space-time mesh-dependent dual norm
stemming from the problem and meshes at hand, augmented by a jump seminorm
measuring possible nonconformities in space. Owing to this choice, a guaranteed
and globally efficient upper bound is achieved, as well as robustness with respect
to nonlinearities, advection dominance, domain size, final time, and absolute and
relative size of space and time steps. Local-in-time and in-space efficiency is also
shown. In order to apply the framework to a given numerical method, two simple
conditions, local space-time mass conservation and an approximation property of
the reconstructed fluxes, need to be verified. We show how to do this for the
interior-penalty discontinuous Galerkin method in space and the Crank–Nicolson
scheme in time. Numerical experiments illustrate the theory. In particular, ef-
fectivity indices quite close to the optimal value of 1 are observed for a variety
of problems with various sizes of advection, nonlinearity, and possibly degenerate
diffusion, for varying ratio of the space step to the time step, and for spatial ap-
proximation polynomial degrees between 1 and 3. Similar effectivity indices are in
fact also observed for a weighted L2(L2) error in both the scalar and flux approx-
imations, which is a localized upper bound on the error measured in the selected
space-time mesh-dependent dual norm. The details can be found in [1].
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Iterative Galerkin Methods for Semilinear Parabolic PDE

Thomas P. Wihler

(joint work with Mario Amrein)

We consider the numerical approximation of semilinear parabolic partial differ-
ential equations by the so-called iterative Galerkin approach. Specifically, in the
present work [2], we study initial/boundary value problems of the form

(1)

∂tu(x, t)− ε∆u(x, t) = f(u(x, t),x, t), (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = g(x), x ∈ Ω.



938 Oberwolfach Report 15/2017

Here Ω ⊂ R
d, with d ∈ {1, 2}, is an open and bounded 1d interval or a 2d

Lipschitz polygon, respectively. Moreover, ε > 0 is a (possibly small) diffusion
coefficient, and T > 0 is a final time. Furthermore, f : R × Ω × (0, T ] → R is a
given continuously differentiable nonlinearity, and g ∈ L2(Ω) is a prescribed initial
function.

In the framework of a posteriori error estimates, the iterative Galerkin method-
ology has been introduced and studied recently in a series of papers; see e.g., [1, 3,
4, 5, 6, 7]. The main idea is to replace the underlying nonlinear partial differential
equation by a sequence of linearized problems, each of which is approximated by
means of a suitable Galerkin discretization. Then, an iterative solution algorithm
is based on a carefully derived residual-type a posteriori analysis which allows to
identify individual sources of error (including discretization as well as linearization
errors) in terms of computable quantities. This approach is attractive from both
a computational as well as from an analytical view point: Indeed, working with a
sequence of linear problems allows the application of linear solvers as well as the
use of a linear numerical analysis framework (e.g., in deriving error bounds).

In the context of the semilinear parabolic problem (1), we apply the New-
ton method to locally linearize the nonlinearity f arising in (1). The resulting
linearized problem is then discretized by applying the backward Euler scheme in
time and a standard conforming finite element method in space [2]. The (ε-robust)
a posteriori error analysis reveals three error indicators accounting for the tempo-
ral error, the spatial error, and the linearization error. Based on these theoretical
results, we present a computational algorithm which implements a simultaneous
interplay between the Newton iteration (linearization) and the full discretization
(in space and time); more precisely, in each step of the iterative procedure the
main source of error is identified, and a corresponding refinement is performed.
Numerical tests for both a smooth as well as a problem with finite time blow-up
singularity are presented.
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[7] L. El Alaoui, A. Ern, and M. Vohraĺık, Guaranteed and robust a posteriori error esti-

mates and balancing discretization and linearization errors for monotone nonlinear prob-
lems, Comput. Meth. Appl. Mech. Eng. 200 (2011), 2782–2795.



Space-time Methods for Time-dependent Partial Differential Equations 939

Analysis of Space-Time Discontinuous Galerkin Methods for
Hyperbolic Conservation Laws

Mohammad Zakerzadeh

(joint work with Georg May)

1. Introduction

We consider space-time discontinuous Galerkin (DG) schemes for generalm-system
of conservation law

ut +∇ · f (u) = 0, in (0,∞)× R
d =: Rd+1

+(1a)

u(0, ·) = u0, in R
d,(1b)

where f = (f1, . . . , fd) is a smooth flux function and u0 ∈ [L∞(Rd)]m has compact
support in Ω ⊂ Rd.

Due to the presence of shocks and discontinuities, the traditional notion of
solution of (1) is the entropy weak solution; i.e., a weak solution which satisfies
the entropy inequality in the distributional sense, for any convex entropy U and
its associated entropy flux F = (F1, . . . , Fd).

