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Abstract. Nonlinear dispersive equations are models for nonlinear waves in
a wide range of physical contexts. Mathematically they display an interplay
between linear dispersion and nonlinear interactions, which can result in a
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They are linked to many areas of mathematics and physics, ranging from
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relativity and probability.
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Introduction by the Organisers

The workshop Nonlinear waves and dispersive equations, organised by Herbert
Koch (Bonn), Pierre Raphael (Nice), Danial Tataru (Berkeley), and Monica Visan
(UCLA) was well attended, with around 50 participants with broad geographic
representation from all continents. There was a strong preference in having talks
by young mathematicians.

The field of nonlinear dispersive equations as a whole emerged in the late 80’s
and the early 90’s, and has experienced a continuous growth during the last two
decades. While a good number of problems were solved, many of the most difficult
problems remain open. This attracts many strong mathematicians and is the
engine for further growth. Topics of talks included:

(1) The notion of ‘minimal blow-up solution’, based on seminal work of Kenig-
Merle, Tao-Visan, Dodson, has became an amazingly successful approach
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to global well-posedness and scattering for critical dispersive equations. Su-
percritical problems have also been addressed, as well as ongoing progress
toward various formulations of the soliton resolution conjecture and the
classification of minimal elements.

(2) New insights in the asymptotics of blow-up for focusing problems have
been presented, both in the mass and energy critical case and in the su-
percritical range.

(3) Geometric dispersive models such as wave maps, Schrödinger maps, and
Yang-Mills flows continue to be the focus of active research. One goal
here in recent years has been the Threshold Conjecture for energy critical
problems.

(4) Over the last couple of years, space-time resonance methods (previously
confined to the study of semilinear equations) have been extended to the
quasilinear setting. In the regime of weak turbulence there are first promis-
ing rigorous results toward reducing the nonlinear Schrödinger equation
to an equation describing only the resonant interaction.

(5) Wave equations with stochastic terms become an increasingly important
area, where significant progress was achieved in the last years.

(6) New developments in harmonic analysis, dictated by the needs of disper-
sive PDE, were presented.

The main focus of the field nowadays seems to be toward understanding large
data dynamics for a variety of models, blow up phenomena, generic flow properties,
as well as the small data evolution for classes of strongly nonlinear dispersive
equations which were out of reach until not very long ago.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Low Regularity Solutions of the Cubic Szegő equation . . . . . . . . . . . . . . . . 1685
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Abstracts

Low Regularity Solutions of the Cubic Szegő equation

Patrick Gérard

(joint work with Herbert Koch)

The cubic Szegő equation on the circle T = R/2πZ is

(1) i∂tu = Π(|u|2u)

where Π : L2(T) → L2
+(T) denotes the orthogonal projector onto the closed sub-

space L2
+(T) of L2(T) defined by the cancellation of all negative Fourier modes,

∀k < 0 , û(k) = 0 .

Equation (1) was introduced by S. Grellier and the first author in [5], where a flow
on Hs

+(T) := Hs(T) ∩ L2
+(T), s ≥ 1

2 , was defined, and where a Lax pair structure
was discovered. In [8], this equation was identified as the time averaged effective
system to the half wave equation on T. In [6], more precise integrability properties
were established, while in [7] an explicit formula for Hs solutions was derived.
Finally, a general nonlinear Fourier transform was constructed in [9], where almost

periodicity of solutions in H
1
2
+ and growth of higher Sobolev norms were proved.

The interest of the cubic Szegő therefore lies in its quality of displaying both
integrability and instability features.

Since Π is a pseudodifferential operator of order 0, it is natural to ask about
solving Equation (1) for initial data with low regularity. For instance, the ordinary
differential equation

(2) i∂tu = |u|2u
is wellposed on L∞(T), with the explicit formula

u(t, x) = e−it|u(0,x)|2u(0, x) .

The results presented in this talk try to investigate how this property is modified
by the action of the pseudodifferential operator Π. It is well known that Π is not
bounded on L∞(T). The space

BMO+(T) = {Π(b), b ∈ L∞(T)}
was identified by Fefferman [3] as the intersection of L2

+(T) with the John–Niren-
berg space BMO(T), see [10], [4]. It is also the dual of

L1
+(T) = {h ∈ L1(T) : ∀k < 0 , ĥ(k) = 0} .

For every u ∈ BMO+(T), we set

‖u‖BMO = inf{‖b‖L∞, b ∈ L∞(T),Π(b) = u} = ‖u‖(L1
+)′ .

Our main result is the following.
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Theorem 1. For every u0 ∈ BMO+(T), there exists a unique function u ∈
C1(R, L2

+(T)) ∩ Cw∗(R, BMO+(T)) , solution of the initial value problem

(3) i∂tu = Π(|u|2u) , u(0) = u0 .

Furthermore, ‖u(t)‖BMO = ‖u0‖BMO. Moreover, if u, v are two BMO solutions
of (1) satisfying

‖u(0)‖BMO + ‖v(0)‖BMO ≤M ,

there exists a constant K, depending only on M , such that, for every t ∈ R,

(4) ‖u(t) − v(t)‖L2 ≤ K ‖u(0) − v(0)‖α(t)L2 , α(t) := e−K|t| .

The proof of Theorem 1 combines the Lax pair property of the cubic Szegő
equation [5] involving Hankel operators, a theorem by Nehari [11], and the John–
Nirenberg inequality [10], showing that the Lp norm of a BMO function grows at
most linearly with p as p tends to infinity.

As a consequence of the stability estimate (4), we obtain a partial result of propa-
gation of Sobolev regularity.

Corollary 2. If u0 ∈ BMO+(T)∩Hs(T), then Z(t)(u0) ∈ Hs(T) for every s ≥ 1
2 .

In the case 0 < s < 1
2 , there exists K > 0, depending only on a bound of ‖u0‖BMO,

such that

∀t ∈ R, Z(t)u0 ∈ Hs(t)(T) , s(t) :=
se−K|t|

1 − 2s+ 2se−K|t| .

Remark 3. We do not know whether the above exponent s(t) is optimal or not. If
it is optimal, such a loss of regularity could be compared to the one established by
Bahouri and Chemin in Theorem 1.3 of [1] for the bidimensional Euler flow with
bounded vorticity.

In the beginning of this talk, we have seen that the ordinary differential equation
(2) is well posed on L∞(T). In contrast, using the John–Nirenberg definition given
in [10], it is easy to prove that this equation is not wellposed on BMO(T). Indeed,
though u0(x) = log | sinx| belongs to BMO(T), one can check that, for every t 6= 0,
the function

u(t, x) = (log | sinx|)e−it(log | sin x|)2

does not belong to BMO(T). Somewhat symmetrically, the next result shows
that the Szegő equation is illposed on L∞. We denote by C+(T) = C(T) ∩ L2

+(T)
the Banach space of continuous functions on the circle with nonnegative Fourier
modes.

Theorem 4. There exists a dense Gδ subset G of C+(T) such that, for every
u0 ∈ G, the solution u of (3) satisfies

∀T > 0, u /∈ L∞([0, T ] × T) .

The arguments for Theorem 4 are an adaptation of a method developed by
Elgindi and Masmoudi in [2], which leads to ill–posedness for the incompressible
Euler equation at the C1 regularity. The crucial step is the following lemma.
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Lemma 5. Let u0 ∈ C+(T). There exists a sequence (un) of smooth solutions to
the (1) such that

‖un(0) − u0‖L∞ → 0 ,

and a sequence of times Tn > 0 tending to 0 such that

sup
t∈[0,Tn]

‖un(t)‖L∞ → ∞ .

Acknowledgements. We are grateful to Daniel Tataru for suggesting an im-
provement leading to Corollary 2.
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Expanding global solutions of 3-D compressible Euler equations

Mahir Hadžić

(joint work with Juhi Jang)

We consider the three-dimensional free boundary compressible Euler system

∂tρ+ div (ρu) = 0 in Ω(t) ;(1a)

ρ (∂tu + (u · ∇)u) + ∇p = 0 in Ω(t) ;(1b)

p = 0 on ∂Ω(t) ;(1c)

V(∂Ω(t)) = u · n(t) on ∂Ω(t) ;(1d)

(ρ(0, ·),u(0, ·)) = (ρ0,u0) , Ω(0) = Ω0 .(1e)



1688 Oberwolfach Report 27/2017

The unknowns in the problem are the fluid density ρ, the pressure p, the velocity
vector u, and the moving domain Ω(t) on which the fluid pressure is supported.
Moreover we assume the polytropic equation of state

(2) p = ργ , γ > 1,

where γ is called an adiabatic index and it plays an important role in our work as
it allows us to introduce a natural criticality scale for problem (1).

In [4] Sideris discovered a finite-parameter family of global-in-time compactly
supported solutions to (1) referred to as affine motions. To describe them one first
finds the unique global solution to the matrix ordinary differential equation

Ä(t) = detA(t)1−γA(t)−⊤,(3)

(A(0), Ȧ(0)) = (A0, A1) ∈ GL+(3) ×M3×3, .(4)

For any such a path t 7→ A(t) ∈ GL+(3) the fluid density and velocity solving (1)
are given by

ρA(t, x) = detA(t)−1

[
(γ − 1)

2γ
(1 − |A−1(t)x|2)

] 1
γ−1

,(5)

uA(t, x) = Ȧ(t)A−1(t)x, .(6)

With a careful analysis of (3)–(4) it is possible to show that there exists an A∞ ∈
GL+(3) such that A(t)

t →t→∞ A∞. In other words the support of the affine
motions takes on the shape of an expanding ellipsoid:

Ω(t) = A(t)B1(0)

Affine motions

Our main result is the construction of global-in-time solutions in the vicinity of
affine motions:

Theorem 1 ([2], Main theorem-informal statement). Let γ ∈ (1, 53 ]. Then the
affine motions described above are nonlinearly stable. In other words, in a suitably
rescaled set of coordinates small perturbations of affine motions lead to globally
defined unique solutions of (1). They remain close in a suitable high-order energy
topology to the underlying moduli space of affine motions.
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Theorem 1 is the first global-in-time existence result to the physical vacuum
free-boundary compressible Euler equations (1)–(2) without any symmetry as-
sumptions on the initial data. Our approach relies of a re-interpretation of the
affine motions as steady states of a suitably rescaled compressible Euler system.
This quasi-conformal symmetry allows us to formulate the stability problem as a
small data global existence question. The technical key to our strategy is the use
of Lagrangian coordinates and the local existence theory developed in [1, 3].
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A non-linear adiabatic theorem for the Landau–Pekar equations

Rupert L. Frank

(joint work with Zhou Gang)

A polaron is a physical model for a particle accompanied by its polarization field.
We treat a one-dimensional version of this model, where the particle is described
by a complex-valued wave function ψ ∈ L2(R) and the (classical) field by a real-
valued function φ ∈ L2(R). The strength of the coupling between the particle and
the field is described by a constant

√
α = ǫ−1/4, which is assumed to be large.

Landau and Pekar [6] derived phenomenologically equations of motion, whose
one-dimensional analogue reads

(1)

{
iǫ∂tψ = (−∂2x + φ)ψ ,

−∂2t φ = φ+ 1
2 |ψ|2 .

Note that the typical time scale of the electon is of order ǫ, whereas the time scale
of the field is of order 1.

Our goal is to establish an adiabatic theorem, saying that if the initial condition
ψ|t=0 for the particle is the ground state of the Schrödinger operator −∂2x + φ|t=0

with potential given by the initial condition of the field, then up to times t of order
one, ψ(t) is (close to) the ground state of −∂2x + φ(t).

We work under the following

Assumption 1. Let φ0, φ̇0 ∈ 〈x〉−2L1(R) ∩ L2(R) and assume that the operator
−∂2x + φ0 in L2(R) has a single negative eigenvalue (denoted by E0) and no zero
energy resonance. Let ψ0 a (not necessarily normalized) eigenfunction of −∂2x +φ0
corresponding to E0.
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Lemma 2. There are a (maximal) T∗ ∈ (0,∞], time-dependent functions Q∗, V∗
and a time-dependent number E∗ such that for all t ∈ (0, T∗)

−∂2xQ∗ + V∗Q∗ = E∗Q∗ , −∂2t V∗ = V∗ +
1

2
|Q∗|2 ,

as well as ‖Q∗‖L2 = ‖ψ0‖L2 and, at t = 0,

Q∗|t=0 = ψ0 , V∗|t=0 = φ0 , ∂tV∗|t=0 = φ̇0 , E∗|t=0 = E0 .

Let

T ∗ := sup
{
T ∈ (0, T∗) : E∗(t) is the unique neg. ev. of − ∂2x + V∗(t)

and there is no zero energy resonance ∀t < T }

The following is our main result.

Theorem 3. For every T < T ∗ there is an ǫT > 0 such that for 0 < ǫ ≤ ǫT the
solution (ψ, φ) of (1) with initial conditions ψ|t=0 = ψ0, φ|t=0 = φ0, ∂tφt=0 = φ̇0
can be decomposed as

ψ(t) = eiǫ
−1
´ t
0
E(s) ds+iγ(t) (Q(t) +R(t)) , φ(t) = V (t) +W (t) ,

where Q, V and E satisfy

−∂2xQ + V Q = EQ , −∂2t V = V +
1

2
|Q|2 .

and where, for t ∈ [0, T ],

‖R‖L2 . ǫ , ‖W‖L1∩L2 . ǫ2 ,
∣∣∂t‖Q‖2L2

∣∣ . ǫ(1 + t/ǫ)−3/2 , |∂tγ| . ǫ .

Thus, the theorem says that up to the remainder terms R(t) and W (t), the
function ψ(t) is an eigenfunction of −∂2x + φ(t) for times of order 1. While this
assertion is reminiscent of the (linear) adiabatic theorem in quantum mechanics,
the mechanism of our proof is completely different. Namely, it is based on the
dispersive property of the Schrödinger equation with a potential vanishing at infin-
ity. This technique was used in a related context in [4] which, in turn, is inspired
by works on asymptotic stability of ground states of the non-linear Schrödinger
equation due to Soffer–Weinstein, Buslaev–Perelman and many others.

A key ingredient in our proof are adiabatic dispersive estimates for time-depen-
dent Schrödinger operators. The non-resonance condition guarantees that the long
time behavior of these dispersive estimates can be improved from t−1/2 to t−3/2,
which is integrable at infinity.

