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Abstract. Algebraic Statistics is concerned with the interplay of techniques
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The participants highlighted recent achievements in this field, explored ex-
citing new applications, and mapped out future directions for research.
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Introduction by the Organisers

The Oberwolfach workshop Algebraic statistics was organized by Mathias Drton,
Thomas Kahle, Bernd Sturmfels, and Caroline Uhler and ran April 17-21, 2017.
Algebraic statistics is a rather new field, about two decades old. The field emerged
from two lines of work: Diaconis and Sturmfels introduced algebraic tools to cat-
egorical data analysis and suggested the construction of Markov bases to perform
exact goodness-of-fit tests for such data. This got algebraists, combinatorialists,
and algebraic geometers interested in problems in statistics. Significant contribu-
tions from Japanese statisticians resulted in a book on Markov bases in algebraic
statistics. Through recent work Markov bases have also found applications to
disclosure limitation and genetics. The second source, which coined the term ‘al-
gebraic statistics’, is a book explaining how Gröbner basis methods can be used
in experimental design. A recent direction that emerged from this is the use of
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commutative algebra for experimental design in system reliability. An Oberwol-
fach seminar, taught in 2008 by Seth Sullivant and two of the organizers, led to a
lecture notes volume that is widely used and helped shape the field.

Since its beginnings in the late 1990s, the field of algebraic statistics has grown
rapidly. The development of new theory and algorithms for data analysis inspired
by algebra, combinatorics and algebraic geometry has brought together previ-
ously disconnected communities of algebraists and statisticians. By now, algebraic
methods have touched on virtually all major themes in statistics, including param-
eter identifiability, parameter estimation, hypothesis testing, model selection, and
Bayesian inference. Conversely, problems and models from statistics have inspired
significant new developments in algebraic combinatorics, high-dimensional com-
mutative algebra, convex geometry, and computational algebraic geometry.

The workshop brought together established and young researchers interested in
solving problems from statistics using algebraic approaches. We put a particular
emphasis on involving statisticians in the development of the field to effectively
communicate the developments so far, have an impact in the statistical community,
and ensure that the algebraic statistics community works on important questions
in both mathematics and statistics.

Anna Seigal prepared a delightful article for the Snapshots series that describes
some basic aspects of algebraic statistics for a general audience. For the develop-
ment of her article, she took a short survey of the 52 participants of this Oberwol-
fach workshop. In that survey, 30 per cent of the participants identified themselves
as statisticians, the rest as mathematicians. This shows that a healthy balance
between the two groups was achieved.

The program consisted of 27 formal talks, splitting into 13 longer and 14 shorter
talks. There were two special evening sessions. On Monday, five graduate students
introduced themselves and presented some of their work in short talks of twenty
minutes. This gave them an opportunity to interact right away with senior par-
ticipants. The second evening session took place on Wednesday, after an excellent
hike through typical April weather. That event, titled Statistics on interesting
spaces, was hosted by Ruriko Yoshida and Stephan Huckemann. It introduced the
participants to potential new application areas for algebraic statistics, for example,
models for observations that take their values in non-Euclidean spaces.

The workshop featured many spontaneous interactions and self organized re-
search activities surrounding new connections between participants. For instance,
David Gross’ talk highlighted the importance of a detailed understanding of the
geometry of latent variable models for falsification of theories in physics. The
models he discussed were closely related to those treated in Robin Evans’ talk.
Throughout, different groups of participants discussed these issues in the context
of specific surprisingly subtle problems involving just a few binary variables.

The week ended with a wrap-up session on Friday afternoon where groups
of participants that had worked on different problems during the week updated
everyone on their progress. In addition, the workshop participants proposed and
discussed further open problems in the area of algebraic statistics.
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Abstracts

Bounds on the Expected Size of the Maximum Agreement Subtree

Seth Sullivant

(joint work with Daniel I. Bernstein, Lam Si Tung Ho, Colby Long, Mike Steel,
Katherine St. John)

A rooted binary tree T with leaf label set X and other vertices unlabeled is called
a binaryX-tree. Given a subset S ⊆ X , the restriction tree T |S denotes the binary
tree obtained by restricting to the leaf set S and contracting all nonroot vertices of
degree two. Given two X-trees T1 and T2, an agreement subset is any set S ⊆ X
such that T1|S = T2|S . The resulting tree T1|S = T2|S is called an agreement
subtree. A maximum agreement subtree is any agreement subtree with the largest
number of leaves. Let MAST(T1, T2) be the size of a maximum agreement subtree
of T1 and T2.

The size of a maximum agreement subtree is a tool that is used to measure
dissimilarity between trees, especially when testing for coevolution. In this context
the tree T1 might be a tree of host species, the tree T2 might be a tree of parasite
species. These trees have the same leaf label set because each parasite is paired
with its host species. Roughly speaking, these two phylogenetic histories are said
of have underdone coevolution if they evolved together in some way, that is the
evolutionary history of the hosts affected the evolutionary history of the parasites,
or vice versa. Large MAST(T1, T2) indicates that the trees might have undergone
coevolution whereas as small MAST(T1, T2) seems to indicate independence of
these two processes. To make “large” and “small” in the preceding sentence precise
involves understanding the distribution of MAST(T1, T2) for random trees under
a suitable distribution. This leads to the following problem:

Problem 1. What is the distribution of MAST(T1, T2) asymptotically as |X | → ∞
for commonly used probability distributions for random binary trees such as the
uniform distribution or the Yule-Harding distribution?

Bryant, McKenzie, and Steel [2] performed simulations that suggest the follow-
ing conjecture:

Conjecture 2. For either the uniform distribution or the Yule-Harding distribu-
tion on binary trees E[MAST(T1, T2)] = Θ(

√
n) where n = |X |.

Those authors also proved an upper bound that E[MAST(T1, T2)] = O(
√
n)

in the case of the uniform distribution. The main results of our paper [1] are to
produce new bounds on the expected value of the maximum agreement subtree.
Generalizing the proof of Bryant, McKenzie, and Steel [2], we showed the following
general upper bound:

Theorem 3. For any exchangeable sampling consistent distribution on random
trees E[MAST(T1, T2)] = O(

√
n).
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Note that this Theorem includes the case of the Yule-Harding distribution and
the uniform distribution. The difficult part of analyzing the expected size of the
maximum agreement subtree seems to be proving lower bounds. We proved the
following results, which gave the first nontrivial lower bounds on the expected size.

Theorem 4. Under the uniform distribution on rooted binary trees,

E[MAST(T1, T2)] = Ω(n1/8).

Theorem 5. Let α be the unique positive root of the equation 22−α = (α +
1)(α + 2) (α ≈ .34184). Under the Yule-Harding distribution on rooted binary
trees E[MAST(T1, T2)] = Ω(nα).
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Graphical Models, Model Selection and Tangent Spaces

Robin J. Evans

Model selection is a task of fundamental importance in statistics, and advances
in high-dimensional model selection have been one of the major areas of progress
over the past 20 years. Examples include covariate selection in linear regression,
and models based on patterns of zeros in the inverse covariance matrix. Much of
this progress has been due to penalized methods such as the lasso, and efficient
methods for solving the relevant convex optimization problems.

However in other classes, such as directed graphical models, correct model se-
lection is provably computationally hard [1]. In this talk we give a geometric
explanation for why standard convex penalized methods cannot be adapted to
directed graphs, based on the local geometry of the different models at points of
intersection. These results also show that it is ‘statistically’ as well as computa-
tionally hard to learn these models, and that much larger samples will typically
be needed for moderate effect sizes.

This has implications for other types of graphical model selection, including
ancestral graph models [2] and nested Markov models [3], as well as time series
models. We provide some relevant heuristics that give insights into the feasibility
of model selection in various cases.
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Geometry of Log-Concave Density Estimation

Elina Robeva

(joint work with Bernd Sturmfels, Caroline Uhler)

Shape-constrained density estimation is an important topic in mathematical statis-
tics. Let X = (x1, . . . , xn) be a configuration of n distinct labeled points in Rd, and
let w = (w1, . . . , wn) be a vector of positive weights that satisfy w1+ · · ·+wn = 1.
The pair (X,w) is our dataset. Our aim is to estimate the density function
p : Rd → R from which these points were sampled. If the weights w1, . . . , wn

are all equal, then one can think of observing each of the points in X exactly once.
If the weights w1, . . . , wn vary, then there are several ways of interpreting their
statistical meaning. One can think of observing several points around each of xi
depending on the size of wi, or one can think of having a prior on the data, i.e.
knowing that xi is ”good” for estimating the unknown density with probability wi.

In order the estimate p, we maximize the log-likelihood of the data:
n
∑

i=1

wip(xi)

under the condition that p is a density. If we do not impose any additional con-
straints on the function p, then the likelihood function is unbounded, and in par-
ticular it is infinite at p =

∑n
i=1 wiδxi

. Therefore, we need to impose additional
constraints on the function p.

In this work we focus on densities on p : Rd → R that are log-concave, ilel their
logarithm is concave. Such densities include Gaussians, uniform distributions,
beta distributions, gamma distributions, and others. The optimization problem
that we are interested in then becomes

maximizep

n
∑

i=1

wi log(p(xi))(1)

s.t. p is a density
and p is log-concave.

Shape-constrained density estimation has been studied in the past. This line
of research started with Grenander [11], who analyzed the case when the density
is monotonically decreasing. Another popular shape constraint is convexity of the
density [12]. Log-concave density estimation has been studied, among other, by
Richard Samworth and his collaborators. A solution to the optimization prob-
lem (1) was given by Cule, Samworth, and Strewart in [6]. An efficient algorithm
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for solving it is implemented in the R package LogConcDEAD due to Cule, Gramacy
and Samworth [5].

It turns out that (1) is equivalent to a finite-dimensional convex optimization
problem, which is what allows for a nice algorithm for solving it. More precisely,
the optimal density p∗ is a tent function supported on the data X . Given a
vector of (tent pole) heights y = (y1, . . . , yn) ∈ R, we define the tent function
hX,y : Rd → R to be the smallest concave function h : Rd → R such that h(xi) ≥ yi
for all i = 1, . . . , n. Note that h is equal to −∞ at the points outside the convex
hull of X .

Now, the optimal solution p∗ equals to log(hX,y∗) for some optimal y∗, and
instead of solving the infinite-dimensional problem (1) over p, we can solve the
finite-dimensional convex problem

maximizey∈Rn

n
∑

i=1

wiyi(2)

s.t.

∫

exp(hX,y(t))dt = 1.

Every tent function hX,y induces a regular subdivision ∆ of the configuration

X . A regular (polyhedral) subdivision ∆ = {I1, . . . , Ik} ⊆ 2[n] is the collection of
cells conv{xi : i ∈ I} on which the tent function hX,y is affine linear. These cells
are always polytopes whose vertices are a subset of {x1, . . . , xn}, so they can be
encoded by subsets [n]. A regular triangulation is a regular subdivision ∆ all of
whose cells are simplices.

In this work we study the subdivisions ∆ that can be induced by the optimal
heights y∗ for a starting configuration X , as we vary the weights w. Our optimiza-
tion problem defines a map from the space of weights to the set of heights where
each set of weights w is mapped to the optimal heights that solve the problem (2).
We prove that this map is surjective. In fact, every regular subdivision arises in
the MLE for some set of weights with positive probability, but coarser subdivisions
appear to be more likely to arise than finer ones.

Theorem 1. For a fixed configuration X and for any vector y ∈ Rn such that
∫

exp(hX,y(t))dt = 1, there exist weights w ∈ Rn such that y maximizes (2).

Theorem 2. Let ∆ be any regular subdivision of the configuration X. There exists
a non-empty open subset U∆ in Rn such that, for every w ∈ U∆, the optimal

solution f̂ to (1) is a piecewise log-linear function whose regions of linearity are
the cells of ∆.

To quantify these results, we introduce a continuous version of the secondary
polytope, whose dual we name the Samworth body.

S(X) =
{

y ∈ R
n :

∫

P

exp(hX,y(t))dt ≤ 1
}

.

The Samworth body S(X) is a full-dimensional closed convex set in Rn. Note
that the boundary ∂S(X) consists of those vectors y for which the integral equals
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exactly 1, i.e. those for which exp(hX,y) is a density. The boundary ∂S(X) is
smooth at those points y ∈ ∂S(X) for which y ∈ ∂S(X) which induce a regular
triangulation. For such points y ∈ ∂S(X) there is a unique set of weights w ∈
∂S(X)∗ which induce y after running our optimization problem (2). At points
y ∈ ∂S(X) which induce a regular subdivision which is not a triangulation, the
Samworth body is not smooth. For such points there is a whole face F of the
boundary of the dual body ∂S(X)∗ such that all weights w ∈ F induce y after
running (2). This gives a strong analogy between the secondary polytope Σ(X)
and the dual of the Samworth body S(X)∗, and between the secondary fan of X
and the Samworth body S(X).

For the case of unit weights w = 1
n (1, . . . , 1) we show that the minimal number

of points in X that one needs in order to ensure that the optimal density is not
log-linear is d+ 3.

Theorem 3. Let X be a configuration of n = d+ 2 points that affinely span Rd.

For w = 1
n (1, . . . , 1), the optimal density f̂ is log-linear, so the optimal subdivision

of X is trivial.

Theorem 4. For any integer d ≥ 2, there exists a configuration of n = d+3 points
in Rd for which the optimal subdivision with respect to unit weights is non-trivial.

Our work establishes a new link between geometric combinatorics and nonpara-
metric statistics, and it also suggests a number of open problems at the interplay
between these fields.

• Design a test-statistic for log-concavity based on the optimal subdivision
∆.

• What is the smallest size n(c, d) such that there exists a configuration
X in Rd the optimal subdivision with unit weights has at least c cells?
(Theorems 3 and 4 show that n(2, d) = d+ 3 for d ≥ 2.)

• Classify subdivisions that can be realized by points in Rd with unit weights.
• For a fixed w and a fixed combinatorial type of subdivision ∆, study
the semianalytic set of all configurations X such that ∆ is the optimal
subdivision for the data (X,w).
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Multivariate Total Positivity and Conditional Independence

Steffen Lauritzen

(joint work with Shaun Fallat, Kayvan Sadeghi, Caroline Uhler, Nanny
Wermuth, and Piotr Zwiernik )

The lecture summarizes results in [1] and [2]. We analyze distributions that are
multivariate totally positive of order 2 (MTP2) and discuss various properties of
such distributions. MTP2 distributions appear in the context of positive depen-
dence, ferromagnetism in the Ising model and various latent models.

A multivariate real-valued distribution with density f w.r.t. a product measure
µ is multivariate totally positive of order 2 (MTP2) if the density satisfies

f(x)f(y) ≤ f(x ∧ y)f(x ∨ y).

Regular multivariate Gaussian distributions are MTP2 if and only if their inverse
covariance matrix (concentration matrix) K is an M-matrix, i.e. iff all off-diagonal
elements are non-positive.

