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Introduction by the Organisers

The workshop

“O-minimality and its Applications to Number Theory and Analysis”

was organized by (in alphabetical order):

• Tobias Kaiser (University of Passau)
• Jonathan Pila (University of Oxford)
• Patrick Speissegger (McMaster University)
• Alex Wilkie (University of Manchester)

There were 52 participants, many of whom are working on o-minimality with
an eye on applications. A significant number of them are number theorists and
analysts who use o-minimality in their work. The resulting interactions between
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these fields were well reflected in the lectures. Overall there were 27 talks, including
10 shorter ones by junior participants.

One main focus of the workshop was on the Pila-Wilkie Theorem, which es-
tablishes a subpolynomial bound for the number of rational points, in terms of
their height, on sets definable in o-minimal structures. In recent years, this result
has had a deep impact on the study of unlikely intersections in diophantine ge-
ometry. In several of the talks new aspects of the Pila-Wilkie theorem and new
improvements on the respective bounds were presented. One highlight along these
lines was the proof of the Wilkie conjecture (claiming poly-logarithmic bounds) in
the case of the real field with the restricted exponential and sine functions. Other
talks, notably by junior number theorists, described applications of the Pila-Wilkie
Theorem and o-minimality to diophantine problems related to Manin’s and the
André-Oort conjectures, in the settings of elliptic curves or Shimura varieties.

Another main topic of the workshop was that of general o-minimal geometry.
In the corresponding lectures we saw, among others, a new and very useful decom-
position of sets definable in o-minimal structures into a special type of cells and
a classification of definable surface singularities. For these results, combinatorial
topological concepts turned out to play a major role.

How tame geometric properties of o-minimal structures lead to new insights in
analysis was the third main topic of the workshop. Researchers presented their
related work on integration, differentiability spaces and trajectories of vector fields.

The workshop schedule allowed for lively discussions and fruitful exchanges
between participants. The organizers also took advantage of the Simons Visiting
Professor program: Ta Lê Loi from the University of Dalat in Vietnam visited the
University of Passau for two weeks before the workshop, and Chris Miller from
The Ohio State University in Columbus, Ohio, visited the universities of Konstanz
and Savoie-Mont Blanc in the two weeks following the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Ta Lê Loi and Chris Miller in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

Expansions of the real field by real entire functions

Chris Miller

(joint work with Ovidiu Costin, Rodica Costin)

This is a preliminary report of some ongoing work. The reader is assumed to be
familiar with the notions of expansions of the real field R (see [2] for an introduc-
tion). Recall that an expansion of R is o-minimal if every definable sets has only
finitely many connected components.

We are interested in expansions of R by transcendental real entire functions,
that is, nonpolynomial functions R → R given by power series

∑
cnx

n having
infinite radius of convergence. We begin by considering simple infinite products.

Let ā := (an) be an increasing and unbounded sequence of positive real numbers
such that

∑
(1/an) < +∞, where the indices range over either the nonnegative

integers or the positive integers according to convenience. Then

F :=
∏(

1 +
z

an

)
: C → C

is entire, transcendental, real on real, and positive on (−a0,+∞). We are inter-
ested in the differential algebraic, asymptotic and model-theoretic properties of F
regarded as a real function, and the interplay of these properties.
The first question: What can be said about structures of the form (R, F ↾[R,+∞))
for R ∈ R? Currently we know of only two verified outcomes:

(O). For every R ∈ R, (R, F ↾[R,+∞)) is o-minimal.
(PH). For every R ∈ R, (R, F ↾[R,+∞)) defines the set Z (hence also all real

projective sets).

Each of these can be studied by starting with G := (zF ′/F )′ instead of F , for if
(R, G↾[R,+∞)) defines Z, then so does (R, F ↾[R,+∞)), and if (R, G↾[R,+∞))
is o-minimal, then so is (R, F ↾[R,+∞)) (by Pfaffian closure [6]). Some cau-
tion is in order: If (R, F ↾[R,+∞)) is o-minimal, then so is (R, G↾[R,+∞)), but
(R, F ↾[R,+∞)) can define Z while (R, G↾[R,+∞)) does not.

Why work with G instead of F? For one thing, it is technically more convenient:
G =

∑
an(z+an)−2, so we deal with a sum instead of a product. More interesting

is that subtle asymptotics of F can be easier to detect in G. Indeed, a new possible
outcome is witnessed:

(D). There exists α > 1 such that, for every R ∈ R, (R, G↾[R,+∞)) defines
αZ := {αk : k ∈ Z }, and every subset of R definable in (R, G↾[R,+∞))
either has interior or is a finite union of discrete sets.

Some examples are in order.
It follows easily from the factorization of sinπz that (R, F ↾[R,+∞)) is interde-

finable with (R, ex) if ā = (n2), and so (O) holds for F .
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By further tricks based on the factorization of sinπz, (PH) holds if ā = (ns)
and s is an even integer > 2, even with G in place of F .

If α > 1 and ā = (αn), then (D) holds. This is far from obvious, but via some
classical complex analysis, it is easy to see that (R, G↾[R,+∞)) defines αZ and
G↾[R,+∞) is definable in the structure (Ran, α

Z), which is known to satisfy the
condition on the definable subsets of R (and much more; see [5]).

We currently do not know the status of any ā = (ns) for s > 2 that is not an
even integer, but we suspect (O). The situation is subject to perturbation of the
“base structure”: By results from [3], there is an o-minimal structure R on R such
that:

• if 1 < s ≤ 2 and ā = (ns), then F ↾[R,+∞) is definable in R;
• if 1 < s < 2 and ā = (ns), then G↾[R,+∞) is not definable in (Ran, e

x);
• if s > 2 and ā = (ns), then (PH) holds with R in place of R.

As establishing o-minimality can be rather difficult, a reasonable precursor is to
check whether F generates a Hardy field. To put this another way, given N ∈ N

and p ∈ R[X,Y0, . . . , YN ], if the function p(x, F, F ′, . . . , F (N)) is not identically
equal to 0, must its zero set be bounded above? By well-known Hardy field
technology, it is enough to show that G generates a Hardy field. We are currently
working to show that this holds for any ā = (ns) with s > 2 and not an even
integer. Of course, we are also looking to detect when F does not generate a
Hardy field. We have results in this direction if the growth of ā is fast enough.
To illustrate, if lim infn→+∞(an+1/an) > 100, then F does not generate a Hardy
field and (PH) holds (we do not yet know in this generality what happens with G
except that it does not generate a Hardy field).

An associated notion in this setting is whether F is differentially algebraic
(DA), that is: Is there N ∈ N and 0 6= p ∈ R[X,Y0, . . . , YN ] such that the function
p(x, F, F ′, . . . , F (N)) is identically equal to 0? (Again, it suffices to work with G
instead of F .) There is much on this topic in the literature, but something we
could not find: If s ∈ (1,+∞) \ N and ā = (ns), is G not DA? We think so, and
are working on a proof. It is known [1] that G is not DA if s is an odd integer
> 1, but the proof does not extend in any obvious way to the noninteger case.
Generally speaking, faster growth of ā is linked to a greater likelihood of failure of
DA: It has long been known that F is not DA if its power series at the origin has
sufficiently large gaps; it is easy to force this via fast enough growth of ā.

Aside from known results from classical complex analysis and the aforemen-
tioned work [3], there are two main techniques we employ: (1) For defining Z, the
main tool is “dimensional coincidence” [4] (but it would take us too far afield to
explain this here). (2) For dealing with the (ns), we have

F ′(x)

F (x)
= − 1

2x
+

csc(π/s)

π/s
x

1

s−1 + 2
∑

n>0

∫ ∞

0

cos(2πnt)

x+ ts
dt, x > 0



O-Minimality and its Applications to Number Theory and Analysis 1355

(say, by Poisson summation). Hence, the point is to understand the sum, which
can be approached by writing

2
∑

n>0

∫ ∞

0

cos(2πnt)

x+ ts
dt =

∑

n>0

∫ ∞

0

ei2πnt

x+ ts
dt+

∑

n>0

∫ ∞

0

e−i2πnt

x+ ts
dt

and proceeding by appropriate contour integrations.
So far, we have only considered the case s > 1. But of course, if 0 < s < 1, then

there is a canonical Weierstrass product with zero sequence (ns). It is easy to see
that for s = 1 the resulting F ↾(0,∞) is interdefinable over R with Γ↾(0,∞), which
is known to be definable in the previously-mentioned structure R. Currently, it is
open as to whether R defines the canonical product (restricted to (0,∞)) for the
sequence (ns) if 0 < s < 1.

One can ask about (R, F ) (as opposed to the (R, F ↾[R,+∞)), but I am nearly
sure it defines Z (no further assumptions on ā). More interesting, at least po-
tentially, are the (R, F ↾(−∞, R]). Evidently, none of them are o-minimal, and it
is easy to see that some of them define Z simply because their zero sets do (in
particular, ā = (ns) for any s > 1). But perhaps some of them satisfy something
like condition (D), say, if α > 1 and ā = αn. To put this another way, what can be
said about the expansion of R by

∏
(1−α−nx), x ≥ 0? Of course, αZ is definable,

but what else is (or is not)?
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Counting Rational Points near Definable Sets

Philipp Habegger

The versatile theorem of Pila and Wilkie [3] counts rational points of bounded
height that lie on a set that is definable in an o-minimal structure over R. It
extends earlier results of Jarńık, Bombieri–Pila, and others. Let us fix the height
of a rational number a/b with a, b ∈ Z coprime integers and b ≥ 1 to be max{|a|, b}.
The height of (q1, . . . , qn), where each qi is rational, is max1≤i≤nH(qi). Here is
a special case of their theorem, for the sake of simplicity we avoid definable sets
that contain real semi-algebraic curves.
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Theorem 1 (Pila–Wilkie). Let X ⊂ Rn be definable in an o-minimal structure
over R and suppose that X does not contain a real semi-algebraic curve. For all
ǫ > 0 there exists a constant c = c(X, ǫ) > 0 such that

#{q ∈ X ∩Qn : H(q) ≤ T } ≤ cT ǫ

for all T ≥ 1.

From the point of view of transcendence theory it is natural to ask if a quali-
tative statement can be made qualitative. For example, Lambert proved that π is
irrational. In somewhat cumbersome terms, this can be reformulated as∣∣∣π − a

b

∣∣∣ > 0

for all integers a and b 6= 0. Mahler made the irrationality of π qualitative by
showing ∣∣∣π − a

b

∣∣∣ > 1

b42
,

at least for b ≥ 1 large enough.
Following this line of thought motivates the following theorem [2]. Instead of

counting points on a definable set, we count points that lie near one. We wish
the proximity to be polynomial in terms of the height, just as in Mahler’s result.
For a point x ∈ Rn we let |x| denote the maximum of the absolute value of the
coordinates.

Theorem 2. Let X ⊂ Rn be a closed set that is definable in a polynomially
bounded o-minimal structure over R and suppose that X does not contain a real
semi-algebraic curve. For all ǫ > 0 there exist constants c = c(X, ǫ) > 0 and
λ = λ(X, ǫ) > 0 such that

#
{
q ∈ Qn : H(q) ≤ T and there is x ∈ X with |q − x| ≤ T−λ

}
≤ cT ǫ

for all T ≥ 1.

We must assume that the ambient o-minimal structure is polynomially bounded
to exclude counterexamples coming from the exponential function. For example,

(1) {(x, e−1/x) : x ∈ (0, 1]} ∪ {(0, 0)}
is closed and definable in the structure over the reals generated by the graph of
the exponential function restricted to the reals (which was identified as being o-
minimal by Wilkie). The set (1) contains no real semi-algebraic curve. For an
integer b ≥ 1 the rational point (1/n, 0) has distance at most e−n to (1). This
upper bound is less than any fixed power of T−1 when T ≤ 2H(1/n, 0) = n and
n is large enough. Letting n range over integers in [T/2, T ] we get roughly T/2
rational points of height at most T that approximate (1) to any given fixed power
of T−1.

The proof of Theorem 2 follows the general induction scheme laid out by Pila
and Wilkie [3]. Indeed, we can also allow X to contain a real semi-algebraic
set. But to get the correct counting estimate, we shall avoid those x that are
sufficiently close, in terms of T , to a connected real semi-algebraic set of positive
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dimension contained in X . One stumbling block towards applying the Pila–Wilkie
strategy directly is that the constant c in our theorem is not uniform over a family
of definable sets. This looks troubling, as the proof strategy requires a uniform
statement to complete an induction step. The failure to being uniform can be
traced back to the fact that the  Lojasiewicz inequality is not uniform in a suitable
sense.

Let us consider a simple example to see how uniformity fails in the  Lojasiewicz
inequality. We consider X = [−2, 2]2 and choose the function f(y, x) = x2+y2−1.
The zero set of f is the unit circle Z. If (y, x) ∈ X is such that |f(y, x)| is small,
then  Lojasiewicz’s Inequality, as in 4.14(2) [1], implies that (y, x) is close to Z. In
fact, the distance dist((y, x), Z) of (y, x) to Z satisfies

dist((y, x), Z) ≤ c|x2 + y2 − 1|δ

for constants c > 0 and δ > 0 that are independent of (y, x).
Things change when we consider [−2, 2]2 as a family parametrized by the first

coordinate. We restrict f(y, x) to the fiber [−2, 2] above y. The zero-set Zy of f
restricted to the fiber are the possible roots of x2 + y2 − 1 as a polynomial in x.

By an application of the  Lojasiewicz inequality mentioned above there are con-
stants cy > 0 and δy > 0 such that

(2) min{1, dist(x, Zy)} ≤ cy|x2 + y2 − 1|δy

for all (y, x) ∈ [−2, 2]; the distance is +∞ if Zy = ∅ and then the minimum is 1.
If y > 1 is fixed, x 7→ x2 +y2−1 does not vanish on [−2, 2], and so the left-hand

side of (2) is 1. But for x = 0 the value |y2−1| is arbitrarily small as y approaches
1 from the right. Therefore, cy and δy cannot both be bounded from below by
a positive constant that is independent of y. At the core, the problem is that
the modified distance (y, x) 7→ min{1, dist(x, Zy)} is not continuous on [−2, 2]2.
Indeed, Zy is empty for y > 1 but non-empty if y ∈ [−1, 1]. So on restricting to
x = 0, the modified distance jumps from 1 to 0 as y converges to 1 from the right.

We remedy this problem by working with a replacement of  Lojasiewicz’s in-
equality that is tailored to our problem. Roughly speaking, when working in
families, we need to have the freedom to jump to a nearby fiber. The number of
possible fibers is bounded uniformly over the family.

If X is a subset of Rm ×Rn and y ∈ Rm, then we let Xy denote the projection
of X ∩ {y} × Rn to Rn. Here is a special case of our result (in fact we need to
allow f to vary over polynomials of fixed degree as well).

Proposition 1. Let f be a polynomial with real coefficients and in n variables.
Let X ⊂ Rm ×Rn be compact and definable in a polynomially bounded o-minimal
structure. There exist c = c(Z) ∈ (0, 1] and a rational number δ = δ(Z) ∈ (0, 1]
with the following property. If y ∈ Rm there are y1, . . . , yN ∈ Rm with N ≤ c−1

such that for all x ∈ Zy with |f(x)| ≤ c there is i ∈ {1, . . . , N} and x′ ∈ Zyi with
f(x′) = 0 and |(yi, x′) − (y, x)| ≤ |f(x)|δ .
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Curve-rational functions

Krzysztof Kurdyka

(joint work with János Kollár and Wojciech Kucharz)

In my talk I have explained some results from [1]. Let X ⊂ Rn be an algebraic
set. We are interested in real-valued functions, defined on some subset of X , that
are restrictions of regular functions or rational functions on X . First let me recall
the precise definition.

Let f : W → R a function defined on some subset W ⊂ X . We say that f
is regular at a point x ∈ W if and only if there exist two polynomials p, q ∈
R[x1, . . . , xn] such that q(x) 6= 0 and f = p/q on W ∩ {q 6= 0}. Moreover, f is
called a regular function if it is regular at every point in W

Denoting by Y the Zariski closure of W in X , we see that f is regular at x if
and only if f |W∩Yx = Fx|W∩Yx for some regular function Fx defined on a Zariski
open neighborhood Yx ⊂ Y of x.

We say that f is a rational function if there exist a Zariski open dense subset
Y 0 ⊂ Y and a regular function F on Y 0 with f |W∩Y 0 = F |W∩Y 0 . Clearly, each
regular function on W is also a rational function.

While the definition makes sense for an arbitrary subset W , it is sensible only
if W contains a sufficiently large portion of Y . The key examples of interest are
open subsets and semialgebraic subsets, in particular the case W = X .

We are mainly interested in continuous rational functions on W , that is, con-
tinuous functions (for the Euclidean topology) which are also rational.

The function f : R2 → R, defined by

f(x, y) =
x3

x2 + y2
for (x, y) 6= (0, 0) and f(0, 0) = 0,

is continuous rational but it is not regular at (0, 0).
The function g(x, y) = 1/(1 + x2 + y2) is regular on R2.
Consider the curve C = {(x3 − y2 = 0} ⊂ R2 and the functions f , g defined on

C by

f(x, y) =
y

x
for (x, y) 6= (0, 0) and f(0, 0) = 0,

g(x, y) =
x

y
for (x, y) 6= (0, 0) and g(0, 0) = 0.

Then f is continuous rational, whereas g is rational but it is not continuous at
(0, 0).
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Regular functions on W = X are, of course in common use in algebraic ge-
ometry. On the other hand, continuous rational functions on W = X have only
recently become the object of serious research, see e.g., [2, 3, 4, 5] and [1] for an
exhaustive bibliography on the subject.

Several examples discussed in [2, 4] show that continuous rational functions on
W = X behave in a rather unusual way. To eliminate some unexpected and un-
desirable phenomena a more restrictive notion of rational function was introduced
in [2]. Following [2] we say that a function f : W → R is hereditarily rational if for
every real algebraic subset Z ⊂ X , the restriction f |W∩Z is a rational function.

