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Abstract. High-dimensional problems appear naturally in various scientific
areas. Two primary examples are PDEs describing complex processes in
computational chemistry and physics, and stochastic/ parameter-dependent
PDEs arising in uncertainty quantification and optimal control. Other highly
visible examples are big data analysis including regression and classification
which typically encounters high-dimensional data as input and/or output.

High dimensional problems cannot be solved by traditional numerical tech-
niques, because of the so-called curse of dimensionality. Rather, they require
the development of novel theoretical and computational approaches to make
them tractable and to capture fine resolutions and relevant features. Para-
doxically, increasing computational power may even serve to heighten this
demand, since the wealth of new computational data itself becomes a major
obstruction. Extracting essential information from complex structures and
developing rigorous models to quantify the quality of information in a high
dimensional setting constitute challenging tasks from both theoretical and
numerical perspective.

The last decade has seen the emergence of several new computational me-
thodologies which address the obstacles to solving high dimensional problems.
These include adaptive methods based on mesh refinement or sparsity, ran-
dom forests, model reduction, compressed sensing, sparse grid and hyperbolic
wavelet approximations, and various new tensor structures. Their common
features are the nonlinearity of the solution method that prioritize variables
and separate solution characteristics living on different scales. These methods
have already drastically advanced the frontiers of computability for certain
problem classes.

This workshop proposed to deepen the understanding of the underlying
mathematical concepts that drive this new evolution of computational meth-
ods and to promote the exchange of ideas emerging in various disciplines
about how to treat multiscale and high-dimensional problems.
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Introduction by the Organisers

Complex scientific models like climate models, turbulence, fluid structure inter-
action, nanosciences and reliability control, demand finer and finer resolution in
order to increase their reliability. This demand is not simply solved by increasing
computational power. Indeed, higher computability even contributes to the prob-
lem by generating wealthy data sets for which efficient organization principles are
not available. Extracting essential information from complex structures and devel-
oping rigorous models for quantifying the quality of information is an increasingly
important issue. These tasks become even more demanding when the problem is
high dimensional, in the sense that it involves a large number of variables.

Inherently high-dimensional problems appear naturally in various scientific dis-
ciplines. Prominent examples of such problems are: (i) PDEs that describe com-
plex processes in computational chemistry and physics, such as the Fokker-Planck
and the Schrödinger equations, (ii) stochastic or parameter-dependent PDEs used
in simulation and optimal control and design, (iii) classification and regression
problems arising in big-data analysis with large number of input/output variables.
While significant advances have been made in “forward problems” trying to exploit
sparsity in effectively recovering high-dimensional functions, corresponding inverse
problems like state- or parameter estimation pose even greater challenges. One
reason is that one usually has to cope with a strong undersampling - a small-data
problem -, due to prohibitive cost or severe obstructions to acquiring observation
data. An important issue is to properly formulate corresponding data-assimilation
frameworks and to understand the role of model reduction and sparse recovery in
this context.

The mathematical methods emerging to address these problems try to exploit
in a subtle way the structure of the problem in order to extract the necessary
information. They have several common features including the determination of
whether the underlying objects have a sufficiently small information content to
be computationally tractable, and how this content might be accessible through
certain sparse representations. The numerical methods themselves are typically
highly nonlinear with the ability of separating solution characteristics living on
different length scales. Having to deal with the appearance and interaction of
local features at different levels of resolution has, for instance, brought about
spatially adaptive methods as a key methodology that has advanced the frontiers of
computability for certain problem classes in numerical analysis. The current state
of signal processing, learning theory, and numerical computation can be viewed
as an evolution from the introduction of multiscale and adaptive methods to the
current high dimensional methods based on concepts such as sparsity, anisotropy,
model reduction, low-rank tensor methods, or random projections.
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Multiscale techniques, such as wavelet decompositions, were introduced to man-
age the interaction of different length scales. In the very spirit of harmonic analysis
they allow one to decompose complex objects into simple building blocks that again
support analyzing multiscale features. Our first Oberwolfach Workshops “Wavelet
and Multiscale Methods” held in July 2004, August 2007 served to bring together
the main developers of multiscale decompositions for signal processing with those
using these techniques for numerical methods for PDEs and thus contributed to
the growth of both of these disciplines. While multiscale techniques were first
exploited primarily for treating explicitly given objects, like digital signals and im-
ages or data sets, the use of such concepts proved important for recovering also
implicitly given objects, like solutions of partial differential or boundary integral
equations, as well. The close marriage of discretization, analysis and the solu-
tion process based on adaptive wavelet methods has led to significant theoretical
advances as well as new algorithmic paradigms for linear and nonlinear station-
ary variational problems. Through thresholding, best N -term approximation, and
adaptivity, multiscale techniques from nonlinear approximation theory and har-
monic analysis become practically manageable. They now are a major component
of modern signal processing and modern numerical computation.

Our last two workshops in August 2010 and “Multiscale and High-Dimensional
Problems held in July/August 2013 recognized the increasing demand on finding
numerical techniques which apply to high dimensional problems. They brought to-
gether various disciplines where such problems are encountered. Those workshops
not only accelerated the advancement of nonlinear and multiscale methodologies
but also provided beneficial cross-fertilizations between the various areas repre-
sented in the workshop, see the Oberwolfach Reports 34/2004, 36/2007, 33/2010,
39/2013. Among the several recognizable outcomes of the workshops were: (i)
the emergence of compressed sensing as an exciting alternative to the traditional
sensing-compression paradigm, (ii) fast online computational algorithms based on
adaptive partition for mathematical learning, (iii) clarification of the role of coars-
ening in adaptive numerical methods for PDEs, (iv) injection of the notion of
sparsity into stochastic models to identify computational paradigms that are more
efficient than Monte Carlo techniques, (v) a coherent theory to explain why tech-
niques like sparse representation and reduced modeling work and how they can be
improved.

The current workshop Multiscale and High-Dimensional Problems organized by
Albert Cohen (Université Paris VI), Wolfgang Dahmen (RWTH Aachen), Ronald
A. DeVore (Texas A&M University) and Angela Kunoth (Universität zu Köln) was
once again directed at multi-scale and high dimensional problems incorporating the
new emerging aspects mentioned above. It focussed on the interaction of scientists
from different disciplines and thereby result in more rapid developments of new
methodologies in these various domains. It was also a bridge from theoretical
foundations to applications, such as mechanical engineering, mathematical biology,
quantum chemistry, signal and image processing, complex fluid flows. Examples
of conceptual issues that were addressed in our workshop were:
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• adaptive and nonlinear multilevel methods for high-dimensional PDEs, for
parametric PDEs and PDEs with stochastic data;

• multilevel and high-dimensional meshless methods;
• incorporating anisotropy in analysis, estimation, compression and encod-
ing;

• interaction of different scales and variables under relevant linear and non-
linear mappings;

• convergence theory and analysis for model reduction and low-rank meth-
ods;

• numerical aspects of compressed sensing;
• design and analysis of estimators in high dimensional machine learning;
• solution concepts for problems of high spatial dimension utilizing aniso-
tropy;

• data assimilation and inversion concepts in high dimensional settings;
• tensor structures and tensor sparsity for high dimensional approximation
problems.

In summary, the conceptual similarities that occurred in a variety of applica-
tion domains suggested that a wealth of synergies and cross–fertilization could be
exploited. These concepts are in our opinion not only relevant for the development
of efficient solution methods for large scale and inherently high-dimensional prob-
lems but also for the formulation of rigorous mathematical models for quantifying
the extraction of essential information from complex objects in many dimensions.

As in the previous workshops, the participants were experts in areas like non-
linear approximation theory, statistical learning theory, compressed sensing, ten-
sor approximations hyperbolic cross approximation, finite elements, multigrid and
spectral methods, harmonic analysis and wavelets, numerical fluid mechanics con-
servation laws, inverse problems stochastic PDEs, PDE-constrained control prob-
lems, and model reduction.
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Abstracts

Polynomial approximation of smooth, multivariate functions on
irregular domains

Ben Adcock

(joint work with Juan Manuel Cárdenas, Daan Huybrechs and Sebastián
Scheuermann)

Many problems in scientific computing call for the approximation of a smooth
function f(y) defined on a d-dimensional tensor-product domain. A popular ap-
proach for doing this involves expanding f in an orthonormal basis of polynomials.
Recent results have shown that this approximation can be computed stably and
efficiently via discrete least-squares fitting, provided the samples are chosen ran-
domly according to an appropriate measure. Moreover, it is often possible to
achieve sample complexity estimates that are independent of the dimension d, and
depending only polynomially on the dimension of the polynomial space.

However, in many practical problems f(y) is either not defined over a tensor-
product domain or can only be sampled over a subset of such a domain. In both
cases, one effectively faces the challenge of approximating a smooth function over
an irregular domain Ω. Such a domain may be nonconvex, non-simply connected,
or not even explicitly defined.

In this work, we consider a method for approximating of smooth functions
on irregular domains, known as polynomial frame approximations. This method
proceeds as follows. First, the irregular domain Ω is embedded in a tensor-product
domain D – for example, the unit cube (−1, 1)d if Ω is compact. Second, an
orthogonal polynomial basis is chosen on D. Third, M samples f(y1), . . . , f(yM )
are taken in the domain Ω, and finally, an approximation is computed in the
polynomial system from these samples. This work primarily considers discrete
least-squares approximation in a polynomial space of dimensionN ≤M . However,
other approaches may be possible, including interpolation (N =M) or compressed
sensing (N > M).

The approach outlined above is extremely simple – in essence, all it requires
is the knowledge of a bounding box D and an algorithm for determining whether
or not a point y ∈ D also belongs to Ω – and can be applied to virtually any
domain. However, its numerical implementation presents an immediate challenge.
In transpires that the matrix of the algebraic least-squares problem is typically
highly ill-conditioned. This is due to the fact that the orthonormal polynomial
system is no longer a basis when restricted to Ω, but rather a frame. Frames are
redundant systems of functions that span a Hilbert space, and this redundancy
translates into finite ill-conditioning of the least-squares matrix. To illustrate how
bad such ill-conditioning can be, we note in passing that if a hyperbolic cross
polynomial space PHC

n of degree n is used, then the condition numbers grow faster
than any power of n as n→ ∞.
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Fortunately, the structure endowed on the approximation by the frame property
means that effective regularization of the least-squares problem is possible. It is
straightforward to show that polynomials corresponding to small singular values
of the least-squares matrix are necessarily concentrated on D\Ω, meaning that
their overall contribution to the polynomial approximation in Ω is minimal. This
suggests a valid approach for regularization of the algebraic least-squares problem:
namely, singular value thresholding.

Let Υ = {y1, . . . ,yM} be the set of M ≥ N points at which f is sampled, P be
the N -dimensional polynomial space in which the approximation is computed, ǫ >
0 be the SVD truncation parameter below which all singular values are discarded
and f̃ be the approximation to f from P computed via the SVD-regularized least-
squares fit. A result proved in [1] gives that

‖f − f̃‖L2(Ω) ≤ C(Υ,P , ǫ)EP,ǫ(f),

where C(Υ,P , ǫ) is a constant depending on Υ,P and ǫ and EP,ǫ(f) is an approx-
imation error term given by

EP,ǫ(f) = inf
{

‖p− f‖L∞(Ω) + ǫ‖p‖L2(D) : p ∈ P
}

.

Moreover, if x is the vector of coefficients of f̃ in the polynomial system then one
has the stability result

‖x‖ℓ2 ≤ EP,ǫ(f)

ǫ
.