It is shown that MTP2 distributions have specific Markov properties. More
precisely, any MTP2 distribution with strictly positive density is faithful to its
pairwise independence graph. Thus if we define the graph G(P ) by

u ∼ v ⇐⇒ Xu ⊥⊥Xv |XV \{u,v}
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it holds for arbitrary disjoint subsets A,B,C ⊆ V of the (finite) set of variables V
that

XA ⊥⊥XB |XC ⇐⇒ A⊥G(P )B |C
where A⊥G(P )B |C means that A is separated from B in G(P ).

Further, we show that the maximum likelihood problem in the case of a mul-
tivariate Gaussian distribution is a convex optimization problem having a unique

solution whenever the number of observations is at least two: the solution K̂ = Σ̂−1

is then determined by the equation system

k̂uv ≤ 0 for all u 6= v,(1)

σ̂vv − svv = 0 for all v ∈ V ,(2)

(σ̂uv − suv) ≥ 0 for all u 6= v,(3)

(σ̂uv − suv)k̂uv = 0 for all u 6= v, ,(4)

where S = {suv} is the sample covariance matrix.

The condition (4) ensures that the MLE K̂ is automatically sparse. If we let Ĝ

denote the graph induced by non-zero entries of K̂, we also show that themaximum
weight spanning forest MWSF(R) of the correlation matrix is a subgraph of G(K̂).
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Positive Polynomials and Matrices

Daniel Plaumann

This was a survey talk on some recent results in real algebraic geometry deemed
interesting in the context of algebraic statistics, with an emphasis on rank con-
straints for positive semidefinite matrices in linear spaces.

A spectrahedron is the intersection S = L ∩ Sym+
n (R) of the cone Sym+

n (R) of
positive semidefinite matrices with an affine linear subspace L in the real vector
space Symn(R) of real symmetric matrices. Spectrahedra arise in the study of
positive polynomials as the parameter spaces of sum-of-squares representations of
real polynomials in several variables, the so-called Gram-spectrahedra [4]. In alge-
braic statistics, they arise naturally in the context of Gaussian graphical models
[10]. While the facial structure of the positive semidefinite cone is simple, with
its extreme rays being precisely the matrices of rank 1, it is often much harder to
understand the structure of the boundary of a spectrahedron. We assume in the
following that S contains a positive definite matrix.

(1) If L has dimension k and R is an extreme point of S of rank r, then
(

r+1
2

)

+ k ≤
(

n+1
2

)

(an upper bound on r).



1222 Oberwolfach Report 20/2017

(2) If L is generic, then k ≥
(

n−r+1
2

)

(a lower bound on r). This follows from
(1) through an application of convex duality (see [6]).

(3) If S is the Gram spectrahedron of a real polynomial, the rank of a matrix in
S is the length of the corresponding sum-of-squares representation. This
is an interesting class of non-generic spectrahedra for which the possible
ranks on the boundary have been studied extensively, with considerable
progress in recent years (see [1], [4] and references given there).

(4) Recently, Blekherman and Sinn characterized all spectrahedral cones for
which every extreme ray has rank 1 (see [3]). These are the dual cones to
sums of squares on particular real algebraic varieties.

In many applications, one is interested in projected spectrahedra, which are
the images of spectrahedra under linear projections. This is a far more general
class of domains. Scheiderer proved that every convex semialgebraic subset of R2

(more generally, the convex hull of a curve in any ambient space) is a projected
spectrahedron [7], while this fails in higher dimensions [8]; specifically, the cone
of non-negative polynomials fails to be a projected spectrahedron, except in the
well-known cases in which every non-negative polynomial is a sum of squares.

Regarding rank constraints, the possible ranks of matrices representing the
boundary points of a generic projected spectrahedron have been studied by Sinn
and Sturmfels [9], generalizing the bounds for generic spectrahedra given above.
In the context of Gaussian graphical models, one is interested in the projection
π : Symn(R) → Rm onto a coordinate subspace specified by the edges of a graph Γ.
The general positive semidefinite completion problem asks for a simple description
of the image π(S). This has recently been reexamined in the context of sums-
of-squares representations on real algebraic varieties by Blekherman, Sinn and
Velasco [2]. The maximum likelihood treshold of the graph Γ is the minimal rank
r such that for a generic matrix A ∈ S of rank r, there exists a positive definite
matrix B (hence of full rank n) with π(A) = π(B) (see [10] and [5] and references
given there). Sophisticated combinatorial (resp. complex-geometric) arguments
in [5] imply for example that the maximum likelihood threshold of any planar
graph is at most 4. On the other hand, recent work by Blekherman and Sinn [3]
shows that if reality and positivity are fully taken into account, such combinatorial
bounds cannot always be sharp.
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Moment Varieties of Gaussian Mixtures

Carlos Améndola

(joint work with Jean-Charles Faugère, Kristian Ranestad, Bernd Sturmfels)

In Algebraic Statistics, studying the geometry of maximum likelihood estimation
for many commonly used models (such as the discrete exponential family) has been
quite successful, with the aid of computational invariants such as the ML degree
[1]. For the ubiquitous Gaussian mixture model, this approach does not quite
work. The ML estimates are transcendental functions of the data and there is no
analogous ML degree bound on the number of critical points of the log-likelihood
functions [2].

However, the method of moments provides a suitable algebraic approach. All
the moments of a Gaussian distribution are homogeneous polynomials in the mean
and covariance parameters. This fact allows us to define algebraic moment vari-
eties Gn,d given by vectors of all moments in dimension n up to some order d.
Furthermore, moment varieties for a mixture of k Gaussians correspond geomet-
rically to secant varieties Seck(Gn,d).

Problem 1. Study Seck(Gn,d) for all k, n, d ≥ 1. dimension? degree? equations?

Some progress has been made in [3] and [4]. For example:

Theorem 2. Let d ≥ 3. The homogeneous prime ideal of the Gaussian moment
surface G1,d is minimally generated by

(

d
3

)

cubics. These are the 3 × 3-minors of
the 3× d-matrix

Hd =





0 m0 2m1 3m2 4m3 · · · (d− 1)md−2

m0 m1 m2 m3 m4 · · · md−1

m1 m2 m3 m4 m5 · · · md



 .

The 3×3-minors of the matrix Hd form a Gröbner basis for the prime ideal of the
Gaussian moment surface G1,d ⊂ P

d with respect to the reverse lexicographic term

order. Thus G1,d has degree
(

d
2

)

in Pd.

Theorem 3. The defining homogeneous polynomial of Sec2(G1,6) in P6 is a sum of
31154 monomials of degree 39. This polynomial has degrees 25, 33, 32, 23, 17, 12, 9
in m0,m1,m2,m3,m4,m5,m6 respectively.
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The statistical motivation is to recover the mixture parameters from observed
sample moments up to certain order. This approach was first taken in 1894 by
Karl Pearson [5] while trying to fit a mixture of two 1-dimensional Gaussians
to measurements of crabs from the Bay of Naples. He showed how to find the
unknown means µ1, µ2, unknown variances σ1, σ2 and mixture proportion α from
the first five moments (n = 1, k = 2, d = 5) by solving a polynomial equation of
degree 9.

In this way, Pearson’s study can be seen as the first paper in Algebraic Statistics!
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Chordal Networks of Polynomial Ideals

Diego Cifuentes

(joint work with Pablo Parrilo)

Polynomial systems can be used to model many different applications. In most
cases the systems arising have a particular sparsity structure, and exploiting such
structure can yield significant computational gains. When all polynomials have
degree one, we have the special case of systems of linear equations, where it is well
known that chordality allows for efficient computation [4]. Chordal graphs are also
a keystone in constraint satisfaction, graphical models and optimization [3, 5]. We
began the study of exploiting chordal structure in polynomial ideals in [1, 2]. In
this talk we summarize the results from [2].

Our main contribution is the introduction of a new data structure to represent
structured polynomial ideals, that we call chordal networks. Chordal networks
attempt to fix an intrinsic issue of Gröbner bases: they destroy the underlying
graphical structure of the system [1, Ex 1.2]. As a consequence, polynomial sys-
tems with simple structure (e.g., the chromatic ideal of a cycle [2, Ex 1.1]) may
have overly complicated Gröbner bases. In contrast, chordal networks will always
preserve the underlying chordal graph.

Chordal networks describe a decomposition of the (potentially complicated)
polynomial ideal into simpler (triangular) polynomial sets. This decomposition
gives quite a rich description of the underlying variety. In particular, chordal net-
works can be efficiently used to compute dimension, cardinality, equidimensional
components and also to test radical ideal membership. Remarkably, several fami-
lies of polynomial ideals (with exponentially large Gröbner bases) admit a compact
chordal network representation, of size proportional to the number of variables.

Chordal structure arises in many different problems and we believe that alge-
braic geometry algorithms should take advantage of it. Preliminary implementa-
tion of our methods showed orders of magnitude reduction against state-of-the-art
algorithms. We showed that chordality helps solve polynomial systems coming
from graph colorings, cryptography, sensor networks and differential equations [1].
We also applied our methods to compute irreducible decompositions and radical
ideal membership in cases from algebraic statistics [2].
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Higher Order Singular Values: Gram Determinants of Real Binary
Tensors

Anna Seigal

The Gram determinants are a tuple of quadratic invariants of a tensor. We in-
troduce the Gram locus, the possible Gram determinants of real binary tensors of
fixed size. It is the “set of feasible higher-order singular values”, from [3], under
change of coordinates. We propose a semi-algebraic characterization of the Gram
Locus. This answers a question raised by Hackbusch and Uschmajew concerning
the higher-order singular values of tensors.

A binary tensor consists of 2n entries arranged in hypercube format 2×2×· · ·×2.
There are n ways to flatten such a tensor into a matrix of size 2× 2n−1. For each
flattening, M , the Gram determinant is det(MMT ). We map a real tensor to its
tuple of Gram determinants:

G : R2 ⊗ · · · ⊗ R
2 → R

n

(aij...k) 7→ (d1, . . . , dn).

The Gram locus is the image G(B), where B is the Frobenius unit ball of tensors.

Theorem 1. The convex hull of the Gram locus G(B) is described by the following
linear inequalities in the determinants di:

di ≤
∑

j 6=i

dj , 0 ≤ di ≤
1

4
, 1 ≤ i ≤ n.

In words, each Gram determinant is bounded by the sum of the others.

The true Gram locus is a non-convex semi-algebraic set. We give its description
for 2× 2× 2 tensors, depicted in Figure 1.

Figure 1. The boundary of the Gram locus for 2× 2× 2 tensors.

We propose the general form for the Gram locus, see [5, Conjecture 1.5]. It is
concisely expressed as the non-negativity of a single polynomial.



Algebraic Statistics 1227

References

[1] L. De Lathauwer, B. De Moor, J. Vandewalle: A Multilinear Singular Value Decomposition,
SIAM J. Matrix Anal. Appl. (2000) Vol 21 no. 4 1253-1278.

[2] W. Hackbusch, D. Kressner, A. Uschmajew: Perturbations of Higher-Order Singular Values,
Preprint (2016).

[3] W. Hackbusch, A. Uschmajew: On the Interconnection between the Higher-Order Singular
Values of real tensors, A. Numer. Math. (2016).

[4] K. Kubjas, P.A. Parrilo, B. Sturmfels: How to Flatten a Soccer Ball, Preprint
arXiv:1606.02253 (2016).

[5] A. Seigal: Gram Determinants of Real Binary Tensors, Preprint arXiv:1612.04420 (2016).

Non-noetherian Modules from Persistent Homology

Ashleigh Thomas

(joint work with Justin Curry, Ezra Miller)

This work recasts and greatly extends the algebraic foundations of persistent ho-
mology for the purpose of studying an important question concerning the evolution
of changes to discrete morphological features. The model organism for this study
is the fruit fly Drosophila melanogaster, specifically the wing veination pattern
(the first image is normal; the others are topologically abnormal):

The project is joint with biologist David Houle (Florida State). The question is
how topologically new features arise in a population with high enough frequency for
selection to act, given that the normal topological type is highly canalized—that is,
the probability of topological variation away from normal is small. The hypothesis
is that directional selection pushes continuous variation in the wing developmental
program beyond a threshold, thereby resulting in novel wing vein topologies.

Our mathematical analysis summarizes the metrically embedded planar graphs
(wing veins) using multiparameter persistent homology to allow graphs with differ-
ent topologies to be compared in a single statistical analysis. This data structure is
natural in this setting for a number of reasons, including biological interpretability,
but it outputs infinitely generated R2-graded modules over the (non-noetherian)
ring of polynomials in two variables with real exponents. Although the generating
sets for our modules are uncountable, they occur along semialgebraic varieties and
are finitely encoded. Consequently, we produce finite data structures for the mod-
ules and describe how to reduce algebraic questions about these multiparameter
persistence modules to questions about finitely generated Zn-graded modules over
ordinary polynomial rings, which is standard combinatorial commutative algebra.
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Statistics on collections of multiparameter persistence modules a priori requires
sampling from moduli spaces of modules, which can be nontrivial [1]. But in this
work in progress, we aim to prove that for the fly wing application, as with any
other application where persistent homology is constructed geometrically from
semialgebraic data in Rn, the isomorphism class of each persistence module is
determined by its rank function, which records the ranks of the homomorphisms
between the multigraded pieces of the module.
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Generic Parameter Identifiability in Linear Structural Equation
Models with Latent Factors

Luca Weihs

(joint work with Mathias Drton, Rina Foygel Barber)

Linear structural equation models (L-SEMs) are a popular modeling strategy for
representing linear causal relationships between random variables. In particular,
the joint distribution of a random vector X = (X1, ..., Xn)

T is distributed as an
L-SEM if it can be expressed in matrix form as

X = λ0 + ΛTX + ǫ

where Λ = (λvw) ∈ Rn×n and λ0 ∈ Rn are unknown parameters, and ǫ =
(ǫ1, ..., ǫn)

T is distributed as a multivariate normal distribution with mean zero
and covariance matrix Ω. L-SEMs can be naturally identified with directed graphs
with observed and latent (hidden) nodes. Here the observed vertices correspond
the components of the random vector X and the lack of a directed edge from Xi to
Xj implies that λij = 0. Latent vertices in the graph, used to model confounding,
then determine the structure of Ω. A key question of interest for these models is
that of generic parameter identifiability; that is, whether for a generic choice of
(Λ,Ω) respecting the graph of an L-SEM, one can recover entries of (Λ,Ω) from
the covariance matrix of X ,

Cov(X) = φ(Λ,Ω) := (I − Λ)−TΩ(I − Λ)−1.

Prior work on this topic has focused primarily upon the case where the latent
vertices are required to have exactly two children, in this case one summarizes the
effects of these latent vertices using bidirected edges. In particular, the half-trek
criterion of Foygel et al. [1] presents a necessary graphical criterion for determin-
ing generic identifiability which can be checked in polynomial time. We extend
the half-trek criterion to the setting in which latent variables are allowed to have
arbitrarily many children, this allows for the generic identifability of many param-
eters which would otherwise be unidentifiable in the simpler setting. Surprisingly,
we show that verifying our new latent-factor half-trek criterion is NP-complete
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and thus we cannot expect to discover a polynomial time algorithm to check its
conditions.
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Tell Me: How Many Modes does the Gaußian Mixture Have . . .

