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Introduction by the Organisers

For an elliptic curve E over a global field K, the conjecture of Birch and Swinner-
ton-Dyer asserts a deep relationship between the arithmetic invariants (Mordell–
Weil groups and Tate–Shafarevich groups) and the analytic invariants (the complex
L-function L(E/K, s)). The rank part of the conjecture asserts that the vanishing
order of L(E/K, s) at its center s = 1 coincides with the rank of Mordell–Weil
group E(K). The refined part of the conjecture is an identity of the leading term
of L(E/K, s) at s = 1,

(1)
L(r)(E/K, 1)

r!
∼ det ((Pi, Pj)NT)

where (Pi, Pj)NT is the matrix of Néron–Tate height pairings of a Z-basis
{P1, ..., Pr} of E(K)/E(K)tor, and ∼ means the two sides are equal up to some
explicit terms such as the order of Tate–Shafarevich group, the local Tamagawa
numbers and the real periods. Equivalently, the Néron–Tate height pairing in-
duces a metric on the determinant of the Mordell–Weil group E(K)⊗ZR, and the
RHS of the conjectural formula is the norm of a generator of the determinant of
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the lattice E(K)/E(K)tor. Beilinson and Bloch also formulated a generalization
of the B-SD conjecture to higher dimensional varieties.

The Gross–Zagier formula provides an evidence to the B-SD conjecture for el-
liptic curves E over Q when the L-function has a zero of order at most one. Let f
be the weight two newform associated to E by the theorem of Wiles, Taylor–Wiles,
and Breuil–Conrad–Diamond–Taylor. Let φ : X0(N) → E be a modular param-
eterization. Let K be an imaginary quadratic extension of Q, with discriminant
D. Under suitable hypotheses, the theory of complex multiplication and the map
φ allow us to define the Heegner point yK ∈ E(K). The Gross–Zagier formula is
the following identity on the first order derivative of the base-changed L-function
L(E/K, s) = L(f/K, s) at the center s = 1 ([4, 6])

L′(f/K, 1)

(f, f)
=

1√
|D|

(yK , yK)NT

deg(φ)
,

where (f, f) is the Petersson inner product. A similar formula, but for the central
value of the L-function, was also discovered around the same time by Waldspurger
[5].

What about higher order derivatives of L-function at the center? In [YZ15] a
formula for arbitrary order derivative is proved for unramified cuspidal automor-
phic representation π of PGL2 over a function field F = k(X), where X is a curve
over a finite field k. The r-th central derivative of the L-function (base changed
along a quadratic extension F ′/F ) is expressed in terms of the self-intersection
number of the Heegner–Drinfeld cycle ShtrT (or rather its π-isotypic component)
on the moduli stack ShtrG:

(2) L(r)(πF ′ , 1/2) ∼ ([ShtrT ]π, [Sht
r
T ]π).

The moduli stack ShtrG is closely related to the moduli stack of Drinfeld Shtukas
of rank two with r modifications. One important feature of this stack is that it
admits a natural fibration over the r-fold self-product Xr of the curve X over
Spec k

ShtrG // Xr .

In the number field case, the analogous spaces only exist (at least for the time

being) when r ≤ 1. When r = 0, the moduli stack Sht0G is the constant groupoid
over k

(3) BunG(k) ≃ G(F )\ (G(AF )/K) ,

where AF is the ring of adèles of F , and K a maximal compact open subgroup of
G(A). The double coset in the RHS of (3) remains meaningful for a number field
F . When r = 1 the counterpart of Sht1G in the case F = Q is the moduli stack of
elliptic curves, which lives over Spec (Z). Therefore the formula (2) can be viewed
as a simultaneous generalization (for function fields) of the Waldspurger formula
[5] (in the case of r = 0) and the Gross–Zagier formula [4] (in the case of r = 1).
Moreover, there is a way to rewrite the RHS of the formula (2) so that it looks
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just like (1). The formula (2) opens the possibility of relating higher derivatives
of automorphic L-functions to geometric invariants in the function fields case.

The basic strategy of the proof of (2) is to compare two relative trace formulae
(abbreviated as RTF), an “analytic” one for the L-functions, and a “geometric”
one for the intersection numbers. The strategy of using RTF initiated by Jacquet in
1980s has been successful in related and similar questions on higher rank reductive
groups when r = 0 (e.g.,[7, 18]) and r = 1 (e.g., [16]).

The aim of the workshop is to carefully define the relevant objects that appear in
the formula (2), especially the moduli stack of Shtukas and the Heegner–Drinfeld
cycle; to review Jacquet’s RTF; and to sketch the geometric ideas used in the com-
parison of the two RTFs. The talks (except those providing general background)
roughly correspond to various parts of the main reference [YZ15].
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Abstracts

Talk 1: An overview of the Gross–Zagier and Waldspurger formulas

Yunqing Tang

In this talk, we will state the Gross–Zagier formula, which relates the Néron–
Tate height of Heegner points to the central derivative of the L-function of certain
weight 2 cusp forms. We will also state Waldspurger formula on the central value of
L-function of certain cuspidal automorphic representation of quaternion algebra.

1. The modular curve X0(N) and Heegner points

1.1. The modular curve. The modular curve Y0(N) over Q is defined to be the
moduli space of φ : E → E′ where E,E′ are elliptic curves and φ is an isogeny
with kernel isomorphic to Z/NZ.

The set of complex points Y0(N)(C) is the locally symmetric space Γ0(N)\H,
where

Γ0(N) =

{(
a b
c d

)
∈ GL2(Z) : c ≡ 0 (mod N)

}
.

One defines X0(N) to be the compactification of Y0(N) obtained by adding cusps
(the set of cusps admits a bijection to Γ0(N)\P1(Q)). The modular curveX0(N) is
defined over Q and parametrizes isogenies of generalized elliptic curves φ : E → E′

such that kerφ is isomorphic to Z/NZ and meets every component of E. (See [1].)
The cusp on X0(N) given by ∞ ∈ P1(Q) corresponds to the nodal cubic curve.
We will use ∞ to denote this cusp.

1.2. CM points and Heegner points. (See [2].)
In terms of the uniformization of X0(N)(C) by H, complex multiplication (CM)
points Eτ

∼= C/Z+ τZ correspond to τ ∈ H such that there exist a, b, c ∈ Z such
that aτ2 + bτ + c = 0. If gcd(a, b, c) = 1, the discriminant D = b2 − 4ac is the
discriminant of EndC(Eτ ). CM points are defined over Q.

Let K be an imaginary quadratic field of odd discriminant D over Q. The
Heegner condition says that for all p | N , one has p split or ramified in K, and
that p2 ∤ N if p is ramified. The Heegner condition is equivalent to the existence of
a point (φ : E → E′) ∈ X0(N)(Q) satisfying EndQ(E) = EndQ(E′) = OK . Such
point is called a Heegner point. The theory of complex multiplication implies that
Heegner points are defined over the Hilbert class field H of K.

Let J0(N) denote the Jacobian of X0(N). One constructs P ∈ J0(N)(K) from
the Heegner point by letting P =

∑
σ∈Gal(H/K)((σ(x)) − (∞)).
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2. Gross–Zagier formula

2.1. Néron-Tate height. Let L be a line bundle on J0(N) corresponding to twice
a theta divisor Θ. Since L is ample, there exists n ∈ N such that L⊗n is very
ample and hence induces a projective embedding of J0(N). One restricts the Weil
height onK-points of the projective space to J0(N)(K) to obtain a height function
hKL⊗n . One defines hKL on J0(N)(K) by 1

nh
K
L⊗n .

The Néron-Tate height for J0(N)(K) is defined to be ĥ := lim
n→∞

hKL (2
nx)

4n
. It

induces a quadratic pairing on J0(N)(K) and also on J0(N)(K) ⊗Z C. Néron’s
theory interprets the Néron–Tate height as the sum of local intersection numbers
on X0(N) (see for example [3]).

2.2. L-functions. Let f be a weight 2 newform for Γ0(N), that is, a cuspidal
Hecke eigenform, orthogonal to modular forms coming from smaller level.

One may view f as an automorphic form for GL2/Q and fK denotes its base
change to K. We have

L(fK , s) = L(f, s)L(f ⊗ ηK/Q, s),

where ηK/Q is the quadratic character associated to K/Q by class field theory.
Explicity, if the Fourier expansion of f is given by

∑
n≥1 anq

n, then

L(f, s) =
∑

n≥1

anq
n; L(f ⊗ ηK/Q, s) =

∑

n≥1

η(n)anq
n.

The Heegner condition implies that L(fK , 1) = 0.

2.3. The Hecke algebra. The Hecke algebra is the double coset

Γ0(N)\GL2(Q)/Γ0(N).

It is the algebra of correspondences on X0(N) generated by

Tm : [E
φ
−→ E′] 7→

∑

C

[E/C → E′/C],

where C runs through order m subgroups of E which intersect kerφ trivially.
The Hecke algebra acts on X0(N), hence also on J0(N)(K). We will use P (f)

to denote the projection of P to the f -isotypic component of J0(N)(K)⊗Z C.

2.4. The formula.

Theorem 2.1 (Gross–Zagier [4]). Given a weight 2 new form f of X0(N), we
have

ĥ(P (f)) ∼
L′(fK , 1)

||f ||Pet
,

where ∼ means that both sides are equal up to a constant independent of f and
||f ||Pet :=

∫
Γ0(N)\H f(z)f(z)dxdy.
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Remark 2.1. The work of Zhang [7] and Yuan-Zhang-Zhang [6] shows an analogous
formula under the generalized Heegner condition. For simplicity, assume (N,D) =
1 and write N = N+N−, where N+ (resp. N−) is the product of powers of split
(resp. inert) primes. The generalized Heegner condition assumes N− is squarefree
and its number of prime factors is even. The (generalized) Heegner points are
constructed as CM points on the Shimura curve associated to the quaternion
algebra B ramified exactly at primes dividing N−.

3. Waldspurger formula

Let F be a number field, B a quaternion algebra over F , and G the algebraic group
associated to B×. Let K/F be a quadratic extension with a given embedding
K →֒ B. Let T to be ResK/F Gm. One naturally views T as a subgroup of G. Let

η : F×\A×F → C× be the quadratic character associated to K/F .
Let π be an irreducible cuspidal automorphic representation of G, π̃ its contra-

gredient, and ωπ the central character. Let πK denote the base change of π to K.
Let χ : T (F )\T (AF )→ C× be a unitary character, such that ωπ · χ|A×

F
= 1. The

center of L(πK ⊗ χ, s) is normalized to be 1/2.
One defines period integral Pχ : π → C by

f 7→ Pχ(f) =

∫

T (F )\T (AF )/A×
F

f(t)χ(t) dt.

Theorem 3.1 (Waldspurger [5], see also, for example, [8]). For f1 ∈ π and f2 ∈ π̃,

Pχ(f1)Pχ(f2) ∼
L(πK ⊗ χ, 1/2)

L(π,Ad, 1)
α(f1 ⊗ f2)

where ∼ means that both sides are equal up to a constant independent of π, χ, f1, f2,
and α =

∏
v αv is a product of local terms

αv ∈ HomK×v
(πv ⊗ χv,C)⊗HomK×v

(π̃v ⊗ χ
−1
v ,C),

normalized by Waldspurger (so that, in particular, αv is 1 in the spherical case).
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Talk 2: The stacks Bunn and Hecke

Timo Richarz

1. Why stacks?

In algebraic geometry one would like to have a classifying space BGLn for vector
bundles, such that

Hom(S,BGLn) = {vector bundles of rank n on S} / ∼ .

Such an object can not be represented by a scheme, since a vector bundle is
locally trivial, so any map S → BGLn would need to be locally constant which for
schemes would imply constant. There are several possible ways to wriggle out of
this situation.

(1) Add extra data (e.g. level structure) in order to eliminate automorphisms!
(2) Do not pass to isomorphism classes!

Stacks are the result of the second option.

2. Bunn as a stack

We refer to Heinloth [He10, §1-2] for further details. Fix a field k in this section.

Definition 2.1. A stack M is a sheaf (in the appropriate topology) of groupoids

M : Schopk → Grp ⊂ Cat.

Example 2.2. The classifying stack

BGLn := [pt /GLn]

takes S to the groupoid of vector bundles of rank n on S.

Example 2.3. Let X be a smooth, projective, geometrically connected curve over
k. We define the stack Bunn taking S to the groupoid of vector bundles of rank n
on X × S.

How to make this geometric? We have a map pt→ BGLn corresponding to the
trivial bundle. If E is a rank n vector bundle on S, then we get by definition a
classifying map

fE : S → BGLn.

Consider the fibered product

S ×BGLn
pt pt

S BGLn
fE
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Its T -valued points are

{(f, ϕ : Triv ◦ p
∼
−→ fE ◦ f} = Isom(O⊕nS , E)(T ),

which is the frame bundle of E . Let us think about what this means.

(1) We can recover E = On
S ×

GLn Isom(O⊕nS , E), i.e. the map pt → BGLn is
the universal vector bundle!

(2) The map pt→ BGLn is a smooth surjection after every base change!

Definition 2.4. A stackM is called algebraic if

(1) For all maps S →M and S′ →M from schemes S, S′, the fibered product
S ×M S ′ is a scheme.

(2) There exists a scheme U together with a smooth surjection U →M called
an atlas.

(3) The map U ×M U → U × U is quasi-compact and quasi-separated.

An algebraic stackM is smooth (resp. locally of finite type, ...) if there is an atlas
U ։M such that U is smooth (resp. locally of finite type, ...).

Example 2.5. (Picard stack) We define PicX = BunX,1. Let JacX be the Jacobian
of X . This is the coarse moduli space of PicX , so we have a map PicX → JacX ,
which preserves the labelling of connected components by degree. Suppose you
have x ∈ X(k) 6= ∅. Then we actually have an isomorphism

PicX
∼
−→ JacX ×BGm,

where the map PicX → BGm corresponds to the restriction of the universal line
bundle on X × PicX to {x} × PicX . This shows that PicX is a smooth algebraic
stack locally of finite type of dimension g(X)− 1.

Theorem 2.6. The stack Bunn is a smooth algebaic stack locally of finite type
over k, of dimension n2(g(X)− 1), and π0(Bunn) = Z.

3. Adelic uniformization of Bunn

We refer to the notes of a course of Yun [Yun15, §2.4] for more details. Let
k = Fq be a finite field. Let F be a the function field of X , and |X | the set of
closed points. For x ∈ |X |, denote by Ox the completed local ring at x. This
is non-canonically isomorphic to kx[[̟x]]. We also set Fx = Frac(Ox), which is
non-canonically isomorphic to kx((̟x)). Recall the ring of adeles

A =

′∏

x∈|X|

(Fx,Ox) = {(ax) ∈
∏

Fx | ax ∈ Ox for almost all x ∈ |X |}.

Theorem 3.1 (Weil). There is a canonical isomorphism of groupoids

GLn(F )\


GLn(A)/

∏

x∈|X|

GLn(Ox)


 ∼
−→ Bunn(k).

Here if S is a set with a (left) group action of G, then G\S can be considered
as a groupoid, whose objects are orbits and automorphisms are stabilizers.
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3.1. Level structure. Given D =
∑
dx · x an effective divisor, we can look at

the double quotient

GLn(F )\ (GLn(A)/KD) ∼=
{
(E , α) | α : E|D ∼= O

⊕n
D

}

where KD = ker
(∏

x∈|X|GLn(Ox)→
∏

x∈|X|GLn(Ox/̟
dx
x )
)
.