Finally, we mention that it is an open problem to derive the Landau–Pekar equa-
tions from a microscopic model of a polaron (based on the Fröhlich Hamiltonian).
For partial progress in this direction we refer to [3, 1, 5].
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On the Dirac–Klein–Gordon system

Sebastian Herr

(joint work with Ioan Bejenaru and Timothy Candy)

Consider the Dirac–Klein–Gordon system

−iγµ∂µψ +Mψ =φψ

✷φ+m2φ =ψ†γ0ψ
(1)

for a spinor ψ : R1+3 → C4 and a scalar field φ : R1+3 → R. Here, m,M ∈ R are
mass parameters, γµ are Dirac matrices, ψ† denotes the conjugate transpose of ψ,
and we use the summation convention. The Dirac–Klein–Gordon system arises as
a model in classical field theory. Sufficiently nice solutions satisfy conservation of
charge

d

dt

ˆ

R3

|ψ(t, x)|2dx = 0,

and conservation of an energy which, however, ceases to be positive definite. In the
mass-less case m = M = 0, solutions of the system are invariant under rescaling,
which implies that

L2(R3) × Ḣ
1
2 (R3) × Ḣ− 1

2 (R3)

is the critical space for (ψ, φ, ∂tφ). In a joint work with Ioan Bejenaru [2] and a
joint work with Timothy Candy [3] we pursued the goal of solving the initial value
problem associated to (1) globally in time, for non-localized and rough initial data
close to the critical regularity.

In [2] we covered the full sub-critical range in the non-resonant case, provided
that the initial data are sufficiently small.

Theorem 1 (Bejenaru-H.). Suppose that 0 < m < 2M and ǫ > 0. There exists
δ > 0, such that for initial data satisfying

‖ψ(0)‖Hǫ + ‖φ(0)‖
H

1
2
+ǫ + ‖∂tφ(0)‖

H− 1
2
+ǫ ≤ δ

the initial value problem associated to (1) is globally well-posed and solutions scatter
to free solutions.
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In [3] we consider small initial data in the critical Sobolev space with some
additional angular regularity. In order to state the result, let 〈Ω〉σ denote σ angular
derivatives, defined via spherical Littlewood–Paley projections.

Theorem 2 (Candy-H.). Suppose that either 0 < m ≤ 2M and σ > 0, or 0 <
2M < m and σ > 7/30. There exists δ > 0, such that for initial data satisfying

‖〈Ω〉σψ(0)‖L2 + ‖〈Ω〉σφ(0)‖
H

1
2

+ ‖〈Ω〉σ∂tφ(0)‖
H− 1

2
≤ δ

the initial value problem associated to (1) is globally well-posed and solutions scatter
to free solutions.

Let us recall some selected previous results. In [4] special solutions have been
constructed. In [1], smooth and localized initial data has been considered. Local
well-posedness for initial data of sub-critical regularity has been established in [5].
Recently, small data global well-posedness and scattering for initial data in the
critical Besov space with one additional angular derivative has been proved in the
non-resonant case in [7].

For the two results discussed above there are two important non-linear struc-
tures of the system (1). The first one is the so-called null-structure, which, in the
mass-less case m = M = 0, has been found previously in [5]. With the matrices

Π±(ξ) =
1

2

(
I ± 1

〈ξ〉M
(ξjγ

0γj +Mγ0)
)

one defines projections via Π̂±ψ(ξ) = Π±(ξ)ψ̂(ξ). With ψ± = Π±ψ we have
ψ = ψ+ + ψ− and (1) is equivalent to the first order system

−i∂tψ± ± 〈∇〉Mψ± =Π±(Re(φ)γ0ψ)

−i∂tφ+ 〈∇〉Mφ =〈∇〉−1
m (ψ†γ0ψ).

The key observation is

∣∣Π±1(ξ)γ0Π±2(η)
∣∣ . ∠(±1ξ,±2η) +

| ±1 |ξ| ±2 |η||
〈ξ〉〈η〉 ,

which implies that parallel interactions are of lower order.
The second non-linear structure with an impact on the long-time behavior is the

set of resonances. By duality, it is enough to provide estimates for the tri-linear
expression

ˆ

R1+3

φψ†
1γ

0ψ2dxdt,

where φ and ψj are perturbations of e−it〈∇〉mφ(0) and e∓jit〈∇〉Mψj(0), respectively.
The temporal oscillations in the above integral depend on

M±1,±2(ξ, η) =
∣∣〈ξ − η〉m ∓1 〈ξ〉M ±2 〈η〉M

∣∣.
Based on the analysis of this function, we introduce the following terminology.
The case 0 < m < 2M is called non-resonant, because there are the following two
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lower bounds

M±1,±2(ξ, η) & min(〈ξ〉, 〈η〉)∠(±1ξ,±2η)2,

M±1,±2(ξ, η) &
(

min(〈ξ〉, 〈η〉, 〈ξ − η〉)
)−1

.

The case 0 < m = 2M is called weakly resonant, because the first bound still
holds. In the remaining case 0 < 2M < m the function vanishes for some non-
trivial interactions, hence it is called resonant.

Let us finally describe key ingredients of the proofs. First, in the non-resonant
and sub-critical regime considered in Theorem 1, we use spectrally localized Stri-

chartz norms and the Ẋs, 12 ,∞ Fourier restriction norm.
Second, in the (weakly) non-resonant and critical regime of Theorem 2 we use

Fourier-localized V 2-norms and certain outer block norms.
Third, in the resonant and critical regime of Theorem 2, the key observation is

that for very small modulation, the null-structure ceases to be effective, but reso-
nant interactions are transversal. To exploit this fact, we develop robust versions
of bi-linear Fourier (adjoint) restriction estimates, following Tao’s approach [6]. In
particular, for fixed p > 3

2 , we obtain the estimate

‖uv‖Lp(R1+3) . A‖u‖V 2
〈∇〉m1

‖v‖V 2
〈∇〉m2

,

where ‖u‖V 2
〈∇〉m

= ‖e−it〈∇〉mu(t)‖V 2
t

for the quadratic variation norm ‖ · ‖V 2 , and

provided that the spatial Fourier supports of the functions u and v are localized
on the same dyadic scale and angularly or radially separated, with an explicit
constant A depending on these scales. Compared with the available Strichartz
estimates, it encodes stronger decay, and in conjunction with Strichartz estimates
for solutions of the Klein–Gordon equation with additional angular regularity, this
is enough to prove the required bounds for the tri-linear integral expression above.
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Energy-Critical Half-Wave Maps

Enno Lenzmann

(joint work with Armin Schikorra)

We consider the energy-critical half-wave maps equation which is given by

(1) ∂tu = u ∧ |∇|u

for a map u : [0, T ) × R → S2, where S2 denotes the standard unit two-sphere
embedded in R3. Here ∧ stands for the usual vector product in R3 and |∇| denotes
the fractional order derivative of order one defined by its multiplier |ξ| in Fourier
space. The evolution problem (1) is of Hamiltonian type with the conserved energy

(2) E[u] =
1

2

ˆ

R

u · |∇|u dx,

and hence the natural energy space is Ḣ
1
2 (R, S2) = {u ∈ Ḣ

1
2 (R,R3) : |u| = 1 a. e.}.

Note that the scaling u(t, x) 7→ u(λt, λx), which maps solutions of (1) into solu-
tions, keeps the energy unchanged. With regard to physical motivation, we men-
tion that the nonlinear equation (1) arises as a formal semi-classical and continuum
limit from Haldane–Shastry quantum spin chains, which are exactly solvable sys-
tems with strong links to completely integrable systems (Calogero–Moser systems).

We present recent results obtained in [1]. That is, we give a complete classifi-
cation of finite-energy traveling solitary waves u(t, x) = Qv(x − vt), where v ∈ R

is a velocity parameter. Moreover, a complete spectral analysis of the linearized
operator L around static solutions (v = 0) is carried out. In particular, we prove
the nondegeneracy of L and determine all its resonances explicitly.
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On inelasticity of collisions for the energy critical wave equations in
dimension five

Frank Merle

(joint work with Yvan Martel)

We prove that for parameters the collision of 2 solitons for the energy critical wave
equation produce a channel of energy for large time (corresponding of radiative
wave). This is done in dimension 5.
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Hyperboloidal similarity coordinates and a globally stable blowup
profile for supercritical wave maps

Roland Donninger

(joint work with Pawe l Biernat and Birgit Schörkhuber)

Wave maps U : R1,3 → S3 are defined as critical points of the action principle
ˆ

R1,3

ηµν∂µU
a∂νU

bgab ◦ U.

By choosing standard spherical coordinates (t, r, θ, ϕ) on the Minkowski space R1,3

and hyperspherical coordinates (ψ,Θ,Φ) on the sphere S3, one may consider so-
called co-rotational maps U : R1,3 → S3 which are of the form U(t, r, θ, ϕ) =
(ψ(t, r), θ, ϕ). Under this symmetry reduction the Euler-Lagrange equation associ-
ated to the wave maps action reduces to

(1)

(
∂2t − ∂2r − 2

r
∂r

)
ψ(t, r) +

sin(2ψ(t, r))

r2
= 0.

Eq. (1) is energy-supercritical and develops singularities in finite time. This is
most easily evidenced by the explicit self-similar solution

ψT (t, r) = 2 arctan

(
r

T − t

)
.

Here, T > 0 is a free parameter (the blowup time). The solution ψT is perfectly
smooth for t < T but develops a gradient blowup at the spacetime point (t, r) =
(T, 0). In [3, 4, 2, 1] it is proved that ψT is nonlinearly asymptotically stable in the
backward lightcone of the blowup point (t, r) = (T, 0) under small perturbations
of the initial data. This leaves open two major questions which shall be addressed
in the present work:

• How does the solution behave outside the backward lightcone?
• Is it possible to extend the solution beyond the blowup time?

Concerning the second question, we find a natural explicit extension of ψT given
by

ψ∗
T (t, r) = 4 arctan

(
r

T − t+
√

(T − t)2 + r2

)
.

Interestingly, the boundary condition at the origin flips at blowup, i.e., ψ∗
T (t, 0) = 0

for t < T , whereas limr→0+ ψ
∗
T (t, r) = 2π if t > T . Asymptotically, as t→ ∞, the

solution ψ∗
T settles down to the constant map 2π.

To answer the first question, we study the stability of ψ∗
T in a large portion of

spacetime that reaches almost all the way up to the Cauchy horizon of the sin-
gularity, that is, the boundary of the future lightcone of the blowup point (T, 0).
The key ingredient for this stability analysis is the introduction of a novel coor-
dinate system (s, η) which we call “hyperboloidal similarity coordinates”. These
coordinates are defined by the relation

t = T − e−sh(η), r = e−sη, h(η) :=
√

2 + η2 − 2
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and depicted in Fig. 1. The coordinates (s, η) are “hyperboloidal” in the sense of
[5, 6] but at the same time compatible with self-similarity, i.e., the ratio r

T−t =

− η
h(η) is independent of s. In particular, the blowup solution ψ∗

T is static in the

new coordinates.
By employing semigroup methods, nonself-adjoint spectral theory, and ideas

from infinite-dimensional dynamical systems, we develop a suitable perturbation
theory that allows us to control the wave maps flow near the blowup solution ψ∗

T in
the coordinates (s, η). This way, we obtain the stability of ψ∗

T everywhere outside
the future lightcone of the singularity.

|x|

t

(T, 0)

Figure 1. The hyperboloidal similarity coordinates (with r =
|x|). The hyperboloids are the lines s = const and the straight
lines emerging radially from the blowup point (T, 0) correspond
to η = const. The dashed lines are the boundaries of the forward
and backward lightcones of the singularity.
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The threshold theorem for the hyperbolic Yang–Mills equation

Sung-Jin Oh

(joint work with Daniel Tataru)

In this extended abstract, we report the proof of the author and D. Tataru of the
threshold theorem for the (4 + 1)-dimensional Yang–Mills equation [8].

Statement of the main result. Let G be a compact semi-simple Lie group
with Lie algebra g. Consider a connection D on a vector bundle η on R1+d with
structure group G. We say that D is a hyperbolic Yang–Mills connection (or a
Yang–Mills wave) if it is a critical point of the action1

S[A] =
1

4

ˆ

〈Fµν , F
µν〉dtdx,

where Fµν is the curvature form associated to D (which is a g-valued 2-form) and
〈·, ·〉 is minus the Killing form on g (which is positive-definite since G is compact
semilinear). The corresponding Euler–Lagrange equation, called the Yang–Mills
equation, is

(YM) DµF [A]νµ = 0.

More concretely, in a global trivialization of η, which exists since R1+d is con-
tractible, D takes the form D = d + A, where d is the usual differential and A is
a g-valued 1-form on R1+d. The curvature form F = F [A] is given by

F [A]µν = (dA+ 1
2 [A ∧ A])µν = ∂µAν − ∂νAµ + [Aµ, Aν ].

The connection acts on F by the adjoint action, i.e., DµFαβ = ∂µFαβ + [Aµ, Fαβ ].
Thus (YM) may be interpreted as a 2nd-order PDE for A.

A fundamental tool for understanding long time dynamics of large data solutions
is the conserved energy (which is constant in time for regular solutions)

E{t}×Rd [A] =

ˆ

{t}×Rd

1

2

∑

µ<ν

〈F [A]µν , F [A]µν〉dx.

Its effectiveness at various scales is determined by its behavior with respect to the
invariant scaling of (YM), namely A 7→ λ−1A(λ−1t, λ−1x) for any λ > 0. We

1We identify the coordinate x0 on R1+d with time t. We adopt the standard conventions of
using the Minkowski metric m = diag(−1,+1, · · · ,+1) to raise and lower indices, and summing
up repeated upper and lower indices. Greek alphabets stand for the space-time indices 0, 1, . . . , d,
and roman alphabets are for space indices 1, . . . , d.
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concentrate on the energy critical case d = 4, when the conserved energy does not
change under this scaling. In the simplest form, our main theorem can be stated
as follows.

Theorem 1 (Threshold theorem for the hyperbolic Yang–Mills equation [8]).
Let E0 be the ground state energy, i.e., the energy of the lowest-energy nontriv-
ial harmonic Yang–Mills connection (i.e., critical point of the Dirichlet energy
D[A] = 1

4

´

〈Fij , F
ij〉dx on R4). The initial value problem for (YM) on R1+4 is

“globally well-posed”, and the solutions “scatter”, for any initial data with energy
strictly less than E0.

