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Zinovy Reichstein, Vancouver

23 April – 29 April 2017
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an emphasis on recent developments in the subject.
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Introduction by the Organisers

The theory of linear algebraic groups originated in the work of E. Picard in the
mid-19th century. Picard assigned a “Galois group” to an ordinary differential
equation. This construction was developed into what is now known as “differential
Galois theory” by J. F. Ritt and E. R. Kolchin in the 1930s and 40s. Their work
was a precursor to the modern theory of algebraic groups, founded by A. Borel,
C. Chevalley, J. P. Serre, T. A. Springer and J. Tits in the second half of the 20th
century. The Oberwolfach workshops on algebraic groups, originated by Springer
and Tits, played an important role in this effort as a forum for researchers, meeting
at regular intervals since the 1960s.

The present workshop continued this tradition. There were 53 participants
from 10 countries: Australia, Canada, Denmark, France, Germany, Great Britain,
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Italy, the Netherlands, Russia, Switzerland and the United States. The scientific
program consisted of 27 lectures and a problem session. The lectures covered a
broad range of topics of current interest, including

• spherical varieties over the complex and real numbers,
• intersection theory of toric and spherical varieties, tropical geometry and

Newton-Okounkov theory,

• homogeneous spaces and their twisted forms,

• Hessenberg varieties,

• geometric invariant theory,

• Tamagawa numbers,

• quiver varieties, R matrices and related algebras

• cluster varieties with relations to representation theory

• tilting modules,

• structure theory of finite-dimensional Lie algebras in finite characteristic,

• infinite-dimensional Lie algebras.

Recreational activities during the workshop consisted of the traditional Wednes-
day afternoon hike and a Thursday night “talent show”, featuring classical piano
and vocal performances by workshop particupants.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

The isogeny category of commutative algebraic groups

Michel Brion

I gave a talk with the same title at the Oberwolfach workshop on Representation
Theory of Quivers and Finite Dimensional Algebras, 19 February to 25 February
2017. Both talks are based on the recent papers [2] and [3]. This abstract com-
plements that of the above workshop by focusing on the algebraic group aspects;
by an algebraic group, we mean a group scheme of finite type over a fixed field k.
All groups are assumed commutative unless otherwise specified.

The algebraic groups form an abelian category C. This talk addressed ho-
mological properties of C and some related abelian categories, in particular the
homological dimension, i.e., the smallest n = hd(C) such that ExtiC(G,H) = 0 for
all i > n and all G,H ∈ C. For an algebraically closed field k, we have hd(C) = 1
if char(k) = 0 and hd(C) = 2 if char(k) > 0, by results of Serre and Oort (see
[8, 10]). This was generalized by Milne to a perfect field k : then hd(C) = 1+cd(Γ)
if char(k) = 0, and hd(C) = max(2, 1 + cd(Γ)) if char(k) > 0, where Γ denotes the
absolute Galois group of k, and cd(Γ) its cohomological dimension (see [7]).

The case of an imperfect field k is largely unknown. By recent work of Conrad,
Gabber and Prasad (see [4] and [5]), the structure of pseudo-reductive groups
reduces to the commutative case, which is treated there as a black box. Recall
that a (possibly non-commutative) algebraic group G is called pseudo-reductive if
G is smooth, connected and has no non-trivial smooth connected normal unipotent
subgroup. The first non-trivial examples of commutative pseudo-reductive groups
occur in dimension 2: they are exactly the non-split extensions

0 −→ T −→ G −→ U −→ 0,

where T is a k-form of Gm and U a k-form of Ga (the latter have been described
by Russell in [9]). There is a natural isomorphism Ext1C(U,Gm) ∼= Pic(U)U (the
group of isomorphism classes of translation-invariant line bundles on U) ; moreover,
Pic(U) 6= 0 if U is a non-trivial form of Ga, and Pic(U)U 6= 0 if in addition k
is separably closed (see [11] for these results, and [1] for further developments).
Also, very little is known on higher extension groups: a conjectural description
of Ext2C(Ga,Gm) by generators and relations is proposed in [11] in analogy to the
Milnor conjecture, and it is an open question whether ExtiC(Ga,Gm) = 0 for i≫ 0.

Consider the full subcategory F of C with objects being the finite group schemes;
then F is a Serre subcategory, i.e., is stable under taking subobjects, quotients
and extensions. Thus, we may form the quotient category C := C/F ; it is also
obtained from C by inverting all isogenies, i.e., morphisms with finite kernel and
cokernel. The isogeny category C turns out to be much better behaved than the
original category C, as every algebraic group is isogenous to a smooth connected
one. It follows (as observed by Serre) that C is artinian and noetherian, whereas
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C is artinian but not noetherian. Also, every algebraic group G lies in a unique
exact sequence in C

0 −→ T × U −→ G −→ A −→ 0,

where T is a torus, U a smooth connected unipotent group, and A an abelian
variety; we may further assume that U is split, i.e., an iterated extension of copies
of Ga. In particular, the simple objects in C are exactly Ga, the simple tori (i.e.,
those containing no non-trivial subtorus) and the simple abelian varieties.

This defines full subcategories T , U , A of C, which turn out to be Serre sub-
categories; moreover, every morphism between objects of different subcategories
is trivial. The isogeny category A of abelian varieties is semi-simple in view of
the Poincaré complete reducibility theorem. Also, the isogeny category T of tori
is anti-equivalent to the category of discrete finite-dimensional representations of
the absolute Galois group Γ over Q; in particular, T is semi-simple as well.

If char(k) = 0, then the category U of unipotent algebraic groups is equivalent
to that of finite-dimensional k-vector spaces. Thus, U ∼= U is semi-simple, and
hence so is the isogeny category L = T × U of linear algebraic groups. By easy
homological arguments, it follows that hd(C) = 1; moreover, the projective objects
of C are exactly the linear algebraic groups, and the injective objects, the abelian
varieties.

If char(k) = p > 0, then C turns out to be invariant under purely inseparable
field extensions; thus, we may assume k perfect. Then it is known that C is equiva-
lent to the category of finitely generated torsion modules over a non-commutative
discrete valuation ring, obtained as a localization of the Dieudonné ring (see [6,
V.3.6]); it follows that hd(U) = 1. For any algebraic group G, the above exact
sequence yields two extensions in C

0 −→ U −→ G −→ S −→ 0, 0 −→ T −→ S −→ A −→ 0,

where S is a semi-abelian variety. Moreover, the first extension has a unique
splitting, since the multiplication by p defines a nilpotent endomorphism of U
and an isomorphism of S in the isogeny category. This yields an equivalence of
categories C ∼= U × S with an obvious notation. As an easy consequence, we still
have hd(C) = 1; moreover, tori are projective objects of C, and abelian varieties
are injective. If in addition k is algebraic over Fp, then the second extension also

has a unique splitting, as follows from the Weil-Barsotti formula for Ext1C(A, T ).
Hence we obtain equivalences of categories S ∼= T × A and C ∼= U × T ×A.

Returning to an arbitrary field k, since C is artinian and noetherian, every object
admits a unique decomposition into a direct sum of indecomposables. These are
exactly the algebraic groups G admitting no decomposition G = G1 + G2, where
G1, G2 ⊂ G are algebraic subgroups of positive dimension, and G1 ∩ G2 is finite.
The indecomposable linear algebraic groups are easily described: these are are
exactly the simple tori, and Ga if char(k) = 0, resp. the groups of truncated Witt
vectors Wn (n ≥ 1) if char(k) > 0. In contrast, the classification of possibly
non-linear indecomposables is largely open; even the simplest cases involve deep
conjectures on the arithmetic of abelian varieties (see [3, Sec. 3.5] for details).
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Variants of the isogeny category are also worth exploring, such as the quotient
category of C by the Serre subcategory of infinitesimal group schemes. Work in
progress indicates that its homological dimension is given by Milne’s formulas.
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Classification of torsors over Laurent polynomials

Philippe Gille

(joint work with Vladimir Chernousov, Arturo Pianzola)

Abstract. I will report on joint work with V. Chernousov and A. Pianzola [4].
Given a linear algebraic group G defined over a field k of characteristic zero, G-
torsors over Laurent polynomial rings naturally occur in infinite dimensional Lie
theory (e.g., the classification and the proof of conjugacy of Cartan subalgebras of
Extended Affine Lie Algebras [3, 5]). We explain that one can associate to such a
G-torsor another G-torsor, called its loop form, and how that construction clarifies
the classification problem of all G-torsors.

Let k be a field of characteristic zero and let ks be a separable closure of k. Let G
be a linear algebraic group defined over k. We are interested in the classification of
G-torsors over the ring Rn = k[t±1

1 , . . . , t±1
n ] of Laurent polynomials (n ≥ 1), that

is of principal G–bundles over the torus (Gm)n = Spec(Rn). The G-torsors are
classified by the étale cohomology pointed set H1(Rn, G). Our goal is to compute
H1(Rn, G), far from an easy task. In the case of the linear group GLd, we have
that H1(Rn,GLd) = 1; this set classifies finitely generated projective Rn-modules
of rank d and those modules are free according to Quillen-Suslin-Swan’s theorem.
The motivation comes from the example of the algebraic group Aut(g) where g

is a finite dimensional split simple Lie k-algebra. In this case, the yoga of forms
shows that the set H1(Rn,Aut(g)) classifies isomorphism classes of Rn-forms of g,
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that is of Lie Rn-algebras L with the property that there exists a flat cover S/Rn

such that L ⊗Rn
S ∼= g⊗k S.

Examples. (a) If n = 1 and k = C, the centreless core of an affine Kac-Moody
algebra is a R1-algebra which is R1-form of some g.

(b) More generally, for n ≥ 1 and k = C, the centreless core of an extended affine
Lie algebra is a Rn-algebra which is Rn-form of some g provided it is finitely
generated over its centroid [1, th. 3.3.1].

In both cases, the Rn-Lie algebras occurring carry a grading and are of some
are examples of so-called (multi)loop algebras. For defining the so-called loop
G-torsors, we introduce the ring Rsc

n which is the universal cover of Rn (in the
sense of SGA 1). It plays the role of the Galois closure for a field. We have Rn =

limindmks[t
1
m

1 , . . . , t
1
m
n ], where m runs over the positive integers. The fundamental

group of Rn is π1(Rn) = AutRn
(Rsc

n ). It is a profinite group which is isomorphic to
the projective limit of the µm(ks)

n ×Gal(ks/k). There is a natural isomorphism

(∗) H1(π1(Rn), G(Rsc
n )) ∼= ker

(
H1(Rn, G)→ H1(Rsc

n , G)
)

where the right hand side is the (continuous) group non-abelian cohomology set
of π1(Rn) with coefficients in the π1(Rn)-group G(Rsc

n ). Note that the projection
map π1(Rn)→ Gal(ks/k) gives rise to an action of π1(Rn) on G(ks).

Definition. A G-torsor E is a loop G-torsor if its class belongs to the image of
the map

H1(π1(Rn), G(ks))→ H1(π1(Rn), G(Rsc
n )) →֒ H1(Rn, G).

We denote by H1
loop(Rn, G) ⊆ H1(Rn, G) the subset of classes of loop torsors.

Remarks (a) The map H1(π1(Rn), G(ks))→ H1(π1(Rn), G(Rsc
n )) has no reason

to be injective nor surjective. In case n = 1, it is true that all G-torsors are loop
but for n ≥ 2, there are exotic (=not loop) G-torsors for example for G = PGLd

[8, §3].

(b) The acyclicity theorem states that H1(Rsc
n , G) = 1 [9] so that we have a

bijection H1(π1(Rn), G(Rsc
n )) ∼= H1(Rn, G). In other words, the cohomology set

H1(Rn, G) can be computed by means of Galois cohomology cocycles.

Example. Let q be a regular quadratic form over k and consider the orthogo-
nal group O(q). Then H1(Rn, O(q)) classifies regular quadratic Rn-forms of rank
dim(q). By analogy, we can call loop quadratic forms the quadratic forms whose
underlying cohomology class is loop. Loop quadratic forms are those of the fol-
lowing form

⊥⊕

I⊆{1,...,n}

qI ⊗ 〈tI〉

where qI is a regular quadratic k–form and tI =
∏

i∈I ti. In dimension 4 and n = 2,
there are exotic quadratic forms (Ojanguren-Sridharan’s construction), and those
are not diagonalizable.
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Our main result of [4] states that there is a map H1(Rn, G) → H1
loop(Rn, G),

γ 7→ γloop such that for each class γ, then γ and γloop coincide locally for the
Zariski topology. Such a map is unique and we note that γloop = (γloop)loop.

For quadratic forms, this implies that we can associate to a regular Rn-quadratic
form q a unique diagonalizable Rn-quadratic form qloop such that q and qloop are
locally isometric with respect to the Zariski topology.

Remarks (a) We denote by Fn = k((t1)) . . . ((tn)) the field of iterated Laurent
series. The retraction is defined by using that the composite map

H1
loop(Rn, G) →֒ H1(Rn, G)→ H1(Fn, G)

is an isomorphism. This map is then not easy to manipulate and the reason to work
with Fn is the use of Bruhat-Tits theory. The crucial step is to show that γ and
γloop coincide rationally, something that is accomplished by using the technique
of unramified Galois cohomology developed by Colliot-Thélène and Sansuc [6, §3].
To conclude that γ and γloop coincide locally for the Zariski topology requires
Fedorov-Panin’s theorem [7] (former Grothendieck-Serre’s injectivity conjecture).

(b) The result shows that the classification of G-torsors requires two steps. The
first one is the classification of loop torsors and the second one is to compute the
Zariski topology cohomology set H1

Zar(Rn,
E G) for each loop G-torsor E where

EG stands for the twisted Rn-group scheme.
If k is algebraically closed, the first step has been done completely for n = 2 [10]

and the second step in classical cases (in rank large enough) by Steinmetz-Ziketch
[11]. For n ≥ 3, there are partial results for step one and not much is known
concerning the second question beyond the fact that H1

Zar(Rn, G) = 1 [9].

References

[1] B. Allison, S. Berman, Y. Gao, and A. Pianzola, Multiloop realization of extended affine Lie
algebras and Lie tori, Trans. Amer. Math. Soc. 361 (2009), 4807-4842.

[2] V. Chernousov, P. Gille and A. Pianzola, Torsors over the punctured affine line, American
Journal of Mathematics 134 (2012), 1541-1583.

[3] V. Chernousov, P. Gille, A. Pianzola, Conjugacy theorems for loop reductive group schemes
and Lie algebras, Bulletin of Mathematical Sciences 4 (2014), 281-324.

[4] V. Chernousov, P. Gille, A. Pianzola, Classification of torsors over Laurent polynomials,
Comment. Math. Helv. 92 (2017), 37-55.

[5] V. Chernousov, E. Neher, A. Pianzola, U. Yahorau, On conjugacy of Cartan subalgebras in
extended affine Lie algebras, Adv. Math. 290 (2016), 260-292.

[6] J.–L. Colliot–Thélène, J.–J. Sansuc, Fibrés quadratiques et composantes connexes réelles,
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Classification of reductive real spherical pairs

Henrik Schlichtkrull

(joint work with Friedrich Knop, Bernhard Krötz, Tobias Pecher)

Let G be a connected reductive group over a ground field k, and let P ⊂ G be a
parabolic subgroup, which is minimal with respect to being defined over k. For a
subgroup H ⊂ G, also assumed to be defined over k, we say that the homogeneous
space G/H is k-spherical if it admits an open P -orbit. The notion is well-known
for algebraically closed fields, in which case P is a Borel subgroup, but has only
recently been systematically studied over non-closed fields (see [2]). When k = R
the pair (G,H) and the pair (g, h) of their Lie algebras are then said to be reductive
real spherical pairs if H is reductive and G/H is R-spherical. The property depends
only on the pair (g, h) and only up to isomorphism.

A pair (G,H) as above is called absolutely spherical if it is k̄-spherical, and
it is an easy lemma that absolute sphericality implies k-sphericality. When G is
quasisplit these two notions of sphericality are equivalent, but in general they are
not. This is particularly apparent in the extreme case where G is elementary, that
is, modulo its center it has rank zero over k. In this case P = G and hence every
pair (G,H) with H ⊂ G is k-spherical.

The purpose of the talk was to introduce a recently obtained classification of
the reductive real spherical pairs, up to local isomorphism and under a certain
assumption of irreducibility which will be explained below. The tables and the
proofs are given in two articles, [3] which covers the case where G is simple, and
[4] which covers the general case. The work is based on the known classifications
for k = C by Krämer [7] and Brion/Mikityuk [1, 8].

In order to describe the irreducibility assumption the following definition is
needed. Let L be a connected real reductive group. For its Lie algebra l we
write l = ln ⊕ le for the decomposition into the sum ln of all non-compact simple
ideals and the maximal elementary ideal le. Likewise we write Ln and Le for the
corresponding normal subgroups of L.

The relevant notion of irreducibility is then defined as follows. The pair (g, h) is
said to be indecomposable if there exists no non-trivial decomposition g = g1⊕g2 in
ideals such that h = (h∩g1)⊕(h∩g2), and it is said to be strictly indecomposable if
(g, hn) is indecomposable. Our classification concerns the strictly indecomposable
pairs.

It follows from the classification that in a strictly indecomposable real spherical
pair the Lie algebra g can have at most three simple factors, whereas under the
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more general assumption of indecomposability there would be no upper limit to
the possible number of factors of g.

The main tool for the classification is a reduction, which allows one to detect
real sphericality of a pair (g, h′) in the case where h′ ⊂ h ⊂ g and (g, h) is real
spherical. It is based on the following local structure theorem from [5].