Christian Haase

(joint work with Carlos Améndola, Alexander Engström)

It is not known whether or not the probability density function of a mixture of k
Gaußians in dimension d can have infinitely many local maxima/modes.

This is a scandal!

It has been conjectured [6] that the maximal number of modes equals
(

d+k−1
d

)

.

We construct examples of mixtures with
(

k
d

)

+ k modes, thus confirming the lower

bound in d = 2. We also prove the first upper bound of 2d+(
k
2)(5 + 3d)k, . . .

. . . provided the number is finite.

There has been a lively discussion after the talk and during the following days.
Here are some questions and interesting directions to pursue further, suggested by
workshop participants.

• Given some natural prior on the parameters, what is the expected number
of modes? What is the distribution of the number of modes?

• In the isotropic case, the best lower bound is k1.261 in dimension d =
2 log3 k [3]. Is the number of modes of isotropic mixtures in fixed dimension
bounded linearly in k?

• Are there natural/easily verifiable sufficient conditions to ensure that there
are no more than k modes?

• For discrete variables, there is the notion of “strong modes”, and their
number obeys stricter upper bounds. Is there a notion of strong modes,
maybe in terms of Eigenvalues of the Hessian, in the Gaußian case?

• Compare to the body of work on the number of modes of a gravitational
potential of finitely many point masses.
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[2] M. Carreira-Perpiñán and C. Williams, On the number of modes of a Gaussian mixture,
Scale-Space Methods in Computer Vision, Lecture Notes in Computer Science 2695 (2003),
625–640.



1230 Oberwolfach Report 20/2017

[3] H. Edelsbrunner, B. Fasy and G. Rote, Add isotropic Gaussian mixtures at own risk: more
and more resilient modes in higher dimensions, Proc. of 27th Annual Symposium of Com-
putational Geometry (2012).

[4] S. Ray and B. Lindsay, The topography of multivariate normal mixtures, Annals of Statistics
33 (2005), 2042–2065.

[5] S. Ray and D. Ren, On the upper bound of the number of modes of a multivariate normal
mixture, Journal of Multivariate Analysis 108 (2012), 41–52.

[6] R. Steele, B. Sturmfels and S. Watanabe, Singular learning theory: connecting algebraic
geometry and model selection in statistics, American Institute of Mathematics Workshop
Summary, http://aimath.org/pastworkshops/modelselectionrep.pdf (2011)

Quantum Non-Locality and Latent Causal Structures

David Gross

In the past few years, there has been an increasing interest among researchers from
quantum information theory in describing the set of marginal distributions that
are compatible with a given Bayesian network.

To understand the reason, we briefly sketch sketch the fundamental argument
leading to Bell’s inequalities. A Bell experiment is a physical procedure that
follows a causal structure [1] described by a simple Bayesian network (Fig. 1). The
simplest case that yields non-trivial results involves two observers – traditionally
referred to as Alice and Bob – that operate experimental equipment in two distance
places. A source emitting physical systems at regular time intervals to Alice and
Bob is placed in the middle. The two experimenters perform measurements on the
incoming particles and record their results. Due to the large distance between Alice
and Bob, any dependencies between their respective records has to result from
dependencies between the particles emanating from the central source. Thus, the
joint distribution of the involved random variables should factorize with respect
to the Bayesian network displayed in Fig. 1. A few lines of algebra (presented in
the talk and produced in many textbooks, e.g. [2]) shows that the set of marginal
distributions of Alice’s and Bob’s variables that are compatible with the given
Bayesian network forms a convex polytope, which is a proper subset of the entire
probability simplex. This is the Bell polytope and the linear inequalities defining
its facets are Bell’s inequalities. These inequalities have to be satisfied by any
process whose causal structure conforms with the direct acyclic graph defining
the Bayesian network. Yet, for some such processes, quantum mechanics predicts
that the inequalities be violated – and experimental results indeed confirm this
prediction.

One is forced to conclude that either the graph does not represent the actual
causal structure of the process, or that something more fundamental is happen-
ing. Physicists have gone to extreme lengths in order to ensure that the causal
constraints are actually respected. For example, many setups are now such that
Alice and Bob respective measurements on a particle pair are space-like separated.
By the special theory of relativity, this means that information can flow directly
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Figure 1. Sketch of a Bell experiment (top) and a directed
acyclic graph (bottom) describing its causal structure. Top: Alice
and Bob receive a pair of particles from a source placed between
them. They then each perform a measurement on their respective
particle. The measurement devices are depicted as boxes that take
a particle and a random bit (the coins) as input. They process
these inputs in an unspecified way and indicate the result to the
experimenter (as represented by the two light bulbs on each box
in the top figure). We emphasize that this extremely vague lan-
guage is a strength rather than a weakness of the argument that
applies in great generality. Bottom: There are two random vari-
ables on Alice’s side: her coin X and the measurement outcome
A. The situation on Bob’s side is analogous. Any dependen-
cies between (X,A) and (Y,B) result from their interaction with
the particle pair. The distribution of the particles is described
by the variable λ. This variable is not assumed to be directly
accessible. We are thus interested in properties of the marginal
distribution of (X,A, Y,B). Here and in the following, observed
random variables are denoted by squared boxes, whereas latent
variables appear in circles.

from Alice to Bob only if our understanding of the structure of space-time is fun-
damentally flawed. Thus, reluctantly, the mainstream of modern physics has come
to the conclusion that one has to reject the possibility that all physical processes
can be described using the framework of classical probability theory. In particu-
lar, the most-commonly held view is that Bell inequality violations mean that one
cannot consistently assign a value to unmeasured physical properties. While this
short introduction cannot possibly give justice to this insight, it is every bit as
foundational, surprising, and revolutionary as it sounds. It’s first consequence was
to bring to a halt all attempts (advocated e.g. by Einstein) to find a successor to
quantum mechanics that would reproduce the experimental results while also mak-
ing predictions independently of any observer’s choice of what to measure. Today,
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Figure 2. The triangle scenario. Three observed random vari-
ables A,B,C each depend on two latent factors λi.

Bell’s result forms the basis not just of an improved understanding of quantum
physics, but also of early technological applications — most prominently quantum
key expansion.

The important aspect to notice is that Bell’s argument does not presume va-
lidity of quantum mechanics. At its heart, it is a statement about marginals of
completely classical Bayesian networks (with quantum mechanics only used as a
hint for where to look for violations). Thus, our ability to generalize these fun-
damental findings to more complex causal structures hinges on the availability
of constraints on marginals of Bayesian networks. Unfortunately from the point
of view of quantum physics, this algebraic statistics problem seems to be little
understood.

Figure 2 shows the triangle scenario—one of the DAGs which quantum physi-
cists have recently looked at, searching for more general forms of the effect identi-
fied by Bell (a non-exhaustive list of references is [3, 4, 5, 6, 7, 8, 9, 10]). However,
even in this extremely simple and natural setting, a concise description of the
marginals seems to be unavailable. Here, I list some seemingly elementary ques-
tions about this Bayesian network. To the best of my knowledge (and to my great
embarrassment), all of them remain open despite repeated attempts by otherwise
accomplished researchers. It is my hope that this teaser will trigger the attention
of the algebraic statistics community, whose help quantum physics clearly needs
here.

In Figure 2, assume for simplicity that the three observed random variables are
binary. Initially, we also limit the alphabet size of the three hidden variables to
some fixed number, say d. Then the set of observable distributions compatible
with this structure is a subset Cd of the 7-dimensional probability simplex of three
binary random variables. In principle, quantifier elimination should be able to
decide whether any given distribution is an element of Cd. In practice, however,
even this scenario seems already to be out of reach for quantifier elimination on
standard hardware. Problem: Give a practical algorithm that decides membership
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with Cd. If that’s too hard, do it for C2. Next, it is clear that if d < d′, then
Cd ⊂ Cd′ . Does there exist a finite d such that Cd = Cd′ for all d′ ≥ d? If
so, what is its value? Related: is the union C∞ of all Cd’s a closed set? Find
an algorithm that tests membership with C∞. (Even though it seems unlikely,
for all we know, the membership problem for C∞ could be Turing-undecidable.)
More quantitatively: Upper-bound the difference between Cd and C∞ in ℓ1-norm.
Does the problem simplify if the observed distribution is invariant under cyclic
permutations or under all permutations of the three variables? In particular, can
one use a symmetric model for symmetric distributions, without having to increase
the hidden alphabet size d?
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Phylogenetic Mixtures and Linear Invariants for Evolutionary Models
with Non-uniform Stationary Distribution

Marta Casanellas

(joint work with Mike Steel)

The discovery of the first linear topology invariants for Markov models of nucleotide
substitution by James Lake in 1987 (see [5]) attracted great attention. Topology
invariants for a phylogenetic tree T and a Markov model M are polynomials that
vanish on any distribution arising from a Markov process on T whose transition
matrices belong to M (and do not satisfy this property for another tree). They
are useful because they allow (theoretically, and if one knows enough topology
invariants) the identification of the tree topology from which a distribution arises.

On one hand, the interesting property of Lake’s invariants was that they were
linear. Although this may seem too simple for mathematicians, a linear topology
invariant for a tree T has the property that it also vanishes on any mixture of
distributions on the same tree T . Therefore, linear topology invariants do not
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only allow to detect the tree topology from a distribution arising on a tree but
also from a mixture of distributions on the same tree. Mixtures of distributions on
the same tree appear often in biology, for example when one considers alignments
containing coding and non-coding sites, different genes, or also different codon
positions.

On the other hand, the drawback of Lake’s invariants was that they were only
valid for some simple models that were restricted to uniform stationary distribution
(namely, Kimura 2-parameter and the Jukes-Cantormodels). These models are too
simple to account for certain biological processes. Although it would be desirable
to have linear topology invariants for more complex models, it is well known that
there are models for which they do not exist. This is the case of the Kimura 3-
parameter model, the simplest model that encompasses Kimura 2-parameter and
Jukes-Cantor.

We study linear invariants for the equal-input model, which can be thought
of as the simplest Markov process that allows different states to have different
stationary distribution. This is done for any number κ of states and any number
of taxa and by assuming that the stationary distribution π is fixed. We describe
the set of all linear invariants, distinguishing between model invariants (linear
invariants that vanish on any distribution arising form the equal-input Markov
process on any tree) and topology invariants. Whereas topology invariants can be
used for phylogenetic topology reconstruction, model invariants are appropriate
for model selection (see [4]).

The space of linear model invariants for the equal-input model is dual to the
affine space Dπ of mixtures of distributions that arise from the equal-input model
on any tree topology on a set of n taxa. We provide a set of linearly independent
points that span Dπ for any n and any distribution π (see Theorem 1 in [2]) and
prove the following result:

Theorem 1. The affine space Dπ has dimension |Σκ| − 1, where Σκ is the set of
partitions of [n] = {1, . . . , n} of size at most κ.

This generalizes previous results of Matsen, Mossen and Steel in [6] for binary
states and of Casanellas, Kedzierska and Fernández-Sánchez (see [1]).

The space of linear topology invariants on a tree T is dual to the space Dπ
T of

mixtures of distributions that arise from the equal-input model on T . We provide a
set of linearly independent points that span this space (this is equivalent to giving
a set of linearly independent linear invariants) and prove the following result (see
Theorem 2 in [2]):

Theorem 2. The dimension of the affine space Dπ
T is equal to the number of full

subforests of the tree T . When T is a trivalent tree, Dπ
T has dimension equal to

the Fibonacci number F2n−1.

These results generalize previous results for the Jukes-Cantor model obtained
by Steel and Fu (see [3], [7]). This study of linear topology invariants has allowed
us to generalize Lake’s invariants to the equal-input model (and to certain more
general models, see Proposition 3 in [2]). While this type of invariants is sufficient
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to describe the space of linear topology invariants for quartets and for κ = 4, we
prove that it might not sufficient for different number of leaves or different number
of states.
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[4] Kedzierska, A., Drton, M., Guigó, R., Casanellas, M., SPIn: model selection for phylogenetic
mixtures via linear invariants, Mol. Biol. Evol. 29 (2012), 929–937.

[5] Lake, J., A rate-independent technique for analysis of nucleic acid sequences: evolutionary
parsimony, Molec. Biol. Evol. 4 (1987), 167–191.

[6] Matsen, F.A., Mossel, E., Steel, M., Mixed-up trees: The structure of phylogenetic mixtures,
Bull. Math. Biol. 70 (2008), 1115–1139.

[7] Steel, M.A., Fu, Y.X.,
Classifying and counting linear phylogenetic invariants for the Jukes–Cantor model, J. Com-
put. Biol. 2 (1995), 39–47.

Exact Tests for Stochastic Block Models and Extensions to
Latent-variable Log-linear Models

Petrović, Sonja

(joint work with Vishesh Karwa, Debdeep Pati, Liam Solus, Nikita Alexeev,
Mateja Raič, Dane Wilburne, Robert Williams, Bowei Yan)

Problem background. Analysis of networks – relational data on a fixed set of
nodes/actors – has become increasingly popular with wide-ranging applications at
the intersection of applied mathematics, statistics, computer science and machine
learning. Exciting theoretical and algorithmic developments have been motivated
by the ever-increasing availability of network data in diverse fields such as social
sciences, web recommender systems, protein networks, genomics and neuroscience,
to name a few. There is a rich literature on probabilistic modeling of network data;
[9] contains a detailed review. In particular, the stochastic block model (or SBM),
originally proposed in the social sciences ([6], [11]), has since attained centerstage
in computer science, statistics and machine learning as one of the more popular
approaches that induce community structures in networks. In an SBM, each of
the n nodes in the network belongs to one of the k pre-defined blocks (or groups),
k ≤ n. As a generalization of the Erdös-Rényi random graph model, an SBM al-
lows the probabilities of occurrences of the edges between different pairs of nodes
to be distinct and – crucially – depend on the block membership of the two nodes
in the pair. SBMs have been further extended to allow for various heterogeneities
in the model that fit a myriad of application scenarios and block/node parameter
options, incorporating node degrees, etc.
In the growing literature on probabilistic network models, the question of whether
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these models provide an adequate fit to the data has received relatively little atten-
tion. However, this is an important practical question which is not only relevant
for the adequacy of a single model, but can be generalized to ask questions whether
we should fit a block model, or its variants, to the data. Even so, a large part
of the literature on computation and modeling does not address model adequacy
issues beyond heuristic algorithms [12], [2]. This is largely due to inherent model
complexity or degeneracy and the lack of tools that can handle network models
and sparse small-sample data. Unfortunately, most goodness-of-fit tests are based
on large sample approximations that are not applicable in many settings. In con-
trast, various problems relating to exact goodness-of-fit tests are well-studied for
contingency tables and some examples of exponential random graph models - one
can view these developments as a cornerstone of algebraic statistics for contingency
tables (see, for example, [1], [3], [10], and the literature cited therein). There is,
however, a dearth of such tests for stochastic block models and its variants when
the block assignments of nodes, as well as the number of blocks, are unknown.