Up to the constant C(Υ,P , ǫ) (discussed below), these estimates imply that the
approximation error and stability of the coefficients depend on how well f can be
approximated on D by polynomials which do not grow too large on D. A typical
result is as follows. Suppose that f is the restriction of a function belonging to
the Sobolev space of dominating mixed smoothness Hk

mix
(D), and let P = PHC

n be
the hyperbolic cross polynomial space. Then

(1) EP,ǫ(f) ≤ n3/2−k‖f‖Hk
mix

(D) + ǫ‖f‖L2(D).

Thus, for smooth f , superalgebraic convergence can be expected down to the
tolerance ǫ. Furthermore, the coefficients x, although at most 1/ǫ in magnitude,
are necessarily order one in the limit n→ ∞.

For an accurate approximation, the constant C(Υ,P , ǫ) should be small. This
depends on the number of sample points M and their distribution. To obtain con-
crete estimates, one approach involves drawing samples y1, . . . ,yM independently
according to the uniform measure on the (assumed measurable) set Ω. Using tech-
niques from random matrix theory, one can then show that C(Υ,P , ǫ) . 1 with
high probability, provided

M & (N(P ,Ω))2 log(N).

Here N(P ,Ω) is the constant in the Nikolskii-type inequality for the polynomial
space P over the domain Ω:

N(P ,Ω) = sup
{

√

Vol(Ω)‖p‖L∞(Ω) : ‖p‖L2(Ω) = 1
}

.
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The behaviour of N(P ,Ω) for general domains Ω and polynomial spaces P is
unknown. However, in some case explicit estimates are available. For example, if
Ω is a union of rectangles of volume at least λVol(Ω) (for some 0 < λ < 1) then

N(PHC
n ,Ω) ≤ N2/λ.

Hence for such domains the sample complexity for a hyperbolic cross polynomial
approximation is at most quadratic in N = |PHC

n |. See [1] for further details.

Conclusions and challenges. This work shows that accurate and numeri-
cally stable polynomial approximations of smooth functions can be computed over
general irregular domains using a simple algorithm. Accuracy and stability are
determined by how well f is approximated by polynomials that do not grow too
large on the extended domain D, and sample complexity (for random samples
drawn from the uniform measure) is determined by the Nikolskii-type inequality
for the polynomial space. A key ingredient of these results is the fact that the
polynomial system forms a frame over Ω, which implies stability and accuracy of
the regularized least-squares approximation.

There are several challenges for future research. First, the bound (1) for the
approximation error EP,ǫ(f) is only valid for functions f which have mixed regu-
larity over the extended domain D. This does not appear to be necessary. In the
case of classical Sobolev regularity, it is enough to assume that f ∈ Hk(Ω). Stan-
dard Sobolev extension theorems can then be used to estimate EP,ǫ(f). However,

such estimates lead to approximation rates depending on n−k/d, where d is the
dimension (the curse of dimensionality). We suspect a similar extension argument
could be used in the case of mixed regularity, but this relies on extension theorems
for mixed Sobolev spaces.

Second, the sample complexity estimate is provably quadratic in N for suitable
domains. Yet there is numerical evidence to suggest that it may in fact be linear
[4]. This remains a conjecture. A related open problem is that of designing better
measures from which to sample, with the aim of lowering the sample complexity.
Another open problem is the question of proving sample complexity estimates for
domains that cannot be written as a union of rectangles with nonvanishing vol-
ume; a class which includes triangles, simplices, spheres and many other instances
relevant in practice.

Third and finally, this work has considered discrete least-squares fitting only.
However, algorithms based on compressed sensing techniques have begun to gain
prominence in high-dimensional polynomial approximation on tensor-product do-
mains. The extension of this work to irregular domains is an interesting topic for
future research.
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Submodular optimization: from discrete to continuous domains

Francis Bach

Submodular set-functions have many applications in combinatorial optimization,
as they can be minimized and approximately maximized in polynomial time (in
the ambient dimension and the inverse of the required precision). A key element in
many of the algorithms and analyses is the possibility of extending the submodular
set-function to a convex function, which opens up tools from convex optimization.
Submodularity goes beyond set-functions and has naturally been considered for
problems with multiple labels or for functions defined on continuous domains,
where it corresponds essentially to cross second-derivatives being nonpositive, that
is, if H : Rn → R is twice differentiable, then it is submodular if and only if

∀x ∈ R
n, ∀(i, j) ∈ {1, . . . , n}, i 6= j ⇒ ∂2H

∂xi∂xj
(x) 6 0.

In this work, we show that most results relating submodularity and convexity
for set-functions [1, 2] can be extended to all submodular functions. In particular,

• we naturally define a continuous extension in a set of probability mea-
sures, based on a joint thresholding of the inverse cumulative distribution
functions,

• we show that the extension is convex if and only if the original function is
submodular,

• we prove that the problem of minimizing a submodular function is equiv-
alent to a typically non-smooth convex optimization problem, and (d)
propose another convex optimization problem with better computational
properties (e.g., a smooth dual problem).

Most of these extensions from the set-function situation are obtained by drawing
links with the theory of multi-marginal optimal transport, which provides also a
new interpretation of existing results for set-functions. We then provide practical
algorithms to minimize generic submodular functions on discrete domains, with
associated convergence rates, with an application to computing proximal operators
for non-convex regularizers.

Further information can be found in [3].
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Space-parameter-adaptive approximation of affine-parametric elliptic
PDEs

Markus Bachmayr

(joint work with Albert Cohen, Wolfgang Dahmen, Dinh Dũng, Giovanni
Migliorati, and Christoph Schwab)

We consider the diffusion problem − div(a∇u) = f on D ⊂ R3, d ∈ {1, 2, 3}, with
u|∂D = 0, where a is an affine function of the parameters y = (yj)j≥1 ∈ U :=
[−1, 1]N, that is,

(1) a(y) = ā+
∑

j≥1

yjψj .

Our aim is to approximate the solution map y 7→ u(y), where u(y) ∈ V := H1
0 (D),

as an element of the space V := L2(U, V, µ) with µ the uniform measure on U . We
assume ā, ψj ∈ L∞(D), j ≥ 1, to satisfy the uniform ellipticity condition

(UEA) ess inf ā > 0,
∥

∥

∥

1

ā

∑

j≥1

|ψj |
∥

∥

∥

L∞
< 1.

Then u is characterized by the V-elliptic variational formulation

(2)

∫

U

∫

D

a∇u · ∇v dx dµ(y) =
∫

U

〈f, v〉V ′,V dµ(y), v ∈ V .

Let Lν(y) :=
∏

j≥1 Lνj (yj) denote the L2(U, µ)-orthonormal product Legendre

polynomials. With F denoting the set of compactly supported elements of NN
0 ,

(Lν)ν∈F is an orthonormal basis of L2(U, µ). The approximations we consider are
based on the Legendre expansion u =

∑

ν∈F uν Lν, and are obtained by appropri-
ately truncating the summation over ν to finitely many terms and using spatial
approximations for the coefficients uν ∈ V .

The main focus in this presentation are parametric expansions (1) corresponding
to random fields of low smoothness. In treating such cases, functions ψj with
multilevel structure turn out to be advantageous. In what follows, we consider the
following example of such an expansion: let α > 0 and let {ψµ}µ∈P be wavelet-type

basis functions on D scaled such that ‖ψµ‖L∞ = c2−α|µ| with a c > 0, where µ are
scale-space indices with levels |µ|. We assume that there are O(2dℓ) functions on
level ℓ with finite overlap, that is, withM > 0, #{µ : |µ| = ℓ and ψµ(x) 6= 0} ≤M
for all x and ℓ. Let ψj := ψµj in (1), ordered by increasing level, so that ‖ψj‖L∞ .

j−α/d. In addition, let ψµ ∈ Cκ for a κ > ⌈α⌉, then supy∈U ‖a(y)‖Cα <∞ for α /∈
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N. If f , ā and D have sufficient regularity, this also implies supy∈U ‖u(y)‖H1+β <
∞ for all β < α, leading to a spatial approximation rate up to α

d in V for each
single instance u(y).

For α ≤ d, the result from [5] that (‖ψj‖L∞)j≥1 ∈ ℓp(N) with 0 < p < 1 implies
(‖uν‖V )j≥1 ∈ ℓp(F) is not applicable. The following result, which is instead based
on pointwise summability of |ψj |, is shown in [1].

Theorem 1 ([1]) Assume that with ρj > 0, we have the weighted UEA

(UEAρ) ess inf ā > 0,
∥

∥

∥

1

ā

∑

j≥1

ρj |ψj |
∥

∥

∥

L∞
< 1 .

Then with ρν :=
∏

j≥1 ρ
νj
j ,

∑

ν∈F

(

a−1
ν ρν‖uν‖V

)2
<∞, aν :=

∏

j≥1

√

2νj + 1.

By Hölder’s inequality, from this weighted ℓ2-summability one can deduce ℓp-
summability.

Corollary 2 ([1]) Let 0 < p < 2 and 0 < q <∞ be such that 1
p = 1

q+
1
2 . Moreover,

let ρj > 1 and (ρ−1
j )j≥1 ∈ ℓq(N). Then (‖uν‖V )ν∈F ∈ ℓp(F).

In the above multiscale example, we can take ρj ∼ 2β|µj| for any 0 < β < α,

that is, (ρ−1
j )j≥1 ∈ ℓq(N) for any q > d/α. One thus arrives at
∥

∥

∥
u−

∑

ν∈Λn

uν Lν

∥

∥

∥

V
≤ Cn−s, for any s =

1

p
− 1

2
<

1

q
<
α

d
.

A first option for combining this with a spatial discretization is to fix a hierarchy
of finite-dimensional subspaces {0} = V0 ⊂ V1 ⊂ · · · ⊂ V , and to define for
n = (nν)ν∈F ∈ F the approximation un :=

∑

ν∈F uν,nν Lν with uν,nν ∈ Vnν .
The convergence of un with respect to the total number of degrees of freedom
N(n) :=

∑

ν∈F nν can be estimated based on summability of the higher-order
norms ‖uν‖W := ‖∆uν‖L2 . With appropriately refined nested spaces Vn with
dim(Vn) ∼ n, one has the approximation property

(3) min
vn∈Vn

‖v − vn‖V . n− 1
d ‖v‖W .

If W = H2(D) by elliptic regularity (e.g. when D is convex), uniformly refined
finite element meshes suffice. The following summability result for W -norms is
shown in [3].

Theorem 3 ([3]) Assume that (UEA) holds, that f ∈ L2(D) and that ā, ψj ∈
W 1,∞(D), j ≥ 1. If there exists a positive sequence ρ = (ρj)j≥1 such that

∥

∥

∥

1

ā

∑

j≥1

ρj |ψj |
∥

∥

∥

L∞
< 1,

∥

∥

∥

∥

∑

j≥1

ρj |∇ψj |
∥

∥

∥

∥

L∞

<∞,

then
∑

ν∈F

(

a−1
ν ρν‖uν‖W

)2
<∞.
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Provided that one can choose ρj > 1 with (ρ−1
j )j≥1 having ℓq-summability for

some q > 0, as in Corollary 2 one can show ℓp-summability of (‖uν‖W )ν∈F with a
p < 2. However, this is not possible in our example when 0 < α ≤ 1, since we only
have ‖∇ψj‖L∞ . 2−(α−1)|µj |. This issue can be circumvented by the following
interpolation argument given in [3]: Let 0 < θ < 1, Z = [V,W ]θ, and

∑

ν∈F

(a−1
ν ρ̂ν‖uν‖V )2 <∞ and

∑

ν∈F

(a−1
ν ρν‖uν‖W )2 <∞.

