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nano-technology, quantum physics, and biological networks. The workshop
focused on the analysis of nonlinear partial differential equations on metric
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Introduction by the Organisers

In many applications, a specific waveguide geometry of the spatial domain suggests
the use of metric graphs as suitable way to approximate dynamics of nonlinear
PDEs on such spatial domains. At the junction between different pieces of metric
graphs, suitable boundary conditions are given to define the coupling between the
edges. These boundary conditions ensure continuity of the wave functions and con-
servation of the current flow through the network junction. Mathematical studies
of nonlinear PDEs on graphs are developed by using different approaches, like the
calculus of variation, bifurcation theory, dynamical systems methods, applied har-
monic analysis, perturbation theory, spectral theory, and numerical simulations.

This workshop brought together 24 participants from 11 different countries from
all over the world, including well-known international experts as well as promising
young postdocs and PhD students.
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The central topics of the workshop were the existence of ground states, bifurca-
tions of solutions of the NLS equation on complex graphs, and their stability. The
existence and non-existence of ground states and bifurcations from ground states
has been discussed by Gregory Berkolaiko, Claudio Cacciapuoti, Simone Dovetta,
Domenico Finco, Diego Noja, Jeremy L. Marzuola, and Enrico Serra. The instabil-
ity of stationary states has been discussed by Riccardo Adami, Dmitry Pelinovsky,
and Lorenzo Tentarelli.

A number of lectures were about infinite periodic graphs. Pavel Exner talked
about an unusual spectrum for such graphs, Hiroaki Niikuni on the effects of a
broken periodicity on the spectrum, Martina Chirilus-Bruckner on the construction
of breathers, and Guido Schneider on the validity of the NLS approximation.

Another topic of the workshop was an approximation of thin domains with
metric graphs. An overview of the approximation technique was given by Olaf
Post. Stefan Teufel considered the NLS limit for bosons in a quantum waveguide.

Dispersive estimates on trees and star-graphs were discussed by Valeria Banica
and Andreea Grecu. Dynamics of other nonlinear PDEs, on or related to metric
graphs, was the subject of the lectures of Andrew Comech, Reika Fukuizumi, and
Liviu Ignat. Evgeny Korotyaev presented estimates for the Schrödinger operator
on the lattice and Davron Matrasulov discussed relativistic solitons on graphs.
Finally Braxton Osting presented Dirichlet partitions by using geometric graphs.

The lectures stimulated many discussions and inspired the participants to new
projects. New research fields have emerged in the discussions such as the analysis
of nonlinear PDEs with vertex conditions different from Kirchhoff boundary condi-
tions or the justification of the Kirchhoff boundary conditions for time-dependent
solutions. Altogether, we think that the workshop was a great success.

The organisers thank the Oberwolfach staff which helped a lot to create the
unique atmosphere during the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Davron Matrasulov in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Nonlinear Instability of Half-Solitons on Star Graphs

Riccardo Adami

(joint work with Enrico Serra, Paolo Tilli)

We review some basic results on the existence of ground states for the NLS on met-
ric graphs in the subcritical case. More specifically, we look for global minimizers
of the energy functional

E(u,G) = 1

2
‖u′‖2L2(G) −

1

p
‖u‖pLp(G) =

1

2

∫

G
|u′|2dx− 1

p

∫

G
|u|pdx

where G is a connected, noncompact metric graph G, under the mass constraint

‖u‖2L2(G) = µ.

As for the ordinary NLS on the line, subcriticality here means 2 < p < 6. The
problem has been investigated in several papers during the last years [1, 2, 3, 4].
Non-compact means that at least one edge in the graph is a half-line, i.e. there is
at least one vertex at infinity.

Preliminarly, we recall that the problem is solved for G = R, where for every
µ > 0 a ground state exists and is given by the NLS-soliton φµ at mass µ (together
with all its translated and multiplications by a phase factor), and G = R+, where
the ground states are given by a half-soliton with the correct mass (again, modulo
a global phase). Furthermore, a direct computation shows that

inf∫
R+ |u|2=µ

E(u,R+) < inf∫
R

|u|2=µ
E(u,R) = E(φµ,R) < 0.

The first result holding for general graphs is a topological obstruction to the
existence of ground states, called hypothesis (H), stating that every edge of G
belongs to a trail connecting two distinct point at infinity (we recall that a trail
is a path made of adjacent edges in which edges cannot be repeated, but vertices
can). Here is an example of a graph that satisfies hypothesis (H):

We have the following

Theorem. Let G be a non-compact graph satisfying hypothesis (H). Then, for
every µ > 0

inf∫
G
|u|2=µ

E(u,G) = E(φµ,R)

and there is no ground state at mass µ, except if G is one of the bubble towers
displayed as follows:
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(the number of the so-called bubbles range on natural numbers, including zero).

Roughly speaking, the theorem states that if G is more intricated than a line,
then, as regards the issue of minimizing energy with mass constraint, it makes
worse than the line. In order to make better than the line, hypothesis (H) must
be broken. Furthermore, it turns out that the following operative criterion holds:

Theorem. Given G, if there exists u ∈ G with mass equal to one, such that

E(u,G) ≤ E(φµ,R),

then there exists a ground states for E(·,G) at mass µ.

Thus, one can exhibit examples of graphs in which it is possible to sit a soliton,
after a suitable sequence of the following operations: cutting, pasting, and mono-
tonically rearranging. The two first operations leave the energy untouched, while
the third one makes it decrease. So, we finally get a function that makes better
than the soliton, so that a ground state exists. The simplest example is given by
the line with a pendant:

In all cases where this strategy works, the existence of a ground state is a
topological fact, in the sense that the metric plays no role. On the other hand, for
the graph made of three half-lines and a pendant

we prove that a ground state exists if and only if the length ℓ of the pendant
is beyond a certain threshold value ℓ∗. In this case topology is not sufficient to
determine existence, so metric plays a crucial roles. Many other examples like this
can be constructed.

The main message we would like to convey is that existence of ground states
is the result of a competition between half-line and compact core of the graph. If
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the compact core is simple enough (in the sense that it violates hypothesis (H)),
then it wins the competition and gives rise to a ground state.

The techniques mix standard variational results with a thorough insight in the
rearrangement theory, that is used not only in order to restrict the set possible
minimizers, but also in a constructive way.
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[2] Adami R., Cacciapuoti C., Finco D., Noja D. Constrained energy minimization and orbital
stability for the NLS equation on a star graph. Ann. Inst. H. Poincar Anal. Non Linaire 31
(2014), no. 6, 1289–1310.

[3] Adami R., Serra E., Tilli P.: NLS ground states on graphs. Calc. Var. and PDEs 54 (2015)
no. 1, 743–761.

[4] Adami R., Serra E., Tilli P.: Threshold phenomena and existence results for NLS ground
states on metric graphs. J. Func. An. 271 (2016) no. 1, 201–223.

Dispersive properties for the linear Schrödinger equation on trees and

consequences

Valeria Banica

(joint work with Liviu Ignat)

The Schrödinger equation is classified among the PDEs as a dispersive equation.
This is due to the following property of the linear equation, valid in the classical
case when for the space variable is Rn :

‖eit∆u0‖L∞(Rn) ≤
C√
|t|

‖uo‖L1(Rn), ∀ t ∈ R∗.

This property together with the conservation of the L2 norm implies other disper-
sives properties as the Strichartz estimates. All these dispersive estimates have
an important role in the analysis of the nonlinear equation. For instance the local
existence of classes of general nonlinear solutions is proved using the dispersive
estimates. They are also used at the global in time level for proving scattering.