Results and methodology. Since stochastic block models with unknown
block assignment are widely used in analysis of real-world network data, in [13]
we focus on finite-sample goodness-of-fit tests for three different variants of SBMs.
Specifically, we describe the non-asymptotic test for both known and unknown
block assignment of nodes; the latter is built from the former. An exact testing
framework that is applicable to any variant of the SBM when the block assign-
ment for each node is known uses by now a well-known approach in algebraic
statistics: conditioning on the sufficient statistic of the model and sampling from
the conditional distribution on the model fiber using Markov bases. In this case,
there are two main ingredients: 1) a valid choice of a goodness-of-fit statistic and
2) a good way to sample from the conditional distribution given the sufficient
statistics. Commonly used statistics choices include the chi-square, however, for
some simplistic SBMs it collapses to a constant on the fiber and renders the test
meaningless; to that end, we develop a block-corrected version of χ2 and show
it provides a valid test. Unsurprisingly, sampling methods rely on Markov bases,
which we derive for the three variants of the SBM. We achieve good performance
using dynamic Markov bases through an interpretation of the models as log-linear
models on 0/1 contingency tables, as suggested in [5]. The algebraic and geometric
model structure also inspires some theoretical results on the geometry of the three
model polytopes with direct implications on the existence of MLE.

The usually more interesting scenario in applications is when the block as-
signments are latent ; this is a new scenario for a finite-sample test in algebraic
statistics. Specifically, when the block assignment and the number of blocks are
not known, the entire network is a minimal sufficient statistic, so conditioning as
above achieves nothing. Instead, we propose a novel way to exploit the exact test
for the non-latent model in combination with a consistent, asymptotically valid
method for estimating the block assignment. When the number of blocks is known,
the Bayesian approach [14] demonstrates good empirical evidence for consistent
estimation of block assignments. When the number of blocks is unknown, the
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mixture-of-finite-mixtures method for SBM from [8] is one such method that is
provably consistent. We take such methods as a black box, essentially, and, not
surprisingly, we assume that they offer a good estimator of block assignments.

The interpretation of our goodness-of-fit test varies in a few important ways de-
pending on the method used to estimate the latent block assignments. If a classical
method is used to estimate the block assignments, what we propose is an exact
conditional test [7] by sampling from the fiber conditional on the estimated block
assignments. If a Bayesian approach is used to provide a posterior distribution of
the block assignments, one can sample from the posterior predictive distribution
by first drawing samples from posterior distribution of the block assignments and
then sampling from the fiber conditional on the block assignments. Posterior pre-
dictive checks for model validation are popular Bayesian counterparts of p-values
and are suited to latent variables models or models with abundance of nuisance
parameters. Sampling from the posterior predictive distribution is challenging in
general and this intermediate step of sampling from the conditional fiber provides
an efficient way to gather the samples. The posterior quantity analogous to p-value
here is the posterior predictive-p-value, which can be viewed as the posterior mean
of the classical p-value. Despite its controversy regarding issues with calibration,
we obtained promising results in delivering accurate Type I and II errors. We test
our methods on synthetic and real data sets: the Karate network and the brain
connectome data.

Extensions. The main point to take away is that latent-block SBMs are mix-
tures of known-block ERGMs. While we focused here on three variants of the
SBM, the proposed methodology extends to any mixture of log-linear models on
discrete data. The geometry of mixtures is explained in [4], who explore the link
between the geometric and statistical model properties and the implications on
parameter estimation.

I would be extremely interested in using this methodology on another type of
data in a non-network application. While we have a general approach for con-
structing Markov moves on the fly (i.e., dynamically, so that they are applicable
and data-dependent), I am not aware of a general method to estimate the mixture
parameters with provably good properties.
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[10] Elizabeth Gross, Sonja Petrović, and Despina Stasi, Goodness-of-fit for log-linear network
models: Dynamic Markov bases using hypergraphs, Annals of the Institute of Statistical
Mathematics (2016), DOI: 10.1007/s10463-016-0560-2.

[11] Paul W. Holland, Kathryn B. Laskey, and Samuel Leinhardt, Stochastic blockmodels: First
steps, Social networks 5 (1983), no. 2, 109–137.

[12] David R. Hunter, Steven M. Goodreau, and Mark S. Handcock, Goodness of fit of social
network models, Journal of the American Statistical Association 103 (2008), no. 481, 248–
258.

[13] Vishesh Karwa, Debdeep Pati, Sonja Petrović, Liam Solus, Nikita Alexeev, Mateja Raič,
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Kullback Information of Gaussian Mixtures

Shaowei Lin

(joint work with Carlos Améndola, Mathias Drton)

Watanabe et al. proved in 2004 that the Kullback information of Gaussian mix-
tures is not an analytic function at points on the boundary of the parameter space
where one of the mixing parameters is zero [3]. We present a partial translation
of their result, which was published in Japanese. In particular, we show that the
Kullback information is equivalent to the squared distance between the true dis-
tribution and the model distribution, using a resolution of singularities. We also
show that the Kullback information is in fact equivalent to a polynomial – the
sum of squares of the moments of a Gaussian mixture.

Given a model p(x|ω) with states x ∈ Rn and parameters ω ∈ Ω, the Kullback
information K : Ω → R at the true distribution p(x|ω∗) is defined by

K(ω) =

∫

Rn

p(x|ω∗) log
p(x|ω∗)

p(x|ω) dx =

∫

Rn

f(x, ω)2 S(x, ω)dx,

where f(x, ω) = ( p(x|ω)/p(x|ω∗)− 1)2,

S(x, ω) = S

(

p(x|ω)
p(x|ω∗)

)

p(x|ω∗), and S(t) =
− log t+ t− 1

(t− 1)2
.
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The Kullback information tells us a lot about the behavior of learning algorithms.
For instance, the marginal likelihood integral

ZN =

∫

Ω

N
∏

j=1

p(xj |ω)ϕ(ω)dω

where x1, . . . , xN ∈ Rn are the observed data points, is asymptotically

logZN =

N
∑

i=1

log p(xi|ω∗)− λ logN + (θ − 1) log logN + ηN ,

where (λ, θ) is the real log canonical threshold (RLCT) ofK(ω), and ηN is a random
variable whose expectation tends to a constant as N → ∞. Watanabe showed that
this asymptotic result holds for Gaussian mixtures, even though the Kullback
information is non-analytic [3, Theorem 2].

Finding the RLCT of non-analytic functions can be computationally challeng-
ing. To overcome this problem, it is often useful to find simpler functions or even
polynomials that have the same RLCT. Given f, g : Ω → R≥0, f and g are equiv-
alent over Ω if there exists constants c1, c2 > 0 such that c1f(ω) ≤ g(ω) ≤ c2f(ω)
for all ω ∈ Ω. If two functions are equivalent, then their RLCTs are equal.

Our goal to show that K(ω) is equivalent to the density distance

L(ω) =

∫

Rn

(p(x|ω)− p(x|ω∗))
2
dx =

∫

Rn

f(x, ω)2 p(x|ω∗)2dx.

We need two assumptions. First, we assume that the prior ϕ(ω) is supported in a
compact semi-analytic set Ω. Moreover, for all ω ∈ Ω, ϕ(ω) = ϕ0(ω)ϕ1(ω) where
ϕ0(ω) > 0 is C∞-smooth and ϕ1(ω) ≥ 0 is analytic. Second, we assume that there
exists a real-analytic function S̄ : Rn → R such that for all ω ∈ Ω,

S(x, ω) < S̄(x) and p(x|ω∗)2 < S̄(x),

and the integral K̄(ω) =
∫

Rn f(x, ω)
2 S̄(x)dx is finite and real-analytic over Ω. For

Gaussian mixtures, Watanabe verified that these two assumptions are satisfied [3].
From the assumptions, both K(ω) and L(ω) are bounded above by K̄(ω). Since

K̄(ω) is real-analytic, there exists a resolution of singularities ρ : M → Ω where
in each chart with local coordinates µ = (µ1, . . . , µm), we have

K̄(ρ(µ)) = µ2κ

for some non-negative integer vector κ = (κ1, . . . , κm). Locally in each chart, we
have the series expansion of the real-analytic function

f(x, ρ(µ)) =
∑

τ≥0

aτ (x)µ
τ .

By considering the resulting expansion

µ2κ =

∫

Rn

(

∑

τ≥0

aτ (x)µ
τ
)2

S̄(x)dx
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of K̄(ω), we see that aτ (x) 6= 0 only if τ ≥ κ. Therefore,

f(x, ρ(µ)) = a(x, µ)µκ and

∫

Rn

a(x, µ)2 S̄(x)dx = 1

for some non-vanishing real-analytic function a(x, µ). Now, by choosing sufficiently
large compact subsets C1, C2 ⊂ Rn, we have lower bounds

µ2κ ≥ K(ρ(µ)) ≥
∫

C1

f(x, ω)2 S(x, ω)dx = µ2κ

∫

C1

a(x, µ)2 S(x, ω)dx,

µ2κ ≥ L(ρ(µ)) ≥
∫

C2

f(x, ω)2 p(x|ω∗)2dx = µ2κ

∫

C2

a(x, µ)2 p(x|ω∗)2dx,

where the integral coefficients of µκ are positive functions of µ. Consequently, both
K(ρ(µ)) and L(ρ(µ)) are locally equivalent to µ2κ. Because there are finitely many
charts, it follows that K(ω) is equivalent to L(ω).

Finally, we remark that the density distance L(ω) is equivalent to a polynomial.
Let α = (α1, . . . , αk) ≥ 0, |a| := ∑

αi = 1, and µ = (µ1, . . . , µk) ∈ Rn×k. Given
ω = (α, µ), we define the Gaussian mixture model (GMM) with distribution

p(x|ω) = (2π)−n/2
k

∑

j=1

αj exp(−
1

2
‖x− µj‖2), x ∈ R

n.

If the true distribution has k0 ≤ k components, then L(ω) is equivalent to

P (ω) =
∑

1≤|r|≤k+k0

(

Pr,k(ω)− Pr,k0(ω
∗)
)2

where each Pr,k(ω) is the convex sum of monomials

Pr,k(ω) =

k
∑

k=1

αhµ
r
h.

Hence, the ML variety is a fiber over a secant map of Veronese embeddings. A key
step in the proof of this result involves observing that due to Parseval’s Theorem,
the density distance is equal to the characteristic distance

χ(ω) =

∫

Rn

|φ(t|ω)− φ(t|ω∗)|2 dt

where the complex-valued function

φ(t|ω) =
∫

Rn

eitxp(x|ω)dx

is the characteristic function or Fourier transform of p( · |ω).
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Restricted Boltzmann Machines

Guido Montúfar

(joint work with Jason Morton, Johannes Rauh)

The restricted Boltzmann machine with n visible binary variables and m hidden
binary variables is the set Mn,m of probability distributions of the form

pθ(x) =
1

Z(θ)

∑

y∈{0,1}m

exp(
∑

i,j

θIi,jxiyj +
∑

i

θVi xi +
∑

j

θHj yj), x ∈ {0, 1}n,

parametrized by θ = (θI , θV , θH) ∈ Rnm+n+m. The partition function Z(θ) en-
sures that

∑

x∈{0,1}n pθ(x) = 1. The restricted Boltzmann machine is a prominent

generative model in machine learning and building block of deep neural networks.
In mathematical terms, Mn,m is a semialgebraic subset of the simplex ∆2n−1 of
probability distributions on {0, 1}n. It can be regarded as the set of 2× · · · × 2 (n
times) probability tables expressible as normalized entrywise Hadamard products
of m tables of non-negative tensor rank at most two. In particular, Mn,1 is the
set of mixtures of pairs of binary product distributions.

In this talk I present recent advances on two central questions about the geom-
etry of the restricted Boltzmann machine:

• What is the dimension of the set Mn,m?

• Given n, what is the smallest m for which Mn,m = ∆2n−1?

Regarding the first point, in [5] Jason Morton and I completed the dimension
characterization started by Cueto, Morton, and Sturmfels [1], and proved their
conjecture stating that the restricted Boltzmann machine always has the expected
dimension.

Theorem 1. For any non-negative integers n and m, the restricted Boltzmann
machine with n visible and m hidden binary units has the dimension expected from
parameter counting, that is, dim(Mn,m) = min{2n − 1, (n+ 1)(m+ 1)− 1}.

Regarding the second point, in [6] Johannes Rauh and I obtained a new result on
the minimal number of hidden unitsm that suffices to approximate any probability
distribution on {0, 1}n to within any desired degree of accuracy, thereby improving
a series of previous results [2, 3, 7, 4].
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Theorem 2. Every probability distribution on {0, 1}n can be approximated arbi-
trarily well by probability distributions from the restricted Boltzmann machine with

n visible and m hidden binary units whenever m ≥ 2(ln(n−1)+1)
n+1 (2n−(n+1)−1)+1.

A simple lower bound on the minimal sufficient number of hidden units is m ≥
2n

n+1 − 1. Thus we now know that the behavior of the exact number is between 2n

n

and log n
n 2n. We would love to see more advances closing this gap.
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An Algebraic Theory of Negative Dependence

Petter Brändén

In this talk we give a short introduction to an algebraic approach to negative
dependence in discrete probability theory developed by Borcea, Liggett and the
author in [1]. Let X = (X1, . . . , Xn) be a vector of random variables taking values
0 or 1. The multivariate partition function of X is the polynomial

ZX(z) = E(zX) =
∑

α∈{0,1}n

P(X = α)zα,

where z = (z1, . . . , zn) and zα = zα1
1 · · · zαn

n . Recall that X is negatively associated
if

E(f(X)g(X)) ≤ E(f(X)) · E(g(X)),

for all functions f, g : {0, 1}n → R depending on disjoint sets of variables. A
polynomial P (z1, . . . , zn) ∈ C[z1, . . . , zn] is stable if P (z1, . . . , zn) 6= 0 whenever all
variables lie in the half-plane {z ∈ C : Im(z) > 0}.

One of the main theorem in [1] from which many other results may be deduced
is

Theorem 1. If ZX(z) is stable, then X is negatively associated.
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Statistics on Interesting Spaces and Interesting Statistics on Spaces

Stephan F. Huckemann

We set objectives of Non-Euclidean Statistics,

(1) design of data descriptors as minimizers of generalized Fréchet func-
tions

En = argmin
p∈P̂

n
∑

j=1

ρ(Xj , p)
2

where P̂ is a possibly random descriptor space approximating the data X1, . . . , Xn
i.i.d.∼ X ∈ Q best – for example the set of all points (nested means) on a random
geodesic, cf. [12, 10], or the set of all lower dimensional small spheres (principal
nested spheres) within a random higher dimensional small subsphere, cf. [13];

(2) obtain their asymptotic distribution ([4, 1, 5]) building on Ziezold’s strong
consistency ([18, 6]),

(1)

∞
⋂

n=0

∞
⋃

k=n

Ek ⊂ E(X) a. s.

with E(X) = argminp∈P E
[

ρ(X, p)2
]

, where P is a suitable descriptor space;

(3) in order to obtain inferential results for driving applications such
as RNA residue geometries, cf. [3], or filament orientations in early human
mensenchymal stem cell differentiation, cf. [9];

in relation to some objectives of Algebraic Statistics with its focus

(4) on algebraic equations.
The hunt for analogs of PCA to non-Euclidean spaces has recently led to

barycentric subspaces by [16, 15] which naturally form a flag

{µ} = p0 ⊂ p1 ⊂ . . . pm−1 ⊂ pm = Q

of nested subspaces beginning from a Fréchet mean µ ∈ Q. The potential, describ-
ing these and other flags by sequences of equations has yet been neither deeply
investigated nor throroughly exploited for statistical applications.