Then with ρ̃j = ρ̂1−θ
j ρθj , one also has

∑

ν∈F(a
−1
ν ρ̃ν‖uν‖Z)2 < ∞. In our example

with α ≤ 1 and 0 < θ < β < α, this can be applied with ρ̂j ∼ 2β|µj | ↑ ∞,

ρj ∼ 2(β−1)|µj| ↓ 0 to obtain weighted summability with ρ̃j ∼ 2(β−θ)|µj| ↑ ∞.
Optimizing n = (nν)ν∈F as detailed in [3], one subsequently arrives at the following
result in our example: there exist n with N = N(n) → ∞ such that

‖u− un‖V . N−s, for any s <
α

2d
.

As we outline next, adaptive approximation of each uν can yield better con-
vergence. We focus on spatial wavelet approximations: With (Ψλ)λ∈S a wavelet
Riesz basis of V , (Ψλ⊗Lν)(λ,ν)∈S×F is a Riesz basis of V . Based on the expansion
u =

∑

(λ,ν)∈S×F uλ,νΨλ ⊗ Lν , we consider the best N -term approximations u[N ]

defined by retaining the indices (λ, ν) of the N largest |uλ,ν |.
Corresponding approximation results are shown in [3] via summability of the

norms ‖uν‖Bτ := ‖uν‖V +‖∆uν‖Lτ , 1 < τ < 2. We now assume that D is convex,
so that elliptic regularity ensures Bτ = W 2,τ (D). Under essentially the same
conditions, we obtain stronger summability of these weaker norms.

Theorem 4 ([3]) Let 1 ≤ τ < 2. Assume f ∈ H−1(D) ∩ Lτ (D), that (UEA)
holds, and that ā, ψj ∈ W 1,∞(D), j ≥ 1. If there exist positive sequences (ρj)j≥1,
(ρ̂j)j≥1 such that ρ̂j/ρj > 1 and (ρj/ρ̂j)j≥1 ∈ ℓq(N) with 1

2 + 1
q = 1

τ and

∥

∥

∥

1

ā

∑

j≥1

ρ̂j |ψj |
∥

∥

∥

L∞
< 1,

∥

∥

∥

∥

∑

j≥1

ρj |∇ψj |
∥

∥

∥

∥

L∞

<∞,

then
∑

ν∈F

(

a−1
ν ρν‖uν‖Bτ

)τ
<∞.

For α ≤ 1, this can again be combined with an interpolation argument: Let
0 < θ < 1, Z := [V,Bτ ]θ. Then under the assumptions of Theorem 4, with

ρ̃j := ρ̂1−θ
j ρθj ,

∑

ν∈F

(

a−1
ν ρ̃ν‖uν‖Z

)ζ
<∞,

1

ζ
=

1

2
+

(

1

τ
− 1

2

)

θ.

For elements of Z, analogously to (3), best n-term approximations with respect to
(Ψλ)λ∈S converge with rate θ/d. Choosing weights as above, as shown in [3], for
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0 < α ≤ 1 in our example one arrives at

(4) ‖u− u[N ]‖V . N−s, for any s <







2
3α, d = 1,

α

d
d = 2, 3.

These results are numerically observed to be sharp.
Moreover, it is shown in [2] that the representation of the operator in (2) with

respect to the basis (Ψλ ⊗ Lν)(λ,ν)∈S×F is s∗-compressible (cf. [4]) with s∗ =
1

1+d/(2γ)
α
d , provided that ψj∇Ψλ ∈ Hγ and Ψλ has ⌈γ − 1⌉ vanishing moments.

Thus, with γ sufficiently large, approximations with convergence as in (4) can be
computed by standard adaptive algorithms [4] using a number of operations that
scales almost linearly with respect to N .
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Sampling and geometric optimization in high dimensions

Chandrajit Bajaj

Geometric optimization is the computational reduction technique of choice for
a wide variety of model selection, ranking and assembly prediction problems.
Moreover, optimization occurs naturally for solutions to rigid and flexible geomet-
ric shape similarity, complementarity matching problems (e.g. predicting multi-
component assemblies, disaster reconstructions etc) . The optimization functional
is often a multi-dimensional correlation integral while the search space is the prod-
uct of transformations groups with dimension growth exponential in the number of
movable components (e.g. O(3n) for an n-residue torsionally flexible molecule)[1].
In this talk, I present a solution framework for geometric optimization methods
that combat the curse of high dimensionality, and also achieve adequate trade-
offs between speed and accuracy. Fast approximate estimations to the geometric
similarity or complementarity matching optimization problems take advantageof
a new scheme of generating low-discrepancy samplings of the n-product config-
uration spaces[2], as well as the speedup utilization of approximate non-uniform
fast Fourier transforms[1]. As applications of this to geometric optimization based
prediction of multi-component assemblies, I present a general approximation algo-
rithm for non-convex objective functions, and then describe provably polynomial
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time approximation scheme (PTAS). The latter is by reduction to Semi-Definite
Programming (SDP) for the special cases of rigid multi-piece 3D assemblies , and
symmetric 3D spherical shell assemblies, given a constant number of primitive com-
ponent molecules that make up the asymmetric unit. This prediction optimization
is based on a method for generation of congruently tiled spherical arrangements
using a new generative class of polyhedra[3].

Further information can be found in these publications [1, 2, 3].
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Diffusion coefficients estimation revisited: Stability and open problems

Andrea Bonito

(joint work with Albert Cohen, Ronald A. DeVore, Guergana Petrova, Gerrit
Welper)

We consider the Dirichlet problem

−div(a∇ua) = f on D, ua = 0 on ∂D,

for a Lipschitz domain D ⊂ Rd, d ≥ 1. Here f belongs to L∞ and a ∈ A, where
for 0 < λ ≤ Λ

A := {b ∈ L∞(D) : λ ≤ b ≤ Λ} .
We propose to revisit the question of parameter estimation or identifiability

in this context. This is to establish conditions under which, for a given f , the
diffusion coefficient a is uniquely determined from the solution ua to the above
elliptic equation. We are also interested in the question of stable recovery, i.e.
whether when ub is close to ua, say in the H1

0 (D) norm, then b is close to a in
some appropriate Lp(D) norm.

Before describing our main result, a few comments are in order. We first note
that we have at our disposal a single right hand side f (and therefore a single
solution ua) for the recovery of a. This is in contrast with the celebrated Calderón
problem [3], where only boundary data are considered but the full knowledge
of the Dirichlet to Neumann map is assumed. Along these lines, if instead we
assume the full knowledge of the solution operator Sa : H−1(D) → H1

0 (D), where
Saf := ua(f), then we have

‖Sa − Sb‖H−1(D)→H1
0 (D) ∼ ‖a− b‖L∞(D).

Another important point, is that the diffusion coefficient a cannot be recovered if
∇ua vanishes on a set of non-zero measure. However, in that case f must vanishes
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as well. Therefore, in order to avoid this degeneracy, we assume that f is strictly
positive.

Our main result reverses the forward estimate in [2] and guarantees the existence
of a constant C only depending on D, d, θ, λ and Λ such that

‖a− b‖L2(D) ≤ C
√

1 + (‖a‖Hs(D) + ‖b‖Hs(D))
1
3s ‖ua − ub‖

1
6−

1−s
6sθ

H1
0

,

provided a, b ∈ A ∩Hs(D) with p
2(p−1) < s ≤ 1. We refer to [1] for more details

and for improved stability estimates when additional smoothness on a, b and the
domain D is assumed.

We conclude the talk by discussing open problems including:

• Are the values found for α sharp? When d = 1, the explicit expression of
the solution ua shows that α = 1

3 and cannot be improved. When a, b are
piecewise constant in any dimension, we have α = 1 but at the expense of
having a stability constant C depending linearly on the number of pieces.
The sharpness of α in generic cases is unknown.

• Is it possible to remove the positivity assumption on f by allowing for
multiple right hand sides?

• Is it possible to recover (again using multiple right hand sides) tensor
coefficients?
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A sparse grid collocation method based on LaVallée Poussin kernel

Moulay Abdellah Chkifa

We present a new approach to polynomial approximation of functions in high di-
mension. The new scheme is a non-intrusive collocation method based on Smoly-
ack formula applied with a polynomial scheme in one dimension using Fejér and
LaVallée Poussin type sums. Smolyack formula allows us to transform a hierarchi-
cal collocation strategy in one dimension to a hierarchical collocation strategy in
high dimension with possibly a straightforward computational formula and simi-
lar stability properties. More precisely, we let (Ik)k≥0 be a sequence of operators
defined each from C([−1, 1],R) into Pk := span{tj : j = 0, . . . , k} the space of
polynomials of degree at most k and reproducing Pk, i.e

(1) Ik[f ] ∈ Pk, Ik[Q] = Q, Q ∈ Pk,
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and we introduce the convention I−1 = 0. For a given set Λ ⊂ N
d, the Smolyack

formula is given by

(2) IΛ :=
∑

ν∈Λ

⊗d
j=1(Iνj − Iνj )

The operator IΛ defines a polynomial operator over C([−1, 1]d,R). In the case
where Λ ⊂ Nd a lower set, i.e. ν ∈ Λ and µ ≤ ν implies µ ∈ Λ, where the order
relation ν := (ν1, . . . , νd) ≤ µ := (µ1, . . . , µd) means ν1 ≤ µ1, . . . , νd ≤ µd, the
operator IΛ defines an operator from C([−1, 1]d,R) into

(3) PΛ := span{yν := yν11 . . . yνdd : ν ∈ Λ},
that reproduce PΛ, i.e.

(4) IΛ[f ] ∈ PΛ, IΛ[Q] = Q, Q ∈ PΛ.

In the case where the operators Ik are hierarchical interpolation operators associ-
ated with the nested sections (r0, . . . , rk+1) of a fixed sequence R := (r0, r1, . . . )
of mutually distinct abscissas in [-1,1], the operators IΛ are also interpolation
operators. This case is studied in [1].

In this work, we consider operators Ik that are based on Lavallée Poussin sums
and discuss the accuracy and stability of the obtained high dimensional scheme
with respect to the numerical cost, which is mainly dominated by the number
of collocations for problems in uncertainty quantification. The accuracy versus
the number of collocations is used as a benchmark for comparing the new scheme
to other sheme such as sparse hierarchical interpolation studied in [1] and least
squares studied in [2].
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Phase retrieval in infinite dimensions

Ingrid Daubechies

(joint work with Rima Al-Aifari, Jameson Cahill, Pete Casazza, Gaurav Thakur
and Rachel (Rujie) Yin)

In the last 10 to 15 years, mathematical interest in phase retrieval has intensified
again. In particular, progress has been made on the question whether and under
what conditions a vector f ∈ V can be recovered from the magnitudes |〈 f, ϕα 〉|
of its scalar products with all the elements in a frame (ϕα)α∈A for the vector space
V . If the space V has finite dimension N , then it is known that the frame should
have (approximately, up to an additive constant) at least 2N vectors if V is real,
or 4N vectors of V is a complex vector space. Moreover, it is then also known
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that if recovery of f is possible (i.e. if the map is injective), then it is is stable, i.e.
that there is a positive constant C such that

inf
|c|=1

‖ f − c g ‖2ℓ2 ≤ C
∑

α∈A

[ |〈 f, ϕα 〉| − |〈 g, ϕα 〉| ]2 .