The linear Schrödinger equation on a metric graph has been extensively studied
since the 90’s from the point of view of the spectral theory. However, the theory for
time-dependent NLS on graphs started only very recently. Mainly there are two di-
rections since 2010’s: the study of the existence and properties of stationary states,
and the study of the dispersive estimates and their consequences. For the first one
we can cite as authors Adami, Cacciapuoti, Finco, Kairzhan, Marzuola, Matra-
sulov, Nakamura, Noja, Pelinovsky, Sabirov, Sawada, Schneider, Serra, Shaikhova,
Sobirov Tilli, ... (see for instance the survey [15] and also several others abstracts
of this workshop). We shall focus now on the dispersive properties.

We first recall that the dispersion estimate is easily obtained on Rn by using
Fourier analysis. The issue on a general metric graph is the absence of this tool,
explaining the lack of results in this direction.
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The first dispersive results on metric graphs were obtained in particular cases of
graphs by doing a reduction to a setting where the dispersive estimate was already
known. For instance Ignat showed in [12] the dispersion estimate on regular trees
with Kirchhoff conditions (all the vertices of the same generation have the same
number of descendants and all the edges of the same generation are of the same
length) by a very nice reduction to the laminar Schrödinger equation on R, enjoying
dispersion ([5]). Cascaval and Hunter gave in [9] a detailed analysis for the linear
equation for particular type of data and particular shape of trees with Kirchhoff
conditions allowing for a reduction to the Schrödinger equation on half-line with
particular boundary conditions. Also, Ali Mehmeti, Ammari and Nicaise proved
in [3] the dispersion for the Laplacian with a potential on star-shaped trees with
Kirchhoff conditions by obtaining a reduction to a system on R.

For proving the dispersion directly at the level of the graph the natural way
is to compute the resolvent of the Laplacian and to use a spectral formula for
the Schrödinger evolution in time. This can be done easily for simple graphs, as
for instance star-shaped graphs, since the resolvent can be easily compluted. For
general graphs the situation gets very intricate. In [6] and [7] we have obtained
the dispersion for the case of general trees Γ having a finite number of vertices
with infinite last edges and Kirchhoff and respectively delta coupling conditions.
More precisely, we have the following results.

1) The solution of the linear Schrödinger equation on Γ with Kirchhoff coupling
conditions is a summable superposition of classical linear evolutions:

eit∆Γu0(x) =
∑

λ∈R

aλ

∫

Iλ

u0(y)

∫ ∞

−∞
eitτ

2

eiτφλ(x,y) dτ dy,

with φλ(x, y) ∈ R, Iλ among the parametrizations of the edges,
∑

λ∈R
|aλ| < ∞,

and it satisfies the dispersion inequality

(1) ‖eit∆Γu0‖L∞(Γ) ≤
C√
|t|

‖u0‖L1(Γ), ∀ t ∈ R∗.

2) The solution of the linear Schrödinger equation on Γ with δ coupling con-
ditions of positive strengths satisfies the dispersion inequality (1). For generic
strengths of the δ conditions and lengths of the edges1, the solution of the linear
Schrödinger equation on a tree satisfies the dispersion inequality

‖eit∆δ
ΓPu0‖L∞(Γ) ≤

C√
|t|

‖u0‖L1(Γ), ∀ t ∈ R∗,

where P is the projection outside the discrete spectrum.
To end this extended abstract we shall make a series of remarks.
The proof is based on a recursive way to compute the resolvent for a tree,

that eventually allows for obtaining the dispersion. The nature of this recursive
way imposes the shape of a tree for the considered graph, which is a technical

1typically, the situation to be avoided for 2 vertices is that the length L of the internal edge is
equal to −

α1+α2
α1α2

, that is precisely the situation of the presence of zero resonance.
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constraint. Indeed, the simplest case of graph containing a cycle, the tadpole
graph (only one vertex from which emerge a cycle and an infinite edge) enjoys
also the dispersion, as it was proved by computing explicitly the resolvent by Ali
Mehmeti, Ammari and Nicaise in [4].

In [7] we also give conditions for the dispersion to hold in the case of trees with
general coupling conditions. However, these conditions look too intricate. On the
other hand, a resolvent formula for the Laplacian on general metric graphs for
general coupling conditions was given in [14] by Kostrykin, Potthoff and Schrader.
The issue is that this formula is not easy to handle in order to decide dispersion.
Only the case of the star-shaped tree has been settled via this formula by Grecu
and Ignat in [11].

As a consequence of our second result, the dispersion is proved for the Schröding-
er equation with several Dirac potentials on R. This equation was extensively
studied, at least from the spectral point of view (see for instance [2]), and for its
stationary states properties. Previous studies considered dispersion only the case
of one or two potentials, with one exception by Duchêne, Marzuola and Weinstein
that proved a weaker dispersion in [10] in the case of several Dirac potentials.

As mentioned before the dispersive estimates imply as in the Rn case results
for the nonlinear equation, as local existence results and small data scattering
results. They are an important piece in the proofs of other types of results for the
nonlinear equation on Rn, proofs that contain also other ingredients which are not
obvious to transfer to general graphs. In this direction, the propagation of fast
soliton was considered on star-shaped trees with δ−type coupling conditions by
Adami, Cacciapuoti, Finco and Noja in [1]. Also, large data scattering on the line
with one repulsive Dirac potential was proved in [8] in the defocusing case, and by
Ikeda and Inui [13] in focusing case.
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Nonlinear resonances: an exploration of NLS on a simple open metric

graph

Gregory Berkolaiko

(joint work with Diego Noja)

When studying families of stationary solutions of nonlinear Schroedinger equation
on open metric graphs, one sometimes observes that a whole solution branch may
disappear under a small perturbation of the graph’s geometry. To investigate this
phenomenon we propose a simple model and an adaptation to NLS of the concept
of linear resonances. We discuss how the disappearing branch can then be viewed
as a branch of complex solutions moving into the ”unphysical” half of the complex
plane.

Existence of the ground state for the NLS with potential on graphs

Claudio Cacciapuoti

(joint work with Riccardo Adami, Domenico Finco, Diego Noja)

The problem we are interested in is the minimization of the nonlinear Schrödinger
(NLS) energy functional

(1) E[Ψ] := ‖Ψ′‖2 + (Ψ,WΨ) +
∑

v∈V
αv|Ψ(v)|2 − 1

µ+ 1
‖Ψ‖2µ+2

2µ+2 0 < µ ≤ 2

defined on a metric graph G, where W is a potential on the graph, V is the set
of vertices of the graph, and αv are some real constants that take into account
possible delta-interactions in the vertices. As for the standard NLS with power-
type nonlinearity on the real-line, the case 0 < µ < 2 is called subcritical while
the case µ = 2 is called critical.

We shall focus attention on the constrained minimization problem

(2) − νµ(m) := inf{E[Ψ] | Ψ ∈ H1(G), ‖Ψ‖2 = m}.
The parameter m in the constraint is usually referred to as mass.
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We call ground state (of mass m), a minimizer of problem (2), i.e., a function

Ψ̂ ∈ H1(G), such that ‖Ψ̂‖2 = m, and E[Ψ̂] = −νµ(m). We want to identify
general conditions which guarantee the existence of the ground state for small
mass.

We make the following assumptions:

Assumption 1. G is a finite, connected graph, with at least one external edge.

We call finite a graph that has a finite number of edges and vertices; a graph
G is connected if given any two points of the graph there is always a path in G
connecting them; and we call external an edge of infinite length.

Assumption 2. W = W+ −W− with W± ≥ 0, W+ ∈ L1(G) + L∞(G), and
W− ∈ Lr(G) for some r ∈ [1, 1 + 1/µ].