If X is nonsingular, then every continuous rational function on W = X is
hereditarily rational [2, Proposition 8], hence it is regulous in the sense of [3]. It
is not the case for singular varieties. We now recall [2, Example 2]. The algebraic
surface

S := (x3 − (1 + z2)y3 = 0) ⊂ R3

is an analytic submanifold of R3 and the function f : S → R, defined by
f(x, y, z) = (1 + z2)1/3, is analytic and semialgebraic. Furthermore, f is a con-
tinuous rational function on S since f(x, y, z) = x/y on S without the z-axis. On
the other hand, f restricted to the z-axis is not a rational function. Thus f is not
hereditarily rational.

It turns out that hereditarily rational functions can be characterized by restric-
tions to irreducible real algebraic curves.

A function f : W → R is said to be rational on algebraic curves if for every
irreducible real algebraic curve C ⊂ X , the function f |W∩C is rational. If, in
addition, f |W∩C is continuous, then f is said to be continuous rational on algebraic
curves or curve-rational for short.

Our main result on curve-rational functions is the following.

Theorem 1. Let X be a real algebraic set and let W ⊂ X be a subset that is
either open or semialgebraic. For a function f : W → R, the following conditions
are equivalent:

(1) f is continuous and hereditarily rational.
(2) f is curve-rational.

A function on Rn that is rational on algebraic curves need not be rational.
In [1, Section 4] we give a detailed description of relationships between hered-

itarily rational functions (not necessarily continuous) and functions rational on
algebraic curves.

It is convenient to have the following local variants of the previous notions. A
function f : W → R is said to be continuous rational on algebraic arcs or arc-
rational for short if for every point x ∈ W and every irreducible real algebraic
curve C ⊂ X , with x ∈ C, there exists an open neighborhood Ux ⊂ W of x such
that f |Ux∩C is a continuous rational function.

Clearly, any curve-rational function is arc-rational. The converse does not hold
for a rather obvious reason. For instance, consider the hyperbola H := (xy − 1 =
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0) ⊂ R2. Any real-valued function on H that is constant on each connected
component of H is arc-rational, but it must be constant to be rational.

Our main result on arc-rational functions concerns functions defined on con-
nected open sets that avoid singularities. Let X be a real algebraic set. We say
that an open subset U ⊂ X is smooth if it is contained in X \ S(X), where S(X)
stands for the singular locus of X .

Theorem 2. Let X be a real algebraic set and let U ⊂ X be a connected smooth
open subset. For a function f : U → R, the following conditions are equivalent:

(1) f is continuous and hereditarily rational.
(2) f is arc-rational.

The main properties of arc-rational functions on semialgebraic sets can be sum-
marized as follows.

Theorem 3. Let X be a real algebraic set and let f : W → R be an arc-rational
function defined on a semialgebraic subset W ⊂ X. Then f is continuous and
there exists a sequence of semialgebraic sets

W = W0 ⊃W1 ⊃ . . . ⊃Wm = ∅
which are closed in W , such that f is a regular function on each connected com-
ponent of Wi \ Wi+1, for i = 0, . . . ,m − 1. In particular, f is a semialgebraic
function.

We also establish a connection between arc-rational functions and, introduced
earlier in [6], arc-analytic functions. A function ϕ : V → R, defined on a real
analytic variety V , is said to be arc-analytic if ϕ ◦ η is analytic for every analytic
arc η : (−1, 1) → V .

Theorem 4. Let X be a real algebraic set and let f : W → R be an arc-rational
function defined on an open subset W ⊂ X. Then f is continuous and arc-analytic.
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Hölder- Lojasiewicz inequalities for volumes of tame objects

Ta Lê Loi

Let h : K → Rn be a continuous subanalytic map, where K ⊂ Rm is compact.
Then the Hölder- Lojasiewicz inequality gives the following estimation

‖h(x) − h(y)‖ ≤ C‖x− y‖α, ∀x, y ∈ K,

where C,α > 0.
Geometrically, when K is convex, then

length(h([x, y])) ≤ C1length([x, y])α, ∀x, y ∈ K.

Besides, when int({x ∈ K : ‖h(x)‖ = t}) = ∅, for all t ≥ 0, we also have

Volume({x ∈ K : ‖h(x)‖ ≤ t}) ≤ C2t
β = C2length([0, t])β , ∀t ≥ 0,

for some C2, β > 0.
We are interested in the generalizations of the above estimations for volumes of

images or pre-images of families of k-dimensional surfaces under certain mappings,
via the volumes of the families involved.
• Clearly, in general, we can not get any useful estimation, e.g. we can meet phe-
nomena like spirals, oscillations, fractals, or worse, Peano’s curves.
• However, if the objects involved are tame then their properties can imply some
useful inequalities. In this talk, we present some.
• The considering problem relates to some of others’, among them are [5], [9], [2],
[1], [12],[8], ...
• Since the parameterized integration of a family of functions definable in a struc-
ture is not in general belong to the same structure, one can not directly estimate
the volumes of families of definable sets by integration.
To overcome this obstruction, we use:
- Tame properties of objects definable in o-minimal structures (such as certain
uniform bounds for definable families, L- cell decompositions in families, Prepa-
ration and Parameterized rectilinearization of functions definable in polynomially
bounded structures, certain stratification of definable sets, ... ), see [3], [6], [10],
[1], [7].
- Technics in Geometric Integration Theory (such as the area formula, the coarea
formula, areas of projections, ... ), see [4], [8].

In this talk we fix an o-minimal structure on (R,+, ·). “Definable” means
definable in the structure. Let Φ denote the set of all odd, strictly increasing
continuous definable bijection from R onto R. We call (St)t∈T definable family of
subsets of K if there is S ⊂ T ×K be definable set and St = {x ∈ K : (t, x) ∈ S},
for t ∈ T . For each subset X of Rm, let Hk(X) denote the k-dimensional Hausdorff
measure of X .

The main results we give in this talk are the following.

Theorem 1 (Answers for the three questions of [11]). Let f : A → Rn be a
continuous definable map on bounded set A.
Then there exists a finite partition f(A) = ∪i∈IZi, where Zi’s are definable subsets,
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satisfying the following properties:
(i) For each i ∈ I, there exist complex Ki and definable homeomorphism hi :
Zi × |Ki| → f−1(Zi), such that hi(y, |Ki|) = f−1(y), ∀y ∈ Zi. In particular, the
numbers of simplexes of the triangulations of the fibers of f are uniformly bounded.
(ii) For each k ∈ {0, · · · , dimA}, there exists Mk > 0 such that

Hk(Sk(f−1(y)) < Mk, ∀y ∈ f(A),

where Sk(f−1(y)) =
⋃

∆∈Ki,dim∆≤k hi(y, |∆|) (the k-skeleton).

(iii) Let

F 2(f) = {(x, x′) : x, x′ are in a connected component of f−1(f(x))}.
Then there exist M > 0 and definable map γ : F 2(f) × [0, 1] → A, such that
γ(x, x′, 0) = x, γ(x, x′, 1) = x′, γ(x, x′, [0, 1]) ⊂ f−1(f(x)), and

H1(γ(x, x′, [0, 1])) < M, ∀x, x′ ∈ F 2(f).

Theorem 2 (Volumes of images). Suppose that the structure is polynomially
bounded. Let h : K → Rn be a continuous definable map on compact K. Then
there exists α ∈ Λ, α > 0 satisfying the following:
For any definable family (St)t∈T of subsets of K with dimSt ≤ k, for all t ∈ T ,
there exists C > 0 such that

Hk(h(St)) ≤ C(Hk(St))
α, ∀t ∈ T.

Theorem 3 (Volumes of pre-images). Suppose that the structure is polynomially
bounded. Let h : K → Rn be a continuous definable map on compact K ⊂ Rm.
Let (St)t∈T be a definable family of subsets of Rn with dimSt ≤ k, ∀t ∈ T . For
each d ∈ {0, . . . , dimK}, let Fd(h) = {y ∈ Rn : dimh−1(y) ≤ d}. Then for each
definable closed subset B of Fd(h), there exist C,α > 0, such that

Hd+k(h−1(St ∩B)) ≤ C(Hk(St))
α, ∀t ∈ T.

Corollary (Volumes of sub-levels). Let h : K → Rn be a continuous definable
map, and K ⊂ Rm be a compact set. Suppose that int({x ∈ K : ‖h(x)‖ = t}) =
∅, ∀t ≥ 0. Then there exists ϕ ∈ Φ, such that

Hm({x ∈ K : ‖h(x)‖ ≤ t} ≤ ϕ(t), ∀t ≥ 0.

In particular, if h is definable in a polynomially bounded structure, then there exist
C,α > 0 such that

Hm({x ∈ K : ‖h(x)‖ ≤ t} ≤ Ctα, ∀t ≥ 0.

Conjecture. The analogous inequalities of that of Theorem 2 and Theorem 3
hold in arbitrary structures.
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Wilkie’s conjecture for restricted elementary functions

Dmitry Novikov

(joint work with Gal Binyamini)

Let A be a set definable in some o-minimal structure. The Pila-Wilkie theorem (in
its basic form) states that the number of rational points in the transcendental part
of A grows sub-polynomially with the height of the points. The Wilkie conjecture
stipulates that for sets definable in Rexp, one can sharpen this asymptotic to
polylogarithmic.

First, I describe a complex-analytic approach to the proof of the Pila-Wilkie
theorem for subanalytic sets developed in [1]. Using Denef-van den Dries descrip-
tion of subanalytic sets, we reduce to the case of complex analytic set A. The
key idea is to replace the traditional Gromov-Yomdin Cr-parameterization of A
by covering of A by Weierstrass polydiscs.

Here is the definition: a product ∆ = ∆z×∆w of two polydiscs is a Weierstrass
polydiscs of A if A ∩ {∂∆w × ∆z} = ∅ and dimA = dim ∆z. In other words, A
does not intersect the boundaries of the fibers of the projection π : ∆ → ∆z . This
implies that the restriction π|A : A→ ∆z is a finite map of degree e(∆).

For any function f holomorphic in a Weierstrass polydisc of A, its restriction
to A coincides with a restriction of a unique Weierstrass polynomials g(z, w) =
g0(z)wd + ... + gd(z) of degree d < e(∆), with explicit estimates on the norms
of its coefficients gi(z). Using this representation instead of Taylor series, we
get the same estimates for interpolation determinant as in the classical proof of
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Bombieri-Pila, up to non-essential constant e(δ). However, the crucial advan-
tage is the coarseness of the Weierstrass polydiscs: unlike Gromov-Yomdin Cr-
parameterization, covering by Weierstrass polydiscs can be made uniform for A
varying in any finite-dimensional analytic family {Aǫ}. This allows an easy induc-
tion by dimA, contrary to the classical Pila-Wilkie proof.

This technique allows to prove a restricted version of Wilkie conjecture. Namely,
let A ⊂ Rm be RRE-definable, where

RRE = (R, <,+, ·, exp |[0,π], sin |[0,π])
is a structure obtained by adding graphs of exp and sin over interval [0, π] to
semialgebraic functions.

Theorem 1 ([2]). There exist integers κ := κ(A) and N = N(A, [F : Q]) such
that the number of rational points of height at most H lying in the transcendental
part of A is at most N · (logH)κ.

The essential case is of a complex-analytic set A. The key point is that the
set A is holomorphic-Pfaffian, and therefore its topological complexity can be
effectively bounded in terms of its complexity β in the sense of fewnomials theory
of Khovanskii, due to results of Gabrielov and Vorobiev. Using these bounds, we
get an upper bound for ǫ-entropy of A, following Vitushkin. This allows to bound
the number of Weierstrass polydiscs covering A by at most poly(β).
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Density of algebraic points on Noetherian varieties

Gal Binyamini

Let Ω ⊂ Rn be a bounded domain, and denote by x := (x1, . . . , xn) a system of
coordinates on Rn. A collection of analytic functions φ := (φ1, . . . , φℓ) : Ω̄ → Rℓ

is called a (complex) real Noetherian chain if it satisfies an overdetermined system
of algebraic partial differential equations,

∂φi

∂xj
= Pi,j(x,φ),

i = 1, . . . , ℓ

j = 1, . . . , n

where Pi,j are polynomials. We call ℓ the order and α := maxi,j degPi,j the degree
of the chain. If P ∈ R[x,y] is a polynomial of degree β then P (x,φ) : Ω → R is
called a real Noetherian function of degree β.

We call the set of common zeros of a collection of real Noetherian functions of
degree at most β a real Noetherian variety of degree β. We call a set defined by a
finite sequence of Noetherian equations or inequalities a basic semi-Noetherian set,
and a finite union of such sets a semi-Noetherian set. We define the complexity β of
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a semi-Noetherian set (more precisely the formula defining it) to be the maximum
of the degrees of the Noetherian functions appearing in the definition, plus the
total number of relations. Finally, we define the Noetherian size of φ, denoted
S(φ), to be

S(φ) := max
x∈Ω̄

max
i=1,...,ℓ
j=1,...,n

{|xj |, |φi(x)|, ‖Pi,j‖∞}

where ‖P‖∞ denotes the maximum norm on the coefficients of P .
When we say that a quantity can be explicitly estimated in terms of the Noe-

therian parameters, we mean that it admits an explicit upper bound in terms
of the parameters n, ℓ, α,S(φ), β. Our main result, stated below, is an effective
version of the Pila-Wilkie counting theorem [1] for semi-Noetherian sets with the
constants explicitly estimated in terms of the Noetherian parameters. Our interest
in the question of effectivity in this context is motivated by the applications of the
Pila-Wilkie theorem in arithmetic geometry. Namely, we show that many func-
tions of interest in arithmetic geometry fall within the Noetherian class, including
elliptic and abelian functions, modular functions and universal covers of compact
Riemann surfaces, Jacobi theta functions, periods of algebraic integrals, and the
uniformizing map of the Siegel modular variety Ag. We thus effectivize the (geo-
metric side of) Pila-Zannier strategy for unlikely intersections in those instances
that involve only compact domains.

Main statements. For a set A ⊂ Rn we define the algebraic part Aalg of A
to be the union of all connected semialgebraic subsets of A of positive dimension.
We define the transcendental part Atrans of A to be A \ Aalg. Recall that the
height of a (reduced) rational number a

b ∈ Q is defined to be max(|a|, |b|). More

generally, for α ∈ Qalg we denote by H(α) its absolute multiplicative height. For
a vector α of algebraic numbers we denote by H(α) the maximum among the
heights of the coordinates. For a set A ⊂ Ω we denote the set of Q-points of A by
A(Q) := A ∩Qn and denote

A(Q, H) := {x ∈ A(Q) : H(x) ≤ H}.
The following is a basic form of our main theorem, which gives an effective version
of the Pila-Wilkie theorem [1] for semi-Noetherian sets.

Theorem 1. Let X ⊂ Ω be a semi-Noetherian set of and ǫ > 0. There exists a
constant N , explicitly estimated in terms of the Noetherian parameters, such that
for any H ∈ N we have

#Xtrans(Q, H) ≤ N ·Hǫ.

This theorem is a direct corollary of the following more general statement.
First, we consider algebraic points of a fixed degree k ∈ N instead of rational
points. Toward this end we introduce the notation

A(k) := {x ∈ A : [Q(x1) : Q], . . . , [Q(xn) : Q] ≤ k},
A(k,H) := {x ∈ A(k) : H(x) ≤ H}.
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Second, we obtain a more accurate description of the part of Xalg where algebraic
points of a given height may lie. Toward this end we introduce the following
notation.

Definition 1. Let A,W be two subsets of a topological space. We denote by

A(W ) := {w ∈W : Ww ⊂ A}
the set of points of W such that A contains the germ of W around w, i.e. such
that w has a neighborhood Uw with Uw ∩W ⊂ A.

In particular, when W ⊂ Rn is a connected positive dimensional semialgebraic
set then we have X(W ) ⊂ Xalg. The following is the general form of our main
theorem, which gives an effective version of the more general form of the Pila-
Wilkie theorem established in [2].

Theorem 2. Let X ⊂ Ω be a semi-Noetherian set and ǫ > 0. There exists
constants d,N , explicitly estimated in terms of the Noetherian paraemeters, with
the following property. For every H ∈ N there exist at most NHǫ smooth connected
semialgebraic sets {Sα} of complexity at most d such that

X(k,H) ⊂
⋃

α

X(Sα).
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O-minimality and Manin’s conjecture

Marta Pieropan

(joint work with Christopher Frei)

A conjecture of Manin predicts an asymptotic formula for the number of rational
points of bounded anticanonical height on Fano varieties over number fields. I
report on a method to verify the conjecture on given varieties that was developed
in joint work with C. Frei and successfully applied to a singular del Pezzo surface
of degree 4. Further applications are work in progress.

1. Manin’s conjecture

Let X be a Fano variety over a number field k. Then the anticanonical bundle
on X defines a height function H : X(k) → R≥0 that satisfies the Northcott
property, i.e., #{x ∈ X(k) : H(x) ≤ B} <∞ for all B ∈ R≥0. Hence, it is natural
to investigate the asymptotic behavior of the function NX,H(B) := #{x ∈ X(k) :
H(x) ≤ B}.
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Conjecture 1 (Manin [7]). There exists an open subset U ⊆ X such that

NU,H(B) ∼ CB(logB)r−1 as B → ∞,

where C is a constant and r is the rank of the Picard group of X.

The conjecture has been verified for some families of varieties and many single
cases using various techniques including analysis of the height zeta function and
universal torsor method. See the introduction of [9] for an overview of results and
techniques.

2. The method

Unlike other approaches, the universal torsor method for Manin’s conjecture does
not require geometric restrictions on the varieties it applies to. It consists of
two main steps: a parameterization step that involves torsors and Cox rings,
and a counting step via ad hoc lattice point counting techniques. The idea be-
hind the method (that is, parameterization followed by lattice point counting)
has been widely used to verify Manin’s conjecture for many varieties over Q, but
only recently it has been developed for varieties over other number fields; see
[3, 4, 5, 6, 8, 9, 10]. In in [9] the parameterization step has been investigated
in full generality, while the counting step has been worked out for the following
variety.

Theorem 1 ([9]). Let k be a number field. Then Conjecture 1 holds for the surface
defined by

x0x3 − x2x4 = x0x1 + x1x3 + x22 = 0

in P4
k.