In the infinite-dimensional case, the situation is radically different. Although there
are situations in which it can be shown that for a frame of functions (ϕα)α∈A

with sufficient high redundancy, a function f is completely determined by the
magnitudes (|〈 f, ϕα 〉|)α∈A, stability (in the sense of the inequality above) can
never be achieved. Constructive counterexamples typically consist of functions
that “naturally” decompose into several terms that are quite distinct and that are
well-separated. It is then natural to consider a limited phase retrieval, in which
each of the well-separated components can be retrieved, even if the relative phase
between them cannot be. The talk presented several examples, together with
theorems proving that this new, more limited phase retrieval, can be possible in
infinite dimensions.

This presentation was based on joint work with Rima Al-Aifari, Jameson Cahill,
Pete Casazza, Gaurav Thakur and Rachel (Rujie) Yin.

Computing a quantity of interest from observational data

Simon Foucart

(joint work with Ronald DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk)

Scientific problems often feature observational data received in the form w1 =
l1(f), . . ., wm = lm(f) of known linear functionals applied to an unknown func-
tion f from some Banach space X , and it is required to either approximate f
(the full approximation problem) or to estimate a quantity of interest Q(f). In
typical examples, the quantities of interest can be the maximum/minimum of f
or some averaged quantity such as the integral of f , while the observational data
consists of point evaluations. To obtain meaningful results about such problems,
it is necessary to possess additional information about f , usually as an assumption
that f belongs to a certain model class K contained in X . This is precisely the
framework of optimal recovery, which produced substantial investigations when the
model class is a ball of a smoothness space, e.g. when it is a Lipschitz, Sobolev, or
Besov class. This presentation is concerned with other model classes described by
approximation processes, as studied in [1]. Its main contributions are: (i) for the
estimation of quantities of interest, the production of numerically implementable
algorithms which are optimal over these model classes, (ii) for the full approxi-
mation problem, the construction of linear algorithms which are optimal or near
optimal over these model classes in case of data consisting of point evaluations.
Regarding (i), when Q is a linear functional, the existence of linear optimal algo-
rithms was established by Smolyak, but the proof was not numerically constructive.
In classical recovery settings, it is shown here that such linear optimal algorithms
can be produced by constrained minimization methods, and examples involving
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the computations of integrals from the given data are examined in greater details.
Regarding (ii), it is shown that linearization of optimal algorithms can be achieved
for the full approximation problem, too, in the important situation where the lj
are point evaluations and X is a space of continuous functions equipped with the
uniform norm. It is also revealed how the quasi-interpolation theory allows for the
construction of linear algorithms which are near optimal.
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Stable Alternating Least Squares Approximation (SALSA)

Lars Grasedyck

(joint work with Sebastian Krämer)

Low rank tensor or matrix completion is a highly ill-posed inverse problem, par-
ticularly when the data model is not accurate or has to be chosen adaptively, and
some sort of regularization is required in order to solve it. Here, we focus on the
calibration of the data model in the sense that the model is vaguely fixed (the TT
tensor train low rank format) but some critical parameters have to be adapted
— in this case the many different ranks. For alternating optimization, we observe
that existing rank adaption methods do not enable a continuous transition between
manifolds of different ranks. We denote this flaw as instability (under truncation),
as results change dramatically when the (discrete) rank parameter is minimally
changed. As a consequence of this flaw, arbitrarily small changes in the singular
values of an iterate can have arbitrarily large influence on the further reconstruc-
tion. We therefore introduce a singular value based regularization to the stan-
dard alternating least squares (ALS), which is motivated by averaging in micro-
steps. We prove its stability and derive a natural semi-implicit rank adaption
strategy. We further prove that the standard ALS micro-steps are only stable
on manifolds of fixed ranks, and only around points that have what we define as
internal tensor restricted isometry property iTRIP. Finally, we provide numerical
examples that show improvements of the reconstruction quality up to orders of
magnitude in the new Stable ALS Approximation (SALSA) compared to standard
ALS.

References
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On foundational computational barriers in high-dimensional
regularisation problems

Anders C. Hansen

(joint work with Alex Bastounis and Verner Vlacic)

The use of regularisation techniques in various areas of mathematics has become
highly popular over the last decades and has in many cases changed the state
of the art from linear techniques to non-linear approaches, typically via convex
problems such as Basis Pursuit and Lasso [3, 4, 5, 6, 7, 8, 9, 15, 16]. There are
six dominant techniques that involve l1 and Total Variation (TV) minimisation,
namely, one wants to compute

z ∈ argmin
x

J (x) such that ‖Ax− y‖ ≤ δ, δ ≥ 0, Basis Pursuit (BP)

z ∈ argmin
x

‖Ax− y‖2 such that J (x) ≤ τ, τ > 0, Constrained Lasso (CL)

z ∈ argmin
x

‖Ax− y‖22 + λJ (x), λ > 0, Unconstrained Lasso (UL)

(1)

where A ∈ Cm×N , y ∈ Cm and

J (x) = ‖x‖1 or J (x) = ‖x‖TV.

However, one must ask: can we always find algorithms that can compute accu-
rate approximations to solutions of these problem? Determining the boundaries
of what computers can achieve through existence and non-existence statements
of algorithms has a rich history in mathematics. Famous cases include Hilbert’s
question [12] on the existence of algorithms for decision problems that led to Tur-
ing’s seminal work [17]. Another slightly different question, more related to the
issues addressed in this talk, is Smale’s question on the existence of purely itera-
tive generally convergent algorithms for polynomial root finding. The latter case is
rather delicate as it was solved in the negative by McMullen [13], however, Doyle
and McMullen showed a positive result that the quintic could be solved by purely
iterative generally convergent algorithms by using several limits [10].

In this talk we establish the boundaries of what computers can achieve in reg-
ularisation, as described above, by asking and answering questions on existence
of algorithms, similar to Smale’s question above. This is done by providing new
techniques and developments in the Solvability Complexity Index (SCI) hierarchy
[11, 1] which yield results that are universal regardless of the computational model.
The crucial problem is to handle inexact input.

Inexact input: The input in A and y may not be exact, but computed ap-
proximations. This can be caused in the simplest cases by simply having

√
2, e2πi5

or cos(3) as an input. These numbers can be obtained with arbitrary accuracy,
however, they are never exact. Moreover, the frequent use of the discrete Fourier,
wavelet or cosine transforms suggest that this is a daily encounter in practice.
Moreover, an overwhelming amount of modern software used is based on floating
point arithmetic. Thus, even if the input is based on rational numbers, there will
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be inexactness due to the floating point representation. This leads to the following
basic question.

Question 1 (Existence of algorithms). Given any of the problems in (1),
where the input may be given with some inaccuracy controlled by ǫ̂ > 0, does there
exists an algorithm that can compute an approximate solution, such that, for an
arbitrary ǫ > 0, the output will be no further than ǫ away from a true solution?
The algorithm can choose ǫ̂ to be as small as desired (as a function of ǫ and the
input) to produce the output.

We are interested in computing a minimiser itself and not the real number
value of the minimum the objective function. The latter problem of computing
the minimal value is much easier to compute than the former, and there is a very
well established literature addressing this question [2, 14].

We are of course assuming that the matrix A ∈ Cm×n, where m ≤ n, is nice
so that the condition number cond(AA∗) ≤ M < ∞. In our case we take M = 2.
Moreover, the inexactness is always assumed to be very much within the bound-
aries of feasibility, and can be made as small as one desires.

Arbitrary slowness and unknown error: A negative answer to Question
1 implies that for fixed dimensions and any small accuracy parameter ǫ > 0, one
can choose an arbitrary large time T , say T = 50 billion years, and find an input
such that the algorithm will still after 50 billion years not have reached ǫ accuracy.
However, it is impossible to determine when the algorithm should halt to achieve
an ǫ accurate solution, and hence the algorithm will never be able to produce an
output where one knows that the output is at least ǫ accurate. The largest ǫ for
which this failure happens is called the Breakdown-epsilon, ǫB.

1. The main results

Given the great success of the many algorithms applied in different scenarios sug-
gests that the answer to Question 1 must be yes. Yet, we have the following
paradox.

Answer 1 (Existence of algorithms). Given any of the problems in (1), the
answer to Question 1 is no, even when the input is bounded and well conditioned.
This is universal regardless of the model of computation. Moreover, the answer
to Question 1 is no for Unconstrained Lasso and Basis Pursuit with noise even
when restricting to matrices that satisfy the Robust Nullspace Propert (RNP) (a
key assumption in sparse recovery). In fact, a positive answer to Question 1 would
imply decidability of well-known undecidable problems.

Answer 1 seems like a paradox given the success of many algorithms used in
practice, and thus raises the following basic question.

Question 2 (Why do many algorithms work well). Given the paradox above,
why do many algorithms perform very well in many real-world scenarios?

To answer Question 2 one first has to examine the consequences of the above
paradox and the subsequent questions that follow.
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(i) The first consequence is that classes of problems become too big for one
algorithm. However, by splitting into subclasses and by using the particu-
lar structure of a subclass, one may be able to construct an algorithm for
the subclass in the sense of Question 1, however, different subclasses will
require different algorithms.

(ii) If one has constructed an algorithm, it will only work (in the sense of
Question 1) for certain subclasses of problem, the question is: which sub-
classes?

(iii) If a class of problems is such that it is impossible to design accurate algo-
rithms for the class (in the sense of Question 1), what is the Breakdown-
epsilon? And what is the algorithm realising the basic barrier? It could
still be that the Breakdown-epsilon is good enough for the specific purpose
of the computation.

Summing up the discussion above we end up with the following list of basic
questions.

Question 3 (Existence of algorithms for subclasses). (i) Given any of
the problems in (1), which subclasses Ω of inputs A and y will provide a
positive answer to Question 1?

(ii) Given an algorithm for solving any of the problems in (1), for which sub-
classes Ω of input will the algorithm be accurate in the sense of Question
1?

(iii) Which subclasses Ω of inputs give negative answers to Question 1, and
what is the Breakdown-epsilon?

This talk addresses these questions, however, we can only scratch the surface,
as this is a highly comprehensive classification program.
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Novel results for the anisotropic sparse grid quadrature

Helmut Harbrecht

(joint work with Abdul-Lateef Haji-Ali, Michael Peters, Markus Siebenmorgen)

1. Introduction

The anisotropic sparse grid quadrature can be applied for high-dimensional in-
tegrands which are analytically extendable into an anisotropic tensor product
domain. Taking into account this anisotropy, we end up with a dimension in-
dependent error versus cost estimate of the proposed quadrature. In addition, we
provide a novel and sharp estimate for the cardinality of the underlying anisotropic
index set. To validate the theoretical findings, we present numerical results which
demonstrate the remarkable convergence behaviour of the anisotropic sparse grid
quadrature in applications.

2. Anisotropic sparse grid quadrature

We introduce anisotropic sparse grid quadrature formulas which extend the orig-
inal idea of Smolyak’s construction from [4]. Consider an increasing sequence of
univariate quadratures

Qj : C([−1, 1]) → R, f 7→ Qjf =

Nj
∑

i=1

wi,jf(ξi,j),

where the number Nj of quadrature points satisfies N1 ≤ N2 ≤ · · · and Nj → ∞
for j → ∞. For given j ∈ N, we further introduce the difference quadrature
operator

∆j := Qj −Qj−1, where Q−1 := 0.

Let w = (w1, w2, . . . , wm) ∈ Rm
+ denote a weight vector for the different pa-

rameter dimensions. We assume in the following that the weight vector is sorted
in ascending order, i.e. w1 ≤ w2 ≤ · · · ≤ wm. Otherwise, we would rearrange the
particular dimensions accordingly.
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We define the index set

(1) Xw(q,m) :=

{

0 ≤ α ∈ N
m :

m
∑

n=1

αnwn ≤ q

}

.