Denote by Elin[Ψ] the quadratic part of energy functional E[Ψ],

(3) Elin[Ψ] := ‖Ψ′‖2 + (Ψ,WΨ) +
∑

v∈V
αv|Ψ(v)|2,

and by −E0 the infimum

(4) − E0 := inf
{
Elin[Ψ] | Ψ ∈ H1(G), ‖Ψ‖2 = 1

}
.

Assumption 3. E0 > 0.

In the statements of our main results, some constraints on µ and m, with an
interplay between the two parameters, are needed. Two quantities will enter the
constraints. For the critical case it will be relevant the best constant K6,2(G)
satisfying the Gagliardo-Nirenberg inequality

(5) ‖Ψ‖6 ≤ K6,2(G)‖Ψ′‖1/3‖Ψ‖2/3.
In the subcritical case, instead, the constraint will depend on a positive constant,
denoted by γµ, which is related to the infimum of the “free” nonlinear NLS energy
functional on the real-line

−tµ(m) := inf
{
ER[ψ]

∣∣∣ ψ ∈ H1(R), ‖ψ‖2L2(R) = m
}

0 < µ ≤ 2,

with

ER[ψ] := ‖ψ′‖2L2(R) −
1

µ+ 1
‖ψ‖2µ+2

L2µ+2(R).

tµ(m) can be explicitly computed, and γµ is related to tµ(m) by

(6) tµ(m) = γµm
1+ 2µ

2−µ for 0 < µ < 2.

Our first result concerns the existence of a lower bound for the infimum in Eq.
(2).
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Theorem 1. Let Assumption 1 hold true and assume W ∈ L1(G) +L∞(G). If
0 < µ < 2 then νµ(m) < +∞ for any m > 0. If µ = 2 then νµ(m) < +∞ for any

0 < m <
√
3/K3

6,2(G).

The second result concerns the existence of the ground state.

Theorem 2. Let Assumptions 1, 2, and 3 hold true, then −νµ(m) ≤ −mE0.
Moreover, let

(7) m∗
µ :=

{
(E0/γµ)

1
µ
− 1

2 if 0 < µ < 2
√
3/K3

6,2(G) if µ = 2

Then the ground state Ψ̂ exists for all 0 < m < m∗
µ.

The subcritical case was discussed in [3], while the analysis of the critical case
is in [2]. When G is a star-graph, W = 0, and αv < 0, both the subcritical an the
critical case were discussed in [1].
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On the construction of breathers by tailoring periodicity

Martina Chirilus-Bruckner

Consider the nonlinear Klein-Gordon equation

s(x)∂2t u = ∂2xu+ q(x)u + r(x)u3

for x, t, u = u(x, t) ∈ R and with spatially periodic coefficients s, q, r. In [2] this
equation was demonstrated to support breathers – that is, time-periodic, spatially
localized solutions – if the coefficient s is a specific step-function (with q and r
then chosen accordingly). This result came as a surprise since breathers were con-
sidered a rare phenomenon for nonlinear wave equations. In fact, the main novelty
was to first carefully tailor the periodic coefficients s and q of the linear part such
that the construction of the breather could be carried out using a spatial dynamics
formulation and a blend of center manifold reduction and bifurcation theory.

The unexpected success of this method led to the quest of finding a whole class
of coefficients s and q for which the above method could be employed. The core
difficulty of the construction is to find coefficients for which the band structure of
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the linear part is such that every other gap is uniformly open around some multi-
ple of a squared integer. This, in turn, can be reformulated as an inverse spectral
problem for Dirichlet and Neumann eigenvalues of a weighted Sturm-Liouville op-
erator. In [3] this question has been addressed showing that one can indeed find
coefficients s ∈ H1 (close to s = 1) that give rise to the desired band gap struc-
ture. In order to further extend this result for the purposes of the construction
of breather solutions it is necessary to address this problem for s ∈ L2 \ H1/2

which would need a whole set of new tools (since this problem is directly related
to inverse spectral theory for Schrödinger operators with potentials in Hs, s < −1).

A new natural direction which might lead to a similar breather construction is
to replace the spatially periodic coefficients by periodic point interactions or to
consider nonlinear Klein-Gordon equations on graphs (see, for instance, [1] or [4]).
In both cases, the tailoring of the band gap structure seems much more accessible
with the main difficulty now being the development of invariant manifold theory
for these new settings.
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Global attraction to solitary waves

Andrew Comech

(joint work with Alexander Komech)

Bohr’s second postulate states that the electrons can jump from one quantum
stationary state (Bohr’s stationary orbit) to another. This postulate suggests the
dynamical interpretation of Bohr’s transitions as long-time attraction

(1) Ψ(t) −→ |E±〉, t→ ±∞
for any trajectory Ψ(t) of the corresponding dynamical system, where the limiting
states |E±〉 depend on the trajectory. Then the quantum stationary states, denote
them S, should be viewed as points of the global attractor, which we denote by A.

The attraction (1) takes the form of the long-time asymptotics

(2) ψ(x, t) ∼ φω±
(x)e−iω±t, t→ ±∞,

which holds for each finite energy solution. However, because of the superposi-
tion principle, the asymptotics of type (2) are generally impossible for the linear
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autonomous equation, be it the Schrödinger equation

(3) i~∂tψ = − ~2

2m
∆ψ − e2

|x|ψ

or relativistic Schrödinger or Dirac equation in the Coulomb field. An adequate
description of this process requires to consider the equation for the electron wave
function (Schrödinger or Dirac equation) coupled to the Maxwell system which
governs the time evolution of the four-potential A(x, t) = (ϕ(x, t),A(x, t)):

(4)

{
(i~∂t − eϕ)2ψ = (c~i∇− eA)2ψ +m2c4ψ,

�ϕ = 4πe(ψ̄ψ − δ(x)), �A = 4πe ψ̄·∇ψ−∇ψ̄·ψ
2i .

Consideration of such a system seems inevitable, because, again by Bohr’s pos-
tulates, the transitions from one orbit to another are followed by electromagnetic
radiation responsible for the atomic spectra which we observe in the experiment.
Moreover, the Lamb shift (a relatively small difference between 2S1/2 and 2P1/2

energy levels) can not be explained in terms of the linear Dirac equation in the
external Coulomb field. Its theoretical explanation within the Quantum Elec-
trodynamics is based on taking into account the higher order interaction of the
electron wave function with the electromagnetic field.

One might expect the following generalization of asymptotics (2) for solutions
to the coupled Maxwell–Schrödinger (or Maxwell–Dirac) equations:

(5) (ψ(x, t), A(x, t)) ∼
(
φω±

(x)e−iω±t, Aω±
(x)
)
, t→ ±∞.

The asymptotics (5) would mean that the set of all solitary waves

{
(
φωe

−iωt, Aω
)
: ω ∈ R}

forms a global attractor for the coupled system. The asymptotics of this form
are not available yet in the context of coupled systems. Let us mention that the
existence of the solitary waves for the coupled Maxwell–Dirac equations (without
external potential) was established in [1].

We mention that convergence to a global attractor is well known for dissipative
systems, like Navier–Stokes equations. For such systems, the global attractor is
formed by the static, stationary states, and the convergence to the attractor only
holds for t→ +∞.

We would like to know whether dispersive Hamiltonian systems could, in the
same spirit, possess finite dimensional global attractors, and whether such attrac-
tors are formed by the solitary waves. Although there is no dissipation per se, we
expect that the attraction is caused by certain friction via the dispersion mech-
anism (local energy decay). Because of the difficulties posed by the system of
interacting Maxwell and Dirac (or Schrödinger) fields (and, in particular, absence
of the a priori estimates for such systems), we will work with simpler models which
share certain key properties of the coupled Maxwell–Dirac or Maxwell–Schrödinger
systems. Let us try to single out these key features:
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(1) The system is U(1)-invariant.
This invariance leads to the existence of solitary wave

solutions φω(x)e
−iωt.