We also discuss some of the challenges arising when investigating assymptotic
distributions of entire flags and single elements thereof. Among those is manifold
stability, which asserts that a descriptor is assumed on the manifold part of a
possibly non-trivially stratified space (cf. [7]). For example, on a non-negative
curvature cone, the intrinsic mean is never a singular cone point, unless all mass
is concentrated there. This is no longer true for a non-positive curvature cone,
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where the cone point may be sticky, i.e. there are non-trivial distributions, that
with every small perturbation thereof, have a unique intrinsic mean at the cone
point, cf. [11]. It seems that a counterpart of stickiness, namely smeariness,
can only occur in non-negative curvature scenarios, and cases where E(X) is not
discrete may be linked to limiting cases of infinite smeariness.

Often, geometries which seem very benign, for instance the canonical flat ge-
ometry of the torus, are statistically not at all benign, because every data set is
arbitrarly well approximated by almost any geodesic. Similarly, the phenomenon
of stickiness yielding degenerate limiting fluctuation, may not allow for any asymp-
totic statistic, as can be the case in BHV tree space ([17]) introduced by [2]. To
this end one may slightly change geometries as in [3] or consider new geometries,
cf. [14]. These and other, still open research problems in this context, some of
which listed in [8] are expanded.
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Tropical Principal Component Analysis

Ruriko Yoshida

(joint work with Leon Zhang and Xu Zhang)

A dimensionality reduction is applied to high-dimensional data sets in order to
solve the problem called the “curse of dimensionality”. This term refers to the
problems associated with multivariate data analysis as the dimensionality in-
creases. This problem of multidimensionality is acute in the rapidly growing area
of phylogenomics, which can provide insight into relationships and evolutionary
patterns of a diversity of organisms, from humans, plants and animals, to microbes
and viruses. In this project, we are interested in applying the tropical metric in
the max-plus algebra to computation of the principal component analysis over
the space of rooted equidistant phylogenetic trees on m leaves, that is realized as
the set of all ultrametrics. In this project, the proposed process of reducing the
dimension of the multidimensional data sets on the “treespace” is to take data
points in the space into a lower dimensional plane which minimizes the sum of dis-
tance between each point in the data set and their orthogonal projection onto the
plane, that is, an optimization problem such that minimizing projection residuals
between data points and their projections on the plane via the tropical metric in
the max-plus algebra.

In this project, we assume that phylogenetic trees of m leaves are equidistant
trees. Let D be a distance matrix computed from a phylogenetic tree, that is, a
nonnegative symmetric m×m-matrix D = (dij) with zero entries on the diagonal
such that all triangle inequalities are satisfied:

dik ≤ dij + djk for all i, j, k in [m] := {1, 2, . . . ,m}.
If a distance matrix D is computed from an equidistance tree, it is well-known
that elements in D satisfy the following strengthening of the triangle inequalities
[CITE]:

(1) dik ≤ max(dij , djk) for all i, j, k ∈ [m].

If (1) holds then the metric D is called an ultrametric. The set of all ultramet-
rics contains the ray R≥01 spanned by the all-one metric 1, which is defined by
dij = 1 for 1 ≤ i < j ≤ m. The image of the set of ultrametrics in the quotient

space R(
m
2 )/R1 is denoted Um and called the space of ultrametrics. Therefore, we

can consider the space of ultrametrics as a treespace for all possible equidistant
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phylogenetic trees with m leaves. Let e =
(

m
2

)

. Tropical geometry gives an alter-
native geometric structure on Um, via the graphic matroid of the complete graph
[3, Example 4.2.14], i.e., Um can be written as a tropical linear space under the
max-plus algebra. Under the max-plus algebra, we define a ⊕ b = max{a, b} and
a⊙ b = a+ b where a, b ∈ R.

In order to compute the distance between two points v, w on Um, we will use
the tropical distance which can be computed as follows:

(2) dtr(v, w) = max
{

|vi − wi − vj + wj | : 1 ≤ i < j ≤ e
}

,

where v = (v1, . . . , ve) and w = (w1, . . . , we). This metric is also known as the
generalized Hilbert projective metric [1, §2.2], [2, §3.3].

Our problem is to mimic the (s− 1)th principal component so that we can find
the convex hull which minimizes the distances between each point in the sample
to its projection onto the convex hull. Note that wee can re-write this problem
the following problem.

Problem 1. We want to find the solution for the following optimization problem:

min
D(1),D(2),D(3)∈Um

n
∑

i=1

dtr(di, d
′
i)

where

d′i = λi1 ⊙D(1) ⊕ λi2 ⊙D(2) ⊕ λi3 ⊙D(3), where λik = min(di −D(k)),

and
dtr(di, d

′
i) = max{|di(k)− d′i(k)− di(l) + d′i(l)| : 1 ≤ k < l ≤ e}

with di = (di(1), . . . , di(e)) and d′i = (d′i(1), . . . , d
′
i(e)).

Proposition 2. Problem 1 can be formulated as the following optimization prob-
lem:

min
∆1,...,∆n∈R;d

′

1,...,d
′

n∈S′

n
∑

i=1

∆i

subject to ∆i ≥ di(k)− d
′

i(k)− di(l) + d
′

i(l), ∀1 ≤ k < l ≤ e, i = 1, 2, . . . , n

∆i ≥ −[di(k)− d
′

i(k)− di(l) + d
′

i(l)], ∀1 ≤ k < l ≤ e, i = 1, 2, . . . , n

where

d
′

i(k) = max
λi
1,λ

i
2,λ

i
3∈R;D(1),D(2),D(3)∈Um

(λi1 +D(1)(k), λi2 +D(2)(k), λi3 +D(3)(k))

subject to λi1 +D(1)(t) ≤ di(t), ∀t = 1, 2, 3, . . . , e

λi2 +D(2)(t) ≤ di(t), ∀t = 1, 2, 3, . . . , e

λi3 +D(3)(t) ≤ di(t), ∀t = 1, 2, 3, . . . , e.
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Distinguishing Phylogenetic Networks

Elizabeth Gross

(joint work with Colby Long)

Phylogenetic trees are graphical summaries of the evolutionary history of a set of
species. In a phylogenetic tree, the interior nodes represent extinct species, while
the leaves represent extant, or living, species. While trees are a natural choice for
representing evolution visually, by restricting to the class of trees, it is possible to
miss more complicated events such as hybridization and horizontal gene transfer.
For more complete descriptions, phylogenetic networks, directed acyclic graphs,
are increasingly becoming more common in evolutionary biology. Here we focus
on phylogenetic networks and the algebraic problems associated to their inference.

Using aligned DNA sequences, several methods exist for reconstructing phylo-
genetic trees, with most of these methods falling into two main classes, distance-
based methods and model-based methods. Model-based methods are amenable to
analysis using algebraic geometry and have been a recurring theme in algebraic
statistics [1]. In a model-based method, it is assumed that evolution proceeds
according to a Markov process along a tree T . Each edge e of T has an associated
transition probability matrix Me whose (i, j)th entry is the probability of transi-
tioning from state j into state j. For applications to phylogenetics, it is commonly
assumed that each vertex can take values in one of four possible states, A,C,G, T
and that the transition matrices all adher to a specific pattern. For example, under
the Jukes-Cantor model, each transition matrix is assumed to have the following
form









α β β β

β α β β

β β α β

β β β α









.

In a tree-based Markov model, the joint probability distribution of the leaves
can be described with a polynomial map φT from the parameter space (the entries
of the transition matrices) to probability space. We define VT to be the Zariski
closure of the image of φT .

It is known that under the general Markov model and the popular group-based
models, e.g. Jukes-Cantor, Kimura 2-parameter (K2P), and Kimura 3-parameter
(K3P), two distinct unrooted n-leaf trees T1 and T2 are distinguishable, that is
VT1 ∩VT2 is a proper subvariety of VT1 and of VT2 . These distinguishability results
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imply generic identifiability of the tree parameter for these models. Our study
focuses on a similar question for networks: Given two distinct n-leaf networks N1

and N2, under what conditions is it true that VN1 ∩ VN2 is a proper subvariety of
VN1 and of VN2?

We first begin by defining phylogenetic networks. A phylogenetic network N
[2] on a set of leaves X is a rooted acyclic digraph with no edges in parallel such
that the root has out-degree two, a vertex with out-degree zero has in-degree one,
the set of vertices with out-degree zero is X , and all other vertices either have in-
degree one and out-degree two, or in-degree two and out-degree one. A vertex with
indegree two and outdegree one is called a reticulation vertex and edges directed
into a reticulation edge are called reticulation edges. The main result of our work
focuses on k-cycle networks, semi-directed networks with one reticulation vertex
that contains a k-cycle.

In phylogenetic network models, as in phylogenetic tree models, a transition
matrix is assigned to each edge and evolution is assumed to proceed according to
a Markov process. In this setting, network models can be viewed as the mixture
of two tree models where the transition matrices for the edges in each tree are
inherited from the network. Then the model of the network MN is the image
of a polynomial map from the parameter space of the network to the probability
simplex,

φN : ΘN × [0, 1] → ∆4n−1, (θ, δ) 7→ δφT1(θ) + (1 − δ)φT2(θ).

We define VN to be the Zariski closure of MN and IN := I(VN ).
Working under the Jukes-Cantor model and in Fourier coordinates (see[4]), we

can classify all possible ideals for 4-leaf k-cycle networks:

Proposition (G.-Long): For 4-leaf k-cycle Jukes-Cantor networks, there are

• 3 unique 6-dimensional ideals corresponding to 2-cycle networks (trees).
• 6 unique 7-dimensional ideals corresponding to 3-cycle networks.
• 12 unique 8-dimensional ideals corresponding to 4-cycle networks.

Although there are 4-leaf 3-cycle networks whose varieties are subvarieties of
varieties corresponding to 4-leaf 4-cycle networks, we are able to distinguish net-
works once the size of the cycle is large enough.

Theorem (G.-Long): For a fixed number of leaves, all pairs of k-cycle Jukes-
Cantor networks with k ≥ 4 are distinguishable.

While this handles most pairs of k-cycle networks in the Jukes-Cantor setting,
this is only the beginning of the phylogenetics networks story from the algebraic
and geometric viewpoint. There are several directions that can be pursued in
algebraic statistics for phylogenetic networks. To this end, we list several open
problems here.
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Open Problem 1: For a fixed n, which pairs of k-cycle networks are distinguish-
able under other group-based models such as Cavender-Farris-Neyman (CFN),
K2P, and K3P?

Since the CFN model has less parameters than the Jukes-Cantor model, it may
be less likely to get as strong distinguishability results as the main theorem above,
although an investigation would be interesting algebraically. To start, we have the
following classification result for 4-leaf k-cycle CFN networks:
Proposition (G.-Long): For 4-leaf k-cycle CFN networks, there are

• 3 unique 6-dimension ideals corresponding to 2-cycle (trees) and 3-cycle
networks.

• 3 unique 7-dimensional ideals corresponding to 4-cycle networks.

Open Problem 2: A larger class of networks that includes k-cycle networks are
level-1 networks, networks in which every edge belongs to at most one cycle. For
a fixed n and fixed group-based model, which level-1 networks are distinguishable?

After level-1 networks, the next step might be to examine tree-child networks.
Tree-child networks are identifiable from their trinets, which are induced subnet-
works on 3-leaves [5].

Open Problem 3: For CFN, Jukes-Cantor, K2P, and K3P, given a network
N , what are the defining polynomials of VN ?

(a) (b)

Figure 1. Two different 4-leaf network k-cycle topologies.

For example, under the CFN model with the two states denoted 0 and 1, and
using Fourier coordinates, the defining ideal for the 4-leaf 3-cycle network N1

pictured in Figure 1A is IN1 = 〈p0110p1001 − p0101p1010, p0011p1100 − p0000p1111〉,
while the defining ideal for the 4-leaf 4-cycle network N2 pictured in Figure 1B
is IN2 = 〈p0110p1001 − p0101p1010 + p0011p1100 − p0000p1111〉. Knowing the defining
polynomials would be useful for model selection, which is the next step after
establishing identifiability.
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The Correlation Space of Gaussian Latent Tree Models and Model
Selection without Fitting

Piotr Zwiernik

(joint work with John Aston, Nat Shiers, and Jim Smith)

In phylogenetics and lynguistics latent tree models are used to model evolutionary
processes. Model selection procedures are employed to choose the best tree fitting
the data. However, deciding if the tree hypothesis is consistent with the data is
typically hard. We provide the full semialgebraic description of Gaussian latent
tree models and link them to phylogenetic oranges. We then use this geometric
description to propose a quick and robust way of choosing the best tree, or, of
testing the tree hypothesis.
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The Maximum Likelihood Data Singular Locus

Emil Horobeţ

(joint work with Jose I. Rodriguez)

For general data, the number of complex solutions to the likelihood equations is
constant and this number is called the (maximum likelihood) ML-degree of the
model. In this talk, we describe the special locus of data for which the likelihood
equations have a solution in the model’s singular locus. The talk is based on the
recent results of the authors [4, 5].

Maximum likelihood estimation is an important problem in statistics. On a
statistical model, one wishes to maximize the likelihood function for given data.
The algebraic approach to this problem determines every critical point of the
likelihood function on the the model’s closure. For general data there will be
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finitely many regular complex critical points. Moreover, this number remains
constant and is called the maximum likelihood degree of the statistical model.

The (ML) maximum likelihood degree was introduced in [2] and [6]. In [7] Huh
relates the ML degree of a smooth model to a topological Euler characteristic and
used topological methods to classify varieties with ML degree one [8]. Recently,
Euler characteristics and Gaussian degrees have been used to answer questions
about the ML degree of a singular variety [1, 10, 11].

One reason to study the ML degree is because continuous deformations of the
data induce continuous deformations of the critical points. So by deforming generic
data to specific data, we are able to determine the critical points of the likelihood
function as seen in [3] for example. For most choices of specific data, the critical
points deform to distinct and regular critical points. However, for special choices
of specific data, special behavior may occur. One type of special behavior is when
the deformed critical points are no longer distinct. This was discussed from a
computational view in [9] for the likelihood equations.

In this talk we discuss a different type of special behavior. We are interested
in deformations of data leading a critical point into the singular locus. We call
the closure of this type of special data the (ML) maximum likelihood data
singular locus.

Our main theorem bounds the data singular locus. We give an algebraic variety
contained in the data singular locus and an algebraic variety containing the data
singular locus. These bounds connect dual varieties and Hadamard geometry to
the ML data singular locus. We will give examples to show these bounds are strict.