Theorem 1. Let (G,H) be an R-spherical pair, and let P ⊂ G be a minimal
parabolic subgroup such that PH ⊂ G is open. Then there exists a parabolic
subgroup Q ⊃ P , defined over R, with a Levi decomposition Q = L⋉U such that

(1) the morphism

U × L/L∩H → G/H, (u, l) 7→ ulH

is an isomorphism onto PH/H , and
(2) Ln ⊂ H (and hence Le acts transitively on L/L ∩H).

The subalgebra l ∩ h of g is called the structure algebra of the pair (g, h). The
theorem which allows the reduction then reads as follows.

Theorem 2. Let h′ ⊂ h ⊂ g be a chain of reductive real Lie algebras, and assume
that the pair (g, h) is real spherical with structure algebra l ∩ h. Then (g, h′) is
real spherical if and only if h = h′ + l ∩ h and (l ∩ h, l ∩ h′) is real spherical.

The starting point for the classification is then to investigate the maximal re-
ductive (proper) subalgebras of g. By using Dynkin’s classification of these we
show the following result.

Theorem 3. Let (g, h) be a strictly indecomposable real spherical pair for which
h is a maximal reductive subalgebra of g. Then (g, h) is absolutely spherical.

For each absolutely spherical maximal reductive subalgebra h one determines
the corresponding structure algebra l∩h. With this information one proceeds then
to determine the real spherical pairs (g, h′) for which h′ ⊂ h.

The interest in real reductive spherical pairs is motivated by some recent de-
velopments in harmonic analysis of homogeneous spaces. It appears that the geo-
metric property of being spherical will make it possible to establish a reasonable
Plancherel decomposition theory for L2(G/H). For details see [9] and [6].
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Newton polyhedra, tropical geometry and the ring Rn(Λ)

Askold Khovanskii

(joint work with Boris Kazarnovskii)

ABSTRACT. The ring of conditions (see [1]) is an intersection theory for algebraic
cycles in a reductive group G with coefficients in Λ. I’ll talk about such ring Rn(Λ)
for G = (C∗)n and Λ = Z,R,C. It can be reduced to the cohomology rings of toric
varieties [1]. Tropical geometry [3], [4] suggests [2] another description of Rn(Λ).
I will present Rn(Λ) as an extension of Newton polyhedra theory.

1. The ring Rn(Λ). Two k-dimensional cycles X1, X2 ⊂ (C∗)n are equivalent
X1 ∼ X2 if for any (n − k)-dimensional cycle Y ⊂ (C∗)n and for almost any
g ∈ (C∗)n we have < X1, gY >=< X2, gY > (here < A,B > is the intersection
index of A and B). If X1 ∼ X2 and Y1 ∼ Y2 then for almost any g1, g2 ∈ (C∗)n

we have X1 ∩ g1Y1 ∼ X2 ∩ g2Y2. The product X ∗ Y of equivalence classes X
and Y is the equivalence classes of the intersection X1 ∩ g1Y1 where X1 and Y1

are representatives of X and Y . The ring of conditions Rn(Λ) is the ring of the
equivalence classes with the multiplication ∗ and with the tautological addition.

2. Tropicalization of Rn(Λ). An Λ-enriched k-fan is a fan F ⊂ Rn of a
toric variety equipped with a weight function c : Fk → Λ defined on the set Fk

of all k-dimensional cones from F . The support |F| of F is the union of all cones
σi ∈ Fk such that c(σi) 6= 0. Two enriched k-fans F1 and F2 are equivalent if: 1)
|F1| = |F2|; 2) the weight functions c1 and c2 induce the same weight function on
every common subdivision of the fans F1 and F2.

2.1. Let F be an enriched k-fan. For a cone σi ∈ Fk let L⊥
i ⊂ (Rn)∗ be the

space dual to the span Li of σi ⊂ Rn. Let O be an orientation of σi. Denote
by e⊥i (O) ∈ Λn−kL⊥

i the (n − k)-vector, such that: 1) the integral volume of
|e⊥i (O)| in L⊥

i is equal to one; 2) the orientation of e⊥i (O) is induced from the
orientation O of σi and from the standard orientation of Rn. An enriched k-fan F
satisfies the balance condition if for any orientation of any (k−1)-dimensional cone
ρ ∈ Fk−1 the relation

∑
e⊥i (O(ρ))c(σi) = 0 holds, where c is the weight function

and summation is taken over all σi ∈ Fk such that ρ ⊂ ∂σi and O(ρ) is such
orientation of σi that the orientation of ∂σi agrees with the orientation of ρ.

2.2. Let F1 and F2 be balanced k- and (n − k)-fans. Cones σ1
i ∈ F1, σ2

j ∈

F2 with dim σ1
i = k, dimσ2

j = n − k are a-admissible for a vector a ∈ Rn if

σ1
i ∩ (σ2

j + a) 6= ∅. Let Ci,j be the index of Λi

⊕
Λj in Zn where Λi = L1

i ∩ Zn,

Λj = L2
j ∩ Zn and L1

i , L2
j are linear spaces spanned by σ1

i , σ2
j . The intersection

number c(0) of F1 and F2 is
∑

Ci,jc1(σ1
i )c2(σ2

j ), where a ∈ Rn is a generic vector
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and the sum is taken over all a-admissible couples σ1
i , σ

2
j . The product F = F1×F2

is a 0-fan F = {0} with the weight c(0) equal to the intersection number.
2.3. Consider a k-fan F1 and a m-fan F2 from the set TRn(Λ) of all balanced

Λ-enriched fans. Let d be n− (k+m). If d < 0 then F1×F2 = 0. If d = 0 the fan
F1×F2 is already defined. Let us define the d-fan F = F1×F2 for d > 0. Assume
that F1 and and F2 are subfans of a complete fan G. Then F = F1 ×F2 also is a
subfan of G. The weight c(δ) of a cone δ from G with dim δ = d is defined below.
Let L be a space spanned by the cone δ and let (F1)δ and (F2)δ be the enriched
subfans of F1 and of F2 consisting of all cones from these fans containing the cone
δ. The weight c(δ) of the cone δ in F = F1×F2 is equal to the intersection number
of the images under the factorization of (F1)δ and (F2)δ in the factor space Rn/L.

3. Bergman set. A vector k ∈ Zn is essential for a variety X ⊂ (C∗)n if there
is a germ of meromorphic map f : (C, 0) → X ⊂ (C∗)n where f(t) = atd + . . . ,
a ∈ (C∗)n and d ∈ Zn, such that k = d. The Bergman set B(X) ⊂ Rn of X is the
closure of the set of vectors λk ∈ Rn where k is essential vector for X and λ ≥ 0.

Theorem 1. If each irreducible component of X has complex dimension m then
B(X) is a finite union of rational cones σ in Rn with dimR σ = m. Moreover B(X)
is support of a fan (defined up to subdivision of B(X)) of some toric variety.

Toric variety M ⊃ (C∗)n is a good compactification for a subvariety X ⊂ (C∗)n

with dimX = k if its closure X in M is complete and does not intersect orbits in
M whose codimension is bigger than k. The following result is proved in [1].

Theorem 2 (see [1]). For any finite set S of algebraic subvarieties in (C∗)n there
is a toric variety M ⊃ (C∗)n which provides a good compactification for each
subvariety from S. Toric variety M is a good compactification of X ⊂ (C∗)n if
and only if the support of its fan contains the Bergman set B(X).

4. For a complete smooth toric variety M ⊃ (C∗)n and for any k-dimensional
cycle X =

∑
kiXi one can defined the cycle X in M as

∑
kiXi where X i is the clo-

sure in M of Xi ⊂ (C∗)n. The cycle X defines an element ρ(X) in H2(n−k)(Mn,Λ)
whose value on the closure Oi of an (n − k)-dimensional orbit Oi in M is equal
to the intersection index < X,Oi >. A compactification M ⊃ (C∗)n is good for a
cycle X =

∑
kiX

i in (C∗)n if it is good compactification for each Xi.

Theorem 3 (see [1]). If a smooth toric compactification M is good for cycles
X,Y and Z where Z = X ∗Y , then the product ρ(X)ρ(Y ) in the cohomology ring
H∗(M,Λ) of the elements ρ(X) and ρ(Y ) is equal to ρ(Z).

5. Let ∆⊥ be a fan of a smooth complete projective toric variety Mn
∆. Let

TRn(Λ,∆) be the ring of balanced Λ-enriched fans equal to Λ-linear combination
of cones from the fan ∆⊥. The following theorems 5,6 are proved in [2].

Theorem 4 (see [2]). The ring TRn(Λ,∆) is isomorphic to the intersection ring
H∗(M∆,Λ). The component of TRn(Λ,∆) consisting of k-fans under this isomor-
phism corresponds to the component H2k(M∆,Λ).
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Theorem 5 (see [2]). The ring of conditions Rn(Λ) is isomorphic to the tropical
ring TRn(Λ) of all balanced Λ-enriched fans.(The ringsRn(Z), Rn(C) have similar
descriptions).

6. To a homogeneous polynomial P on a R-linear space L, dimL < ∞, one
can associate the graded commutative ring A(L, P ) (one can produce a similar
constructions for homogeneous polynomials on infinite dimensional spaces over
any field and for functions analogues to homogeneous polynomials on free abelian
groups). Let D(L) be the ring of R-linear differential operators on L with constant
coefficients. Let IP ⊂ D(L) be a set defined by the following condition: L ∈ IP ⇔
L(P ) ≡ 0. It is easy to see that IP is a homogeneous ideal. By definition the
ring associated to P is the factor ring A(L, P ) = D(L)/IP . One can to see that:
(1) A(L, P ) is a graded ring with homogeneous components A0, . . . , An where
n = degP ; (2) A0 = R; (3) there is a non-degenerate pairing between Ak and
An−k with values in A0, thus Ak = A∗

(n−k) and An ∼ R.

7. Let L∆ be the space of formal differences of convex polyhedra whose support
functions are linear on each cone from the fan of a smooth projective toric variety
M∆. Let n!V be the degree n homogeneous polynomial on L∆ whose value on
∆̃ ∈ L∆ is equal to the volume of ∆̃ multiplied by n!.

Theorem 6. The intersection ring H∗(M∆,R) is isomorphic (up to a change of
the grading) to the ring A(L∆, n!V ).

Let Ln, dimLn =∞, be the space of formal differences of convex polyhedra ∆
with rational dual fans ∆⊥. Let n!V be the degree n homogeneous polynomial on
Ln whose value on ∆ ∈ Ln is equal to the volume of ∆ multiplied by n!.

Theorem 7. The ring Rn(R) is isomorphic to the ring A(Ln, n!V ). (The rings
Rn(Z), Rn(C) have similar descriptions).

8. Let {Γi} be a set of n hypersurfaces in (C∗)n defined by Pi = 0 where
Pi are Laurent polynomials with Newton polyhedra ∆i. Bernstein-Koushnirenko-
Khovanskii theorem (BKK theorem) can be stated in the following two ways:

Theorem 8. The intersection number of the hypersurfaces Γi in the ring of con-
ditions is equal to the mixed volume of ∆1, . . . ,∆n multiplied by n!.

Let Fi be R-enriched (n− 1)-fan dual to ∆i whose weight function at a cone σ
dual to a side σ⊥ of ∆i is equal to the integral length of the σ⊥.

Theorem 9. The intersection number of the hypersurfaces Γi in the ring of condi-
tions is equal to the intersection number of the R-enriched fans Fi in the ring TRn.

Thus theorems 7 and 5 could be considered as generalizations of the BKK
theorem. Such generalizations are possible because of the following reason: the
cohomology ring of a smooth toric variety is generated by elements of degree two.
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Gröbner theory, tropical geometry and spherical varieties

Kiumars Kaveh

(joint work with Christopher Manon)

We discuss some recent developments in spherical tropical geometry and spherical
Gröbner theory following [6] and [1]. The idea of developing a tropical geometry
from spherical varieties goes back to Gary Kennedy [2]. We would also like to
mention [5] which defines a notion of tropicalization for spherical embeddings.

Let k be an algebraically closed filed of characteristic 0. From the point of
view of algebraic geometry, tropical geometry is the study of behavior at infinity
of subvarieties of an algebraic torus (k∗)n. Let Y ⊂ (k∗)n be a subvariety. The
behavior at infinity of Y is encoded by a rational polyhedral fan in Qn called the
tropical variety or tropical fan of Y . More precisely, let K = k{{t}} denote the
field of formal Puiseux series in one variable t (recall that k{{t}} is the algebraic
closure of the field of formal Laurent series k((t))). The field k{{t}} comes with a
natural valuation val : K\{0} → Q which assigns to a Puiseux series the exponent
of its smallest term in t. Let Trop : (K∗)n → Qn be the map defined by

Trop(γ) = (val(γ1), . . . , val(γn)),

where γ = (γ1, . . . , γn) ∈ (K∗)n. The tropical variety of Y ⊂ (k∗)n is simply
Trop(Y (K)), that is, the image of Y (K) under the above map Trop. It is a basic
result in tropical geometry that Trop(Y ) is the support of a rational polyhedral
fan in Qn (see [4, Section 3.3]).

It is a natural question how one can describe Trop(Y ) if Y is given as a zero set
of an ideal I in the Laurent polynomial algebra k[x±

1 , . . . , x
±
n ]. The answer to this

question is the content of the so-called fundamental theorem of tropical geometry.
Let f(x) =

∑
α cαx

α be a Laurent polynomial where xα = xa1

1 · · ·x
an
n . To f one

assigns its tropical polynomial F which is a piecewise linear function defined by:

F (w) = min{w · α | cα 6= 0}.

The tropical hypersurface V (F ) associated to f is by definition the set of w where
the above minimum is attained at least twice. Finally, the tropical variety trop(I)
associated to an ideal I ∈ K[x±

1 , . . . , x
±
n ] is trop(I) =

⋃
f∈I V (F ). It is also a basic

result in tropical geometry that in the above intersection only a finite number of
the f suffice. But it is not enough to take a generating set for I.
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Now, let Y ⊂ (k∗)n be a subvariety with ideal I = I(Y ) ∈ k[x±
1 , . . . , x

±
n ]. The

fundamental theorem of tropical geometry asserts that the two sets Trop(Y ) and
trop(I) coincide ([4, Section 3.2]).

The proofs of the above results rely on the Gröbner theory of ideals in a poly-
nomial ring. In particular, the notion of Gröbner fan of a homogeneous ideal.

Now we explain the extension of the above to the setting of spherical varieties.
Let G be a connected reductive algebraic group over k with a maximal torus T and
a Borel subgroup B containing T . We let Λ denote the weight lattice of G with Λ+

the semigroup of dominant weights. A (normal) G-variety X is called spherical if
the Borel subgroup B has an open orbit in X . It is a generalization of the notion
of a toric variety to reductive group actions. Some basic notions associated to
X are the following. The weight lattice ΛX is the sublattice of Λ consisting of
weights of B-eigenfunctions for the action of G on the field of rational functions
k(X). Also the valuation cone VX is the collection of all G-invariant valuations
v : k(X) \ {0} → Q. It can be identified with a simplicial cone in the Q-vector
space Hom(ΛX ,Q).

Let G/H be a spherical homogeneous space. For any formal Puiseux curve
γ ∈ G/H(K), i.e. a point on G/H defined over K, one can associate a G-invariant
valuation vγ ∈ VG/H defined as follows. For any 0 6= f ∈ k(X) let:

vγ(f) = val(g · f|γ),

for all g in a Zariski open subset Uf ⊂ G. The notion of an invariant valuation
associated to a formal curve already appears in the fundamental paper [3]. In
[6], the map Trop : G/H(K) → VG/H , γ 7→ vγ , is suggested as the spherical
tropicalization map.

Theorem 1 (Vogiannou). Let Y ⊂ G/H be a subvariety. Let Trop(Y ) denote the
image of Y (K) under Trop. Then Trop(Y ) is the support of a rational polyhedral
fan in the valuation cone VG/H . Moreover, there is a fan Σ with support Trop(Y )
such that the corresponding spherical embedding gives a tropical compactification
of Y .

In [1, Section 3] a Gröbner theory is developed on the coordinate ring A = k[X ]
of an affine spherical variety X . Namely, given a total order ≻ on the lattice
ΛX and an ideal I ⊂ A, one defines the initial ideal in≻(I) which lives in the
horospherical contraction Ahc of A. This gives rise to the notion of a spherical
Gröbner basis for I. It is shown that every ideal I has a finite number of initial
ideals. Similarly, given a valuation v ∈ VX , one defines the initial ideal inv(I)
which lives in the associated graded algebra grv(A). The algebra grv(A) depends,
up to G-algebra isomorphism, only on the face of VX on which v lies on. Moreover,
if v lies in the interior, then grv(A) is the horospherical contraction Ahc. When
A is Z≥0-graded and I is a homogeneous ideal, the existence of spherical Gröbner
fan is proved.

Next, let XB be the open B-orbit in spherical homogeneous space X = G/H .
In [1, Section 4.1] it is shown how to define the notion of a spherical tropical variety
trop(Z) for a subvariety Z ⊂ XB in terms of the defining ideal of Z. Using the
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spherical Gröbner theory developed before it is shown that this spherical tropical
variety is the support of a rational polyhedral fan in VG/H .

Finally, we have a spherical version of the fundamental theorem of tropical
geometry ([1, Section 4.5]).

Theorem 2 (K.-Manon). Let Y ⊂ G/H be a subvariety. The following coincide:

(a) The set trop(Y ) =
⋃

B trop(Y ∩ XB), where the union is over all Borel
subgroups of G (one shows that it is enough to take the union over a finite
collection of Borel subgroups).

(b) The set Trop(Y )={Trop(γ) ∈ VX | γ ∈ Y (K) formal Puiseux curve in Y}.