(2) The linear part of the system has a dispersive character.
This property provides certain dissipative features in a Hamiltonian

system, due to local energy decay via the dispersion mechanism.
(3) The system is nonlinear.

The nonlinearity is needed for the convergence to a single state of the
form φω(x)e

−iωt. Bohr type transitions to pure eigenstates of the energy
operator are impossible in a linear system because of the superposition
principle.

We suggest that these are the very features responsible for the global attraction
to “quantum stationary states”.

Let us briefly list our results. In [2] we prove global attraction to solitary waves
for the Klein–Gordon field coupled to a nonlinear oscillator at one point. Under
the assumption that the potential energy of the oscillator depends polynomially
of its amplitude, the convergence to the attractor is proved in the local energy
norm, for an arbitrary initial data of finite energy. The main ingredient of the
proof is the Titchmarsh convolution theorem, which ensures that the spectrum of
the “omega-limit” trajectory consists of (at most) one point.

In [3], this result is extended to the Klein–Gordon field coupled to finitely many
oscillators.

In [4], we prove the global attraction to solitary waves for the Klein–Gordon
field in the discrete time-space, coupled to a nonlinear oscillator at one point. The
peculiarity of this model is that the solitary manifold is formed by solutions with
one, two, and four frequencies, of the following form:

φ(X)e−iωT ,

φ1(X)e−iωT + φ2(X)e−i(ω+π)T ,

ϕ1(X)e−iωT + ϕ2(X)e−i(ω+π)T + ϕ3(X)e−iω
′T + ϕ4(X)e−i(ω

′+π)T .

Above, (X,T ) ∈ Zd ×Z and ω ∈ R mod 2π corresponds to the Fourier transform
of T ∈ Z; the amplitudes φ(X), φj(X), and ϕj(X) belong to l2(Zn).
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NLS ground states on the two-dimensional grid: dimensional crossover

and a continuum of critical exponents

Simone Dovetta

(joint work with Riccardo Adami, Enrico Serra, Paolo Tilli)

We consider the nonlinear Schrödinger (NLS) energy functional

(1) E(u,G) = 1

2

∫

Gℓ

|u′|2 dx− 1

p

∫

Gℓ

|u|p dx

on the two-dimensional grid of edge-length ℓ > 0, Gℓ.
We are interested in ground states of fixed mass µ > 0. These are the absolute

minimizers of E with mass constraint∫

Gℓ

|u|2 dx = µ,

and solve the NLS equation

u′′ + |u|p−1u = ωu on Gℓ,
with Kirchhoff boundary conditions at the vertices of Gℓ.

The purpose of this talk is to analyse whether ground states exist or not in both
the subcritical and the critical regime, i.e. when p ∈ (2, 6) and p = 6 respectively.

Such a problem has already been addressed on metric graphs with a finite
number of nodes and with at least one half-line ([1],[2] for the subcritical case,
[3] for the critical one), where the authors revealed how topological and metric
features of the domain may play a significant role. In shorts, for graphs like these,
it turned out that ground states on the real line (the so-called solitons) provide
a natural energy threshold, and possibility to beat it implies existence of global
minimizers.

Due to the absence of half-lines and to the periodicity of the grid we are dealing
with, however, it appears that solitons on the line play no longer such a crucial
role in our setting. Indeed, we derive a first existence criterion that ensures com-
pactness of minimizing sequences on Gℓ, provided that the infimum of the energy
functional (1) is strictly negative.

Theorem 1. If

−∞ < inf
u∈H1

µ(Gℓ)
E(u,Gℓ) < 0

then the infimum is attained, i.e. there exists a function u ∈ H1
µ(Gℓ) such that

E(u,Gℓ) = inf
v∈H1

µ(Gℓ)
E(v,Gℓ)

If, on the contrary, E(u,Gℓ) > 0 for every u ∈ H1
µ(Gℓ), then

inf
u∈H1

µ(Gℓ)
E(u,Gℓ) = 0

and it is never attained.
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The periodical structure of the grid deeply helps in gaining compactness, and
the natural threshold for the energy is enhanced to 0, and this highlight a first
significant difference with graphs sharing half-lines.

An even more important difference is rooted in dimension. Indeed, defining
what is the proper dimension of Gℓ reveals to be not as easy as one may expect,
since two different scales coexist: a one-dimensional scale, proper of every edge
building up the graph, and a two-dimensional one, that enter the game when we
are looking at the grid from far beyond th edge-length scale.

Dimension of the space determines critical exponent for the NLS equation, i.e.
the exponent pc for which, as µ increases, the infimum of the energy passes from
0 to a negative (possibly unbounded) value. It is well-known that

· for R and for graphs with half-lines and compact core: pc = 6;

· for R2: pc = 4.

Critical exponents are rooted in the so-called Gagliardo-Nirenberg inequalities,
that are cornerstones of investigations like the one we are performing.

On a general non-compact graphs, and thus on Gℓ too, the following Gagliardo-
Nirenberg inequality always holds:

(2) ‖u‖pLp(R) ≤ K1‖u‖
p
2+1

L2(R)‖u′‖
p
2−1

L2(R)

for every p ∈ [2,∞) and every u ∈ H1(R). Here K1 denotes the optimal constant
in the inequality.

Moreover, on R2, a similar inequality holds:

(3) ‖u‖pLp(R2) ≤ K2‖u‖2L2(R2)‖∇u‖p−2
L2(R2)

for every p ∈ [2,∞) and u ∈ H1(R2).
Since these inequalities provide lower bounds for the energy functional, plugging

them into (1) shows why p = 6 and p = 4 are the critical exponents in the one-
dimensional and the two-dimensional problem respectively (it is easy to see that
coercivity of (1) fails in both cases).

On Gℓ, we prove that both (2) and (3) hold, and by interpolation, that an entire
new family of such inequalities arises. In particular, the following interpolated
version

(4) ‖u‖pLp(Gℓ)
≤ Kp‖u‖p−2

L2(Gℓ)
‖u′‖2L2(Gℓ)

holds for every 4 ≤ p ≤ 6.
Inequality (4) reveals the existence of a critical behaviour on Gℓ for a continuum

of exponents, i.e. exponents varying between 4 and 6. In some sense, the grid
performs a crossover between the purely one-dimensional and two-dimensional
cases, and existence of ground states reflects this feature. Indeed, if for p ∈ (2, 4),
ground states exist for every value of the mass µ > 0, as it happens on the plane R2,
critical masses appear at every p ∈ [4, 6] (depending on the exponent), and global
minimizers exist only for masses greater than these thresholds. The following
theorems thus summarize our main results.
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Theorem 2 (Subcritical case). Let the functional E(·,Gℓ) be defined as in (1) and
2 < p < 4. Then, for every µ > 0, there exists a ground state at mass µ.

Theorem 3 (Dimensional Crossover). Let the functional E(·,Gℓ) be defined as in
(1) and 4 ≤ p ≤ 6. Then, for every p there exists a threshold value µp > 0 such
that

(i) if p = 4 then ground states exist if µ > µ4 and do not exist if µ < µ4.
(ii) if 4 < p < 6 then ground states exist if and only if µ ≥ µp
(iii) if p = 6 then ground states never exist, regardless of the value of µ.