The anisotropic sparse grid quadrature operator of level q ∈ N is thus defined by

(2) Aw(q,m) :=
∑

α∈Xw(q,m)

∆(1)
α1

⊗ · · · ⊗∆(m)
αm

.

3. Main results

3.1. Cardinality of the index set. For computing the number of quadrature
points which the quadrature operator Aw(q,m) applies, we need a sharp estimate
on the index set Xw(q,m) from (1). Existing estimates are the well-known Beged-
Dov formula (cf. [1])

#Xw(q,m) ≤
m
∏

n=1

q + ‖w‖1
nwn

or the product estimate

#Xw(q,m) ≤
m
∏

n=1

(⌊

q

wn

⌋

+ 1

)

,

which is related to the full tensor product quadrature operator. Nonetheless, both
estimates are not very sharp and the following, new estimate is much better.

Lemma 1. The cardinality of the set Xw(q,m) is bounded by

#Xw(q,m) ≤
m
∏

n=1

(

q

nwn
+ 1

)

.

3.2. Error estimate. We should next provide an error estimate for the aniso-
tropic sparse grid quadrature operator (2). To that end, we should specify the
univariate quadratures Qj . They are supposed to be the Gauss-Legendre quadra-
ture rule on Γ := [−1, 1] with Nj =

⌈

1
2 (j + 2)

⌉

quadrature points. The class of
integrands fm : [−1, 1]m → R we consider are functions which admit an analytic
extension into the region

Σm =
m×

n=1

{z ∈ C : dist(z,Γ) ≤ τn}

with τn ≥ cnr (r > 1).

Lemma 2. Let the weight vector w in (1) be given by wn = log(κn), where

κn := τn+
√

1 + τ2n. Then, for each δ > 0, there exists a constant c(δ), independent
of m, such that the error of the anisotropic sparse quadrature is bounded by

∣

∣

(

I−Aw(q,m)
)

fm
∣

∣ ≤ c(δ, τ ) exp
(

−q(1− δ)
)

‖fm‖C(Σm)

with c(δ, τ ) = 4c(δ)
∥

∥

{

τ−1
n

}

n

∥

∥

ℓ1
. Note that c(δ) → ∞ as δ → 0.
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3.3. Cost complexity. The number of quadrature points can be bounded by

N(q) := cost
(

Aw(q,m)
)

≤ #Xw(q,m)2.

Further, one has

#Xw(q,m) ≤ c(r) exp

(

q

r
log

(

log(m)
)

)

= c(r) log(m)q/r

with a constant c(r) which is independent of m. By combining these estimates
with Lemma 2, we derive the convergence rate

(3)
∣

∣

(

I−Aw(q,m)
)

fm
∣

∣ ≤ c(δ, τ )N(q)−r(1−δ)/(2 log(logm)).

However, this estimate is not dimension robust, i.e., it is not independent of the
dimension m. By using a result of [2], we arrive at following cost complexity.

Theorem 3. The error of the anisotropic sparse grid quadrature with wn =
log(κn) can be bounded in terms of the number N(q) of quadrature points according
to

(4)
∣

∣

(

I−Aw(q,m)
)

fm
∣

∣ ≤ c(τ , β)N(q)−(β−1)/2

for all β < r.

Notice that this rate of convergence is smaller than that in (3) whenever m is
fixed.

4. Numerical results

For our numerical tests, we consider a simple quadrature problem, namely, we like
to integrate

(5) fm : Γm → R, fm(y) := 5

(

3 +

m
∑

n=1

n−syn

)−1

.

The parameter s is chosen according to s = 2, 3, 4. Respective reference solu-
tions are computed for m = 1000 dimensions and verified by a quasi-Monte Carlo
method.

To validate the rate of convergence (4) with respect to the number of quadrature
points N , we approximate the integral (5) for the limit choice τn = ns−1 by the m-
dimensional anisotropic sparse grid quadrature. In particular, to catch the inherent
dimensionality for each choice of the parameter s, we consider m = 10, 100, 1000
dimensions. As found in Figure 1 on the next page, we obtain different rates of
convergence, dependent on the choice of the parameter s. Especially, the inherent
dimension is larger than m = 100 only in the case s = 2. We observe the rates
of convergence N−1.44 for s = 2, N−2.21 for s = 3, and N−3 for s = 4. These
are much better than N−1/2, N−1, and N−3/2, respectively, which are predicted
by Theorem 3. Indeed, the rates are at least twice as much as predicted, which
issues from the fact that the factor 1/2 in the exponent on the right hand side of

(4) issues from the crude estimate N(q) ≤ #Xw(q,m)2, see [3] for details.
More advanced examples from the uncertainty quantification of boundary value

problems with random input parameters can be found in [3].
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Figure 1. Rates of convergences for the m = 10, 100, 1000
dimensions and s = 2 (left), s = 3 (middle), and s = 4 (right).
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Optimal feedback control of semilinear parabolic equations: A
”high”-dimensional HJB approach

Karl Kunisch

(joint work with Dante Kalise)

A procedure for the numerical approximation of high-dimensional Hamilton-Jacobi-
Bellman (HJB) equations associated to optimal feedback control problems for
semilinear parabolic equations is proposed. Its main ingredients are a pseudospec-
tral collocation approximation of the PDE dynamics, and an iterative method for
the nonlinear HJB equation associated to the feedback synthesis. The latter is
known as the Successive Galerkin Approximation. It can also be interpreted as
Newton iteration for the HJB equation. At every step, the associated linear Gen-
eralized HJB equation is approximated via a separable polynomial approximation
ansatz. The method requires a stabilizing control as initialisation. Its availability
depends on the specific control system. If such a control can not be obtained,
then the use of a discount factor and a continuation procedure as the discount
factor tends to zero are proposed. Stabilizing feedback controls are obtained from
solutions to the HJB equations for systems of dimension up to fourteen, i.e. the di-
mension of the pseudospectral approximation of the infinite dimensional dynamics
has dimension fourteen. Further information can be found in [1].
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Optimal weighted least-squares methods for high-dimensional
approximation

Giovanni Migliorati

(joint work with Albert Cohen)

We present some of the main results from [2] on the stability and accuracy of
weighted discrete least squares for approximation in high-dimensional spaces. We
consider the problem of reconstructing an unknown bounded function u defined on
a domain X ⊂ Rd from noiseless or noisy samples of u at n points (xi)i=1,...,n. We
measure the reconstruction error in a norm L2(X, dρ) for some given probability
measure dρ. Given a linear space Vm with dim(Vm) = m ≤ n, we study in general
terms the weighted least-squares approximations from the spaces Vm based on
independent random samples. It is well known that least-squares approximations
can be inaccurate and unstable when m is too close to n, even in the noiseless
case.

The contribution of the analysis in [2] is twofold. From the theoretical per-
spective, we establish results in expectation and in probability for weighted least
squares in general approximation spaces Vm. These results show that for an op-
timal choice of sampling measure dµ and weight w, which depends on the space
Vm and on the measure dρ, stability and optimal accuracy of the estimators are
achieved under the mild condition that n scales linearly with m up to an additional
logarithmic factor. The previous analyses in [1] and [3] have studied the stability
and accuracy of standard (unweighted) discrete least squares in expectation and
in probability, respectively. In contrast to [1] and [3], the analysis in [2] covers
cases where the function u and its approximants from Vm are unbounded, which
might occur for instance in the relevant case where X = Rd and dρ is the Gaussian
measure.

From the numerical perspective, we propose a sampling method which allows
one to generate independent and identically distributed samples from the optimal
measure dµ. This method becomes of interest in the multivariate setting where dµ
is generally not of tensor product type. We illustrate this for particular examples
of approximation spaces Vm of polynomial type, where the domain X is allowed
to be unbounded and high or even infinite dimensional, motivated by certain ap-
plications to parametric and stochastic PDEs.
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Effective boundary conditions: a general strategy and application to
compressible flows over rough boundaries

Siegfried Müller

(joint work with Wolfgang Dahmen, Giulia Deolmi)

From several scenarios in nature it is well-known that microstructures on surfaces
can significantly reduce drag. For instance, the skin of a shark exhibits small-scale
structures that makes the shark a very fast maritime hunter.

This has been confirmed by experiments conducted in oil channels to study
biological surfaces, e.g., shark-skin replicas, hairy surfaces such as seal fur expe-
riencing significant drag reduction. Such observations lead engineers to mimic
this effect for economical and ecological reasons in practical applications such as
aviation.

Objectives. To gain a deeper insight in the underlying physical mechanisms
of drag reduction and eventually permit predictions, simulations are performed
that complement experimental investigations. Since resolving the microstructures
requires a high resolution, numerical simulations are very expensive and, depending
on the flow regime, are only feasible for small configurations. For a real application
such as an airfoil the computational cost will be prohibitively high and a simulation
will not be feasible in spite of an ever increasing computer power.

To deal with this type of problems a natural strategy is to resort to model
reduction concepts. Some well-known strategies are homogenization techniques,
(heterogeneous) multiscale modeling and multiscale finite element methods, all
aiming to quantify the influence of small scale effects on the resolved macroscopic
scale without directly resolving small scale structures. Typically, these concepts
need to be adapted to the problem at hand. In fact, it should be noted that,
strictly speaking, for the problems under consideration there is no clear (physical)
scale separation so that a straightforward application of the heterogeneous multi-
scale method is delicate. Rather the range of relevant scales is too large to be
resolved.

The central objective is to develop a new computational model reduction strat-
egy that differs from the aforementioned methods. Our starting point is the formu-
lation of an upscaling strategy where the micro-scale effect of a structured rough
surface is modeled by means of effective boundary conditions given on a virtually
smooth wall. For the derivation of these conditions the exact solution of the origi-
nal problem on the rough domain is expanded in a zeroth order solution depending
only on the macro-scale, i.e., the flow equations are solved in the artificial smooth
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domain, and an upscaling term that depends on macro-scale and micro-scale vari-
ables in order to capture the micro-scale effects suppressed in the zeroth order
solution. A natural idea is to plug this ansatz into the original equation and try
to see under which conditions low order terms cancel to eventually arrive at the
so-called cell problem which is typically much simpler than the original problem.
From the asymptotic expansion at an artificial smooth wall located on top of the
roughness we can then deduce the effective boundary conditions by means of a
Taylor expansion in wall normal direction at the rough wall, where the mean of
the solution of the cell problem enters as effective constant. Finally, the effective
problem is solved on the smooth domain with effective boundary conditions.

Conceptual Background. We point out next how the approach relates to
previous related work. In case of the steady incompressible Navier-Stokes equa-
tions a similar upscaling strategy has been developed and investigated by Achdou
et al. [1] as well as Jäger and Mikelic [7] for small Reynolds numbers. In [1] a
Navier wall law is derived from a Taylor expansion of velocity and pressure where
the zeroth order solution is first solved on an extension of the rough domain. Ap-
plying an idea similar to [1] a Navier wall law is derived also in [2] for the steady
Poisson problem.

Typically, only the influence in wall-normal direction is accounted for in the
effective boundary conditions. This is justified as long as the flow is laminar.
For instance, for turbulent flow the flow field is inherently three-dimensional and,
thus, the roughness will most likely also affect the flow in streamwise and spanwise
direction as well. In [6], it is suggested to solve two cell problems, corresponding
to the effects in streamwise and spanwise direction, respectively. For this purpose
the flow at an oblique angle is considered on the macro-scale, introducing in this
way the spanwise effects. However, no systematic strategy is given for the choice
of the angle.