3.2. Split groups. If G is any (not necessarily reductive) connected algebraic
group which splits over k, then

G(F )\


G(A)/

∏

x∈|X|

G(Ox)


 ∼= BunG(k).

4. Hecke stacks

We refer to Yun and Zhang [YZ15, §5.1] for further details. Let r ≥ 0 and µ =
(µ1, . . . , µr) a sequence of dominant coweights of GLn such that µi is either µ+ =
(1, 0, . . . , 0) or µ− = (0, . . . , 0,−1).

Definition 4.1. The Hecke stack Hkµn is the stack defined by Hkµn(S) is the groupoid
classifying the following data:

• a sequence (E0, . . . , Er) of rank n vector bundles on X × S.
• a sequence (x1, . . . , xr) of morphisms xi : S → X , with graphs Γxi

⊂ X×S,
• maps (f1, . . . , fr) with

fi : Ei−1|X×S\Γxi

∼
−→ Ei|X×S\Γxi

such that if µi = µ+, then fi extends to Ei−1 →֒ Ei whose cokernel is an
invertible sheaf on Γxi

, and if µi = µ− then f−1i extends to Ei →֒ Ei−1
whose cokernel is an invertible sheaf on Γxi

.

For i = 0, . . . , r we have a map pi : Hkµn → Bunn sending (E , x, f) 7→ Ei, and
pX : Hkµn → Xr sending (E , x, f) 7→ x.

Lemma 4.2. The morphism

(p0, pX) : Hkµn → Bunn ×X
r

is representable by a proper smooth morphism of relative dimension r(n−1), whose
fibers are iterated Pn−1-bundles.
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Talk 3: Moduli of Shtukas I

Doug Ulmer

1. Review of Hecke stacks

Let X be a (smooth, projective, geometrically connected) curve over Fq. Let
F = Fq(X). Fix integers n ≥ 1 and r ≥ 0. Let µ = (µ1, . . . , µr) with each
µi = ±1. Usually we require that r is even, and moreover that

∑
µi = 0.

In the previous talk we met the Hecke stack Hkµn, parametrizing modifications
of type µ of rank n vector bundles. If S is an Fq-scheme, then Hkµn(S) is the
groupoid of

• vector bundles (E0, . . . , Er) on X × S.
• S-valued points xi : S → X , i = 1, . . . , r.
• If µi = +1, a map φi : Ei−1 →֒ Ei with cokernel an invertible sheaf sup-
ported on Γxi

. If µi = −1, a map φi : Ei →֒ Ei−1 with cokernel an invertible
sheaf supported on Γxi

.

We have a map Hkµn → Bunn × X
r sending (E , x, φ) → (E0, x), which is an

iterated Pn−1-bundle and thus smooth of fiber dimension r(n − 1), so Hkµn is
smooth of dimension n2(g − 1) + nr.

2. Moduli of shtukas for GLn

2.1. Definition.

Definition 2.1. A shtuka of type µ and rank n is a “Hecke modification” plus
a Frobenius structure. More precisely, Shtµn(S) = {(E , x, φ)} together with an

isomorphism ι : Er
∼
−→ τE0 := (IdX ×FrobS)

∗E0.

We have a cartesian diagram

Shtµn Hkµn

Bunn Bunn × Bunn

p0×pr

Frob× Id

Example 2.2. For n = 1, the choice of points xi determines the higher Ei from E0,
namely Ei = Ei−1 ⊗ O(µixi). So Hkµ1

∼= PicX ×Xr. For a point of Hkµ1 to be an
element of Shtµ1 , we also need Er ∼=

τE0, i.e.

τE0 ⊗ E
−1
0
∼= O(

∑
µixi).

Thus Shtµ1 is a familiar object: its fibers over Xr are torsors for the kernel of the

Lang isogeny, PicX → PicX , i.e., torsors for Pic0X(Fq).
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Example 2.3. For r = 0, Shtµn(S) is a vector bundle E onX×S and an isomorphism
E ∼= τE . This looks like part of descent data. If S = SpecFq, then such E come
from E on X itself via pullback. More generally, for r = 0

Shtµn =
∐

E

[SpecFq/Aut E ].

where the union is over objects E of Bunn(Fq). What exactly does this mean?
Concretely, an element of Shtµn is an Aut(E)-torsor on S, which we can think of as
a twisted form of p∗X(E) on X × S.

2.2. Basic geometric facts about Shtµn.

(1) Shtµn is a Deligne-Mumford stack, smooth and locally of finite type.
(2) There is a morphism Shtµn → Xr which is separated, smooth, and of

relative dimension r(n− 1).

2.3. Level structures.

Definition 2.4. Let D ⊂ X be a finite closed subscheme (in this case, just a finite
collection of points with multiplicities). A level D structure on (E , x, φ) is an
isomorphism

E0|D×S
∼
−→ O⊕nD×S

such that |D| ∩ {x1, . . . , xr} = ∅, which is compatible with Frobenius in the sense
that the following diagram commutes:

E0|D×S O⊕nD×S

τE0|D×S
τO⊕nD×S

∼

∼

∼

Note that there is an action of GLn(OD) on the set of level structures.

In practice, we’ll introduce level structure in order to rigidify the objects.

2.4. Stability conditions. The components of Bunn are indexed by Z, via

E 7→ deg det E .

We need to fix this to get something of finite type. But that still won’t be enough,
since we have things like O(ap)⊕O(−ap). For a vector bundle E , let

M(E) := max{degL | L →֒ E}.

This is enough to cut down to something of finite type.

Definition 2.5. Define Shtµn,D,d,m to be the stack whose S-points consist of data

(E , x, φ, ι : Er
∼
−→ τE0) and a level D structure such that deg(det E0) = d and

M(E0) ≤ m.

Facts:

(1) If deg(D)≫ 0 (with respect to n,m, d) then Shtµn,D,d,m is represented by
a quasi-projective variety.
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(2) The map [Shtµn,D,d,m/GLn(OD)] →֒ Shtµn is an open embedding.

(3) Shtµn is the union of these substacks for varying d,m.

This is enough to check that Shtµn is a DM stack locally of finite type over Fq.

2.5. Smoothness. Recall the cartesian square

Shtµn Hkµn Xr

Bunn Bunn × Bunn

p0×pr

Frob× Id

Note that dFrob = Frob∗ = 0, and Id∗ = Id. On the other hand, p0∗ and pr∗ are
both surjections.

Corollary 2.6. The maps (Frob, Id) : Bunn → Bunn×Bunn and (p0, pr) : Hkµn →
Bunn × Bunn are transverse.

Corollary 2.7. The map Shtµn → Xr is smooth, and so has relative dimension
(n− 1)r.

3. Moduli of Shtukas for PGL2

Let G = PGL2 = GL2/Gm, and let BunG be the stack of G-torsors on X , which
is isomorphic to Bun2/Bun1, with the action being ⊗. This action lifts to Hkµ2 , by

(E , x, φ) 7→ (E ⊗ L, x, φ⊗ Id).

This action doesn’t restrict to Shtµ2 unless L ∼= τL. Therefore, only the subgroup
PicX(Fq) acts on Shtµ2 . We have cartesian diagrams

(1)

PicX(Fq) PicX

PicX PicX ×PicX .
Frob× Id

and

(2)

Shtµn Hkµn

Bunn Bunn × Bunn

p0×pr

Frob× Id

and the objects for G = PGL2 are obtained by quotienting the second diagram
(2) by the action of the corresponding groups in the first diagram (1).
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3.1. Independence of signs when n = 2. If µ, µ′ are r-tuples of signs and n = 2,

then there is a canonical isomorphism ShtµG
∼
−→ Shtµ

′

G . We’ll show this by giving an

explicit isomorphism between ShtµG, for any µ, and Shtµ
′

where µ′ = (+1, . . . ,+1).
Suppose we are given (E , x, φ, ι) ∈ ShtµG. The key idea is that we can transform

an injection Ei−1 ←֓ Ei with deg 1 cokernel into Ei−1 →֒ Ei ⊗ O(xi). So we
take every instance of Ei−1 ←֓ Ei, which is a modification of type µi = −1, into
Ei−1 →֒ Ei ⊗O(xi), which is a modification of type µi = +1. Given (E , x, φ) let

Di :=
∑

1≤j≤i
µj=µ−

Γxi
.

Let E ′i = Ei ⊗OX×S(D), and note that

E ′0 →֒ E
′
1 →֒ . . . →֒ E ′r

inherits the structure of an element of Shtµ
′

G .
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Talk 4: Moduli of Shtukas II

Brian Smithling

1. Goal

The main goal of this talk was to define the intersection number

(1) Ir(f) :=
〈
θµ∗ [Sht

µ
T ], f ∗ θ

µ
∗ [Sht

µ
T ]
〉
Sht′rG

∈ Q

for r ≥ 0 an even integer and f an element of the spherical Hecke algebra H.
Here θµ∗ [Sht

µ
T ] ∈ Chc,r(Sht

′r
G)Q is a class in the “rational Chow group of dimension

r cycles proper over the base field,” and the pairing is the natural one between
proper cycle classes of complementary dimension. This Chow group is acted on
by cCh2r(Sht

′r
G×Sht′rG)Q, the “rational Chow group of dimension 2r cycles proper

over the first factor,” which has a Q-algebra structure. We refer the reader to
Rapoport’s talk on intersection theory (or to [YZ15, §A.1]) for the Chow-theoretic
generalities. The key points for us in making sense of the right-hand side of
(1) were to define the stacks ShtµT and Sht′rG, to define a ring homomorphism
H ′ : H → cCh2r(Sht

′r
G×Sht′rG), and to define the morphism θµ : ShtµT → Sht′rG. We

closely follow [YZ15, §§5.3–5.5].
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2. The Hecke algebra

Let k be a finite field with q elements, and keep the notation of the previous two
talks. Let G := PGL2. For x ∈ |X |, we set Kx := G(Ox) and K :=

∏
x∈|X|Kx.

Definition 2.1. The spherical Hecke algebra for G overX is the convolution algebra

H := C∞c
(
K\G(AF )/K,Q

)
=
⊗′

x∈|X|

Hx,

where Hx := C∞c (Kx\G(Fx)/Kx,Q) is the local Hecke algebra at x.

For n ≥ 0, let Mx,n denote the image of Mat2(Ox)valx(det)=n in G(Fx), and set
hnx := 1Mx,n

∈ Hx. It is easy to see from the Cartan decomposition that the
functions hnx form a Q-basis for Hx. For D =

∑
x∈|X| nxx an effective divisor on

X , we set hD := ⊗x∈Xhnx ∈ H. Then the hD’s for varying D form a Q-basis for
H.

3. Hecke correspondences

Let µ be an r-tuple with the same number of µ+’s and µ−’s, as in Ulmer’s talk
(a balanced r-tuple). Let D be an effective divisor on X . We define Shtµ2 (hD) to
be the stack over k whose S-points classify the data of an r-tuple (x1, . . . , xr) of
morphisms S → X together with a commutative diagram

(2)

E0 E1 · · · Er τE0

E ′0 E ′1 · · · E ′r
τE ′0

φ0 φ1

∼

φr
τφ0

∼

,

such that the top and bottom rows, together with the common tuple (x1, . . . , xr),
both form points on Shtµ2 , and such that the map of line bundles detφi : det E →֒
det E ′ has divisor D × S ⊂ X × S for all i. The groupoid PicX(k) acts naturally
on Shtµ2 (by tensoring everything in (2)), and we define

ShtµG(hD) := Shtµ2 (hD)/PicX(k).

Both Shtµ2 and ShtµG are independent of µ up to canonical isomorphism over Xr,
and therefore we replace µ by r in the notation. By definition, there is a commu-
tative diagram

(3)

ShtrG(hD)

ShtrG ShtrG

Xr

←−p −→p

,

where ←−p and −→p are induced by projecting off the top and bottom rows of (2),
respectively.
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Lemma 3.1 ([YZ15, Lem. 5.8]). The morphisms ←−p and −→p are representable and
proper, and the morphism (←−p ,−→p ) : ShtrG(hD)→ ShtrG×ShtrG is representable and
finite.

Sketch proof. For −→p , its fibers are closed subschemes in a product of Quot schemes.
For ←−p , we dualize the diagram (2) and apply the same argument. For repre-
sentability and affineness of (←−p ,−→p ), its fibers are closed in a product of Hom
schemes of vector bundles. Properness, and hence finiteness, then follows from
ShtrG being separated and ←−p being proper. �

We refer to [YZ15] for proofs of the next two results.

Lemma 3.2 ([YZ15, Lem. 5.9]). The geometric fibers of ShtrG(hD) → Xr have
dimension r, and hence dimShtrG(hD) = 2r. �

By the lemmas, we may define a Q-linear map

H : H −→ cCh2r(Sht
r
G × ShtrG)Q, hD 7−→ (←−p ,−→p )∗[Sht

r
G(hD)].

Proposition 3.3 ([YZ15, Prop. 5.10]). The map H is a ring homomorphism. �

In fact we need a variant of the above discussion for the definition of Ir(f). Let
ν : X ′ → X be an étale cover of degree 2, with the curve X ′ also geometrically
connected. We base change the diagram (3) under (X ′)r×Xr−, and systematically
use a prime for the objects in the new diagram. Then we analogously get a map

H ′ : H −→ cCh2r(Sht
′r
G × Sht′rG)Q, hD 7−→ (←−p ′,−→p ′)∗[Sht

′r
G(hD)],

which is again a ring homomorphism.

Definition 3.4. For f ∈ H, we write f∗− for the operator on Chc,∗(Sht
′r
G)Q induced

by H ′(f) under the action of cCh2r(Sht
′r
G × Sht′rG)Q.

4. The Heegner-Drinfeld cycle

We continue with µ a balanced r-tuple. Let T̃ := ResX′/X Gm and T := T̃ /Gm.
We define Shtµ

T̃
:= Shtµ1,X′ , the moduli stack of rank 1 shtukas over X ′ of type µ

(where now we interpret µ± as the coweight ±1 for Gm). The Picard groupoid
PicX′(k) acts naturally on Shtµ

T̃
, and hence so does PicX(k) via the pullback map

ν∗ : PicX(k)→ PicX′(k). We set ShtµT := Shtµ
T̃
/PicX(k). Then the forgetful map

πµ
T : ShtµT −→ (X ′)r

is a torsor under the finite Picard groupoid PicX′(k)/PicX(k). Hence ShtµT is
proper smooth of dimension r over k. Furthermore ShtµT is canonically independent
of µ over Xr (but not as a stack over (X ′)r).

Quite generally, for L a line bundle on X ′×S, the pushforward ν∗L is a vector
bundle of rank 2 on X × S. This induces a morphism

θ
µ
: ShtµT −→ ShtrG, (x′,L, f , ι) 7−→

(
ν(x′), ν∗L, ν∗f, ν∗ι

)
.

We then define

θµ : ShtµT
(πµ

T
,θ

µ
)

−−−−−→ (X ′)r ×Xr ShtrG = Sht′rG.
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Since ShtµT is proper over k of dimension r, we may make the following definition.