Furthermore,

(5) inf
u∈H1

µ(Gℓ)
E(u,Gℓ) =

{
0 if µ ≤ µ6

−∞ if µ > µ6

We note that the case whit p = 4 and µ = µ4 remains uncovered, and existence
or non-existence of ground states will be object of further investigations.
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Unusual spectra of periodic graphs

Pavel Exner

(joint work with Stepan Manko, Daniel Vašata, and Ondřej Turek)

It is a standard part of the quantum lore that spectrum of periodic system has a
number of familiar properties:

• it is absolutely continuous
• it has a band-and-gap structure
• in the one-dimensional case the number of open gaps is infinite except for
a particular class of potentials

• on the contrary, in higher dimensions the Bethe-Sommerfeld conjecture,
nowadays verified for a wide class of interactions, says that the number of
open gaps is finite

The aim of the talk is to show that if the system in question is a quantum graph,
nothing of that needs to be true. To demonstrate this, we discuss two simple
example, a loop chain exposed to a magnetic field and a rectangular lattice.

The former one was discussed in [1, 2]. We consider an infinite array Γ of
identical loops of circumference 2π on which we have the magnetic Laplacian,
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ψj 7→ −D2ψj with D := −i∇−A and a δ-coupling at the vertices connecting the
rings, i.e. with the domain consisting of functions from H2

loc(Γ) satisfying

ψi(0) = ψj(0) =: ψ(0) , i, j ∈ n ,

n∑

i=1

Dψi(0) = γ ψ(0) ,

where n = {1, 2, . . . , n} is the index set numbering the edges and γ ∈ R is the cou-
pling constant. If the array has a mirror symmetry, the system exhibits Dirichlet
eigenvalues with eigenfunctions vanishing at the vertices. If the field is homo-
geneous, the latter are interlaced with absolutely continuous bands, however, if
A− 1

2 ∈ Z, where A is the tangent component of the vector potential, those shrink
to points and the spectrum consists of infinitely degenerate eigenvalues only.

It is also expected that local perturbations give rise to discrete eigenvalues in the
spectral gaps. We analyze several examples using the well-known duality technique
which allows us to rephrase the spectral problem as a difference equation. We show,
in particular, that no such eigenvalues need to appear; this happens, for instance,
when the magnetic field is changed on a single ring, A = {. . . , A,A1, A . . . }, and
the inequality | cosA1π| ≤ | cosAπ| is satisfied [2].

If the perturbation is nonlocal the spectral behavior may be very different. We
focus on the example where it changes linearly along the chain, Aj = αj + θ
for some α, θ ∈ R and every j ∈ Z. Using deep results of Jitomirskaya, Avila
and Krikorian about the almost Mathieu equation we prove that the spectrum of
σ(−∆γ,A) has the following properties [3]:

(a) If α, θ ∈ Z and γ = 0, then σ(−∆γ,A) = σac(−∆γ,A) ∪ σpp(−∆γ,A) where
σac(−∆γ,A) = [0,∞) and σpp(−∆γ,A) = {n2|n ∈ N}.

(b) If α = p/q with p and q relatively prime, αj+ θ+ 1
2 /∈ Z for all j = 0, . . . , q− 1

and assumptions of (a) do not hold, then −∆γ,A has infinitely degenerate
eigenvalues at the points of {n2|n ∈ N} and an ac part of the spectrum in
each interval (−∞, 1) and

(
n2, (n+1)2

)
, n ∈ N, consisting of q closed intervals

possibly touching at the endpoints.
(c) If α = p/q, where p and q are relatively prime, and αj + θ + 1

2 ∈ Z for some
j = 0, . . . , q− 1, then the spectrum −∆γ,A is of pure point type and such that
in each interval (−∞, 1) and

(
n2, (n+1)2

)
, n ∈ N, there are exactly q distinct

eigenvalues and the remaining eigenvalues form the set {n2|n ∈ N}. All the
eigenvalues are infinitely degenerate.

(d) Finally, if α /∈ Q, then σ(−∆γ,A) does not depend on θ and it is a disjoint
union of the isolated-point family {n2|n ∈ N} and Cantor sets, one inside
each interval (−∞, 1) and

(
n2, (n + 1)2

)
, n ∈ N. Moreover, overall Lebesgue

measure of σ(−∆γ,A) is zero.

Moreover, using a fresh result of Last and Shamis we can also show that there
exists a dense Gδ set of the slopes α for which, and all θ, the Haussdorff dimension
of the spectrum vanishes, dimH σ(−∆γ,A) = 0.

The graphs in this example had ‘many’ gaps indeed. Next we ask whether
periodic graphs can have ‘just a few’ gaps. In their book, Berkolaiko and Kuchment
recall the reasoning behind the Bethe–Sommerfeld conjecture and say that the
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situation with graphs is similar, however, they add immediately that this is not a
strict law recalling resonant gaps created by a graph ‘decoration’. One may ask
whether it is a ‘law’ at all, that is, whether infinite periodic graphs with a finite
nonzero number of open gaps exist. From obvious reasons we would call them
Bethe–Sommerfeld graphs. The answer depends on the vertex coupling; it is not
difficult to show that such a situation is excluded, if the coupling is scale invariant
or it belongs to a wider class associated with a scale invariant coupling [4, 5].

On the other hand, we are going to show that Bethe–Sommerfeld graphs do
exist. To this aim we analyze the example of an infinite rectangular lattice of the
call sides a, b and a δ coupling with the parameter γ at the vertices. It is known
that a number k2 > 0 belongs to a gap if and only if k > 0 satisfies

tan

(
ka

2
− π

2

⌊
ka

π

⌋)
+ tan

(
kb

2
− π

2

⌊
kb

π

⌋)
<

γ

2k
for γ > 0

and

cot

(
ka

2
− π

2

⌊
ka

π

⌋)
+ cot

(
kb

2
− π

2

⌊
kb

π

⌋)
<

|γ|
2k

for γ < 0 ;

we neglect the Kirchhoff case, γ = 0, where the spectrum is [0,∞).
The spectrum depends on the ratio θ = a

b . If θ is rational, σ(H) has infinitely
many gaps unless γ = 0, the same is true if θ is is an irrational well approximable by
rationals, which means equivalently that in the continuous fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded. On the other hand, θ ∈ R is
badly approximable if there is a c > 0 such that

∣∣∣∣θ −
p

q

∣∣∣∣ >
c

q2

for all p, q ∈ Z with q 6= 0. We analyze in detail the case of the golden mean lattice,

θ =
√
5+1
2 = [1; 1, 1, . . . ], which can be regarded as corresponding to the ‘worst’

irrational, and prove that [4, 5]:

(i) If γ > π2
√
5a

or γ ≤ − π2
√
5a
, there are infinitely many spectral gaps.

(ii) If

−2π

a
tan

(
3−

√
5

4
π

)
≤ γ ≤ π2

√
5a

,

there are no gaps in the positive spectrum.
(iii) If

− π2

√
5a

< γ < −2π

a
tan

(
3−

√
5

4
π

)
,

there is a nonzero and finite number of gaps in the positive spectrum.

Furthermore, we present a finer classification of the case (iii) indicating the in-
tervals of γ at which the spectrum has exactly N gaps. We also show examples
of ratios θ for which a lattice can belong to the Bethe–Sommerfeld class for both
signs of the coupling constant γ.
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Stationary states for NLS on a graph

Domenico Finco

(joint work with Riccardo Adami, Claudio Cacciapuoti, Diego Noja)

Very interesting bifurcation phenomena appears when looking for stationary states
of NLS on graphs. Here we consider the case of focusing power nonlinearities for
sake of simplicity and we consider two graphs where one can gives explicit formulas:
a star graph and a tadpole. We report some results from [1, 2, 3].
A star graph G is a graph with one vertex v and N infinite edges ei. We place a
δ-interaction of strength α < 0 in the vertex. A function Ψ : G → C is a collection
of functions ψi : ei → C. Stationary solutions of the NLS

(1) i
d

dt
Ψ = HΨ− |Ψ|2µΨ.

have the from Ψ(t) = e−iωtΦ and Φ satisfies the following equation.