What is Different here? The aims pursued in our work are yet different in
three major respects. First, we are particularly interested in compressible flows
over a rough surface for high Reynolds numbers, which corresponds to considering
a regime that significantly differs from the one analyzed in the aforementioned
literature. In [4] we already derived a similar upscaling strategy combining ideas
from Achdou et al. as well as Jäger and Mikelic. However, and this is the second
delineating issue, we target a roughness scale relative to the viscous sublayer thick-
ness which is larger than in those works because of significantly larger velocities.

To account for this, the identification of the appropriate cell problem itself de-
serves some special attention. In order to make the underlying mechanisms trans-
parent we outline in [3] for a deliberately general scalar problem a systematic way
- in some sense a “recipe” - for determining a suitable cell problem for the desired
roughness range which is then used to identify effective boundary conditions. We
emphasize that these considerations do not intend to provide a rigorous analytical
foundation - which in our opinion is out of reach for the regime of interest - but
are to serve the following purposes:
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First, in a given application it helps identifying some scaling effects which, for
instance, determine whether a resulting cell problem is linear or nonlinear and
which explain why macro-scale parameters enter the cell problem as parameters.
In fact, targeting a roughness scale that is relatively large in comparison with the
boundary layer thickness in the compressible regime comes at a price, namely,
in contrast to the aforementioned work, we need to account for the influence of
the zeroth order solution in the cell problem and these terms can no longer be
discarded. This entails several impediments. First, the cell problem becomes
parameter-dependent. This has been verified already in [4] where computations
for different cell problems have been carried out. For a detailed discussion on the
differences between our model and the models of Achdou et al. as well as Jäger
and Mikelic we refer to [4].

Second, the discussion on the general scalar problem leads us in a natural way
to formulate two types of effective boundary conditions - implicit and explicit ones
- a point to be taken up below again.

As indicated earlier, a completely rigorous foundation of our approach, as given
in [7] for a specific flow regime, is out of reach in the present framework. This
brings us to the third point concerning the main objective, namely to develop
computationally viable techniques for dealing with structured roughness for com-
pressible flows, primarily focussing at this point on a numerical validation. The
fact that the cell problem depends on the zeroth order solution at a first glance
seems to preclude its original purpose. However, the availability of certified model
reduction techniques for exactly the type of problems arising as cell problems al-
lows us to efficiently query the solution of the cell problem for many parameter
values using reduced models. A second issue of practical relevance is how to acquire
the information needed for the cell problem, namely the zeroth order solution. For
simple geometries one can resort e.g. to van Driest’s solution which avoids the
computation of the zeroth order solution. Moreover, if the cell problem would be
the only place where this information enters, such a qualitative approximation is
expected to suffice. Therefore, as one option, we derive effective boundary condi-
tions of implicit type confining knowledge about the zeroth order solution only in
the cell problem which, as indicated above, can then be handled by reduced basis
concepts.

In more complex situations a good guess about the zeroth order solution will
generally be missing and this strategy is no longer viable. Our point of view then
is that computing the zeroth order solution in a smooth domain on a reasonably
coarse mesh is, in principle, affordable. We therefore discuss this as a second
option leading to explicit effective boundary conditions. In the context of lami-
nar compressible flows both variants of our approach were tested highlighting, in
particular, also the effect of different boundary conditions, cf. [3].

Application. For a first step towards analyzing turbulent flow scenarios our
multiscale concept has been applied in [5] to a turbulent, compressible flow over
a riblet surface. The zeroth-order solution and its derivatives can no longer be
computed analytically using the Van Driest solution, as done in the laminar case.
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These quantities are estimated numerically performing first a flat plate RANS
computation. Moreover in the turbulent regime we encounter significantly larger
Reynolds numbers than in the laminar case treated in [4, 3] and a correspondingly
stronger convection.
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Highly localized summability kernels on the sphere induced by
Newtonian kernels

Pencho Petrushev

(joint work with Kamen Ivanov)

We are interested in the problem for nonlinear n-term approximation of harmonic
functions on the unit ball Bd in Rd from linear combinations of shifts of the
fundamental harmonic function (Newtonian kernel) 1

|x|d−2 in dimension d > 2

or ln |x − yj| when d = 2. More explicitly the problem is: For a given harmonic
function f on Bd and n ≥ 1 find n locations {yj} with |yj | > 1 and n+1 coefficients
{cj} so that

c0 +
n
∑

j=1

cj
|x− yj |d−2

(d > 2) or c0 +
n
∑

j=1

cj ln |x− yj | (d = 2)

approximates f with an optimal rate in the norm of the harmonic Hardy space
Hp(Bd), 0 < p <∞. The poor localization of the fundamental harmonic function
|x|−d+2 (d > 2) or ln |x| (d = 2) creates a problem.

The solution of this problem naturally involves Besov spaces consisting of har-
monic functions on Bd. The key to its solution, however, is the solution of the
following fundamental problem:
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Problem 1. For arbitrary constants M > 0 (large) and ε > 0 (small) construct
a function Φε(η, x) on Sd−1 ×Bd of the form

Φε(η, x) =

K
∑

j=1

bj
|x− yj|d−2

(d > 2) or Φε(η, x) =

K
∑

j=1

bj ln |x− yj | (d = 2)

with |yj | > 1, bj ∈ R depending on η, M , and d, and K depending only on M and
d, such that

|Φε(η, x)| ≤
cε−d+1

(1 + ε−1|x− η|)M , ∀x, η ∈ S
d−1,

and
∫

Sd−1

Φε(η, x)dσ(x) = 1, ∀η ∈ S
d−1.

Here Sd−1 is the unit sphere in Rd and c > 0 is a constant depending only on M
and d.

As is well known the ℓth directional derivative operator (η ·∇)ℓ is approximated
well by the respective finite difference operator. Consequently, to solve Problem 1
it suffices to solve the following

Problem 2. Let M > d− 1. For given ε ∈ (0, 1] find m+ 1 constants bℓ ∈ R and
a > 1 so that the restriction Fε(x · η) of the function

(1) fε,η(x) =

m
∑

ℓ=0

bℓ(η · ∇)ℓ
( 1

|x− aη|d−2

)

, η ∈ S
d−1, x ∈ R

d \ {aη}, if d > 2;

or

(2) fε,η(x) = b0 +

m
∑

ℓ=1

bℓ(η · ∇)ℓ ln
1

|x− aη| , η ∈ S
1, x ∈ R

2 \ {aη}, if d = 2,

to Sd−1 satisfies the conditions

(3) |Fε(x · η)| ≤ cε−d+1

(1 + ε−1ρ(x, η))M
, ∀x, η ∈ S

d−1,

and

(4)

∫

Sd−1

Fε(x · η)dσ(η) = 1, ∀x ∈ S
d−1.

where c > 0 is a constant depending only on M and d. Above x · η stands for the
inner product of x, η ∈ Sd−1.

In this talk we focus on the solution of Problem 2. Note that using the well
known Maxwell’s identity

(η · ∇)m|x|−d+2 = (−1)mm!C(d−2)/2
m (x · η/|x|)|x|−m−d+2 (d > 2)

one can easily construct a function Fε(x · η) that is the restriction to Sd−1 of
a function fε,η(x) of the form (1) which obeys (3). However, this Fε(x · η) will not
satisfy condition (4). The situation is the same in dimension d = 2.
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Our main result asserts that Problem 2 is completely solved by the function

Fε(x · η) = c⋆ε2m−1

|x− aη|2m+d−2
, x ∈ S

d−1, with

∫

Sd−1

Fε(x · η)dσ(x) = 1,

where a = 1 + ε, m := ⌈(M − d+ 2)/2⌉, and c⋆ > 0 is a normalization constant.

We also report on the solution of the same problem for the half-space, i.e. in
the case when Sd−1 is replaced by Rd−1 := {x ∈ Rd : x = (x1, . . . , xd−1, 0)}.

We have established this result: Letm ≥ 1, d ≥ 2, ε > 0, and η = (0, . . . , 0,−1).
The function

Fε(x) :=
ε2m−1

|x− εη|2m+d−2
, x ∈ R

d−1,

obeys

0 < Fε(x) ≤
c1ε

−d+1

(1 + ε−1|x|)2m+d−2
, ∀x ∈ R

d−1,

and
∫

Rd−1

Fε(x)dx ≥ c2 > 0,

where c1, c2 > 0 are constants depending only on m and d. Moreover, Fε(x) is the
restriction to Rd−1 of a harmonic function of the form

m
∑

ℓ=1

bℓ

( ∂

∂xd

)ℓ 1

|x− εη|d−2
if d ≥ 3 or

m
∑

ℓ=1

bℓ

( ∂

∂xd

)ℓ

ln
1

|x− εη| if d = 2.

Clustering high dimensional data or how to smoothly put complex
people in small boxes : The change point problem

Dominique Picard

We consider the problem of clustering high dimensional data. We observe a matrix
Y of size n× d. Typically d is much larger than n (but not necessarily) and each
column vector represents an individual denoted by Yi, i ≤ n, of dimension d.

For sake of simplicity, we assume that there is only two classes, i.e. that there
exists A ⊂ {1, . . . n} and two vectors of Rd, θ− and θ+, such that Yi ∼ N(θ−, σ

2I)
for i ∈ A, Yi ∼ N(θ+, σ

2I) for i ∈ Ac.
We assume that θ− and θ+ are unknown and sparse in the sense that they

belong to the regularity set :

Θ(s, L) := {θ ∈ R
d, sup

K∈N∗

K2s
∑

k≥K

(θk)2 ≤ L2}.

Again, for sake of simplicity we suppose that A is of the form {1, . . . , nτ}, for τ ∈
(0, 1) unknown. For technical reason we also assume that in fact that τ ∈]ε, 1− ε[
(for some known and fixed parameter 0 < ε < 1/2) and we put :

∆2 =

d
∑

l=1

(θ+ − θ−)
2.
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Our problem is to determine whether or not it is efficient to smooth the data i.e.
to replace the vectors Yi := Yi(d), i ≤ n by, for T < d, Yi(T ), i ≤ n, the vectors of
RT , of the T first coordinates of Yi. Then, if smoothing reveals to be useful, how
to choose T ideally in an adaptive way (without knowing the regularity s).

We also propose an adaptive algorithm to estimate θ+ and θ− with minimax
rates.

1. Smoothing rates

We consider the following family of algorithms (corresponding to the MLE, or
Kmeans estimates in the general situation).

τ̂(T ) = ArgMint∈]ε,1−ε[






∑

j≤nt

∑

ℓ≤T

(Y ℓ
j − 1

nt

∑

j≤nt

Y ℓ
j )

2 +
∑

j≥nt+1

∑

ℓ≤T

(Y ℓ
j − 1

n(1− t)

∑

j≥nt+1

Y ℓ
j )

2







We prove the following Proposition.

Proposition 1. We assume that θ− and θ+ belong to Θ(s, L), we stop the obser-
vation at T ≤ d : Yj(T ) = (Y 1

j , . . . , Y
T
j ) and assume that

∆2 ≥ R[T−2s ∨ σ2T

n
],

then for any κ, there exists γ(κ,R) such that

P (|τ̂ − τ | ≥ κ
σ2T

n∆2
) ≤ e−γT .

Remarks 1. • It is natural that the rate of convergence for τ is decreasing
in ∆.

• Condition ∆2 & R[T−2s] is necessary for identifiability: otherwise, because
of the sparsity of the vector θ+ and θ−,

∑

l≤T (θ
l
−−θ1+)2 may be arbitrarily

close to zero, leading to a model on the Yj(T )’s observations in which τ
has no proper meaning and cannot be estimated.