At the end, we address the Archimedean version of the notion of a tropical
variety namely that of an amoeba. In the torus case and over k = C, given t ∈ R,
the map Lt : (C∗)n → Rn defined by (z1, . . . , zn) 7→ (logt |z1|, . . . , logt |zn|) is called
the logarithm map. For a subvariety Y ⊂ (C∗)n, its image under Lt is called the
amoeba of Y . It is well-known that as t 7→ 0, the amoeba of Y approaches (in
Hausdorff distance) to the tropical variety of Y .

In [1, Section 6] a spherical version of the notion amobea is suggested. It is
defined whenever there is an Archimedean Cartan decomposition for the spherical
homogeneous space X = G/H over k = C.

When X = GL(n,C) regarded as a (GL(n,C) × GL(n,C))-spherical homoge-
neous space, the notions of spherical logarithm map and spherical tropicalization
have familiar linear algebra meanings. For g ∈ GL(n,C), the spherical logarithm
map sends g to logt of its singular values, i.e. the square roots of eigenvalues of gḡt.
For a formal Puiseux curve g(t) ∈ GL(n,K), the tropicalization map sends g(t) to
its invariant factors. The following is the spherical version of the fact that amoeba
approaches the tropical variety in this case. It follows from Hilbert-Courant min-
max principle.

Theorem 3 (K.-Manon). Let g(t) be an n×n matrix whose entries gij are Laurent
series in t with nonzero radii of convergence. For sufficiently small t 6= 0, let
d1(t) ≤ · · · ≤ dn(t) denote the singular values of g(t) ordered increasingly. Also let
v1 ≥ · · · ≥ vn be the invariant factors of g(t) ordered decreasingly. We then have:

lim
t→0

(logt(d1(t)), . . . , logt(dn(t))) = (v1, . . . , vn).
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[1] K. Kaveh; C. Manon, Gröbner theory and tropical geometry on spherical varieties.
arXiv:1611.01841

[2] G. Kennedy http://u.osu.edu/kennedy.28/files/2014/11/sphericaltropical2-12rpr9e.pdf
[3] D. Luna, D.; Th. Vust Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983),
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Maximal Lie subalgebras of exeptional Lie algebras in good
characteristic

Alexander Premet

(joint work with David Stewart)

Let G be a simple algebraic group over an algebraically closed field k and g =
Lie(G). In the 1950’s, E.B. Dynkin classified the maximal Lie subalgebras of g

in the case where char(k) = 0. As a consequence, he obtained a classification
of maximal connected subgroups of G. In the case where char(k) = p > 0, the
problem of classifying the maximal connected subgroups of G was solved quite
recently in a series of papers by Seitz, Testerman and Liebeck–Seitz. The problem
of classifying the maximal Lie subalgebras of g in the case where char(k) = p > 0
is wide open at the moment.

From now on we let G be a simple algebraic group of type G2, F4, E6, E7 or E8 over
an algebraically closed field k and assume that p = char(k) is a good prime for G.
This means that p > 5 if G is of type E8 and p > 3 in the other cases. Let O denote
the truncated polynomial algebra k[X ]/(Xp). The Witt algebra W = Der(O) is a
free O-module of rank 1 generated by d/dX . It is a simple Lie algebra of dimension
p. If D is a Lie subalgebra of W which does not stabilise the maximal ideal of the
local ring O, then the semidirect product LD := (Idsl(2) ⊗W ) ⋉ (sl(2) ⊗ O) is a
semisimple Lie algebra and sl(2)⊗O is the unique minimal ideal of LD. We call
Lie algebras of this type exotic semidirect products.

The aim of the talk is to announce the description of the maximal Lie subalgebras
m of the Lie algebra g = Lie(G). More specifically, we show that either m = Lie(M)
for some maximal connected subgroup M of G or m is a maximal Witt subalgebra
of g or m is an exotic semidirect product.

If m = Lie(M) for some maximal connected subgroup M of G, then m is known
thanks to the aforementioned work of Seitz, Testerman and Liebeck–Seitz. All
maximal Witt subalgebras m of g are G-conjugate and they occur if and only if G
is not of type E6 and p− 1 equals the Coxeter number of G. We can choose root
vectors e1, . . . , eℓ ∈ g associated with a basis of simple roots Π = {α1, . . . , αℓ} of
G in such a way that m is generated by the regular nilpotent element e1 + · · ·+ eℓ
of g and a root vector e−α̃ corresponding to the lowest root −α̃ with respect to Π.

We show that there are two conjugacy classes of maximal exotic semidirect prod-
ucts m ∼= LD in g, one in characteristic 5 and one in characteristic 7. Both of them
occur when G is a group of type E7. If p = 5 then D ∼= sl(2) and if p = 7 then
D = W . Our arguments rely on the main results of [2], [1] and [3].

As a consequence, we obtain that there are finitely many conjugacy classes of
maximal Lie subalgebras of g. In bad characteristic, there are new examples of
non-classical maximal subalgebras [4] and the whole picture remains incomplete.
Nevertheless, it is conjecturable that the number of conjugacy classes of maximal
Lie subalgebras of exceptional Lie algebras is finite regardless of the characteristic.
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Modular Koszul duality for constructible sheaves on flag varieties

Simon Riche

(joint work with Pramod N. Achar, Shotaro Makisumi and Geordie Williamson)

This work has received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 677147).

1. Representation theory of reductive algebraic groups

Let K be an algebraically closed field of characteristic p, let G be a connected
reductive K-algebraic group, let B ⊂ G be a Borel subgroup, and let T ⊂ B be
a maximal torus. We consider the category Rep(G) of finite-dimensional alge-
braic representations of G. It has a natural structure of highest weight category,
with weight poset the dominant weights X+ with the standard order. The costan-
dard, resp. standard, objects are the induced modules N(λ) := IndG

B(λ), resp. the

Weyl modules M(λ) :=
(
IndG

B(−w0λ)
)∗

, where w0 is the longest element in the
Weyl group Wf := NG(T )/T . In particular the simple objects in Rep(G) are
parametrized by dominant weights: to λ we associate the image L(λ) of the unique
(up to scalar) nonzero morphism M(λ)→ N(λ). Other objects of interest are the
tilting objects in Rep(G), i.e. those which admit both a standard filtration and a
costandard filtration. The indecomposable such objects are also parametrized in
a natural way by X+, and we denote by T(λ) the object associated with λ.

In the Grothendieck group [Rep(G)] we have [M(λ)] = [N(λ)] for any λ ∈ X+;
moreover these classes form a Z-basis. Since the representations M(λ) and N(λ) are
relatively well understood (in particular, their character is known), to “describe”
an object V in Rep(G) amounts to expressing the coefficients {aλ(M) : λ ∈ X+}
in the expansion [V ] =

∑
λ∈X+ aλ(V ) · [M(λ)]. Therefore, a basic question in this

area is the following:

(1) Describe the integers aλ(L(µ)) and aλ(T(µ)) for λ, µ ∈ X+.

Assume now that p ≥ h, where h is the Coxeter number of G. Let W := Wf⋉ZΦ
be the affine Weyl group. (Here, Φ is the root system of (G, T ).) This group
acts on X∗(T ) via the “dot action” defined by (vtλ) ·p µ := v(µ + pλ + ρ) − ρ
for v ∈ Wf , λ ∈ ZΦ and µ ∈ X∗(T ), where ρ is the half sum of the positive
roots. We set fW := {w ∈ W | w ·p 0 ∈ X+}. This subset of W does not
depend on p, and consists of the elements w which are minimal in Wfw (for the



1300 Oberwolfach Report 21/2017

standard Coxeter group structure on W ). Classical work of Andersen and Jantzen
reduces our basic question (1) to the case when λ, µ are of the form w ·p 0 for
some w ∈ fW . If moreover p ≥ 2h− 2, further work of Andersen shows that the
integers {ay·p0(L(w ·p 0)) : y, w ∈ fW} can be expressed in terms of the integers

{ay·p0(T(w ·p 0)) : y, w ∈ fW}. Therefore, the main question we consider is:

(2) Describe the integers by,w := ay·p0(T(w ·p 0)) for y, w ∈ fW .

The main result of [1] is a solution to this question, valid as soon as p > h. The
answer we give is in terms of the p-canonical basis of the Hecke algebra of W .

2. The p-canonical basis

As mentioned above, W has a natural structure of Coxeter group, and we denote
by S the corresponding set of simple reflections. The associated Hecke algebra is
the Z[v, v−1]-algebra H with a basis {Hw : w ∈W} and multiplication determined
by the following rules:

• HvHw = Hvw if v, w ∈ W and ℓ(vw) = ℓ(v) + ℓ(w);
• (Hs + v)(Hs − v−1) = 0 if s ∈ S.

One can construct interesting elements in this algebra out of geometry, as fol-
lows. Let G∧ be the complex simply-connected semisimple algebraic group whose
maximal torus T∧ has character group X∗(T ), and whose root system is the co-
root system of (G, T ). Let B∧ ⊂ G∧ be the Borel subgroup containing T∧ and
whose roots are the negative coroots of G. We consider the group G∧

(
C((z))

)
and

its Iwahori subgroup I, defined as the inverse image of B∧ under the morphism
G∧
(
C[[z]]

)
→ G∧ sending z to 0, and the affine flag variety Fl := G∧

(
C((z))

)
/I.

The I-orbits on Fl are parametrized in a natural way by W , which gives rise to the
Bruhat decomposition Fl =

⊔
w∈W Flw. For any field F, we denote by Db

(I)(Fl,F)

the derived category of F-sheaves on Fl which are constructible with respect to
this stratification. For any F in Db

(I)(Fl,F), we can then consider the element

ch(F) :=
∑

w∈W

∑

k∈Z

dimH
−ℓ(w)−k(Flw, j

∗
wF) · vkHw ∈ H.

(Here, jw : Flw →֒ Fl is the embedding.)
In particular, consider the parity sheaves {Ew : w ∈W} (in the sense of Juteau–

Mautner–Williamson) with coefficients in F associated with the stratification Fl =⊔
w∈W Flw. Then if p = char(F), the p-canonical basis {pHw : w ∈ W} is the

Z[v, v−1]-basis of H defined by pHw = ch(Ew). We also define the p-Kazhdan–
Lusztig polynomials as the coefficients {phy,w : y, w ∈ W} in Z[v, v−1] appearing
in the expansion pHw =

∑
y∈W

phy,w ·Hy.

These objects only depend on p (and not on F itself). For fixed w ∈W , if p≫ 0
the element pHw coincides with the element Hw of the Kazhdan–Lusztig basis of
H; but for smaller p these elements are more difficult to compute. Note however
that there exists another description of this basis, based on a “diagrammatic”
category introduced by Elias–Williamson; this description leads to an algorithm
for computing this basis which has been implemented by Williamson.
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3. The tilting character formula

We now consider the setting of Section 2 when F = K. The main result of [1] is
the following:

Assume that p > h. For any w, y ∈ fW we have by,w =
∑

z∈Wf

(−1)ℓ(z) · phzy,w(1).

The proof of this formula proceeds in 3 main steps.

(1) In previous work with P. Achar we defined the notion of mixed perverse
K-sheaves on flag varieties of Kac–Moody groups. These objects form a
highest weight category, so that we can consider the indecomposable tilting
mixed perverse sheaves. In [2] we expressed the coefficients by,w in terms
of the combinatorics of such objects on the affine Grassmannian Gr of G∧,
thus reducing problem (2) to the similar problem for these mixed tilting
perverse sheaves on Gr.

(2) In [1] we develop a “Koszul duality” formalism for mixed perverse sheaves
on flag varieties of Kac–Moody groups, which allows to express the combi-
natorics of tilting mixed perverse sheaves on Fl in terms of the p-canonical
basis of H.

(3) Finally, in [1] again, we show that the pushforward functor associated
with the projection morphism Fl→ Gr sends every indecomposable tilting
mixed perverse sheaf on Fl either to 0 or to an indecomposable tilting
mixed perverse sheaf. This allows to express the combinatorics of tilting
mixed perverse sheaves on Gr in terms of the p-canonical basis of H, and
finally settles the question.
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On tilting characters for SL3

Geordie Williamson

(joint work with George Lusztig)

Let λ be a partition of n and Sλ the corresponding simple representation of the
symmetric group Symn over Q. By reducing a Symn-stable Z-lattice modulo p we
obtain a representation Sλ of Symn over Fp (the finite field with p elements). We

can then try to express Sλ in the Grothendieck group:

(1) [Sλ] =
∑

U∈ ̂FpSymn

mU,Sλ
[U ],



1302 Oberwolfach Report 21/2017

where ̂FpSymn denotes the set of irreducible representations of FpSymn. The
numbers mU,V are well-defined (i.e. do not depend on the choice of integral lattice)
and are called decomposition numbers. Despite much work over the last three
decades, these numbers are very mysterious. For example, although one has a

good description of the set ̂FpSymn the dimension of almost all U ∈ ̂FpSymn is
unknown.

One fruitul way of attacking this problem is via Schur-Weyl duality. If V is a
vector space over Fp then for any n one has a surjection

(2) FpSymn → EndGL(V )(V
⊗n)

where the right hand side indicates endomorphisms in the category of algebraic
representations of the algebraic group GL(V ). The following is not difficult: Sup-
pose that we can find a decomposition

(3) V ⊗n =
⊕

MT ⊗ T

where the sum runs over pairwise non-isomorphic indecomposable modules T , and
MT denotes a multiplicity vector space. Then via (2) each MT can be made into
a FpSymn-module and is even an irreducible FpSymn-module.

It was noticed by Donkin that the summands occuring in (3) are of a special
form. They are so-called tilting modules. I won’t define what this means. Below
the reader only needs to know that they are classified by highest weight, just like
simple (algebraic) GL(V )-modules.

Because the character of V ⊗n is known, if one knows the characters of tilting
modules for GL(V ) then determining the dimensions involved in the decomposition
(3) is easy. By the observations of the previous paragraph, this gives the dimen-
sions of many simple Symn-modules. This partially explains why the following
two problems are equivalent (as was first pointed out by Donkin and Erdmann):

(4)
determine the characters
of indecomposable tilting

modules for GLm,

∼
←→

determine all decomposition
numbers for symmetric groups

for partitions with ≤ m
rows for all symmetric groups

One reason that it is nice to filter the decomposition number problem for sym-
metric groups by “number of rows” is that it could potentially have a beautiful
“generic” answer. That is, we hope that for fixed m and p large there is a com-
binatorial answer to the equivalent questions above. This is the case for m = 2



Algebraic Groups 1303

where one obtains a beautiful “fractal tree”:

(This picture for p = 3 is stolen from [3].)
In addition to this “filtration by number of rows” we hope to gain some ground

by filtering the problem according to “generation”. Very roughly speaking, in
generation g, “pg+1 is invertible, but pg is not”. Of course this is nonsense, but
it does capture the idea. At this stage we only have a heuristic understanding of
these generations, although they can be made rigourous for g = 0 (semi-simple
world) and g = 1 (Hecke algebra / quantum group at a pth-root of unity) and for
SL2 (see [4, 5]).

In general, for any highest weight λ and fixed p (perhaps we need to assume
p ≥ h) we expect a family of characters

Θ0
λ,Θ

1
λ,Θ

2
λ, . . . ,Θ

∞
λ

satisfying certain natural conditions (see [6]). The most important is that Θ∞
λ

should agree with the character of the indecomposable tilting module with highest
weight λ when p is large. (One cannot expect equality if Lusztig’s character
formula does not hold. One can hope that one has equality as soon as it does.)

In my talk I outlined a conjecture for Θ2
λ for G = SL3 and p ≥ 3. Remarkably,

Θ2
λ appears to be governed by a discrete dynamical system (“billiards”). The
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reader can view some animations illustrating the conjecture here:

https://youtu.be/Ru0Zys1Vvq4

We came up with these conjectures after staring at calculations of the p-canonical
basis in the anti-spherical module performed by a new algorithm [8]. The p-
canonical basis determines the characters of tilting modules by a conjecture of
Riche and the author [7] , which has been recently confirmed in work with Achar,
Makisumi and Riche [1, 2] (see Simon’s talk at this meeting). We hope to formulate
smilar conjectures in types B2,A3 (and perhaps even G2!) soon.
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Twisted Grassmannians and Torsion in codimension 2 Chow groups

Nicole Lemire

(joint work with Caroline Junkins, Daniel Krashen)

Twisted projective homogeneous varieties for algebraic groups are projective va-
rieties which are isomorphic to a given projective homogeneous variety after ex-
tension to the separable closure of the field. For a central simple algebra A of
degree n over a field F , the generalised Severi-Brauer variety SB(d,A) is a twisted
form of Gr(d, n), the Grassmannian of d-dimensional planes in n-dimensional affine
space, a projective homogeneous variety for the projective linear group PGLn. An
important special case is the Severi-Brauer variety SB(A) = SB(1, A) which is a
twisted form of projective space Pn−1 = Gr(1, n). It is well-known that the variety
SB(d,A) has a rational point over an extension K/F if and only if ind(AK)|d. We
can extend this question to ask about other closed subvarieties of SB(d,A). In [4],
we investigate conditions under which generalised Severi-Brauer varieties have ra-
tional subvarieties which are forms of given Schubert subvarieties of the associ-
ated Grassmannian. We show that a generalised Severi-Brauer variety SB(d,A)
contains a closed subvariety which is a twisted form of a Schubert subvariety of
Gr(d, n) if and only if the index of the algebra divides a certain number arising
from the combinatorics of the Schubert cell, using a variation on Fulton’s notion
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of the essential set of a partition [3]. Our results generalise earlier work by Artin
and Krashen [1, 7].