The terms “globally well-posed” and “scatter” must be interpreted carefully,
since the initial value problem for (YM) alone is not formally well-posed due to

gauge invariance, i.e., if A is a solution to (YM) then so is Ã = OAO−1 − dOO−1

for any sufficiently regular G-valued function O. In order to both properly state
and prove this result, it is essential to fix the gauge choice in a favorable way.
Addressing this issue turns out to be a significant part of our work, as we will
discuss below.

The relevance of the harmonic Yang–Mills connections is that they are precisely
the static solutions to (YM). The ground state is known to exist (thus 0 < E0 <∞)
for any compact semi-simple Lie group G. We note that Theorem 1 is sharp, as
finite time blow-up solutions with energies exceeding but arbitrarily close to E0
were constructed [1, 9].

Some ideas of the proof. Our overall strategy of the proof of Theorem 1 is
analogous to that in our previous work [5, 6, 7] on the closely-related Maxwell–
Klein–Gordon system, which was in turn based on the strategy of Sterbenz–Tataru
[10, 11] for wave maps. Due to space constraint, here we will content ourselves
with discussion of one major aspect of our work which differs from [5, 6, 7], namely
the use of caloric gauge instead of any other classical gauge choices.

We begin by motivating the need of a new gauge choice. For the proof of
Theorem 1, some major requirements on the gauge choice are:

(1) (YM) is locally well-posed for regular data;
(2) the nonlinearity of (YM) exhibits nice cancellation (i.e., null structure);
(3) the gauge choice can be imposed on any data (in Theorem 1).

A classical gauge choice with nice structural properties (i.e., Properties (1) and
(2) above) is the Coulomb gauge, defined by the condition ∂ℓAℓ = 0. Indeed,
it was successfully used in the proof of global well-posedness and scattering for
small energy [2]. However, great difficulties arise when one attempts to impose
the Coulomb gauge for a large energy data (i.e., Property (3)). For instance, in
order to solve (YM) in the Coulomb gauge we must invert the operator ∂ℓDℓ, but
its spectral properties are unclear in the large energy case.

Instead, we use the so-called caloric gauge, which is constructed relying on
regularity theory for another nonlinear PDE, namely the Yang–Mills heat flow.
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We say that a connection A on R4
x × [0,∞)s is a Yang–Mills heat flow2 if

(YMHF) Fsj = DℓFℓj .

A connection A on R4 is said to be caloric (or in the caloric gauge) if the Yang–
Mills heat flow Ax,s(s) with Ax(s = 0) = A exists and obeys As(s) = 0 for all
s > 0 and Ax(s = ∞) = 0.

An important property of a caloric connection A is that it obeys a generalized
Coulomb condition:

(gCoulomb) ∂jAj = O(A,A),

where O is a bilinear operator with a 0th-order symbol. Essentially as a result,
(YM) in the caloric gauge exhibits nice structural properties as the Coulomb gauge.
In other words, the caloric gauge has Properties (1) and (2).

The caloric gauge can be imposed provided that the Yang–Mills heat flowAx,s(s)
behaves regularly. We prove the following theorem, which ensures that this is the
case, i.e., the caloric gauge has Property (3).

Theorem 2 (Threshold theorem for the Yang–Mills heat flow [8]). For every
subthreshold connection A on R4, there exists a global in parabolic-time Yang–
Mills heat flow with Ax(s = 0) = A. Furthermore, this solution has the property

that the limit A(s = ∞) exists in Ḣ1, and it is flat.

Among the conclusions, we note that global regularity of the Yang–Mills heat
flow for subthreshold data and weak convergence to a harmonic Yang–Mills con-
nection as s→ ∞ essentially follow from the classical work of Struwe [12].

The idea of using the associated heat flow to define a high-quality gauge orig-
inates from Tao [13], in which the harmonic map heat flow on R2 was used to
define a gauge for analyzing the wave map flow in R1+2. It was extended to the
Yang–Mills setting at subcritical regularity by the author [3, 4].
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Dérivées Partielles (2004).

Invariance of the white noise for the cubic fourth order nonlinear
Schrödinger equation on the circle

Yuzhao Wang

We consider the cubic fourth order nonlinear Schrödinger equation (4NLS) on
the circle. In particular, we study the Cauchy problem for the renormalized 4NLS
with the (spatial) Gaussian white noise as initial data. Due to the roughness of the
white noise, the deterministic well-posedness theory is out of reach at this point.
In order to overcome this difficulty, we introduce a random-resonant/nonlinear
decomposition and prove (i) almost sure global well-posedness of the renormalized
4NLS with respect to the white noise as initial data and (ii) invariance of the white
noise.

This is a joint work with Tadahiro Oh (University of Edinburgh) and Nikolay
Tzvetkov (Université de Cergy-Pontoise).

1. introduction

We consider the Cauchy problem for the cubic fourth order nonlinear Schrödinger
equation (4NLS) on the circle T = R/Z:

(1) i∂tu = ∂4xu+ |u|2u, (x, t) ∈ T× R,

where u is a complex-valued function. Our main goal is to study the well/ill-
posedness issue of (1) in the low regularity setting from a probabilistic point of
view. In particular, we study (1) with the (spatial) Gaussian white noise as initial
data.

1.1. Invariant measures for Hamiltonian PDEs. Given a Hamiltonian dy-
namics on R2n: ṗi = ∂H

∂qi
, q̇i = − ∂H

∂pi
, i = 1, . . . , n, with Hamiltonian H(p,q) =

H(p1, · · · , pn, q1, · · · , qn), Liouville’s theorem states that the Lebesgue measure on
R2n is invariant under the flow. Then, along with the conservation of the Hamilton-
ian H , it follows that the Gibbs measure: dµ = exp(−H(p,q)) dp dq is invariant.
Moreover, if there exists another “nice” conserved quantity function F (p, q) un-
der the flow, then the measure µF defined by dµF = exp(−F (p,q)) dp dq is also
invariant.
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By drawing an analogy to the finite dimensional setting, one can study the
transport property of the Gibbs measure of the form

“dµ = Z−1e−H(u)du”

under the dynamics of a nonlinear Hamiltonian PDE such as NLS. In fact, Bour-
gain [1, 2] showed that the Gibbs measures are invariant under the dynamics of
many nonlinear Hamiltonian PDEs on Td. Moreover, the L2-norm of (smooth) so-
lutions to some nonlinear Hamiltonian PDEs such as NLS and KdV is conserved.
This suggests that the white noise, formally written as

dµ0 = Z−1 exp
(
− 1

2

´

|u|2dx
)
du,

may be invariant under the dynamics. Note that a typical element φ under the
white noise µ0 is given by the following random Fourier series:

φω(x) = φ(x;ω) =
∑

n∈Zd

gn(ω)e2πin·x,

where {gn}n∈Zd is a sequence of independent standard complex-valued Gauss-
ian random variables on a probability space (Ω,F , P ). With this Fourier series
representation, it is easy to see that the white noise µ0 on Td is supported on

H− d
2−ε(Td) \ H− d

2 (Td) for any ε > 0. The main difficulty in understanding the
transport property of the white noise, even when d = 1, is due to its rough regular-
ity. Nonetheless, it was shown that the white noise is indeed invariant under the
flow of KdV on T [14, 3, 4, 5, 6]. Moreover, Oh-Quastel-Valkó [7] showed that the
white noise is a weak limit of invariant measures for the cubic NLS on T. While
this result implies formal invariance of the white noise µ0 for the (renormalized)
cubic NLS on T, it does not yield rigorous invariance due to the lack of well-defined
flow in its support. Recalling that the L2-norm is conserved for (1), we study the
dynamics of (1) with the white noise µ0 as initial data.

1.2. Deterministic well-posedness. In [9], Oh-Tzvetkov proved that (1) is glob-
ally well-posed in L2(T), while it is mildly ill-posed in negative Sobolev spaces in
the sense that the solution map is not locally uniformly continuous. In a recent
paper [11], we showed that (1) is in fact ill-posed in negative Sobolev spaces in
a very strong sense (non-existence of weak solutions). In particular, one needs
to renormalize the equation in order to study the dynamics with the white noise
as initial data. In the following, we propose to study the following renormalized
version of (1):1

(2) i∂tu = ∂4xu+
(
|u|2 − 2

´

|u|2dx
)
u.

Note that, while (1) and (2) are equivalent in L2(T), they are not equivalent in
negative Sobolev spaces. In the following, we choose to study (2).

In [11], we studied well-posedness of (2) in negative Sobolev spaces via the short-
time Fourier restriction norm method and normal form method (with T. Oh).

1This renormalized equation (2) appears as an equivalent formulation of the Wick renormal-
ization in Euclidean quantum field theory [8, 10]. For this reason, we will simply refer to (2) as
the Wick ordered cubic 4NLS in the following.
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Theorem 1. The Wick ordered cubic 4NLS (2) is globally well-posed in Hs(T)
s > − 1

3 .

2. Main result and a sketch of the proof

We now state our main result in [12] (with T. Oh and N. Tzvetkov).

Theorem 2. The Wick ordered cubic 4NLS (2) is almost surely globally well-posed
with respect to the white noise µ0. Moreover, the white noise µ0 is invariant under
(2).

The main difficulty in proving Theorem 2 is to construct almost sure local-in-
time dynamics with respect to the white noise due to its low regularity s < − 1

2 ,
which goes beyond the regularity threshold in Theorem 1. Once we have almost
sure local-in-time dynamics, we can apply Bourgain’s invariant measure argument
[1] to extend these local-in-time solutions globally in time and prove invariance of
the white noise.

In the following, we briefly describe the idea for the almost sure local well-
posedness argument. Given α ≥ 0, let us consider the random initial data φωα of
the form

φωα(x) = φ(x;ω) =
∑

n∈Z

gn(ω)

〈n〉
α

e2πinx.

A naive approach in establishing almost sure local well-posedness would be to
write the solution u as u = z1 + v1 := S(t)φωα + v1 and try to solve the fixed point
problem for v1. Thanks to the gain of integrability2 on the random linear solution
zω1 , one can show that the residual part v1 is smoother and lies in L2(T) for α > 1

6 .
In order to consider the white noise (α = 0), we need to further elaborate this
argument. By expanding the solution u = z1 + z3 + · · · + z2j−1 + vj further in
terms of the random linear solution z1, we can actually prove almost sure local
well-posedness of (2) with φωα as initial data for α > 0 via a simple fixed point
argument. In order to handle the white noise (α = 0), however, we need to iterate
this process indefinitely. By decomposing the dynamics into the resonant and
non-resonant contributions, we observed that the bad behavior comes only from
the resonant part. We therefore expanded the solution u in a power series only
for the contributions coming from the resonant part while we hide the other part
(i.e the non-resonant part) in the residual term: u =

∑∞
j=1 zres,2j−1 + v∞, where

zres,2j−1 corresponds to the contribution of order 2j − 1 from the resonant part
of the dynamics. One important observation is that zω∞ =

∑∞
j=1 zres,2j−1 satisfies

the following resonant 4NLS:

i∂tz
ω
∞ = ∂4xz

ω
∞ + R(zω∞)

with zω|t=0 = φω, where R(zω) denotes the resonant part of the nonlinearity in
(2). This motivated us to introduce the random-resonant/nonlinear decomposition:

2In the spirit of the classical work by Paley-Zygmund [13].
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u = zω∞ + v∞ where v∞ satisfies

i∂tv∞ = ∂4xv∞ +
[
N (v∞ + zω∞) −R(zω∞)

]

with v∞|t=0 = 0. This decomposition together with a second iteration argument
allowed us to establish a probabilistic a priori estimate as in [6] and thus construct
almost sure local-in-time dynamics. We point out that zω does not belong to
the Wiener homogeneous chaos of any finite order, i.e. it depends on arbitrarily
higher powers of products of Gaussian random variables gn and thus we needed
to introduce a new stochastic estimate in handling zω∞.

Acknowledgement. Y.W. was supported by the European Research Council
(grant no. 637995 “ProbDynDispEq”).

References

[1] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math.
Phys. 166 (1994), 1–26.

[2] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation,
Comm. Math. Phys. 176 (1996), no. 2, 421–445.

[3] T. Oh, Invariance of the white noise for KdV, Comm. Math. Phys. 292 (2009), no. 1, pp.
217–236.

[4] T. Oh, Periodic stochastic Korteweg-de Vries equation with additive space-time white noise,
Anal. PDE 2 (2009), no. 3, 281–304.

[5] T. Oh, White noise for KdV and mKdV on the circle, 99–124 RIMS Kôkyûroku Bessatsu
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Decay of nonlinear waves in one dimension and nonexistence of
breathers

Claudio Muñoz

(joint work with Michal Kowalczyk and Yvan Martel)

Let us consider three different scalar field models coming from Physics, in 1+1
dimensions: the cubic nonlinear Klein-Gordon (NLKG)

(1) ∂2t φ− ∂2xφ+ φ− φ3 = 0,

the φ4 model (φ4),

(2) ∂2t φ− ∂2xφ− φ+ φ3 = 0,

and the Sine-Gordon (SG) equation:

(3) ∂2t φ− ∂2xφ+ sinφ = 0.

Each model above has (φ, ∂tφ) = (φ, ∂tφ)(t, x) ∈ R2, and (t, x) ∈ R2. Our question
here is very simple: consider only “small solutions” in a certain sense in (1)-(3),
can we show that there is always decay as in the linear case?

This question is far from being trivial, for many reasons. First, the linear decay
in one dimension is the lowest possible (1/

√
t), and the nonlinearities are too weak

to preserve standard scattering.

On the other hand, the answer to this question is depends on each equation
above. For instance, (1) has the soliton solution (Q, 0), where

Q(x) :=
√

2 sech x.

On the other hand, (φ4) has the kink solution (H, 0), where

H(x) := tanh
( x√

2

)
,

and finally, for any α, β > 0 such that α2 +β2 = 1, (SG) has the breather solution
(B, ∂tB), where

B(t, x) := 4 arctan
(β
α

sin(αt)

cosh(βx)

)
.

All these three solutions do not decay in time, and they are even, odd and even,
respectively. Therefore, special attention must be put to these particular cases
when considering the decay of solutions. In [2], we showed that both (1) and (3)
satisfy the following simple decay result:

Assume that (φ, ∂tφ)(t = 0) are small enough in the energy space (H1×L2)(R),
and they are odd. Then the corresponding global solution of (1) and (3) decays to
zero locally on any spatial compact set I:

lim
t→±∞

‖(φ, ∂tφ)(t)‖(H1×L2)(I) = 0.
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This result in particular implies that no small odd “breather” solution for (1)
and (3) should persist in time. By breather, we mean a time-periodic, localized in
space solution.