Definition 4.1. The Heegner–Drinfeld cycle is the class θµ∗ [Sht
µ
T ] ∈ Chc,r(Sht

′r
G)Q.

Since dimSht′rG = 2r by Ulmer’s talk, the cycle classes θµ∗ [Sht
µ
T ] and f ∗θ

µ
∗ [Sht

µ
T ],

for f ∈ H, are of complementary dimensions. With this the definition of Ir(f) in
(1) now makes sense. The value is independent of µ by [YZ15, Lem. 5.16].

Let us conclude by stating a rough version of the main result of [YZ15].

Theorem 4.2. If π is an everywhere unramified cuspidal automorphic represen-
tation of G(AF ), then there is an equality up to some explicit constant factors,

L(r)(πF ′ , 1/2) ∼
(
[ShtµT ]π , [Sht

µ
T ]π
)
π
.

Here the left-hand side is the central value of the rth derivative of a modified
L-function for the base change πF ′ of π to F ′ = k(X ′). The right-hand side is,
roughly speaking, the self intersection of the π-isotypic component [ShtµT ]π of the
Heegner–Drinfeld cycle under the pairing induced by 〈 , 〉Sht′r

G
.
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Talk 5: Automorphic forms over function fields

Ye Tian

1. Cuspidal automorphic forms

1.1. Goal. Let X/k be a curve over a finite field of genus g and F = k(X). Let
A = AF and O =

∏
x∈|X|Ox, where Ox is the completed local ring of X at x.

Let G = GLd and Z be the center of G. Then G(O) is a maximal compact
subgroup of G(A).

Definition 1.1. A function ϕ : G(F )\G(A) → C is called smooth if it factors
through G(F )\G(A)/K for some open subgroup K of G(A); it is called cuspidal
if for any proper standard parabolic P ⊂ G, with unipotent N , the constant term
along P

ϕP (g) =

∫

N(F )\N(A)

ϕ(ng) dn

vanishes.

The main goal of the talk is to prove:

Theorem 1.2 (Harder). For a compact open subgroup K ⊆ G(O), cuspidal func-
tions ϕ : G(F )\G(A)/K → C have support uniformly finite modulo Z(A).

The main reference is [1] Chapter 9, §9.1-9.2, and Appendices D.6 and E.0-E.1;
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1.2. Cuspidal Automorphic representations.

Definition 1.3. A smooth function ϕ : G(F )\G(A) → C is called automorphic
if the space spanned by right translations by G(A) of ϕ is admissible. (Recall
that a smooth representation of a totally disconnected locally compact Hausdorff
topological group is admissible if the subspace of fixed vectors under any compact
subgroup is finite dimensional.)

Corollary 1.4. A cuspidal smooth function ϕ : G(F )\G(A)→ C is automorphic
if and only if ϕ is Z-finite, i.e. dimC〈{ϕ(·z), z ∈ Z(A)}〉 <∞.

Definition 1.5. Let χG denote the group of complex valued smooth characters on
Z(F )\Z(A). A function ϕ : G(A) → C has central character χ ∈ χG if ϕ(zg) =
χ(z)ϕ(g) for all z ∈ Z(A).

Remark 1.6. If ϕ is cuspidal automorphic form with a central character, after
twisting by µ ◦ det for some idele character µ, we may view ϕ as a function on
G(F )\G(A)/KaZ, for some open compact subgroup K and some a ∈ Z(A) = A×

with deg a = 1.

Let Acusp(G(F )\G(A)/KaZ) denote the space of cuspdial automorphic forms
ϕ : G(F )\G(A)/KaZ → C. Harder’s theorem implies that

Acusp(G(F )\G(A)/KaZ)

has a finite support and therefore is of finite dimension.

Definition 1.7. We define AG,cusp,χ to be the space of automorphic cuspidal forms
on G(A) of central character χ. This has an action of G(A) by right translation.

Theorem 1.8. For any χ ∈ χG, AG,cusp,χ is an admissible representation of
G(A). Moreover, it has a countable direct sum decomposition

AG,cusp,χ =
⊕

π∈ΠG,cusp,χ

π.

Here ΠG,cusp,χ is the set of equivalence classes of irreducible automorphic cuspidal
representations of central character χ.

What is the content of this statement? By definition that π ∈ ΠG,cusp,χ occurs
as a subquotient. The theorem says that it actually occur as an honest subrepre-
sentation with multiplicity one.

Proof. Admissibility follows from Harder’s theorem.
Semisimplicity: after twisting AG,cusp,χ ⊗ (µ ◦ det), we can assume that is χ is

unitary. Then

〈ϕ1, ϕ2〉 :=

∫

G(F )Z(A)\G(A)

ϕ1ϕ2 dg

defines a G(A)-invariant positive definite Hermitian scalar product on AG,cusp,χ.
This implies a direct sum decomposition of an admissible representation

AG,cusp,χ =
⊕

πm(π)
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with m(π) := dimC HomG(A)(π,AG,cusp,χ) ≥ 1 for every π ∈ ΠG,cusp,χ. Since
G(A) has a countable open basis at e, the decomposition is countable.

To see that m(π) = 1, we use that the space of Whittaker functional is 1-
dimensional. If ψ : F\AF → C× is a non-trivial unitary character, and U is the
unipotent radical of the Borel, then ψ defines a character on U(A) and we have
that

HomU(A)(π, ψ) ∼= HomG(A)(π, Ind
G(A)
U(A) ψ)

is one-dimensional, which is proved by passing to the local Whittaker model.

If ξ : π →֒ AG,cusp,χ then we get a functional Wξ ∈ HomG(A)(π, Ind
G(A)
U(A) ψ),

sending

ϕ 7−→

(
Wξ(ϕ) : g 7→

∫

U(F )\U(A)

ξ(ϕ)(ng)ψ(n)−1dn

)
.

On the other hand, we can“recover” the automorphic form ξ(ϕ) via its Foruier
expansion

ξ(ϕ)(g) =
∑

γ∈Ud−1(F )\Gd−1(F )

Wξ(ϕ)[

(
γ

1

)
g]

so the 1-dimensionality of the Whittaker model for π implies m(π) = 1. �

2. Reduction theory on BunG

Definition 2.1. For a non-zero vector bundle E over X , the slope of E is defined
to be µ(E) := deg E

rank E . We have deg E = deg(det E).

By Riemann-Roch,

χ(E) = deg E + rank E · (1− gX).

Definition 2.2. A (non-zero) vector bundle E over X is said to be semistable if for
all sub-bundles

0 ( F ⊂ E ,

we have µ(F) ≤ µ(E). There is an equivalent formulation in terms of quotients,
i.e. for any quotient E ։ G 6= 0, µ(G) ≥ µ(E).

Definition 2.3. A filtration of a vector bundle E on X

0 = F0E ⊂ F1E ⊂ . . . ⊂ FsE = E

is a Harder-Narasimhan (HN) filtration if FjE/Fj−1E are semistable with slopes
µj satisfying

µ1 > µ2 > . . . > µs.

Example 2.4. Let X = P1/k. Then E =
⊕s

i=1O(ni)
ri with n1 > n2 > . . . > ns

and ri ≥ 1 integers, and the HN filtration of E is

0 ⊂ O(n1)
r1 ⊂ O(n1)

r1 ⊕O(n2)
r2 ⊂ . . . ⊂ .

Theorem 2.5 (Harder-Narasimhan). Any non-zero vector bundle over X admits
a unique HN filtration.
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Proof. Let µ1 be the maximal slope of sub-bundles F ⊂ E . By Riemann-Roch,
we know this to be <∞. We claim that in any HN filtration, F1E is the maximal
subbundle E1 with µ(E1) = µ1. (The uniqueness would then follow by induction.)
In fact, for any non-zero sub bundle F ⊂ E , let FiF = FiE ∩ F . Then we have

µ(F) ≤max
i

(µ(FjF/Fj−1F), FjF/Fj−1F 6= 0) ≤max
i

(µ(FjE/Fj−1E)) = µ(F1E),

and the equality holds only if FjF/Fj−1F = 0 for all j = 2, · · · , s, i.e. F ⊂ F1E .
To see that E1 exists, suppose you have distinct E ′1, E

′′
1 which both have maximal

rank r1 with slope µ1. Consider F := 〈E ′1 + E
′′
1 〉, the saturation of the subsheaf of

E spanned by E ′1 and E ′′1 . Then

degF ≥ 2r1µ1 − deg(E ′1 ∩ E
′′
1 )

(the inequality comes from the saturation) while

rankF = 2r1 − rank(E ′1 ∩ E
′′
1 ) > r1.

So µ(F) ≥ µ1 and dominates both E ′1 and E ′′1 . �

Write the Borel B = TU with T diagonal and U its unipotent. By Weil’s adelic
uniformization, we can interpret

B(F )\B(A)/B(O)↔ isomorphism classes of flags of rank (1, . . . , 1).

Let ∆ be the set of simple roots of G.

Theorem 2.6 (Siegel Domain). Let c2 ≥ 2g be an integer. Then

G(A) = G(F )U(A)T (A)∆c2G(O)

where T (A)∆c2 = {t ∈ T (A) : degα(t) ≤ c2, ∀α ∈ ∆}. In other words (by Iwasawa
decomposition), for every E of rank d over X, there is at least one flag

0 ⊂ E0 ⊂ E1 ⊂ . . . ⊂ Ed = E

such that deg(Ej+1/Ej)− deg(Ej/Ej−1) ≤ c2 for all j.

Proof. Take a line bundle L over X such that

(1) 1 ≤ deg E − d degL+ d(1− g) ≤ d.

By Riemann-Roch, the lower bound implies that H0(X, E ⊗ L∨) is non-zero, and
therefore there exists L →֒ E . Let E1 be the saturation of the image of L. The
upper bound gives rise to an inequality

deg E1 ≥ degL ≥
deg E

d
− g.

By induction, we can lift a filtration of E/E1 with this property to one of E ,
say (0) ⊂ E1 ⊂ E2 ⊂ · · · . The only question is to check the desired inequality

for i = 1. If E is semistable, then deg E2
2 ≤ deg E

d , together with the inequality

deg E1 ≥
deg E

d − g, which implies

deg(E2/E1)− deg E1 = 2

(
deg E2

2
− deg E1

)
≤ 2g ≤ c2.
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If E is not semistable, take an HN filtration, whose associated subquotients are
semistable by definition. We apply the conclusion from the semistable case to
each subquotient. The only issue is to check that the inequality still holds at the
endpoints. The desired inequalities end up following from the semistability.

�

Theorem 2.7. Let K ⊂ G(O) be a compact open subgroup. There exists an open
subset CK ⊂ G(A) satisfying

(1) Z(A)G(F )CKK = CK , i.e. CK is left invariant under Z(A)G(F ) and
right invariant under K, and

(2) Z(A)G(F )\CK/K is finite.

Moreover, suppϕ ⊂ CK for all cuspidal ϕ : G(F )\G(A)/K → C.

Proof. Let c2 ≥ 2g. It follows from the compactness of U(F )\U(A) and
F×\A×0≤deg≤deg(x) with x ∈ |X | a closed point, that

G(A) = G(F )U(A)T (A)∆c2G(O) = G(F )T (A)∆c2Ω

where Ω is an open compact subset with ΩK = Ω. Then there exists an open
subgroup K ′ ⊂ K such that

⋃
u∈Ω u

−1K ′u ⊂ K. We claim that there exits c1 < 0

such that for any α ∈ ∆, any t ∈ T (A)∆,α
c2,c1 := {t ∈ T (A)∆c2 | deg degα(t) < c1},

we have

Nα(A) = Nα(F ) · (Nα(A) ∩ tK ′t−1).

This is based on the fact that A = F + aO for any a ∈ A× with degree sufficient
small. Take CK = G(F )T (A)∆[c1,c2]Ω, where

T (A)∆[c1,c2] := {t ∈ T (A) | c1 ≤ deg(α(t)) ≤ c2}.

Note that Z(A) ⊂ T (A)∆[c1,c2] since c1 < 0. Suppose that g ∈ G(A) \ CK is an

element with

g = γtu, γ ∈ G(F ), t ∈ T (A)∆c2 , u ∈ Ω.

Namely, there is α ∈ ∆ such that deg(α(t)) < c1. Thus for any given cuspidal ϕ

0 = ϕPα(tu) =

∫

Nα(F )\Nα(A)

ϕ(ntu)dn = ϕ(tu) = ϕ(g).

Here we have used the facts that Nα(A) = Nα(F ) · (Nα(A)∩ tK ′t−1), u−1K ′u ⊂
K, and the measure dn is chosen such that the volume of Nα(F )\Nα(A) is one.

�
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Talk 6: The work of Drinfeld

Arthur-César Le Bras

The goal of the talk was to justify the central role played by moduli spaces of
shtukas in the Langlands program, by giving a brief overview of the work of Drin-
feld on the global Langlands correspondence for function fields. This is a big and
deep subject and we decided to focus on the results of [3] and on the relation
between elliptic modules and shtukas with two legs. Our discussion follows closely
[1] and [2].

As usual, let k = Fq, X a smooth projective, geometrically connected curve
over k and F = k(X). Choose a point ∞ ∈ |X |, and assume for simplicity that
deg(∞) = 1. Let F∞ be the completion of F at ∞, C∞ be the completion of a
separable closure F∞ of F∞, and A = H0(X \ {∞},O).

1. Elliptic modules

1.1. Definition. The seed of shtukas were Drinfeld’s elliptic modules. Let Ga be
the additive group, and K a characteristic p field. We set K{τ} = K ⊗Z Z[τ ],
with multiplication given by

(a⊗ τ i)(b ⊗ τ j) = abp
i

⊗ τ i+j .

We have an isomorphism K{τ} ∼= EndK(Ga) sending τ to X 7→ Xp. If am is the
largest non-zero coefficient, then the degree of

∑m
i=0 aiτ

i ∈ K{τ} is defined to be
pm. The derivative is defined to be the constant term a0.

Definition 1.1. Let r > 0 be an integer and K a characteristic p field. An elliptic
A-module of rank r is a ring homomorphism

φ : A→ K{τ}

such that for all non-zero a ∈ A, degφ(a) = |a|r∞.
Let S be a scheme of characteristic p. An elliptic A-module of rank r over S

is a Ga-torsor L/S, with a morphism of rings φ : A → EndS(L) such that for all
points s : SpecK → S, the fiber Ls is an elliptic A-module of rank r.

Remark 1.2. The function a 7→ φ(a)′ (the latter meaning the derivative of φ(a))
defines a morphism of rings i : A→ OS , i.e. a morphism θ : S → SpecA.

1.2. Level structures and moduli space. Let I be an ideal of A. Let (L, φ)
be an elliptic module over S. Assume for simplicity that S is an A[I−1]-scheme,
i.e. the map θ factors through θ : S → SpecA \ V (I).

Let LI be the group scheme defined by the equations φ(a)(x) = 0 for all a ∈ I.
This is an étale group scheme over S with rank #(A/I)r. An I-level structure on

(L, ϕ) is an A-linear isomorphism α : (I−1/A)rS
∼
−→ LI .

Choose 0 ( I ( A. We have a functor

F r
I : A[I

−1]− Sch→ Sets

sending S to the set of isomorphism classes of elliptic A-modules of rank r with
I-level structure, with θ being the structure morphism.
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Theorem 1.3 (Drinfeld). F r
I is representable by a smooth affine scheme M r

I over
A[I−1].