Schubert subvarieties of (untwisted) projective homogeneous varieties are par-
ticularly of interest as they produce bases for the Grothendieck group and Chow
groups of the projective homogeneous variety. The Chow groups of twisted projec-
tive homogeneous varieties are a subject of much interest. In particular, the Chow
groups of ordinary Severi-Brauer varieties have been much studied and related to
important questions about the arithmetic of central simple algebras. Although
the Chow groups of dimension 0, codimension 1, and to some extent codimension
2 cycles on Severi-Brauer varieties have been amenable to study, the other groups
are in general not very well understood [5, 6, 8]. Even less is understood about
algebraic cycles on and Chow groups of generalised Severi-Brauer varieties. Fol-
lowing work of Karpenko for the ordinary Severi-Brauer varieties, we make some
computations of the codimension 2 Chow groups for the generalised Severi-Brauer
varieties of reduced dimension 2 ideals in certain algebras of small index. We show
that the codimension 2 Chow groups of SB(2, A) are torsion-free for all central
simple algebras of index dividing 12. This result uses the explicit descriptions of
the Schubert classes obtained in the earlier result together with other geometric
constructions to show that the graded pieces of the K-groups with respect to the
topological filtration are torsion-free for degree 4 algebras. This allows us to ob-
tain the result for the codimension 2 Chow groups of such varieties. Finally, the
theorem follows by an analysis of the motivic decomposition of the Chow motive
of SB(2, A) due to Brosnan [2].

These results suggest natural analogous questions for other twisted projective
homogeneous varieties. In upcoming work, we intend to study conditions un-
der which other twisted projective homogeneous varieties have closed subvarieties
which are forms of Schubert subvarieties for the corresponding split projective
homgeneous variety. We will also study the consequences of such results for the
codimension 2 Chow groups of the associated twisted projective homogeneous va-
riety.
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The K-theory of versal flags and cohomological invariants of
semisimple linear algebraic groups

Kirill Zainoulline

Let G be a split semisimple linear algebraic group over a field F . Let U/G be
a classifying space of G in the sense of Totaro, i.e. U is an open G-invariant
subset in some representation of G with U(F ) 6= ∅ and U → U/G is a G-torsor.
Consider the generic fiber U ′ of U over U/G. It is a G-torsor over the quotient
field F ′ of U/G called the versal G-torsor. We denote by X the respective flag
variety U ′/B over F ′, where B is a Borel subgroup of G, and call it the versal flag.
The variety X appears in many different contexts, e.g. related to cohomology of
homogeneous G-varieties (see [5] for an arbitrary oriented theory; Karpenko [6],
[7] for Chow groups; Panin [13] for K-theory) and cohomological invariants of G
(see Merkurjev [11] and [4], [12]). It can be viewed as a generic example of the so
called twisted flag variety.

In the talk we give an explicit presentation of the ring K0(X) in terms of
generators modulo a finite number of relations in cases when G = Gsc/µ2, where
Gsc is the product of simply-connected simple groups of Dynkin types A or C and
µ2 is a central subgroup of order 2.

Observe that for simply-connected G the ring K0(X) can be identified with
K0(G/B) (e.g., see Panin [13]), and by Chevalley theorems there is a surjective
characteristic map c : R(Tsc)→ K0(G/B) from the representation ring of the split
maximal torus Tsc such that the kernel ker(c) = IWsc is generated by augmented
classes of fundamental representations. So, all relations in K0(X) correspond to
W -orbits of fundamental weights.

If G is not simply-connected (as in the Gsc/µ2-case), then the situation changes
dramatically as by [5, Ex.5.4] we have K0(X) ≃ R(T )/IWsc ∩R(T ) and a finite set
of generators of IWsc ∩ R(T ) is not known in general. Note that by definition we
have inclusions of abelian groups IW ⊆ IWsc ∩ R(T ) ⊆ IWsc which all coincide if
taken with Q-coefficients. However, there are examples of semisimple groups (see
[12, Ex.3.1] and [1]) where both quotients IWsc ∩R(T )/IW and IWsc /I

W
sc ∩R(T ) are

non-trivial.
As one of the applications we describe cohomological invariants of degree 3

of G for these semi-simple groups. According to Garibaldi-Merkurjev-Serre [3,
p.106], a degree d cohomological invariant is a natural transformation of functors
a : H1( · , G) → Hd( · ,Q/Z(d − 1)) on the category of field extensions over F ,
where the functor H1( · , G) classifies G-torsors, Hd( · ,Q/Z(d − 1)) is the Galois
cohomology. Following Merkurjev [11], an invariant is called decomposable if it
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is given by a cup-product of invariants of smaller degrees; the factor group of
(normalized) invariants modulo decomposable is called the group of indecomposable
invariants. For d = 3 the latter has been computed for all simple split groups in
[11] and [2]; for some semi-simple groups of type A in [10] and [1]; for adjoint
semisimple groups in [9].

Another key subgroup of semi-decomposable invariants introduced in [12] con-
sists of invariants given by a cup-product of invariants up to some field extensions.
For d = 3 it coincides with the group of decomposable invariants for all simple
groups [12]. It was also shown that these groups are different for G = SO4 [12,
Ex.3.1] and for some semisimple groups of type A (see [1]).

We compute the groups of decomposable, indecomposable and semi-decom-
posable invariants of degree 3 for new examples of semisimple groups (e.g. Gsc/µ2,
products of adjoint groups), hence, extending the results of [11], [2], [1], [12], [10].
In particular, we essentially extend the examples [12, Ex.3.1] and [1]; we show that
• The factor group of semi-decomposable invariants of G modulo decomposable

is nontrivial if and only if G is of classical type A, B, C, D. Moreover, we deter-
mine all the factor groups (and indecomposable groups) for an arbitrary product
of simply-connected simple groups of the same Dynkin type modulo the central
subgroups µ2.
• If G is of type A, then the factor group of semi-decomposable invariants

modulo decomposable (and the group of indecomposable invariants) can have an
arbitrary order and contains any homocyclic p-group.
• If G is of type B or C, then it is always a product of cyclic groups of order 2.
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Chow rings of generic flag varieties

Nikita Karpenko

This is an exposition of results of [1], were further references are given.
Let k be a field, G a split semisimple affine algebraic group over k, and B ⊂ G a

Borel subgroup. For an imbedding G →֒ GL(n), the generic fiber E of the quotient
map GL(n) → GL(n)/G is a G-torsor over the function field F := k(GL(n)/G)
called a generic G-torsor. The F -variety X := E/B is a generic flag variety.

We consider the Chow ring CH(X), the Grothendieck ring K(X) endowed with
the topological filtration, and the associated graded ring GK(X).
Conjecture. The canonical epimorphism

CH(X)→ GK(X)

is an isomorphism.

Remark. The ring CH(X) does not depend (canonically) on the choice of the
imbedding G →֒ GL(n).

Remark. The topological filtration on K(X) is known to coincide with the γ-
filtration, which is computable. Therefore Conjecture provides a way to compute
CH(X).

Remark. The Borel subgroup B can be replaced by any special parabolic sub-
group P ⊂ G, where the adjective special means for P that any P -torsor over any
field extension of k is trivial. For any given G and P , the new statement obtained
this way is equivalent to the old statement for G (and B).

Remark. To prove Conjecture for any field k (and a given G over k) it suffices
to prove it for k = Q (and the corresponding split semisimple group over Q). In
particular, is suffices to prove it in characteristic 0.

Remark. If Conjecture holds for groups G1 and G2, then it also holds for the
product G1 ×G2.

Remark. Conjecture is known to hold for the following split simple groups:

• all groups of type An;
• all groups of type Cn;
• the special orthogonal groups (of type Bn as well as of type Dn);
• G2, F4, and simply-connected E6.
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Fusion systems on Lie algebras

Oksana Yakimova

(joint work with László Héthelyi and Magdolna Szőke)

Fusion systems (also called Frobenius categories) on finite groups have enjoyed a
lot of interest and attention. Books have been written on the subject [1, 3]. We
define a similar notion for Lie algebras. The original fusion system is defined on
a Sylow p-subgroup. The natural counterpart on the Lie theory side is a maximal
unipotent subgroup.

Let the ground field be C and let u = LieU be the Lie algebra of a unipotent
affine algebraic group.

Definition. A fusion system F = F(u) on u is a category, whose objects are the
Lie subalgebras of u and the morphisms are certain injective Lie algebra homo-
morphisms such that the following axioms are satisfied:

(i) for g ∈ U and q ⊂ u, Ad(g)|q ∈ HomF(q, r) if Ad(g)q ⊂ r;
(ii) for any ϕ ∈ HomF (q, r), also ϕ ∈ HomF (q, ϕ(q));

(iii) if ϕ ∈ HomF(q, r) is an isomorphism, then ϕ−1 ∈ HomF (r, q);
(iv) AutF (q) is closed in GL(q) for each q ⊂ u.

Examples. (1) Let U ⊂ G be a maximal unipotent subgroup of an affine algebraic
group G. Then F = FG(u) is defined by

HomF (q, r) = {Ad(g)|q | g ∈ G,Ad(g)q ⊂ r}.

(2) Taking G = U , the obtain FU (u), the smallest fusion system on u.

(3) In the universal fusion system Ω(u) any injective morphism between subalge-
bras q and r is allowed.

(4) Take an Abelian u. Then any morphism in Ω = Ω(u) comes from GL(u) and
AutΩ(u) = GL(u).

A fusion system has to be saturated in order to be of any interest. One of
the requirements is that Inn(u) is a maximal unipotent subgroup of AutF(u). In
particular, the universal system on an Abelian u with dim u > 1 is not saturated.
Using the fact that all maximal unipotent subgroups are conjugate, one shows that
FG(u) is always saturated.

Many group theoretic concepts and results were translated to the language of
fusion systems. One of them is Alperin’s fusion theorem dealing originally with
Sylow subgroups, their intersections and conjugations. In [4], it is shown that a
similar statement holds for each saturated fusion system F(u). Our theorem states
that each morphism in F(u) can be decomposed into a product of morphisms of
essential subalgebras and possibly one morphism of u itself. A subalgebra s ⊂ u

has to satisfy many conditions in order to be essential, the most important of them
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is that the group AutF(s)/Inn(s) is reductive and its semisimple part is locally
isomorphic to SL2 if non-trivial.

Suppose that F = FG(u) and G is reductive. By the Borel-Tits theorem [2] or
by a result of Weisfeiler [5], the essential subalgebras in F are exactly the nilpotent
radicals ui of the minimal parabolic subalgebras pi of g = LieG. Combining the
above observations, one obtains the following statement.

Proposition (An analogue of the Alperin theorem for reductive Lie algebras, [4]).
Suppose that Ad(g)q = r for two subalgebras q, r ⊂ u and g ∈ G. Then there is
g̃ = st . . . s1b such that Ad(g̃)q = r, the element b normalises U , si ∈ Pi with Pi

being a minimal parabolic subgroup, and

Ad(b)q ⊂ u1, Ad(si . . . s1b)q ⊂ ui for any i ≤ t.

The result appears to be new.
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The Shareshian-Wachs Conjecture

Patrick Brosnan

(joint work with Timothy Chow)

The following extended abstract describes joint work with Timothy Chow (Center
for Communications Research, Princeton) proving the Shareshian-Wachs conjec-
ture [3]. It is very similar to the abstract for my talk in the Oberwolfach conference
“Algebraic Cobordism and Projective Homogeneous Varieties” held January 31 to
Febrary 6, 2016. However, I have corrected a few typos in that document (some
of which are fairly serious), and, to save space, I have deleted the sketch of the
proof which appeared in the previous abstract. I remark that there is another,
completely independent and very interesting, proof of the conjecture given by
M. Guay-Paquet [7].

0.1. The Stanley-Stembridge Conjecture. Suppose G = (V,E) is a finite
graph (with vertex set V and edge set E). A coloring of G is a map κ : V → Z+

such that κ(v) 6= κ(w) if v and w are adjacent. Write C(G) for the set of all
colorings. Let Λ denote the C-algebra of all symmetric functions in infinitely
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many variables x1, x2, . . .. For a coloring κ ∈ C(G), we set xκ :=
∏

v∈V xκ(v).
R. Stanley defined the chromatic symmetric function

(1) XG(x) :=
∑

κ∈C(G)

xκ.

Suppose n ∈ Z+. A Hessenberg function for n is a non-decreasing sequence
m1, . . . ,mn of positive integers such that, for all i, i ≤ mi ≤ n. Given a Hessenberg
sequence m, let G(m) = (V,E) denote the graph with vertex set V = {1, . . . , n}
and with i and j adjacent for i < j if and only if j ≤ mi. In this language, we can
formulate the following long-standing conjecture of Stanley and J. Stembridge [9,
10] .
Conjecture 1 (Stanley-Stembridge). Suppose G = G(m) for a Hessenberg func-
tion m. Then XG(x) is a non-negative sum of elementary symmetric functions.

Remark 1. In fact, Stanley and Stembridge conjecture something which seems
more general. But, in [6], Guay-Paquet proved that the general conjecture reduces
to Conjecture 1.

0.2. The Shareshian-Wachs polynomial. Now suppose G = (V,E) is a graph
with V ⊂ Z+. For a coloring κ of G define

asc(κ) := #{{v, w} ∈ E : v < w, κ(v) < κ(w)}.

In [8], J. Shareshian and M. Wachs prove the following remarkable theorem.

Theorem 1 (Shareshian-Wachs). Suppose G = G(m). Then

XG(x, t) :=
∑

κ∈C(G)

tascκxκ

is a polynomial in Λ[t].

Examples 0.3. Write ek for the k-th elementary symmetric function.

(1) If m = (1, 2, . . . , n), then XG(m)(x, t) = en1 .

(2) If m = (2, 3, 3), then XG(m)(x, t) = e3 + t(e3 + e2e1) + t2e3.

(3) If m = (n, n, . . . , n), then XG(m)(x, t) =
∑

w∈Sn
tℓ(w)en.

0.4. Hessenberg varieties. Suppose m = (m1, . . . ,mn) is a Hessenberg func-
tion. Let s be an n× n-matrix in g := gln. Let X denote the variety of complete
flags F in n-dimensional space. Set

H (m, s) := {F ∈ X : ∀i, sFi ⊂ Fmi
}.

This is called the Hessenberg variety of type m. These varieties were introduced
by DeMari, Procesi and Shayman in [4]. In fact, [4] studies a generalization of
the varieties defined above inside the variety B of Borel subgroups of an arbitrary
reductive group. In my work with Chow, only the type A case appears.

Write grs for the Zariski open subset of g consisting of regular semi-simple
matrices. Then [4] shows that, for y ∈ grs, H (m, y) is smooth. Moreover, the
centralizer Z(y) of y, which is a maximal torus in G = GLn acts on H (m, y).
And the fixed point set H (m, y)Z(y) coincides with XZ(y). Note that the set



1312 Oberwolfach Report 21/2017

XZ(y) is a torsor for the Weyl group W ∼= Sn of Z(y). By Bia lynicki-Birula, it
follows that the cohomology H∗(H (m, y)) is freely generated by one element for
each fixed point [2]. Thus, H∗(H (m, y)) is (non-canonically) freely generated by
one element for every element of W .

0.5. Tymoczko’s Dot Action. Pick y ∈ grs, and set T = Z(y). In [11], J. Ty-
moczko defines an action (called the dot action) of the Weyl group W of T on
the equivariant cohomology H∗

T (H (m, y)). Moreover, Tymoczko shows that this
action descends to a W action (also called the dot action) on H∗(H (m, y)).

0.6. Frobenius Character. For each positive integer n write pn :=
∑

xn
i for

the power-sum symmetric function, and for each partition λ = (λ1, . . . , λk) write
pλ :=

∏
pλi

. For w ∈ Sn, write λ(w) for the partition corresponding to the cycle
decomposition of w. Then for a representation V of Sn, set

chV :=
1

n!

∑

w∈Sn

χV (w)pλ(w).

It is well-known (see [5]), that ch is then an isomorphism from the space of C-
valued class functions of Sn to the space Λn of symmetric functions of degree n.
We write ω for the involution on Λ that takes chV to chV ⊗ sgn.

1. Shareshian-Wachs

The main result of my joint paper [3] is the following theorem which was conjec-
tured by Shareshian and Wachs in [8].

Theorem 2. Suppose m = (m1, . . . ,mn) is a Hessenberg function, and y ∈ grs.
Then we have

ωXG(m)(t) =
∑

k∈Z

tkchHk(H (m, y)).

As mentioned above, Guay-Paquet has given an independent proof in [7]. While
the proof in [3] is geometric, the main ideas behind [7] are combinatorial. The
crucial tool in Guay-Paquet’s proof is a theorem of Aguiar, Bergeron and Sottile
on the universality of a certain Hopf algebra of quasi-symmetric functions [1]. It
is, in fact, very tempting to try to combine the ideas from both proofs to search
for a proof of Conjecture 1.
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Tamagawa numbers of linear algebraic groups over function fields

Zev Rosengarten

Remark 1. All of the author’s results that are referred to in this abstract will
appear in upcoming manuscripts.

Weil observed that for any connected linear algebraic group G over a global
field k, there is a canonical Haar measure, called the Tamagawa measure, on
the group G(A)1 of “norm-one” adelic points of G. The volume τ(G) of the
space G(A)1/G(k) with respect to the Tamagawa measure is called the Tamagawa
number of G. It is a highly nontrivial theorem that this volume is always finite (due
to Borel in the number field case, and to B. Conrad over function fields). This
number contains very interesting arithmetic information. For example, given a
quadratic form q over the rational numbers, the equation τ(SOq) = 2 is equivalent
to the Siegel Mass Formula.