As for the (φ4) model, things are more complicated. In [1], we showed the
following asymptotic stability result:

Assume that (φ −H, ∂tφ)(t = 0) are small enough in the energy space (H1 ×
L2)(R), and they are odd. Then the corresponding global solution of (2) converges
to the kink locally on any spatial compact set I:

lim
t→±∞

‖(φ, ∂tφ)(t) − (H, 0)‖(H1×L2)(I) = 0.

These two results are proved using new Virial identities in the spirit of previous
works by Martel, Merle and Raphaël [3, 4]. Each virial identity must be adapted
to the involved dynamics. Please see [1, 2] for more details on each particular
proof and a full set of references to other works.
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Scattering for the 3D Gross-Pitaevskii equation

Zihua Guo

(joint work with Zaher Hani, Kenji Nakanishi)

Consider the Gross-Pitaevskii (GP) equation

iψt + ∆ψ = (|ψ|2 − 1)ψ, ψ : R1+3 → C(1)

with the boundary condition

lim
|x|→∞

ψ = 1.(2)

Although the GP equation (1) is formally equivalent to the cubic Schrödinger
equation, indeed, let φ = e−itψ, then φ solves

iφt + ∆φ = |φ|2φ,(3)

the non-vanishing boundary conditions bring remarkable effects on the space-time
behaviour of the solutions. The nonzero boundary condition (2) or more generally
lim|x|→∞ |ψ| = 1, arises naturally in physical contexts such as Bose-Einstein con-
densates, superfluids and nonlinear optics, or in the hydrodynamic interpretation
of NLS (see [2]).
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The GP equation (1) has rich structures. Let u = ψ − 1 be the perturbation
from the equilibrium. Then u satisfies

i∂tu+ ∆u − 2ℜu = u2 + 2|u|2 + |u|2u, u|t=0 = u0.(4)

We have conservation of the energy: if u is a smooth solution to (4) then

E(u) :=

ˆ

R3

|∇u|2 +
(|u|2 + 2ℜu)2

2
dx = E(u0).

An unconditional global well-posedness for (4) in the energy space E was proved
by Gérard [3], where

E := {f ∈ Ḣ1(R3) : 2ℜf + |f |2 ∈ L2(R3)}
with the distance dE(f, g) defined by

dE(f, g)2 = ‖∇(f − g)‖2L2 +
1

2
‖|f |2 + 2ℜf − |g|2 − 2ℜg‖2L2.

Global well-posedness for (4) in a smaller space H1 was previously proved in [1]
where a-priori L2-bound was derived by the Gronwall inequality (note we do not
have L2 conservation law). Both results were obtained by iterating the local well-
posedness which was proved via Strichartz estimates and thus do not give good
information on the asymptotic behavior.

For the asymptotic behavior, Gustafson-Nakanishi-Tsai proved scattering for
suitable small solutions (see [7, 8, 9]). In these works they proved that under some
decay and regularity conditions (weighted Sobolev space) on the initial data, the
small solutions scatter to the solution of the linearized equation in dimension three
and higher, and the weighted space rather than the energy space was essentially
needed in 3D due to the quadratic nonlinearity.

In our recent work, we succeeded in proving scattering for small data in the
natural energy space E, with radial symmetry or with one-order additional angular
regularity. This opens the possibility to study the large data problem at least
in the radial case for which we believe smallness is not needed. There are two
main ingredients. One is the generalized Strichartz estimates for the GP equation.
This is inspired by our recent works on the Zakharov system ([5, 6, 4]). These
generalized Strichartz estimates are very useful to deal with the 3D quadratic
terms. The other is some nonlinear transform through which we can achieve some
“null” structure. These structures are crucial to handle the difficulty caused by the
weak control on the low-frequency component of the energy space data due to the
lack of L2 component.
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Degenerate dispersive equations and stability of compactons

Benjamin Harrop-Griffiths

(joint work with Pierre Germain, Jeremy L. Marzuola)

We recall that the (focusing) generalized Korteweg-de Vries equation and non-
linear Schödinger equation on R arise as the Hamiltonian flow associated to the
Hamiltonian,

E[u] =
1

2

ˆ

|∂xu|2 dx− 1

p+ 1

ˆ

|u|p+1 dx,

with symplectic forms,

ωgKdV(u, v) =

ˆ

u∂−1
x v dx, ωNLS(u, v) = Im

ˆ

uv̄ dx,

defined for real-valued, respectively complex-valued functions.
In this talk we introduce natural quasilinear variants of these equations given

by the Hamiltonian flow associated to the Hamiltonian,

H [u] =
1

2

ˆ

|u∂xu|2 dx − 1

p

ˆ

|u|p dx,

with the same symplectic forms. The corresponding equations are the quasilinear
KdV equation,

(1) ut + (u(uux)x + up)x = 0,

and the quasilinear Schrödinger equation,

(2) iut = ū(uux)x + |u|p−1u.

The equations (1) and (2) are amongst the simplest examples of quasilinear
dispersive equations that exhibit degenerate dispersion: the dispersive effects may
degenerate at a point in space (i.e. where u = 0). Degenerate dispersive phenom-
ena appear in numerous physical situations, for example [1, 2, 3, 7, 8, 9, 11], yet
the understanding of these models is still relatively primitive. We note that quasi-
linear KdV models similar to (1) originally appeared in [10] and the Hamiltonian
model (1) later appeared in [6]. The Schrödinger model (2) appeared in [5] as a
continuous approximation of the toy model for weak turbulence appearing in [4].



1708 Oberwolfach Report 27/2017

A natural starting point in the analysis of (1), (2) is to understand the traveling
wave solutions. As we are primarily concerned with the case that solutions degen-
erate in space we restrict our attention to compactly supported traveling waves
or compactons. For the KdV model (1) traveling wave solutions are given by the
ansatz,

u(t, x) = φ(x − ct).

By analyzing the corresponding ODE satisfied by φ we may find a 2-parameter
family of compactons φ = ΦB,c where either B > 0, c ∈ R or B = 0, c > 0 that
are even, compactly supported on an interval I = (−xB,c, xB,c) and decreasing on
(0, xB,c). For the Schrödinger model (2) traveling waves are given by the ansatz,

u(t, x) = φ(x− vt)e−ict,

and we show that the compactons are given by a nonlinear Galilean shift of the
KdV compactons,

φ(x) = ΦB,c(x)eivθB,c(x), θ′B,c = − 1

2Φ2
B,c

.

Having discussed the existence and properties of traveling wave solutions we
consider the problem of orbital stability. Here we seek solutions to the minimiza-
tion problem,

minH [u] subject to ‖u‖2L2 = M0,

where the mass M0 > 0 is a fixed constant. Traveling waves obtained through
this minimization procedure are orbitally stable provided one can make sense of
the flow around them. Using a concentration compactness argument we prove the
following:

Theorem. For 2 < p < 8, the above minimization problem admits a minimizer,
which is (up to translation) one of the compactons ΦB,c. For p = 4, the minimizer

is Φ0,c with c = M0√
2π

.

In the case p = 4 we may find an explicit expression for the compactons,

ΦB,c(x) =

√
c+

√
4B + c2 cos(

√
2x), x ∈ (−xB,c, xB,c),

where xB,c is the smallest positive solution to cos(
√

2x) = − c√
4B+c2

. In this case

we present some numerical evidence that the B = 0 compacton is indeed stable
under small perturbations.

We conclude our talk with a discussion of a linear equation arising from the
linearization of the KdV model (1) about a fixed compacton φ in the case p = 4,

(3) ut = ∂xLφu+ f,

where Lφ = −φ(∂2x + 2)φ is a degenerate Sturm-Liouville operator. A careful
analysis of the operator Lφ allows us to define associated energy spaces and obtain
local well-posedness for the linear equation (3). This analysis will provide the basis
for forthcoming work on the nonlinear problem.
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The wave equation on a model convex domain revisited

Fabrice Planchon

(joint work with Oana Ivanovici and Gilles Lebeau)

We improve on our recent work [5] by providing a different parametrix construction
for the wave equation inside a 2D convex model domain Ω with Dirichlet boundary
condition:

(1)





(∂2t − ∆Ω)u(t, x, y) = 0, x ∈ Ω
u|t=0 = u0 ∂tu|t=0 = u1,
u(0, y) = 0, y ∈ R.

Here, ∆Ω = ∂2x + (1 + x)∂2y and Ω = {(x, y), x > 0}. At first order, this may be
seen as the interior of the unit disk, with angle and distance to the boundary as
coordinates.

Strichartz estimates are space-time estimates that uantify dispersive properties
of the solutions to the linear wave equation: for given data in the natural energy
space, the solution will have better decay for suitable time averages. On any
riemanian manifold with empty boundary, the solution to (1) is such that, at least
for a suitable T < +∞,

(2) hβ‖χ(hDt)u‖Lq([0,T ],Lr) ≤ C
(
‖u(0, x)‖L2 + ‖hDtu‖L2

)
,
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where χ ∈ C∞
0 is a smooth truncation in a neighborhood of 1. Let d be the spatial

dimension of a general manifold Ω, one has β = d
(

1
2 − 1

r

)
− 1

q , where (q, r) is a

so-called admissible pair, e.g.

(3)
1

q
≤ (d− 1)

2
(
1

2
− 1

r
), q > 2.

On such boundary less Rimenanian manifold (Ω, g) this follows from proving sharp
dispersion by non degenerate stationary phase on a Lax type parametrix (which
may be constructed locally within a small ball, thanks to finite speed of propaga-
tion.)

On a manifold with boundary, picturing light rays becomes much more compli-
cated, and one may no longer think that one is slightly bending flat trajectories.
There may be gliding rays (along a convex boundary) or grazing rays (tangential to
a convex obstacle) or combinations of both. Strichartz estimates outside a strictly
convex obstacles were obtained in [6] and turned out to be similar to the free case
(see [4] for the more complicated case of the dispersion). Strichartz estimates with
losses were obtained later on general domains,[1], using short time parametrices
constructions from [7], which in turn were inspired by works on low regularity met-
rics [8]. The main advantage of [1] is also its main weakness: by considering only
time intervals that allow for no more than one reflection of a given wave packet,
one may handle any boundary but one does not see the full effect of dispersion in
the tangential directions.

In our recent work [5], a parametrix for the wave equation inside a model
of stricly convex domain was constructed that provided optimal decay estimates.
This yields by the usual argument Strichartz estimates with a range of pairs (q, r)
such that

(4)
1

q
≤ (

(d− 1)

2
− 1

4
)(

1

2
− 1

r
), q > 2

where, informally, the new 1/4 factor is related to the 1/4 loss in the dispersion
estimate. On the other hand, earlier work [3] proved that Strichartz estimates on
strictly convex domains can hold only if (q, r) are such that

(5)
1

q
≤ (

(d− 1)

2
− 1

12
)(

1

2
− 1

r
), q > 2 , r > 4 .

Our result from [5] was later generalized to any strictly convex domain in [2]. By
revisiting the parametrix construction from the general case, we can improve on
both positive and negative results for the 2D model case.

Theorem 1. Strichartz estimates (2) hold true on the domain Ω for pairs (q, r)
such that

(6)
1

q
< (

1

2
− γ(2))(

1

2
− 1

r
), with γ(2) =

1

9
.

In particular, for r = +∞, we have q > 5 + 1/7.
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The proof of Theorem 1 will rely on improving the bounds from [5] on the Green
function in several directions as well as refining estimates on gallery modes from
[3], all of which are of independent interest:

• the new parametrix construction may be done for initial data δ(x=a,y=0)

with a > h2/3−ε, for any ε > 0, improving on the previous condition
a > h4/7;

• in relation to the invariance of the wave equation under the action of the
operator x + ∆−1

y ∂2x, we may separate transverse waves and tangential

ones, e.g. initial frequencies such that |ξ| ≤ √
a, where (ξ, η) is the Fourier

variable corresponding to the spatial variable (x, y).
• Tangential waves require degenerate stationary phase; estimates in [5] may

be refined to isolate precisely the space-time location of the worst case
scenario of a swallowtail singularity. It turns out that such singularities
only happen at an exceptional, discrete set of times;

• gallery modes satisfy the usual Strichartz estimates (as already proved in
[3]) but with uniform constant with respect to the order of the mode: this
allows to deal with the a < h2/3−ε region.

The same parametrix construction may also be used to improve on known coun-
terexamples.

Theorem 2. Strichartz estimates (2) may hold true on the domain (Ω2, gF ) only
if possible pairs (q, r) are such that

(7)
1

q
≤ (

1

2
− 1

10
)(

1

2
− 1

r
) .

In particular, for r = +∞, we have q ≥ 5.

Counterexamples in [3] were constructed by carefully propagating a cusp start-
ing in a suitable position around a ∼ h1/2. Here we start with such a suitably
smoothed out cusp, around a ∼ h1/3 and let it propagate, estimating the resulting
solution with the parametrix.

Both Theorems improve on earlier results. For counterexamples, in [3], the
range of admissible pairs was only restricted with 1/10 replaced by 1/10. Re-
garding known results for strictly convex domains in 2D: for d = 2, [1] obtained
γ(2) = 1/6 (but for any boundary), while [5] only provide the weaker γ(2) = 1/4
(in higher dimensions, Strichartz estimates derived from [5, 2] already improve all
known results inside Strictly convex domains, and we expect our 2D result to yield
further improvements, with a suitable numerology.)
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Probabilistic scattering for the 4D energy-critical defocusing nonlinear
wave equation

Jonas Lührmann

(joint work with Benjamin Dodson and Dana Mendelson)

We consider the asymptotic behavior of solutions to the energy-critical defocusing
nonlinear wave equation in four space dimensions for random initial data of super-
critical regularity

(1)

{
−∂2t u+ ∆u = u3 on Rt × R4

x,

(u, ∂tu)|t=0 = (f0, f1) ∈ Hs
x(R4) ×Hs−1

x (R4).