(2) HΦω − |Φω|2µΦω = ωΦω Φ ∈ D(H), ω < 0,

The domain of the operator H is defined in the following way:

D(H) :=

{
Ψ ∈ H2 s.t. ψ1(0) = . . . = ψn(0)

∑

i

ψ′
i(0) = αψ1(0)

}
.

The action of H is defined by (HΨ)i = −ψ′′
i Notice that σp(H) = {−α2/N2}

and σc(H) = [0,∞). A stationary state must coincide on each edge, up to phase
multiplication and translations, with φ where φ is given by :

φ(x) = [(µ+ 1)|ω|]
1
2µ sech

1
µ (µ
√

|ω|x)
Matching the free parameters in order satisfy the boundary conditions in D(H),
we obtain that there are up to[(N − 1)/2] + 1 stationary solutions Φjω, with
j = 0, · · · , [N−1

2 ], given, up to permutations of the edges, by:

(
Φjω
)
i
(x) =

{
φ(x− aj) i = 1, . . . , j

φ(x+ aj) i = j + 1, . . . , N
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aj =
1

µ
√
|ω|

arctanh

(
α

(2j −N)
√
|ω|

)
.

Due to bell shape of φ we say that in a edge there is a bump if the stationary
state reads φ(x− aj) while on the contrary we say there is a tail. For N = 3 there
just two stationary states (up to edge permutations), the three tail state and the
one bump state, see the picture. Notice that the index j counts the number of

bumps. The stationary state Φjω exists for ω 6 ωj∗ = − α2

(N−2j)2 and for ω → ωj∗ we

have aj → ∞. In this limit we notice that Φ0
ω vanishes and all its Lp(G) norms go

to zero while Φjω for j > 1 escapes at infinity all its Lp(G) norms stay away from
zero. For ω → −∞ we have aj → 0 and all the stationary state converge to the
unique stationary states of the Kirchhoff case.
We summarize the situation with the following power diagram (here 1 < µ < 2).

From the point of view of bifurcation theory, the branch of Φ0
ω corresponds to a

bifurcation from the simple eigenvalue of H . The bifurcation mechanism of the
higher branches is different and not yet well understood and it does not fit into a
general perturbative scheme at the bifurcation point. A tadpole G is graph with a
closed loop and one infinite edge. We use as coordinates on the graph: x ∈ [−L,L],
y ∈ [0,∞) while functions on the graph will be written in the following way:

Ψ = (u, η) with u : [−L,L] → C ; η : [0,∞) → C

The operator H is the Laplacian with Kirchhoff b.c., HΨ = (−u′′,−η′′).

D(H) =
{
Ψ ∈ H2 : u(L) = u(−L) = η(0) ; −u′(L) + u′(−L) + η′(0) = 0

}

The Spectrum of H is σ(H) ≡ σess(H) = [0,∞), moreover we have embedded
eigenvalues: {λn} = {(nπL )2, n ∈} with corresponding (normalized) eigenfunctions

given by: Υn = L−1/2(sin(nπx/L), 0). Notice also that H has a zero energy reso-
nance, Υres = (1, 1).
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We limit the analysis to the cubic case µ = 1. The situation is more complicate
compared to a star graph since besides φ there two type of oscillating solutions,
ucn and udn, which can be placed on the compact part of the graph and we have
many different ways to match Kirchhoff boundary conditions.

ucn(x; k) =
√

2ωk2

1−2k2 cn
(√

ω
1−2k2 x; k

)
, ω ∈ R

udn(x;κ) =
√

2|ω|
2−κ2 dn

(√
|ω|

2−κ2x;κ

)
, ω < 0

For ω > 0 we have to take η ≡ 0. The match with ucn fixes the period to be a
integer multiple of 2L; the condition on the period has infinite solutions kn(ω).

Φω,n(x, y) = (ucn(x− nL/2, kn), 0) n = 1, 2, . . .

Stationary solutions Φω,n exist for ω ∈ R. For ω < 0 we can match ucn(· − a, kn)
with φ if we choose the right translation. This is possible in two different ways
and for each n we obtain two states Φ±

ω,n.
If we try to match udn and φ we find two families {Ξω,0,n} and {Ξω,1,n} with

Ξω,0,n(x, y) =
(
udn(x;κ0,n), φ(y − b0,n)

)
ω < 0

The two parameters κ0,n and b0,n are determined by the equations:

3κ4

1− κ2
cn2

(
L
√
|ω|√

2− κ2
;κ

)(
1− cn2

(
L
√
|ω|√

2− κ2
;κ

))
= 1,

cosh−2(
√

|ω|b0,n) = u2dn(L;κ0,n)/(2|ω|)

There is a finite number of solutions for any L
√
|ω| and exactly one solution Ξω,0,1

for L
√
|ω| small. Further solutions appear in couples as L

√
|ω| increases and the

number of solutions diverges as L
√
|ω| → ∞. The second family is defined by:

Ξω,1,n(x, y)
(
udn(x− Tdn(κ1,n)/2;κ1,n), φ(y − b1,n)

)

3κ4 cn2
(
L
√

|ω|√
2−κ2

;κ

)(
1− cn2

(
L
√

|ω|√
2−κ2

;κ

))

dn4
(
L
√

|ω|√
2−κ2

;κ

) = 1

cosh−2(
√
|ω|b1,n) =

u2
dn(L−Tdn(κ1,n)/2;κ1,n)

2|ω|

There is a finite number of solutions of any L
√
|ω| and no solutions for L

√
|ω|

small. After Ξω,1,n further solutions appear in couples as L
√
|ω| increases and the

number of solutions diverges as L
√
|ω| → ∞.

We summarize the behavior of stationary states of a tadpole in the following
diagram.
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The branches Φω,n bifurcate from the
vanishing state in correspondence of the
embedded eigenvalues of the linear since
Φλn−ε,n = c

√
εΥn +O(ε3/2).

The branch Ξω,0,1 bifurcates from the
vanishing state in correspondence of the
zero energy resonance at the threshold
of the continuum spectrum of the linear
Hamiltonian since Ξω,0,1 =

√
2|ω|(1, 1)+

O(|ω|3/2). At the secondary bifurcations
where Φ±

ω,1 are born, the linearized op-
erator has a zero energy resonance. The
formation mechanism of higher dn-states
bears some resemblance to the case of ex-
cited states of the star graph.

References

[1] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja, Variational properties and orbital stability
of standing waves for NLS equation on a star graph, J. Differ. Equations 257 (2014), 3738–
3777.

[2] R. Adami, C. Cacciapuoti, D. Finco, D. Noja, Constrained energy minimization and orbital
stability for the NLS equation on a star graph, Ann. Inst. Poincaré, An. Non Lin. 31 (2014),
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Schrödinger equation with point nonlinearity

Reika Fukuizumi

(joint work with Riccardo Adami, Justin Holmer)

In this talk we consider the following nonlinear Schrödinger equation with point
nonlinearity in 1d:

(1) i∂tψ + ∂2xψ +K(x)|ψ|p−1ψ = 0, t ∈ R, x ∈ R

where p > 1, and K = δ, δ is the Dirac mass at x = 0. The singularity in the
nonlinearity is interpreted as the linear Schrödinger equation:

i∂tψ + ∂2xψ = 0, t ∈ R, x 6= 0

together with the jump condition at x = 0

ψ(0, t) := ψ(0−, t) = ψ(0+, t)

∂xψ(0+, t)− ∂xψ(0−, t) = −|ψ(0, t)|p−1ψ(0, t).