2.1. Parameterization via torsors. The parameterization step, inspired by the
pioneering work of Salberger [11], is based on the parameterization properties of
torsors under tori [2, (2.7.2)] and uses Cox rings to compute the parameterization
explicitly. After the parameterization step the verification of the conjecture for
the variety under consideration is reduced to counting integral points of bounded
height in some open subset of an affine scheme up to the action of a torus of rank
r; that is, counting lattice points in a semialgebraic set up to the action of (O×

k )r,

where O×
k is the group of units of the ring of integers of k.

2.2. Fundamental domain and definable sets. If O×
k is infinite, the choice of a

suitable fundamental domain for the action, as in Schanuel [12], leads to counting
lattice points in a definable set in the o-minimal structure Rexp introduced by
Wilkie [13]. Theorem 1 is then proven using a careful application of a result of
Barroero and Widmer [1] for counting lattice points in definable sets in o-minimal
structures.
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3. Work in progress

The aim of this project is to study the application of o-minimality to the counting
step. The main difficulty is that there is no canonical choice of the fundamental
domain. Yet, the choice of a fundamental domain that is good enough to proceed
with the counting strongly depends on the geometry of the variety and of the
parameterization.

We are working to determine geometric conditions that ensure the existence of a
fundamental domain that allows the application of o-minimality. Such conditions
would be encoded in the combinatorial data that relate the generators of the Cox
ring of the variety and the Picard group, and that determine the (O×

k )r-action.
The purpose is to produce new examples of varieties for which Manin’s conjecture
can be verified via o-minimality techniques and, if possible, to find a systematic
way of application.
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Recognizing (ultra)differentiable functions on closed sets

Armin Rainer

Recognizing (ultra)differentiable functions on open sets. Let f : U → R

be a function defined in an open set U ⊆ Rd. Then f induces a map f∗ : UR → RR,
f∗(c) = f ◦ c, whose invariance properties encode the regularity of f :

(i) f is smooth (C∞) if and only if f∗C∞(R, U) ⊆ C∞(R,R); due to [1].
(ii) f is Ck,α if and only if f∗C∞(R, U) ⊆ Ck,α(R,R); see [5], [4], [8].

(iii) f is CM if and only if f∗CM (R, U) ⊆ CM (R,R), where M is a non-
quasianalytic weight sequence; see [9].

By Ck,α (k ∈ N, α ∈ (0, 1]) we denote the class of Ck-functions whose partial
derivatives of order k satisfy a local α-Hölder condition. Let us now define CM .

Ultradifferentiable functions of class CM . Let M = (Mk) be a positive se-
quence. The Denjoy–Carleman class CM (U,Rm) is the set of all f ∈ C∞(U,Rm)
such that for all compact K ⊆ U ,

(1) ∃C, ρ > 0 ∀n ∈ N ∀x ∈ K : ‖f (n)(x)‖Ln(Rd,Rm) ≤ Cρnn!Mn.

For the constant sequence Mk = 1, we recover the real analytic class Cω(U,Rm).
We will impose some regularity properties on M : An increasing log-convex

sequence M = (Mk) with M0 = 1 is called a weight sequence. A weight sequence
M is called non-quasianalytic if

(2)
∑

k

Mk

(k + 1)Mk+1
<∞;

otherwise it is said to be quasianalytic. We say that M has moderate growth if
there is a constant C > 0 such that Mj+k ≤ Cj+kMjMk for all j, k.

If M is a weight sequence, then CM contains Cω and is stable under composition.
By the Denjoy–Carleman theorem, M is non-quasianalytic if and only if there are
CM -functions with compact support. Clearly, (iii) fails for quasianalytic weight
sequences M . The moderate growth condition will be important below.

On closed fat sets with Hölder boundary. What about (i), (ii), and (iii) for
functions defined in non-open subsets X ⊆ Rd? For arbitrary X ⊆ Rd we define

A∞(X) :=
{
f : X → R : f∗{c ∈ C∞(R,Rd) : c(R) ⊆ X} ⊆ C∞(R,R)

}
,

AM (X) :=
{
f : X → R : f∗{c ∈ CM (R,Rd) : c(R) ⊆ X} ⊆ CM (R,R)

}
,

A∞
M (X) :=

{
f : X → R : f∗{c ∈ CM (R,Rd) : c(R) ⊆ X} ⊆ C∞(R,R)

}
.

If X ⊆ Rd is a non-empty open set, then (i) and (iii) amount to

(3) A∞(X) = C∞(X), AM (X) = CM (X).

Clearly, some restrictions on X are necessary if one hopes for identities as in (3)
on non-open sets X , not to mention definitions of C∞ and CM . We will say that
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a non-empty closed subset X ⊆ Rd is fat if it has dense interior, i.e., X = int(X).
For such X we define (see also Remark 2 below)

(4) C∞(X) :=

{
f : X → R

∣∣∣∣
f |int(X) ∈ C∞,

∀n ∈ N : (f |int(X))
(n) extends continuously to X

}
.

For a weight sequence M = (Mk), let

(5) CM (X) :=
{
f ∈ C∞(X) : (1) holds for all compact K ⊆ X

}
.

Question 1. When do we have A∞(X) = C∞(X) and AM (X) = CM (X)?

Interestingly, the analogue for finite differentiability (ii) fails even on the closed
half-space, which is a consequence of Glaeser’s inequality. That the identities in
Question 1 are not always true is shown by the following example.

Example 1. Let p : [0,∞) → [0,∞) be a strictly increasing C∞-function which
is infinitely flat at 0. Consider the ∞-flat cusp X = {(x, y) ∈ R2 : x ≥ 0, 0 ≤
y ≤ p(x)} and the function f : X → R defined by f(x, y) =

√
x2 + y. Then

f 6∈ C∞(X), but f ∈ A∞(X). The latter follows from a division theorem of [6].

On the positive side, [7] proved that A∞(X) = C∞(X) holds for convex sets X
with non-empty interior. We will extend this result to a larger family of sets.

Let Rd = Rd−1×R with Euclidean coordinates x = (x′, xd). Let α ∈ (0, 1], and
r, h > 0. Consider the truncated open cusp

Γα(r, h) :=
{

(x′, xd) ∈ Rd−1 × R : |x′| < r, h(|x′|/r)α < xd < h
}
.

An open set U ⊆ Rd is said to have the uniform cusp property of index α (we write
(UCPα) for short), if for each x ∈ ∂U there exist ǫ, r, h > 0 and A ∈ O(d) such
that for all y ∈ U ∩B(x, ǫ) we have y +AΓα(r, h) ⊆ U .

Remark 1. A bounded open set U ⊆ Rd has (UCPα) if and only if U has equi-
α-Hölder boundary; cf. [3]. In particular, U has (UCP1) if and only if it is a
Lipschitz domain. If α < 1 then the Hausdorff dimension of ∂U can be larger than
d− 1.

Theorem 1. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ⊆ Rd

be a closed fat set. If int(X) has (UCPα) for some α, then

(6) A∞(X) = A∞
M (X) = C∞(X).

If int(X) has (UCP1), then

(7) AM (X) = CM (X).

On closed fat subanalytic sets. Using rectilinearization of subanalytic sets we
obtain the following consequences of Theorem 1.

Theorem 2. Let M = (Mk) be a non-quasianalytic weight sequence. Let X ⊆ Rd

be a closed fat subanalytic set. There is a locally finite collection of real analytic
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mappings ϕj : Uj → Rd, where each ϕj is the composite of a finite sequence of
local blow-ups with smooth centers and Uj is open in Rd, such that, for all j,

ϕ∗
jA∞(X) ⊆ C∞(ϕ−1

j (X)),(8)

ϕ∗
jAM (X) ⊆ CM (ϕ−1

j (X)).(9)

If f is C∞, ϕ real analytic, and the composite f ◦ϕ is CM , then in general f need
not be CM . Under suitable conditions one can however expect that f is CMa

for
some positive integer a independent of M (where (Ma)k := (Mk)a). Combining a
result of [2] (which makes this precise) with Theorem 2 we deduce the following.

Let M = (Mk) be a weight sequence. Let X ⊆ Rd be a closed fat set. We define

AM̂ (X) :=
⋂

a>0

AMa

(X) and CM̂ (X) :=
⋂

a>0

CMa

(X).

Theorem 3. Let M = (Mk) be a weight sequence of moderate growth such that
Ma is non-quasianalytic for all a > 0. Let X ⊆ Rd be a closed fat subanalytic set.
Then

(10) C∞(X) ∩ AM̂ (X) = CM̂ (X).

Example 2. The sequence Mk = k! satisfies the assumptions of Theorem 3. In

that case CM̂ is the intersection of all Gevrey classes.

Remark 2. Often a function on a closed set X ⊆ Rd is declared to be C∞ if it
is the restriction of a C∞-function on Rd. For general closed fat sets, this differs
from the notion of smoothness defined in (4). But in the cases considered here (i.e.,
int(X) has (UCPα) for some α, or X is subanalytic) the two notions coincide.
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Sobolev sheaves on subanalytic sites.

Adam Parusiński

We present some results of a recent Astérisque article [1], where a construction of
Sobolov sheaves is given.

Sheaves on manifolds are suited to treat local problems, but many spaces one
naturally encounters in analysis are not of local nature. For instance the spaces
of functions or distributions with the tempered growth at the boundary do not
form a sheaf. This is because for arbitrary open subsets U and V of a real ana-
lytic manifold M there are no constants C,N such that dist(x,M \ (U ∪ V ))N ≤
C max{dist(x,M \ U), dist(x,M \ V )}. But this property holds, by  Lojasiewicz
Inequailty, provided U and V are relatively compact and subanalytic. Thus the
subanalytic topology (in the sense of Grothendieck) on real analytic manifolds
allows one to overcome this difficulty and to define the sheaves of functions or
distributions with tempered growth. These sheaves were used by Kashiwara [2] to
prove the Riemann-Hilbert correspondence between regular holonomic D-modules
and the derive category of constructible complexes of sheaves.

However, the subanalytic topology is still too rough to treat more sophisticated
spaces of analysis, such as the Gevrey functions of a given order at the boundary
or the Sobolev spaces, for which the growth has to be controlled by the distance to
the boundary with a fixed exponent. In order to handle these spaces P. Schapira
and J.-P. Schneiders introduced in ”Construction of sheaves on the subanalytic
site” of [1], the linear subanalytic topology, a refinement of the subanalytic one.
Recall that a Grothendieck topology is defined not by giving the open sets but by
the admissible open coverings. Thus a finite family Ui of open relatively compact
subanalytic subsets of M is a linear covering if there is a constant C such that

dist(x,M \ (
⋃

i

Ui)) ≤ C max
i
dist(x,M \ Ui).(1)

The complexes of sheaves in the subanalytic linear topology define the objects in
the derived category of complexes of sheaves in the classical subanalytic topology.
This functor has good properties thanks to the following result proven in the paper
”Regular subanalytic cover” of [1].

Theorem 1. Let U be an open relatively compact subanalytic subset of M . Then
there exist a finite cover U =

⋃
i Ui by open subanalytic sets such that :

(1) every Ui is subanalytically homeomorphic to an open n-dimensional ball;
(2) the property (1) holds.

The proof of this theorem is based on the regular projection theorem, see [5] and
[6]. It is not clear whether this theorem holds in an arbitrary o-minimal structure,
even if we assume it polynomially bounded, since its proof in [6] uses Puiseux
Theorem with parameters in an essential way.

Let M be a real analytic manifold and let s ∈ R. In ”Sobolev spaces and
Sobolev sheaves” of [1], G. Lebeau defines for U open and relatively compact in
M , the Sobolev space Hs(U). For U Lipschitz (i.e. with Lipschitz boundary) and
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s = k ∈ N, it coincides with the usual definition Hk(U) = {f ∈ L2(U); ∂αf ∈
L2(U), for all |α| ≤ k}. Then the problem of construction of a Sobolev sheaf can
be expressed as follows:

Does there exist a complex Hs of sheaves defined in the derived category of
sheaves in the subanalytic Grothendieck topology on M that for U Lipschitz and
relatively compact, Hs(U) coincide with the complex concentrated in degree 0 and
equal to Hs(U) ?

A trivial example is s = 0 since U → H0(U) = L2(U) is a sheaf (for a finite
topology this means that for any two open U and V the Mayer-Vietoris sequence
is exact

0 → Hs(U ∪ V ) → Hs(U) ⊕Hs(V ) → Hs(U ∩ V ) → 0).

Similarly, in the subanalytic topology U → Hs(U) is a sheaf for s ∈] − 1/2, 1/2[.
This follows from the following result proven in the paper ”Regular subanalytic
cover” of [1].

Theorem 2. The algebra S(M) is generated by characteristic functions of open
subanalytic Lipschitz balls.

Here S(M) denotes the algebra of integer valued functions on M generated by
charcteristic functions of relatively compact open subanalytic subsets of M . By
an open subanalytic Lipschitz ball we mean a relatively compact open subanalytic
subset of M such that its closure is subanalytically bi-Lipschitz homeomorphic to
the unit ball of Rn. The proof of Theorem 2 is based on the regular decompostion
theorem, see [6], [3], [7], and therefore, by [4], [8], this theorem holds in an arbitrary
o-minimal structure.

The paper ”Sobolev spaces and Sobolev sheaves” of [1] contains also the con-
struction of Sobolev sheaves for s ≤ 0. The proof uses in an essential way Theorem
1 so it is not clear whether this construction generalizes to an arbitrary o-minimal
structure. The existence of Soboloev sheaves for s ≥ 1/2 is still an open problem.
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Unlikely intersections in products of families of elliptic curves

Fabrizio Barroero

(joint work with Laura Capuano)

Let n be an integer with n ≥ 2 and let Eλ denote the elliptic curve with Legendre
equation

Y 2 = X(X − 1)(X − λ).

Consider a curve C ⊆ A2n+1, defined over a number field k with coordinate
functions (x1, y1, . . . , xn, yn, λ), λ non-constant, such that for every j = 1, . . . , n,
the points Pj = (xj , yj) lie on the elliptic curve Eλ. As c varies in C(C), the
specialized points Pj(c) = (xj(c), yj(c)) will be lying on the specialized elliptic
curve Eλ(c). We implicitly exclude the finitely many c with λ(c) = 0 or 1, since
in that case Eλ(c) is not an elliptic curve. Suppose moreover that there are no
integers a1, . . . , an ∈ Z, not all zero, such that

(1) a1P1 + · · · + anPn = O,

identically on C. Nevertheless, for some c ∈ C(C) new relations might arise over Z
or an eventually larger End(Eλ(c)).

Theorem 1 (B., Capuano, 2016). Under the above assumptions, there are at most
finitely many c ∈ C(C) such that the points P1(c), . . . , Pn(c) satisfy two independent
Z-relations on Eλ(c).

We remark that the case n = 2 of the above theorem is covered by the main
proposition of [6] in the more general setting of a curve defined over C.

Moreover, in [11] Rémond and Viada proved an analogue of Theorem 1 for a
power of a constant elliptic curve with CM, where one must allow the coefficients
a1, . . . , an in (1) to lie in the larger endomorphism ring. For the general case of
powers of a constant elliptic curve, the result follows from works of Viada [13] and
Galateau [3]. If n = 2 we get a very special case of Raynaud’s Theorem [10], also
known as the Manin-Mumford Conjecture.

One may ask if finiteness holds if we impose only one relation. This is not the
case. Indeed, there are infinitely many λ such that a point with fixed algebraic
abscissa is torsion (see Notes to Chapter 3 in [14]). On the other hand, the values
of λ such that at least one relation holds are “sparse”, as follows from a well-
known theorem of Silverman [12] which implies that the absolute Weil height of
such values is bounded. In particular, there are at most finitely many c yielding
one relation in a given number field or of bounded degree over Q.

Our proof follows the general strategy introduced by Pila and Zannier in [9] and
used by Masser and Zannier in various articles, e.g. [6]. In particular, we consider
the elliptic logarithms z1, . . . , zn of P1, . . . , Pn and the equations

zj = ujf + vjg,

for j = 1, . . . , n, where f and g are suitably chosen basis elements of the period
lattice of Eλ. If we consider the coefficients uj , vj as functions of λ and restrict
them to a compact set, we obtain a subanalytic surface S in R2n. The points
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of C that yield two independent relations on the elliptic curve will correspond to
points of S lying on linear varieties defined by equations of some special form and
with integer coefficients. In case n = 2, one faces the simpler problem of counting
rational points with bounded denominator in S. For this, a previous result of Pila
[7] suffices together with the fact that the surface is “sufficiently” transcendental.
In the general case we adapted ideas of Pila building on a previous work of him [8]
and obtained an upper bound of order T ǫ for the number of points of S lying on
subspaces of the special form mentioned above and rational coefficients of absolute
value at most T , provided S does not contain a semialgebraic curve segment. Under
the hypothesis that no identical relation holds on C, using a result of Bertrand [1],
we are able to show that there are no such semialgebraic curve segments.

Now, to conclude the proof, we use works of Masser [4], [5] and David [2] and
exploit the boundedness of the height to show that the number of points of S
considered above is of order at least T δ for some δ > 0. Comparing the two
estimates leads to an upper bound for T and thus for the coefficients of the two
relations, concluding the proof.

Now, as mentioned above, we might have relations arising over a CM ring. More
recently we proved the following.

Theorem 2 (B., 2017). Under the assumptions of Theorem 1, there are at most
finitely many c ∈ C(C) such that Eλ(c) has complex multiplication and there exists

(a1, . . . , an) ∈ End
(
Eλ(c)

)n \ {0} with

a1P1(c) + · · · + anPn(c) = O.

The proof of this statement follows the same Pila-Zannier strategy but Sil-
verman’s Theorem cannot be applied in this case. One then uses the theory of
complex multiplication together with o-minimality and the above mentioned re-
sults of Masser and David to prove that the absolute value of the discriminant of
End(Eλ(c)) is uniformly bounded and thus obtaining the claim of Theorem 2.

Now we can formulate a result that contains the two theorems above.
Let E → S be a non-isotrivial elliptic scheme over an irreducible, smooth,

quasi-projective curve S, both defined over Q. Moreover, let A → S be its n-fold
fibered power. An irreducible subvariety of A is called special if it is an irreducible
component of an algebraic subgroup of a CM fiber or an irreducible component of
a flat subgroup scheme of A. A subgroup scheme is called flat if every irreducible
component dominates the base curve S.