It is well known that for initial data at energy regularity s = 1, the solutions
to (1) exist globally in time and scatter to free waves. However, the problem is
ill-posed for initial data at super-critical regularity s < 1, see for example [6]. Our
main result establishes almost sure global existence and scattering to free waves of
strong solutions to (1) for randomized radially symmetric data for super-critical
regularities 1

2 < s < 1. This work falls in the broader context of studying the
super-critical initial data regime for nonlinear dispersive and hyperbolic equations
from a probabilistic point of view, as initiated in the seminal works of Bourgain [2]
and Burq-Tzvetkov [3, 4].

Previously, almost sure global existence for energy sub-critical defocusing non-
linear wave equations on R3 had been established by de Suzzoni [13, 14] and by
the author and Mendelson [9, 10]. For energy-critical defocusing nonlinear wave
equations almost sure global existence (without scattering) had been obtained by
Pocovnicu [12] on Rd, d = 4, 5, and by Oh-Pocovnicu [11] on R3.

Before stating the precise results, we introduce our randomization procedure
which relies on a unit-scale decomposition of frequency space, see [15, 9, 1]. Let
ψ ∈ C∞

c (R4) be an even, non-negative bump function with supp(ψ) ⊆ B(0, 1) and
such that ∑

k∈Z4

ψ(ξ − k) = 1 for all ξ ∈ R4.
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Let s ∈ R and let f ∈ Hs
x(R4). For every k ∈ Z4, we define the function Pkf :

R4 → C by

(2) (Pkf)(x) = F−1
(
ψ(ξ − k)f̂(ξ)

)
(x) for x ∈ R4.

By requiring the cut-off ψ to be even, we ensure that real-valued functions f satisfy
the symmetry condition

(3) Pkf = P−kf.

We let {(gk, hk)}k∈Z4 be a sequence of zero-mean, complex-valued Gaussian ran-
dom variables on a probability space (Ω,A,P) with the symmetry condition g−k =

gk and h−k = hk for all k ∈ Z4. We assume that {g0,Re(gk), Im(gk)}k∈I are inde-
pendent, zero-mean, real-valued random variables, where I ⊂ Z4 is such that we
have a disjoint union Z4 = I ∪ (−I) ∪ {0}, and similarly for the hk.

Given a pair of real-valued functions (f0, f1) ∈ Hs
x(R4) ×Hs−1

x (R4) for s ∈ R,
we define its randomization by

(4) (fω
0 , f

ω
1 ) :=

(∑

k∈Z4

gk(ω)Pkf0,
∑

k∈Z4

hk(ω)Pkf1

)
.

The key point of this randomization is that the free wave evolution of the resulting
random data almost surely has much better space-time integrability properties.
Crucially, such a randomization does not regularize at the level of Sobolev spaces.
Moreover, the symmetry assumptions on the random variables as well as (3) ensure
that the randomization of real-valued initial data is real-valued. In the following
we denote the free wave evolution of the random initial data (fω

0 , f
ω
1 ) by

S(t)(fω
0 , f

ω
1 ) = cos(t|∇|)fω

0 +
sin(t|∇|)

|∇| fω
1 .

Theorem 1 (Dodson-L-Mendelson [7]). Let 1
2 < s < 1. For real-valued radially

symmetric (f0, f1) ∈ Hs
x(R4) × Hs−1

x (R4), let (fω
0 , f

ω
1 ) be the randomized initial

data defined in (4). Then for almost every ω ∈ Ω, there exists a unique global
solution

(u, ∂tu) ∈
(
S(t)(fω

0 , f
ω
1 ), ∂tS(t)(fω

0 , f
ω
1 )
)

+ C
(
R; Ḣ1

x(R4) × L2
x(R4)

)

to the energy-critical defocusing nonlinear wave equation (1) with initial data
(u, ∂tu)|t=0 = (fω

0 , f
ω
1 ), which scatters to free waves as t → ±∞ in the sense

that there exist states (v±0 , v
±
1 ) ∈ Ḣ1

x(R4) × L2
x(R4) such that

lim
t→±∞

∥∥∇t,x

(
u(t) − S(t)(fω

0 + v±0 , f
ω
1 + v±1 )

)∥∥
L2

x(R
4)

= 0.

The starting point of our proof of Theorem 1 is the observation that in order
to conclude almost sure global existence with scattering, it suffices to establish an
a priori uniform-in-time energy bound for the nonlinear component

v(t) = u(t) − S(t)(fω
0 , f

ω
1 ).



1714 Oberwolfach Report 27/2017

This observation can be proved by exploiting the Bahouri-Gérard a priori bounds
on the scattering norms of solutions (at energy regularity) to the standard energy-
critical defocusing nonlinear wave equation and by using a suitable perturbative
argument. We then introduce an approximate Morawetz estimate for the forced
cubic nonlinear wave equation satisfied by the nonlinear component v(t) and com-
bine it with Gronwall-type energy-growth estimates (due to Burq-Tzvetkov [5]).
Given that the free wave evolution of the random data satisfies the following two
global-in-time integrability properties

(5)
∥∥S(t)(fω

0 , f
ω
1 )
∥∥
L3

tL
6
x(R×R4)

<∞

and

(6)
∥∥|x| 12S(t)(fω

0 , f
ω
1 )
∥∥
L2

tL
∞
x (R×R4)

<∞,

we can then infer the desired uniform-in-time energy bound for the nonlinear
component v(t) of the solution. While a proof that the free wave evolution of
the random data S(t)(fω

0 , f
ω
1 ) almost surely satisfies (5) for a range of super-

critical regularities is already contained in [9], a key novelty of this work is to
establish almost surely the weighted space-time norm integrability property (6) for
the free wave evolution of random initial data resulting from a radially symmetric
pair (f0, f1) ∈ Hs

x(R4) × Hs−1
x (R4) for 1

2 < s < 1. To this end we derive a
radial Sobolev-type estimate for the square-function associated with the unit-scale
frequency projections (2) and combine it with a refinement of Strichartz estimates
due to Klainerman-Tataru [8] as well as the fact that in the radial case a larger
range of admissible Strichartz pairs is available.
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Global well-posedness for the massive Maxwell-Klein-Gordon equation
with small critical Sobolev data

Cristian Gavrus

We prove global well-posedness and modified scattering for the massive Maxwell-
Klein-Gordon equation in the Coulomb gauge on R1+d (d ≥ 4) for data with small
critical Sobolev norm. This extends to the general case m2 > 0 the results of
Krieger-Sterbenz-Tataru (d = 4, 5) and Rodnianski-Tao (d ≥ 6), who considered
the case m = 0.

We proceed by generalizing the global parametrix construction for the covariant
wave operator and the functional framework from the massless case to the Klein-
Gordon setting. The equation exhibits a trilinear cancelation structure identified
by Machedon-Sterbenz. To treat it one needs sharp L2 null form bounds, which
we prove by estimating renormalized solutions in null frames spaces similar to the
ones considered by Bejenaru-Herr. To overcome logarithmic divergences we rely on
an embedding property of ✷−1 in conjunction with endpoint Strichartz estimates
in Lorentz spaces.

We define the covariant derivatives and the covariant Klein-Gordon operator
by

Dαφ = (∂α + iAα)φ, ✷
A
m = DαDα +m2

We will work under the Coulomb gauge condition

(1) divxA = ∂jAj = 0

Denoting Jα = −I(φDαφ), we consider the equation

(2)





✷
A
mφ = 0

✷Ai = PiJx

∆A0 = J0, ∆∂tA0 = ∂iJi

where P denotes the Leray projection onto divergence-free vector fields

Theorem 1. Let d ≥ 4 and σ = d
2 − 1. The MKG equation (2) is well-posed

for small initial data on R1+d with m2 > 0, in the following sense: there exists a
universal constant ε > 0 such that:
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Let (φ[0], Ax[0]) be a smooth initial data set satisfying the Coulomb condition
and the smallness condition

(3) ‖φ[0]‖Hσ×Hσ−1 + ‖Ax[0]‖Ḣσ×Ḣσ−1 < ε.

Then there exists a unique global smooth solution (φ,A) to the system (2) under
the Coulomb gauge condition (1) on R1+d with these data.

For any T > 0, the data-to-solution map (φ[0], Ax[0]) 7→ (φ, ∂tφ,Ax, ∂tAx) ex-
tends continuously to

Hσ ×Hσ−1 × Ḣσ × Ḣσ−1(Rd)∩ → C([−T, T ];Hσ ×Hσ−1 × Ḣσ × Ḣσ−1(Rd)).

The solution (φ,A) exhibits modified scattering as t → ±∞: there exist a solu-
tion (φ±∞, A±∞

j ) to the linear system

✷A±∞
j = 0, ✷

Afree

m φ = 0, such that

‖(φ− φ±∞)[t]‖Hσ×Hσ−1 + ‖(Aj −A±∞
j )[t]‖Ḣσ×Ḣσ−1 → 0 as t→ ±∞.
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On the global regularity for a Wave-Klein-Gordon coupled system

Benoit Pausader

1. Statement of the main result

The following report presents the work [21] prepared in collaboration with A.
Ionescu.

1.1. Global existence for a wave-Klein-Gordon system. We consider the
Wave-Klein-Gordon (W-KG) system in 3 + 1 dimensions,

−�u = Ajk∂jv∂kv +Dv2,

(−� + 1)v = uBjk∂j∂kv,
(1)

where u, v are real-valued functions, D is a real constant and Ajk, Bjk are real
symmetric 3 × 3 matrices.

We prove that small data in an appropriate norm lead to global solutions which
satisfy some modification to linear scattering. A simple variant of our main result
reads as follows
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Theorem 1. Given ϕ0, ϕ1, ψ0, ψ1 ∈ S, there exists ε0 > 0 such that, for all
0 < ε < ε0, the solution with initial data

u(t = 0) = εϕ0, ∂tu(t = 0) = εϕ1, v(t = 0) = εψ0, ∂tv(t = 0) = εψ1

remains globally regular. In addition, we have the following asymptotic description
of the dynamics: there exists two functions u∞ and v∞ such that

‖∇x,t(u(t)−u∞(t))‖L2 + ‖∇x,t(v(t)− v∞(t))‖L2 + ‖v(t)− v∞(t)‖L2 → 0, t→ ∞
and

(2) ✷u∞ = 0,
(
∂2t − Θ

)
v∞ = 0

for some Fourier multiplier Θ(∇, t) depending on u and defined below.

We refer to [21] for a stronger and more precise version of the main theorem
which in particular only requires the initial data to be in a fixed small ball in a
given Sobolev-type space. We also note that a global existence result for compactly
supported initial data was already obtained by a different method in [33].

The modified scattering operator in (2) is defined as follows

Θ(ξ, t) = |ξ|2 + 1 +Bjkξjξk · ulow(t
ξ√

1 + |ξ|2
, t), ulow = P≤(1+t)−2/3−u.(3)

It corresponds to a modification of the free Klein-Gordon dispersion by the effect
of the quasilinear perturbation uBjk∂j∂kv obtained by evaluating (a low frequency
truncation of) u along the characteristices of the free Klein-Gordon equation and
can also be obtained from (1) by assuming that u is a constant, in which case, one
obtains the dispersion relation

−τ2 + |ξ|2 + 1 + uBjkξkξk = 0.

(The case when the quasilinear term involves time derivatives, B = Bαβ , is also
treated in [21]; it follows from the dispersion relation above, but in this case, Θ is
more naturally expressed as a product of 2 first order operators).

Since one has in general u & 1/t on a large portion of the interior of the
light cone, the modification Θ is needed to obtain convergence of v − v∞. We
note however, that when the quasilinear term is replaced by ∂muB

mjk∂j∂kv, one
recovers scattering and this was already treated in [13, 26].

1.2. Motivation. The system (1) was derived by Wang [40] and LeFloch-Ma [34]
as a model for the full Einstein-Klein-Gordon (E-KG) system

(4) Ric(g)αβ = ∂αψ · ∂βψ + (1/2)ψ2 · gαβ , �gψ = ψ.

Intuitively, the deviation of the Lorentzian metric g from the Minkowski metric
is replaced by a scalar function u, and the massive scalar field ψ is replaced by
v. The system (1) retains the same linear structure as the Einstein-Klein-Gordon
equations in harmonic gauge, but only keeps, schematically, quadratic interactions
that involve the massive scalar field (the semilinear terms in the first equation
and the quasilinear terms in the second equation coming from the reduced wave
operator).
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An interesting feature of (4), which also plays an important role in (1) comes
from the fact that there are 2 modes of propagation of information: gravitational
waves follow a wave equation at speed of light, while disturbances in the massive
scalar field move at a speed strictly smaller than the speed of light according to a
Klein-Gordon type evolution. A motivation for studying (4) is to develop robust
methods to control the coupling of Einstein equations with matter fields which
should also have different modes of propagation than gravitational waves.

Note that in contrast to the case of Einstein equations in vacuum, for which
the stability of Minkowski space has been extensively studied [3, 5, 12, 32, 36, 37],
there are comparatively few works devoted to (4) we mainly mention [34, 35, 41].
The presence of two different dispersion relations leads several classical methods
for wave equations to break down (e.g. many interactions are no longer null, there
are fewer symmetries and commuting vector fields).

2. Remarks about the proof

In order to prove Theorem 1, we use a combination of an energy method controlling
the solution and some of its derivative along well-chosen vector fields (angular
rotations and Lorentz boosts), and a dispersive analysis in order to extract the
modification to scattering and obtain convergence of (the profile of) the solution
in a well-chosen norm. This strategy borrows from earlier contributions [1, 2, 4, 6,
7, 8, 14, 15, 18, 24, 25, 27, 28, 29, 31, 38, 39] and was developed by the authors
and coauthors to control many different quasilinear dispersive equations arising
from plasma physics or water waves [9, 10, 11, 16, 17, 19, 20, 22, 23].

2.1. Quadratic phase. An important remark is that all nonlinear terms in (1)
essentially only involve one quadratic phase. Indeed, controlling either of the
equations in (1) by duality, one is led to consider integrals involving products of two
Klein-Gordon-type unknowns and one wave-type unknown. The corresponding
time oscillations involve only the phase

Φ := 〈ξ1〉±〈ξ2〉±|ξ3|, ξ1+ξ2+ξ3 = 0, |Φ| & min{1, |ξ3|}(1+ |ξ1|+ |ξ2|)−3.

Since the phases are bounded from below, one only expects the case of very low
frequencies for a wave unknown to play a significant role. It turns out however
that this type of interaction does play a major role in the analysis. For example,
in the case of

−✷u = |∇x,tv|2 + v2, (−✷ + 1)v = u∆v,

using positivity properties of the wave propagator in 3d, one can construct solu-
tions where u is nonnegative and tu & 1 on large portions of the interior of the
light cone, and this ultimately leads to the asymptotically nonlinear behavior of v
in (3).