In 1981, Sansuc obtained a beautifully simple formula for Tamagawa numbers of
reductive groups (modulo some then as-yet unknown deep results on the arithmetic
of simply connected groups which have since been proven). Before we can state it,
we need to introduce some notation. For an algebraic group G, let Pic(G) denote
the Picard group of G, i.e., the set of line bundles on G up to equivalence; and let

X(G) := ker

(
H1(k,G)→

∏

v

H1(kv, G)

)

denote the Tate-Shafarevich set of G. This latter set is finite for any linear algebraic
group, as was shown by Borel and Serre in the number field case, and by B. Conrad
over function fields. (It is also true, and not nearly as deep, that Pic(G) is finite
for any connected reductive G over any field whatsoever.) Then Sansuc’s result is
the following:
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Theorem 1. (Sansuc, [San], Th. 10.1) Let G be a connected reductive group over
the global field k. Then

(1) τ(G) =
#Pic(G)

#X(G)

One may easily deduce that the same formula holds for Tamagawa numbers of
all connected linear algebraic groups over number fields, for the following reason.
If G is such a group, then we have the exact sequence

(2) 1 −→ U −→ G −→ R −→ 1

where U is the k-unipotent radical of G and R is the pseudo-reductive quotient.
(That is, the k-unipotent radical of R is trivial.) Since the number field k is
perfect, U is split unipotent and R is reductive, not just pseudo-reductive. (The

unipotent radical over k descends all the way down to k, by Galois descent.)
The behavior of Tamagawa numbers in exact sequences combined with the very
simple nature of split unipotent groups together imply that Sansuc’s formula for
G is equivalent to the same formula for the reductive group R, hence the formula
holds for all connected linear algebraic groups over number fields. The problem
of computing Tamagawa numbers of linear algebraic groups over number fields is
therefore completely solved.

The situation for function fields is much more difficult, for two reasons both
arising from the imperfection of function fields: (i) The group U in sequence
(2) is not necessarily split, and indeed may be quite complicated. (Indeed, even
computing Tamagawa numbers of unipotent groups over function fields is a highly
nontrivial problem. Oesterlé [Oes] has a paper on the subject.); and (ii) The group
R is not necessarily reductive, only pseudo-reductive. Over any imperfect field
(such as function fields), there exist many examples of pseudo-reductive groups
that are not reductive.

In fact, Sansuc’s formula (1) is not correct in general for linear algebraic groups
over function fields. This is in some sense unsurprising. Whereas the quantities
τ(G),X(G) depend quite crucially on the group structure on G, the quantity
Pic(G) depends only on the structure of G as a scheme. We should therefore
seek a substitute that remembers this group-theoretic structure. To this end, we
introduce the group

Ext1(G,Gm) := {L ∈ Pic(G) | m∗L ≃ p∗1L ⊗ p∗2L}

of primitive line bundles on G, where m, pi : G × G → G are the multiplication
and projection maps, respectively. The reason for the notation is that for any
extension

1 −→ Gm −→ E −→ G −→ 1

of algebraic groups, E is in particular a Gm-torsor over G. One easily checks that
the resulting torsor is primitive. We therefore get a homomorphism Ext1(G,Gm)→
{L ∈ Pic(G) | m∗L ≃ p1 ∗ L ⊗ p∗2L} (where the group on the left is now the
Yoneda group of algebraic group extensions), and one can show that this map is
an isomorphism for any smooth connected k-group scheme G.
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We now propose the following modification of Sansuc’s formula:

Conjecture 1. (R.) For any connected linear algebraic group G over the global
field k, one has

τ(G) =
#Ext1(G,Gm)

#X(G)

It turns out that for any perfect field k, one has the equivalence Ext1(G,Gm) =
Pic(G) for any connected linear algebraic k-group G, and both groups are finite. In
particular, Conjecture 1 recovers Sansuc’s formula when k is a number field. But
it is truly different in the function field setting. Before trying to prove Conjecture
1, it is good to know as a sanity check that the group Ext1(G,Gm) appearing in
Conjecture 1 is finite.

Theorem 2. (R.) If G is a connected linear algebraic group over the global func-
tion field k, then Ext1(G,Gm) is finite.

Remark 2. The above finiteness statement fails over every local function field
and over every imperfect separably closed field, even for forms of Ga, so it is a
truly arithmetic result.

Our progress toward proving Conjecture 1 thus far consists of the following two
results.

Theorem 3. (R.) Conjecture 1 holds for connected commutative linear algebraic
groups.

Theorem 4. (R.) If char(k) > 3, then Conjecture 1 holds for all pseudo-reductive
k-groups.

Remark 3. One may remove the assumption on char(k) in Theorem 4 if one
assumes that G is a standard pseudo-reductive group, cf. [CGP], Definition
1.4.4. The difficulty in small characteristics arises from the existence of non-
standard pseudo-reductive groups. Basic exotic pseudo-reductive groups that are
not pseudo-split seem to be the most difficult case; all other cases seem quite
doable (but the author has yet to treat them).
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R-matrices and cohomological Hall algebras

Eric Vasserot

(joint work with Olivier Schiffmann)

Maulik and Okounkov have given a new way to construct solutions of the Yang-
Baxter equation with spectral parameters using symplectic geometry and the
quiver varieties associated to an arbitrary quiver Q. To these new R-matrices one
associates a quantum group YQ (a Yangian) using the well-known RT1T2 = T2T1R
formalism. Maulik and Okounkov have proved that YQ is a deformation of the
enveloping algebra of the current algebra of a Lie algebra gQ. If the quiver Q
is of finite type, then YQ is the Yangian associated with the Lie algebra of type
Q, i.e., gQ is the Lie algebra associated with the Cartan matrix of Q. If Q is
the Jordan quiver then YQ is the Yangian analogue of the Elliptic Hall Algebra,
which was introduced previously by Schiffmann and Vasserot in [3]. In this case
gQ is an Heisenberg Lie algebra. For an arbitrary quiver Q, there is no algebraic
presentation of gQ or YQ. In particular their graded dimensions are not known.

The goal of this talk is to present another conjectural description of YQ. It has
the advantage to allowing to compute the graded dimension of gQ. Our conjecture
would imply a conjecture of Okounkov which claims that the dimension of the root
subspaces of gQ should be the value at 1 of the corresponding Kac polynomial.

By construction, the Yangian YQ acts on the equivariant cohomology groups of
the quiver variety associated with Q. The COHA we consider is given by an asso-
ciative multiplication on the equivariant cohomology groups of an analogue of the
Lusztig nilpotent variety associated with the quiver. The nilpotence condition we
use differs from Lusztig’s one when the quiver has some edge-loops. This nilpotent
variety is Lagrangian, according to a previous work of Bozec. The multiplication
resemble the multiplication law of usual Hall algebras. One replaces extensions in
an Abelian category by convolution relative to an induction diagram in the moduli
space of representations of the double quiver associated with Q. Our main results
are the following :

• The Deligne mixed Hodge structure on the COHA is pure.
• We can compute the number of points of the nilpotent variety over finite

fields, giving a formula for the graded dimension of the COHA, see [1].
• We can compute a nice system of generators of the COHA, see [4].
• There is an inclusion COHA⊆ YQ, see [5].

Finally, as mentionned above we conjecture that COHA= YQ up to some central
elements.
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Cocharacter-closure and the rational Hilbert-Mumford Theorem

Gerhard Röhrle

(joint work with M. Bate, S. Herpel, and B. Martin)

For a field k, let G be a reductive k-group and V an affine k-variety on which G acts.
Using the notion of cocharacter-closedG(k)-orbits in V , we prove a rational version
of the celebrated Hilbert-Mumford Theorem from geometric invariant theory in [1,
Thm. 1.3]. There we initiate a study of applications stemming from this rationality
tool. An example is discussed to illustrate the concept of cocharacter-closure and
to highlight how it differs from the usual Zariski-closure.

The concept of a closed orbit is fundamental in geometric invariant theory over
algebraically closed fields. A first problem is to devise a suitable analogue of this
idea for G(k)-orbits. One can define the notion of a k-orbit over G [6, 10.2, Def. 4],
or study the Zariski closure of a G(k)-orbit, but such constructions do not appear
to be helpful here, e.g. see the discussion in [3, Rem. 3.9]. Instead we adopt an
approach involving cocharacters, as follows. Let Yk(G) denote the set of k-defined
cocharacters of G. In [3, Def. 3.8], we made the following definition.

Definition 1. Let v ∈ V (not necessarily a k-point). The orbit G(k) · v is
cocharacter-closed over k provided for all λ ∈ Yk(G), if v′ := lima→0 λ(a) · v
exists, then v′ ∈ G(k) · v.

In [1], we extend this definition to cover arbitrary subsets of V , and introduce
the cocharacter-closure of a subset of V :

Definition 2. (a) Given a subset X of V , we say that X is cocharacter-closed (over
k) if for every v ∈ X and every λ ∈ Yk(G) such that v′ := lima→0 λ(a) · v exists,
v′ ∈ X . Note that this definition coincides with the one above if X = G(k) · v for
some v ∈ V .
(b) Given a subset X of V , we define the cocharacter-closure of X (over k), denoted

X
c
, to be the smallest subset of V such that X ⊆ X

c
and X

c
is cocharacter-closed

over k. (This makes sense because the intersection of cocharacter-closed subsets
is clearly cocharacter-closed.)

It follows from the Hilbert-Mumford Theorem that G · v is cocharacter-closed
over k if and only if G · v is closed. It is obvious that G · v

c
is contained in G · v.

Note, however, that this containment can be proper: e.g., see [1, Ex. 11.1].
Here is the rational version of the Hilbert-Mumford Theorem:
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Theorem 1 ([1, Thm. 1.3]). Let v ∈ V . Then there is a unique cocharacter-

closed G(k)-orbit O inside G(k) · v
c
. Moreover, there exists λ ∈ Yk(G) such that

lima→0 λ(a) · v exists and lies in O.

By a standard fact, the closure of a geometric G-orbit is again a union of G-
orbits, [5, I 1.8 Prop.]. Thanks to [1, Lem. 3.3(i)], the rational counterpart holds
for the cocharacter-closure of a G(k)-orbit in V . Therefore, we can mimic the
usual “degeneration” partial order on the G-orbits in V in this rational setting:

Definition 3. Given v, v′ ∈ V , we write G(k) · v′ ≺ G(k) · v if v′ ∈ G(k) · v
c
.

Then it is clear that ≺ is reflexive and transitive, so ≺ gives a preorder on the
set of G(k)-orbits in V . In general, the behavior of the G(k)-orbits can be quite
pathological; e.g., see Example 1, see also [1, §7]. Our next result holds under
some mild hypothesis on the centralizer Gv of v in G.

Theorem 2. Let v ∈ V . Suppose that Gv is k-defined. Then the following hold:

(i) If G · v is Zariski-closed, then G(k) · v is cocharacter-closed over k.
(ii) Let k′/k be an algebraic field extension and suppose that G(k′) · v is

cocharacter-closed over k′. Then G(k) · v is cocharacter-closed over k.
Moreover, the converse holds provided v ∈ V (k) and k′/k is separable.

(iii) Let S be a k-defined torus of Gv and set L = CG(S). Then G(k) · v is
cocharacter-closed over k if and only if L(k)·v is cocharacter-closed over k.

(iv) Let w ∈ V and suppose that both G(k)·w ≺ G(k)·v and G(k)·v ≺ G(k)·w.
Then G(k) · v = G(k) · w.

Note that the rationality condition on the centralizer Gv in Theorem 2 is sat-
isfied in many instances, e.g., if v ∈ V (k) and k is perfect (cf. [1, Prop. 7.4]).

The notion of a cocharacter-closed G(k)-orbit has already proved very useful in
the context of Serre’s notion of G-complete reducibility over k. In [3, Thm. 5.9] we
gave a geometric characterisation of the latter using the former. In [1, Thm. 9.3]
this is strengthened further by removing the connectedness assumption on G from
[3, Thm. 5.9].

Definition 4. A subgroup H of G is said to be G-completely reducible (G-cr)
if whenever H is contained in an R-parabolic subgroup P of G, there exists an
R-Levi subgroup of P containing H . Similarly, a subgroup H of G is said to be G-
completely reducible over k if whenever H is contained in a k-defined R-parabolic
subgroup P of G, there exists a k-defined R-Levi subgroup of P containing H .

In [2, Cor. 3.7], we show that G-complete reducibility has a geometric interpre-
tation in terms of the action of G on Gn, the n-fold Cartesian product of G with
itself, by simultaneous conjugation.

Definition 5. Let H be a subgroup of G and let G →֒ GLm be an embedding of
algebraic groups. Then h ∈ Hn is called a generic tuple of H for the embedding
G →֒ GLm if h generates the associative subalgebra of Matm spanned by H . We
call h ∈ Hn a generic tuple of H if it is a generic tuple of H for some embedding
G →֒ GLm.



Algebraic Groups 1319

Note that generic tuples exist for any embedding G →֒ GLm provided n is
sufficiently large. We now give the characterization of G-complete reducibility
over k in terms of geometric invariant theory mentioned above.

Theorem 3 ([1, Thm. 9.3]). Let H be a subgroup of G and let h ∈ Hn be a
generic tuple of H . Then H is G-completely reducible over k if and only if G(k) ·h
is cocharacter-closed over k.

The following elementary example illustrates some of the complexities that can
arise, even over a field of characteristic 0. For more examples, see [1, §10, §11].

Example 1 ([1, Ex. 4.3]). Let k = R and consider the group G = Gm acting on
V = A1 by a · z := a2z. The group G(k) = Gm(k) is just the multiplicative
group of the field R, and there are three orbits of G(k) on k-points of V : G(k) ·
(−1) = {x ∈ R | x < 0}, G(k) · 0 = {0} and G(k) · 1 = {x ∈ R | x > 0}.

We have G(k) · (−1)
c

= G(k) · (−1) ∪ {0} and G(k) · 1
c

= G(k) · 1 ∪ {0}. On
the other hand, since the non-zero G(k)-orbits G(k) · 1 and G(k) · (−1) are both
infinite subsets of V , their Zariski closures are the whole of A1. We also have
G ·1 = G · (−1) = {z ∈ A1 | z 6= 0}. This gives an example of how the cocharacter-
closure isn’t the same as the closure (or the closure intersected with the set of
k-points) and how different parts of the same G-orbit may be inaccessible from
each other when viewed as G(k)-orbits.

We close with an application of the notion of cocharacter-closedness over k to
characterize k-anisotropy, see [1, Thm. 1.6]. Recall that G is k-anisotropic provided
Yk(G) = {0}. Part (i) of Theorem 4 gives a characterization of k-anisotropic
reductive groups over an arbitrary field k in terms of cocharacter-closed orbits. In
the special case when k is perfect, we recover in part (ii) a result of Kempf [7,
Thm. 4.2]. Characterizing anisotropy over perfect fields in terms of closed orbits
was a question of Borel, [4, Rem. 8.8 (d)].

Theorem 4. (i) G is k-anisotropic if and only if for every k-defined affine G-variety
W and every w ∈W (k), the orbit G(k) · w is cocharacter-closed over k.

(ii) Suppose k is perfect. Then G is k-anisotropic if and only if for every k-
defined affine G-variety W and every w ∈W (k), the orbit G · w is closed in W .

Part (ii) of Theorem 4 follows from part (i), Theorem 2(ii) and the Hilbert-
Mumford Theorem. Note that Theorem 4(ii) fails for non-perfect fields; see [1,
Rem. 5.9(ii)].
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[3] M. Bate, B. Martin, G. Röhrle, R. Tange, Closed orbits and uniform S-instability in geo-
metric invariant theory, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3643–3673.

[4] A. Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de
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Involutions on the affine Grassmannian and moduli spaces of principal
bundles

Anthony Henderson

Let G be a simply connected semisimple algebraic group over C, with chosen Borel
subgroup B and maximal torus T . Let Λ+ denote the resulting set of dominant
coweights, which is a complete set of representatives for the G-conjugacy classes
of homomorphisms Gm → G.

Let Gr = G((t))/G[[t]] be the affine Grassmannian of G, an integral ind-scheme.

It is the disjoint union of G[[t]]-orbits Gr
λ indexed by λ ∈ Λ+. We consider the

open subset Gr0 = G[t−1]G[[t]]/G[[t]] of Gr and its G-stable strata Gr
λ
0 = Gr

λ ∩ Gr0.

(Some of what follows can be generalized to the intersections of Grλ with transverse
slices to smaller orbits Gr

µ; here we consider just the µ = 0 case.)
We make the obvious identification of Gr0 with G[t−1]1 = ker(G[t−1]→ G). The

involution ι : Gr0 → Gr0 : γ(t) 7→ γ(−t)−1 arose in the study [1] of relationships
between the affine Grassmannian and the nilpotent cone. There it was observed
that ι(Grλ0 ) = Gr

−w0λ
0 where w0 is the longest element of the Weyl group. Let

Λ+
1 = {λ ∈ Λ+ |λ = −w0λ}. For λ ∈ Λ+

1 we have an induced involution ι of Grλ0 ,

and the aim of the present work is to describe the fixed-point subvariety (Grλ0 )ι.

We use a moduli-space interpretation of Gr
λ
0 due to Braverman and Finkel-

berg [2]. Let XG be the scheme denoted BunG(P2, ℓ∞) in [3]; this is the moduli
space of pairs (F ,Φ) where F is a principal G-bundle on P2 and Φ is a trivializa-
tion of F on the line at infinity ℓ∞. On XG we have an action of G× SL2, where
G acts by changing the trivialization and SL2 acts on the base P2 preserving ℓ∞.