Theorem 3. Let A be as above and let C be an irreducible curve in A defined
over Q and not contained in a proper special subvariety of A. Then C intersects
at most finitely many special subvarieties of A of codimension at least 2.
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Unlikely Intersections in families of abelian varieties and the
polynomial Pell equation

Laura Capuano

(joint work with Fabrizio Barroero)

Fix a number field k and a smooth irreducible curve S defined over k. We consider a
non-constant family A→ S of abelian varieties defined over k of relative dimension
g. This means that, for each s ∈ S(C), the corresponding fiber As will be an
abelian variety defined over k(s) of dimension g. We may also think of this family
as an abelian variety A defined over the function field k(S). In [1] and [2] we
studied the case of families of elliptic curves. In this talk, we will focus on the case
g ≥ 2. Moreover, we assume that the generic fiber of the family is simple, i.e., it
does not contain any non-zero proper abelian subvariety.

Let n ≥ 1 be an integer. We denote by An the n-fold fibered power A×S · · ·×SA
of A. As for A, we consider An as a family An → S. Now, let C be a non-singular
irreducible curve in An, also defined over k, and suppose that π(C) dominates the
base curve S, where π is the structural morphism π : An → S. Generically, C
will define a point in An(k(C)) or, equivalently, n points P1, . . . , Pn ∈ A(k(C)),
while, for any c ∈ C(C), we will have a specialized point of An

π(c)(k(c)) or n points

P1(c), . . . , Pn(c) ∈ Aπ(c)(k(c)).
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Let R be the endomorphism ring of A. Note that this might be defined over a
finite extension of k(S), rather than over k(S) itself. Every element of R specializes
to an element of End(As) and this specialization map is injective, at least outside
a finite number of points of S (see [6]). For our purposes, we can assume that
there are no such points in S. By abuse of notation, we will denote again by R
the specialization of End(A) in the various fibers. Note that, for some s ∈ S(C),
one may have R ( End(As).

The points P1, . . . , Pn defined by C might or might not satisfy one or more
linear relations of the form ρ1P1 + · · · + ρnPn = O, for some ρ1, . . . , ρn ∈ R,
where O is the origin of A. If they do, then clearly the same relations hold for
all specializations P1(c), . . . , Pn(c) in Aπ(c)(k(c)). On the other hand, for some
specializations, some new relations might arise, with coefficients in R or in the
possibly larger End

(
Aπ(c)

)
.

In this talk we consider the case in which no generic relation holds and prove
that there are at most finitely many specializations such that the points satisfy a
relation with coefficients in R. The main result is the following:

Theorem 1. Let An and C be as above and suppose that the points P1, . . . , Pn are
linearly R-independent. Then there are at most finitely many c ∈ C(C) such that
there exist ρ1, . . . , ρn ∈ R, not all zero, with

ρ1P1(c) + · · · + ρnPn(c) = O,

on Aπ(c).

In case n = 1 one has a single point which is not generically torsion. Under
this hypothesis, there are at most finitely many specializations such that the point
is torsion. This was proved by Masser and Zannier in [7] for the case g = 2 and
later for any g > 1. Analogous problems have been studied in the case of constant
abelian varieties defined over the algebraic numbers. Ratazzi in [8] proved the
theorem in case A is a simple abelian variety with complex multiplication. The
proof of the Zilber-Pink Conjecture for a curve in any abelian veriety defined over
a number field due to Habegger and Pila [5] removes Ratazzi’s hypothesis on the
endomorphism ring of A.

As an application of Theorem 1, we discuss a function field variant of the
classical Pell equation. As it is commonly known, this is an equation of the form
A2 −DB2 = 1, to be solved in integers A,B 6= 0, where D is a positive integer. A
famous theorem of Lagrange ensures that such an equation is solvable if and only
if D is not a perfect square in Z.

To obtain a polynomial analogue we replace Z with K[X ], for K a field to be
specified later. For D = D(X) ∈ K[X ] of even degree 2d > 0, we search for
non-trivial solutions of A2 − DB2 = 1, where A(X), B(X) ∈ K[X ] and B 6= 0.
For a survey on Pell equations in polynomials and related questions, see [9].

The problem in the polynomial case is more complicated, and depends heavily
on the choice of the field K. When K is a finite field (of char 6= 2), the theory is
completely analogous to the integer case, giving necessary and sufficient conditions
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for solvability. Here we consider K an algebraically closed field of characteristic
0, such as Q,C or C(t). We will call Pellian the polynomials D(X) such that the
associated Pell equation has a non-trivial solution.

A necessary condition for D(X) to be Pellian is that D(X) is not a square and
has positive even degree 2d. However, unlike the classical case, these conditions are
also sufficient only if D has degree 2 while, for higher degrees, there are examples
of non-square polynomials which are not Pellian. Indeed, the problem is equivalent
to study whether a certain point has finite or infinite order in the Jacobian of a of
a non-singular model of the hyperelliptic curve defined by Y 2 = D(X).

As an application of their main result in [7] Masser and Zannier investigate the
problem for the one-parameter family Dt(X) = X6 +X + t. Clearly, if the family
is identically Pellian, then Dt0 is Pellian for every specialization t0 ∈ C. It can
be proved that this family is not identically Pellian, but the polynomial becomes
Pellian for some specializations of the parameter t (for example for t = 0 we have
(2X5 + 1)2 − (X6 +X)(2X2)2 = 1 hence D0 is Pellian). However, these are only
“few exceptions”, and they prove in fact that the set of values of the parameter
for which the specialized polynomial is Pellian is actually finite. Of course, there
is nothing special about the family X6 + X + t; indeed, the result is true for
any non-identically pellian squarefree D ∈ Q(t)[X ] of even degree at least 6 and
such that the Jacobian of the curve Y 2 = D(X) is simple. Analogous results for
non-squarefree D appear in [3], [4] and in Harry Schmidt PhD thesis.

As an application of Theorem 1, here we consider an irreducible curve S defined
over a number field k, and denote by K its function field k(S). Let us also consider
D(X) ∈ K[X ] a squarefree polynomial of degree 2d > 0 and by F (X) ∈ K[X ]
a non-constant polynomial of degree m. We want to study the solutions of the
“almost Pell equation”, i.e.,

(1) A2 −DB2 = F,

where A,B ∈ K[X ]. We call trival a possible solution with B = 0. Note that
this can happen if and only if F is a square. As before, if the equation (1) is
identically solvable, then it will remain solvable for almost every point s ∈ S(C)
(and the solutions will be nothing but the specializations of the general solutions).
On the other hand, if it is not identically solvable, then we can still have points
on the curve such that the specialized equation A2 −Ds0

B2 = Fs0
has a solution

in C[X ], where we denote by Ds0
and Fs0

the polynomials in k(s0)[X ] obtained
specializing the coefficients of D and F in s0. Analogously to the Pellian case,
the existence of a non-trivial solution translates into the existence of certain linear
relations on the Jacobian JD of a non-singular model of the hyperelliptic curve
defined by Y 2 = D(X). From Theorem 1, one can deduce the following:

Theorem 2. Let S, D and F be as above, with d > 1. Assume that JD is
identically simple and that End(JD) = Z. Then, if the equation A2 −DB2 = F is
not identically solvable, there are at most finitely many s0 ∈ S(C) such that the
specialized equation A2 −Ds0

B2 = Fs0
has a solution.
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Pfaffian functions and elliptic functions

Gareth Jones

(joint work with Harry Schmidt)

Khovanskii proved zero estimates for a class of real functions called pfaffian func-
tions. These are functions satisfying differential equations of a certain form. For
the precise definitions, see either the survey [1] by Gabrielov and Vorobojov, or
Margaret Thomas’s abstract in this collection. It is important to note that Kho-
vanskii’s theory concerns real functions. For it to apply to complex functions, we
would need to know that the real and imaginary parts of the functions involved
are pfaffian, as functions of two real variables.

Our results concern the Weierstrass elliptic functions ℘, ζ and σ associated to a
lattice Ω in the complex plane. Macintyre [2] proved that the real and imaginary
parts of ℘ are pfaffian, on suitable domains, and also that, on suitable domains,
ζ can be defined using pfaffian functions. A similar result holds for σ. Building
on Macintyre’s work, we give explicit uniform definitions, in terms of pfaffian
functions, for ℘ and ζ, on a uniform choice of fundamental domain for Ω. We
prove that no such result holds for σ but we do give a uniform definition for

φ(z) = exp(−1

2
z2η1/ω1 + πiz/ω1)σΩ.

Here ω1 is a certain period of Ω (see below) and η1 is the associated quasi-period.
The precise statements of our results are rather cumbersome, so we do not give

them here. Instead, we give a sample application. Let ω1 and ω2 be periods in Ω
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such that τ = ω1

ω2

lies in the upperhalf plane, with modulus at least 1 and real part

bounded in modulus by 1
2 . Let FΩ = {r1ω1 + r2ω2 : r1, r2 ∈ [0, 1), not both 0}.

Theorem 1. 1 Suppose that P is a polynomial in two variables, with complex
coefficients, not identically zero and of total degree bounded by T . Then, on FΩ,
the function g(z) = P (z, ℘(z)) has at most

7.4959 × 1014T 11

zeroes.
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Maximal compact subgroups of algebraic groups

Harry Schmidt

(joint work with Gareth Jones)

The maximal compact subgroup Γ of a complex commutative algebraic group G is
a real analytic subgroup that contains all torsion points. If G is an algebraic torus
it is a product of circles and in fact semi-algebraic. If G is an abelian variety Γ = G
and also semi-algebraic. However for G a non-split extension of an elliptic curve by
Ga, Γ is a “highly transcendental” variety of real dimension 2 and Corvaja, Masser
and Zannier showed that the intersection of any curve with Γ is finite [1]. This
can be viewed as a kind of sharpening of a Manin-Mumford statement. In their
article they also asked for an effective refinement of their result and speculated on
possible generalizations. In my talk I presented joint work with Gareth Jones in
which we prove an explicit and uniform version of a generalization of their result
to products of elliptic curves. The proof heavily relies on a theorem of Ax as well
as Khovanskii’s zero-estimates for Pfaffian functions.

In order to show the resemblence to a Manin-Mumford statement we display
the theorem.

Theorem 1. Let G be a universal vectorial extension of a product of g elliptic
curves defined over the complex numbers. Let Γ be the maximal compact subgroup
of G and V an algebraic subvariety of G of dimension at most g. Then the there
exists a postive integer N such that

V ∩ Γ ⊂ ∪N
i=1(Hi + ai),

1This is work in progress: numbers can go up as well as down.
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where Hi is an anti-affine subgroup of G of dimension strictly less then 2g and
ai ∈ Γ.

Here N depends polynomially on the degree deg(V ) of V and in an explicit
manner. For example, we computed that

N ≤ 10250g
2

g51g
2

max{3, deg(V )}19g.
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Effective Pila–Wilkie bounds for restricted Pfaffian surfaces

Margaret E. M. Thomas

(joint work with Gareth O. Jones)

The counting theorem of Pila and Wilkie [7] has become celebrated as one of
the most important developments in o-minimality in recent years. It provides a
subpolynomial bound on the number of rational points of bounded height lying
on the ‘transcendental parts’ of sets definable in o-minimal expansions of the real
field. It may be more precisely stated as follows. Suppose that X ⊆ Rn is a
set definable in an o-minimal expansion of the real field. Set Xalg, its algebraic
part, to be the union of all connected, infinite, semi-algebraic subsets of X , and
set Xtrans, its transcendental part, to be the complement of Xalg in X . Given a
rational point q = (a1

b1
, . . . , an

bn
) ∈ Qn, where gcd (ai, bi) = 1 for each i = 1, . . . , n,

the height of q is max1≤i≤n{|ai|, |bi|}. The Pila–Wilkie Theorem states that, for
any positive real number ǫ and any H ≥ 1, there are at most cHǫ rational points
of height at most H lying on Xtrans, where c is a positive real number depending
on X and ǫ.

In fact, Pila and Wilkie proved several stronger statements, including the pro-
vision of a constant c which is uniform across the fibres of a definable family
Z ⊆ Rm × Rn. Analogous bounds were moreover established by Pila in [10] for
algebraic points of bounded height and degree, where the constant c depends on
X , ǫ and a bound k on the degree of the algebraic points. These results all share
a common feature with the earlier work of Pila [8, 9] on subanalytic surfaces, in
that the proof does not provide a method for computing the constant c in terms
of ǫ, some definition of X and, if applicable, k. Indeed, at the level of generality of
sets definable in o-minimal expansions of the real field, such an effective constant
cannot be obtained; this is not even possible for the graphs of all one-variable,
transcendental, restricted analytic functions. However, in certain cases, say when
X can be defined using functions satisfying some reasonable algebraic differential
equations, the question is valid, and indeed is interesting in view of the many
applications of the Pila–Wilkie Theorem to diophantine geometry.

The main result presented, Theorem 1 below, is an effective version of Pila’s
result for subanalytic surfaces, under the assumption that the surface is the graph
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of a ‘Pfaffian’ function on the closed unit box in R2. An analytic function f on
an open subset U of Rn is Pfaffian if it can be expressed in the form f(x̄) =
P (x̄, f1(x̄), . . . , fr(x̄)), where P is a polynomial over R in n + r variables and
f1, . . . , fr : U → R are analytic functions satisfying a triangular system of polyno-
mial differential equations, i.e. there exist polynomials Pi,j ∈ R[Y1, . . . , Yn+i], for

each i = 1, . . . , r and j = 1, . . . , n, such that ∂fi
∂xj

(x̄) = Pi,j(x̄, f1(x̄), . . . , fi(x̄)), for

all x̄ ∈ U . Moreover, we say that a Pfaffian function described in this way has
complexity B > 0, if n, r, deg (P ) and deg (Pi,j), for all i = 1, . . . , r, j = 1, . . . , n,
are at most B. Such functions were introduced by Khovanskii [5, 6], who showed
that if f : U → R is a Pfaffian function of complexity at most B, where U is an
open box in Rn, then the number of connected components of the zero set of f is
bounded by a constant which is effectively computable from B.

Theorem 1. Let B be a positive real number and let U be an open subset of R2

with [0, 1]2 ⊆ U . Suppose that f : U → R is Pfaffian of complexity at most B.
Let ǫ > 0. There exists a positive constant c depending only on B and on ǫ, and
effectively computable from them, with the following property. For all H ≥ 1, the
transcendental part of the graph of f |[0,1]2 contains at most cHǫ rational points of
height at most H.

There are two improvements in the constant obtained here over that which
Pila’s theorem for subanalytic surfaces provides for such functions. Of course, one
improvement is that the constant here is effective. The other is that it is uniform
across the class of all Pfaffian functions of the same complexity. We contrast this
with the recent work of Binyamini [1], which provides an effective constant in the
more general setting of sets of all dimensions described by ‘Noetherian’ functions
– these are functions defined in the same way as Pfaffian functions but without
the triangularity assumption on the system of differential equations. While this
setting encompasses that of Theorem 1, the constant obtained in [1] depends on
input data other than the complexity defined here, such as the coefficients of the
polynomials appearing in the system of differential equations. The uniformity that
we obtain is a feature which promises to have some use in applications. It is also
worth noting that the result applies whenever f is a real Pfaffian function, without
further conditions being imposed.

Our proof follows the same structure as that of the proof of the Pila–Wilkie
Theorem. In particular, we use a parameterization result, a partition of our sur-
faces into finitely many subsets described by functions with controlled derivatives.
Here we cannot appeal directly to the o-minimal version of the parameterization
of Yomdin and Gromov [12, 11, 2] that was proved by Pila and Wilkie. Indeed,
this result is one of the main sources of ineffectivity in the Pila–Wilkie Theorem,
for it involves the use of the compactness theorem (of first-order logic). Our main
contribution is an effective version of this parameterization result in a certain set-
ting. A complication in proving this is that, due to the inductive nature of the
proofs, we must move outside the setting of Pfaffian functions themselves. Instead
we have to work in the wider class of functions which are implicitly defined by
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(restricted) Pfaffian functions. We thus in fact obtain a version of Theorem 1 in
this more general setting, when we combine our parameterization result with ideas
from our previous paper [4]. For details, please see [3].
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André-Oort for Nonholomorphic Functions

Haden Spence

I begin by recalling some well-known facts about the modular j function. It is a
holomorphic map j : H → C, and is invariant under the action of SL2(Z), meaning
that j(γτ) = j(τ) for all γ ∈ SL2(Z). (Throughout, SL2(R) acts on H via Möbius
transformations.)

The function j also has good behaviour with respect to GL+
2 (Q). For any τ ∈ H

which is quadratic over Q, and therefore fixed by a nontrivial element of GL+
2 (Q),

we have j(τ) ∈ Q. Moreover, for each N ∈ N, there is a polynomial ΦN ∈ Z[X,Y ]
such that

ΦN(j(gτ), j(τ)) = 0

identically, whenever g ∈ GL+
2 (Q) is a primitive integer matrix of determinant N .

These polynomials can be used to construct the special subvarieties of Cn, which
correspond to Shimura subvarieties of Cn, viewed as a product of level 1 modular
curves.
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Definition 1. A variety in Cn is a special subvariety if it is an irreducible com-
ponent of some V ⊆ Cn defined by equations of the form

• ΦN (Xi, Xj) = 0 for some N , i 6= j, or
• Xi = j(τ) for some fixed quadratic τ ∈ H.

Relatedly, we can define special subvarieties of Hn.

Definition 2. A subset of Hn is called a special subvariety if it is cut out by
equations of the form

• τi = gτj for some g ∈ GL+
2 (Q), i 6= j, or

• τi = τ for some fixed quadratic τ ∈ H.

With these definitions, we can state the classical Modular André-Oort theorem.

Theorem 1 (Pila, Modular André-Oort). Let V ⊆ Cn be an algebraic subvariety.
Then V contains only finitely many maximal special subvarieties.

This was proven by Pila in 2011, [2], using the now-standard Pila-Zannier o-
minimal strategy. I will discuss an analogue of the above theorem, where j is
supplemented by a certain nonholomorphic modular function.