2.2. Energy estimate. A significant (and somewhat unexpected) difficulty in
the study of (1) arises when considering energy estimates. While it is relatively
easy to propagate high-order Sobolev norms, the special structure of (1) leads to
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difficulties when attempting to control vector fields. Indeed commuting with a
vector field V leads to a system of the form

−✷(Vu) = v · (Vv) + 2v · ∂(Vv) + 2v · [V , ∂]v,

(−✷ + 1)(Vv) = (Vu) · ∂2v +
{
u · ∂2(Vv) + u · [V , ∂2]v

}(5)

The first equation is easy to control and so are the terms inside the curly bracket
in the second equation. However, the first term is problematic because the energy
estimates only provide control on ∂(Vu), but as we have seen, u can be significant
at low frequency. This problem is solved by using the faster decay of the Klein-
Gordon solution in both equations to recover half the derivative “loss” twice in
two consecutive steps by controlling energies of the form

(6) EV ≃ ‖|∇|− 1
2∇x,tVu(t)‖2L2 + ‖∇x,tVv(t)‖2L2 + ‖Vv(t)‖2L2 .

Controlling this energy makes the first equation in (5) more difficult by multiplying
the LHS by |∇|−1/2, which, in the worse case corresponds to a growth of t1/2,
which is just compensated by the optimal decay of the Klein-Gordon unknown,
while the second equation in (5) is now easier since the first term on the LHS
is now only 1/2 derivative off. Once again, the worst case gives a growth of t1/2

which is counteracted by the Klein-Gordon function decay. Note however that this
requires obtaining optimal decay for the Klein-Gordon solution, which in turn is
only possible once one identifies the correct asymptotic dynamics (2).

2.3. Scope. Using the analysis developed in [21], the result can be extended to
prove stability of the Minkowski space for (4) for initial data with mild decay
assumptions. However several additional hurdles have to be overcome: the wave
solutions are no longer asymptotically free and require a correction to the as-
ymptotic behavior similar to (3), as well as additional nonlinear forcing terms
coming from non-null interactions of the metric. However, introducing a suit-
able Hodge-type decomposition, one can exhibit a special “2-step nilpotent” struc-
ture, already noticed in [36], which allows to contain the corresponding growth to
‖∇x,tu(t)‖L∞ ≃ ln(t)/t. This in turns makes the energy estimates significantly
more complicated. Another difficulty follows from the fact that the slow decay
of the wave solutions does not allow such simple control of the energies as in (6)
for wave-wave interactions. This is then compensated using appropriate bilinear
estimates.
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On anisotropic type II blow-up for the energy supercritical semi-linear
heat equation

Charles Collot

(joint work with Frank Merle, Pierre Raphaël)

1. Introduction

Solutions to the semi-linear heat equation

(NLH)

{
∂tu(t, x) = ∆u(t, x) + |u(t, x)|p−1u(t, x),
u(0, x) = u0(x)

where p > 1, x ∈ Rd, ∆ =
∑d

i=1 ∂
2
xi

and u is real-valued, may blow-up in finite
time. In the usual functional spaces in which initial conditions u0 are considered
a regularising effect holds, and the solution belongs to L∞(Rd) immediately after
the initial time t = 0. The solution is then said to blow up at a time T >
0 if ‖u(t, ·)‖L∞(Rd) → +∞ as t ↑ T . Similar blow-up phenomenon appear for
other nonlinear evolution equations, and (NLH) belongs to the important class of
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that enjoying a scaling invariance. Namely, if u(t, x) is a solution, then so is the
translated and rescaled function

(t, x) 7→ 1

λ
2

p−1

u

(
t

λ2
,
x− x0
λ

)

for λ > 0 and x0 ∈ Rd. A common belief is that the singularity formation can be
described through suitable blow-up profiles that are renormalised using the above
transformation. Solutions which reproduces exactly the same profile at smaller
scales for (NLH) are called self-similar blow-up solutions and are of the form

u(t, x) =
1

(T − t)
1

p−1

ψ

(
x− x0√
T − t

)

These are associated to type I blow-up solutions that are solutions satisfying the
growth condition lim supt↑T (T−t)1/(p−1)‖u(t, ·)‖L∞(Rd) < +∞. This phenomenon
is the only one in the so-called energy subcritical range p < 1 + 4/(d− 2) and is
at the heart of the generic blow-up for (NLH). On this subject we refer to the
book [12]. In the energy critical and supercritical settings, p ≥ 1 + 4/(d − 2),
another type of blow-up appears. This blow-up, at a point, is described by the
concentration of a profile Q which is a stationary solution

(1) ∆Q+ |Q|p−1Q = 0,

and the solution u admits a main order description of the form

u(t, x) =
1

λ(t)
2

p−1

Q

(
x− x(t)

λ(t)

)
+ ε(t, x)

where the scale of the leading order part shrinks to zero in finite time: λ(t) →
0 as t ↑ T , and where ε is some lower order remainder. The study of such
blow-up was initiated in [5, 8, 14, 15] for example, and in [4, 10] for (NLH).
This phenomenon is related to the type II blow-up, i.e. to solutions for which
lim supt↑T (T − t)1/(p−1)‖u(t, ·)‖L∞(Rd) = +∞ and we refer to [6] for precise state-
ment of this fact in the radial case.

2. Anisotropic blow-up and main theorem

Despite substantial developments, the known results correspond to isotropic dy-
namics. Most of the results are proved for a radial blow-up at the origin, while
the others involve several points blow-up [7], geometrical modifications, see [11]
and [2] for type II blow-up for (NLH) in a domain, or blow-up on a sphere [13]
etc. In various models however anisotropy is expected, for singularity formation
of fluids at the boundary of a domain or for dispersive equations with anisotropic
dispersion for example.
The main result revisits the radial analysis of [1, 4, 9, 10] to construct and describe
precisely for the first time an anisotropic type II blow-up. The natural lift of a d-
dimensional radial blow-up solution u(t, |x|) to the d+ 1-dimension is the solution
U(t, x, y) = u(t, |x|) (where (x, y) ∈ Rd × R). This solution blows up on the line
x = 0 but is not well-localised in space. A suitable localisation is then given by
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Theorem 1 ([3]). For d ≥ 14 and p ≥ 3 there exists α = α(d, p) > 0 such
that the following holds. For any ℓ ∈ N∗ with ℓ > α/2, there exists a finite
codimensional set of initial data u0 ∈ C∞

c (Rd × R,R) with cylindrical symmetry,
u0(x, y) = u0(|x|, |y|), such that the corresponding solution blows up in finite time
0 < T < +∞ with the following asymptotics. It admits a decomposition

u(t, x, y) =
1

λ(t, |y|) 2
p−1

Q

( |x|
λ(t, |y|)

)
+ ε(t, x, y)

where Q is the only radially symmetric solution to (1) with Q(0) = 1, and:
1. Reconnection boundary: there holds

λ(t, |y|) ∼ c(u0)(T − t)
ℓ
α

(
1 + a(t)P2ℓ

( |y|√
T − t

)) 1
α

where

Pm(z) =

[m2 ]∑

k=0

m!

k!(m− 2k)!
(−1)kzm−2k

is the m-th one dimensional Hermite polynomial, and a ∈ C1([0, T ),R∗
+) with:

a(t) = a∗(u0)(1 + ot↑T (1)), 0 < a∗(u0) ≪ 1.

2. Soliton profile and type II blow-up:

lim
t→T

(T − t)
ℓ
α

2
p−1 ‖ε(t, ·)‖L∞(Rd×R) = 0, ‖u(t, ·)‖L∞ =

c′(u0)(1 + ot↑T (1))

(T − t)
2

p−1
ℓ
α

.

3. Comments and open problems

A short explanation of the ideas of the proof of the above theorem can be found
in the introduction of [3]. Some key features are the following. The y-dependence
of the reconnection function λ(t, y) changes with the d-dimensional blow-up speed
ℓ. It shows that the radial type II blow up rates of the d-dimensional problem
also exist for the d + 1 dimensional problem. The method gives an iteration
process for a further dimensional reduction procedure. The condition d ≥ 13
and p ≥ 3 is technical and can be improved to the optimal range d ≥ 11 and
p > 1 + 4/(d− 4 − 2

√
d− 1).

Let us finish by some interesting open problems. The classification of type II blow-
up profiles in the non-radial case is an important issue. The above result can be
extended to other equations. Eventually, one should investigate the concentration
in finite time of stationary profiles which are not radial.
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SingWave.
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semilinéaires supercritiques. C. R. Acad. Sci. Paris, 319:141-145, 1994.
[5] Krieger, J., Schlag, W., Tataru, D. (2008). Renormalization and blow up for charge one

equivariant critical wave maps. Inventiones mathematicae, 171(3), 543-615.
[6] Matano, H., Merle, F. (2009). Classification of type I and type II behaviors for a supercritical

nonlinear heat equation. Journal of Functional Analysis, 256(4), 992-1064.
[7] Merle, F. (1990). Construction of solutions with exactly k blow-up points for the Schrdinger

equation with critical nonlinearity. Communications in mathematical physics, 129(2), 223-
240.
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[12] Quittner, P., Souplet, P. (2007). Superlinear parabolic problems: blow-up, global existence
and steady states. Springer Science Business Media.
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(In)stability of the Couette flow at high Reynolds numbers

Jacob Bedrossian

(joint work with Pierre Germain, Nader Masmoudi and Vlad Vicol)

The plane, periodic Couette flow has served as a canonical problem in the field of
hydrodynamic stability since the late 19th century. Though much simpler than
the more directly important problems of stability of isolated vortices in 2D or
the stability of cylindrical pipe flow in 3D, the Couette flow has nonetheless raised
many interesting questions. Indeed, obtaining a precise understanding the stability
and instability of this flow in the nonlinear equations has remained elusive in both
2D and 3D. In this talk, I discussed some of the recent progress we have made
in this direction in both 2D (joint with Nader Masmoudi, Vlad Vicol and Fei
Wang) and 3D (joint with collaborators Pierre Germain and Nader Masmoudi).
The dynamics of solutions have been determined in a variety of settings, and
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are governed by several important effects: namely inviscid damping and mixing-
enhanced dissipation. The former is a kind of fluid mechanics analog of dispersion
and the latter is an acceleration of the viscous (parabolic smoothing/dissipation)
effects in the fluid due to mixing sending information to high frequencies.

The Couette flow is the equilibrium given by uE = (y, 0)t in 2D or uE =
(y, 0, 0)t in 3D. In 2D, we studied the problem on the cylinder (x, y) ∈ T × R

and in 3D on the cylinder (x, y, z) ∈ T × R × T. In both 2D and 3D, this set-up
seems to be the simplest available equilibrium to study, and hence it is a very
natural place to begin the nonlinear theory in earnest. All of the 2D works and
the 3D works share one of several common themes. The main theme is that
the background shear flow tends to stabilize the flow by suppressing the flow
which depends on x. Hence, in 2D, the flow tends to converge to a shear flow:
u→ uE(y) + (v(t, y), 0)t where v solves the 1D heat equation. We provide precise
asymptotics both at infinite Reynolds number and in the high Reynolds number
limits on how the fluid is attracted to the manifold of shear flows in the 2D Navier-
Stokes equations. In 3D, the flow is attracted to a manifold of flows called ‘streaks’:
u → uE(y) + (v1(t, y, z), v2(t, y, z), v3(t, y, z))t. Here v2,3 will solve the standard
2D Navier-Stokes equations in (y, z) ∈ R × T and v1 solves the effectively linear
equations:

∂tv
1 + (v2, v3) · ∇v1 = −v2 + ν∆v1.

The transient growth induced by −v2 is a major source of instability in the non-
linear problem, and is a primary culprit in the phenomenon known as subcritical
transition in 3D fluid mechanics. The dynamics of the streaks is not entirely clas-
sified, but is much easier to classify and understand than the fully 3D flows. Our
series of 3D works focus on understanding under which circumstances the manifold
of streaks serves as a local attractor for the dynamics.
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Tidal energy for the Newtonian two-body motion

Sohrab Shahshahani

In this work we study the tidal energy for the motion of two gravitating incom-
pressible fluid balls with free boundaries, obeying the Euler-Poisson equations.
The orbital energy is defined as the mechanical energy of the center of mass of
the two bodies. When the fluids are replaced by point masses, according to the
classical analysis of Kepler and Newton, the conic curve describing the trajectories
of the bodies is a hyperbola when the orbital energy is positive and an ellipse when
the orbital energy is negative. If the point masses are initially very far, then the
orbital energy, which is conserved in the case of point masses, is positive corre-
sponding to hyperbolic motion. However, in the motion of fluid balls the orbital
energy is no longer conserved, as part of the conserved energy is used in deforming
the boundaries of the bodies. This energy is called the tidal energy. If the tidal
energy becomes larger than the total energy during the evolution, the orbital en-
ergy must change its sign, signaling a qualitative change in the orbit of the bodies.
We will show that under appropriate conditions on the initial configuration this
change of sign occurs. Our analysis relies on a-priori estimates which we establish
until the point of closest approach.

Threshold solutions for mass-subcritical NLS equations

Satoshi Masaki

1. Introduction

1.1. Motivation. We are interested in global behaviour of solutions to the non-
linear Schrödinger equations

i∂tu+ ∆u = l|u|p−1u, (t, x) ∈ R× Rd.

Our aim is to study time global behavior of solutions to the equation, in par-
ticular, we want to give a classification of solutions according to their large time
behavior. For this purpose, the focusing case l = −1 would be more interesting
and difficult. As a first step, behavior of solutions around the special solution,
such as the zero solution or the ground state, are studied. It is known that when
p > 1 + 2

d small solutions (solutions around the zero solution) behaves like a free
solution (scattering).

As a second step, we would like to find a threshold solution which lies on
the boundary between small scattering solutions and solution with other behavior.
Although there are many studies in this direction on the mass-critical case p = 1+ 4

d

or the mass-supercritical case p > 1 + 4
d , the mass-subcritical case p < 1 + 4

d
is less studied. Recalling the fact that the stability of the ground state changes at
the mass-critical power, we can expect that the situation is slightly different.