Consider the fixed-point set XGm

G where Gm means the diagonal torus in SL2.
If the isomorphism class of a pair (F ,Φ) is stable under Gm then, by considering
the fibre of F at the Gm-fixed point of A2, we obtain a homomorphism Gm → G
which is well defined up to G-conjugacy. Hence there is a disconnected union

decomposition XGm

G =
∐

λ∈Λ+ XGm,λ
G . Part of the Braverman–Finkelberg result [2,
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Theorem 5.2] is that for any λ ∈ Λ+ there is a G-equivariant isomorphism

Ψλ : Grλ0
∼
→ XGm,λ

G .

Our first result is that, under these isomorphisms Ψλ, the involution ι corre-
sponds to the action of the non-identity component of N = NSL2

(Gm). Now,
by the same argument as for Gm, we have a disconnected union decomposition

XN
G =

∐
ξ∈Ξ XN,ξ

G where Ξ is the set of G-conjugacy classes of homomorphisms

N → G. As a consequence, for any λ ∈ Λ+
1 one has a disconnected union decompo-

sition (Grλ0 )ι =
∐

ξ∈Ξ(λ)(Gr
λ
0 )ι,ξ where Ξ(λ) denotes the set of G-conjugacy classes

of homomorphisms N → G whose restriction to Gm is G-conjugate to λ. Here

(Grλ0 )ι,ξ = Ψ−1
λ (XN,ξ

G ). (With hindsight, this disconnected union decomposition

of (Grλ0 )ι can be defined purely in terms of Gr, but the connection with XG gives
a more intrinsic explanation for it.)

To motivate the study of the varieties (Grλ0 )ι,ξ, or the isomorphic varieties XN,ξ
G ,

note that the connected components of the SL2-fixed-point set XSL2

G are isomorphic
to the nilpotent orbits of G, by a result of Kronheimer [5, Theorem 1]. Thus, for
at least two reductive subgroups Γ of SL2, namely Γ = Gm and Γ = SL2 itself, the
connected components of the fixed-point set XΓ

G are important objects in geometric
representation theory; the results of [2] suggest that the same can be said when Γ
is a finite cyclic subgroup of SL2. Thus it is natural to consider the other reductive
subgroups of SL2, of which N should be the easiest to treat.

For general G, we do not know for which ξ ∈ Ξ(λ) the variety (Grλ0 )ι,ξ is
nonempty, or whether it can ever be disconnected. However, these questions can be
answered when G = SLn using the theory of Nakajima quiver varieties [6, 7], which
indeed sprang from the Atiyah–Drinfeld–Hitchin–Manin description of XSLn

, or
rather of the closely related moduli space of torsion-free sheaves on P2 (see [8,

Theorem 2.1]). In this theory, each variety XN,ξ
SLn

is identified with an open subset
of a Nakajima quiver variety of type D (this being the type of N in the McKay
correspondence). This implies an explicit combinatorial criterion for nonemptiness

of (Grλ0 )ι,ξ, and shows that this variety is connected whenever it is nonempty.
By combining the above results with [4, Theorem 4.4], one obtains an appealing

description of (Grλ0 )ι in the G = SL2 case. In this case, Λ+
1 = Λ+ = Nα∨. It is

trivial to see that (Grmα∨

0 )ι is empty if m ≥ 2 is even.
For any m ≥ 1, let O(2m) denote the regular nilpotent orbit of sl2m, and S(m,m)

the Slodowy transverse slice to the two-row nilpotent orbit O(2m). Then there is

an isomorphism Gr
mα∨

0
∼= O(2m)∩S(m,m) under which the involution ι corresponds

to the restriction of a Lie algebra involution of sl2m: namely, negative transpose
with respect to a nondegenerate bilinear form on C2n which is (−1)m-symmetric.

We conclude that, when m ≥ 2 is even, (Grmα∨

0 )ι ∼= O
sp2m

(2m) ∩ S
sp2m

(m,m).
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R-matrices and convolution algebras arising from Grassmannians

Catharina Stroppel

(joint work with Vassily Gorbounov, Christian Korff)

We describe how to construct interesting convolution algebras from equivariant
cohomology of Grassmannians and give a geometric construction of certain R-
matrices arising in the 5-vertex models. Details appear in [GKS17].

1. Integrable systems

In the following let N be a fixed natural number. We fix as the ground field
the complex numbers C and let C[t] be the polynomial ring in a variable t. For
any finite dimensional vector space W denote W [t] = W ⊗ C[t], the C[t]-module
obtained by scalar extension, and W [t1, t2, . . . , tN ] = W ⊗ C[t1, t2, . . . tN ].

Let V = C2 with a fixed basis v0, v1. It induces a standard (or tensor) basis
of V ⊗ V . Then V [t] = V ⊗ C[t] has C[t]-basis v0, v1. We identify V [t]⊗N =
V ⊗ [t1, t2, . . . , tN ] as vector space (in the obvious way identifying ti with t from
the ith tensor factor). A Lax matrix is a 2× 2-matrix

L = L(x, t) =

(
A(x, t) B(x, t)
C(x, t) D(x, t)

)
∈ M(2× 2,M(2× 2,C[x, t]))(1)

with entries in M(2×2,C[x, t]). It defines a C[x, t]-linear endomorphism of V ⊗V .
The monodromy matrix M = M(x, t1, t2, . . . , tN ) is the endomorphism

L0,N(x, tN ) . . . L0,2(x, t2)L0,1(x, t1)=

(
A(x, t1, t2, . . . , tN) B(x, t1, t2, . . . , tN )
C(x, t1, t2, . . . , tN ) D(x, t1, t2, . . . , tN )

)
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of V [x] ⊗ V ⊗N [t1, . . . , tN ]. A pair (R(x, y), L(x, t)) of Lax matrices satisfies the
Yang-Baxter equation if L2,3(y, t)L1,3(x, t)1,2R(x, y) = R1,2(x, y)L1,3(x, t)R2,3(y, t)
as endomorphisms of V [t]⊗ V [x]⊗ V [y] or equivalently

M2(x2, t1, . . . , tN)M1(x1, t1, . . . , tN )R1,2(x1, x2)

= R1,2(x1, x2)M1(x, t1, . . . , tN )M2(x1, t1, . . . , tN ).(2)

Important examples appearing in the physics literature are the so-called 5-vertex
models which are certain (not well understood) degeneration of the (well-known)
6-vertex model and given by the following pairs (R(x, y), L(x, y)) with z = x− y.







1 0 0 0
0 z 1 0
0 1 0 0
0 0 0 1


 ,




1 0 0 0
0 z 1 0
0 1 0 0
0 0 0 1













1 0 0 0
0 0 1 0
0 1 −z 0
0 0 0 1


 ,




z 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0







The Yang-Baxter algebra is the C[t1, . . . tN ]-subalgebra of endomorphisms of
V ⊗N generated by the coefficients Ai(t1, . . . tN ), Bi(t1, . . . , tN ), Ci(t1, . . . , tN ),
and Di(t1, . . . , tN ) of the xi of the entries of M . It is easy (although maybe not
very useful) to write down an explicit presentation of the algebras ,let us call them
YN respectively Y ′

N , for the above special choices of (R(x, y), L(x, t)).

Lemma 1.1. The action of YN and of Y ′
N on V [t]⊗N commutes with the action

of the symmetric group SN permuting the factors.

2. Geometry of Grassmannians

Let Xk = Gr(k,N) be the Grassmannian of k-dimensional subspaces in CN with
its standard torus T (=diagonal matrices)-action. If we fix the standard basis
e1, . . . , eN of CN then the T -fixed points are precisely the coordinate spaces pI =
〈ei | i ∈ I〉, where I is a k-element subset of I = {1, 2, . . . , N}. For each regular
integral cocharacter (i.e. χa : C∗ → T sending t ∈ C∗ to the diagonal matrix
(ta1

1 , . . . , taN ) with ai ∈ Z paarwise distinct) we have the attracting cells CI =
{x ∈ Xn | limt→0 χa(t).x = pI}. They do in fact not depend on the tuple a, but
only on the Weyl chamber containing it. Let us identify Weyl chambers with Weyl
group elements by mapping the antidominant chamber to the identity element.
Then we obtain geometric interpretations of integrable systems bases:

Proposition 1. Each Weyl chamber, hence each Weyl group element w, defines
a basis Sw

I , I ⊂ I, |I| = k, of the T -equivariant cohomology ring HT (Xk).

(1) Sending a basis vector vi1 ⊗ . . .⊗ viN of V [t]⊗N = V ⊗ [t1, t2, . . . , tN ] to Se
I

where I = {j | ij = 1} defines an isomorphism of C[t1, t2, . . . , tN ]-modules

Φ : V [t]⊗N ∼=

N⊕

k=0

HT (Xk)

after localisation at all ti − tj , i 6= j or at all symmetric polynomials.
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(2) Hereby the normalized Bethe basis vectors for the subalgebra generated
by the Ai’s are mapped to the geometric fixed point basis vectors.

The first R-matrix from the 5-vertex model has a beautiful interpretation (the
second can be obtained by some renormalizing):

Theorem 2 (Wall-crossing). The base change from Sw
I to Swsi

I (that is the wall
crossing in the ith wall) is given via Φ by Ra,b(tb, ta) acting on the ath and bth
tensor factor of V [t]⊗N , where a = w(i) and b = w(i + 1).

Theorem 3. The Yang Baxter-algebras YN and of Y ′
N can be realized via certain

correspondences Xk ←− Xk,k+1 −→ Xk+1 involving the two-steps partial flag
varieties Xk,k+1.

Remark 4. The construction can be seen as an analogue of the Maulik-Okounkov
construction [MO12]. Instead of working with cotangent bundles and their sym-
plectic structure we work instead with the base Xk itself. The Schubert vari-
eties CI are then classical analogues of their stable manifolds. Our assignment
pI 7→ [CI ] from the set of T -fixed points to bases of HT (Xk) form a stabilization
map.

Remark 5. The subalgebra of endomorphisms generated by YN and Y ′
N is iso-

morphic to the image of the obvious U(gl2[t])-action on V [t]⊗N . Taking the limit
N → ∞ allows to mimic the construction of [BLM90] for gln now for current
algebras. Our construction works more general for U(gln[t]) by using partial flag
varieties up to n steps; although the formulas are not anymore totally explicit.

Remark 6. Geometric constructions of the current Lie algebras seem to be not
available, in construst to Yangian (a certain quantum deformation of the loop
algebra). The R-matrix corresponding to the Yangian corresponds to the “generic”
6-vertex model, and via for instance [MO12] to the geometry of the cotangent
bundle of partial flag varieties and Nakajima quiver varieties. Working with the
base instead specialises the deformation parameter and corresponds to a non-
trivial interesting degeneration on the side of R-matrices. This is the passage
to the 5-vertex model. As fas as we understand, these degenerations cannot be
deduced easily from the “generic” model. Our stable manifolds do not arise from
the construction in [MO12] by pushing their stable manifolds down to the base
space of the cotangent bundle.
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Support of the spherical module of rational Cherednik algebras

Daniel Juteau

(joint work with Stephen Griffeth)

Given a complex reflection group W acting on a space V , the associated ratio-
nal Cherednik algebra can be defined by a faithful representation on C[V ]: it is
generated by polynomials acting by multiplication, the group algebra of W , and
Dunkl operators, which are a deformation of differential operators depending on
some parameters c (as many as there are conjugacy classes of reflections in W ).
One can define a category O in a similar way as for semisimple Lie algebras [2].
The determination of the support of simple modules (seen as coherent sheaves on
V ) is a central problem in the theory; as a subproblem, in contains the question
of determining when the simple modules (which are in bijection with characters of
W ) are finite dimensional (which happens exactly when the support is {0}). The
particular case of the spherical module, the unique simple quotient of the poly-
nomial representation, has attracted particular interest: Varagnolo and Vasserot
obtained a criterion for Weyl group in the case of equal parameters [3]; this crite-
rion has been generalized Etingof to all Coxeter groups and arbitrary parameters
[1]. I talked about a further generalization to all complex reflections groups (and
arbitrary parameters), modulo some hypotheses about their Hecke algebras (they
should be projective and symmetric over their parabolic subalgebras).
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Combinatorics of canonical bases and cluster duality

Bea Schumann

(joint work with Volker Genz and Gleb Koshevoy)

Let G be a simple, simply connected, simply laced algebraic group over C and
U ⊂ G its unipotent radical. We investigate the interplay of several classical
and new parametrizations of canonical vector space bases of the ring of regular
functions on the base affine space G/U . Since C[G/U ] splits into the multiplicity-
free direct sum of all finite dimensional irreducible G-representation, the definition
of a canonical basis B should include the compatibility of B with respect to this
decomposition.

Building on a (corrected version of a) conjecture of Fock-Goncharov, Gross-
Hacking-Keel-Kontsevich approached the question of constructing a canonical ba-
sis of C[G/U ] by means of cluster duality. To fix notation, let B, B− be two
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opposite Borel subgroups of G, w0 the longest Weyl group element, N the length
of w0 and n the rank of G.

There exists an open embedding of the A-cluster variety Ge,w0 := B∩B−w0B
−

into G/U . The feature of being an A-cluster variety means that, up to codimen-
sion 2, the space Ge,w0 is the union of open copies of (C∗)N+n which are glued via
subtraction-free birational transformations, called A-cluster mutations. This con-
struction always comes with a dual picture: The Fock-Goncharov dual X -cluster
variety. This is again the union of open copies of (C∗)N+n, running over the same
index set as used in the construction of the A-cluster variety, glued by (an appro-
priate notion of) dual birational transformations, called X -cluster mutations. The
tori in the two dual toric systems are related by a regular map. Since all maps
involved in the construction are subtraction-free, we may apply the machinery of
tropicalisation. In the following we mean by the tropical points [T ]trop of a torus
T its cocharacter lattice and by the tropicalisation [f ]trop of a positive rational
function f on T the usual (min,+)-tropicalisation.

In [3], Gross-Hacking-Keel-Kontsevich construct a canonical basis Bcan of
C[G/U ] and a regular function W on the associatedX -cluster variety (called poten-
tial) such that for any copy T of (C∗)N+n in the X -cluster variety, Bcan is natural
parametrized by the polyhedral cone CT = {x ∈ [T ]trop | [W

∣∣
T

]trop(x) ≥ 0.}.
There is a well-known classical canonical basis B of C[G/U ] constructed by

Kashiwara and Lusztig, independently. The relation of Bcan and B is an open
question. Both Lusztig’s and Kashiwara’s construction yield parametrizations of
B, one for each reduced word i of w0, in terms of polyhedral cones in NN+n called
the string cone Si and the cone of Lusztig’s parametrization Li, respectively. We
relate the various parametrizations in the following theorem.

Theorem 1 ([2]). For every reduced word i there exists an open torus Ti in the toric
atlas of the X -cluster variety associated to Ge,w0 and explicit lattice isomorphisms
t1 and t2 yielding bijections:

Si
t1−→ CTi

t2←− Li.

Investigating the type A situation further hints at a much deeper relation be-
tween the different combinatorial studies of canonical bases of C[G/U ]. Let from
now on G = SLn+1. By specializing an appropriate set of frozen coordinates to
1 we arise at the cluster variety Le,w0 = U ∩ Be,w0 with partial compactification
given by the unipotent radical U . We denote the corresponding potential by W
and the projections of the tori Ti along the specialized frozen coordinates by T i.

Let fa denote the crystal operator on Lusztig’s parametrization corresponding
to the simple root αa and let

Ra = {v ∈ NN | (λ, fav − v) ∈ Li for a λ ∈ Nn}.

There is an intimate relation between potentials and crystal operations given as
follows.
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Theorem 2 ([1]). The function W
∣∣
T i

is the pullback of r =
∑n

a=1 ra via an explicit

isomorphism of tori, where

ra =
∑

v∈Ra

N∑

j=1

xvi
i ∈ C[x±1

1 , . . . , x±1
N ].

As shown in [2], we have

W
∣∣
Ti

= W
∣∣
T i

+ X

and the summand X of W
∣∣
Ti

is easy to compute explicitly. We obtain as a corollary

of Theorem 2 and the explicit description of the set Ra obtained in [1] that W
∣∣
Ti

is Laurent polynomial without constant term, all coefficients in {0, 1} and all
exponents in {0,−1}. Furthermore we believe that Theorem 2 holds true in the
simply laced situation.
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Non-Levi branching rules via Littelmann paths: a new approach

Jacinta Torres

(joint work with Bea Schumann)

Let g be a semi-simple Lie algebra and h ⊂ g a Cartan subalgebra. Let R ⊂ h∗

be the corresponding root system and X ⊂ h∗ the integral weight lattice. We fix
a choice of simple roots ∆ = {αi}i∈I ⊂ R. This defines a set of dominant integral
weights X+ and a dominant Weyl chamber C+ ⊂ h∗R. For λ ∈ X+, we will denote
the associated simple module of g by L(λ).

1. The Littelmann path model

A Littelmann path model for L(λ) is a set of paths

P(λ) ⊂ {π : π : [0, 1]→ h∗R}

with the following properties:

• The startpoint of a path π ∈ P(λ) is always the origin π(0) = 0.
• The formal character chL(λ) can be written as chL(λ) =

∑
π∈P(λ) e

π(1).
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dominant

πλ

f̃α2
πλ

f̃α1
πλ

f̃α2
f̃α1
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f̃2
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f̃α1
πλ

f̃α1
f̃α2

πλ

f̃2
α1

f̃α2
πλ

f̃α2
f̃2
α1

f̃α2
πλ

Figure 1. A Littelmann path model for the adjoint representa-
tion of g = sl(3,C). The paths contained in the shaded region are
those gJ dominant for J = {2} ⊂ {1, 2} = I

• There exists a unique path πλ ∈ P(λ) that is dominant (i.e. πλ([0, 1]) ⊂
C+) and endpoint πλ(1) = λ. From this path πλ one obtains the rest

of the paths in P(λ) by applying root operators f̃α, one for each simple
root α ∈ ∆, which are defined combinatorially on paths (see [1]). These
operators endow the set P(λ) with the structure of a crystal isomorphic
to B(λ).