Definition 3. An almost holomorphic modular form (ahm form) of weight k is
a function f : H → C of the form

f(τ) =
R∑

r=0

fr(τ)

(
1

Im τ

)r

,

satisfying

f(γτ) = (cτ + d)kf(τ),

where γ =

(
a b
c d

)
∈ SL2(Z) and each fr is a holomorphic function with the

property that

fr(x+ iy) remains bounded as y → ∞ (for each x individually).

The prototypical ahm form (which is not just a modular form) is the “nonholo-
morphic Eisenstein series” E∗

2 . It is defined as

E∗
2 (τ) = E2(τ) − 3

π Im τ
,

where E2 is a holomorphic function from H to C derived from the weight 2 Eisen-
stein series. For more details on the theory of ahm forms, one can see the excellent
survey by Zagier, [5].

There are no ahm forms of weight 0. For an André-Oort statement, one wants
weight 0 objects, so we make the following definition: a function f : H → C is an
ahm function if it is a quotient of two ahm forms of equal weight. Hence, like j,
ahm functions are invariant under SL2(Z). We will consider the ahm function

χ∗ = 1728 · E
∗
2E4E6

E3
4 − E2

6

,
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where E4 and E6 are the classical Eisenstein series. It is known that the dis-
criminant function 1

1728 (E3
4 − E2

6 ) does not vanish anywhere in H, so χ∗ has no
singularities within H.

Writing F ∗ for the field of ahm functions, it is known that

F ∗ = C(j, χ∗),

so χ∗ is the only ahm function, besides j, that we need to worry about. It should be
considered as the nonholomorphic analogue to j, and indeed it has many analogous
properties. A result of Masser [1] shows that χ∗(τ) ∈ Q, for quadratic τ . One
can also find analogues of the modular polynomials ΦN : for each N there is a
polynomial ΨN ∈ Q[X,Y, Z] such that

ΨN (χ∗(gτ), j(τ), χ∗(τ)) = 0

for all primitive integer matrices g ∈ GL+
2 (Q) of determinant N .

Consider the variety V ′
N ⊆ C4, defined by

ΦN (X1, X3) = 0, ΨN (X2, X3, X4) = 0.

By the properties of ΦN and ΨN , V ′
N contains (j, χ∗)(G), where

(j, χ∗) : Hn → C2n

is the map sending each coordinate τ to the pair (j(τ), χ∗(τ)), and

G = {(τ, gτ) : τ ∈ H},
for some primitive integer matrix g, of determinant N . Now, V ′

N has an irreducible
component containing (j, χ∗)(G), which we call VN ; it is the Zariski closure of
(j, χ∗)(G). This variety VN is the main building block of a new type of special
subvariety, called a ∗-special subvariety of C2n.

Definition 4. A ∗-special subvariety of C2n is the Zariski closure of (j, χ∗)(G), for
G a special subvariety of Hn. Equivalently, a ∗-special subvariety is an irreducible
component of a variety in C2n defined by equations of the form

• (X2i−1, X2i, X2j−1, X2j) ∈ VN , for some N , 1 ≤ i, j ≤ n, or
• (X2i−1, X2i) = (j, χ∗)(τ), for some fixed quadratic τ ∈ H.

Now I can state the main theorem: a natural analogue of Theorem 1.

Theorem 2 (S., Nonholomorphic Modular André-Oort). Let V ⊆ C2n be an alge-
braic variety. Then V contains only finitely many maximal ∗-special subvarieties.

I prove this in [4] using the usual Pila-Zannier strategy. There are three neces-
sary components:

(1) Definability of (j, χ∗) in an o-minimal structure.
(2) Suitable control over the Galois orbits of ∗-special points (j, χ∗)(τ).
(3) An Ax-Lindemann result to control the algebraic part of (j, χ∗)−1(V ).

The first is easy; it follows from the definability of j that the restriction of χ∗ to
a suitable fundamental domain for the action of SL2(Z) on H is definable in the
o-minimal structure Ran,exp.
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The second component is also fairly easy; Masser proves in [1] that Q(χ∗(τ)) ⊆
Q(j(τ)). Close inspection of the proof yields the following fact: if σ is a Galois
automorphism acting on j(τ), for some quadratic τ , then

(j(τ), χ∗(τ))σ = (j(τ ′), χ∗(τ ′)),

for some other quadratic τ ′. As a consequence, all the Galois control we need for
∗-special points follows from facts already known about j.

The third is by far the most difficult. Classical Ax-Lindemann results rely
heavily on the holomorphicity of j, so proving an analogue for χ∗ is much more
challenging. However, by exploiting the nice shape of χ∗, one can perform some
analytic tricks to get around this problem. Making use also of Pila’s Ax-Lindemann
result for the derivatives of j, [3], I prove the necessary Ax-Lindemann theorem as
the bulk of the work in [4]; interested readers are encouraged to read that paper
for details!

The three components combine in a standard way to prove Theorem 2.
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An o-minimal Szemerédi-Trotter theorem

Saugata Basu

(joint work with Orit E. Raz)

The Szemerédi-Trotter theorem [19] on incidences between lines and points in the
plane is a foundational result in discrete geometry and extremal combinatorics.
The statement of the original theorem (slightly restated and generalized from affine
to projective) is as follows. Let V = {(x, x∗) ∈ P2

R
× P2∗

R
| x∗(x) = 0} ⊂ P2

R
× P2∗

R

denote the incidence variety.

Theorem 1. [19] There exists a constant C > 0, such that any pair of finite sets
P ⊂ P2

R
,P∗ ⊂ P2∗

R
,

card(V ∩ (P × P∗)) ≤ C · (card(P)2/3 · card(P∗)2/3 + card(P) + card(P∗)).

Remark 1. Notice that Theorem 1 can be interpreted as a theorem about “unlikely
intersections” – since for generic choices of P ,P∗, the set V ∩ (P ×P∗) is empty.
Theorem 1 has been generalized later in many different ways (for example, to
algebraic curves instead of lines [9, 17], incidences between points and algebraic
hypersurfaces in higher dimensions [5], replacing R by C [20, 22] etc.).
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From semi-algebraic to o-minimal. It was shown in [3], that many quantita-
tive results in the theory of arrangements of semi-algebraic sets could be general-
ized to the setting where the elements of the arrangements are restricted to be the
fibers of some fixed definable map in some fixed o-minimal structure over a real
closed field R. More recently, o-minimal generalizations of results in combinatorial
geometry have become a very active topic of research [7] (see also the survey article
[16, §6]).

In another direction, Fox et al. [10, Theorem 1.1] obtained a very far reaching
generalization of Theorem 1, by extending it to the case of semi-algebraic curves
of fixed description complexity. It is thus a natural question if incidence results,
such as the Szemerédi-Trotter theorem, and its various generalizations can also
be extended to the more general setting of o-minimal geometry. The following
theorem is such a generalization.

We fix an o-minimal structure over a real closed field R [21].

Theorem 2. [4] Let V be a definable subset of P ×P ∗, where P, P ∗ are definable
sets of dimension at most two. Then one of the following holds.

(1) There exists a constant C = C(V, P, P ∗) > 0, which depends on V, P, P ∗,
such that for every finite subsets P ⊂ P , P∗ ⊂ P ∗,

card(V ∩ (P × P∗)) ≤ C · (card(P)2/3 · card(P∗)2/3 + card(P) + card(P∗)).

(2) There exist definable subsets α ⊂ P and α∗ ⊂ P ∗, with dim(α), dim(α∗) ≥
1, such that α× α∗ ⊂ V.

Remark 2. Notice that if the second alternative in Theorem 2 holds, then the first
alternative (i.e. the Szemerédi-Trotter-type bound) cannot hold, since by choosing
P ⊂ α,P∗ ⊂ α∗, we can ensure that card(V ∩ (P ×P∗)) = card(P) · card(P∗). Si-
multaneously with our paper Chernikov, Galvin and Starchenko [6] also announced
a similar result. Their result is more general than ours (it applies to general distal
structures), but the techniques behind their proof are quite different.

A few remarks about technique. Modern proofs of non-trivial incidence results
(such as the Szemerédi-Trotter theorem) usually rely on some deeper algebro-
geometric and/or topological results. There are some difficulties in extending
these results to higher dimensions and to more general situations (such as to o-
minimal structures). We give a summary of these methods and the difficulties in
extending them.
Partitioning. One very effective method is to partition the space (R2 in the case
of Szemerédi-Trotter) efficiently into semi-algebraic subsets, such that each subset
contains few of the given finite set of points, and each line (or curve from certain
restricted family of curves) has non-trivial intersection with few of these subsets.
The standard method to achieve this is via the so called “polynomial partitioning
theorem” due to Guth and Katz [12]. The polynomial partitioning method and
its various generalizations currently do not extend to the o-minimal case, since it
is impossible to satisfy the second requirement mentioned above (an arbitrary de-
finable curve can have arbitrarily large number of isolated intersection points with
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algebraic curves of fixed degree [11]). In the semi-algebraic case, the polynomial
partitioning technique has proved to be very effective – for example, the proof of
[10, Theorem 1.1] uses this method. An older method of partitioning which has
been used with some success in the semi-algebraic case is sometimes referred to
as “trapezoidal decompositions or cuttings” (see for example [14]). They can be
thought to be a generalization of the well known (in semi-algebraic and o-minimal
geometry) cylindrical decomposition adapted to a given family of semi-algebraic
or definable sets – even though the partition need not have a cylindrical struc-
ture. The main useful property (which is also called “distality” in model theory
[7]) is that the sets in the partition should each be determined by a fixed num-
ber of the given definable sets in a fixed definable way. The existence of such
decompositions giving rise to full cylindrical decomposition was proved in [3] with
quantitative bounds. But this bound does not give any useful incidence results.
More efficient bounds on “semi-cylindrical decomposition” for definable sets was
proved by Barone [2, Theorem 4.0.9, Chapter 4] – who nearly recovers the best
known results in the semi-algebraic case. However, even in the semi-algebraic case
the best known quantitative bounds on such decomposition fail to be optimal in
higher dimensions and tightening this is major open problem. In lower dimen-
sions (≤ 4) optimal results about cuttings are known, and their extension to the
o-minimal case is the main technique in the proof of the o-minimal version of
Szemerédi-Trotter by Chernikov, Galvin and Starchenko [6].
Definable crossing number inequality. The proof of Theorem 2 in [4] does not use
a partition argument – but rather a different tool, namely the crossing number
inequality for finite graphs due to Ajtai et al. [1] and Leighton [13]. The proof can
be seen as an adaptation of the proof of the original Szemerédi-Trotter theorem due
to Szekely [18], along with certain techniques developed in [15]. The extension of
the crossing number inequality to the o-minimal setting uses o-minimal homology
theory and Alexander duality [8]. At present it is not clear how to extend this
method to higher dimensions, because of the use of the crossing number inequality,
since the definition of the crossing number of a graph seems to be an intrinsically
planar notion.
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ArXiv e-prints (2016).

[16] T Scanlon, O-minimality, Gazette Mathématique 149 (2016), 33–39.
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Michael’s Theorem for Lipschitz Cells in O-minimal Structures

Wieslaw Pawlucki

(joint work with Ma lgorzata Czapla)

This is my joint work with Ma lgorzata Czapla. Assume that R is any real closed
field and an expansion of R to some o-minimal structure is given. We will be
talking about definable sets and mappings referring to this o-minimal structure.
It will be convenient to adopt the following definition of a closed cell. A subset S
of Rm (m ∈ Z, m > 0) will be called a closed (respectively, closed M -Lipschitz)
cell in Rm, where M ∈ R, M > 0, if (i) S is a closed interval [α, β] (α, β ∈
R, α ≤ β), or S = [α,+∞), or S = (−∞, α] (α ∈ R), or S = R, when
m = 1 and (ii) S = [f1, f2] := {(y′, ym) : y′ ∈ S′, f1(y′) ≤ ym ≤ f2(y′)}, where
y′ = (y1, . . . , ym−1), S′ is a closed (respectively, closed M -Lipschitz) cell in Rm−1,
fi : S′ −→ R (i = 1, 2) are continuous (respectively, M -Lipschitz) definable
functions such that f1(y

′) ≤ f2(y′), for each y′ ∈ S′, or S = [f,+∞) = {(y′, ym) :
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y′ ∈ S′, ym ≥ f(y′)}, or S = (−∞, f ] = {(y′, ym) : y′ ∈ S′, ym ≤ f(y′)}, or
S = S′ × R, where S′ is as before and f : S′ −→ R is continuous (respectively,
M -Lipschitz), when m > 1. Let F : A ⇒ Rm be a multivalued mapping defined
on a subset A of Rn; i.e. a mapping which assigns to each point x ∈ A a nonempty
subset F (x) of Rm. F can be identified with its graph; i.e. a subset of Rn×Rm. If
this subset is definable we will call F definable. F is called lower semicontinuous
if for each a ∈ A and each u ∈ F (a) and any neighborhood U of u, there exists a
neighborhood V of a such that U ∩ F (x) 6= ∅, for each x ∈ V . The main result is
the following theorem.

Theorem 1. Let F : A ⇒ Rm be a definable multivalued, lower semicontinuous
mapping defined on a definable subset A of Rn such that every value F (x) is a
closed M -Lipschitz cell in Rm, where a constant M > 0 is independent of x ∈ A.
Then F admits a continuous definable selection ϕ : A −→ Rm.

The following generalization of Theorem 1 is immediate.

Corollary 1. Let F : A ⇒ Rm be a definable multivalued, lower semicontinuous
mapping defined on a definable subset A of Rn. If there is a continuous definable
mapping Φ : A −→ Aut(Rm) with values in the space of linear automorphisms of
Rm such that Φ(x)(F (x)) is a closed M -Lipschitz cell in Rm, then F admits a
continuous definable selection ϕ : A −→ Rm.

Applying Theorem 1 to semilinear sets and taking into account that every closed
semilinear cell is Lipschitz and for every semilinear family of semilinear cells they
are M -Lipschitz with common M , we obtain the following application generalizing
a result of Aschenbrenner and Thamrongthanyalak

Corollary 2. Let F : A⇒ Rm be a semilinear multivalued, lower semicontinuous
mapping defined on a semilinear bounded subset A of Rn such that every value
F (x) is a closed semilinear cell in Rm. Then F admits a continuous semilinear
selection ϕ : A −→ Rm.

A proof of Theorem 1 is by induction on m. Consider first the case m = 1. Then
F (x) = {t ∈ R : f(x) ≤ t ≤ g(x)}, for each x ∈ A, where f : A −→ R ∪ {−∞}
and g : A −→ R ∪ {+∞} are definable functions. It is easy to check that F
is lower semicontinuous if and only if g is lower semicontinuous and f is upper
semicontinuous. Therefore, the problem reduces to the following.

Theorem 2. Let f : A −→ R ∪ {−∞} and g : A −→ R ∪ {+∞} be two definable
functions such that f(x) ≤ g(x), for each x ∈ A, and f is upper semicontinuous
while g is lower semicontinuous. Then there exists a definable continuous function
ϕ : A −→ R such that f ≤ ϕ ≤ g.

This is a definable version of the Katětov-Tong Insertion Theorem. We prove it
by induction on dimA using a definable version of the Tietze Theorem. Assume
now that m > 1 and our theorem is true for m − 1. To make the induction
hypothesis work we prove the following.
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Proposition 1. Under the assumptions of Theorem 1, let

π : Rm ∋ y = (y1, . . . , ym) 7−→ y′ = (y1, . . . , ym−1) ∈ Rm−1

be the natural projection. Let π ◦ F : A ⇒ Rm−1 denote the composition defined
by the formula (π ◦ F )(x) = π(F (x)).

Then F treated as a multi-valued mapping F : π ◦ F ⇒ R is lower semi-
continuous.

To finish the proof of Theorem 1, observe that the mapping π ◦F is lower semi-
continuous as a composition of a lower semicontinuous mapping with a continuous
one, so by the induction hypothesis there exists a continuous definable selection
ϕ′ for π ◦ F . By above Proposition F |ϕ′ : ϕ′ ⇒ R is lower semi-continuous;
hence, by Theorem 2, it admits a continuous definable selection σ : ϕ′ −→ R,
which gives a required selection ϕ = (ϕ′, σ ◦ (idA, ϕ

′)). There exists an example
of a semialgebraic mapping G : A ⇒ R2, with A ⊂ R2, which is not only lower
semicontinuous, but even continuous with respect to the Hausdorff distance in the
space of definable, closed, bounded and nonempty subsets, and which does not
admit a continuous selection, although its values G(x1, x2) are M -Lipschitz cells
but not with a constant M independent of (x1, x2). The dimension two is here
minimal both from the point of the domain and the target.

Trajectories of analytic vector fields and o-minimality. The interlaced
case

Fernando Sanz

(joint work with Olivier Le Gal, Patrick Speissegger)

Let X be a real analytic vector field with a singular point at the origin of Rn. The
talk is framed in the general question of describing qualitatively the dynamics of
X around 0 by studying geometric properties of the trajectories which converge to
the singular point. We mean by a trajectory here the image of an integral curve
γ : [0,∞) → Rn of X (again denoted by γ) such that γ(t) 6= 0 for any t and such
that limt→∞ γ(t) = 0.

We are interested in the following questions:
Question 1.- What finiteness properties, with respect to the family of analytic

sets, do individual trajectories of X have?
Question 2.- What type of behavior may have a trajectory with respect to its

neighboring trajectories?

To tackle Question 1, we start by assuming that the trajectory γ is non-
oscillating, i.e., that for any analytic set H at 0 ∈ Rn, either γ is contained in
H or γ cuts H only finitely many times. Non-oscillation is an a priori finiteness
property and non trivial in general. In the planar case n = 2, it is equivalent
to the existence of a tangent at the limit point by a Rolle’s argument. But it is
strictly stronger than existence of tangent in higher dimension, in fact stronger
than existence of iterated tangents, i.e., accumulation to a single limit point under
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iterated punctual blow-ups. A significant example for n = 3 is the following (see
[2]):

(1) X1 = (−x+ y)
∂

∂x
+ (−y − x)

∂

∂y
− z2

∂

∂z
.

For this example, any trajectory in the half space {z > 0}, except for the z-axis
Γ = {x = y = 0}, converges to the origin spiraling around Γ and being asymptotic
to Γ. Thus, any such trajectory is oscillating although it has iterated tangents
(those of the analytic curve Γ).