To study the mass-subcritical case, we encounter several problems.
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• Function space for small data scattering
In the mass-subcritical case, constructing a solution is easy. Indeed, we
can show global well-posedness in L2 by the standard contraction map
argument and conservation of mass. However, showing scattering is not
easy. We want to start our study by the fact that a “small” solution
scatters. Then, finding a right sense of “smallness” is a problem. For
example, smallness in L2 or H1 do not yield scattering because we can
construct small (in H1) non-scattering solution from the scaling of ground
state solution (if l = −1). The argument suggests that solving the equation
in a scale critical space, or in a space embedded into a scale critical space,
is necessary to start our study. So far, small data scattering is known in
radial Sobolev space Ḣsc

rad (sc = d
2 − 2

p−1 < 0), weighted space FḢ−sc :=

L2(Rd, |x|−2scdx), and Fourier Lebesgue space FL(d(p−1)
2 )′ , for instance.

• Non-polynomial nonlinearity

Recall that when p ≤ 1 + 2
d there is no L2 solution that scatters. Hence,

our range is 1 + 2
d < p < 1 + 4

d . The range is




3 < p < 5, d = 1,

2 < p < 3, d = 2,

5/3 < p < 7/3, d = 3

and p < 4/d ≤ 2 if d ≥ 4. Hence, p is an integer only if (d, p) = (1, 4), (3, 2).
In particular, p is not an odd integer.

• No conservation law
The well-known conserved quantity for NLS are mass, moment, and energy.
But they are the quantities adopted to L2-scaling, Ḣ1/2-scaling, and Ḣ1-
scaling, respectively. Hence, it seems difficult to characterize behavior by
a combination of these quantities.

1.2. Formulation as a minimization problem. Since there is no good con-
served quantity, we regard the norm of a solution in a “good” function space (of
space variable only) as a function of time, and then introduce a global quantity
of the time function. The global quantity can be regarded as a kind of conserved
quantity. Then, we shall find a threshold solution as a function which minimizes
the global quantity among all non-scattering solutions. Here, we have at least two
choices on the global quantity.

• The first example of the global quantity is

(1) inf
t∈Imax

‖u(t)‖X .

A minimizer with respect to the quantity gives us the best constant of the
small data scattering.

• The second example is

(2) lim
t→Tmax

‖u(t)‖X ,
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where we assume that u(t) does not scatter forward in time. In many cases,
a minimizer to the quantity has a pre-compact orbit modulo symmetry.
One may expect that it is a characterization of the ground state, which is
true in some settings.

In the mass critical case p = 1 + 4
d with X = L2, they coincide each other and

equal to the norm of the ground state. This is merely a rephrase of results by
Killip-Tao-Vişan, Killip-Vişan-Zhang, and Dodson. In the energy-critical case
p = 1 + 4

d−2 (d ≥ 4) with X = Ḣ1, these infimum values are different but we can
evaluate the both. This follows from Kenig-Merle, Duyckaerts-Merle, Li-Zhang,
Killip-Vişan, and Dodson. In the defocusing case, we can show that the second
quantity is infinite, which implies boundedness and scattering are equivalent. See
Kenig-Merle, Killi-Vişan, and series of works by Murphy. See [3] for the evaluation
under the above settings.

The advantage of the above formulation is that we can obtain a threshold solu-
tion in a framework that no conserved quantities are available, which is often the
case in the mass-subcritical case. However, one problem is that we do not know
whether a given norm is reasonable, as an equivalent norm of X might give us a
different minimizer.

2. Summary of results

1. Weighted space FH1, FḢ−sc

The problem (1) is considered in [4, 2]. However, we have to modify the above
formulation because wighted space is not preserved by the NLS flow, as in the
linear case. It is shown that there is a threshold solution which does not scatter
and is not a standing wave solution. The problem (2) is considered in [1]. In this
setting, the boundedness implies scattering even in the focusing case.

2. hat-Morrey space
The problems (1) and (2) are treated in a hat-Morrey type space. a set of

functions which is a Fourier transform of a function in a generalization of a Morrey
space in [3]. This kind of space arise in a context of refinement of Strichartz’
estimate and is previously used in the analysis of mass-critical case. The space
is wider than hat-Lebesgue space FLp′

. By some reason, profile decomposition
becomes harder in hat-Lebesgue spaces (see [3, 5]).

3. For generalized KdV equation.
The above formulation is not specific to NLS equation. We have similar results

for generalized KdV equation (see [5, 6]). To work with a fractional power non-
linearity, we introduce in [5] an expansion of nonlinearity by means of the Fourier
series expansion. The expansion technique is also applicable to analysis of large
time behavior (cf. long range scattering).



Nonlinear Waves and Dispersive Equations 1729

References

[1] R. Killip, S. Masaki, J. Murphy, and M. Vişan, Large data mass-subcritical NLS: critical
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A critical scattering result for the defocusing cubic NLW in R1+3

Benjamin Dodson

In this talk we will several recent results concerning the cubic, nonlinear wave
equation

(1) utt − ∆u± u3 = 0, u(0, x) = u0, ut(0, x) = u1.

In each case we will be interested in the radial equation, that is,

(2)
1

r
(∂tt − ∂rr)(ru) ± u3 = 0.

In general, (1) is Ḣsc × Ḣsc−1 - critical with sc = d−2
2 . This is because (1) is

invariant under the scaling

(3) u(t, x) 7→ λu(λt, λx),

and this scaling preserves the Ḣsc × Ḣsc−1 norm.

Theorem 1 (Lindblad - Sogge). (1) is locally well - posed in dimensions d ≥ 3 in

Ḣsc × Ḣsc−1.

In extending theorem 1 to a global result, dimension d = 4 has been of particular
interest to researchers due to the fact that (1) has the conserved energy

(4) E(u(t)) =
1

2

ˆ

|∇u(t, x)|2 +
1

2

ˆ

ut(t, x)2 ± 1

4

ˆ

u(t, x)4dx.

In particular, in the defocusing (or +) case, (4) implies that the critical norm is
globally bounded in dimension d = 4. This fact has been well - exploited to prove
scattering.



1730 Oberwolfach Report 27/2017

Theorem 2. (1) is globally well - posed and scattering in the defocusing case.

Proof: This was proved by a number of authors, (Grillakis, Shatah - Struwe,
Bahouri - Gerard).

In the focusing case in dimension d = 4 both type one and type two blowup has
been shown to exist.

Type one blowup: Type one blowup occurs when

(5) sup
t∈I

‖(u(t), ut(t))‖Ḣsc×Ḣsc−1 = ∞,

where I is the maximal interval of existence for a solution to (1).

Type two blowup: Type two blowup occurs when

(6) sup
t∈I

‖(u(t), ut(t))‖Ḣsc×Ḣsc−1 <∞,

but the solution fails to scatter. See the work of (Merle - Zaag) and (Donninger -
Schorkhuber) for type one blowup results. See the work of (Duyckaerts - Kenig -
Merle) for type two blowup results.

In this talk we will discuss some scattering results for (2) in dimensions three and
five, where there is no critical conserved quantity.

Theorem 3 (D. - Lawrie, 2014). There is no type two blowup for (2) in dimensions
d = 3, 5, either defocusing or focusing.

Theorem 4 (D., 2016). (2) is globally well - posed and scattering in the defocusing
case for initial data satisfying

(7) ‖u0‖Ḣ1/2+ǫ + ‖u1‖Ḣ−1/2+ǫ + ‖|x|2ǫu0‖Ḣ1/2+ǫ + ‖|x|2ǫu1‖Ḣ−1/2+ǫ <∞,

for any ǫ > 0.

Theorem 4 uses the I - method combined with the hyperbolic coordinates

(8) u(t, x) 7→ eτ sinh s

s
u(eτ cosh s, eτ sinh s).

Theorem 5 (D., 2016). (2) is globally well - posed and scattering in the defocusing
case for initial data satisfying

(9) ‖u0‖B2
1,1

+ ‖u1‖B1
1,1
<∞.

for any ǫ > 0.
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The norm (9) is invariant under the scaling (3). Theorem 5 also uses the hyperbolic
coordinates combined with splitting u into a finite energy part and a free solution.

The Radiation Field on Product Cones

Jeremy L. Marzuola

(joint work with Dean Baskin)

Suppose Y is a compact Riemannian manifold without boundary. The cone X =
C(Y ) over Y is diffeomorphic1 to [0,∞)r × Y and is equipped with the metric

g = dr2 + r2h,

where h is a fixed Riemannian metric on Y .
The forward radiation field of u, denoted R+[u] is the radiation pattern seen

by a distant observer. More precisely,

R+[u](s, y) = lim
r→∞

r−
n−1
2 u(s+ r, r, y).

This talk announced the following Theorem:

Theorem 1. Suppose u is the forward solution of ✷u = f on R × X, where X
is a product cone and f ∈ C∞

c (R×X). The function u admits a joint asymptotic
expansion of the following form:

u(t, r, y) ∼ (t+ r)−(n−1)/2
∞∑

ℓ=0

∞∑

j=0

∞∑

k=0

(t+ r)−ℓ(t− r)−1/2−k−
√

(n−2)2/4+µ2
jajkℓ(y),

(once we have accounted for integer coincidence) where µ2
j are the eigenvalues of

∆h on Y . In particular, the radiation field of u admits the following expansion as
s→ +∞:

R+[u](s, y) ∼
∞∑

j=0

s−1/2−k−
√

(n−2)2/4+µ2
j

Remark 2. In the more general version of the theorem, you can in principle have
logarithmic terms due to integer coincidences among the poles or owing to higher
order poles from the resonances. We believe that in the case of a product cone you
do not see these logarithmic terms for two reasons: a) the exact product structure
means that the integer coincidences cannot occur, as there is no remainder term
to deal with, and b) as seen in [1] all poles of the resolvent on the exact hyperbolic
cone are simple poles.

It turns out that the radiation field on a product cone is related to an explicit
calculation all of the resonances for a hyperbolic cone in terms of the eigenvalues
of the cross-section. To fix notation, let Xh be a manifold of dimension n + 1
diffeomorphic to (R+)r × Y , where Y is a compact n-manifold without boundary.
Given a Riemannian metric h on Y , we equip Xh with the hyperbolic conic metric

1Our definition of a product cone has already resolved the conic singularity. We take X to
be a smooth manifold with boundary and instead require that the metric be singular at r = 0.
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dr2 + sinh2 r h. Except in the special case of hyperbolic space, X has an isolated
conic singularity at r = 0.

Given a hyperbolic cone Xh and its associated metric g, we define the resolvent

R(λ) =

(
−∆g − λ2 − n2

4

)−1

,

which is a bounded operator L2(Xh, g) → L2(Xh, g) for Imλ > 0. The resolvent
R(λ) admits a meromorphic continuation to the complex plane as an operator
L2
c(Xh, g) → L2

loc(Xh, g), i.e., from compactly supported functions to locally L2

functions. The poles of this meromorphic continuation (aside from potentially
finitely many eigenvalues lying in the upper half plane) are called resonances.

In [1], we establish the following theorem using explicit calculations.

Theorem 3. Let {µ2
j}j∈N be the eigenvalues of −∆h. The resonances of −∆g are

given by

λj,k = −ı


1

2
+ k +

√(
n− 1

2

)2

+ µ2
j




for k ∈ N = {0, 1, 2, . . .}, and j so that
√(

n− 1

2

)2

+ µ2
j /∈

1

2
+ R.

Here an eigenvalue µ2
j with multiplicity m for −∆h adds multiplicity m to λj,k.

If √(
n− 1

2

)2

+ µ2
j ∈ 1

2
+ R,

then µj contributes no resonances to −∆g.

With this theorem in hand, the proof of the main theorem follows closely the
approach taken by my collaborator Dean Baskin with Andras Vasy and Jared
Wunsch [3, 4]. The main idea is to use the Mellin transform to turn the foward
problem into a Fredholm on the boundary (at infinity) of the spacetime.

The idea is to compactify to a domain as see in Figure 1. The compactifica-
tion gives elliptic estimates near C± and asymptotically de Sitter estimates near
C0. A precise asymptotic expansion must be made at the boundary S+ (for the
forward problem), which requires careful propagation of singularities results near
the North pole in C+ and a good Carleman estimate for hyperbolic problems on
de Sitter spaces. Once each component of the argument is established, the general
framework gives us that the radiation field asymptotics are predicted precisely
by the resonances computed in Theorem 3. Our theorem agrees well with direct
computations of expected wave decay given by the explicit fundamental solution
of Cheeger-Taylor in the works [5, 6].

Remark 4. The exponents in Theorem 1 are the resonances of the corresponding
hyperbolic cone. This means that you might not see all of the exponents listed
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S−

S+

C+

C−

C0

D

Figure 1. The compactified domain.

as they may not all be resonances. They are however still poles of our operator,
but those that are supported exactly within S+, much like the difference between
the poles of the scattering matrix versus the poles of the resolvent in standard
scattering theory.
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Multi-scale bilinear restriction estimates for general phases

Timothy Candy

We give an overview of recent work which gives (adjoint) bilinear restriction esti-
mates for general phases at different scales in the full mixed norm range [4]. As
an application, we obtain a bilinear restriction estimate for wave/Klein-Gordon
interactions, and a refined Strichartz inequality for the Klein-Gordon equation.

To describe the results in more detail, let n > 1 and j = 1, 2. Define phases
Φj : Λj → R with Λj ⊂ Rn. Given f ∈ L2(Rn), we define the space-time function

eitΦj(∇)f =

ˆ

Rn

eitΦj(ξ)f̂(ξ)eix·ξdξ.
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It is clear that this gives a solution to the linear PDE −i∂tu + Φj(∇)u = 0. In

particular, letting Φj(ξ) = 〈ξ〉m = (m2 + |ξ|2)
1
2 gives a solution to the Klein-

Gordon equation, while Φj(ξ) = |ξ|2 gives a solution to the Schrödinger equation.

Alternatively, eitΦj(∇)f is essentially the extension operator (or adjoint restriction
operator) for the surface

SΦj = {(Φj(ξ), ξ) | ξ ∈ Λj} ⊂ R1+n.

We are interested in obtaining (adjoint) bilinear restriction estimates of the form

(1)
∥∥eitΦ1(∇)feitΦ2(∇)g

∥∥
Lq

tL
r
x(R

1+n)
6 C‖f‖L2

x
‖g‖L2

x

with a careful understanding of how the constant C depends on the phases Φj .
These types of estimates have a number of applications, for instance to the linear
restriction problem [12], to refinements of Strichartz inequalities [8, 5], and to
well-posedness results for nonlinear PDE [3].