Moreover, if we choose any dominant piecewise linear path π′
λ with endpoint

π′
λ(1) = λ, the set of paths obtained by successively applying root operators to it

is also a crystal isomorphic to B(λ). The following two theorems are a sample of
the remarkable properties of P(λ). They were proven by Peter Littelmann in [1].

Generalised Littlewood Richardson rule. Let λ, µ ∈ X+ be two dominant
integral weights. Then the following decomposition holds:

L(λ)⊗ L(µ) =
⊕

η=π∗ν

L(η(1)),

where π ∗ ν denotes the concatenation the paths π and ν.

Levi branching rule. Let J ⊂ I be a subset of simple roots and gJ ⊂ g the
corresponding Levi subalgebra, and λ ∈ X+ a dominant integral weight. Then

resg
gJ L(λ) =

⊕

η∈P(λ)J,+

L(η(1))

where P(λ)J,+ are the paths in a Littelmann path model P(λ) which are dominant
for gJ .
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2. A new approach

Now consider g = sl(2n,C), and let σ : g → g be the automorphism induced by
folding the Dynking diagram along the middle vertex. The fixed point set gσ is a
Lie algebra isomorphic to the symplectic Lie algebra sp(2n,C). If we take h to be
the Cartan subalgebra of diagonal matrices, then the fixed point set hσ is a Cartan
subalgebra for gσ. By restricting the simple roots ασ

i := αi|hσ for i = 1, · · · , n, we
get a set of (simple) roots for (gσ, hσ) and therefore a choice of dominant chamber.
Now, given a path π : [0, 1]→ h∗R, we define a new restricted path

res(π) : [0, 1]→ (hσ)∗R

t 7→ π(t)|hσ .

Consider all of the restricted paths in a path model P(λ) that are dominant for
gσ:

domres(P(λ)) = {η = res(π) : π ∈ P(λ), η is dominant}.

In the following, P(λ) is the Littelmann path model consisting of lattice paths
(see [2]). The proof [3] of Theorem 3 consists in establishing a combinatorial
bijection.

Theorem 3. The following decomposition holds:

L(λ) =
⊕

π∈domres(P(λ))

Lσ(π(1)).

Theorem 3 was conjectured by Naito-Sagaki in [2]. It does not hold for all path
models. The sense behind this mystery, as well as the possibility to generalise to
other Dynkin diagram automorphisms, remain open.
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Spectra of quantum integrable systems, Langlands duality and
category O for quantum affine algebras

David Hernandez

R-matrices give power tools to study the spectra of quantum integrable systems. A
better understanding of transfer-matrices obtained from R-matrices led us to the
proof of several conjectures. Our approach is based on the study of a category O
of representations of a Borel subalgebra of a quantum affine algebra.
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Main motivations (Quantum integrable systems and Langlands duality)
The partition function Z of a (quantum) integrable system is crucial to un-

derstand its physical properties. For important examples, it can be expressed as
Z = Tr(TM ) where T is the transfer matrix and M is the size of system. Therefore,
one needs to find the spectrum of T : the spectrum of the system.

The ODE/IM correspondence (Ordinary Differential Equations/Integrable mod-
els) was discovered at the end of the 90’s (Dorey-Tateo, Bazhanov-Lukyanov-
Zamolodchikov) and gives a surprising relation between functions associated to
Schrödinger differential operators of the form −∂2 + x2M + ℓx−2 (with M > 0
integer and ℓ ∈ C) and the spectrum of quantum systems called ”quantum KdV”.
The functions for the Schrödinger systems are the spectral determinants defined
as coefficients of the expansion of certain solutions with remarkable asymptotical
properties (subdominant solutions) towards a natural basis of solutions.

Feigin-Frenkel [FF] have proposed a large generalization and an interpretation
of this correspondence in terms of Langlands duality. The Schrödinger operators
are generalized to affine opers (without monodromy), associated to Langlands dual
of the affine Lie algebra attached to the quantum KdV system. This conjecture
is largely open, but it is a fruitful source of researches. In particular, a remark-
able system of relations (the QQ̃-system) was observed [MRV] to be satisfied by

spectral determinants of certain solutions of affine opers. These QQ̃-systems are
particularly important as they imply the famous Bethe relations. What is the
explanation for such a system and does it hold on the Integrable Model side ?

1. Category O
Let us consider these questions in terms of representation theory. Let ĝ be an
untwisted affine Kac-Moody algebra and q ∈ C∗ which is not a root of 1. Let
n = rk(g) and for i ∈ I = {1, · · · , n}, qi = qri with Bi,j = riCi,j where C (resp.
B) is the (resp. symmetrized) Cartan matrix of g. Consider the corresponding
quantum affine algebra Uq(ĝ). This is a quantum group of Drinfeld-Jimbo.

Let Uq(b̂) ⊂ Uq(ĝ) be a Borel subalgebra (in the sense of Chevalley). It is a
Hopf subalgebra of Uq(ĝ). A simple finite-dimensional representation of Uq(ĝ) is

still simple when restricted to Uq(b̂). Uq(b̂) has itself a triangular decomposition
deduced from the Drinfeld realization of Uq(ĝ). This lead [HJ] to the definition of

a category O of Uq(b̂)-modules whose weight spaces (for the analog of the finite
type Cartan algebra) are finite-dimensional and whose weights satisfy the same
axiomatic properties as for the usual category O of g.

Theorem 1 [Hernandez-Jimbo, 2012] The simple objects in the category O
are parametrized by n-tuples (fi(z))i∈I of fi(z) ∈ C(z) regular at the origin.

For example, for i ∈ I, a ∈ C∗ we have the prefundamental representation Li,a

associated to Ψi,a = (1, · · · , 1, 1 − za, 1, · · · , 1) with 1 − za in position i. It was
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constructed in [HJ] as (the dual of) a limit of finite-dimensional representations.
For g = sl2 it was constructed explicitly by Bazhanov-Lukyanov-Zamolodchikov.

The Grothendieck ring K0(O) has a very rich structure. In [HL] we used this
category O to obtain new monoidal categorifications of cluster algebras. For g =
sl2 and V simple of dimension 2, we get a Fomin-Zelevinsky mutation relation

(1) [V ⊗ L1,aq] = [ω][L1,aq−1 ] + [−ω][L1,aq3 ].

where a ∈ C∗ and [±ω] are invertible representations of dimension 1. This is a
categorified realization of the Baxter’s TQ-relation. Our cluster algebra framework
lead to a natural generalization (the QQ∗-system established in [HL]) :

[L∗
i,a][Li,a] =

∏

j,Ci,j<0

[Lj,aq−Bj,i ] + [−αi]
∏

j,Ci,j<0

[Lj,aqBi,j ] for i ∈ I, a ∈ C∗,

with [−αi] of dimension 1 and L∗
i,a simple corresponds to Ψ−1

i,a

∏
j,Ci,j<0 Ψj,aq−Bj,i .

2. Transfer-matrices
A very important property of Uq(ĝ) is the existence of the universal R-matrix

R(z) ∈ (Uq(ĝ)⊗̂Uq(ĝ))[[z]],

solution of the Yang-Baxter equation in a (slight) completion of the tensor square.
Given V in the category F of finite-dimensional representations of Uq(g), we have

tV (z) = TrV (πV (z) ⊗ Id)(R) ∈ Uq(ĝ)[[z]],

the transfer-matrix where V (z) is a twist of V for a natural grading of Uq(ĝ) and
TrV is the (graded) trace on V . As a consequence of the Yang-Baxter equation
the coefficients of transfer-matrices generate a commutative subalgebra of Uq(ĝ).

As the first factor of R(z) lies in Uq(b̂), tV (z) can also be defined for V in O.
The transfer-matrix construction gives rise to various families of quantum in-

tegrable systems with an action of K0(F) (and of K0(O)) on a space W . For
XXZ-type models W is a tensor product of simple objects in F and for quantum
KdV models W is the Fock space of a quantum Heisenberg algebra.

A representation V in F has a q-character χq(V ) ∈ Z[Y ±1
i,a ]i∈I,a∈C× [FR]. For

g = ŝl2 and V simple of dimension 2, χq(V ) = Y1,a + Y −1
1,aq2 where a ∈ C∗.

Theorem 2 [Frenkel-Hernandez 2015, conjectured by Frenkel-Reshe-
tikhin 1998] Let V , W as for a XXZ-type model above. The eigenvalues λk of
tV (z) on W are obtained from χq(V ) by replacing each variable Yi,a by a quotient

fi(azq
−1)Qi,k(zaq−1

i )

fi(azqi)Qi,k(zaq)

where the functions fi(z) do not depend on λk and Qi,k is a polynomial.

Our proof [FH1] is based on the study of the category O. We establish relations
in K0(O) generalizing the relation (1) and we prove the transfer-matrix associated
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to Li,a are polynomial on W up to a scalar. For g = sl2 and V of dimension 2, we

recover the Baxter formula λk = A(z)Qk(zq
2)

Qk(z)
+D(z)Qk(zq

−2)
Qk(z)

with A,D universal.

The functions fi(z) can be computed. What about the polynomials Qi,k ?

3. QQ̃-systems and consequences.
The QQ̃-system of [MRV] for two families of functions (Qi(z))i∈I , (Q̃i(z))i∈I is

Qi(zq
−1
i )Q̃i(zqi)−Qi(zqi)Q̃i(zq

−1
i )

=
∏

j|Ci,j<0

Qj(zq
Ci,j+1)Qj(zq

Ci,j+3) · · ·Qj(zq
−Ci,j−1).

Theorem 3 [Frenkel-Hernandez, 2016] There is a natural family of sim-

ple objects L̃i,a (i ∈ I, a ∈ C∗) in the category O such that Qi(z) = [Li,z],

Q̃i(z) = [L̃i,z] satisfy the QQ̃-system in K0(O).

This gives an explanation [FH2] for the results of [MRV]. We also derive infor-
mations on the the root of the Baxter’s polynomials, the Bethe Ansatz equations
conjectured by various authors (see [FR, H]) : for w a (generic) root of Qi,k,

(2) v−1
i

∏

j∈I

Qj,k(wqBi,j )

Qj,k(wq−Bi,j )
= −1,

where the vi are the parameters of the twisted trace. The genericity condition was
dropped by Feigin-Jimbo-Miwa-Mukhin by using the QQ∗-systems as in [HL].
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On the tensor semigroup of affine Kac-Moody Lie algebras

Nicolas Ressayre

In this note, we are interested in the tensor product decomposition of simple rep-
resentations of an untwisted affine Lie algebra. Let ġ ⊃ ḃ ⊃ ḣ be a complex simple
Lie algabra with fixed Borel and Cartan subalgebras. Consider the associated
affine Kac-Moody Lie algebra

g := ġ⊗ C[t±1]⊕ Cc⊕ Cd,

where c is the central element and d the derivation. Let h = ḣ ⊕ Cc⊕ Cd be the
standard Cartan subalgebra of g and h∗ = ḣ∗⊕CΛ⊕Cδ its dual. See [4, Chap. 13]

for more precise definitions. Set P+ be the set λ = λ̇+ ˜lΛ + bδ in h∗ such that λ̇ is

a dominant weight of ḣ, ˜l and b are integers such that 〈λ̇, θ̇∨〉 ≤ ˜l. Here θ̇∨ is the
dual root of the heighest root of ġ. For λ ∈ P+, we denote by L(λ) the integrable

representation of g of heighest weight λ. Given two elements λ1 = λ̇1 + ˜l1Λ + b1δ

and λ2 = λ̇2 + ˜l2Λ + b2δ in P+, the tensor product L(λ1)⊗ L(λ2) decomposes as

L(λ1)⊗ L(λ2) = ⊕µ∈P+
mµ

λ1 λ2
L(µ),

for some multiplicities mµ
λ1 λ2

∈ N.
The first aim of this talk is to describe the set of nonzero multiplicities. One

can easily check that one may assume that

(1) ˜l = ˜l1 + ˜l2;
(2) b1 = b2 = 0;
(3) µ− λ1 − λ2 belongs to the root lattice;

(4) ˜l1 > 0 and ˜l2 > 0.

Set A = {(λ1 = λ̇1 + ˜l1Λ, λ2 = λ̇2 + ˜l2Λ, µ̄ = µ̇ + (˜l1 + ˜l2)Λ) ∈ (P+)3 : ˜l1 >

0 and ˜l2 > 0}. Then S(lg) = {(λ1, λ2, µ̄, b) ∈ A× Z : mµ̄+bδ
λ1 λ2

6= 0} is a semigroup
and

SQ(g) := {(λ1, λ2, µ̄, b) ∈ A⊗Q×Q : ∃N > 0 (Nλ1, Nλ2, Nµ) ∈ S(g)}

is a convex cone, that we are going to describe.
Fix (λ1, λ2, µ̄) ∈ A and consider the formal series in z

F (z) =
∑

b∈Z

mµ
λ1 λ2

zb.

Using the action of a Virazoro algebra, one can show that F (z) has the following
form

F (z) ∈ m0(λ1, λ2, µ̄)zb0(λ1,λ2,µ̄) (1 + Nz−1 + N∗z−2 + N∗z−3 + . . . ),

where m0(λ1, λ2, µ̄) is a positive integer and b0(λ1, λ2, µ̄) ∈ Z. Denote by m0 and

b0 these integers for short. Obviously m0 = mµ̄+b0δ
λ1 λ2

. In particular, by setting

B(λ1, λ2, µ) = sup
N∈Z>0

b0(Nλ1, Nλ2, Nµ̄)

N
,
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one gets SQ(g) = {(λ1, λ2, µ̄, b) ∈ A ⊗ Q × Q : b ≤ B(λ1, λ2, µ̄)}. Our aim is
to determine SQ(g) that is to compute the function B : A −→ R. We need to
introduce some notation.

Let h∗ ⊃ {α0, . . . , αl} =: ∆ be the set of simple roots of g. Fix (̟α∨

0
, . . . , ̟α∨

l
) ⊂

hQ be elements dual to the simple roots. Let W be the Weyl group of g. Let
G be the minimal Kac-Moody group and B its standard Borel subgroup. To
any simple root αi, is associated a maximal standard parabolic subgroup Pi, its
standard Levi subgroup Li, its Weyl group WLi

⊂W and the set WPi of minimal
length representative of elements of W/WLi

. We also consider the partial flag

ind-variety Xi = G/Pi containing the Schubert varieties Xw = BwPi/Pi, for
w ∈ WPi . Let {ǫw}w∈WPi ⊂ H∗(Xi,Z) be the Schubert basis dual to the basis of
the singular homology of Xi given by the fundamental classes of Xw. As defined by
Belkale-Kumar [1, Section 6] in the finite dimensional case, Brown-Kumar defined
in [2, Section 7] a deformed product ⊙0 in H∗(Xi,Z), which is commutative and
associative.

Theorem 1. Let (λ1, λ2, µ) ∈ P 3
+,Q such that λ1(c) > 0 and λ2(c) > 0 that is λ1

and λ2 are not W -stable.
Then, (λ1, λ2, µ) ∈ SQ(g) if and only if

(1) µ(c) = λ1(c) + λ2(c), and

(2) 〈µ, v̟α∨

i
〉 ≤ 〈λ1, u1̟α∨

i
〉+ 〈λ2, u2̟α∨

i
〉

for any i ∈ {0, . . . , l} and any (u1, u2, v) ∈ (WPi)3 such that ǫv occurs with
coefficient 1 in the deformed product ǫu1

⊙0ǫu2
.

Note that the statement makes for any symmetrizable Kac-Moody group. The
finite dimensional case was proved in [1] by Belkale-Kumar. The case of Ã1 is due
to Brown-Kumar [2] that have conjectured that it is true for any symmetrizable
Kac-Moody group.

Let us now explain how the proof works. Consider the projective ind-variety
X = (G/B−)2 × G/B. Given (λ1, λ2, µ̄) ∈ A and b ∈ Z, there is a G-linearized
line bundle L in X such that

H0(X,L) ≃ Hom(L(λ1)∨ ⊗ L(λ2)∨ ⊗ L(µ),C),

by the Borel-Weil theorem (see [4]). Here µ = µ̄ + bδ. Then (λ1, λ2, µ̄, b) ∈ SQ(g)

if and only if H0(X,L)G 6= {0}. Similarly, (λ1, λ2, µ̄, b) ∈ S(g) if and only if

∃N > 0 H0(X,L⊗N )G 6= {0}.

If G has finite dimension this condition is equivalent to the existence semi-
stable points for the action of G on X for the line bundle L. In [1] (see also
[3]), several tools of Geometric Invariant Theory are used to prove the result:
Hilbert-Mumford theorem, Kempf-Rousseau’s optimal one parameter subgroup,
Hesselink stratification. . . We observe that these results have no known equivalent
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in our setting (action of a Kac-Moody group on a projective ind-variety). We use
a completely different strategy that we explain now.

Fix a Schubert data sc = (u1, u2, v, i) as in Theorem 1. An explicit computation
allows to prove that inequality (2) is equivalent to

(3) b ≤ ϕsc(λ1, λ2, µ̄),

for some well defined linear function ϕsc on A. Set

ϕ = inf
sc

ϕsc,

where the infimum is over any sc = (u1, u2, v, i) as in Theorem 1. It reamains
to prove that ϕ = B as functions on A. The fact that the ineaqualities (2) are
fulfilled by the points of S(g) is proved is [2]; this implies that ϕ ≥ B.