2. Analytic theory of elliptic modules

2.1. Description in terms of lattices. Let Γ be an A-lattice in C∞ (that is, a
discrete additive subgroup of C∞ which is an A-module.) Then we define

eΓ(x) = x
∏

x∈Γ−0

(1− x/γ).

Drinfeld proved that this is well-defined for all x ∈ C∞, and induces an isomor-
phism of abelian groups eΓ : C∞/Γ

∼
−→ C∞. This allows to define a function

φΓ : A → EndC∞(Ga), by transporting the A-module structure on the left-hand
side to the right-hand side, which only depends on the homothety class of the
A-lattice Γ.

The following theorem is reminiscent of the description of elliptic curves over
C.

Theorem 2.1 (Drinfeld). The function Γ 7→ φΓ induces a bijection between

{
rank r projective A-lattices

in C∞/homothety

}
↔





rank r elliptic A-modules
over C∞ such that φ(a)′ = a

/isomorphism





Remark 2.2. Under this bijection, an I-level structure equivalent to an A-linear
isomorphism (A/I)r ∼= Γ/IΓ for the lattices.

2.2. Uniformization. We now try to parametrize the objects on the left hand
side of (2.1). Let Y be a projective A-module of rank r. Then we have a bijection
{

homothety classes of A-lattices in C∞
isomorphic to Y as A-modules

}
↔ C×∞\Inj(F∞ ⊗A Y,C∞)/GLA(Y ).

Next we observe that there is a bijection (after fixing an identification F∞⊗AY =
F r
∞)

C×∞\Inj(F∞ ⊗A Y,C∞)↔ Pr−1(C∞) \
⋃

(F∞-rational hyperplanes),

given by sending u ∈ Inj(F∞ ⊗A Y,C∞) to [u(e1) : . . . : u(er)] ((e1, . . . , er) is the
canonical basis of F r

∞). The right-hand side is the set of C∞-points of the famous
Drinfeld upper half-space Ωr.

As SpecA = X \ {∞}, a projective A-module of rank r is the same as a vector
bundle of rank r on X \ {∞}. Using Weil’s adélic description of vector bundles,
one finally gets

M r
I (C∞) ∼= GLr(F )\(Ω

r(C∞)×GLr(A
∞
F )/GLr(Â, I)),

where GLr(Â, I) := ker
(
GLr(Â) :=

∏
v 6=∞GLr(Ov)→ GLr(A/I)

)
. This bijec-

tion can be upgraded into an isomorphism of rigid analytic spaces :
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Theorem 2.3 (Drinfeld). One has an isomorphism of rigid analytic spaces over
F∞ :

M r,an
I = GLr(F )\(Ω

r ×GLr(A
∞
F )/GLr(Â, I)).

3. Cohomology of M2
I and global Langlands for GL2

3.1. Cohomology of the Drinfeld upper half plane. We then briefly outlined
Drinfeld’s proof of global Langlands for GL2 using the moduli space of elliptic
modules. Set r = 2, and Ω := Ω2. Then one has

Ω(C∞) = P1(C∞)\P1(F∞).

There is a map λ from Ω(C∞) to the Bruhat-Tits tree, sending (z0, z1) to the
homothety class of the norm on F 2

∞ defined by

(a0, a1) ∈ F
2
∞ 7→ |a0z0 + a1z1|,

and one can think to Ω as being a tubular neighborhood of the Bruhat-Tits tree.
Using λ, one gets a quite explicit description of the geometry of the rigid analytic
space Ω and proves that there is a GL2(F∞)-equivariant isomorphism :

H1
ét(ΩC∞ ,Qℓ) = (C∞(P1(F∞),Qℓ)/Qℓ)

∗ ∼= St∗.

3.2. Cohomology of M2
I . Now we use the uniformization of M2

I (theorem 2.3).
Rewriting it as follows :

M2,an
I =

(
Ω×GL2(F )\GL2(AF )/GL2(Â, I)

)
/GL2(F∞).

and using the Hochschild-Serre spectral sequence, we deduce a
GL2(AF )×Gal(F∞/F∞)-equivariant isomorphism1 :

H1
ét, !(M

2
I ⊗F F,Qℓ)

∼= HomGL2(F∞)(St, C
∞
0 (GL2(F )\GL2(AF )/GL2(Â, I)))⊗ sp,

where sp is a 2-dimensional representation of Gal(F∞/F∞) corresponding to the
Steinberg representation by local Langlands. Drinfeld shows that

lim
−→
I

H1
ét, !(M

2
I ⊗F F ,Qℓ) =

⊕

π

π∞ ⊗ σ(π)

where π runs over cuspidal automorphic representations of GL2(AF ) with π∞ ∼=
St. Here σ(π) is a degree two Gal(F/F )-representation. Moreover, Drinfeld shows
that at unramified places, πv and σ(πv) correspond to each other by local Lang-
lands.

Remark 3.1. This result is still quite far from the global Langlands correspondence
for GL2 over F , but it nevertheless allows to construct the local Langlands corre-
spondence for GL2 over K, a characteristic p local field, as was explained during
the talk, by combining this global construction with the decomposition of global
L and ǫ-factors as products of local constants (which is known to hold in positive
characteristic) and a trick of twisting by a sufficiently ramified character. See [2].

1This is cheating a little : one has to apply carefully the Hochschild-Serre spectral sequence
and one needs to introduce a compactification of M2

I
to define the cuspidal cohomology of M2

I

showing up on the left (corresponding to the space of cuspidal functions on the right).
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4. From elliptic modules to shtukas

The relation between elliptic modules and shtukas passes through an intermediate
object called an elliptic sheaf.

Definition 4.1. An elliptic sheaf of rank r > 0 with pole at ∞ is a diagram

. . . Fi−1 Fi Fi+1 . . .

. . . τFi−1
τFi

τFi+1 . . .

ji ji+1

τ ji

ti

τ ji+1

ti+1

(here as usual τ∗F = (IdX ×FrobS)
∗F) with Fi vector bundles of rank r, such

that j and t are OX×S-linear maps satisfying

(1) Fi+r = Fi(∞) and ji+r ◦ . . . ◦ ji+1 is the natural map Fi →֒ Fi(∞).
(2) Fi/ji(Fi−1) is an invertible sheaf along Γ∞.
(3) For all i, Fi/ti(τ

∗Fi−1) = is an invertible sheaf along Γz for some z : S →
X \ {∞} (independent of i).

(4) For all geometric points s of S, the Euler characteristic χ(F0|Xs
) vanishes.

If I is a non-zero ideal of A, there is also a natural notion of I-level structure on
an elliptic sheaf over S, at least if S lives over SpecA \V (I), and Drinfeld proves
the following remarkable result.

Theorem 4.2. Let z : S → SpecA\V (I). Then there exists a bijection, functorial
in S, between the two sets :



rank r elliptic A-modules over S
with I-level structure
such that φ(a)′ = z(a)



/≃↔





rank r elliptic sheaves over S
with I-level structure

and zero z



/≃

The dictionary is explained in detail in [6] (see in particular the enlightening
example r = 1 and its relation with geometric class field theory discussed there).

One shows that if (F·, t·, j·) is an elliptic sheaf, then for all i,

ti(τ
∗Fi−1) = Fi ∩ ti+1(τ

∗Fi), viewed as subsheaves of Fi+1.

Hence, one can actually reconstruct the entire elliptic sheaf from the triangle

F0 F1

τF0

j

t

which is just a shtuka with two legs (one being fixed at ∞)! One can not go in
the other direction – shtukas with two legs are more general than elliptic sheaves.
There is no direct analogy anymore between shtukas with one pole at ∞ and one
zero z and elliptic curves (or abelian varieties) but the family of stalks at closed
points of X of such a vector bundle, with their Frobenius, behaves somehow like
the family of ϕ-modules attached to the reduction mod ℓ of the p-divisible group
of an abelian variety over a number field, when the prime ℓ varies (the choice
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of ℓ corresponding roughly to the choice of a closed point and the choice of p
corresponding to the choice of z). Shtukas with two legs are the right objects
to consider to prove the full Langlands correspondence for GLr (for all r) over a
function field, as demonstrated by [4], [5].
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Talk 7: Analytic RTF: Geometric Side

Jingwei Xiao

1. Overview

In this lecture, we start to explain the strategy in [1] of comparing two relative
trace formulas (RTF). The analytic RTF is defined by the split torus inside PGL2:

(1)
∑

u∈P1(F )−{1}

Jr(u, f) = Jr(f) =
∑

π

Jr(π, f)

And the geometric RTF is defined by the self intersection number of the Heegner-
Drinfeld cycle:

(2)
∑

u∈P1(F )−{1}

Ir(u, f) = Ir(f) =
∑

π

Ir(π, f)

In both RTF, the middle terms admit two expansions. The spectral expansions
on the right are given by linear combinations of L(r)(π, 12 ) (Analytic case) and
〈Shtπ , Shtπ〉 (Geometric case), with π ranges over cuspidal automorphic unramified
representations of PGL2 and coefficents given by the test function f . The orbit
integral expansions on the left are parametrized by certain orbits. To prove the
identity L(r)(π, 12 ) ≈ 〈Shtπ, Shtπ〉, it suffices to prove Jr(f) = Ir(f).
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In the following, we first define the term Jr(f) and its orbit integral expansion.
Then we define I0(f). This case is considered by Jacquet in [3]. Finally we indicate
Jacquet’s proof of J0(f) = I0(f).

2. Jr(f) and the orbit integral expansion

As usual, we denote by F the global field of characteristic p, F ′ an unramified
quadratic extension, η the corresponding quadratic character of A×F . We set G =
PGL2 and A the diagonal torus of G. Let [G] = G(F )\G(AF ), and similarly for
[A].

Consider the orbits A(F )\G(F )/A(F ), we have the invariant map:

inv: A(F )\G(F )/A(F ) −→ P1(F )− {1}

γ =

(
a b
c d

)
7−→

bc

ad

We shall say γ is regular semisimple if inv(γ) 6= 0 or ∞. The invariant map
defines a bijection between A(F )\G(F )r.s./A(F ) and P1(F ) − {0, 1,∞}. When
u = 0 or ∞, inv−1(u) consists of three orbits.

Let f ∈ C∞c (G(AF)), define

(3) Kf(g1, g2) =
∑

γ∈G(F )

f(g−11 γg2)

(4) J(f, s) =

∫ reg

[A]×[A]

Kf(h1, h2)|h1h2|
sη(h2)dh1dh2

(5) Jr(f) =

(
d

ds

)r∣∣∣∣
s=0

J(f, s)

Some comments are in order. In (3), the summation is in fact finite since f
is compactly supported. In (4), the term |h1h2|sη(h2) gives the base change L-
function. This will be explained in detail in the next lecture. In (4), the integral
is over a non-compact set and does not converge absolutely, hence one needs to
regularize it. We omit details.

We can modify the above definition by only considering γ with a fixed invariant
u. In (3), define Kf,u by taking summation over γ with a fixed invariant u. In (4),
define J(u, f, s) by replacing Kf by Kf,u. Finally, define Jr(u, f) by substituting
J(u, f, s) into (5).

Hence we have the orbit integral expansion of the Analytic RTF:

(6) Jr(f) =
∑

u∈P1(F )−{1}

Jr(u, f)
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3. I0(f) and the orbit integral expansion

For general r, the definition of Ir(f) involves Shtukas and the Heegner-Drinfeld
cycle. When r = 0, there is an equivalent defintion given by the RTF of the
anisotropic torus inside PGL2. Set T = ResF ′/F (Gm)/Gm and we embed T into
G = PGL2. Consider T (F )\G(F )/T (F ).

There exists ε ∈ G(F ) normalizing T that induces the Galois conjugate on
T (F ). One checks ε2 is in F× since it is in the center of G(F ). Every element in
G(F ) can be written as a+ bε for a, b ∈ F ′. Define the invariant map:

inv: T (F )\G(F )/T (F ) −→ P1(F )− {1}

a+ bε 7−→
bb

aa
ε2

It’s easy to check that the invariant map is well defined and independent of the
choice of ε. We shall say a + bε is regular semisimple if ab 6= 0. The invariant
map induces a bijection between T (F )\G(F )r.s./T (F ) and Norm(F ′)\{0, 1} ⊂
P1(F )− {1}. The two orbits which are not regular semisimple map to 0 and ∞.

We have the usual RTF by considering the left and the right translation of T
inside G.

Let f ∈ C∞c (G(AF)), define Kf(g1, g2) as in (3). Define

(7) I0(f) =

∫

[T ]×[T ]

Kf (h1, h2)dh1dh2

As usual, we have the orbit integral expansion:

(8) I0(f) =
∑

u∈P1(F )−{1}

I0(u, f)

4. J0(f) = I0(f)

In [3], Jacquet proves J0(f) = I0(f) and uses this to prove the Waldspurger
formula. Here, we only consider f when f is a spherical function. For general f ,
one need to modify the definition of I0(f) by also considering division algebras.
By (6) and (8), it suffices to prove J0(u, f) = I0(u, f). We first rewrite both
sides as a product of local distributions. Then we compare the local distributions
at matching orbits. The comparison for spherical functions is just the following
fundamental lemma.

Theorem 4.1 (Fundamental lemma). Let F ′/F be a quadratic unramified exten-
sion of non-archimedean local fields. We use the notation G, T,A and define the in-
variant map as before. Let γ ∈ A(F )\G(F )r.s./A(F ) and δ ∈ T (F )\G(F )r.s./T (F ).

If inv(γ) = inv(δ), then

(9)

∫

A(F )×A(F )

f(h−11 γh2)η(h2)dh1dh2 =

∫

T (F )×T (F )

f(h−11 δh2)dh1dh2

If inv(γ) 6= inv(δ) for all δ, then
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(10)

∫

A(F )×A(F )

f(h−11 γh2)η(h2)dh1dh2 = 0

The fundamental lemma is proved in [2] by a direct computation.
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tome 19, no 2 (1986), p. 185-229.

Talk 8: Analytic RTF: Spectral Side

Ilya Khayutin

Most of the material presented in this lecture is closely related to the work of
Jacquet [3] on Waldspurger’s results [8] on central values of L-functions. A ma-
jor difference from Jacquet’s original approach is the simplifications which are
obtained by introducing the Eisenstein ideal.

1. Decomposition of the kernel

We have defined

J(f, S) =

∫ reg

[A]×[A]

Kf(h1, h2)|h1h2|
sη(h2) dh1dh2.

First we discuss the decomposition of the kernel function Kf(h1, h2). The nec-
essary theory about automorphic representations for GL2 is presented in the book
of Jacquet and Langlands [2]. The ideas about the decomposition of the kernel
are essentially due to Selberg [7].

The vector space L2
0([G]) is a representation of G(A) and it can be decomposed,

in a suitable manner, into irreducible representation. The function Kf is the kernel
of the integral operator corresponding to the right action of C∞c (G(A)) on L2

0([G])
by convolutions. Hence it decomposes into a sum (and an integral) of kernels
corresponding to the action on irreducible representations.

There is a crude decomposition of the kernel into three parts:

Kf(x1, x2) = Kf,cusp +Kf,sp +Kf,Eis

corresponding to cuspidal, special, and Eisenstein spectrum.
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1.1. The cuspidal part. We have

Kf,cusp =
∑

π cuspidal

Kf,π

where
Kf,π(x, y) =

∑

φ

π(f)φ(x)φ(y).

where φ runs over an orthonormal basis of the cuspidal representation π.