Remark that the equation (1) appears as a limiting case of nonlinear Schrödinger
equation with a concentrated nonlinearity (see [2]).
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This equation (1) obeys the scaling law, i.e. if ψ(x, t) solves (1), then ψλ(x, t) =
λ1/(p−1)ψ(λx, λ2t) solves (1). Thus the regularity of the scale invariant Sobolev

norm Ḣσc satisfying ‖ψ‖Ḣσc = ‖ψλ‖Ḣσc is σc =
1
2 − 1

p−1 .We can therefore observe

that the nonlinear power p = 3 (cubic) is the L2 critical setting for σc = 0, and
3 < p < ∞ is the L2 super critical setting for 0 < σc <

1
2 . We remark that in

contrast, p = 5 is the L2 critical case for 1D standard NLS (i.e. the case K ≡ 1 in
(1)).

An H1 local well-posedness theory is available in [1] (see also [3]). More pre-
cisely,

Proposition. Let ψ0 ∈ H1, there exists T = T (‖ψ0‖H1) > 0 and a unique
solution ψ(x, t) to (1) satisfying ψ(0) = ψ0 and ψ ∈ C([0, T ];H1

x(R)) ∩ C(x ∈
R;H

3/4
[0,T ]) and ∂xψ ∈ C(x ∈ R \ {0};H1/4

[0,T ]).

From this proposition, it follows that if the maximal forward time T ∗ > 0 of
existence is finite (i.e. T ∗ <∞), then necessarily

lim
tրT∗

‖∂xψ(t)‖L2 = +∞.

We say this that the solution ψ(t) blows up at time t = T ∗ > 0.
The conservation law for (1) takes the form

M(ψ) = ‖ψ‖2L2,

E(ψ) =
1

2
‖∂xψ‖2L2 − 1

p+ 1
|ψ(0, ·)|p+1.

In the Duhamel form of (1)

ψ(x, t) = eit∂
2
xψ0 + i

∫ t

0

ei(t−s)∂
2
xδ(x)|ψ(x, s)|p−1ψ(x, s)ds

= eit∂
2
xψ0 + i

∫ t

0

e
ix2

4(t−s)

√
4πi(t− s)

|ψ(0, s)|p−1ψ(0, s)ds,

if we specialize to the value x = 0, we obtain an equation for ψ(0, ·):

(2) ψ(0, t) = eit∂
2
xψ0(0) + i

∫ t

0

1√
4πi(t− s)

|ψ(0, s)|p−1ψ(0, s)ds.

Namely the point is that the equation to ψ(x, t) is completely solved once the
one-variable complex function ψ(0, ·) is known.

The solitary waves are the solutions to (1) of the form

ψ(x, t) = eitϕ0(x).

Here, ϕ0 satisfies the stationary equation

0 = ϕ0 − ∂2xϕ0 − δ|ϕ0|p−1ϕ0.
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It is straightforward that the unique solution is ϕ0(x) = 21/(p−1)e−|x|, and the
rescalings of this solution are the only solitary waves for (1).

The authors in [3] established L2 supercritical global existence, and blow-up
dichotomy as follows.

Proposition. Suppose that ψ(t) is an H1 solution to (1) for p > 3 satisfying

M(ψ)
1−σc
σc E(ψ) < M(ϕ0)

1−σc
σc E(ϕ0).

Let

η(t) =
‖ψ‖

1−σc
σc

L2 ‖∂xψ(t)‖L2
x

‖ϕ0‖
1−σc
σc

L2 ‖∂xϕ0‖L2

Then

• If η(0) < 1, then the solution ψ(t) is global in both time directions and
η(t) < 1 for all t ∈ R.

• If η(0) > 1, then the solution ψ(t) blows up in the negative time direction
at some T− < 0, blows-up in the positive time direction at some T+ > 0,
and η(t) > 1 for all t ∈ (T−, T+).

As far as we know the problem of scattering for (1) has not yet been studied.
In the case of global existence for standard NLS (i.e. K ≡ 1), the question of
scattering has been addressed by, among many others, [4, 5, 6].

We address in this talk a L2 supercritical scattering result in H1 to (1).

Theorem. Let p > 3. Let ψ0 ∈ H1 and let ψ(t) be a H1 solution to (1) with
ψ(0) = ψ0 satisfying

M(ψ)
1−σc
σc E(ψ) < M(ϕ0)

1−σc
σc E(ϕ0)

and η(0) < 1. Then, there exist ψ+, ψ− ∈ H1 such that

lim
tր±∞

‖e−it∂2
xψ(t)− ψ±‖H1 = 0.

Remark that the defocusing case is similarly proved (without mass-energy condi-
tion). To show this theorem we use the Kenig-Merle method [5] which is these
days becoming standard, but it is required to use an appropriate function space
according to the smoothing properties of the integral equation (2).
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Dispersive properties for the linear Schrödinger equation on

star-graphs. Application to NLS

Andreea Grecu

We consider the linear Schrödinger equation:

(1)

{
iut(t, x) + ∆xu(t, x) = 0, t 6= 0, x ∈ G
u(0, x) = u0(x), x ∈ G ,

where G is a metric graph given by a finite number n ∈ N∗ of infinite length edges
attached to a common vertex (so-called star-graph), having each edge identified
with the positive real axis; ut represents the time derivative of u, and the Laplace
operator ∆x =: ∆(A,B) with domain

D(∆(A,B)) = {u ∈ H2(G) : Au +Bu′ = 0},

acts as the second derivative along the edges. The n × n real matrices A and B
which express the coupling conditions at the vertex are assumed to satisfy:

(H1) The horizontally concatenated matrix (A,B) has maximal rank;
(H2) AB† is self-adjoint;

ensuring the self-adjointness of the corresponding laplacian (according to [2, 3]).

For q ∈ [2,∞], 1
p + 1

q = 1, we obtain Lp(G) − Lq(G) dispersive and space-time

Strichartz estimates for the solution of (1), and well-posedness for the nonlinear
Schrödinger equation (NLS) for a class of power nonlinearities.

The proof of the dispersive properties is based on an explicit form of the solution
obtained via spectral theory, which is further estimated using classical results for
oscillatory integrals. We point out that the explicit form of the resolvent’s integral
kernel (given in [2]) and its properties (delivered in [3]) are of great use. Once the
dispersive properties are obtained, the Strichartz estimates follow by the result of
Keel and Tao in [4]. We make use of these estimates to prove well-posedness of
the NLS

{
iut(t, x) + ∆xu(t, x) + λ|u|p−1u = 0, t 6= 0, x ∈ G
u(0, x) = u0(x), x ∈ G ,

where p ∈ (1, 5), λ ∈ R. The latter is based on a fixed point argument and follows
in the spirit of [1].
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Kuramoto-Sivashinsky equation on star-shaped trees. A controllability

result

Liviu Ignat

(joint work with C.M. Cazacu and A.F. Pazoto)

In this talk we present some controllability properties for the linear Kuramoto-
Sivashinsky equation on a network with two types of boundary conditions. More
precisely, the equation is considered on a star-shaped tree with Dirichlet and Neu-
mann boundary conditions. By using the moment theory we can derive null-
controllability properties with boundary controls acting on the external vertices of
the tree. In particular, the controllability holds if the anti-diffusion parameter of
the involved equation does not belong to a critical countable set of real numbers.
We point out that the critical set for which the null-controllability fails differs from
the first model to the second one.