The spiraling behavior of example (1) is general for oscillating trajectories with
iterated tangents in dimension three ([2]). This result permits to check the non-
oscillating property in some situations for n = 3, typically when the linear part
of the vector field at the singularity is non-nilpotent (see for instance [10, 3]). In
general, we can assert that a trajectory is non-oscillating if it is asymptotic to a

formal curve Γ̂ at 0 ∈ Rn which is divergent and transcendental with respect to

the analytic functions, i.e., considering a parametrization Γ̂ = (ĥ1(t), . . . , ĥn(t)) ∈
R[[t]]n, if F (x1, . . . , xn) is a germ of an analytic function with F (0) = 0 and

F (ĥ1(t), . . . , ĥn(t)) = 0 then F ≡ 0.
Apart from the existence of iterated tangents, non-oscillating trajectories have

other interesting properties. For instance, they can be parameterized by an ana-
lytic coordinate and the components of such a parametrization generate a Hardy
field of one-variable real functions (see [1]).

Looking for stronger tame properties of non-oscillating trajectories and, in ac-
cordance with the topics of the workshop, we can formulate strong versions of
Questions 1 and 2 in the following way:

Question 1’.- Given a non-oscillating trajectory γ, is the expansion Ran(γ) of
the real field by the restricted analytic functions and γ o-minimal?

Question 2’.- In which conditions the expansion of Ran by a family of non-
oscillating trajectories of X is o-minimal?

The main result presented in this talk deals with Question 1’. Before making a
precise statement, let us review the paper [3], which tackles Question 2 for n = 3.
An integral pencil of X is the family of all (germs of) trajectories of X at 0 ∈ R3

which share the same sequence of iterated tangents. The main result in [3] is the
following (exclusive) dichotomy for the relative behavior of trajectories in a given
integral pencil P :

a) Either any pair of distinct trajectories γ, γ′ ∈ P is an interlaced pair.
This means that, after parameterizing by a coordinate γ(z) = (u(z), z), γ′(z) =
(v(z), z), the vector u(z) − v(z) spirals around the origin in R2 while z goes to 0.
We speak of an interlaced pencil.

b) Or for any pair of distinct trajectories in γ, γ′ ∈ P there exists a subanalytic
submersion f from a neighborhood of γ ∪ γ′ onto R2 such that f(γ) ∩ f(γ′) = ∅.
We speak of a separated pencil.
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Moreover, if P is an interlaced pencil, then there exists a (unique) formal curve

Γ̂ at 0 ∈ R3, called the formal axis of the pencil, such that any member of P is as-

ymptotic to Γ̂. The formal axis is necessarily divergent and, in fact, transcendental.
A concrete example of an interlaced pencil can be obtained by a “perturbation”
of the example X1 in (1):

(2) X2 = (−x+ y + z)
∂

∂x
+ (−y − x)

∂

∂y
− z2

∂

∂z
.

Under the perturbation, the z-axis from example X1 in (1) becomes an invariant

formal divergent curve Γ̂ of X2 in (2) and every trajectory of X2 in the half space

z > 0 is asymptotic to Γ̂ at the origin. This guarantees that they are non-oscillating
trajectories of an integral pencil. On the other hand, if we parameterize two such
trajectories as γ(z) = (u(z), z), γ′(z) = (v(z), z) then the curve z 7→ (u(z)−v(z), z)
is a trajectory of example X1, which shows that the pair γ, γ′ is an interlaced pair.

Now we can state the main result of the talk.

Main Theorem ([6]).- Let P be an interlaced pencil of non-oscillating trajec-
tories of an analytic vector field at 0 ∈ R3. Then for any γ ∈ P, the expansion
Ran(γ) is o-minimal, model-complete and polynomially bounded.

This theorem answers positively Question 1’ for trajectories of an interlaced
pencil. It is still open for three dimensional trajectories in a separated pencil.
However, the answer to Question 1’ is negative in general for trajectories in di-
mension n ≥ 5 thanks to the following example, constructed in the paper [8]:
consider two distinct trajectories γ1(z) = (u(z), z), γ2(z) = (v(z), z) of example
X2 in (2) and put γ(z) = (u(z), v(2z), z). Using the (SAT) property of the formal

axis Γ̂ of X2 (which we recall below), one can show that γ is asymptotic to a
formal transcendental curve at 0 ∈ R5, and thus γ is non-oscillating. On the other
hand, by the definition of interlaced pair, it is clear that γ can not generate an
o-minimal expansion.

The problem of o-minimality of a family of trajectories (Question 2’) is more
difficult and only very particular results are known, except for the planar case
n = 2 for which every non-oscillating trajectory is a pfaffian set and hence all of
them generate an o-minimal structure (see [7, 11]). In dimension three, notice
that two distinct trajectories of an interlaced pair cannot generate an o-minimal
expansion, so Question 2’ can only be formulated for trajectories in a separated
pencil. We may mention the following recent contributions to this problem for
n = 3:

• In the paper [5], we analyze a system of two linear ODEs of the form
Y ′ = A(x)Y + B(x) where Y = (y1, y2) and A(x), B(x) are real-valued
matrices for x in some interval (0, ε) and definable in an o-minimal ex-
pansion R of R. It corresponds to a three-dimensional vector field in
coordinates (x, y1, y2) of a particular form, but not necessarily with ana-
lytic coefficients, since there is no restriction on the o-minimal expansion
R. We prove that we have also the same dichotomy interlaced/separated



1394 Oberwolfach Report 22/2017

for the whole family of solutions of the system and that, in the separated
case, such a family generates an o-minimal expansion of R (in fact a reduct
of the pfaffian closure of R).

• In a recent article [4], yet unpublished, we show that if P is a separated
pencil with a transcendental formal axis and γ, γ′ ∈ P , parameterized by
a common analytic coordinate, then the components of γ and γ′ belong
to a Hardy field.

The proof of the Main Theorem follows a similar scheme as the one for the main
result in the paper [8]. Let us just sketch here the principal steps.

Step 1. The vector field in final form.- After a finite number of blow-ups and
ramifications, we may assume (see [3]) that the vector field X is written as a
system of analytic ODEs of the form

(3) xk+1

(
y′1
y′2

)
=

k∑

j=0

xj
(
aj −bj
bj aj

)(
y1
y2

)
+ xk+1Θ(x, y),

where k ≥ 1, br 6= 0 for some 0 ≤ r ≤ k (some of the matrices above has non-
real eigenvalues) and as > 0 for some 0 ≤ s ≤ k − 1. The system (3) has a

unique formal solution Ĥ(x) = (Ĥ1(x), Ĥ2(x)) ∈ R[[x]]2 and the trajectories of
the interlaced pencil P correspond to the solutions (h1(x), h2(x)) with x ∈ (0, ε)

which are asymptotic to Ĥ(x).

Step 2. The SAT condition.- A polynomial P ∈ R[x] is said to be positive
if P (x) > 0 for all sufficiently small x > 0. It is said to be k-short if degP <
(k + 1)ordP . In the paper [8] it is introduced the following

Definition.- A tuple Ĥ(x) ∈ R[[x]]n of formal power series is called k-SAT
(for Strongly Analytically Transcendental) if for any tuple P = (P1, P2, ..., Pl) of
distinct positive k-short polynomials, the tuple

Ĥ ◦ P := (Ĥ(P1(x)), ..., Ĥ(Pl(x))) ∈ R[[x]]nl

is analytically transcendental, i.e., if F (z0, z1, ..., znl) is convergent and F (x, Ĥ ◦
P ) ≡ 0 then F ≡ 0.

Step 3. The SAT condition vs quasi-analyticity and o-minimality.- One of the
main results that we use is the following one.

Theorem [8].- Let Ĥ(x) ∈ R[[x]]n be a formal solution of a system of analytic

ODEs of the form xk+1Y ′ = f(x, Y ) where f is analytic and assume that Ĥ(x) has
the SAT property. Let h(x) = (h1(x), ..., hn(x)) for x ∈ (0, ε) be a solution of the

same system which is asymptotic to Ĥ(x). Then the expansion Ran(h) of the real
field by the restricted analytic functions and the components of h is o-minimal,
model-complete and polynomially bounded.

For the proof of this result one considers the smallest family {Cm} of algebras of
germs of functions at the origin of Rm, for any m, which is closed by composition,
partial derivatives, solution of implicit equations and monomial division and such
that the components hj of the solution h belong to C1. The property SAT is used
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to prove that these algebras are quasi-analytic, i.e., their non-zero elements admit
non-zero formal Taylor expansion. Then the result follows from the results in the
paper [9].

Step 4. Multisummability and the SAT condition.- It remains to prove that the

formal solution Ĥ(x) ∈ R[[x]]2 of the system (3) has the SAT property. This is a
technical part which uses the theory summability and multisummability of formal

series. Particularly, the series Ĥ(x) is k-summable and, being divergent, has at
least one non-trivial Stokes phenomenum. We prove that if P1, ..., Pl are distinct
k-short positive polynomials and if F is a non-zero convergent series in 1 + 2l

variables then the series F (x, Ĥ(P1(x)), ..., Ĥ(Pl(x))), which is multisummable,
has also one non-trivial Stokes phenomenum, and hence it can not be the zero
series. The presence of a non-real eigenvalue in one of the matrices in expression
(3) is crucial here in the proof, as well as the fact that the Pj are distinct k-short
polynomials.
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Bi-Lipschitz classification of surface germs

Andrei Gabrielov

(joint work with Lev Birbrair, Alexandre Fernandes)

Let X be a germ at the origin of Rn of a two-dimensional surface definable in a
polynomially bounded o-minimal structure over R. The outer metric on X , such
that dist(x, y) = ||y − x||, is induced from Rn. Two such surface germs, X and
Y , are bi-Lipschitz equivalent if there exists a homeomorphism h : (X, 0) → (Y, 0)
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such that the outer metric on X is equivalent to the metric on X induced from
Y . The goal is to find a discrete (no moduli in definable families) invariant of
bi-Lipschitz equivalence class of definable surface germs.

We start with a simpler problem of bi-Lipschitz classification of germs at the ori-
gin of definable functions f : R2 → R up to contact equivalence. Two such function
germs are bi-Lipschitz contact equivalent if there exists a bi-Lipschitz homeomor-
phism h : (R3

x,y,z, 0) → (R3
x,y,z, 0) commuting with the projection R3

x,y,z → R2
x,y

and mapping the graph of f to the graph of g. The invariant consists of a par-
tition of the neighborhood of the origin of R2

x,y into Hölder triangles Tj (defined
up to bi-Lipschitz equivalence and uniquely determined by the cyclically ordered
sequence of the exponents βj of Tj), and for each j the sign sj ∈ {+,−, 0} of f |Tj ,
the interval Qj of the exponents q of f on the arcs γ ⊂ Tj , and the affine width
function µj(q) = ajq + cj on Qj that measures how much an arc γ ⊂ Tj may
be deformed so that the exponent q of f |γ does not change. Such a partition is
called a “pizza” with “slices” Tj and “toppings” βj , sj , Qj, µj . These data (with
some additional constraints due to continuity of f) constitute a complete discrete
invariant of the by-Lipschitz contact equivalence class of function-germs in R2 ([1],
Theorem 3.1).

For a germ X of a definable two-dimensional surface, a similar (but more com-
plicated combinatorially) canonical (up to bi-Lipschitz equivalence) partition into
normally embedded Hölder triangles Tj can be defined, so that any two triangles
of the partition are either “transversal” (not tangent to each other) or “coherent”
(bi-Lipschitz equivalent to a slice of a pizza and a graph of a definable function
over that slice). The discrete invariant of the bi-Lipschitz equivalence class of X
consists in the combinatorial structure of the partition, the tangency orders qjk
between the boundary arcs of any two triangles Tj and Tk of the partition, and
the “toppings” βjk, Qjk, µjk(q) associated with each pair of coherent triangles Tj
and Tk ([2], work in progress).
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Monotone functions and maps

Nicolai Vorobjov

(joint work with Saugata Basu, Andrei Gabrielov)

Fix an o-minimal structure over R. In what follows, all sets, functions, and maps
are assumed to be definable in this structure. Consider a set X ⊂ Rn and a
cylindrical decomposition of Rn compatible with X . Each d-dimensional cylindri-
cal cell C ⊂ X of this decomposition is a topological cell, i.e., a homeomorphic
image of (0, 1)d. On the other hand, C is not necessarily a topologically regular
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cell (C is topologically regular if the pair (C,C) is homeomorphic to the pair(
[0, 1]d, (0, 1)d

)
). In tame topology it is desirable to be able to construct cylindri-

cal decompositions consisting of topologically regular cells, or, at least, partitions
into regular cells each of which is cylindrical (possibly with respect to different
orders of coordinates).

We introduce a class of cylindrical cells, which are topologically regular and are
defined by a property that is relatively easy to realise and check.

We first need a preliminary definition.

Definition 1. Let a bounded continuous map f = (f1, . . . , fk) defined on an open
bounded non-empty set X ⊂ Rn have the graph F ⊂ Rn+k. We say that f is
quasi-affine if for any coordinate subspace T of Rn+k, the projection ρT : F → T
is injective if and only if the image ρT (F) is n-dimensional.

The concept of a monotone map, defined below, is a far-reaching common gen-
eralisation of the usual univariate monotone continuous function and of the convex
set. The most natural definition builds on univariate monotone functions [2], but
turns out to be quite involved. The following is an equivalent definition, geomet-
rically simpler, in which the idea of monotonicity is only implicit.

Definition 2. Let a bounded continuous quasi-affine map f = (f1, . . . , fk) defined
on an open bounded non-empty set X ⊂ Rn have the graph F ⊂ Rn+k. We say
that the map f is monotone if for each affine coordinate subspace S in Rn+k the
intersection F ∩ S is connected. Monotone cell is the graph of a monotone map.

The most important property of monotone cells is expressed by the following
theorem.

Theorem 1 ([1, 2]). All monotone cells are topologically regular.

We state the following conjecture which might be very useful in topological
applications [2, 3].

Conjecture 2. Consider a compact set K ⊂ Rn and a function f : K → R. There
exists a partition P of K into monotone cylindrical cells, possibly with respect to
different orders of coordinates, such that for each cell C in P the restriction f |C
is a monotone function.

The conjecture holds (in a stronger version, for cylindrical decompositions) in
the case of dimK ≤ 2 and arbitrary n [3]. There is an understanding how to prove
the conjecture in the case of arbitrary dimK and n = 3. Some applications of this
theorem can be found in [2, 3].
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Variants of mild parameterizations, in definable families

Raf Cluckers

(joint work with Jonathan Pila, Alex Wilkie)

We present work from [3] with new parameterization theorems for sets definable
in the structure Ran (i.e. for globally subanalytic sets) which are uniform for
definable families of such sets. The existence of Cr-parameterizations for various
kinds of subsets of Rn has been proved in [6] [7] [4] (for semi-algebraic sets) and
[5] (for sets in o-minimal structures), and has been used to study both entropy
and rational points of height bounded by H . Our new work relates to two big
conjectures, one a variant of Yomdin’s question raized just below Remark 3.8 in
[2], and one a variant of a conjecture by Wilkie on polylogarithmic bounds for the
number of rational points of height no larger than H on definable sets in (certain
reducts of) Rexp

an .
Among the results from [3] , we focus on the polynomial (in r) bound (depending

only on the given family of definable sets) for the number of parameterizing Cr

functions.
We then give some diophantine applications motivated by the question as to

whether the Ho(1) bound in the Pila-Wilkie counting theorem can be improved,
at least for certain reducts of Ran. More specifically, uniform (logH)O(1) bounds
for the number of rational points of height at most H on Ran-definable Pfaffian
surfaces follow. The presented techniques and results also work more generally for
Rpow

an instead of Ran. The recent work of [1] also relates to the variant of Wilkie’s
conjecture for Ran-definable Pfaffian sets, and introduces different techniques to
approach this conjecture.
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1985/1986 (1987), 225–240.



O-Minimality and its Applications to Number Theory and Analysis 1399

[5] J. Pila, A. Wilkie, The rational points of a definable set, Duke Mathematical Journal 133
(2006), 591–616.

[6] Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), 285–300.
[7] Y. Yomdin, Ck-resolution of semialgebraic mappings. Addendum to: “Volume growth and

entropy”, Israel J. Math. 57 (1987), 301–317.

Small sets in dense pairs

Pantelis E. Eleftheriou

We consider expansions M̃ = 〈M, P 〉 of an o-minimal structure M by a set
P ⊆ M , such that the geometric behavior on the class of all definable sets is
tame. An important category of such structures is when every definable open set
is already definable in M ([1, 2, 4, 5, 7]). Three main examples of this category
are:

(1) Dense pairs
(2) Expansions of M by a dense independent set
(3) Expansions of real closed field M by a dense divisible subgroup P of

〈M>0, ·〉 with the Mann property.

In [7], all these examples were put under a common perspective, and a cone de-
composition theorem was proved for their definable sets. That theorem aimed to
provide an understanding of all definable sets in terms of sets definable in M and
‘P -bound’ sets. Corollary 3 below further reduces the study of P -bound sets to

that of subsets of some P l definable in M̃.

Notation. We fix an o-minimal expansion M = 〈M,<,+, 0, . . .〉 of an ordered
group with a distinguished positive element 1. We denote by L its language, and
by dcl the usual definable closure operator in M. An ‘LA-definable’ set is a set
definable in M with parameters from A. We also fix some P ⊆ M and denote

M̃ = 〈M, P 〉. An ‘(A-)definable set’ is a set definable in M̃ with parameters from
A. We drop the above indices ‘A’, if we do not want to specify the parameters.
Finally, we let D denote a subset of M .

Definition 1 ([4]). A set X ⊆ Mn is called P -bound over A if there is an LA-
definable function h : Mm →Mn such that X ⊆ h(Pm).

In the aforementioned examples, P -boundness amounts to a precise topological
notion of smallness ([7, Definition 2.1]), as well as to the classical notion of P -
internality from geometric stability theory ([7, Corollary 3.12]). In [7], we asked:

Question 2. Is every P -bound set in definable bijection with a subset of Pn, for
some n?