1.2. The special part. Using the determinant map, every character χ factors as

χ : [G]
det
−−→ F×\A×/(A×)2 → {±1}.

Then
Kf,sp,χ(x, y) = π(f)χ(x)χ(y).

This is the same expression as for the cuspidal part, but for 1-dimensional repre-
sentations.

1.3. The Eisenstein part. The Eisenstein part is defined similarly for the con-
tinuous spectrum. The sum over an orthonormal basis becomes an integral over
a continuum of characters. Recall that Eisenstein series corresponds to parabolic
induction of automorphic representations of the split torus A.

1.4. Goals:

(1) Identify f ∈ H such that Kf,Eis = 0.
(2) For such f , show that

J(f) =
∑

π cuspidal unramified

Jπ(f)

Jπ(f) =
P(π(f)ϕ)Pη(ϕ)

〈ϕ, ϕ〉
.

where P(·) are certain toral periods to be defined later and ϕ is a spherical
vector in the unramified cuspidal representation π.

(3) Explain how the toral periods are related to L-functions.

2. Satake isomorphism

The local Satake transform has been introduced by Satake [6] as a tool to study
spherical functions and it is closely related to prior work of Harish-Chandra.

Let HG be the spherical Hecke algebra of G. By definition,

HG =
⊗

x∈|X|

′
Hx.

There is also a spherical Hecke algebra for the split torus A ⊂ G. As we have
A ∼= Gm the toral Hecke algebra is HA =

⊗′HA,x, and the local Hecke algebras
are all isomorphic to

HA,x
∼= Q[F×x /O

×
x ]
∼= Q[t−1x , tx]
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where tx = 1̟−1
x O

×
x
.

The Weyl group action is, in this normalization,

ιx(tx) = qxt
−1
x .

The Satake homomorphism

Satx : Hx → HA,x

sends hx 7→ tx + qxt
−1
x . In fact Satx is an isomorphism onto the subring of Weyl

invariants.
The local Satake homomorphisms extend to a global one:

Sat: H → Hι
A.

3. Eisenstein ideal

3.1. Definition of Eisenstein ideal. The Eisenstein ideal we define is an ana-
logue of the ideal defined by Mazur [5] in the number field setting.

We can identify A×/O× ∼= Div(X). There is a map Div(X) → Pic(X) ∼=
F×\A×/O×. Now, HA

∼= Q[Div(X)]→ Q[Pic(X)].
The Weyl involution descends to ιPic on Q[Pic(X)],

1L 7→ qdegL1L−1 .

Thus we have a map

aEis : H
Sat
−−→ Hι

A → Q[Pic(X)]ιPic .

Definition 3.1. We define the Eisenstein ideal to be IEis := ker aEis.

Our main interest in the Eisenstein ideal stems from the following theorem. It is
closely related to the work of Lindenstrauss and Venkatesh on the spherical Weyl
law [4].

Theorem 3.2. For f ∈ IEis,

Kf,Eis(x, y) = 0.

Proof. An unramified character of [A] ∼= F×\A× is constructed in the following
way. Begin with an unramified character of the unit idéles χ : F×\A×1 → C×. Fix
some α ∈ A× with |α| = q, then there is a non-canonical splitting A× ∼= A×1 × α

Z

which allows to extend χ to A×. For any u ∈ C we can define χu(a) = χ(a)|a|u.
The technical part of the proof is an explicit computation of Kf,Eis using para-

bolic induction of unramified characters χu+1/2 : [A] ∼= F×\A× → C×. Using the
assumption that f is everywhere unramified we arrive at the identity

Kf,Eis,χ =
log q

2πi

∫ 0+ 2πi
log q

0+0i

(χu+1/2(aEis(f))1K ,1K) . . . du.

Where 1K is the characteristic function of the fixed maximal compact subgroup.
The kernel Kf,Eis is a sum of Kf,Eis,χ over all unramified unitary characters

χ : F×\A×1 → C×.
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The kernel Kf,Eis,χ vanishes for all possible characters exactly when aEis(f) = 0
as required. �

4. Relation to L-functions

4.1. Normalization of L-function. We have

L(πF ′ , s) = L(π, s)L(π ⊗ η, s).

The functional equation reads

L(πF ′ , s) = ǫ(π, s)L(πF ′ , 1− s)

where

ǫ(π, s) = q−8(q−1)(s−1/2).

Definition 4.1. We define the normalized L-function

L(πF ′ , s) = ǫ(πF ′ , s)
−1/2 L(πF ′ , s)

L(π,Ad, 1)
.

For f in the Eisenstein ideal we can write

J(f, s) =
∑

π

Jπ(f, s)

The Eisenstein part vanishes by the theorem above and the special part vanishes
for any unramified f .

The relative trace of a cuspidal representation is equal to

Jπ(f, s) =
∑

ϕ∈orthogonal basis of π

P(π(f)ϕ, s)Pη(ϕ, s)

〈ϕ, ϕ〉

Again because f is unramified all the summands vanish except for the single spher-
ical basis function ϕ ∈ πK .

For any adelic character χ the period integral is defined by

Pχ(ϕ, s) =

∫

[A]

ϕ

(
h

1

)
χ(h)|h|s dh

A slightly more comfortable form to work with when calculating L-functions is

(1) I(s, ϕ, χ) =

∫

F×\A×
ϕ

(
h

1

)
χ(h)|h|s−1/2 dh

A simple change of variables implies the functional equation

I(s, ϕ, χ) = I(1− s, ϕ̃, χ).

where ϕ̃(g) = ϕ(tg−1).



Arbeitsgemeinschaft: Higher Gross Zagier Formulas 1101

4.2. Whittaker model. Our presentation was based on the review of Cogdell [1]
and the references within.

To relate Jπ(f) with L-functions we use “Whittaker models” which allow us to
express the period integral I(s, ϕ, χ) as an Euler product of local integrals.

Let ϕ ∈ π. The Whittaker model is constructed by restricting ϕ to

ϕ : U(F )\U(A)→ C

and taking the Fourier transform on [U ] ∼= F\A. Cuspidality of π implies that the
constant term in the Fourier transform vanishes.

The Fourier coefficients decompose into a product of local factors. Plugging
this into the period integral I(s, ϕ, χ) and unfolding presents the period integral
as a product of local integrals — the Euler product.

This is almost the integral definition of the L-function attached to an automor-
phic representation. However, there is the issue of the dependance on the vector
ϕ. For almost all places the local factor coincides with the local L-function. But
at the finitely many bad places, one needs to calculate the correct constant factor.
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Talk 9: Geometric Interpretation of Orbital Integrals

Yihang Zhu

The material below is contained in §3.2, 3.3 of the main paper.

1. Interpreting the orbital integrals

Yesterday we introduced the distribution f 7→ J(f, s). It has a geometric expan-
sion:

J(f, s) =
∑

u∈P1(F )−{1}

J(u, f, s).
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For simplicity, in this talk we only discuss the terms J(u, f, s) with u 6= 0,∞, which
are defined as the orbital integrals

J(u, f, s) = J(γ, f, s) =

∫

A(A)×A(A)

f(h−11 γh2)|h1h2|
sη(h2) dh1dh2

where γ ∈ G(F ) with inv(γ) = u. Note that these γ are regular semi-simple and
there are no convergence issues. In the following we let f := hD, for D =

∑
nxx

an effective divisor. We let d := degD.

Let γ̃ ∈ GL2(F ) be a lift of γ. We define h̃ :=
⊗

x h̃nx,x ∈ H(GL2) where

h̃nx,x := 1Mat2(Ox)vx(det)=nx
∈ Hx(GL2). As an easy observation, we have the

following

Lemma 1.1. We have

J(γ, hD, s) =

∫

∆(Z(A))\(Ã×Ã)(A)

h̃D(h−11 γ̃h2)|α(h1)α(h2)|
sη(α(h2)) dh1dh2.

Here Ã is the diagonal torus in GL2, and α :

(
a

d

)
7→ a/d. �

The function (h1, h2) 7→ h̃D(h−11 γ̃h2) may be viewed as a function on

∆(Z(A))\

(
Ã(A)/Ã(O)× Ã(A)/Ã(O)

)
= ∆(DivX)\(DivX)4.

Moreover, the condition that h̃D = 1 defines a subset ND,γ̃ of ∆(DivX)\(DivX)4

given as follows.

Definition 1.2. We define ÑD,γ̃ ⊂ (DivX)4 to be the set of (E1, E2, E
′
1, E

′
2) ∈

Diveff(X)4, such that the rational map O2
X

γ̃
−→ O2

X induces a holomorphic map ϕγ̃

fitting into the following commutative diagram

O2
X O2

X

OX(−E1)⊕OX(−E2) OX(−E′1)⊕OX(−E′2)

γ̃

ϕγ̃

and satisfying Divϕγ̃ = D. We define

ND,γ̃ := (∆(DivX) · ÑD,γ̃)/∆(DivX).

The upshot is that J(γ, hD, s) is a weighted sum over ND,γ̃ . More precisely:

(1) J(γ, hD, s) =
∑

(E1,E2,E′1,E
′
2)∈ND,γ̃

q− deg(E1−E2+E′1−E
′
2)sη(E1 − E

′
1)η(E2 − E

′
1)
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2. The moduli spaces

Let X̂d → PicdX be the moduli stack of sections. Let Xd = SymdX = Xd//Sd.

We have a natural embedding Xd →֒ X̂d sending

(t1, . . . , td) 7→ (OX(t1 + . . .+ td), 1).

This is an isomorphism onto the locus in X̂d where the section is not the zero
section.

Definition 2.1. Let

Σd =

{(
d11 d12
d21 d22

)
| dij ∈ Z≥0, d11 + d22 = d12 + d21 = d

}

Given d ∈ Σd, we define the moduli space Ñd classifying

• K1,K2,K
′
1,K

′
2 ∈ PicX such that degK ′i − degKj = dij

• A map ϕ : K1 ⊕K2 → K ′1 ⊕K
′
2, which we can write as

ϕ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)

with ϕij : Kj → K ′i
• the ϕij ’s are required to satisfy a technical condition which we call (∗d),

roughly saying that not too many ϕij ’s are zero.

We define Nd := Ñd/PicX .

Definition 2.2. We define the moduli spaceAd classifying (∆, a, b) where ∆ ∈ PicdX
and a, b are global sections of ∆ such that they are not both the zero section.

Remark 2.3. The stack Ad is covered by two pieces Xd×PicdX
X̂d and X̂d×Picd Xd

and is therefore a scheme by the representability of X̂d → PicdX .

Definition 2.4. We define a morphism

fd : Nd → Ad

(K1,K2,K
′
1,K

′
2, ϕ) 7→ (K ′1 ⊗K

′
2 ⊗K

−1
1 ⊗K−12 , ϕ11 ⊗ ϕ22, ϕ12 ⊗ ϕ21).

Here condition (∗d) guarantees that the image indeed lies in Ad.

Proposition 2.5. (1) Nd is a geometrically connected scheme over k.
(2) If d ≥ 4g − 3, Nd is smooth of dimension 2d− g + 1.
(3) The morphism fd is proper.

Proof. Using (∗d) we find a covering of Nd analogous to the covering of Ad dis-
cussed above. Using that covering it is easy to prove (1) and (3). (Properness
reduces to properness of Xdij

.) For (2), we use (∗d), the above covering, and the

following consequence of Riemann-Roch: The map X̂dij
→ Pic

dij

X is smooth of
relative dimension 1− g + dij if dij ≥ 2g − 1. �
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3. Geometrization of the analytic RTF

We now define a crucial local system Ld on Nd. By geometric class field theory
there is a rank 1 local system Lη on the Picard scheme PiccoarseX whose associated
function on PiccoarseX (k) is η, characterized by a compatibility condition with the
group scheme structure on PiccoarseX . For any d′ ∈ Z≥0 we define a local system

Ld′ on X̂d′ as the pullback of Lη via the map X̂d′ → PicX → PiccoarseX .
There is an open embedding

(2) Nd →֒ (X̂d11 × X̂d22)×Picd
X
(X̂d12 × X̂d21)

given by the universal ϕij ’s. Finally, we define the rank 1 local system Ld on Nd

to be the restriction of the local system

Ld11 ⊠Qℓ ⊠ Ld12 ⊠Qℓ on (X̂d11 × X̂d22)×Picd
X
(X̂d12 × X̂d21)

to Nd via (2).

Definition 3.1. Let δ : Ad → X̂d, (∆, a, b) 7→ (∆, a− b). We also define

AD := δ−1(OX(D), 1) ∼= Γ(X,OX(D)).

and the invariant map

invD : AD(k)→ P1(F )− {1}, a 7→ 1− a−1,

viewing a ∈ Γ(X,OX(D)) as a rational function on X , i.e. a ∈ F .

Proposition 3.2. Let u ∈ P1(F )− {1, 0,∞}.

(1) If u /∈ Im invD, then J(u, hD, s) = 0.
(2) If u = invD(a) for a ∈ AD(k), then

(3) J(u, hD, s) =
∑

d∈Σd

q(2d12−d)s Tr(Froba, Rfd,∗Ld)a

Proof of (2). Let Na :=
⊔

d∈Σd
f−1d (a). We have a bijection

ND,γ̃
∼
−→ Na(k)

(E1, E2, E
′
1, E

′
2) 7→ (OX(−E1),OX(−E2),OX(−E′1),OX(−E′2), ϕγ̃).

Using this bijection and the Lefschetz fixed point formula, the RHS of (3) becomes
a weighted sum over ND,γ̃ , which is equal to the RHS of (1) by the definition of
Ld. �
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Talk 10: Definition and properties of Md

Jochen Heinloth

Following [YZ15, Section 6.1], we will construct the analog of the space Nd in-
troduced in the previous talk for the case of the twisted torus that we saw in
Talk 4. Let us recall the basic setup: We fix an étale covering ν : X ′ → X of de-
gree 2, where X,X ′ are smooth connected, geometrically irreducible curves. The
non-trivial automorphism of the covering will be denoted by σ.

We denote by T̃ := ResX′/X Gm the Weil restriction of Gm considered as a
group scheme over X and T := (ResX′/X Gm)/Gm the quotient by the constant
group scheme.

Remark 0.3. The torus T can also be viewed as a subgroup of T̃ , because there is
an exact sequence

(1) 1→ Gm → ResX′/X Gm
id·σ−1

−→ ResX′/X Gm
Nm
−→ Gm → 1,

which induces a sequence

1→ T → ResX′/X Gm
Nm
−→ Gm → 1.

1. The starting point

There are probably two motivations for the construction ofMd. You will see that
the constructions will be analogs for T of the geometry appearing in the previous
talk for the split torus A = G2

m. Another motivation is the following:
Recall that our final aim is to compute the intersection of the cycle [ShtrT ] with

an Hecke-translate of itself. Now the space of shtukas ShtT is itself an intersection
of the graph of Frobenius on BunT with some auxiliary Hecke correspondence.
One of the key steps for the computation will be to reverse the order of these two
intersections, i.e., to first intersect BunT with a Hecke correspondence and then
pass to intersections with the graph of Frobenius.

In this talk we will give a simple modular interpretation of the first intersection
and construct the map corresponding to the invariants seen in the previous talk.