Theorem 1. Let X be an algebraic statistical model in Pn+1. Then, the following
two inclusions hold

(Xsing \ H) ∗ [1 : . . . : 1 : −1] ⊆(1) DS(X) ⊆(2) (Xsing \ H) ∗X∗,

where DS(X) is the data singular locus, X∗ is the dual variety, Xsing \ H is the
open part of the singular locus where none of the coordinates are zero and the
Hadamard product ∗ is considered as in [5].
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Testing Membership of the Likelihood Correspondence

Jose Israel Rodriguez

Maximum likelihood estimation is a fundamental computational task in statistics.
A typical problem encountered in its applications is the occurrence of multiple
local maxima. To be certain that a global maximum of the likelihood function has
been achieved, one can locate all solutions to a system of polynomial equations
called likelihood equations. The number of solutions to these equations is called
the maximum likelihood degree (ML degree) and gives a measure of complexity to
the global optimization problem. When the data yields finitely many solutions we
can find them all. In my talk, I discussed a trace test to verify the computation
of a multiprojective witness set which can be used to to test membership. In this
extended abstract, the likelihood correspondence witness set will be defined and
with it we will test membership.

We consider a statistical model, denoted by M, contained in the (n − 1)-
dimensional probability simplex ∆n−1 :=

{

(p1, p2, . . . , pn) ∈ Rn
≥0 :

∑

pi = 1
}

. The

Zariski closure of this model in P
n−1
C

is denoted by X := M̄, where M is a subset
of the real points of X restricted to the affine chart defined by

∑

pi = 1. In other
words, X is a projective variety, i.e., an algebraic statistical model. For fixed data
u = (u1, u2, . . . , un) ∈ Nn, we would like to maximize the likelihood function

ℓu (p) := pu1
1 pu2

2 · · · pun
n

on the statistical model M. The maximizer in the model is a probability distri-
bution p̂ called the maximum likelihood estimate. When this maximizer is a local
maxima, it can be found by computing the critical points of the function restricted
to the regular locus of X . These are determined by solving a system of polynomi-
als called likelihood equations. The likelihood correspondence of X is the Zariski
closure of all pairs of critical points with data, i.e.,

LX := {(p, u) : p ∈ Xreg and a critical point of ℓu (p)} ⊂ P
n−1 × P

n−1.

This correspondence is (n− 1)-dimensional and its projection to Pn−1
u is finite to

one. The fiber of the projection are critical points of the likelihood function for
that choice of data. A generic fiber has finitely many points and the its cardinality
is known as the maximum likelihood degree (ML degree).

Example 1. Consider the algebraic statistical model defined by f := (p1 + p2 +
p3)

3 − 30p1p2p3 = 0 in P2. The likelihood correspondence LX ⊂ P2 ×P2 is defined
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by f = 0 and the irreducible polynomial (1). For general u, we find three solutions
to the equations above and conclude the maximum likelihood degree is three.

(1) det







u1
p1

u2
p2

u3
p13

1 1 1
∂f
∂p1

∂f
∂p2

∂f
∂p3






.

Question 1. Is the point z := (p, u) in the likelihood correspondence LX?

To answer this question we define the witness set of the likelihood correspon-
dence. Let L(0),L(1), . . . ,L(dimX) denote a general linear spaces where L(i) is
the intersection of i hyperplanes defined by linear forms in the indeterminants
p1, . . . , pn with the intersection of (n− 1− i) hyperplanes defined by linear forms
in the indeterminants u1, . . . , un. When i = 0, this is equivalent to fixing u ∈ Pn−1.

When L(i) contains the point z ∈ Pn−1×Pn−1, we denote this linear space by L(i)
z .

Definition 2. The witness set for LX is the following formal union of sets of
points:

W (LX) :=

dimX
⊔

i=0

L(i) ∩ LX .

The ith element of W (LX) is a set of finitely many points. When i = dimX
this is the degree of X . When i = 0 the number of points is the ML degree.

Example 3. The witness set for the likelihood correspondence LX from Ex. 1
consists of 6=3+3 points. The linear spaces L(0) and L(1) are each defined by two
equations:

L(0) :

{

13u1 − 3u2 + 0u3 = 0

0u1 + 14u2 − 13u3 = 0,
L(0) :

{

1u1 + 2u2 − 2u3 = 0

3p1 − 2p2 − p3 = 0.

An example of such a witness set is given by W (LX) =

= LX ∩ L
(0)

⊔ LX ∩ L
(1)

=







([.46 : .28 : .26] , [3 : 13 : 14])
([.22, .38, .40] , [3 : 13 : 14])

([−1.35 : .10 : .25] , [3 : 13 : 14])







⊔







([.36 : .42 : .22] , [8 : 10 : 4])
([.31 : .24 : .45] , [8 : 10 : 4])

([.02 : 1.06 : −2.08] , [8 : 10 : 4])







.

We use the witness set for LX to test membership by deforming L(i) to L(i)
x .

Theorem 2. Fix a point z ∈ Pn−1 × Pn−1. The point z is in LX if only if there

exist L(i)
z such that LX ∩ L(i)

z is locally zero dimensional at the point z.

This theorem (the content of Prop. 3.3 of [2]) allows us to construct a member-
ship test for LX by taking advantage of coefficient homotopy theory.

Example 4. We can test membership for the point z = ([.22 : .38 : .40], [10 : 10 :

10]) of LX from Ex. 3. Deforming L(0) to L(0)
z can take the real points to three

complex point, none of which are z. However, if we take L(1) to L(1)
z then one of

the three points are taken to z. Thus, we would conclude z is in LX .
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Learning Bayesian Networks via Edge Walks on DAG Associahedra

Liam Solus

(joint work with Yuhao Wang, Caroline Uhler, and Lenka Matejovicova)

Discovering causal relations is a fundamental problem across a wide variety of
research areas, including computational biology, sociology, economics, and many
others [3]. A Bayesian network, or DAG model, is a type of graphical model based
on a directed acyclic graph (DAG) G = ([p], A) with node set [p] and collection
of arrows A. The model associates to each node i a random variable Xi, and
uses the arrows to G to encode the causal influences amongst the random vari-
ables (X1, . . . , Xp). Namely, we say a joint distribution P satisfies the Markov
assumption with respect to the DAG G if P satisfies the conditional independence
(CI) relations Xi ⊥⊥ XNd(i)\Pa(i) | XPa(i), where Pa(i) denotes the collection of
parents of node i in G and Nd(i) denotes it collection of nondescendants. When
a distribution P satisfies the Markov assumption with respect to a DAG G it also
satisfies a (potentially) larger family of CI relations which are captured via the
combinatorics of G by a notion of directed separation, known as d-separation [3].
A fundamental problem in causal inference is to recover a DAG G whose Markov
properties (i.e. those CI relations implied by the Markov assumption) encode a col-
lection of observed CI relations C. Unfortunately, this problem is not well-defined
since multiple DAGs can have the exact same set of d-separation statements (and
therefore the exact same set of CI relations implied by the Markov assumption).
If two DAGs have the same set of d-separation statements they are called Markov
equivalent and are said to belong to the same Markov equivalence class (MEC).
Our fundamental problem then becomes: Given a collection of observed CI rela-
tions C drawn from some distribution P that satisfies the Markov assumption with
respect to an unknown DAG G, can we recover the MEC of G?

An immense amount of work has been done in regards to this problem. Proposed
solutions come in the form of algorithms that take in the collection of observed
CI relations C (and possibily some other parameters) and return a DAG G. The
success of an algorithm can be measured in terms of its efficiency as well as its
associated consistency gaurantees, i.e. those assumptions on the data-generating
probability distribution that guarantee the algorithm will recover the true MEC.
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Typcially, model selection algorithms are grouped into two categories: constraint-
based and score-based algorithms. Constraint-based algorithms use conditional
independence tests to recover a DAG G. Such algorithms tend to perform well
under the faithfulness assumption, i.e. the assumption that the only CI relations
satisfied by the data-generating distribution are precisely those encoded via d-
separation statements in the true DAG G. Popular constraint-based algorithms
such as the PC algorithm [3] are often used since they return only a single, clear
candidate DAG. However, such methods are subject to the propagation of errors
in statistical independence test results and lack any measure of confidence for the
output DAG. Score-based algorithms are optimization hueristics in which each
potential DAG is assigned a score and then the algorithm then attempts to select
the DAG with the optimal score. One of the most popular score-based algorithms
is the Greedy Equivalence Search (GES) which was shown to be consistent with
respect to the Bayesian Information Criterion (BIC) in [1]. While these methods
come with a natural measure of confidence in the output DAGs, the choice of
maximal DAG may be ambiguous.

Many algorithms also blend features of constraint-based and score-based algo-
rithms. In this talk, we considered a hybrid algorithm which we refer to as the
Greedy SP algorithm. This algorithm is hybrid in the sense that it utilizes con-
ditional independence tests while working to optimize a score function. Given a
collection of observed CI relations C and a permutation π = π1 . . . πp the Greedy
SP algorithm assigns a DAG Gπ := ([p], Aπ) to π by asserting

πi → πj ∈ Aπ ⇐⇒ i < j and πi 6⊥⊥ πj | {π1, . . . , πmax(i,j)}\{πi, πj},

for all 1 ≤ i < j ≤ p. The algorithm initializes at some permutation π and
it considers the covered arrows within Gπ; i.e., those arrows i → j for which
the collection of parent nodes of j other than i are the parents of i. Using a
depth-first-search approach, Greedy SP transposes the letters of π that are the
endpoints of covered arrows in Gπ to produce new permutations τ . In one of these
new permutations is such that Gτ has strictly fewer edges that Gπ , then Greedy
SP moves to this permutation and repeats the process. This algorithm has a very
natural interpretation as an edge-walk along a subset of the edges of a certain
convex polytope known as a DAG Associahedron [2].

In this talk, we observed that Greedy SP is consistent under the faithfulness
assumption and compared it via simulated data to the PC algorithm. It turns out
that Greedy SP is the first permutation-based DAG model selection algorithm in
the literature with a consistency guarantee. This guarantee follows from the fact
that if the data-generating distribution is faithful to the true (sparsest) permuta-
tion DAG Gπ∗ then every other permutation DAG Gπ is an independence map of
Gπ∗ [4]. A DAG H is an independence map of G, denoted G ≤ H, if every CI rela-
tion entailed by H is also entailed by G. It turns out that H can be transformed
into G using a sequence of covered arrow reversals and arrow deletions [1], and
this fact is key to both the proof of consistency for GES with BIC and Greedy SP
under faithfulness. Synthetic data studies suggest that with relatively few runs



1256 Oberwolfach Report 20/2017

and reasonable search depth bounds, Greedy SP generally outperforms the PC
algorithm.
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Matroid Representations: Algebra and Entropy

Frantǐsek Matúš

A matroid (N, r) consists of a finite ground set N and rank function r, see [9].
Over a field F, the matroid is multilinear of degree δ ≥ 1 if there exist sub-

spaces Ei, i∈N , of a linear space over F such that δ ·r(I) = dimEI , I ⊆ N . Here,
EI denotes the inner sum of Ei over i∈ I. In the special case δ = 1, the linear
matroids over F arise.

The matroid is algebraic over F if there exist not necessarily different elements
ei, i∈N , of an extension field of F such that r(I) = dimtr F(I) for I ⊆ N . Here,
dimtr denotes the transcendence dimension over F and F(I) the smallest subfield
of the extension field that contains F and {ei : i ∈ I}.

The matroid is partition representable of the degree d ≥ 2 if a d r(N)-element
set admits partitions πi, i∈N , such that the meet-partition πI =

∧

i∈I πi has d
r(I)

blocks of the same size, I ⊆ N . A parallel language for this kind of representations
is that of ideal secret sharing schemes from cryptography. The definition can be
reformulated also in terms of generalized quasigroup equations [3].

A polymatroid (N, h) has a real-valued rank function h.
For random variables ξi, i∈N , that take only finitely many values, the mapping

that sends I ⊆ N to the Shannon entropy of (ξi : i∈ I) is a polymatroidal rank
function. The corresponding polymatroids are entropic. Their rank functions ex-
haust the entropy region [5]. A matroid is partition representable if and only if a
positive multiple of its rank function is entropic.

A polymatroid (N, g) is almost entropic if there exists a sequence of entropic
polymatroids (N, hn) such that hn → g pointwise, thus if g belongs to the closure
of the entropy region. This defines in particular the almost entropic matroids and
their representations by infinite sequences of probability the distributions. The
class of these matroids provides a description of the entropy regions [4, Theorem 5].
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Figure 1. Classes of matroids.

Open problems and conjectures

1. Given a matroid, classify its partition representations of a given degree. For
the graphical matroid of K4 see [3]. Dowling geometries are studied in [8].

2. The class of partition representable matroids of a given degree has finitely
many exluded minors. This is analogous to Rota’s conjecture, see [1].

3. Existence of a partion representable matroid that is not multilinear, see the
question mark in the figure.

4. Existence of an algebraic matroid whose dual is not algebraic.

The algebraic matroids are almost entropic by [7], which means the empty set in
the figure. The class of almost entropic matroids is not closed under the duality [2].
This may give new insights to the last conjecture.

A more detailed discussion of Figure 1 is in [6].
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[7] F. Matúš, Algebraic matroids are almost entropic. (2017) (in preparation)
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Propagating Polynomial Equations

Jan Draisma

My talk concerned the following central question:

Given a sequence X1, X2, . . . , Xn, . . . of algebraic varieties, do their
equations look alike for n≫ 0?

Here, an algebraic variety is the solution set X to a system of polynomial equa-
tions defined on a finite-dimensional vector space A.

Running example. If Xn is the variety of n×n-matrices of rank at most 1 inside
the space An of n×n-matrices, then X2 is the solution set of x11x22−x12x21 = 0.
Nonnegative, real solutions whose entries add up to 1 form the statistical model
of independence. For n ≥ 2, Xn is defined by the equations obtained from the one
above by permuting rows and columns. In this manner, all equations are captured
by the single equation for X2.

Propagating. The word propagating in the title refers to the following easy ob-
servation: if π : Am → An is a linear map with π(Xm) ⊆ Xn, then each equation f
for Xn of degree d yields an equation f ◦ π of degree (at most) d for Xm. My talk
discussed several instances where equations of finitely many of the Xn actually
yield equations of all of them by propagation along such linear maps.

Markov random fields. ConsiderMarkov random fields, or equivalently (param-
eterised) undirected graphical models for discrete random variables. The running
example is the special case where the graph consists of two isolated vertices.

There are at least two different ways in which such a model is part of a sequence.
First, one may increase the state space of some of the variables:
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Then the associated (toric) algebraic variety is in a natural manner a contravariant
variety over the category FI of finite sets with injective maps, and propagating
polynomial equations along linear maps coming from the morphisms in FI yields
equations for all varieties in the sequence under the (somewhat restrictive) condi-
tion that the variables whose state spaces are being increased form an independent
set in the graph (see [HS12] and [DEKL16] for generalisations of this statement).