To gain some intuition into the estimate (1), we first consider the case of the
wave equation Φj(ξ) = |ξ|. If we take sets Λj ⊂ {|ξ| ≈ 1}, then an application
of Hölder together with the linear Strichartz estimates gives (1) in the range 1

q +
n−1
2r 6 n−1

2 . However, this range can be improved significantly if we assume that
the sets Λj have some angular separation. For instance, if Λ1 = {|ξ| ≈ 1, |ξ−e1| ≪
1} and Λ2 = {|ξ| ≈ 1, |ξ − e2| ≪ 1} (here e1 and e2 are the first unit coordinate
vectors), then we can improve the range given by the linear Strichartz estimates to
1
q + n+1

2r 6 n+1
2 . In particular, under an angular separation condition on the sets Λj,

we essentially gain two dimensions over using linear estimates. The almost optimal
range for the wave equation when q = r was first obtained in the breakthrough
work of Wolff [14]. The endpoint was obtained shortly thereafter, and extended
to the non-unit scale case by Tao [10], the case q 6= r is due to Tataru [13] and
Lee-Vargas [6]. These results also included high-low interactions with an epsilon
loss.

In the case of general phases, under suitable transversality and curvature as-
sumptions on the surfaces Sj , it is known that, provided Φ1 and Φ2 are unit scale,
the bilinear estimate (1) is also true in the full range r = q > n+3

n+1 [7, 1]. In fact,

in recent joint work with Sebastian Herr, we have shown that the estimate (1)
holds in the adapted function space V 2

Φj
[3] in the full q = r bilinear range. This

bound was then applied to obtain global well-posedness for a resonant case of the
Dirac-Klein-Gordon system. If the phases are not assumed to be unit scale, then
only specific cases are known [11, 10, 9, 2]. In particular, the case of high-low

Klein-Gordon interactions Φj = (m2
j + |ξ|2)

1
2 does not follow from the previous

estimates. The main result we aim to present, is an estimate giving an explicit
dependence of the constant C in (1) on general phases Φj .

Theorem 1 (Bilinear restriction for general phases [4]). Let n > 2, 1 6 q, r 6 2
and 1

q + n+1
2r < n+1

2 . Assume that Φj satisfy suitable curvature/transversality

conditions and let Hj = ‖∇Φj‖L∞(Λj), Vmax = supξ∈Λ1,η∈Λ2
|∇Φ1(ξ) − ∇Φ2(η)|.
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Then if H2 6 H1 and either f̂ or ĝ has support in a ball of radius µ we have
∥∥eitΦ1(∇)feitΦ2(∇)g

∥∥
Lq

tL
r
x(R

1+n)

. µn+1−n+1
r − 2

q V
1
r−1
maxH

1− 1
q− 1

r

1

(H1

H2

) 1
q− 1

2 ‖f‖L2
x
‖g‖L2

x

The previous theorem also has a version in the adapted function space U2
Φj

,

which reflects the fact that the previous theorem holds for vector valued waves.
It is also important to note that the dependence on the parameters µ, Hj , and
Vmax is sharp, thus for general phases only the endpoint 1

q + n+1
2r = n+1

2 remains

open. The precise conditions required on the phases Φj can be found in [4], and
are based on a normalised version of the conditions appearing in [3]. In particular,
they hold for the Klein-Gordon equation.

Theorem 2 (Bilinear restriction for Klein-Gordon [4]). Let 1 6 q, r 6 2, 1
q +n+1

2r <
n+1
2 , m1,m2 > 0, and λ > µ > 0. Let 0 < α 6 1, and suppose we have ξ0, η0 ∈ Rn

such that 〈ξ0〉m1
≈ λ, 〈η0〉m2

≈ µ, and
∣∣m2|ξ0| −m1|η0|

∣∣
λµ

+
( |ξ0||η0| ∓ ξ0 · η0

λµ

) 1
2 ≈ α.

Define β = (m1

αλ + m2

αµ + 1)−1. If

supp f̂ ⊂
{∣∣|ξ| − |ξ0|

∣∣≪ βλ,
(
|ξ||ξ0| − ξ · ξ0

) 1
2 ≪ αλ

}

supp ĝ ⊂
{∣∣|ξ| − |η0|

∣∣≪ βµ,
(
|ξ||η0| − ξ · η0

) 1
2 ≪ αµ

}

then we have the bilinear estimate
∥∥eit〈−i∇〉m1fe±it〈−i∇〉m2 g

∥∥
Lq

tL
r
x

. αn−1− n−1
r − 2

q β1− 1
r µn−n

r − 1
q

(λ
µ

) 1
q− 1

2 ‖f‖L2
x
‖g‖L2

x

where the implied constant is independent of m1,m2.

Theorem 2 allows m1 = m2 = 0. In particular, we remove the ǫ high-low
derivative loss appearing in the previous bounds for the wave equation due to [10]
and Lee-Vargas [6]. As an application of Theorem 2, we obtain a refined Strichartz
estimate for the Klein-Gordon equation, which is a Klein-Gordon counterpart to
an estimate for the wave equation due to Ramos [8]. Similar results, but requiring
additional regularity, have been obtained earlier for the Klein-Gordon equation by
Killip-Stovall-Visan [5].

Given λ > 1, and 0 < α < 1, we define Aλ,α to the collection of sets A ⊂ Rn of
the form

A = A(ξ0) =
{
〈ξ〉 ≈ λ,

∣∣|ξ| − |ξ0|
∣∣≪ αλ

1+αλλ,
(
|ξ||ξ0| − ξ · ξ0

) 1
2 ≪ αλ

}

where the points ξ0 ∈ Rn satisfy 〈ξ0〉 ≈ λ and are chosen to ensure that the sets
A ∈ Aλ,α form a finitely overlapping cover of the annulus/ball {〈ξ〉 ≈ λ}.
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Theorem 3 (Refined Strichartz for Klein-Gordon [4]). Let n > 2. There exists
0 < θ < 1 and 1 < r < 2 such that

∥∥eit〈∇〉f
∥∥
L

2 n+1
n−1

t,x (R1+n)

.
(

sup
λ∈2N,α∈2−N

sup
A∈Aλ,α

(
αλ

1+αλ

) 1
n+1

λ
1
2 |A| 12− 1

r ‖f̂‖Lr
ξ(A)

)θ
‖f‖1−θ

H
1
2
.
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The generalized SQG patch equation: global stability of the half-plane
stationary solution

Alexandru D. Ionescu

1. Introduction

In joint work [4] with Diego Córdoba and Javier Gómez-Serrano, we consider the
generalized surface-quasigeostrophic equations (gSQG):





∂tθ + u · ∇θ = 0, (x, t) ∈ R2 × R+,
u = −∇⊥(−∆)−1+α

2 θ,
θ|t=0 = θ0,

(1)

where α ∈ (0, 2). The limiting case α = 0 corresponds to the 2D incompressible
Euler equation, while the case α = 2 produces stationary solutions.

These are so-called active scalar equations, which have been originally intro-
duced and studied in the setting of sufficiently smooth solutions θ. The equations
(1) have also been analyzed extensively in the natural setting of the so-called α-
patches, which are solutions for which θ is a step function

θ(x, t) =

{
θ1, if x ∈ Ω(t)
θ2, if x ∈ Ω(t)c,

where θ1, θ2 ∈ R are constants, and Ω(t) is a regular domain that evolves in time
under the influence of the induced velocity field. The evolution of a patch can be
determined by looking just at the evolution of its boundary, called the interface.
More precisely, the evolution equation for the interface of an α-patch, which we
parametrize as z : I → R2, z(x) = (z1(x), z2(x)), can be written as

∂tz(x, t) = −(θ2 − θ1)C(α)

ˆ

I

∂xz(x, t) − ∂xz(x− y, t)

|z(x, t) − z(x− y, t)|α dy + c(x, t)zx(x, t).(2)

Here I ⊆ R is an interval (usually I = [0, 2π] in the case of bounded patches or
I = R for unbounded patches), the presence of the function c has to do with the
flexibility in parametrizing the curve, and C(α) ∈ (0,∞) is a normalizing constant.

1.1. Local regularity. The local regularity theory for the equations (1)–(2) is
generally well understood, starting with the work of Constantin–Majda–Tabak [3]
and Held–Pierrehumbert–Garner–Swanson [6]. As expected, data with sufficient
smoothness lead to local in time unique solutions that propagate the regularity of
the initial data. See the papers of Rodrigo [10], Gancedo [5], and the references
therein for such regularity results.

1.2. Dynamical formation of singularities. The problem of whether the SQG
evolution can lead to finite time singularities is a challenging open problem both
in the smooth case (1) and in the patch case (2). Numerical simulations appear
to suggest (convincingly) the possibility of dynamical formation of singularities
in certain scenarios, both in the smooth case and the patch case. However, we
emphasize that no rigorous results are known. See, however, the recent work of
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Kiselev–Ryzhik–Yao–Zlatos [9], where the authors introduced a new gSQG-patch
model, with a fixed boundary, and proved the formation of finite time singularities
in this model for certain patches that touch the boundary at all times. At this
point it is unclear whether such a scenario can lead to singularities in the classical
gSQG models considered here.

1.3. Global regularity and rotating solutions. The construction of nontriv-
ial global solutions for the gSQG equations is also a challenging problem, both in
the smooth and in the patch case. In fact, the only known non-stationary global
solutions are very special rotating solutions. These solutions are periodic in time
and evolve by rotating with constant angular velocity around their center of mass.
See the recent papers of Castro–Córdoba–Gómez-Serrano [1] and [2] and the ref-
erences therein for the construction of such solutions, both in the patch setting
(where such solutions are known as V-states) and in the smooth setting.

2. The main theorem

Our goal in [4] is to initiate the study of stable global solutions of the equations (1)
and (2). Such stable solutions cannot be periodic in time and their construction
requires a different mechanism.

A natural way to look for families of global stable solutions is to perturb around
certain explicit stationary solutions of the equation. In our case of the gSQG
equations, one could start by perturbing around the trivial solution θ ≡ 0 of the
equation (1). However, there is no source of dispersion in this case and it is
not clear to us how to control the solution beyond the natural time of existence
Tε ≈ ε−1 corresponding to data of size ε.

One could also start from the observation that all radial functions are station-
ary solutions of the gSQG equations, and look for global solutions that start as
small perturbations of radial functions. Numerical simulations seem to suggest
the existence of long-term (perhaps global) smooth solutions for the gSQG-patch
equation (2), starting from certain small perturbations of a characteristic function
of a ball of radius 1, but we have not been able to analyze this scenario rigorously
so far.

In [4] we consider a simpler scenario, namely we perturb around the half-plane
stationary solution corresponding to the straight interface (z1(x), z2(x)) = (x, 0).
For simplicity, we assume that C(α)(θ1 − θ2) = 1, c(x, t) = 0 and z1(x, t) = x.
This choice yields the following equation for z2(x, t) ≡ h(x, t):

(3) ∂th(x, t) =

ˆ

R

hx(x, t) − hx(x− y, t)
(
|h(x, t) − h(x− y, t)|2 + y2

)α/2 dy.

Notice that the integral in (3) is well defined for α ∈ (1, 2).
At the linear level, the dynamics of solutions of (3) are determined by the

equation

∂tĥ(ξ, t) = iΛ(ξ)ĥ(ξ, t), Λ(ξ) := γ|ξ|α−1ξ,(4)
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where ĥ(ξ, t) is the Fourier transform of h(x, t) and γ ∈ (0,∞) is a constant. We
notice that this linearized equation has dispersive character, due to the dispersion
relation Λ. Thus one can hope to prove global regularity and decay for small and
localized initial data. This is precisely our main theorem:

Theorem 1. Assume α ∈ (1, 2), and let N0 := 20 and N1 := 4. Then there is a
constant ε = ε(α) such that for all initial-data h0 : R → R satisfying the smallness
conditions

(5) ‖h0‖HN0α + ‖x∂xh0‖HN1α ≤ ε0 ≤ ε

there is a unique global solution h ∈ C([0,∞) : HN0α(R)) of the evolution equation
(3) with h(0) = h0. Moreover, the solution h satisfies the slow growth energy
bounds

(6) ‖h(t)‖HN0α + ‖Sh(t)‖HN1α . ε0(1 + t)p0 , t ∈ [0,∞),

where S := αt∂t + x∂x is the scaling vector-field associated to the linear equation
(4) and p0 := 10−7(2 − α), and the sharp pointwise decay bounds

(
2k/2 + 2N2αk

)
‖Pkh(t)‖L∞ . ε0(1 + t)−1/2, t ∈ [0,∞), k ∈ Z,(7)

where Pk denote the standard Littlewood-Paley projections and N2 := 8.

3. Main ideas of the proof

The equation (3) is a time reversible quasilinear equation. The classical mechanism
to prove global regularity in such a situation has two main steps:

(1) Prove energy estimates to propagate control of high order Sobolev and weighted
norms;

(2) Prove dispersion and decay of the solution over time.

More precisely, we prove energy bounds with slow growth of the form (6). To
prove dispersion, we define a suitable norm, called the Z-norm, in such a way that
‖h(t)‖Z is uniformly bounded as t→ ∞,

‖h(t)‖Z . ε0.

The precise choice of the Z-norm is important, since control of the Z-norm has to
complement suitably the energy control proved in the first step.

The proof of Theorem 1 involves the construction of nonlinear profiles that lead
to modified scattering and sharp pointwise decay (7). Our analysis in [4] has some
similarities with the global analysis of water-wave models in 2D in [7] and [8].
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École Polytechnique Fédérale de
Lausanne
MA-Ecublens
1015 Lausanne
SWITZERLAND

Dr. Claudio Munoz

Departamento Ingenieria Matematica
Universidad de Chile
Beauchef 851
Torre Norte, Piso 5
Santiago
CHILE

Dr. Jason C. Murphy

Department of Mathematics
University of California, Berkeley
857 Evans Hall
Berkeley, CA 94720-3840
UNITED STATES

Dr. Sung-Jin Oh

School of Mathematics
Korea Institute for Advanced Study
85 Hoegi-Ro, Dongdaemun-gu
Seoul 02 455
KOREA, REPUBLIC OF

Lisa Onkes

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Benoit Pausader

Department of Mathematics
Brown University
151 Thayer Street
Providence, RI 02112
UNITED STATES



1744 Oberwolfach Report 27/2017

Prof. Dr. Fabrice Planchon
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