As usual we will first consider T̃ and GL2 instead of T and PGL2 first and then
define the space we need by passing to a quotient by PicX .

2. Definition of Md

First observe that BunT̃ = PicX′ is the stack of line bundles on X ′ and thus the
push forward ν∗ defines a morphism BunT̃ → Bun2.

For any d ∈ N we denote by Hecked2 := 〈E ′ ⊂ E|E ′, E ∈ Bun∗2×Bun
⋆+d
2 〉 the stack

of modifications of vector bundles, such that the cokernel has length d. This is a
smooth stack over Bun2, because for any vector bundle E on a curve the scheme
of torsion quotients E ։ T of any degree is smooth.
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We define M̃♥d as the fiber product in the diagram:

M̃♥d
//

��

Hecked2

��
BunT̃ × BunT̃

(ν∗,ν∗) // Bun2 × Bun2

By definition we have

M̃♥d (S) = 〈(L,L
′) ∈ Pic∗X′ ×Pic∗+d

X′ , ψ : ν∗L →֒ ν∗L
′〉.

By adjunction, giving ψ is equivalent to giving a morphism

φ = (α, σ∗β) : L ⊕ σ∗L = ν∗ν∗L → L
′.

Moreover, given φ = (α, σ∗β) we have det(ψ) = Nm(α)−Nm(β), which one easily
checks by computing ν∗ψ in terms of α, β. Thus ψ is injective if and only if
Nm(α) 6= Nm(β).

Passing to a slightly weaker condition Yun and Zhang define

M̃d :=〈(L,L
′, α, β)|(L,L′) ∈Pic∗X′×Pic

∗+d
X′ , α :L →L

′, β :L →σ∗L′,(α, β) 6=(0, 0)〉

Md := M̃d/PicX ,M
♥
d :=M♥d /PicX .

Note that by definition M̃d has infinitely many connected components all of which
are of finite type. Passing to the quotient by PicX one obtains a stack with 2
components only and thereforeMd is of finite type.

Also the Norm map defines a morphism

f :Md →Ad := X̂d ×PicX X̂d − Zd

(L,L′, α, β) 7→(Nm(L′)⊗Nm(L)−1,Nm(α),Nm(σ∗L′)⊗Nm(L)−1,Nm(β)),

where again X̂d is the stack classifying line bundles of degree d on X together
with a (possibly vanishing) global section and Zd is the subset where both sections
vanish.

Proposition ([YZ15, 6.1]).

(1) The morphism ι :Md → X̂ ′d×PicX X̂
′
d−Z ′d induced from (L,L′, α, β) 7→

(L′ ⊗ L−1, α, σ∗L′ ⊗ L−1, β) is an isomorphism. This stack is smooth if
d > 2g(X ′)− 1, it is a DM-stack if char(k) 6= 2.

(2) The morphism f :Md → Ad is proper, as is its restriction f :M♥d → A
♥
d .

Proof. The claim that ι is an isomorphism follows from the isomorphism

(Pic∗X′ ×Pic⋆+d
X′ )/PicX

∼= (PicdX′ ×PicX PicdX′)

given by (L,L′) 7→ (L′ ⊗ L−1, σ∗L′ ⊗ L−1, can), where can is the canonical iso-
morphism between the norms of the two line bundles. This latter isomorphism
follows from applying H∗(X, ) to the sequence (1). The properties of the stack

follow form covering the stack on the right hand side by two copies of X̂ ′d×PicX X
′
d,

i.e. restricting to the subsets where one of the two sections is non-zero. For these
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one uses that the composition X̂ ′d → Pic′X → PicX is the composition of a repre-
sentable morphism and a morphism of Picard stacks whose fibers are torsors under
ker(Pic′X → PicX). This kernel is a µ2-gerbe over the Prym variety ofX ′/X , which
is a DM-stack if the characteristic is not 2. Pulling this space back to the scheme
Xd → PicX we therefore again obtain a DM-stack. Finally the Abel-Jacobi map
X ′d → Pic′X is smooth if d > 2g′ − 1 by the Riemann-Roch theorem. As X ′d is

smooth, this implies that X̂ ′d ×PicX X ′d is smooth for such d.
Part (2) also follows from the above description ofMd. The main ingredient is

the observation that the morphism X̂ ′d → X̂d induced by the norm map is proper.

This is clear fiberwise, as X ′d → Xd and PicdX′ → PicdX are proper. Formally

Yun and Zhang prove this by considering the compactification Xd of X̂d that is
given by the stack of line bundles L together with a homothety class of a non zero
section of L⊕OX , which defines a projective stack over PicX . �

Remark 2.1.
(1) The stackAd := X̂d×PicX X̂d−Zd is proper, as one can check the valuative

criterion for line bundles together with pairs of sections. This also implies
thatMd is proper.

(2) The above proof also shows that X̂ ′d×PicX X̂
′
d−Z ′d is very close to being

a scheme: The only points that have non-trivial automorphisms are those
where one of the two sections vanishes and for those the automorphism
group is µ2.
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Talk 11: Intersection Theory on Stacks

Michael Rapoport

The aim of this talk is to introduce intersection theory on Deligne-Mumford stacks
which are only locally of finite type over a field k, like the moduli stack of shtukas.
Fortunately, we only need the Q-theory, which makes things easier.

1. Definition of Ch(X)Q

1.1. Chow groups for finite type.

Definition 1.1. Let X be a DM stack of finite type over k. Then we define

Ch∗(X)Q = Z∗(X)Q/∂W∗(X)Q

where

• Z∗(X)Q =
⊕

V Q with V running over irreducible reduced closed sub-
stacks of dimension ∗, and

• W∗(X)Q =
⊕

W k(W )× ⊗Z Q with the same index set, and k(W ) viewed
as a rational function to A1

k; the map ∂ to Z∗−1(X) is by the “associated
divisor map” as in the usual case for schemes.
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1.2. Generalization to locally finite type. When X is locally of finite type
over k, we replace Z∗(X)Q with Zc,∗(X)Q and Wc,∗(X)Q, where the subscript c
indicates that we only take substacks proper over Spec k. We have

Chc(X)Q = lim
−→

Y⊂X, proper/k

Ch∗(Y )Q = lim
−→

U open ⊂X

Ch∗,c(U)Q.

1.3. Degree map. We want to define a map

deg : Chc,0(X)Q → Q.

Since we are working with stacks, we need to account for stabilizers.

Definition 1.2. Let x ∈ X be represented by a geometric point xs : Spec ksep → X .
We define

deg x := [(ksep)Γx : k] ·
1

|Aut(xs)|
.

1.4. Intersection pairing. Now let X be smooth, locally of finite type, and of
pure dimension n. Then we have an intersection product

(1) Chc,i(X)Q × Chc,j(X)Q → Chc,i+j−n(X)Q

defined as follows. Let Y1, Y2 be closed substacks of X , which are proper over k.
Then (1) is the colimit of the finite-type intersection products

Chi(Y1)Q × Chj(Y2)Q → Chi+j−n(Y1 ∩ Y2)→ Chc,i+j−n(X)Q.

The first map is subtle to define: it is the refined intersection product

(ζ1, ζ2) 7→ X ×(X×X) (ζ1 × ζ2).

It is a special case of the refined Gysin morphism: to define this, start with the
fiber product diagram

W V

X Yi

where i is a regular embedding of codimension e. Then we get a refined Gysin
morphism

i! : Chi(V )Q → Chi−e(W )Q.

In the expression above

X ×(X×X) (ζ1 × ζ2) := ∆!(ζ1 × ζ2).

Thus we have finally constructed the product

Chc,i(X)Q × Chc,j(X)Q → Chc,i+j−n(X)Q.

Then composing with the degree map, we get an intersection pairing

〈, 〉X : Chc,j(X)Q × Chc,n−j(X)Q → Q.
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Remark 1.3. (i) We have a cycle class map

clX : Chc,j(X)Q → H2n−2j
c (X ⊗k k,Qℓ(n− j))

and the intersection product is compatible with cup product.
(ii) Consider

cChn(X ×X)Q = lim
−→

Z⊂X×X

Ch∗(Z)Q

such that pr1|Z is proper. This is a Q-algebra. It acts on each Chc,j(X)Q.

Now that we have a definition, the problem is that we can’t really calculate.
So instead we pass to K-groups. In the talk, following [YZ15, Appendix A], I
introduced two situations (A) and (B) under which there is a compatibility between
the refined Gysin homomorphism and the pullback operation in K-theory. This is
used in the octahedron lemma [YZ15, Theorem A.10].

2. The octahedron lemma

Consider a commutative diagram

A X B

U S V

C Y D

Let N be the fiber product as in

N A×B × C ×D

X ×S Y ×S U ×S V (X ×S U)× (X ×S Y )× (Y ×S U)× (X ×S V )

Lemma 2.1. There are canonical isomorphisms

(C ×Y D)×U×SV (A×X B) ∼= N ∼= (C ×U A)×Y×SX (D ×V B). �

Theorem 2.2. Assume everybody is smooth, except B (the “bad” object) of di-
mension dA, dX , . . .. Also assume that the fiber products (on the left) C ×Y D,
U ×S V , C ×U A, Y ×S X have the expected dimension. Further assume that each
of the fiber product diagrams

A×X B B

A X
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and

D ×V B B

D V

satisfy the compatibility conditions (A) or (B). Finally assume that both fiber prod-
uct diagrams

N A×X B

C ×Y D U ×S V

and

N D ×V B

C ×U A Y ×S X

satisfy the compatibility condition (A). Let n = dimN . For the diagram

N D ×V B B

N A×X B B

α d

δ a

we have the equality for the highest degree components in the rational Chow groups,

δ!a![B] = d!α![B] ∈ Chn(N)Q.

Roughly speaking, the proof proceeds by using the relation to K-theory, and
lifting the statement of the previous lemma to the level of derived stacks.

References

[1] W. Fulton, Intersection theory, Springer Verlag 1998.
[2] Z. Yun, W. Zhang, Shtukas and the Taylor expansion of L-functions, to appear in Ann. of
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Talk 12: LTF for Cohomological Correspondences

Davesh Maulik

In this lecture, we give some background on the Lefschetz-Verdier trace formula
and calculation of local terms, following closely the paper of Varshavsky [1]. We
then explain briefly how these are used to prove a key degree calculation in the
appendix of [1].
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1. Cohomological correspondences

Definition 1.1. Given X1, X2 a correspondence between X1, X2 is a diagram

C

X1 X2

c1 c2

Given Fi ∈ D(Xi), a cohomological correspondence is an element

u ∈ HomC(c
∗
1F1, c

!
2F2) = HomX2(c2!c

∗
1F1,F2).

If c1 is proper, then we can define a map

RΓc(u) : RΓc(X1,F1)→ RΓc(X2,F2).

When X1 = X2 = X and F1 = F2 = F , this defines an endomorphism of
RΓc(X,F) and we are interested in calculating its trace.

2. Trace formula and local terms

Consider the cartesian square

Fix(c) C

X X ×X

∆′

c′ c=c1×c2

∆

By tracing through a series of adjunctions, we can define a trace map

(1) RHomC(c
∗
1F , c

!
2F)→ ∆′∗KFix(c).

Applying H0 to (1), we get

Tr : CorrC(F ,F)→ H0(Fix,KFix(c)) = HBM
0 (Fix(c)).

If β is a connected component of Fix(c) which is proper over k, we can take the
degree of the contribution of β to define local terms

LTβ(u) = deg(Tr(u)β) ∈ Qℓ.

Varshavsky proves the following:

Theorem 2.1. The trace map commutes with proper pushforward. In particular,
if C,X are proper over k, then

Tr(RΓc(u)) =
∑

β

LTβ(u).

The second statement is the usual Lefschetz-Verdier trace formula.
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3. Local terms for the graph of Frobenius

In order to apply this result, one would like to compute the local terms effectively.
When c2 is quasifinite, given y ∈ Fix(c), with x = c1(y) = c2(y), the cohomological
correspondence u defines an endomorphism

uy : Fx → Fx.

The trace Tr(uy) is the näıve local term associated to y.
In general, these naive terms differ from the true local terms defined earlier;

nevertheless, Varshavsky proves that for contracting correspondences, they agree.
As a special case, we state his result for the graph of Frobenius.

Let X0 be a variety over k = Fq and X = X0 ×Fq
Fq. Consider the self-

correspondence on X obtained from the graph of the Frobenius morphism Frob.
Given a sheaf E on X , let u = Frob∗ E → E denote an arbitrary cohomological
correspondence. Then the local terms coincide with the näıve local terms. In other
words,

(1) For all s ∈ X0(Fq), we have

LTs(u) = Tr(us).

(2) Furthermore, we have

Tr(RΓc(u)) =
∑

s

Tr(us, Es).

4. Application to the appendix

We now sketch how these ideas are used in the proof of Proposition A.12 in [1].
Consider a correspondence

C

M M

c1 c2

Assume

• c1 is proper,
• M is smooth of dimension n, and
• we have a proper map f : C → S.
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Let γ ∈ Chn(C)Q. Suppose we have a map of cartesian squares

Sht C

M M ×M

S(Fq) S

S S × S

Γ

fΓ:=Id×Frob

∆

Id×Frob

Then we can write

Sht =
∐

s∈S(Fq)

Shts.

The Gysin pullback Γ!γ can be decomposed into contributions from each s ∈
S(Fq); let (Γ

!γ)s denote this term. By taking the degree, we obtain a local con-
tribution

〈γ,ΓFrob〉s := deg(Γ!γ)s ∈ Q.

Theorem 4.1. We have

〈γ,ΓFrob〉s = Tr((f!cl(γ))s ◦ Frobs | (f!Qℓ)s).

The argument has two steps: compatibility of trace with proper pushforward,
and the identification of naive and actual local terms for cohomological correspon-
dences supported on the graph of Frobenius.
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Talk 13: Definition and description of Hkµ
M,d; expressing Ir(hD) as a

trace

Liang Xiao

Let ν : X ′ → X be a degree two étale cover of geometrically connected smooth
curves over Fq, whose non-trivial automorphism is denoted by σ. Let D be an
effective divisor on X of degree d. Let ShtµT and ShtµG denote the moduli of
Shtukas introduced in earlier talks, together with a natural embedding θµ : ShtµT →
Sht′µG := ShtµG ⊗Xr X ′r.

The ultimate goal of this talk is to express the geometric side of the relative
trace formula

Ir(hD) =
〈
θµ∗ [Sht

µ
T ], hD ∗ θ

µ
∗ [Sht

µ
T ]
〉
Sht′µ

G
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as the sum over the Hitchin base Ad of the traces of certain (twisted) Frobenius
operators. For this, we first need to describe the intersection space Shtµ

M♥,D

defined as the product

(1) Shtµ
M♥,D

//

��

Sht′µG (hD)

h←×h→

��
ShtµT × ShtµT

θµ×θµ

// Sht′µG × Sht′µG .

We start with its Hecke version.