Second, one may increase the graph by glueing copies of a fixed graph along a
fixed subgraph:

In this case the associated variety turns out to be a covariant variety over the
category FS of finite sets with surjective maps, and the corresponding stabilisation
result was conjectured in [RS16], verified in the case of the complete bipartite
graph K3,n with binary states in [RS14], and proved in [DO16]. The theorem says
that iterated toric fibre products [Sul07] of a finite list of Hadamard-stable varieties
have ideals generated in bounded degree. The proof uses a beautiful combinatorial
result from [Mac01] that monomial ideals in a finite-dimensional polynomial ring
are well-partially ordered by reversed inclusion.

Mixtures. In another direction, one can take mixtures of models like the one
above, and let the state spaces vary. For instance, the mixture of the following
two models:

where on the left v is independent of (t, u) and on the right u is independent of
(t, v), corresponds to certain tensors of slice rank [TS16] at most 2 in a tensor prod-
uct of three vector spaces. A theorem in a forthcoming joint paper with Oosterhof
is that such tensors are characterised by polynomials of degree at most 6 regard-
less of the sizes of the state spaces of the three variables; the degree-6 equations
are certain 2 × 2-determinants of matrices whose entries are 3 × 3-determinants.
Finding the equations for more complicated mixtures is a real challenge!

This model has more symmetry than just the combinatorial categories FI
and FS above, and should be seen as a variety over the category Vec of finite-
dimensional vector spaces. In the recent preprint [Dra17] a general (topological,
i.e., not ring-theoretic) finiteness result is proved for such varieties.

Propagating inequalities? Results on tensors of nonnegative rank 2 [ARSZ15]
and matrices of nonnegative rank 3 [KRS15] as well as on the Gaussian two-factor
model [DX10] lead to the following natural question:
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Do recent finiteness results for propagating polynomial equations
have analogues for propagating polynomial inequalities?

This question is widely open. A positive answer might have much impact on
algebraic statistics and optimisation, where models are intrinsically semi-algebraic
sets over the reals rather than complex algebraic varieties.
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Studying the Posterior Distribution of Overfitted Hidden Markov
Models

Judith Rousseau

1. Introduction: asymptotic posterior distribution in hidden
Markov models

Finite state space hidden Markov models are dynamical extensions of mixture
models and can be represented as: conditionnally on hidden (i.e. latent or un-
observed) states x1:n = (x1, · · · , xn) the observations yt’ s are independent with
distribution [yt|xt = s] ∼ gγs

, s ≤ K and γs ∈ Γ ⊂ R
d and x1:n form a fi-

nite state space Markov chain on {1, · · · ,K} with transition matrix Q and initial
distribution µ. We write Q = (qi,j , i, j ≤ K), the parameter is then defined as
θ = (qi,j , i ≤ K, j ≤ K − 1, γ1, · · · , γK) and by ΘK the associated parameter
space. We also denote by Pn

θ,µ the distribution of y1:n associated to the parameter
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θ and initial distribution µ of x1:n and by Pθ the stationary distribution of y1:n
associated to the parameter θ when it exists.

Under regularity conditions, if the true distribution of the observations y1:n is
that of a hidden Markov model as described above with transition matrix Q∗ on
{1, · · · ,K} which is ergodic and irreducible and if the true emission parameters

γ∗1 , · · · , γ∗K are all distinct, then the maximum likelihood estimator θ̂, is consistent
and asymptotically Gaussian and efficient. Similarly for any Bayesian approach
based on a prior distribution on (Q, γ1, · · · , γK) absolutely continuous with respect
to the Lebesgue measure on SK

K × ΓK , where SK is the K dimensional simplex,
with positive and continuous density at Q∗, γ∗1 , · · · , γ∗K , then the so-called Bern-
stein von Mises theorem holds. This means that the posterior distribution of√
n(θ− θ̂) converges to a Gaussian distribution with mean 0 and variance I−1(θ∗)

under Pθ∗ , where I−1(θ∗) is the asymptotic variance of
√
n(θ̂ − θ∗) under Pn

θ∗ .
In this talk we are interested in the behaviour of the posterior distribution

when the true parameter θ∗ corresponds to a Markov chain living on a subset
of {1, · · · ,K}, in other words when there exists K∗ < K and an ergodic and
irreducible transition matrix Q∗ on {1, · · · ,K∗} and γ∗1 , · · · , γ∗K∗ all distinct such
that [yt|xt = s] ∼ gγ∗

s
and x1:n form a Markov chain on {1, · · · ,K∗} with transition

matrix Q∗.
In this case the model defined on ΘK has a singularity at θ∗ and is not identifi-

able. The non-identifiability can be observed by noting that for all n, Pn
θ∗ can be

represented on ΘK by either merging extra components or by emptying extra com-
ponents. As an illustration of the merging configuration, consider (Q, γ1, · · · , γK)
with γ∗K∗ = γK∗+1 = · · · = γK and Q = (qi,j , i, j ≤ K) satisfying for all i ≤ K∗,

qi,j = q∗i,j , j ≤ K∗ − 1;
K
∑

j=K∗

qi,j = q∗i,K∗

and for all i ≥ K∗,

qi,j = q∗K∗, j, j ≤ K∗ − 1;

K
∑

j=K∗

qi,j = q∗K∗,K∗ .

The emptying of the extra component is verified for instance by parameters defined
as γj = γ∗j for all j ≤ K∗, and Q defined by

qi,j = q∗i,j , i, j ≤ K∗, qi,j = 0 ∀i ≤ K, j > K∗, qi,j = qK∗,j ∀j ≤ K∗.

In this case, if it can be proved that the maximum likelihood estimator θ̂ can
converge to the set Θ̃∗ of parameter values θ ∈ ΘK such that Pn

θ = Pn
θ∗ for all n,

no other more precise statements has been obtained for such an estimator.
On the other hand, the same kind of problems has been studied in the context

of static mixtures, i.e. when the unobserved states xi:n are independent and iden-
tically distributed with distribution p = (p1, · · · , pK). Similarly, the model is non
indentifiable and singular at parameter values corresponding to K∗ < K states
latent variables, with merging of extra states represented by, for instance γj = γ∗j ,
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j ≤ K∗ and γK∗+1 = · · · = γK = γ∗K∗ and pj = p∗j for j ≤ K∗ − 1 and emptying
the extra states by having pK∗+1 = · · · = pK = 0 while γj = γ∗j for j ≤ K∗. Here

again the maximum likelihood converges to Θ̃∗ and not much else can be said on
this estimator. However in [3], it was proved that, by choosing correctly the prior
distribution on the parameter p, the posterior distribution has asymptotically a
more stable behaviour.

More precisely if p ∼ D(α1, · · · , αK) (a Dirichlet distribution) and if the γj ’s
are independent and identically distributed with distribution πγ which has positive
and continuous density at γ∗j , j ≤ K∗, then

• If max(α1, · · · , αK) < d/2 then

Π





∑

j>K∗

pj > M(logn)q/
√
n|y1:n



 = opθ∗
(1)

• If min(α1, · · · , αK) > d/2 then

Π





∑

j>K∗

pj < (log n)−q|y1:n



 = opθ∗
(1)

where in the above equalities Π(·|x1:n) denotes the posterior distribution and to
simplify notation

∑

j>K∗ pj is associated to the permutation σ∗ of the labels which

minimizes
∑

j>K∗ pσ(j) over all permutations. The above results thus state that

if the hyperparameters of the Dirichlet prior satisfy maxαj < d/2 then the extra
components have asymptotically probability going to 0 (emptying of the extra
states) under the posterior distribution while in the second case the posterior

distribution concentrates to configurations of Θ̃∗ corresponding to the merging of
the extra states.

One of the consequences of the above result is that the log marginal likelihood
is bounded from above by the following singular BIC approximation

logmn(y1:n) = log

(∫

ΘK

fn
θ (y1:n)dπ(θ)

)

= ℓn(θ̂n)−D(K∗,K)/2 +OP (log logn)

when α = α1 = · · · = αK < d/2, where ℓn(θ) is the log - likelihood and
D(K∗,K) = (K∗d +K∗ − 1 + α(K −K∗)). Interestingly this result is obtained
via a technic quite different from the algebraic statistical approach of [5], see also
[1].

The question is : can we extend this phase - transition result to the case of
hidden Markov models ?

2. Case of hidden Markov models

The case of hidden Markov models is more complex and so far has not been treated
using algebraic methods. Using the technic of proof as in [3], [2] and [4] study the
asymptotic behaviour of the posterior distribution in hidden Markov models, when



Algebraic Statistics 1263

the true number of states K∗ is smaller than K the assumed number of states on
model ΘK . Their aim is to understand if

(1) Π





∑

j>K∗

µQ(j) > un|y1:n



 = op(1)

for some sequence un = o(1), where µQ is the stationary distribution associated
to the transition matrix Q. In [2] and [4] only a partial caracterisation of the
behaviour of the posterior distribution has been derived, which we now briefly
recall.

Consider a prior distribution on θ in the form

∀i ≤ K, qi. = (qi,j , j ≤ K)
ind∼ D(αi1, · · · , αi,K), γj

iid∼ πγ .

In [4] the authors show that if αi1 = · · · = αip = ᾱ and αip+1 = · · · = αiK = α
with ᾱ > A(K,K∗, d) and α < a(K,K∗, d) where A(K,K∗, d) is a constant rapidly
growing with K and a(K,K∗, d) is a small constant decreasing with K, then (1) is
valid. In the case where K = 2 and K∗, [2] provide a sharper result where under
some condition (1) is not valid.

The difficulty in handling the hidden Markov models, as it is done in [2] and
[4] is that first a concentration result in terms of the L1 norm, for the stationary
density of two consecutive observations

fθ(y1, y2) =

K
∑

i1,i2=1

µQ(i1)qi1,i2gγi1
(y1)gγi2

(y2)

must be obtained. However in any neighbourhood of Q∗ there exist transition
matrices Q which are non ergodic or reducible and the likelihood does not have a
well understood behaviour near such values of the parameter. This first induces
a posterior concentration rate on fθ∗ which is much larger than the usual 1/

√
n

and second a constraint on the hyper parameters αij which ensures that the prior
penalizes enough neighbourhoods of non ergodic Markov chains.

As a consequence A(K,K∗, d) and a(K,K∗, d) are probably not sharp cut-
ting points to descriminate between an emptying of the extra components of the
Markov chain and a merging of these components. A simulation study we have
run indicates that (1) seems to hold for ᾱ much smaller than A(K,K∗, d).

My question is then : can the technics of algebraic statistics tackle this problem?
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Optimal Experimental Design that Minimizes the Width of
Simultaneous Confidence Bands

Satoshi Kuriki

(joint work with Henry P. Wynn)

We propose an optimal experimental design for a curvilinear regression model
that minimizes the band-width of simultaneous confidence bands. Simultaneous
confidence bands for nonlinear regression are constructed by evaluating the volume
of a tube about a curve that is defined as a trajectory of a regression basis vector
[3, 6, 8]. This methodology is referred to as the volume-of-tube method, which has
been developed for the approximation of the tail probability of the maximum of
a smooth Gaussian random field [1, 4, 9, 10]. The proposed experimental design
criterion is constructed based on the volume of a tube, and the corresponding
optimal experimental design is referred to as the minimum-volume optimal design.

For Fourier and weighted polynomial regressions with polynomial variance func-
tion, the problem is formalized as one of minimization over the cone of Hankel
positive definite matrices, and the criterion to minimize is expressed as an elliptic
integral. We show that the Möbius group keeps our problem invariant, and hence,
minimization can be conducted over cross-sections of orbits. The Möbius group
action on polynomial variance function defined here is the same group action on
the Cauchy distribution introduced by [7].

We demonstrate that for the weighted polynomial regression and the Fourier
regression with three bases, the minimum-volume optimal design forms an orbit
of the Möbius group containing D-optimal designs as representative elements. We
also characterize the D-optimal design for weighted polynomial design in terms of
group action (cf. [2]).

The case where the number of explanatory variables is more than one is re-
maining as a future research topic. The group invariance under the multivariate
Möbius group is proved again, and the same properties as the univariate case are
expected to hold.

This talk is based on [5].
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Introduction to Normaliz

Tim Römer

Normaliz [4] is an open source tool developed in Osnabrück by the Normaliz Team.
It implements algorithms especially for the computation of lattice points in rational
polyhedra. Seen from the point of view of algebra it develops algorithms to solve
linear diophantine systems. Here a polyhedron and a lattice can either be defined
by generators (extreme rays of cones, vertices of polyhedra, generators of the
lattice), or by constraints (inequalities, equations, congruences). Note that the
conversion between generators and constraints is already an important part of
Normaliz.

The current version of Normaliz is 3.2.0. It is implemented in C++. It uses
GMP for infinite precision arithmetic and OpenMP for parallelization. For the
subdivision of “large” simplicial cones it can use (optional) the IP solver SCIP
[7]. Normaliz offers the API libnormaliz. Normaliz has interfaces to CoCoA, GAP,
Macaulay 2, Python and Singular. It is used, e.g., by polymake [8], Regina [6] or
SecDec-3.0 [3].

For the mathematical background of Normaliz we refer to its documentation
which is available at its homepage; see [4]. Its main computation goals are:

• convex hulls and dual cones,
• conversion from generators to constraints and vice versa,
• triangulations, disjoint decompositions and Stanley decompositions,
• Hilbert basis of rational (not necessarily pointed) cones,
• normalization of affine monoids,
• lattice points of rational polytopes and (unbounded) polyhedra,
• Hilbert series and (quasi) polynomials under Z-gradings,
• generalized Ehrhart series and Lebesgue integrals of polynomials over ra-
tional polytopes via NmzIntegrate.

These goals can be selected via command line options or in the input file. Some
of the tools of Normaliz are:
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• linear algebra over Z,
• Fourier-Motzkin elimination,
• pyramid decomposition and triangulation,
• evaluation of simplicial cones,
• reduction of a system of generators to the Hilbert basis,
• Stanley decomposition (for Hilbert series),
• a variant of Pottier’s “dual” algorithm for Hilbert bases.

Also the algorithmic variants can be selected via command line options.
For some benchmarks we refer to [2], [5] and [9]. Normaliz was cited more than

one hundred times in the literature. For example, it was used in algebraic statistics
by Sturmfels–Welker [11] to study linear ordering polytopes, which can be seen as
the model polytopes of the associated toric statistical models. Another example
of a very interesting application is its use in [10] to compute the set of “holes” of
a semigroup.
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Identification of Linear Dynamic Systems: Structure Theory and its
Relation to Estimation

Manfred Deistler

We are concerned with the problem of finding a linear dynamic model from (dis-
crete, equidistant) time series data. The linear dynamic models considered are
either ARMA models (a(z), b(z)), a(z) =

∑p
j=0 ajz

j, b(z) =
∑q

j=0 bjz
j; aj, bj ∈
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R
s×s, z ∈ C or state space models (A,B,C), A ∈ R

n×n, B ∈ R
n×s, C ∈ R

s×n

driven by unobserved white noise (εt) with Σ = Eεtε
′
t > 0.