The main difficulty in answering the above question is that in M̃, most ‘choice
properties’ generally fail. For example, it is known that a dense pair does not
eliminate imaginaries and does not admit definable Skolem functions ([2, Section

5]. If P is a dense independent set, then M̃ eliminates imaginaries but does
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not admit definable Skolem functions ([3]). We observe here (Corollary 3 below)
that all that is needed in order to answer the above question is that the induced
structure on P by M eliminates imaginaries.

Definition 2. Let D,P ⊆M . The D-induced structure on P by M, denoted by
Pind(D), is a structure whose language is

Lind(D) = {Rφ(x)(x) : φ(x) ∈ LD}
and, for every tuple a ⊆ P ,

Pind(D) |= Rφ(a) ⇔ M |= φ(a).

We prove (Proposition 1) that in our examples, Pind(D) eliminates imaginaries,
for any D ⊆ M which is dcl-independent over P . We work in a general setting.

Consider the following properties for M̃ and D:

(OP) (Open definable sets are L-definable.) For every set A such that A \ P
is dcl-independent over P , and for every A-definable set V ⊂ Mn, its
topological closure V ⊆Mn is LA-definable.

(dcl)D Let B,C ⊆ P and

A = dcl(BD) ∩ dcl(CD) ∩ P.
Then

dcl(AD) = dcl(BD) ∩ dcl(CD).

(ind)D Every A-definable set in Pind(D) is the trace of an LAD-definable set.

Properties (OP) and (ind)D already appear in the literature and are known
for our three examples ([7]). Property (dcl)D is introduced here. We prove the
following results ([6]).

Theorem 1. Suppose (OP), (dcl)D and (ind)D hold for M̃ and D. Then Pind(D)

eliminates imaginaries.

Corollary 3. Suppose (OP), (dcl)D and (ind)D hold for M̃ and D, and let X ⊆
Mn be a D-definable set. If X is P -bound over D, then there is a D-definable
injective map τ : X → P l.

Proof. Let h : Mm → Mn be an LA-definable map such that X ⊆ h(Pm), and
consider the following equivalence relation E on Mm:

xEy ⇔ h(x) = h(y).

Note that E ∩ (Pm × Pm) is an equivalence relation on Pm, which is ∅-definable
in Pind(D). Since Pind(D) eliminates imaginaries, there is a ∅-definable in Pind(D)

map f : Pm → P l, for some l, such that for every x, y ∈ Pm,

f(x) = f(y) ⇔ xEy.

Define τ : X → P l, given by τ(h(x)) = f(x). Then τ is well-defined, injective and

D-definable (in M̃). �

We verify (dcl)D in our three main examples.
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Proposition 1. Let M̃ = 〈M, P 〉 be a dense pair, or an expansion of M by a
dense independent set or by a dense divisible multiplicative group with the Mann
Property. Let D ⊆ M be dcl-independent over P . Then (dcl)D holds. Hence
Pind(D) eliminates imaginaries.

The assumption that D is dcl-independent over P is necessary. Namely, without
it, Pind(D) need not eliminate imaginaries. However, even without it, we still obtain
the following corollary, which in particular applies to our examples.

Corollary 4. Suppose (OP), (dcl)D and (ind)D hold for M̃ and every D ⊆ M
which is dcl-independent over P . Let X ⊆ Mn be an A-definable set. If X is
P -bound over A, then there is an A ∪ P -definable injective map τ : X → P l.

Allowing parameters from P is standard practice when studying definability in
this context; see for example also [7, Lemma 2.5, Corollary 3.24].

Finally, we show that Theorems A and B are optimal also in the following way.

Let D be dcl-independent over P . Suppose (OP) and (ind)D hold for M̃ and D.
Then:

Pind(D) eliminates imaginaries ⇔ (dcl)D.

If we do not assume (OP), the above two properties need not hold. We do not
know whether they hold, if we assume (OP) and (ind)D. Finally, (OP) does not
imply (ind)D, but we do not know whether (ind)D is necessary for Pind to eliminate
imaginaries.

References

[1] G. Boxall, P. Hieronymi, Expansions which introduce no new open sets, Journal of Symbolic
Logic, (1) 77 (2012) 111-121.

[2] A. Dolich, C. Miller, C. Steinhorn, Structures having o-minimal open core, Trans. AMS 362
(2010), 1371-1411.

[3] A. Dolich, C. Miller, C. Steinhorn, Expansions of o-minimal structures by dense independent
sets, APAL 167 (2016), 684-706.

[4] L. van den Dries, Dense pairs of o-minimal structures, Fundamenta Mathematicae 157
(1988), 61-78.

[5] L. van den Dries, A. Günaydın, The fields of real and complex numbers with a small multi-
plicative group, Proc. London Math. Soc. 93 (2006), 43-81.

[6] P. Eleftheriou, Small sets in dense pairs, in preparation.
[7] P. Eleftheriou, A. Günadin and P. Hieronymi, Structure theorems in tame expansions of

o-minimal structures by dense sets, preprint (2016).

Weakly admissible lattices, o-minimality, and lattice point counting

Martin Widmer

(joint work with Niclas Technau)

Let n ≥ 2, let S =
∏n

i=1[yi, yi + si] be an aligned box in Rn, i.e., the cartesian
product of n intervals, and let Λ ∈ SLn(Z)\SLn(R), i.e., a unimodular lattice in
Rn. We write s for the geometric mean of the side lengths si and smax for the
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longest side length. Our first goal is to find sharp upper bounds for the lattice
point discrepancy

EΛ(S) := |#Λ ∩ S − Vol(S)| .(1)

The problem is uninteresting for the standard lattice Λ = Zn since there may be
many lattice points on the faces of S, showing that the general trivial estimate
EΛ(S) ≪Λ (1+smax)n−1 is sharp in this case. In contrast to this trivial case we call
a lattice Λ weakly admissible if no face of S contains more than one lattice point
for any aligned box S. For a quantitative version of this notion let us consider the
function

νΛ(ρ) := inf{|x1 · · ·xn|; x ∈ Λ, 0 < |x| < ρ},(2)

defined for ρ > γ
1/2
n , where γn denotes the Hermite constant. Then Λ is weakly

admissible if and only if νΛ(ρ) > 0 for all ρ. If νΛ(ρ) is even bounded away from
0 then we say Λ is admissible.

Theorem 1 ([4], Theorem 1.1). Let Λ be a weakly admissible lattice then we have

EΛ(S) ≪n inf
γ
1/2
n <ρ≤smax

(
s

νΛ(ρ)1/n
+
smax

ρ

)n−1

.(3)

We expect our bound to be sharp although we have succeeded to prove this
only for n = 2, 3 (where for n = 3 we are using a more flexible notion of weak
admissibility; c.f. [4, Theorem 2.2]).

Skriganov [1] proved bounds for EΛ(S) provided the dual lattice Λ⊥ (w.r.t the
standard inner product) is weakly admissible. If Λ⊥ is even admissible then he
obtains EΛ(S) ≪Λ (log(s+ 2))n−1 which is expected to be sharp.

The results based on Skriganov’s method (see [3, Theorem 1]) can be compared
with Theorem 1, provided one can compare νΛ⊥(ρ) with νΛ(ρ). If νΛ(ρ) is bounded
away from 0 then νΛ⊥(ρ) is bounded away from 0, i.e., if Λ⊥ is admissible then
also Λ is admissible. In this case Skriganov’s result is much more precise than
Theorem 1. On the other hand, if νΛ(ρ) = νΛ⊥(ρ) and Λ is weakly admissible but
not admissible then Theorem 1 is more precise, provided S is sufficiently distorted
(see [4, Introduction] for a more accurate statement).

But for which lattices Λ do we actually have this equality of the νΛ(·)−functions?
The following proposition shows that this happens, e.g., for every symplectic lat-
tice, in particular, whenever n = 2.

Proposition 1 ([3], Proposition 1). Let Λ = AZn, and suppose there exist P,R
both in GLn(Z) such that

ATPA = R,

and suppose P has exactly one non-zero entry in each column and in each row.
Then, we have

νΛ⊥(·) = νΛ(·).
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If we only assume that Λ is weakly admissible then it is not possible to give a
positive lower bound for νΛ⊥(·) solely in terms of νΛ(·) and n since Λ⊥ need not
be weakly admissible (see [3, Example 4]). But even if we assume that Λ and Λ⊥

are both weakly admissible it still is impossible to get a positive lower bound for
νΛ⊥(·) in terms of νΛ(·) and n as soon as the necessary condition n ≥ 3 is fulfilled.

Theorem 2 ([3], Theorem 2). Let n ≥ 3, and let ψ : (0,∞) → (0, 1) be non-
increasing. Then, there exists a unimodular, weakly admissible lattice Λ⊥ ⊆ Rn,

and a sequence {ρl} ⊆ (γ
1/2
n ,∞) tending to ∞, as l → ∞, such that

νΛ(ρ) ≫ ρ−n2

,

and

νΛ⊥(ρl) ≤ ψ(ρl)

for all l ∈ N = {1, 2, 3, . . .} and for all ρ > γ
1/2
n .

While Proposition 1 follows from a straightforward calculation Theorem 2 lies
deeper and is based on a recent result of Beresnevich [2, Theorem 1] about the
Hausdorff dimension of the set of badly approximable points on certain submani-
folds of Rn which answers a longstanding question of Davenport.

None of all that has anything to do with o-minimality. But Theorem 1 holds
for more general sets than aligned boxes.

We say a family F of bounded subsets of Rn has Property (UTB) if there exist
κ > 0 and M ∈ N such that whenever S ∈ F and A ∈ GLn(R) then the boundary
∂(AS) is covered by the images of M maps φi : [0, 1]n−1 → Rn (1 ≤ i ≤M), each
satisfying a Lipschitz condition with constant κ · diam(AS). Here diam(·) denotes
the diameter.

For any bounded set S ⊆ Rn we set si := diam(πiS) where πi(x) = xi is the
projection to the i−th coordinate. With these definitions Theorem 1 remains valid
for any set S that lies in a family F with Property (UTB), provided we replace
≪n in (3) by ≪n,M,κ (see [4, Theorem 2.2]).

This raises the problem of finding “large”, “interesting” families F with Prop-
erty (UTB). One can use integral geometry as in [5, Theorem 2.8] to show that
any family F of bounded sets in R2 whose boundary is the path of a smooth,
simple, closed curve that intersects no line in more than ≪F 1 points has Prop-
erty (UTB). Another interesting family with Property (UTB) is the family of all
bounded convex sets in Rn (see [5, Theorem 2.6]). Unsurprisingly, we can also
use o-minimality to establish such families. For Z ⊂ Rm+n and T ∈ Rm we write
ZT = {x ∈ Rn; (T,x) ∈ Z} and call this the fiber of Z above T .

Proposition 2 ([4], Proposition 8.1). Suppose Z ⊂ Rm+n is definable in an o-
minimal structure over R, and assume further that all fibers ZT are bounded sets.
Then the family of all fibers ZT has Property (UTB).
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The most important ingredients of the proof are the existence of definable
Skolem functions, Pila and Wilkie’s Reparameterization Lemma for definable fam-
ilies, and that for definable non-empty sets the dimension of the frontier is strictly
smaller than the dimension of the set itself.
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Some applications of o-minimality in quantitative arithmetic geometry

Christopher Frei

(joint work with U. Derenthal, M. Pieropan, E. Sofos)

A conjectural program initiated by Manin [3] predicts the distribution of rational
points of bounded height on certain classes of algebraic varieties over number fields.
The case of del Pezzo surfaces, projective surfaces with ample anticanonical divisor
and at most simple singularities, has attracted particular attention. For open
subvarieties U of a del Pezzo surface X over a number field K and an anticanonical
height function H on the rational points X(K), we consider the counting function

NU,H(B) := #{x ∈ U(K) | H(x) ≤ B}.
If X(K) 6= ∅, then Manin’s conjecture predicts the existence of an open subvariety
U , for which

NU,H(B) ∼ cX,HB(logB)ρX−1, as B → ∞,

with a positive constant cX,H and ρX the rank of the Picard group of X . A
strategy successfully applied in proofs of special cases for many singular and some
smooth del Pezzo surfaces over Q relies on two steps: first, the rational points
U(K) are parameterized by integral points of a higher-dimensional quasi-affine
auxiliary variety. Then these integral points of bounded height are counted using
geometry of numbers and analytic number theory. For the auxiliary variety in the
first step, one frequently takes a universal torsor of X , given as an open subset of
the spectrum of the cox ring Cox(X).

In joint work with U. Derenthal [2], we started first attempts at making this
strategy available over a wider selection of base fields, focusing first on imaginary
quadratic number fields. In the counting step, it is necessary to compare certain
sums over lattice points in a region described by the height function H to certain
integrals. This is complicated further by the presence of arithmetic functions that
describe coprimality conditions arising from the fact that our auxiliary variety is
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quasi-affine. To deal with these problems using classical tools of analytic number
theory, one requires strong monotonicity properties of parametric integrals of fam-
ilies of semialgebraic functions, which we established relying on the definability of
these integrals in the o-minimal structure Ran,exp.

With M. Pieropan [4], we extended the strategy to arbitrary number fields K.
Here, o-minimality is applied in a different way, in the form of a lattice point count-
ing theorem in definable sets [1]. The sets under consideration are fundamental
domains for certain actions of the unit group O×

K , which are not semialgebraic
but definable in Rexp. More details on this work are provided in M. Pieropan’s
abstract in this volume.

A further application of the lattice point counting theorem [1] arises in joint
work with E. Sofos [5], where we prove lower bounds for certain generalized divisor
sums over values of binary forms. These results imply the validity of the lower
bound predicted by Manin’s conjecture for all smooth del Pezzo surfaces over all
number fields after a finite extension of the base field.
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over number fields, Ann. Sci. Éc. Norm. Supér. 49 (2016): 757–811
[5] C. Frei and E. Sofos, Generalised divisor sums of binary forms over number fields, with E.

Sofos, preprint

The Zilber-Pink conjecture for pure Shimura varieties via o-minimality

Christopher Daw

(joint work with Jinbo Ren)

Using o-minimality, the Pila-Zannier strategy combines results from arithmetic
and functional transcendence to prove finiteness theorems in arithmetic geometry.
It originated in the paper [6] of Pila and Zannier in which the authors gave a new
proof of the Manin-Mumford conjecture for abelian varieties.

The objective of [2] was to extend the Pila-Zannier strategy to the Zilber-Pink
conjecture for (pure) Shimura varieties. The method generalises that of Habegger
and Pila who in [3] obtained results for abelian varieties and products of modular
curves.

Let S be a mixed Shimura variety. For any (irreducible) subvariety W of S,
there exists a smallest special subvariety 〈W 〉 of S containing W . In [7], Pink
defined the defect of W to be

δ(W ) := dim〈W 〉 − dimW.
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In their article [3], Habegger and Pila made the following definition.

Definition 1. Fix a subvariety V of S. A subvariety W of V is optimal in V if
for any subvariety Y of V strictly containing W we have

δ(Y ) > δ(W ).

This clearly generalises the notion of a maximal special subvariety. The André-
Oort conjecture predicts that any subvariety of S contains only finitely many
maximal special subvarieties. Hence, the following formulation of the Zilber-Pink
conjecture is a natural generalisation of that statement.

Conjecture 1 (Zilber-Pink). Let V be a subvariety of S. Then V contains only
finitely many subvarieties that are optimal in V .

This formulation is equivalent to Zilber’s conjecture regarding atypical intersec-
tions and it implies the conjecture of Pink in which V is intersected with special
subvarieties of codimension exceeding the dimension of V .

1. Shimura varieties

By a Shimura variety, we refer to a variety of the form Γ\X , whereX is a hermitian
symmetric domain and Γ is a congruence subgroup. For us, however, it is more
useful to view X as the G(R)+ conjugacy class of a morphism

C× → G(R)

of real Lie groups, where G is an algebraic group over Q.
Special subvarieties arise as follows. Let x be any point on X and let M

be the smallest subvariety of G defined over Q with the property that x(C×) is
contained in M(R). The M(R)+ conjugacy class XM of x is a hermitian symmetric
subdomain of X and its image under

π : X → Γ\X
is an algebraic subvariety of Γ\X . We refer to such a subvariety as a special
subvariety of Γ\X and we refer to XM as a pre-special subvariety of X .

Since x(C×) is contained in M(R) and

M(R)+ →Mad(R)+

is surjective, we have that XM is equal to the Mad(R)+ conjugacy class of x. In
particular, for any direct product decomposition M1 ×M2 of Mad defined over Q,
we have

XM = X1 ×X2

and, for any point x1 ∈ X1, the image of {x1} ×X2 in Γ\X is again an algebraic
subvariety of Γ\X . We refer to such a subvariety as a weakly special subvariety
of Γ\X . In particular, any special subvariety of Γ\X is weakly special. We refer
to {x1} ×X2 as a pre-weakly special subvariety of X .
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2. The strategy

As in all instances of the Pila-Zannier strategy, the method can be broken into
two parts. Both parts rely on o-minimality, though only the latter relies on the
Pila-Wilkie counting theorems. The first part is geometric in nature and relies on
a result from functional transcendence. We prove the following theorem that was
obtained for products of modular curves by Habegger and Pila.

Theorem 1 (cf. [3], Proposition 6.6). Let V be a subvariety of S. There exists
a finite set Σ of pre-special subvarieties of X such that if W is a subvariety of V
that is optimal in V then W is an irreducible component of

V ∩ π({x1} ×X2),

for some x1 ∈ X1, where X1 ×X2 ∈ Σ.

It is then straightforward to show that Conjecture 1 follows from...

Conjecture 2. Let V be a subvariety of S. Then V contains only finitely many
points that are optimal in V .

At this point we enter the second phase of the strategy. Using the uniform (in
families) version of Pila-Wilkie, we are able to show that Conjecture 2 holds under
certain arithmetic hypotheses. The first of which is the so-called large Galois orbits
conjecture (LGO), which says that the Galois orbit of an optimal point P should
grow at least as quickly as a uniform positive power of the complexity of 〈P 〉.
Habegger and Pila obtained this conjecture in [4] for certain curves in products of
modular curves but it is otherwise completely open.