Definition 0.2. Let H̃k
µ

M,d denote the moduli space that classifies

(1) points x′ := (x′1, . . . , x
′
r) ∈ X

′, and
(2) a commutative diagram of modifications of line bundles over X ′

(2) L′0
f ′1 // L′1

f ′2 // · · ·
f ′r // L′r

L0
f1 //

α0

OO

β0

��

L1
f2 //

α1

OO

β1

��

· · ·
fr // Lr

αr

OO

βr

��
σ∗L′0

σ(f ′1) // σ∗L′1
σ(f ′2) // · · ·

σ(f ′r)// σ∗L′r,

such that

• the first row and the second row each defines a point of H̃k
µ

T over x′ ∈ X ′r,
and

• each column L′i
αi←− Li

βi
−→ σ∗L′i defines a point of M̃d (i.e. degL′i −

degLi = d).

We define the quotient

HkµM,d := H̃k
µ

M,d / PicX .

The following is a list of basic properties of HkµM,d.

Lemma 0.3. (1) We have a natural map γi : HkµM,d → Md sending the

diagram (2) to its ith column. Then further composition of this γi with
the natural Hitchin map fM :Md → Ad is independent of i; in particular,
fM ◦ γ0 = fM ◦ γr.
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(2) We define ShtµM,d by the Cartesian diagram

ShtµM,d
//

��

HkµM,d

γ0×γr

��
Md

fM

��

1×FrMd //Md ×Md

fM×fM

��
Ad

1×FrAd // Ad ×Ad.

Taking the fiber over A♥d gives Shtµ
M♥,d

, which is analogous to Shtµ
M♥,d

introduced in (1).

(3) Setting H := Sht1M,D, we can write ShtµM,D as an r-fold product

ShtµM,D
∼= H×γ1,Md,γ0 H×γ1,Md,γ0 · · · ×γ1,Md,γ0 H.

Notation 0.4. Consider the following “good” locus of Ad:

A♦d := {(∆, a, b) | b 6= 0} ∼= X̂d ×Picd
X
Xd.

We putM♦d :=Md ×Ad
A♦d , Hk

µ
M♦,d

:= HkµM,d ×Ad
A♦d , and H

♦ := Hk1M♦,d.

The following key lemma gives the description of H♦ as a correspondence be-
tweenM♦d .

Lemma 0.5. We have a Cartesian diagram

M♦d H♦
γ0oo

∼=

��

γ1 //M♦d

X̂ ′d ×PicdX
X ′d

pr2

��

X̂ ′d ×PicdX
I ′d

oo //

pr2

��

X̂ ′d ×PicdX
X ′d

pr2

��
X ′d I ′d

q0oo q1 // X ′d,

where I ′d = {(D′, x′) ∈ X ′d ×X
′ | x′ ∈ D′} is the incidence variety, and the maps

q0 and q1 are given by q0(D
′, x′) = D′ and q1(D

′, x′) := D′ + σ(x′)− x′.

In other words, the correspondenceM♦
γ0
←− H♦

γ1
−→M♦ is the smooth pullback

(when d is sufficiently large) of an explicit correspondence X ′d
q0
←− I ′d

q1
−→ X ′d.

Corollary 0.6. The morphism γi : Hk
µ
M♦,d

→ M♦d is finite and surjective and

dimHkµ
M♦,d

= dimMd = 2d− g + 1.

Now, let [H♦] ∈ Ch2d−g+1(H)Q denote the class of the closure of H♦, which
induces an endomorphism

fM,![H
♦] : RfM,!Qℓ → RfM,!Qℓ.
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For a point a ∈ Ad(k), we write

(
fM,![H

♦]
)
a
:
(
RfM,!Qℓ

)
ā
→
(
RfM,!Qℓ

)
ā
.

for the action on the stalks.
The main theorem of this talk is the following.

Theorem 0.1. Suppose that D is an effective divisor of degree ≥ max{3g−2, 2g}.
Then

Ir(hD) =
∑

a∈AD(k)

Tr
((
fM,![H

♦]
)r
a
◦ Froba;

(
RfM,!Qℓ

)
ā

)
.

Proof. Since ShtµM,d is defined over Ad(k), we may decompose

Ch0(Sht
µ
M,d)Q = Ch0(Sht

µ
M,d − Shtµ

M♥,d
)Q ⊕

⊕

D∈Xd(k)

Ch0(Sht
µ
M,D)Q.

We write a subscript D for the corresponding component in this direct sum de-
composition.

The first step to prove Theorem 0.1 is to express Ir(hD) as

Ir(hD) = deg
(
(id× FrMd

)!ζ
)
D
∈ Q,

for some ζ ∈ Ch2d−g+1(Hk
µ
M,d)Q such that ζ|Hkµ

M♦,d

is the fundamental cycle. The

existence of such ζ will be explained in the next talk. Then the refined Lefschetz
trace formula Proposition A.12 implies that

Ir(hD) =
∑

a∈AD(k)

Tr
((
fM,!cl(ζ)

)
a
◦ Froba;

(
RfM,!Qℓ

)
ā

)
.

Now, to prove the theorem, it is enough to show that fM,!cl(ζ) and
(
fM,![H♦]

)r
give the same endomorphism on RfM,!Qℓ. But the difference between ζ and [H♦]r

lies in

Im
(
HkµM,d\Hk

µ
M♦,d

(γ0,γr)
−−−−→Md ×Md

)

which has dimension ≤ d + 2g − 1 < 2d − g + 1 (under our assumption). The
theorem follows. �
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Talk 14: Alternative calculation of Ir(hD)

Yakov Varshavsky

1. Overview

The goal of my talk is to sketch the proof of the following result, which was stated
in the previous lecture:

Theorem 1.1. [YZ15, Theorem 6.6] Let D be an effective divisor on X, of degree
d ≥ max{2g′ − 1, 2g}. Then there exists ζ ∈ Ch2d−g+1(Hk

µ
M,d)Q such that

(1) ζ|Hkµ

M⋄,d
is the fundamental class, and

(2) Ir(hD) = deg((Id,FrMd
)!ζ)D.

Our strategy will be

• To give a formula for ζ.
• To prove that ζ satisfies properties (1), (2) of Theorem (1.1).

Recall that Ir(hD) is the intersection product Ir(hD) = 〈[ShtµT ], hD∗[Sht
µ
T ]〉Sht′µ

G

,

while [ShtµT ] and hD ∗ [Sht
µ
T ] are defined as intersections of the corresponding

objects with Frobenius. Therefore to define the right hand side of (2), we first
intersect objects with graphs of Frobenius, and then intersect between them. On
the other hand, to define the left hand side of (2), we intersect classes first and
then intersect them with graphs of Frobenius. That these coincide is the substance
of the “octahedron lemma” from Rapoport’s talk, which we briefly recall now.

2. The octahedron lemma

Consider the commutative diagram of algebraic stacks

A11 A12 A13 A1∗

A21 A22 A23 A2∗

A31 A32 A33 A3∗

A∗1 A∗2 A∗3,

α

β δ

γ

where the right column (resp. bottom row) is the column (resp. row) of fibered
products of rows (resp. columns) of our diagram.

Proposition 2.1. (The octahedron lemma) (a) The two fiber products A1∗ ×A2∗

A3∗ and A∗1 ×A∗2 A∗3 are canonically equivalent.
(b) Assume that

• the Aij’s are smooth equidimensional all (i, j) 6= (1, 3),
• the A2∗, A3∗, A∗1, A∗2 are smooth of expected dimensions,
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• the map α, β, γ, δ satisfy assumptions (A) and (B) from Rapoport’s talk.

Then we have refined Gysin maps

Ch(A13)
α!

−→ Ch(A1∗)
δ!

−→ Ch(A1∗ ×A2∗ A3∗)

Ch(A13)
β!

−→ Ch(A∗3)
γ!

−→ Ch(A∗1 ×A∗2 A∗3),

which moreover satisfy

δ!α![A13] = γ!β![A13] ∈ Ch(A1∗ ×A2∗ A3∗) = Ch(A∗1 ×A∗2 A∗3).

Notice that assertion (a) of the proposition is a straight forward verification,
while assertion (b) can be viewed as a version of (a), which involves both “derived
fiber products” and “classical fiber products”. Therefore, the content of (b) is
that our assumptions imply that the “derived fiber products” = “classical fiber
products”.

3. The fundamental diagram

We are going to apply the octahedron lemma to the following diagram, in which
the left two columns were defined in previous lectures, while the right hand column
is defined as a Hecke version of the middle one.

HkµT ×HkµT Hk
′r
G ×Hk

′r
G Hk

′r
G,d Hk

′r
G,d

(BunT )
2 × (BunT )

2 (BunG)
2 × (BunG)

2 Hd ×Hd Md ×Md

BunT × BunT BunG × BunG Hd Md

ShtµT × ShtµT Sht
′r
G × Sht

′r
G Sht′G,d

Πµ×Πµ

Id×Fr

Π×Π

Id×Fr Id×FrHd
Id×FrMd

θµ×θµ

The diagram above satisfies all the assumption of the octahedron lemma. In-

deed, the potentially non-smooth objects are Hk
′r
G,d, Sht

′
G,d and Hk

′r
M,d, while ev-

erything else is smooth. For example, to show the assumption for Hd, we prove
that the map pr1 : Hd → BunG is smooth of relative dimension 2d. For simplicity,
let us assume that d = 1. In this case, pr1 factors as Hd → BunG ×X → BunG,
and the first map is a P1-bundle.

4. Sketch of the proof of Theorem 1.1

Consider class ζ := (Πµ × Πµ)![Hk
′r
G ] ∈ Ch2d−g+1(Hk

′r
Md

). We need to show that
ζ satisfies properties (1) and (2) from Theorem 1.1.
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Property (1): Consider the fiber product

HkµM,d Hk
′r
G,d

HkµT ×HkµT Hk
′r
G ×Hk

′r
G

The total space HkµM,d is bad, and hard to understand. However, by dimension

estimates, the open substack HkµM⋄,d has the expected dimension. This implies

that ζ|Hkµ

M⋄,d
∈ Ch(HkµM⋄,d) is the fundamental class.

Property (2): Denote by ShtµM,d the total fiber product of the fundamental dia-

gram. Thanks to Proposition 2.1(2), we thus get the following equality

(Id,FrMd
)!(Πµ ×Πµ)![Hk

′r
G,d] = (θµ × θµ)!(Id×FrHd

)![Hk
′r
G,d] ∈ Ch0(Sht

µ
M,d).

Using definition of ζ and observation (Id×FrHd
)![Hk

′r
G,d] = [Sht

′r
G ], the latter

equality can be rewritten as

(1) (Id,FrMd
)!ζ = (θµ × θµ)![Sht

′r
G ] ∈ Ch0(Sht

µ
M,d).

Recall that we have a decomposition

ShtµMd
=

⊔

D∈Xd(k)

ShtµM,D,

which implies a decomposition Ch0(Sht
µ
Md

)Q =
⊕

Ch0(Sht
µ
M,D)Q. Restricting

(1) to D, we conclude that

(2) ((Id,FrMd
)!ζ)D = ((θµ × θµ)![Sht

′r
G ])D.

Thus, to establish Theorem 1.1 (2), we need to show the equality

(3) deg((θµ × θµ)![Sht
′r
G ])D) = 〈θµ∗ [Sht

µ
T ], hD ∗ θ

µ
∗ [Sht

µ
T ]〉Sht′µG

.

Finally, equality (3) follows from functorial properties of refined Gysin maps.
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Talk 15: Comparison of Md and Nd; the weight factors

Ana Caraiani

1. Outline

The goal of this talk was to present the proof of the key identity of [1] for most
Hecke functions, i.e. to prove Theorem 8.1 of loc. cit. The proof relies crucially
on the so-called “perverse continuation principle”, which also played a key role in
Ngo’s proof of the fundamental lemma.

We consider an effective divisor D on the curve X , of large enough degree

d ≥ max{2g′ − 1, 2g}

and the corresponding element hD in the spherical Hecke algebra H. The key
identity is the equality

(1) (log q)−rJr(hD) = Ir(hD),

where the LHS is the analytic side and the RHS is the geometric side.
To prove the key identity, we rely on the geometrization on both sides, which

was developed in previous talks. The idea is to express each of the two distributions
as a trace of a correspondence acting on a complex of constructible sheaves over
a common base, then to compare the two complexes on a “nice” open set of the
base using the theory of perverse sheaves.

The common base is

Ad = (X̂d ×Picd
X
X̂d) \ Z(Pic

d
X),

where recall that X̂d parametrizes line bundles of degree d on X together with a
section and we remove Z(PicdX), the locus where both sections vanish.

1.1. The analytic side. Here, the geometrization takes the form:

(2) (log q)−rJr(hD) =
∑

d∈Σd

∑

a∈AD(k)

(2d12 − d)
r · Tr(Froba, (RfNd∗Ld)a),

where d runs over the set Σd of quadruples (d11, d12, d21, d22) with d11 + d22 =

d12 + d21 = d. The moduli space Nd is an open substack of (X̂d11 × X̂d22) ×Picd
X

(X̂d12 × X̂d21) and the map

fNd
: Nd → Ad

is the restriction of the addition (or rather tensor product) map:

addd11,d22 × addd12,d21 : (X̂d11 × X̂d22)×Picd
X
(X̂d12 × X̂d21)→ X̂d ×Picd

X
X̂d.

The local system Ld on Nd also has a concrete description in terms of geometric
class field theory applied to the local system L := (ν∗Ql)

σ=−1 on X obtained from
the étale double cover ν : X ′ → X with involution σ.
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1.2. The geometric side. Here, the geometrization takes the form:

(3) Ir(hD) =
∑

a∈AD(k)

Tr((fM![H
⋄]a)

r ◦ Froba, (RfM!Ql)a).

The moduli stackMd is an open substack of X̂ ′d ×PicdX
X̂ ′d and the map

fM :Md → Ad

is the restriction of the norm map

X̂ ′d ×Picd
X
X̂ ′d

ν̂d×ν̂d−−−−→ X̂d ×Picd
X
X̂d.

The correspondence [H⋄] is the the fundamental class over the “nice” locus ⋄
(corresponding to the non-vanishing of the second section in the moduli description
of Ad) and this will allow us to compute the action of fM![H⋄] on RfM!Ql.

1.3. The comparison. To prove the identity (1), it is enough to match the two
traces in (2) and (3).

To compare the two traces, we first compare the complexes RfNd∗Ld and
RfM!Ql on Ad. We do this by first showing that they each are (up to shift)
perverse sheaves and even middle extensions of their restrictions to a nice open
subset of Ad. On this open subset, each of the complexes is a local system which
can be computed explicitly in terms of the representation theory of finite groups.
The two representation-theoretic computations give the same result. The two
(shifted) middle extension perverse sheaves RfNd∗Ld and RfM!Ql can therefore
be identified; this is where we use the so-called “perverse continuation principle”.

Finally, we compute the action of fM![H⋄] on RfM!Ql, which for even r recovers
on the geometric side the weight factors (2d12 − d)r seen on the analytic side.

The proof of the key identity can be broken down in the following three steps.

(1) The computation of RfM!Ql.
(2) The computation of RfNd∗Ld.
(3) Computing the action of fM![H⋄].

Below, we briefly mention the key ideas going into each of the three steps.

2. The details of the proof

2.1. The geometric side. The “nice open subset” of Ad will be determined by

the locus X◦d ⊂ Xd ⊂ X̂d of multiplicity-free effective divisors of degree d. More
precisely, we determine the complex RfM!Ql restricted to the open subset of Ad

given by X◦d ×Picd
X
X◦d .