In both cases the transferfunctions

k(z) = a−1(z)b(z) = I + C(I −Az)−1zB

are rational. A standard assumption is that k(z) has no poles or zeros for
|z| ≤ 1. We then say that k(z) is causal and miniphase. Then the corresponding
solution

yt = k(z)εt =

∞
∑

j=0

kjεt−j

gives a stationary output process and corresponds to the Wold decomposition.
The spectral density of (yt) is of the form

f(z) = (2π)−1k(z)Σ k(z)′.

If we assume k(0) = I, then k(z) is uniquely determined from f(z) and thus
from the population second moments of (yt). The second moments f(z) (and thus,
in a certain sense the transfer functions k(z)) represent the external behaviour of
the system, whereas the ARMA and state space parameters describe the internal
characteristics. Every rational, causal and miniphase transfer function can be
realized by an ARMA or state space system. For simplicity, from now on, we
restrict ourselves to ARMA systems here.

If we have no ”structural” a-priori restrictions, we have two (”first”) model
classes, namely:

• UA: the set of all rational, causal and miniphase s × s transfer functions
with k(0) = I

• TA: the set of all ARMA systems (a, b) where a, b are s × s polynomial
matrices satisfying additional conditions, such as left coprimeness, stability
and the miniphase assumption

and the mapping

π : TA → UA : k(z) = a−1(z)b(z).

The problems here are as follows:

• TA is not finite-dimensional
• π is (surjective but) not injective, i.e. we lack identifiability
• There exists no continuous selection UA → TA, when UA is endowed with
the so called pointwise topology Tpt.

For this reason a ”semi non-parametric approach” is taken: In a first step, the
model classes are broken into pieces to obtain the final model classes:

This is done as follows:

• First we define M(n) ⊂ UA, the set of all transfer functions of order n.
M(n) is a real analytic manifold of dimension 2ns, which, in the multi-
variable case, cannot be described by one chart.
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• In the next step, suitable charts Uα, described by a multiindex α, obtained
from the block Hankel matrix of the transfer function are chosen. This
leads to a parametrization

ψα : Uα → Tα : ψα (π/Tα
(τ)) = τ

where τ are the ARMA parameters.

We have Uα =M(n) =
⋃

i≤nM(i), where the bar denotes the closure, and ψα

is a homeomorphism.
This leads to a model selection problem, n and α have to be estimated from

data, n e.g. by AIC or BIC.
Given the selected n, α, in a second step, we use ML-type procedures to estimate

θ =

(

τ
vechΣ

)

: −2T−1 log of the Gaussian Likelihood is of the form

LT (θ) = T−1 log det ΓT (θ) +







y1
...
yT







′

ΓT (θ)
−1







y1
...
yT






,

where T is sample size and ΓT (θ) is the Ts×Ts covariances matrix correspond-
ing to the ARMA parameters θ.

A coordinate free consistency result has been given by Hannan (see [1]): We
have

k̂T (z) → k0(z) (in Tpt a.s.)

Σ̂T → Σ0 a.s.

where k̂T , Σ̂T denote the maximum likelihood estimators and k0, Σ0 the true
values. Then, the continuity of ψα implies

θ̂T = ψα

(

k̂T (z)
)

→ θ0 = ψα(k0) a.s.

Note that:

• M(n) ⊇ π(Tα)

• Uα is open in M(n)
• Tα − Tα contains equivalence classes corresponding to lower dimensional
systems

• M(n)− π(Tα) corresponds to the point of infinity in the parameter space
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Species Tree Identifiability from Split Probabilities

Elizabeth S. Allman

(joint work with James H. Degnan, John A. Rhodes)

It is well known that gene trees and species trees may differ. A gene tree con-
structed from a molecular alignment describes the relationship between those par-
ticular sampled gene lineages. In contrast, a species tree describes the relationships
between the species from which individuals might be sampled to construct a gene
tree. Typically, the species tree is the parameter of interest, but one obtains
information about it only indirectly from gene trees.

There are many reasons for discordance between gene trees and species trees,
including lateral gene transfer, hybridization, and incomplete lineage sorting. The
phenomenon of incomplete lineage sorting occurs because the merging of two sam-
pled gene lineages back in the past can predate the divergence of species. For
example, in the figure below we see that the gene tree ((((C,D), A), B), E) can
form in the species tree ((((a, b), c), d), e). Here, the species tree is denoted with
thick lines as a ‘fat’ tree; the gene tree within the species tree is shown as a stick
tree.

a b c d e

Figure: A gene tree can have a topology different from the species tree
because of the phenomenon of Incomplete Lineage Sorting.

The multispecies coalescent models the population genetic effect of incomplete
lineage sorting. The parameters of this model are the species tree topology, and
internal branch lengths. Probabilities (more accurately, densities) of rooted, metric
gene trees can be computed under this model for all (2n − 3)!! factorial possible
rooted topologies, where n is the number of taxa. In work of Degnan and Salter
[2], probabilities for the rooted, topological gene tree distribution were computed
for the general case of n taxa.

Inference of species trees from many gene alignments or large multi-locus data-
sets is a challenging, but important, problem. Because the topological gene tree
distribution is so large, with (2n − 3)!! non-zero entries under the multispecies
coalescent model, one might investigate summaries of the distribution that retain
enough information for accurate and fast inference. We investigate the collection
of split probabilities. If X is the collection of taxa at the tips of a species tree σ,
the leaf labels, then for a subset ∅ 6= A ⊂ X the split A | X \ A has a positive
probability under the multispecies coalescent of occurring on any topological gene
tree. This probability, Pσ(Sp(A | X \ A), can be computed by summing the
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probabilities of all rooted gene tree topologies which display the split A | X \ A.
Such a summary has appeal to practitioners, since estimating split probabilities
from a collection of estimated gene trees is fast and easy, and there are likely to
be many fewer sampling zeros.

We prove a number of results about the collection of split probabilities [1].
First, we note that the collection of split probabilities is not a distribution; in-
stead the sum of all such non-trivial split probabilities is n − 3, the number of
internal edges in the species tree. We then investigate the question of species tree
topology identifiability under the multispecies coalescent model, showing that the
unrooted species tree topology is indeed identifiable from split probabilities. This
is accomplished by computing split invariants, polynomial equations that must
hold for any collection of split probabilities generated under the multispecies coa-
lescent model. As an interesting extension we prove that using linear inequalities
—that is, ideas from semi-algebraic geometry— the root of the species tree is also
identifiable from split probabilities for all trees except an exceptional one, the fully
balanced 6-taxon tree.

As a final result, we show that the heuristic distance-based method of species
tree estimation introduced by Liu [3] called NJst is in fact a model-based method.
More precisely, theNJst estimate is a consistent estimator of the species tree topol-
ogy under the multispecies coalescent model, and in fact only uses the summary
split probabilities for its estimation.

There are many, many open questions for interested researchers to investigate.
Can branch lengths in a species tree σ be identified from split probabilities? Is
there an improved NJst algorithm that can estimate the root on the species tree
parameter? Are there higher degree invariants?
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Rank One Tensor Completion

Mario Kummer

(joint work with T. Kahle, K. Kubjas, Z. Rosen)

The talk is based on the article [KKKR17].
Let K = R,C denote either the field of real or complex numbers. We consider a

tensor T ∈ Kd1⊗· · ·⊗Kdn of which we only know some entries, indexed by a subset
E ⊆ D = [d1]×· · ·× [dn] where [di] = {1, . . . , di}. Based on this limited knowledge
we want to decide whether T could possible be of rank one, i.e. expressable as
T = θ1 ⊗ · · · ⊗ θn for some θi ∈ Kdi . This question is known as the problem of
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rank one tensor completion. Wether or not such a partial tensor is completable
depends on K as the following example that goes back to Kruskal [Kru89] shows.

Example. Let n = 3, d1 = d2 = d3 = 2 and

E = {(1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 2)}.

The partial tensor given by

x112 = 1, x121 = 1, x211 = 1, x222 = −1

is completable over C but not over R.

Since the set of completable tensors is parametrized by monomials, checking
whether a partial tensor is completable over the complex numbers can be done
using the theory of toric varieties. For example in [ES96, Prop. 8.7] an explicit
set of equations is given.

For a partial tensor to be completable over the real numbers it is of course
necessary that it is completable over the complex numbers. We give a criterion on
E which allows us to decide whether every partial tensor that is completable over
C is also completable over R. Moreover, we show that whether a partial tensor
is completable over R only depends on the signs of the observed entries — given
that it is completable over C.

Finally, we consider the problem of deciding whether T is the joint distribution
of independent discrete random variables. This is equivalent to T being express-
able as T = θ1 ⊗ · · · ⊗ θn where the entries of each θi are nonnegative and sum up
to one. In this case the set of completable partial tensors can not be described by
equations and sign distributions anymore. We focus on the case where this set is
full-dimensional and where |E| = ∑n

i=1(di − 1). We describe the algebraic bound-
ary of the completable region, i.e. the Zariski closure of its Euclidean boundary.
Apart from the coordinate hyperplanes this consists of a single irreducible hyper-
surface H . We describe this hypersurface as the image of a linear subspace of
Rd1 × · · · × Rdn under the monomial map parametrizing the completable tensors.
The equations of this linear subspace can be explicitly determined from E.

We end with two questions which we consider to be decidable within a reason-
able amount of effort. The first one should be approachable using toric or tropical
geometry.

Problem. What is the degree of the hypersurface H?

The second question turned out to be true in all examples that we computed.
It is also true in the case when d1 = · · · = dn = d and E is the set of all diagonal
indices, i.e. those of the form (i, . . . , i) for i = 1, . . . , d [KR16].

Problem. Is the set of all partial tensors with nonnegative entries that are not
completable to a tensor corresponding to the joint distribution of independent ran-
dom variables always a convex set?
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Attempts to Characterize Extreme Supermodular Functions

Milan Studený

Supermodular functions have been investigated in various branches of mathemat-
ics, in particular in connection with cooperative games, theory of impresise prob-
abilities and conditional independence structures. Submodular functions, their
mirror images, were studied in matroid theory and combinatorial optimization.

Definition A set function m : P(N) → R, where P(N) := {A : A ⊆ N} denotes
the power set of a finite non-empty set N , is supermodular if it satisfies inequalities

∀C,D ⊆ N m(C) +m(D) ≤ m(C ∪D) +m(C ∩D) .

A function m is called ℓ-standardized if m(S) = 0 for any S ⊆ N , |S| ≤ 1. An
ℓ-standardized supermodular function will be called extreme if it generates an
extreme ray of the cone of ℓ-standardized supermodular functions. �

Extreme supermodular functions play an important role in the context of testing
conditional independence implications [1]. This motivated a long-term plan to get
a complete characterization of extreme supermodular functions, by which is meant
an enumeration procedure generating, for any given n = |N |, all extreme rays of
the supermodular cone. This seems to be a quite ambitious plan because the
number of extreme rays grows rapidly with n = |N |; their number for n = 5 is
117978 and decompose into 1319 permutation types [7]. Nevertheless, some partial
results have been achieved. One of them is a simple linear-algebraic criterion for
testing the extremity [9] based on a game-theoretical concept of a core polytope.

Definition Given a supermodular functionm withm(∅) = 0, its core is a bounded
polyhedron (= polytope) in RN defined by

C(m) := { x ∈ R
N :

∑

i∈N

xi = m(N) & ∀S ⊆ N
∑

i∈S

xi ≥ m(S) } .

Every vertex of the core v = [vi]i∈N ∈ extC(m) can be assigned the respective
tightness class T m

v =
{

S ⊆ N : m(S) =
∑

i∈S vi
}

of sets. The (combinatorial)
core structure of m is then the collection of classes of subsets of N , namely
{ T m

v : v ∈ extC(m) }; see [3, § 2] where this concept was introduced. �

The criterion from [9] ascribes a simple linear equation system to the core
structure of (an ℓ-standardized supermodular function) m and the function m is
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shown to be extreme iff the solution to the equation system is unique up to a real
multiple. The criterion is easy to implement on a computer.

The cores of supermodular functions coincide with the polytopes known as
generalized permutohedra [6]. These polytopes also occurred recently in the context
of algebraic statistics because they can be used to describe alternatively some of
probabilistic graphical models [4].

The characterization problem mentioned above leads to the study of

(i): the face-lattice of the cone of supermodular functions
(with usual inclusion ordering)

because extreme supermodular functions corresponds to its atoms. This lattice is,
moreover, isomorphic to two other lattices, namely,

(ii): the lattice of equivalence classes of generalized permutohedra, pre-order-
ed by the relation P � Q iff P is a Minkowski summand of Q,

(iii): the lattice of normal fans coarsening the permutation fan
(= braid arrangement fan) ordered by the relation N � M iff a fan N
coarsens a fan M. These fans correspond to submodular rank tests [5].

On the top of that, the above face-lattice is also anti-isomorphic to

(iv): the lattice of structural independence models
(with independence-inclusion ordering) [8], and to

(v): the lattice of combinatorial core structures induced by supermodular
functions, ordered by refinement relation: a core structure C refines a core
structure D iff ∀ C ∈ C ∃D ∈ D with C ⊆ D.

Note that the refinement relation for combinatorial core structures is analogous
to the concept of a refinement from [2, Definition 2.3.8], used to describe relations
between different polyhedral subdivisions of a polytope.

The open questions/tasks I plan to deal with in near future concern the concept
of a (combinatorial) core structure. The nearest goal is to try to characterize those
collections of classes of subsets of N which are core structures for supermodular
functions. Further research theme/topic is developing methods for easy generating
extreme supermodular functions.

Acknowledgements. The work on this topic has been supported from the GAČR
project n. 16-12010S.
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540 485 Târgu-Mureş
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182 08 Praha 8
CZECH REPUBLIC

Prof. Dr. Fatameh Mohammadi

Institut für Mathematik
Technische Universität Berlin
Strasse des 17. Juni 136
10623 Berlin
GERMANY

Prof. Dr. Guido F. Montufar

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstrasse 22 - 26
04103 Leipzig
GERMANY

Prof. Dr. Jason Morton

Department of Mathematics
Pennsylvania State University
University Park, PA 16802
UNITED STATES

Prof. Dr. Giorgio Ottaviani

Dipartimento di Matematica ”U.Dini”
Universita degli Studi
Viale Morgagni, 67/A
50134 Firenze
ITALY

Prof. Dr. Pablo A. Parrilo

Department of Electrical Engineering
and Computer Science
Laboratory for Information and
Decision Systems
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES

Prof. Dr. Jonas Peters

Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
2100 København
DENMARK

Dr. Sonja Petrovic

Department of Mathematics
Illinois Institute of Technology
Chicago, IL 60616
UNITED STATES

Prof. Dr. Daniel Plaumann

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund
GERMANY

Dr. Eva Riccomagno

Dipartimento di Matematica
Universita di Genova
Via Dodecaneso 35
16146 Genova
ITALY

Dr. Elina Robeva

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES



1278 Oberwolfach Report 20/2017
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