Step 1. Show that ϕ is locally piecewise linear.
We use, in this step, inequalities implied by the assumption “ ǫv occurs in the

expansion of ǫu1
.ǫu2

in the Schubert basis”.
Step 1 reduces the proof of the inequality ϕ ≤ B to the set of points (λ1, λ2, µ̄) ∈

A such that ϕ(λ1, λ2, µ̄) = ϕsc(λ1, λ2, µ̄), for some fixed sc = (u1, u2, v, i) as in the
theorem.

Step 2. Reduction for mulitplicities on the boundary.

Set C = Liu
−1
1 B−/B− × Liu

−1
2 B−/B− × Liv

−1B/B; it is a closed subvariety
of X isomorphic to the product of three copies of the complete flag manifold of
the finite dimensional reductive group Li.

Theorem 2. Let αi be a simple root of g. Let (u1, u2, v) ∈ WPi such that ǫv
occurs with coefficient 1 in the deformed product ǫu1

⊙0ǫu2
.

Fix (λ1, λ2, µ̄) ∈ A such that b = ϕsc(λ1, λ2, µ̄) ∈ Z. Let L be the G-linearized
line bundle on X associated to (λ1, λ2, µ̄ + bδ). Then the restriction map induces
an isomorphism

H0(X,L)G ≃ H0(C,L|C)Li .

Step 3. Induction.
Let (λ1, λ2, µ̄, b) ∈ A satisfying all the ineqaulities of Theorem 1 and such that

b = ϕsc(λ1, λ2, µ̄).
It is sufficient to prove that there exists N > 0 such that b0(Nλ1, Nλ2, Nµ̄) =

Nb. By Theorem 2, this is equivalent to

(4) ∃N > 0 H0(C,L⊗N
|C )Li 6= {0}.

By the Belkale-Kumar theorem in the finite dimensional case, it remains to prove
that the line bundle L|C satisfies some explicit inequalities. Working on the con-
dition ǫv occurs with coefficient 1 in ǫu1

⊙0ǫu2
, we prove that inequalities (2) of

Theorem 1 imply the inequalities for L|C .
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Macdonald’s formula for Kac-Moody groups over local fields

Stéphane Gaussent

(joint work with Nicole Bardy-Panse and Guy Rousseau)

The Macdonald’s formula that is discussed here is the one giving the image of the
Satake isomorphism between the spherical Hecke algebra and the ring of symmetric
functions in the context of Kac-Moody groups. If the group is semisimple, the
formula was proven by Macdonald. In the case of an affine Kac-Moody group, it
is a result of Braverman, Kazhdan and Patnaik.

Let F be a local field, denote its ring of integers by O, fix a uniformizer t
and suppose that the residue field is of cardinality q. Let G = G(F) be a (split)
minimal Kac-Moody group over F . Let T ⊂ G be a maximal torus, denote the
Z-lattice of coweights by Y = Hom(F∗, T ), the Z-lattice of coroots by Q∨, and
the real roots of (G, T ) by Φ. Let W be the Weyl group of (G, T ).

To these data, Guy Rousseau in [6] associate a masure I = I(G,F), which is
a generalization of the Bruhat-Tits building. The masure I is covered by apart-
ments, all isomorphic to the standard one A = Y ⊗Z R. The group G acts on I
such that K := StabG(0) = G(O). The preorder associated to the positive Tits
cone in A extends to a G-invariant preorder ≥ on I. Then G+ = {g ∈ G | g ·0 ≥ 0}
is a subsemigroup of G and we show in [4] that

G+ =
⊔

λ∈Y ++

KtλK,

where Y ++ is the set of dominant coweights. Note that G+ = G if, and only if,
G is semisimple. Let cλ be the characteristic function of the double coset KtλK.
The spherical Hecke algebra is the set

sH = {ϕ =
∑

λ∈Y ++

aλcλ | supp(ϕ) ⊂ ∪ni=1µi −Q∨
+, µi ∈ Y ++}

where the algebra structure is given by the convolution product. Consider now the
Looijenga’s coweights algebra Z[q±1][[Y ]], with the same kind of support condition
as above. We show in [4] using an extended tree inside the masure I the following

Theorem. The spherical Hecke algebra sH is isomorphic, via the Satake iso-
morphism S, to the commutative algebra Z[q±1][[Y ]]W of Weyl invariant elements
in Z[q±1][[Y ]].
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Now, to compute the image S(cλ) of cλ by the Satake isomorphism, we use
essentially an idea of Casselmann [3]: write S(cλ) as a sum (indexed by the Weyl
group W ) of more simple elements Jw(cλ) and then compute these Jw(cλ). Origi-
nally this decomposition as a sum was obtained using intertwinning operators; this
same idea was still used in [2] for the affine case. Here we get this decomposition
using our interpretation of S(cλ) with paths in the masure, and we are able to
prove a recursive formula for the Jw(cλ), still only using the masure.

Independently, we introduce some algebraic symmetrizers deduced from the
Bernstein-Lusztig-Hecke algebra BLH, which was defined in [1] as an abstract
version of the affine Iwahori-Hecke algebra of the Kac-Moody group. This involves
the definition and study of a representation of BLH (due to Cherednik, see also
Macdonald [5]) leading to a general Kac-Moody version of Cherednik’s identity.
In this representation, one of the symmetrizers satisfies the same recursive formula
as for the Jw(cλ). Comparing the first terms on both sides, we are able to prove
the Macdonald’s formula. To state it, set

∆ =
∏

α∈Φ+

1− q−1e−α∨

1− e−α∨
,

W (q−1) =
∑

w∈W q−ℓ(w) and Wλ(q−1) =
∑

w∈Wλ
q−ℓ(w), where Wλ = StabW (λ).

Of course, we have to pay attention since we are dealing with infinite sums or
products and there are some completions to be considered, in order that these
expressions make sense.

Macdonald’s formula. Let λ ∈ Y ++. Then

S(cλ) = qρ(λ)
(

W (q−1)∑
w∈W

w∆

)(∑
w∈W

w∆.ewλ

Wλ(q−1)

)
,

where ρ is a root taking value 1 on each simple coroot.

Actually, our result is still valid in the more general framework of an abstract
masure as defined in [6]. In particular, we can deal with the case of an almost
split Kac-Moody group over a local field and we may have unequal parameters in
the definition of the Hecke algebras.

The right hand side of the equality is the Hall-Littlewood polynomials Pλ(t)
defined by Viswanath [7] in this context, where its t corresponds to our q−1. In
particular, Pλ(0) is the character of the irreducible representation V (λ) of highest
weight λ of the Langlands dual Kac-Moody group.

Finally, the factor m = W (q−1)∑
w∈W

w∆ is equal to 1 in the finite dimensional setting.

Whereas, in the affine setting, m has an expression as an infinite product involving
the minimal positive coroot and the exponents of the underlying semisimple group.
In the general Kac-Moody case, no such formula is known. However, it would be
very interesting to get one to study Eisenstein series on Kac-Moody groups.
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Representation ring of Levi subgroups versus cohomology ring of flag
varieties

Shrawan Kumar

Let us begin by recalling the classical result that the cup product structure con-
stants for the singular cohomology with integral coefficients H∗ of the Grassman-
nian of r-planes coincide with the Littlewood-Richardson tensor product structure
constants for GLr. Specifically, the result asserts that there is a Z-algebra homo-
morphism φ : Reppoly(GLr) → H∗(Gr(r, n)), where Gr(r, n) denotes the Grass-
mannian of r-planes in Cn, Reppoly(GLr) denotes the polynomial representation
ring of GLr and φ takes the irreducible polynomial representation V (λ) of GLr

corresponding to the partition λ : λ1 ≥ · · · ≥ λr ≥ 0 to the Schubert class ǫvA(λ)

corresponding to the same partition λ if λ1 ≤ n− r, where vA(λ) is a certain Weyl
group element associated to λ. If λ1 > n− r, then φ(V (λ)) = 0.

This work seeks to achieve one possible generalization of this classical result for
GLr and the Grassmannian Gr(r, n) to the Levi subgroups of any reductive group
G and the corresponding flag varieties.

Let G be a connected reductive group over C with a Borel subgroup B and
maximal torus T ⊂ B. Let P be a standard parabolic subgroup with the Levi
subgroup L containing T . Let W (resp. WL) be the Weyl group of G (resp. L).
Let V (λ) be an irreducible almost faithful representation of G with highest weight
λ (i.e., the corresponding map ρλ : G → Aut(V (λ)) has finite kernel). Then,
Springer defined an adjoint-equivariant regular map with Zariski dense image θλ :
G → g (depending upon λ). Then, θλ takes the maximal torus T to its Lie
algebra t. This induces a C-algebra homomorphism (θλ|T )∗ : C[t] → C[T ] on the
corresponding affine coordinate rings. Since θλ is equivariant under the adjoint
actions, (θλ|T )∗ takes C[t]WL = S(t∗)WL to C[T ]WL . Moreover, (θλ|T )∗ is injective.

Let RepC(L) be the complexified representation ring of the Levi subgroup L. As
it is well known,

RepC(L) ≃ C[T ]WL
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induced from the restriction of the character to T . We call the image of C[t]WL

under (θλ|T )∗, the λ-polynomial subring RepC
λ−poly(L) of RepC(L).

For G = GLn and V (λ) the defining representation Cn, the ring

Repλ−poly(G) := RepC
λ−poly(G) ∩ Rep(G) coincides with the standard notion of

polynomial representation ring of GLn.
The Borel homomorphism β : S(t∗) → H∗(G/B,C) (which is surjective) from

the symmetric algebra of t∗ restricticted to the WL-invariants gives a surjective
C-algebra homomorphism βP : S(t∗)WL → H∗(G/P,C). Thus, we get a surjective

C-algebra homomorphism ξPλ : RepC
λ−poly(L) → H∗(G/P,C), which is our main

result.
Specializing the above result to the case when G = GLn, λ is the first fun-

damental weight (so that V (λ) is the standard defining representation Cn) and
P = Pr (for any 1 ≤ r ≤ n− 1) is the maximal parabolic subgroup so that the flag
variety G/Pr is the Grassmannian Gr(r, n), we recover the above classical result.

We determine the λ-polynomial representation ring RepC
λ−poly(G), for λ the first

fundamental weight ω1 (i.e., V (λ) is the defining representation) of the classical
groups: SOn, Sp2n. In this case, the Springer morphism coincides with the classical
Cayley transform. Recall that the defining representations of the classical groups
have minimum Dynkin index. We believe that for the exceptional groups as well,
the irreducible representation V (λ) with minimum Dynkin index might be most
‘appropriate’ to consider the Springer morphism. Recall that for the exceptional
groups: G2, F4, E6, E7, E8, the representation V (λ) has minimum Dynkin index
for λ = ω1, ω4, ω1 (and ω6), ω7, ω8 respectively.

We partially determine the homomorphism ξPλ : RepC
λ−poly(L) → H∗(G/P,C)

(with respect to the defining representation: λ = ω1) for all the maximal parabolic
subgroups P in the classical groups Sp2n, SO2n+1 and SO2n.

We determine the homomorphism ξBω1
: RepC

ω1−poly(T ) → H∗(G/B,C) for the
Borel subgroups B in the classical groups Sp2n, SO2n+1 and SO2n. (In this case,
T is of course the Levi subgroup of B.)
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Non commutative algebra and invariant theory

Claudio Procesi

(joint work with E. Aljadeff, A. Giambruno, and A. Regev)

Abstract. Polynomial identities are at the crossroad between Non commutative
Algebra and Representation Theory. I will point out some of the main aspects
of the theory, also as advertisement of a forthcoming book: Rings with polyno-
mial identities and finite dimensional representations of algebras E. Aljadeff, A.
Giambruno, C. Procesi, A. Regev

A basic tool in algebra, which is also the basis of most algorithms and computer
programs is Symbolic calculus.

In my talk I discuss only non commutative associative algebras for which we
need to use non commutative polynomials.

Polynomial identities

Definition A non zero non commutative polynomial f(x1, . . . , xm) ∈ F 〈X〉 is
a polynomial identity for an algebra R if it vanishes identically when computed
in R.

(1) Which algebras satisfy polynomial identities?
(2) In other words what are the implications of the existence of some polyno-

mial identities on an algebra?
(3) Which are the polynomial identities of a given algebra? For instance a

matrix algebra.
(4) What about the resulting symbolic calculus?

The theory was prompted by Kurosh problem
The Burnside problem posed by William Burnside in 1902: Is every finitely

generated torsion group G finite?
Kurosh is every finitely generated algebraic algebra A, over a field F , finite

dimensional?
Both solved in the negative In 1964, Golod and Shafarevich.
In the bounded Kurosh problem one assumes that every element x ∈ A satisfies

some polynomial xn + a1x
n−1 + . . . + a1x = 0, ai ∈ F for fixed n.

The bounded Burnside problem has sometimes a positive sometimes a negative
answer while the bounded Kurosh problem has always a positive answer: An
algebraic algebra of bounded degree satisfies a polynomial identity (Jacobson).

A finitely generated algebraic algebra A which satisfies a polynomial identity is
finite dimensional. (Levitzki and Kaplansky).
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The theory of polynomial identities mixes methods of commutative algebra
with methods of finite dimensional algebras. The blending agent is representation
theory and invariant theory.

The algebra Mn(A) of n × n matrices over a commutative ring A is the basic
example. The identity of minimal degree is given by the

Theorem [Amitsur–Levitzki] The algebra of n× n matrices over any commu-
tative ring A satisfies the standard polynomial St2n

St2n :=
∑

σ∈S2n

ǫσxσ(1) . . . xσ(2n)

The free algebra F 〈x1, . . . , xm〉 modulo the ideal Jn of polynomial identities
of n× n matrices should be thought of as the algebra of polynomial functions of
matrix variables.

• F 〈ξ1, . . . , ξm〉 is an integral domain (Amitsur).
• F 〈ξ1, . . . , ξm〉 has a quotient division algebra of fractions D(m,n) of di-

mension n2 over its center Z(m,n) (Amitsur).
• Z(m,n) is the field of rational functions on the space Mn(F )m of m–tuples

of matrices, invariant under conjugation (Procesi).

This suggests to study the ring of polynomial functions F : Mn(F )m →Mn(F )
which are equivariant under conjugation.

f(gX1g
−1, . . . , gXng

−1) = gf(X1, . . . , Xn)g−1, ∀g ∈ GL(n, F ).

We can thus consider

(1) The ring T of invariants generated by all the coefficients of the charac-
teristic polynomials of elements f of F 〈ξ1, . . . , ξm〉, in fact generated just
when f is a primitive monomial.

(2) The ring T 〈ξ1, . . . , ξm〉 generated by F 〈ξ1, . . . , ξm〉 and T .
(3) We have natural inclusions

F 〈ξ1, . . . , ξm〉 ⊂ T 〈ξ1, . . . , ξm〉 ⊂ D(m,n).

A MAIN THEOREM is that T 〈ξ1, . . . , ξm〉 equals the algebra of polynomial
functions F : Mn(F )m →Mn(F ) which are equivariant under conjugation.

This is a finitely generated module over the ring T (m,n) := T of polynomial
functions F : Mn(F )m → F which are invariant under conjugation.

The spectrum of T (m,n) The ring of invariants T parametrizes equivalence
classes of n–dimensional semi–simple representations of the free algebra in m vari-
ables.

Except for the trivial case n = 1 or n = m = 2, its smooth part parametrizes
irreducible n–dimensional representations. We call this smooth variety X(m,n).

The spectrum of a PI (polynomial identity) algebra
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1. spectrum

For PI algebras one has several theorems which resemble the theorems of com-
mutative algebra, the main difference is that the spectrum is divided into natural
strata, let us see it in a special case.

Nullstellensatz Let R = F [a1, . . . , am] be a a finitely generated algebra over F
algebraically closed and satisfying a PI of degree 2d then.

Theorem[Nullstellensatz Procesi–Razmyslov] If M is a maximal ideal of R
then R/M ∼Mk(F ), k ≤ d.
∩M maximal idealM is a maximal nilpotent ideal.
The spectrum of generic matrices Denote the spectrum of m generic n × n

matrices by Y (m,n) then

Y (m,n− 1) ⊂ Y (m,n), Y (m,n) \ Y (m,n− 1) = X(m,n)

recall X(m,n) is a smooth variety parametrizing irreducible n–dimensional repre-
sentations of the free algebra in m variables. As a consequence for the spectrum
we have:

Y (m,n) = ∪ni=1X(m, i).

Azumaya algebras An Azumaya algebra R over its center Z of fixed rank n2 is
a non split form of matrices that is an algebra which, under a faithfully flat (even
étale) extension of its center Z ⊂ B, becomes matrices

R⊗Z B = Mn(B).

It should be though of geometrically as a a principal PGL(n, F ) bundle over
Spec(Z).

Theorem[Artin] Assume that R is an algebra which satisfies all polynomial
identities of n× n matrices for some n.

Assume further that there is no quotient R/I which satisfies a polynomial iden-
tity of n− 1× n− 1 matrices which is not an identity of n× n matrices. Then R
is a rank n2 Aumaya algebra over its center Z.

Finally a relatively free algebra that is a free algebra with finitely many variables
modulo a non–zero T –ideal, has a nilpotent radical and modulo this it is an algebra
of generic matrices. The entire algebra has a finite canonical filtration such that
the factors are finitely generated modules over rings of invariants of matrices.
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Département de Mathématiques
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École Polytechnique Fédérale de
Lausanne
SB MATHGEOM GR - TES
Station 8
1015 Lausanne
SWITZERLAND



Algebraic Groups 1347

Dr. Jacinta Torres

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstrasse 22 - 26
04103 Leipzig
GERMANY

Prof. Dr. Eric Vasserot

Equipe de Theorie de Groupes
Université Paris VII
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