• We can prove that condition : ∆2 & [σ
2T
n ] is necessary for the MLE to

converge.
• There is an obvious advantage to smoothing leading to better rates.
• If we now look at the conditions on ∆2, we see that they are less restrictive,

with better rates, as soon as T decreases subject to the condition T−2s .

∆2.
• Hence, we need to minimize σ2T

n subject to T−2s . ∆2, leading to the

’usual’ in nonparametric situations optimal choice → Ts ∼ [ n
σ2 ]

1
1+2s

→ Rates and conditions then become :

∆2 & [
n

σ2
]

−2s
1+2s , Rate [

n

σ2
]

−2s
1+2s∆−2.
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• Rate and conditions could seem quite poor, but observe that very often σ2

is of the form
σ2
0

d , where σ0 is a fixed constant.
• In this case, the rate becomes much better :

[
nd

σ2
0

]
−2s
1+2s∆−2

• In this particular case, σ2 =
σ2
0

d , the form of the optimal smoothing

Ts := [
nd

σ2
0

]
1

1+2s

proves that any adaptive smoothing on each individual signal Yj (thresh-
olding or whatever) would lead instead to an optimal smoother of the form
:

Topt = [
d

σ2
0

]
1

1+2s

inevitably creating a loss of a factor polynomial in n in the rates. This
means that it is better to perform the smoothing globally (off-line).

2. Adaptative choice for T

Form the two following pseudo-data in Rd : Z(1), Z(2)

Zℓ(1) =
1

n

n
∑

j=1

Y ℓ
j − 2

n

n/2
∑

j=1

Y ℓ
j , ℓ = 1, . . . , d

Zℓ(2) =
1

n

n
∑

j=1

Y ℓ
j − 2

n

n
∑

j=n/2+1

Y ℓ
j , ℓ = 1, . . . , d

Consider the Lepski smoothers (c is a tuning constant)

T̂ (1) := min{k,
l

∑

m=k′

[Zm(1)]2 ≤ cl
σ2

n
log[d ∨ n], ∀d ≥ l ≥ k′ ≥ k},

T̂ (2) := min{k,
l

∑

m=k′

[Zm(2)]2 ≤ cl
σ2

n
log[d ∨ n], ∀d ≥ l ≥ k′ ≥ k}.

put

T̂ := T̂ (1) ∨ T̂ (2)

Theorem 1. We assume that θ+ and θ− are in Θ(s, L). We suppose that there
exists a contant a > 0 such that

n

σ2
≥ a log d.

We put

T̂ := T̂ (1) ∨ T̂ (2).
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Then, if there exists a constant R = R(L, ε) such that

(1) ∆2 ≥ R[
σ2 log[d ∨ n]

n
]

2s
1+2s ,

then for any γ, and for c large enough,

(2) P (|τ̂ (T̂ )− τ | ≥ κ[
σ2 log[d ∨ n]

n
]

2s
1+2s∆−2) ≤ [d ∨ n]−γ .

3. Adaptation rates for θ− and θ+, case σ
2 =

σ2
0

d

We first detect the change using the procedure above, using T̂ , and then τ̂ = τ̂ (T̂ ).

τ̂(T̂ ) = ArgMint∈]ε,1−ε[






∑

j≤nt

∑

ℓ≤T̂

(Y ℓ
j − 1

nt

∑

j≤nt

Y ℓ
j )

2 +
∑

j≥nt+1

∑

ℓ≤T̂

(Y ℓ
j − 1

n(1− t)

∑

j≥nt+1

Y ℓ
j )

2







Then we estimate θ− and θ+, with the following procedure. (We denote θ± for
respectively either θ− or θ+:

θ̂± = (θ̂1±, . . . , θ̂
d
±), θ̂

k
± := θ̂±,kI{k ≤ T̂ ∗(±)}

θ̂−,k :=
1

nτ̂(T̂ )

nτ̂(T̂ )
∑

j=1

Y k
j θ̂+,k :=

1

n(1− τ̂ (T̂ ))

n
∑

j=nτ̂(T̂ )+1

Y k
j

T̂ ∗(±) := min{k,
l

∑

m=k+1

[θ̂±,m]2 ≤ cl
σ2

n
log[d ∨ n], ∀l ≥ k + 2}.

And we prove the following result meaning that (without condition on ∆ this time)
we are able to adaptively estimate θ− and θ+ with minimax rates up to logarithmic
factors.

Theorem 2. With the estimates defined above, then, for s > 0, c > c0, we have
that there exists a constant C such that :

(3) sup
θ±∈Θ(s,L)

E‖θ̂± − θ±‖22 ≤ C{ nd

log[n ∨ d]}
−2s
1+2s
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Invariant domain preserving approximations of hyperbolic systems

Bojan Popov

(joint work with Jean-Luc Guermond)

We present a numerical method to solve general hyperbolic systems in any space
dimension using forward Euler time stepping and continuous finite elements on
non-uniform grids. The properties of the method are based on the introduction of
an artificial dissipation that is defined so that any convex invariant sets contain-
ing the initial data is an invariant domain for the method. The invariant domain
property is proved for any hyperbolic system provided a CFL condition holds. The
solution is also shown to satisfy a discrete entropy inequality for every admissi-
ble entropy of the system. The method is formally first-order accurate in space
and can be made high-order in time by using Strong Stability Preserving algo-
rithms. Further information for the new method can be found in [1] and details
on implementation for the Euler system of gas dynamics can be found in [2]. A
second-order accurate in space and local maximum principle preserving extension
of the above method in the scalar case is given, for more details see [3]. Finally,
we describe a a second-order extension of the method for the shallow water equa-
tion with topography. The method is well-balanced and positivity preserving and
works well in the presence of dry states, see [4] for details. All of the above tech-
niques are parameter free and can be used in any space dimension with continuous
finite elements on unstructured meshes.
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Low rank regularity results for highdimensional PDEs

Reinhold Schneider

Langevin dynamics with a gradient field and corresponding Fokker Planck equation
(here Smoluchovski equation) is described by a stochastic differential equation

dx = b(b)dt+ dWt .

Here Wt is a d-dimensional Brownian motion. We assume that the vector field b
is a gradient field, i.e. b(x) = ∇V (x). The probability density at time t ≥ 0 for a
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system to be in state x = (x1, . . . , xd) is described by the Fokker Planck equation

(1) ∂tp = ∇ · (∇V p) + ∆

The ground state corresponds to λ0 = 0 is given explicitly by

(2) φ0(x) =
1

Z
e−V (x) , Z :=

∫

e−V .

We consider only nearest neighbor interaction i.e. a potential of the form

V =

d−1
∑

i=1

Vi , Vi(x) = Vi(xi, xi+1) .

We consider a low rank approximation of the functions

eVi(xi,xi+1 =

r
∑

k=1

Ui(xi)Vi(xi+1 .

One can see that all TT ranks ri, i = 1, . . . , d−1 of φ0 are bounded by r. However
in the generic case the canonical rank rc may grow exponentially w.r.t. d, i.e.
rc ∼ rd.

We consider a low rank approximation of the first eigenfunctions φk, k =
1, . . . ,K, and claim that TT approximability can be proved by applying the ar-
guments from [2] considering the matrix product state approximation for a 1D
quantum lattice system. The importance of local (nearest neighbor) interaction
has been known in quantum physics community and often referred to the area law.

First eigenfunctions of the backward Kolmogorov operator, which is the adjoint
to Fokker Planck operator has been computed via the Transfer operator and Monte
Carlo sampling in the framework of variational conformation dynamics (similar to
Markov State Models) in [3]. The largest bio-molecular system has d = 250, where
satisfying results has been obtained with ranks < 10. These computations requires
long time trajectories of the SODE to sample from the equilibrium distributions.
We have used (M)-ALS (or DMRG) scheme for the solution of the generalized
eigenvalue problems, and highlight that the FP operator was not used, nor any
low rank representation of the underlying transfer operator.
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Hyperbolic cross approximation and beyond

Tino Ullrich

We give a brief historical overview of challenges and open problems of approxima-
tion theory with emphasis put on multivariate approximation. It was understood
in the beginning of the 20th century that smoothness properties of a univari-
ate function determine the rate of approximation of this function by polynomi-
als (trigonometric in the periodic case and algebraic in the non-periodic case).
A fundamental question is: What is a natural multivariate analog of univariate
smoothness classes? Different function classes were considered in the multivariate
case: isotropic and anisotropic Sobolev and Besov classes, classes of functions with
bounded mixed derivative and others. The simplest case of such a function class
is the unit ball of the mixed Sobolev space of bivariate functions given by

Wr
p :=

{

f ∈ Lp : ‖f‖Wr
p
:= ‖f‖p +

∥

∥

∥

∂rf

∂xr1

∥

∥

∥

p
+
∥

∥

∥

∂rf

∂xr2

∥

∥

∥

p
+
∥

∥

∥

∂2rf

∂xr1∂x
r
2

∥

∥

∥

p
≤ 1

}

.

These classes are sometimes denoted as classes of functions with dominating mixed
derivative since the condition on the mixed derivative is the dominating one.
Babenko [2] was the first who introduced such classes and began to study ap-
proximation of these classes by the hyperbolic cross polynomials.

We note that the function classes with bounded mixed derivative are not only
an interesting and challenging object for approximation theory. They also rep-
resent a suitable model in scientific computations. Bungartz and Griebel [3, 11]
and their groups use approximation methods designed for these classes in elliptic
variational problems. In addition, similar function classes are suitable models for
the treatment of the electronic Schrödinger equation [14]. This makes approxima-
tion techniques developed for classes of functions with bounded mixed derivative
a proper choice for the numerical treatment of those problems.

Another fundamental question is: How to approximate functions from these
classes? In addition to the Kolmogorov n-width we report on the asymptotic be-
havior of linear widths. Interesting effects occur when studying the approximation
of the class Wr

p in Lq if p < q. In contrast to the case p = q the influence of the
parameters p and q is always visible in the rate of the order of the linear widths.
In fact, if either 1 < p ≤ q ≤ 2 or 2 ≤ p ≤ q <∞ then we have

(1) λm(Wr
p, Lq) ≍

(

(logm)d−1

m

)r−1/p+1/q

, m ∈ N .

Then the optimal approximant is realized by a projection on appropriate linear
subspace of the hyperbolic cross polynomials, which is not always the case, like
for instance in the case p < 2 < q. Restricting the set of admissible rank m
operators to such that are based on function evaluations (instead of general linear
functionals), we observe a behavior which is clearly bounded below by λm. We
call the corresponding asymptotic quantities sampling widths ̺m. However, this
is not the end of the story. Already in the situation Wr

p in Lq we are able to
determine sets of parameters where ̺m is equal to λm in the sense of order, and
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others where ̺m behaves strictly worse (already in the main rate) [4]. However,
the complete picture is still unknown. In that sense the situation p = q (including
p = 2) is of particular interest. The result

̺m(Wr
p, Lp) .

(

(logm)(d−1)

m

)r

(logm)(d−1)/2 , m ∈ N ,

has been a breakthrough since it improved on a standard upper bound by using
a non-trivial technique. However, the exact order is still unknown even in case
p = 2. The so far best-known upper bounds for sampling recovery are all based
on sparse grid constructions.

High-dimensional approximation problems appear in several areas of science
like for instance in quantum chemistry and meteorology. We will comment on
some recent results on how the underlying dimension d affects the multivariate
approximation error. The order of the approximation error is not longer sufficient
for determining the information based complexity of the problem. We present
some recent results to see the d-dependence of the constants in the approxima-
tion error estimates and the convergence rate of widths complemented by sharp
preasymptotical estimates in the Hilbert space case. In case of high dimensions,
the traditional estimate (1) becomes problematic. Fixing d and r the function
fd(t) := t−r (log t)r(d−1) is increasing on [1, ed−1] and decreasing on [ed−1,∞).