The well-posedness of the entropy weak solutions for scalar conservation laws
is a classical result. However, for multidimensional hyperbolic systems, there is
no global well-posedness theory and the scope of the analysis often restricted
to stability estimates and stronger proofs of convergence are difficult to come
by. On the other hand, some numerical evidence (cf. [8]) casts doubt on that
entropy solutions constitute the appropriate solution paradigm for general systems
of conservation laws, and alternatively, entropy-measure-valued (EMV) solutions
[1] are conjectured to be the appropriate notion of solution for general systems.

In case of scalar problems, one can prove the reduction of EMV solutions to
entropy weak solutions. In fact, using DiPerna’s results [1], one can assert strong
convergence to the entropy weak solution, provided that the sequence of solutions
are, uniformly bounded in L∞(Rd+1

+ ), weakly consistent with all entropy inequal-
ities, and strongly consistent with the initial data.

Building on previous results (cf. [2]), we prove in [4] that bounded solutions
of a certain class of space-time DG schemes converge to an EMV solution. For
scalar problems this result can be strengthened as in [5]; one can rigorously prove

the L∞(Rd+1
+ )-boundedness of the solutions, without using a finer auxiliary trian-

gulation like the one in [3]. Hence, the convergence to the unique entropy weak
solution can be obtained.

The main novelty in our work is that no streamline-diffusion (SD) terms are
used for stabilization unlike the previous literature such as [2]. This is the way
DG schemes were originally proposed, and are most often used in practice. We
show that a properly chosen nonlinear shock-capturing (SC) operator suffices to
provide the necessary estimates.
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2. Space-Time Discontinuous Galerkin Method

We define the space-time coordinates x = (x0, x1, . . . , xd) with x0 ≡ t. For arbi-
trary T > 0, consider a sequence of time instances 0 ≡ t0 < t1 < · · · < tN ≡ T , and
define corresponding time intervals In = (tn, tn+1). Let T n

h = {κ} be a subdivi-

sion of the space-time slab In×R
d into disjoint simplices. Define Th :=

⋃N−1
n=0 T n

h ,
and let h := supκ∈Th

hκ, where hκ := diam(κ). Convergence analysis will be car-
ried out for shape-regular families of triangulation {Th}. Also we set the technical
assumption tn+1 − tn = O(h).

We define the following approximation space

(2) V nh,q = {v : v|κ ∈ [Pq(κ)]m, ∀κ ∈ T n
h } , Vh,q =

N−1∏

n=0

V nh,q,

where Pq is the space of (d + 1)-variate polynomials of total degree q. Here we
set q ≥ 1. The space-time SC-DG scheme then is defined as the following; find
vh ∈ Vh,q such that

(3) BDG(vh,w) + BSC(vh,w) = 0, ∀w ∈ Vh,q.

Note that we realize the functions in terms of entropy variables vh = ∂uU as the
basic unknowns. The dependent conservative variables are derived via u(vh).

The semi-linear form of space-time DG discretization is
(4)

BDG(vh,w) :=

N−1∑

n=0

∑

κ∈T n
h

{∫

κ

∇ · f̃ (vh)w dx+

∫

∂κ

(
f̂ − f̃(v

(κ)
h ) · ν

)
w ds

}
,

where f̃ = (u, f(u)) is the space-time flux, and on ∂κ we define the interior trace

values as v
(κ)
h (x) = limǫ→0− vh(x+ ǫν), where ν = (νt, νx1

, . . . , νxd
) is the outward

pointing normal. We denote as κe ∈ Th the element separated from κ on e ⊂ ∂κ,

and introduce the numerical flux function f̂ ≡ f̂(v
(κ)
h ,v

(κe)
h ; ν), defined to be

Lipschitz-continuous, entropy stable (cf. [6]), and consistent with f̃ . On interfaces
where ν = (±1, 0, . . . , 0)T , the numerical flux reduces to pure upwinding in time.

Furthermore, we augment the semi-linear form (4) with an SC operator

(5) BSC(vh,w) :=

N−1∑

n=0

∑

κ∈T n
h

∫

κ

ε(vh)∇vh · ∇w dx,

with the viscosity parameter ε dependent on the residual of the PDE at each
element and the jumps over inter-element interfaces. We omit the explicit form
here and refer to [4] and [5] for such details. Also one might confer with [2, 3, 7].

3. Theoretical Results

For a general hyperbolic system, we provide the following entropy stability result:
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Theorem 1. Assume that (1) is equipped with an entropy pair (U, F ), and the
exact and approximate solutions have compact support in Ω. Then, the SC-DG
scheme (3) is entropy stable, i.e., uh admits the following:

∫

Ω

U(u∗(t0−)) dx ≤
∫

Ω

U(u(vh(tN− , x))) dx ≤
∫

Ω

U(u(vh(t0−, x))) dx,

where u∗(t0−) is the entropy state of the projected initial data, defined as

u∗(t0−) =
1

|Ω|

∫

Ω

u(vh(t0−, x)) dx.