The remaining hypotheses are concerned with the parametrisation of special
subvarieties and optimal points. To use the Pila-Wilkie theorem, we need to
control the heights of certain elements as well as the degrees of certain fields of
definition. The height of a pre-special point in a fundamental set was bounded
by Orr and the author in [1] but two hypotheses remain outstanding, though we
are able to verify them both in a product of modular curves and hence give a new
proof of Conjecture 1 under the LGO in that case.

3. Proof of Theorem 1

Recall that X can be realised as a bounded symmetric domain in CN for some
N ∈ N. We define a subvariety of X to be any irreducible analytic component of
the intersction of X with a subvariety of CN .

Fix a subvariety V of S. We say that a subset A of π−1(V ) is an intersection
component if it is an irreducible analytic component of the intersection of π−1(V )
with a subvariety of X . If A is an intersection component, we let 〈A〉Zar denote
the smallest subvariety of X containing A i.e. the Zariski closure of A. We say
that A is Zariski optimal if for any intersection component B strictly containing
A, we have

δZar(B) > δZar(A).
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The following conjecture is a problem in functional transcendence. Pila and
Tsimerman gave a proof in [5] for the case when S is a product of modular curves.
A proof of the full conjecture has recently been anounced by Mok, Pila, and
Tsimerman.

Conjecture 3 (weak hyperbolic Ax-Schanuel). Let A be a Zariski optimal inter-
section component. Then 〈A〉Zar is pre-weakly special.

Using Conjecture 3, we can show that if a subvarietyW of V is optimal in V then
any irreducible analytic component of π−1(W ) is a Zariski optimal intersection
component. In particular, such a component is an irreducible component of the
intersection of its Zariski closure with π−1(V ). By Conjecture 3, the Zariski closure
is pre-weakly special and, by virtue of the fact that the restriction of π to a
fundamental set is definable in Ran,exp, we can choose Σ is bijection with a definable
set. However, since the set of pre-special subvarieties is countablea and Ran,exp is
o-minimal, Σ must therefore be finite.
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Zeroes and Q-points of analytic or oscillatory functions

Georges Comte

(joint work with Christopher Miller, Yosef Yomdin)

For x =
a

b
, y =

p

q
∈ Q with a ∧ b = p ∧ q = 1, let us denote the height of (x, y) by

ht(x, y) := max{|a|, |b|, |p|, |q|},
For f : [0, 1] → R (resp. f : D̄(0, 1) → C) a C∞ or an analytic function on a
neighbourhood of [0, 1] (resp. D̄(0, 1)), let us denote by Γf the graph of f . Finally
for T ≥ 1 let us classically denote the number of Q-points in Γf of height at most
T by

Γf (Q, T ) := {(x, f(x)) ∈ Γf ∩Q2; ht(x, f(x)) ≤ T }.
We want to give, beyond the standard hypothesis of o-minimality made on Γf ,

conditions on f under which #Γf (Q, T ) is, in a certain sense, small. In this goal
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we introduce the following notation. For d ∈ N, Pd ⊂ K[X,Y ] is the space of
polynomials of degree ≤ d, K = R or C, and

Zd(f) := sup
P∈Pd\{0}

#{P (z, f(z)) = 0} ∈ N ∪ {∞}.

The set Zd(f) is the maximum number of intersection points between Γf and
algebraic curves of degree ≤ d. Call a bound for Zd(f) a Bézout bound. In case
f is a polynomial function, Zd(f) is polynomially bounded in d (and deg f) when
the intersection Γf ∩ P−1(0) is transverse and in general, when f is analytic, by
the curve selection lemma one has the dichotomy

Zd(f) <∞ or Γf contains a semialgebraic curve (of dimension 1).

We assume that for any d ∈ N, Zd(f) < ∞, that is f is a transcendental
function.

The two following celebrated theorems 1 and 2, stating that #Γf (Q, T ) is sub-
polynomial, motivate this work.

Theorem 1 (see [2]). When f : [0, 1] → R is analytic, and with the notation
above,

∀ε > 0 ∃Cf,ε ≥ 0 s.t. ∀T ≥ 1, #Γf (Q, T ) ≤ Cf,εT
ε.

In the more general case of definable sets in some o-minimal structure over the
real field, we have:

Theorem 2 (see [9]). For X ⊂ Rn an o-minimal set and obvious notation adapted
to X,

∀ε > 0 ∃CX,ε ≥ 0 s.t. ∀T ≥ 1, #X trans(Q, T ) ≤ CX,εT
ε,

where Xalg := {x ∈ X ; ∃S semialgebraic of pure dimension 1, s.t. x ∈ S ⊂ X}
and X trans := X \Xalg.

We give now conditions under which for a transcendental curve Γ ⊂ Rn (possibly
oscillatory, with infinite length) the asymptotic of #Γf (Q, T ) is better than in
Theorems 1 and 2 above (note that n = 2 for curves is enough). We first introduce
specific parametrizations, called slow parametrizations.

Definition 1. The C∞-parametrization γ = (f, g) : [a,+∞[→ R2 of a curve
Γ ⊂ R2 is slow when

(1) ∃u ∈ R, ∀x ≥ a, |u− f(x)| ≤ b(x) ց 0,

(2) ∀p ≥ 0, ∀x ≥ a, |f
(p)(x)

p!
| ≤ ϕp(x), |g

(p)(x)

p!
| ≤ ϕp(x),

where ∃ constants A,B,C,D s.t. ∀p ≥ 1, ∀x ≥ aϕp(x) = D
(
ApB

logC x

x

)p

.

Remark 1. Functions satisfying (2) in Defintion 1 yield a subalgebra of the algebra
C∞([a,+∞[), that is stable under derivation.

Example 1. functions of the form g := h ◦ logℓ, where ℓ ≥ 1 and ∃α, ∀p ≥
0, |h(p)(x)| ≤ αp, are slow.
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Definition 2. ϕ : [a,+∞[→ R is a height control function of γ when

∀T ≥ 1, γ−1(Γ(Q, T )) ⊂ [a, ϕ(T )].

Example 2. For f slow, when u ∈ Q and f doesn’t take the value u, one can take

ϕ(T ) = b−1(
K

T
), and when u 6∈ Q, and is not a U -number of degree 1 in Mahler’s

classification, one can take ϕ(T ) = b−1(
1

TK
), for some K.

Theorem 3 (see [3]). Let γ be a slow parametrization of a transcendental curve
Γ, with height control function ϕ, T ≥ 1, d ≥ 1 and

Bd,A := sup
P∈Pd\{0}

#P−1(0) ∩ γ([a,A]),

then

∃δ, ν ≥ 0 ∀T ≥ 1, #Γ(Q, T ) ≤ α logδ(T ) × logν(ϕ(T )) × Blog T,ϕ(T ).

Consequence. When eϕ(T ) and Bd,A are polynomially bounded in T, d,A then

∃α, β ≥ 0 s.t. ∀T ≥ 1, #Γ(Q, T ) ≤ α logβ(T ).

Example 3. We use elementary functions composed with a power of log; it pro-
vides suitable Bd,A and ϕ (see [6], [3]) such as in the Consequence above.

• log-spirals: γ(x) = (
1

xF
sin ◦ logℓ,

1

xG
cos ◦ logq), F,G > 0, ℓ, q ∈ N∗.

• γ(x) = (log 2 +
arctan log2 x

x5(2 + cos3 log x)
, π +

sin log2 x√
x(1 + log log x)

) etc.

• Graphs: x 7→ sin logℓ x max. sol. of Euler equation x2y′′ + xy′ + y = 0
(sin logℓ x defines Z over R ⇐⇒ ℓ > 1), and more generally the graph of
any slow function built on elementary functions.

Related open questions in model theory and number theory. Do we have
a logβ T -bound on #Γ(Q, T ) for

(1) sets definable in the expansion of R by any log-spiral and by restricted sin
and exp (see [1])?

(2) ∅-definable sets of the expansion of R by any log-spiral?
(3) ∅-definable sets of (R, sin log)? etc.

Remark 2. When f is in some o-minimal structure, there exists Kf,d s.t. Zd(f) ≤
Kf,d < ∞. On the other hand Zd(f) may be polynomially bounded in d while f
is not o-minimal (see [5]). Even when f is analytic, the asymptotic of Zd(f) is
difficult to predict: for any ζ ∈]0, 1[, there exists f : D → C analytic such that for

a sequence of degrees d going to ∞, Zd(f) ≥ ed
ζ

(see [10], [11], [7]). But again,

on the other side, for f entire of finite order := lim sup
r→∞

log log maxDr |f |
log r

, for a

certain sequence of degrees going to ∞, Zd(f) ≤ Cd2 (best possible asymptotic).



O-Minimality and its Applications to Number Theory and Analysis 1411

The conditions of the following Theorem 4 on the coefficients of the Taylor
expansion of f at the origin guarantee a polynomial bound in d for Zd(f), f :
D̄(0, 1) → C. It turns out that such a bound for Zd(f) implies that #Γf (Q, T )
is poly-log bounded in T (see [8]). Before Stating Theorem 4 we first define the
sequence

bd := max
P∈Pd\{0}

#{mult0P (z, f(z))}, d ≥ 1.

Recall that f is hypertranscendental when f satisfies no algebraic differential equa-
tion over Z. For f hypertranscendental, let us now define the sequence

ηd := max
P∈Zd[X0,··· ,Xd]\{0}

{mult0P (z, f(z), f ′(z), · · · , f (d)(z))}.

Note that (bd)d≥1 (resp. (ηd)d≥1) measures the transcendency (resp. the hyper-
transcendency) of f , since the faster (bd)d≥1 (resp. (ηd)d≥1) goes to ∞ the less f
seems transcendental (resp. hypertranscendency). We have

Theorem 4 (see [4]). For f(z) =

∞∑

k=0

akz
k, in case ak ∈ Q we denote by hℓ a

bound for the denominators of |a0|, · · · , |aℓ|. Then assuming one of the following
conditions

(1) f ∈ Q{z}, ∃R,S ∈ R[X ] s.t. bd ≤ R(d), hl ≤ eS(l),
(2) f ∈ Q{z}, ∃R,S ∈ R[X ] s.t. ηd ≤ R(d), hl ≤ eS(l),

(3) f(z) =
∞∑

k=0

akz
nk ∈ R{z}, n2

k < nk+1 ≤ nq
k, for q > 2, |ak| ≥ e−np

k , for

p > 0,
(4) f is a solution of a linear differential equation with coefficients in Q[z]

with rational initial conditions,
(5) f is a random series,

there exists U ∈ R[X ] s.t. ∀d ≥ 1, Zd(f) ≤ U(d) and therefore (see [8]) there exist

α, β > 0, s.t. ∀T ≥ 1, #Γf (Q, T ) ≤ α logβ T .
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Normalization and factorization of linear ordinary differential
operators

Sergei Yakovenko

(joint work with Leanne Mezuman, Shira Tanny)

The local theory of linear ordinary differential equations exists in two closely re-
lated but different flavors.

One may consider singular point of a system of first order differential equations
which have the form

t1+rẋ = A(t)x, t ∈ (C, 0), A(t) = A0 + tA1 + t2A2 + · · · ∈ C[[t]] ⊗ Mat(n,C),

where the nonnegative integer r ∈ Z+ is the Poincaré rank; if r = 0, the singularity
is called Fuchsian. On the space of such systems there is a natural group action,
called the gauge equivalence: two systems defined by two matrix series A(t), B(t)
are equivalent, if there exists a matrix series H ∈ GL(n,C[[t]]) such that

t1+rḢ = HA−BH, H = H0 + tH1 + t2H2 + · · · , detH0 6= 0.

The simplest form, to which a system can be transformed by a (always formal in
our settings) gauge equivalence, depends on the Poincaré rank and the eigenvalues
λ1, . . . , λn of the leading matrix A0. For several reasons it is more convenient
to write the systems using the Euler derivation ǫ = t d

dt rather than the usual
derivation in t, denoted by the dot above.

Theorem 1 (H. Poincaré, H. Dulac). If no two eigenvalues of a Fuchsian sys-
tem differ by a positive integer, λi − λj /∈ {1, 2, 3, . . .}, then the system is gauge
equivalent to an Euler system (ǫ−A0)x = 0.

If d is the largest natural difference between the eigenvalues, then the Fuchsian
system is equivalent to an integrable polynomial system (ǫ−A0 + · · ·+ tdAd)x = 0.

In the non-Fuchsian case with r > 0 we have the following result.

Theorem 2 (Diagonalization theorem, Hukuhara–Turritin–Levelt). If all eigen-
values of a non-Fuchsian system are pairwise different, λi 6= λj for i 6= j, then
the system can be transformed into a diagonal form (trǫ − B(t))x = 0 with the
diagonal matrix function B(t) = diag(β1(t), . . . , βn(t)), βi ∈ C[[t]], βi(0) = λi.
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The normal form in the resonant case is more complicated.
Another flavor of the local linear theory is that of linear ordinary differential op-

erators of higher order. Such equations can be written using differential operators
under the form Ly = 0, where L = a0(t)ǫn+a1(t)ǫ

n−1+ · · ·+an−1(t)ǫ+an(t) is an
operator with the coefficients ai ∈ C[[t]], a0 6≡ 0, and ǫ = t d

dt is the Euler derivation

operator. Any such operator can be re-expanded in the form L =
∑∞

k=0 t
kpk(ǫ),

k ∈ Z+, pk ∈ C[ǫ], in other words, W = C[[t]]⊗CC[ǫ] with the commutation iden-
tity ǫjtk = tk(ǫ + k)j . An operator L is Fuchsian, if deg p0 = n = maxk deg pk.
Fuchsian operators form a subset F ⊆ W closed by composition, albeit not a
subalgebra.

There is no natural group acting on differential operators, but they form a
(non-commutative) C-algebra W with respect to composition.

Definition 1 (cf. [O, TY]). Two operators L,M ∈ W are F -equivalent, if there
exist two operators K,H ∈ F such that KL−MH = 0 and gcd(H,L) = 1.

This means that the operator H acting by u = Hy sends solutions y of the
operator Ly = 0 to those of Mu = 0, while not vanishing on any one of them.

Theorem 3 (cf. [TY]). If L = p0(ǫ) + tp1(ǫ) + · · · is a Fuchsian operator and
no two roots of the polynomial p0 ∈ C[ǫ] differ by a positive integer, λi − λj /∈
{1, 2, 3, . . .}, then the operator is F -equivalent to an Euler equation M = p0(ǫ) ∈
C[ǫ] ⊆ F .

If d is the largest natural difference between the roots, then the Fuchsian operator
is F -equivalent to a Liouville integrable operator (ǫ − β1(t)) · · · (ǫ − βn(t)) with
polynomial coefficients βi ∈ C[t] of degrees ≤ d, βi(0) = λi.

In the non-Fuchsian case we look for an analog of the Diagonalization theorem,
which would describe factorization of an operator L ∈ W \ F into a composition
of operators of smaller orders. The answer depends on the growth pattern of
the degrees deg pk, k = 0, 1, 2, . . . expressed in terms of the Newton diagram. If
L =

∑
j,k cjkt

kǫj is the double series (all powers of t appear to the right from

powers of ǫ), then the support suppL = {(j, k) : cjk 6= 0} is a subset in Z2
+, and

the Newton polygon ∆L is the convex hull of the origin (0, 0), the support suppL
and its vertical translates by (0, 1). The Newton polygon is an epigraph of a
piecewise-affine convex monotone function χ : [0, d] → R+ with corners only at the
lattice points Z2

+ ⊆ R2
+. The set of values of its derivative (slopes) is called the

Poincaré spectrum of L, S(L) ⊆ Q+.
The main property of the Newton polygon is the identity ∆LM = ∆ML = ∆L +

∆M with respect to the Minkowski sum, which holds exactly in the same form as for
the commutative algebra of pseudopolynomials P = C[[t]] ⊗ C[ξ] = C[[t]][ξ]. The
latter case is well known since Newton’s invention of the “rotating ruler method”
[N]. It turns out that one can derive directly the results for the non-commutative
algebra W from those for P.

Definition 2. A single-slope operator L =
∑
aj,k t

kǫj is the operator for which
the function χ is linear, χ(j) = rj, r = p

q ∈ Q+, so that S(L) = {r}.
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A symbol of a single-slope operator is the polynomial

σL(t, ξ) =
∑

k−rj=0

ajk t
kξj =

m∏

i=1

(λi − tpξq)

of degree n = mq, n = ordL. The numbers λi ∈ C∗ are characteristic roots.
A single-slope operator is totally resonant, if all characteristic roots

λ1, . . . , λm ∈ C∗ of its symbol coincide, λ1 = · · · = λm, in particular, if m = 1.

Theorem 4 (cf. [M, R, vdPS]).
1. A non-Fuchsian operator L with the Poincaré spectrum

S(L) = {r1, . . . , rs} ⊆ Q+, ri 6= rj , admits factorization into single-slope terms
L = L1 · · ·Ls, S(Li) = ri.

2. A single-slope non-Fuchsian operator L with S(L) = {r} and symbol σ admits
factorization into totally resonant operators of the same slope.

3. In particular, if all characteristic roots λ1, . . . , λm ∈ C∗ of the single-slope
operator L are pairwise different, λi 6= λj , then this operator admits factorization
into m operators of the first order Li = tpǫq − βi(t), βi ∈ C[[t]], βi(0) = λi.

The known proofs of this theorem are based on involved considerations in the
non-commutative algebra W . In contrast with that, we developed a direct ap-
proach that allows direct transfer of factorization results in the commutative al-
gebra P or in the local algebra C[[t, s]] to the non-commutative case.

More specifically, we consider weighed quasihomogeneous polynomials in two
variables with the weight w(tkξj) = k− rj, r ∈ Q+ and the homological equations

Pαuγ−α +Qβvγ−β = Sγ , suppPα ⊆ ∆, suppQβ ⊆ ∆′′, suppSγ ⊆ ∆′ + ∆′′,

which have to be solved with respect to the unknown quasihomogeneous polyno-
mials uγ−α, vγ−β subject to the constraints suppuγ−α ⊆ ∆′′, supp vγ−β ∈ ∆′.
Solvability of these equations for any weight γ and any right hand side Sγ depends
on the Newton polygons ∆′,∆′′ and the polynomials Pα, Qβ in a very nontrivial
way, but can be derived from the factorization results in P.
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