Hence, its maximum on [1,∞) is maxt≥1 fd(t) = fd(e
d−1) =

(

d−1
e

)r(d−1)
, which

increases super-exponentially in d. That means, for large d we have to wait “ex-
ponentially long” until the sequence n−r(lnn)(d−1)r decays, and even longer until
it becomes less than one. In any case it is important to control the behavior of the
constants c(r, d) and C(r, d) appearing in the lower and upper order estimate (1)
in d and, in a second step, to establish preasymptotic estimates for small m. Re-
sults have been obtained recently by Kühn, Sickel, Ullrich [12]. There the authors
considered the space Wr

2 to be specifically normed as follows

(2) ‖f‖2Wr
2
:=

∑

k∈Zd

|f̂(k)|2
d
∏

j=1

(1 + |kj |2)r .

It has been shown in [12] that in this situation the “asymptotic constant” be-
haves exactly as follows

(3) lim
m→∞

mr

(logm)(d−1)r
· λm(Wr

2, L2) =
[ 2d

(d− 1)!

]r

.

This result is surprising from several points of view. First, the limit exists, second
one can compute it explicitly and third, the number on the right-hand side decays
exponentially in d. However, if d is large we may have to “wait” very long until
that happens. Hence, the next question is what happens in the preasymptotical
range, say form less than 2d. Here, we get the bound below in Theorem 1 (see [12,
Thm. 4.17]). For similar results in more general classes as well as a non-periodic
counterpart, see the longer arXiv version of [6].
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Theorem 1 ([12]). Let d ≥ 2, and r > 0. Then for any 1 ≤ m ≤ 4d we have the
upper and lower estimate

2−r
( 1

2m

)
r

2+log2(d/ log2 n+1/2) ≤ λm(Wr
2, L2) ≤

(e2

m

)
r

2+log2 d

.

Note, that there is no hidden constant in both bounds. This type of error decay
reflects “quasi-polynomial” tractability, a notion recently introduced by Gnewuch,
Woźniakowski [10]. The result in Theorem 1 is based on a refined estimate for the
cardinality of the “smooth” hyperbolic cross

Γ(N, d) :=
{

k ∈ Z
d :

d
∏

j=1

(1 + |kj |) ≤ N
}

, N ∈ N .

In [12, Thm. 4.9] it is shown

(4) |Γ(N, d)| ≤ e2N2+log2 d .

In [7] the authors state cardinality bounds (without proof) for slightly modified
hyperbolic crosses in d dimensions.

What concerns the approximation in the uniform norm L∞ in case r > 1/2
we refer to the recent paper Cobos, Kühn, Sickel [8]. The authors obtained the
asymptotic constant

lim
m→∞

mr−1/2λm(Wr
2, L∞)

(logm)(d−1)r
=

1√
2r − 1

[ 2d

(d− 1)!

]r

.
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[8] F. Cobos, T. Kühn, W. Sickel, Optimal approximation of Sobolev functions in the sup-

norm, J. Funct. Anal. 270(11), pp. 4196–4212, 2016.
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The reduced basis method, adaptivity and high-dimensionality

Karsten Urban

The Reduced Basis Method (RBM) has become a widely known and used numeri-
cal method for solving parameter-dependent partial differential equations (PPDEs).
In this talk, we focus on two challenges for the RBM:

(1) Usually, the RBM relies on a detailed discretization (sometimes called
truth) which is the same for all parameters. In case of a strong parameter
dependence, this might be unrealistic or by far too costly.

(2) The curse of dimensionality might hit the RBM in two places, namely
for the parameters and for the domain underlying the PPDE (time and
space).

With regards to (1), we report on new results from [1], where we have shown
how to use adaptive discretizations instead of a common truth. This has severe
implications in particular for the online-efficient error estimation. We propose to
use a wavelet representation of the residual and show that this is online-efficient.
The corresponding Greedy method for selecting the reduced basis functions offline
is shown to be convergent. Numerical results underline the efficiency of the arising
method.

With respect to (2), we first consider high-dimensional space-time domains. We
review the approach introduced in [7, 8] for instationary problems, where we pro-
pose to use time as an additional variable. This yields much sharper error/residual-
relations then using standard time-marching schemes. We extend this to the wave
equation and time-depend transport equations based upon the results for the sta-
tionary case from [5].

The next issue is a high-dimensional physical domain. There are quite well-
developed tensor-based methods. Within the framework of the RBM, we need a
quantitatively efficient adaptive high-dimensional method. Hence, we extend the
methods from [2, 3] to an Adaptive Wavelet-Galerkin Method (AWGM) known
from [4] for the non-tensor case. We construct a Hierarchical Tensor (HT)-variant
of AWGM and show convergence and quasi-optimality of the resulting HT-AWGM.

Finally, we consider infinite-dimensional parameter spaces within the RBM,
i.e. parameter functions. Based upon [6], we suggest to use an adaptive wavelet
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method to identify the significant ingredients of a parameter function online (simi-
lar to signal processing). This is combined with an adaptive offline Greedy method
introduced above. Numerical results for option pricing within the Heston model
are presented.

This talk is based upon joint work with M. Ali, S. Glas, K. Steih, A. Mayerhofer
(all Ulm), A. Patera (MIT) as well as J. Brunken and K. Smetana (Münster).
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Polynomial approximation via convex and nonconvex optimization of
high-dimensional functions

Clayton Webster

In this talk, we present a compressed sensing approach to polynomial approxi-
mation of complex-valued functions in high dimensions. Of particular interest is
the parameterized PDE setting, where the target function is smooth, character-
ized by a rapidly decaying orthonormal expansion, whose most important terms
are captured by a lower (or downward closed) set. By exploiting this fact, we
develop a novel weighted minimization procedure with a precise choice of weights,
and a modification of the iterative hard thresholding method, for imposing the
downward closed preference. We will also present theoretical results that reveal
our new computational approaches possess a provably reduced sample complexity
compared to existing compressed sensing, least squares, and interpolation tech-
niques. In addition, the recovery of the corresponding best approximation using
our methods is established through an improved bound for the restricted isometry
property. Finally, we will also present a new theory for compressed sensing that
reveals that nonconvex minimizations are at least as good as ℓ1 minimization in
exact recovery of sparse signals. Our theoretical recovery guarantees are developed
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through a unified null space property based-condition that encompasses all cur-
rently proposed nonconvex functionals in literature. Several nonconvex functionals
will be explored and the specific conditions in order to guarantee improved recov-
ery will be given. Numerical examples, related to polynomial approximation of
complex-valued functions in high dimensions, will be provided to support the new
theory and demonstrate the computational efficiency of both the the new weighted
convex minimization method as well as several nonconvex regularizations.

Interpolation of functions with moving discontinuities by transformed
snapshots

Gerrit Welper

In comparison to elliptic and parabolic problems, our abilities to simulate paramet-
ric or stochastic hyperbolic PDEs is still fairly limited. Two major obstructions
that render these problems challenging and have been addressed only rather re-
cently in the literature are the

(1) robustness of PDE solvers for parametric/stochastic problems
(2) efficiency of approximations of the PDEs’ solutions.

The first problem arises in the context of intrusive methods such as reduced
basis, POD or stochastic Galerkin. One obtains discretizations that are tailored
to the parametric nature of these problems for which one then has to find robust
solution methods. However, the talk is mainly concerned with the second problem.
In all of the above methods and also in non-intrusive methods such as stochastic
collocation or empirical interpolation, one needs efficient ways to approximate the
parametric solution u(x, t, ξ) that depends on physical variables x and t as well
as random or non-random parameters ξ. Three staple methods are reduced basis
approximations, POD and polynomial chaos expansions. All three have proven
very efficient in the elliptic and parabolic regime but are problematic for hyperbolic
problems mainly due to shock discontinuities (and kinks as well).

Only very recently some work on the efficient approximation of parameter de-
pendent jump discontinuities has emerged [1, 2, 3, 4]. A central problem is that
these jumps in physical space induce a jump in the parameter variables which
is very detrimental for the above mentioned methods. For example, polynomial
chaos uses polynomial approximation in the parameter variables which is not well
suited for efficient approximation of jumps.

To this end, we introduce transformations of the physical domain that “undo“
the movement of the jumps or in other words align the jumps locations. Say we
wish to approximate an unknown solution u(·, ξ) by several snapshots u(·, ηi). We
first construct transforms φ(ξ, ηi)(x, t) that align the jump locations of each snap-
shot to the target’s jump set so that the transformed snapshots u(φ(ξ, ηi)(x, t), ηi)
have jumps independent of the parameter ηi. Then, in order to obtain an ap-
proximation of u(·, ξ), we interpolate these transformed snapshots with respect to
the interpolation points ηi. By construction, the jumps are no longer “visible”



Multiscale and High-Dimensional Problems 1045

in parameter direction so that the interpolation converges with up to exponential
rates, in fact, as we shall demonstrate, to the solution u(·, ξ).

In order to calculate φ, we minimize the error supξ∈PT
‖u(·, ξ) − un(·, ξ;φ)‖L1

with respect to φ over a training sample PT of parameters, where un(·, ξ;φ) is the
TSI described above. On first sight this seems to be a complicated optimization
problem and indeed, one can construct simple examples which have unacceptable
local minima. Nonetheless, we can split the transform into a series of local con-
tributions that allow us to avoid bad local minima, altogether: Given transforms
φ(ξi, ξi+1) for nearby parameters, we can compose them

φ(ξi, ξj) := φ(ξi, ξi+1) ◦ · · · ◦ φ(ξj−1, ξj)

to obtain transformations for parameters that are far apart. We therefore only need
to find the local contributions φ(ξi, ξi+1) which are not prone to unacceptable local
minima. This is proven rigorously for some 1d cases and demonstrated numerically
for some 2d problems.

The above outlined method works well if we can align all discontinuities which,
however, is not always the case. For example, if the number of jumps changes
in parameter a proper alignment is not possible. In contrast to the parameter
dependent movement of the jumps which induce singularities for every parameter,
changes of the number of jumps (and similar non-align-able cases) are local in
parameter space. Therefore, in principle, additional localization methods such as
hp-adaption in parameter space can resolve these difficulties. The drawback of this
approach is that is does not scale well to high parameter dimensions. To this end,
we argue that the TSI allows us to construct a “tensorized” hp-adaptive method
that is more promising for higher parameter dimensions.
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Multivariate approximation for analytic functions with Gaussian
kernels

Henryk Woźniakowski

We study d-variate analytic functions defined on the whole space which belong to a
reproducing kernel Hilbert space whose kernel is Gaussian with shape parameters.
We find necessary and sufficient conditions on various notions of tractability in
terms of these shape parameters.
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A class of variational multiscale methods based on subspace
decomposition

Harry Yserentant

(joint work with Ralf Kornhuber and Daniel Peterseim)

Numerical homogenization tries to approximate the solutions of elliptic partial dif-
ferential equations with strongly oscillating coefficients by functions from modified
finite element spaces. I presented in this talk a class of such methods that are very
closely related to the method of Målqvist and Peterseim [2]. Like the method of
Målqvist and Peterseim, the new methods do not make explicit or implicit use
of a scale separation and rest upon the localization and smoothing properties of
elliptic equations. Their comparatively simple analysis is based on the theory of
additive Schwarz or subspace decomposition methods.
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