Moreover, the convergence to EMV solution can be established as the following:

Theorem 2. Let vh be the approximate solution of (3) produced by scheme (3).
If uv has spectral bound and f

v
has upper bound on its eigenvalues (cf. [4]) and

‖vh‖L∞([0,T ]×Ω) ≤ C,

then there exists a sequence of measures, {µh(x,t)}h>0, parameterized by the mesh

size h, where the following holds: for all test functions ϕ ∈ [Rd × R+]
m one has

lim inf
h→0

{∫

Rd

∫

R+

〈〈σ,µh(x,t)〉E ,ϕt〉+
d∑

k=1

〈〈fk(σ),µh(x,t)〉E ,ϕxk
〉dxdt

}
= 0.

Furthermore, the entropy admissibility is satisfied, i.e,

lim inf
h→0

{∫

Rd

∫

R+

〈U(σ),µh(x,t)〉Eϕt +
d∑

k=1

〈F k(σ),µh(x,t)〉Eϕxk
dxdt

}
≥ 0,

for all 0 ≤ ϕ ∈ C∞c (Rd × R+).

Here µ(x,t) is a measurable map from Rd × R+ to the space of non-negative
measures on Rm with unit mass. Also 〈·, ·〉 and 〈·, ·〉E denotes the inner product
and the expectation integral with respect to the measure µ on Rm, respectively.

3.1. Scalar Problems. For scalar settings, the formulation is realized in terms
of conservative variables, i.e. entropy variables associated with U(u) = u2/2.
Thanks to far richer family of entropy functions, Theorem 1 can be generalized
for all entropy functions up/p for p = 2m and m ≥ 1. Consequently, L∞(Rd+1

+ )
boundedness can be established as:

Lemma 1. Let uh be the solution produced by scheme (3). There exists a constant
C such that

||uh||L∞([0,T ]×Ω) ≤ C, ∀h > 0.

This result has already been introduced in [3] with some subtrinagulation and
linear projected values inside each subelement. This technical issue can be avoided
by using H1-projection and some polynomial inequalities, see [4]. Moreover, there
is a counterpart of Theorem 2 as
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Lemma 2. Let uh be the solution produced by scheme (3). Then, for all entropy
pairs (U, F ) with convex U , there holds

lim inf
h→0

{∫

Rd

∫

R+

U(uh)ϕt +

d∑

k=1

F k(uh)ϕxk
dxdt

}
≥ 0,

for all 0 ≤ ϕ ∈ C∞c (Rd × R+).

Application to DiPerna’s conditions [1], Lemmas 1 and 2, and consistency with
the initial data, one can establish the convergence to entropy weak solution for the
solutions of (3).

References

[1] R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Ration. Mech. Anal.,
88(3), 223–270, (1985).

[2] A. Hiltebrand and S. Mishra, Entropy stable shock capturing space-time discontinuous
Galerkin schemes for systems of conservation laws, Numer. Math., 24(3), 103–151 (2014).

[3] C. Johnson, A. Szepessy and P. Hansbo, On the convergence of shock-capturing streamline
diffusion finite element methods for hyperbolic conservation laws, Math. Comp., 54(189),
107–129 (1990).

[4] M. Zakerzadeh and G. May, On the convergence of a shock capturing discontinuous Galerkin
method for nonlinear hyperbolic systems of conservation laws, SIAM J. Num. Anal., 54(2),
874–898 (2016).

[5] G. May and M. Zakerzadeh, On the convergence of space-time discontinuous Galerkin
schemes for scalar conservation laws, SIAM J. Num. Anal., 54(4), 2452–2465 (2016).

[6] E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation
laws and related time-dependent problems, Acta Numerica, 12, 451–512 (2003).

[7] J. Jaffre, C. Johnson and A. Szepessy, Convergence of the discontinuous Galerkin finite
element method for hyperbolic conservation laws, Math. Mod. Meth. App. Sci., 5(3), 367–
386 (1995).

[8] U.S. Fjordholm, R. Kappeli, S. Mishra and E. Tadmor, Construction of approximate entropy
measure-valued solutions for hyperbolic systems of conservation laws, Found. Comp. Math.,
pp.1-65 (2015).

Reporter: Christian Wieners



Space-time Methods for Time-dependent Partial Differential Equations 943

Participants

Prof. Dr. Georgios Akrivis

Department of Computer Science
University of Ioannina
Ioannina 45100
GREECE

Dr. Lehel Banjai

School of Mathematics and Computer
Science
Heriot-Watt University
Colin Maclaurin Building
Riccarton
Edinburgh EH14 4AS
UNITED KINGDOM

Prof. Ph.D. Marek Behr

Chair of Computational Analysis of
Technical Systems (CATS)
Center for Computational Engineering
Science
Aachen University (RWTH)
52056 Aachen
GERMANY

Prof. Dr. Andrea Bonito

Department of Mathematics
Texas A & M University
College Station, TX 77843-3368
UNITED STATES

Prof. Dr. Carsten Carstensen

Institut für Mathematik
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin
GERMANY

Hanzhi Diao

Institut für Mathematik
Universität Zürich
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91762 Palaiseau Cédex
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