Let Sd be the symmetric group on d elements. For each i ∈ {0, . . . , d} we can

define an irreducible representation ρi of {±1}⋊ Sd (it will have dimension
(
d
i

)
).

This determines an irreducible local system L(ρi) on X
◦
d . If j : X

◦
d →֒ X̂d, we can

define the shifted simple perverse sheaf

Ki := j!∗(L(ρi)[d])[−d]

on X̂d. The following is the main computation on the geometric side.
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Proposition 2.1. Assume d ≥ 2g′ − 1. There is a canonical isomorphism of
shifted perverse sheaves on Ad

RfM!Ql ≃ ⊕
d
i,j=0(Ki ⊠Kj)|Ad

By using proper base change (for the proper map ν̂d) and the Künneth formula,
we can reduce to showing that there is a canonical isomorphism

Rν̂d!Ql ≃ ⊕
d
i=0Ki|Ad

The key idea in the proof of Proposition 2.1 is that when d ≥ 2g′ − 1, ν̂d is a
small map (the high-dimensional fibers are over a locus of large codimension).
Because ν̂d is proper, small and with geometrically irreducible source, one can
show that Rν̂d!Ql is the middle extension of its restriction to X◦d . This restriction
is a local system which can be computed explicitly using the representation theory
of {±1}⋊ Sd.

2.2. The analytic side. The main computation on the analytic side is the fol-
lowing.

Proposition 2.2. Assume d ≥ 2g′− 1. Let d ∈ Σd. There is a canonical isomor-
phism of shifted perverse sheaves on Ad

RfNd∗Ld ≃ (Kd11 ⊠Kd12)|Ad

The idea of the proof of Proposition 2.2 is the same as for Proposition 2.1,
except that the map

fNd
: Nd → Ad

is not necessarily small. Instead, one uses the explicit description of the local
system Ld to show that the cohomological dimension of the fibers is bounded.
Since smallness is used above only to bound the cohomological dimension of the
fibers of fNd

, we can argue as above to prove that RfNd∗Ld is the middle extension
of its restriction toX◦d×PicdX

X◦d . An explicit computation of this restriction follows.

2.3. The weight factors. The main result computing the weight factors is the
following.

Proposition 2.3. The correspondence fM![H⋄] respects the decomposition

RfM!Ql ≃ ⊕
d
i,j=0(Ki ⊠Kj)|Ad

and acts on Ki ⊠Kj by (d− 2j).

Again, the idea is to use the perverse continuation principle to reduce to consid-

ering the open locus A⋄d ⊂ Ad given by X̂d ×PicdX
Xd. There, the correspondence

H⋄ is obtained by pullback under a smooth map from an explicit correspondence
of X ′d over Xd. After smooth base change, everything can be computed explicitly
using the representation theory of {±1}⋊ Sd.
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Talk 16: Horocycles

Lizao Ye

1. Outlook

We want to prove

Jr(π) = Ir(π).

What we have is Jr = Ir. So we need some spectral decomposition. This has been
done for the analytic side. The geometric side rests on spectral decomposition
of the cohomology of shtukas, H2r

c (ShtG). This is achieved by an analysis of the
Hecke action on it.

2. Hecke action

Suppose G is a (split) reductive group. For every g =
⊗
gv ∈ G(AF ), we get a

correspondence ShtG(g). It parametrizes pairs of shtukas in relative position g

(E.
g

99K E ′. ).

This defines an algebra homomorphism

HG → EndHi
c(ShtG).

We sketch why this is the case.
Recall that the ring structure on the Hecke algebra is defined by convolution:

1Kg1K ∗ 1Kg2K =
∑

g3∈K\G/K

[g−13 Kg1K ∩Kg
−1
2 K : K] · 1Kg3K

The fiber product of ShtG(g1) and ShtG(g2) is “basically” several copies
of ShtG(g3):

?

ShtG(g1) ShtG(g2)

ShtG ShtG ShtG

In fact the number [g−13 Kg1K ∩Kg
−1
2 K : K] is the number of copies of ShtG(g3)

appearing in the fiber product.
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3. The constant term map

Recall here G = PGL2. Let B ⊂ G be a Borel, and H the universal Cartan
considered as a quotient of B.

Consider the diagram

ShtdB,η

ShtG,η ShtdH,η

p q

where the subscript η denotes restriction to the fiber over the (geometric) generic

point η of Xr. We have dimShtG,η = r, dimShtdB,η = r/2, and dimShtdH,η = 0.

Definition 3.1. The constant term map is the composition

CT : Hr
c (ShtG,η)

p∗

−→
∏

d

Hr
c (Sht

d
B,η)

trace
−−−→

∏

d

H0
c (Sht

d
H,η).

Here we need the map p to be proper. This is guaranteed by the following
theorem.

Theorem 3.2 (Drinfeld[1],Varshavsky[2]). The maps ShtdB,η → ShtG,η are finite
unramified.

The key fact we’ll need is that the constant term map commutes with the Satake
transform

Sat : HG → HH , hx 7→ tx + qxt
−1
x .

Theorem 3.3. For h ∈ HG, we have

CT ◦ h = Sat(h) ◦ CT.

Proof. Let x be a closed point of the curve X , it’s enough to show

CT ◦ hx = tx ◦ CT + qxt
−1
x ◦ CT

We claim that the diagram

ShtB,η ShtB,η

ShtG,η ShtG,η(hx) ShtG,η

can be completed into

ShtB,η C ShtB,η

ShtG,η ShtG,η(hx) ShtG,η

such that both squares are cartesian. This follows from the fact that given an
inclusion(as sheaves) of rank two vector bundles E → E ′, giving a line-subbuncle of
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one of them produces automatically a line-subbundle of the other, by intersection
or by saturation.

The stack C is a disjoint union of two (open) substacks C1 and C2, where
C1 classifies those whose modification occurs in the sub, and C2 those whose
modification occurs in the quotient. Therefore we can decompose CT ◦ hx as a
sum:

CT ◦ hx = CTx,1 + CTx,2

where CTx,1 corresponds to C1, and CTx,2 to C2.
Besides, it’s easy to see

(1) ShtB,η
∼
←− C1

qx:1, étale
−−−−−−→ ShtB,η.

Standard properties of the trace map then imply

CTx,1 = tx ◦ CT.

Similarly,

(2) ShtB,η
étale,1:qx
←−−−−−− C2

∼
−→ ShtB,η.

Hence

CTx,2 = qxt
−1
x ◦ CT,

whence the theorem. �

4. Statement of the main theorem

There’s a finite type substack of ShtG outside of which the map from ShtdB is an
isomorphism. Thus ShtB can be viewed as the “infinite part” of ShtG. So the co-
homology of ShtG on this infinite part admits a filtration by cohomologies of ShtdB ,

which can then be calculated by pushforward to ShtdH . Now ShtdH is a Pic0(Fq)-
torsor over Xr, which we understand well. So the issue is in understanding the
fibers of ShtdB → ShtdH . They are the so called horocycles.

Theorem 4.1. For large enough degrees d, fibers of ShtdB → ShtdH are isomorphic

to an affine space G
r/2
a divided (in the sense of stacks) by a finite étale group

scheme Z.

Corollary 4.2. Let πG : ShtG → Xr. For large d, the cone of

RπG!(Sht
<d
G )→ RπG!(Sht

≤d
G )

is some locally constant sheaf on Xr, concentrated in degree r.
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Talk 17: Cohomological spectral decomposition and finish the proof

Chao Li

1. Overview

Our goal today is to finish the proof of the main identity

(log q)−rJr(f) = Ir(f)

for all functions in the spherical Hecke algebra f ∈ H = Cc(K\G(A)/K) of G =
PGL2. For any π (unramified everywhere) cuspidal automorphic representation
of G(A), the LHS via the analytic spectral decomposition and the RHS via the
cohomological spectral decomposition (discussed below) would imply the identity

λπ(f) · L
(r)(πF ′ , 1/2) ∼ 〈[ShtT ]π, f ∗ [ShtT ]π〉.

We now have the wonderful opportunity to apply the identity to simplest element
in the Hecke algebra, namely the the unit element 1K ∈ H, and obtain our desired
Higher Gross–Zagier formula

L(r)(πF ′ , 1/2) ∼ 〈[ShtT ]π, [ShtT ]π〉.

Ana’s talk has proved the main identity for many hD’s but we fall short of prov-
ing it for the element 1K : in some sense the simplest Hecke function gives the most
difficult situation for intersection computation (self-intersection), and considering
hD for sufficiently large D allows us to move away from the self-intersection sit-
uation and make the computation easier. What we would like to do is to resolve
this tension, and deduce the identity for all Hecke functions from sufficiently many
hD’s by just doing commutative algebra. What make the deduction possible are
certain key finiteness properties of the Hecke action on the middle cohomology of
the moduli of shtukas.

2. Key Finiteness Theorems

Recall the middle cohomology

V = H2r
c (ShtrG,Qℓ),

which admits an action of the Hecke algebra

H = Cc(K\G(A)/K,Qℓ) =
⊗′

x∈|X|
Hx.

Remark 2.1. V is infinite dimensional caused by the fact that ShtrG is only locally
of finite type. This infinite dimensionality can already be seen when r = 0, where
we recover the classical Hecke action on the space of automorphic forms of level 1:

A = Cc(G(F )\G(A)/K,Qℓ) = AEis ⊕Acusp.

Here the space of cusp forms Acusp is finite dimensional, but the space of Eisenstein
series is infinite dimensional.
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To kill the Eisenstein part, we again make use of the Eisenstein ideal appeared
in Ilya’s talk on analytic spectral decomposition. Recall we define the Eisenstein
ideal to be

IEis := ker(H
Sat
−−→ HA

∼= Qℓ[DivX(k)]→ Qℓ[PicX(k)]),

moreover H/IEis
∼= Qℓ[PicX(k)]ι, which is 1-dimensional as a ring (PicX(k) is an

extension of Z by the finite group JacX(k)).

Definition 2.2. Define ZEis := SpecH/IEis a closed subscheme of SpecH, which is
reduced and 1-dimensional.

After killing the Eisenstein part, we indeed obtain a finite dimensional vector
space.

Theorem 2.1. IEis · V is a finite dimensional Qℓ-vector space.

Sketch. Recall that ShtG = ∪dSht
≤d
G is a union of open substacks of finite type

Sht≤dG with instability index bounded by d. The key point here is that one can
understand the difference between the cohomology of

Hi
c(Sht

<d
G ,Qℓ) and H

i
c(Sht

≤d
G ,Qℓ)

using horocycles discussed in Lizao’s talk. More precisely, when d > 2g − 2, the
cone of the natural map

Rπ<d
G,!Qℓ → Rπ≤dG,!Qℓ

is equal to Rπd
H,!Qℓ[−r](−r/2), which is a local system concentrated in degree r.

In particular, it suffices to work with the generic fiber and show IEis ·Hr
c (ShtG,η̄)

is finite dimensional. Let U be the finite union of Sht≤dG , where instability index
d is not all > 2g − 2. Using the compatibility of the cohomological constant map
and the Satake transform, we have a commutative diagram

Hr
c (ShtG,η̄)

f∗ //

∏
γd

��

Hr
c (ShtG,η̄) //

∏
γd

��

Hr
c (ShtG,η̄)/H

r
c (Uη̄)

∏
d>2g−2

γd

��∏
dH0(Sht

d
H,η̄)

Sat(f)∗// ∏
dH0(Sht

d
H,η̄) // ∏

d>2g−2H0(Sht
d
H,η̄)

For f ∈ IEis, by definition Sat(f)∗ = 0 and so the bottom row is zero. The
cohomological constant map on the right is injective since d > 2g − 2. It follows
that the top row is zero, and hence the image of f∗ is contained in Hr

c (Uη̄), which
is finite dimensional as desired. �

Using a similar argument, one can also prove the following finiteness theorem.

Theorem 2.2. V is a finitely generated Hx-module for any x ∈ |X |.
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3. cohomological spectral decomposition

Let H = Im(H → EndQℓ
(V ) × Qℓ[PicX(k)]). We have the following immediate

consequence:

Corollary 3.1. H is a finitely generated Qℓ-algebra (in particular, a noetherian
ring).

Proof. We have an embedding

H →֒ EndHx
(V ⊕Qℓ[PicX(k)]ι).

By Theorem 2.2, V is a finite Hx-module. Also Qℓ[PicX(k)]ι is finite Hx-module
(due to the finiteness of JacX(k)). It follows that RHS is a finite Hx-module and
hence H is a finite Hx-module. Because Hx

∼= Qℓ[hx] is a polynomial algebra, it
follows that H is a finitely generated Qℓ-algebra. �

Now V is a finite module over the noetherian ring H (by Theorem 2.2, V is
a finite module even over Hx), we obtain the following cohomological spectral
decomposition:

Theorem 3.1 ([YZ15, Theorem 7.14]). (1) There is a decomposition

SpecH
red

= ZEis

∐
Zr
0 .

Here Zr
0 is a finite set of closed points.

(2) There is a unique decomposition of H-modules

V = VEis ⊕ V0

such that suppVEis ⊆ ZEis, suppV0 = Zr
0 and V0 is finite dimensional over

Qℓ.

Remark 3.2. The fact that Zr
0 is a finite set of closed points and V0 is finite

dimensional follows from Theorem 2.1. Moreover, when r = 0, we exactly recover
the automorphic spectral decomposition VEis = AEis and V0 = Acusp.

4. Finish of the proof of the main identity

Theorem 4.1 ([YZ15, Theorem 9.2]). For any f ∈ H, we have the identity of
rational numbers

(log q)−rJr(f) = Ir(f).

Proof. Define H̃ to be the image of H in End(V ) × End(A). Then both sides

of the identify only depend on the image of f in H̃. Define H′ ⊆ H to be the
linear subspace spanned by hD’s, where D effective divisor of degree ≥ d0 =
max{2g′− 1, 2g}. By Ana’s Talk, we already proved the identity for f ∈ H′. So it

remains to show that the composition H′ →֒ H։ H̃ is surjective.
Using the key finiteness theorem one can prove the following lemma:

Lemma 4.1. There is an ideal I ⊆ H̃ such that H̃/I is finite dimensional and is
generated by the image of H′.
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Besides the key finiteness theorems, we need one additional ingredient concern-
ing the local Hecke algebra. It is a bit magical but completely elementary:

Lemma 4.2. For any nonzero ideal I ⊆ Hx, and for any m ≥ 1, we have

I + span{hnx}n≥m = Hx.

Now we can finish the proof of the main identity using the previous two lemmas.
For any x ∈ |X |, look at the commutative diagram

H′ // H // H̃ // H̃/I

H′ ∩Hx

OO

// Hx

OO

// Im(Hx)

OO

Here the vertical arrows are all natural inclusions.
By Lemma 4.1, H̃/I is finite dimensional, so Im(Hx) is also finite dimensional.

Since Im(Hx) is quotient of Hx by a nonzero ideal, and H′∩Hx = {hnx : deg nx ≥
d0}, we know the bottom row is surjective by Lemma 4.2. Now {Hx, x ∈ |X |}
generate H̃ as an algebra, so the top row is also surjective. By Lemma 4.1, I ⊆
Im(H′ → H̃), so the map H′ → H̃ is surjective as desired. �
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Université de Paris VI
4, Place Jussieu
75252 Paris Cedex 05
FRANCE

Dr. Ashay A. Burungale
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