Our main goal is to study boundary null-controllability properties for the Kura-
moto-Sivashinsky (KS) equation

(1) yt + λyxx + yxxxx = 0,

on a star-shaped tree denoted Γ. More precisely, Γ is a simplified topological graph
with N ≥ 2 edges of the same given length L > 0 and N + 1 vertices. Besides, all
edges intersect at a unique endpoint which is the interior vertex of the graph. The
mathematical formulation of the control problems that we address on Γ stands
for a system of N -KS equations on the interval (0, L) coupled through the left
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endpoint x = 0 as follows

(2)





ykt + λykxx + ykxxxx = 0, (t, x) ∈ (0, T )× (0, L)

yi(t, 0) = yj(t, 0), t ∈ (0, T ), i, j ∈ {1, . . . , N}
∑N
k=1 y

k
x(t, 0) = 0, t ∈ (0, T )

yixx(t, 0) = yjxx(t, 0), t ∈ (0, T ), i, j ∈ {1, . . . , N}
∑N
k=1 y

k
xxx(t, 0) = 0, t ∈ (0, T )

yk(0, x) = yk0 (x), x ∈ (0, L).

For system (2) we study two types of boundary control conditions:

(I) :





yk(t, L) = 0,

ykx(t, L) = uk(t), k ∈ {1, . . . , N},
respectively

(II) :





ykx(t, L) = ak(t),

ykxxx(t, L) = bk(t), k ∈ {1, . . . , N}.
The main problem we analyse here is on the following null-controllability issue:

Given any finite time T > 0 and any initial state y0 = (yk0 )k=1,N , can we
find proper control inputs in (I) or (II) (u = (uk)k=1,N and a = (ak)k=1,N , b =
(bk)k=1,N , respectively) to lead the solution of system (2) to the zero state, i.e.,

(3) yk(T, x) = 0, for any x ∈ (0, L), k ∈ {1, . . . , N}?

Our main results are as given in the following theorems. For simplicity we will
not make explicit the exceptional sets Nodd, Neven, Nmixt. The interested reader
can consult [1].

Theorem 1 (Null-controllability for model (2)-(I)). Let T > 0 be fixed. For any
λ 6∈ Neven ∪ Nodd and any initial state y0 = (yk0 )k=1,N ∈ L2(Γ) there exists a
control u = (uk)k=1,N ∈ H1(Γ) having at most N − 1 non-identically vanishing
components such that the solution of system (2)-(I) satisfies

(4) yk(T, x) = 0, for any x ∈ (0, L), k ∈ {1, . . . , N}.
Theorem 2 (Null-controllability for model (2)-(II)). Let T > 0 be fixed. For
any λ 6∈ Neven ∪ Nmixt and any initial state y0 = (yk0 )k=1,N ∈ L2(Γ) there exist
the controls a = (ak)k=1,N , b = (bk)k=1,N ∈ H1(Γ) having at most 2N − 1 non-
identically vanishing components such that the solution of system (2)-(II) satisfies

(5) yk(T, x) = 0, for any x ∈ (0, L), k ∈ {1, . . . , N}.
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Estimates for Laplacians and Schrödinger operators on the lattice

Evgeny Korotyaev

We consider Schrödinger operators with complex decaying potentials on the lattice.
We determine trace formulae and estimate of eigenvalues and singular measure in
terms of potentials.

We consider Schrödinger operators H = ∆+ V on the lattice Zd, d ≥ 3, where
∆ is the discrete Laplacian on ℓ2(Zd) given by

(
∆f
)
(n) =

1

2

∑

|n−m|=1

fm, n = (nj)
d
1 ∈ Zd,

where f = (fn)n∈Zd ∈ ℓ2(Zd). We assume that the potential V satisfies

(1) (V f)(n) = Vnfn, V ∈ ℓp(Zd),

{
1 ≤ p < 6

5 if d = 3

1 ≤ p < 4
3 if d ≥ 4

.

Here ℓp(Zd), p > 0 is the space of sequences f = (fn)n∈Zd such that ‖f‖p < ∞,
where

‖f‖p = ‖f‖ℓp(Zd) =

{
supn∈Zd |fn|, p = ∞,
(∑

n∈Zd |fn|p
) 1

p , p ∈ [1,∞).

It is well-known that the spectrum of the Laplacian ∆ is absolutely continuous and
σ(∆) = σac(∆) = [−d, d] and the essential spectrum of H is given by σess(H) =
[−d, d]. The operator H has N ≤ ∞ eigenvalues {λn, n = 1, . . . , N} outside the
interval [−d, d]. Introduce the operator-valued function Y0(λ) by

Y0(λ) = |V | 12 (∆− λ)−1|V | 12 ei arg V , λ ∈ C \ [−d, d].
Let B1 and B2 be the trace and the Hilbert-Schmidt classes equipped with the

norm ‖ · ‖B1 and ‖ · ‖B2 correspondingly. In order to study Schrödinger operators
with complex potentials we need the following results from [6].

Theorem 1. Let u, v ∈ ℓq(Zd), q ≥ 2. Then for all t ∈ R \ [−1, 1], we have

(2) ‖ueit∆v‖ ≤ C
2d
q
o |t|− 2d

3q ‖u‖q‖v‖q,
where the constant Co <

4
5 . If V satisfy (1), then the function Y0 : C\ [−d, d] → B2

is analytic and Hölder continuous up to the boundary and satisfies

(3) ‖Y0(λ)‖B2 ≤ C∗‖V ‖p
for some constant C∗ depending from p, d only. If in addition V is real, then the
wave operators

(4) W± = s− lim eitHe−it∆ as t→ ±∞
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exist and are complete, i.e., Hac(H) = RanW±.

We define the disc Dr = {z ∈ C : |z| < r}, r > 0. Define the new spectral

variable z ∈ D by

λ = λ(z) =
d

2

(
z +

1

z

)
∈ Λ = C \ [−d, d], z ∈ D := D1.

Here λ(z) is a conformal mapping from D onto the spectral domain Λ such that
• The function λ(z) maps the point z = 0 to the point λ = ∞.

• The inverse mapping z(·) : Λ → D is given by z = 1
d (λ −

√
λ2 − d2 ), λ ∈ Λ

defined by asymptotics z = d
2λ + O(1)

λ3 as |λ| → ∞.
Define the Hardy space H∞ = H∞(D). Let F be analytic in D. We say F

belongs the Hardy space H∞ if F satisfies ‖F‖H∞
= supz∈D |F (z)| <∞.

We define the regularized determinant D(λ) in the cut domain Λ and the mod-
ified determinant D in the disc D by

(5) D(λ) = det
[
(I + Y0(λ))e

−Y0(λ)
]
, λ ∈ Λ, D(z) = D(λ(z)), z ∈ D.

The function D is analytic in Λ and the function D is analytic in the disc D. It
has N ≤ ∞ zeros (counted with multiplicity) z1, z2, . . . in the disc D. Note that
λj = λ(zj) is an eigenvalue of H (counted with multiplicity).

In this paper we combine classical results about Hardy spaces and the free resol-
vent estimates from [6]. This gives us new trace formulae for discrete Scrödinger
operators H = ∆ + V on the lattice Zd, where the potential V is complex and
satisfies the condition (1). We improve results from [5], where potentials are con-

sidered under the weaker condition |V | 23 ∈ ℓ1(Zd).

Introduce another conformal mapping κ : Λ → C \ [id,−id] by κ =
√
λ2 − d2, λ ∈

Λ, where the branch is defined by κ = λ− d2

2λ + O(1)
λ3 as |λ| → ∞.

Theorem 2. Let a potential V satisfy (1). Then the modified determinant D is
analytic in the disc D and is Hölder up to the boundary and satisfies

(6) ‖D‖H∞(D) ≤ eC
2
∗‖V ‖2

p/2,

where the constant C∗ is from (3). It has N ≤ ∞ zeros {zj}Nj=1 in the disc D,
such that

(7) 0 < r0 = inf |zj | = |z1| ≤ |z2| ≤ . . . ≤ |zj| ≤ |zj+1| ≤ |zj+2| ≤ . . . ,

Moreover, ψ(z) = logD(z) is analytic in Dr0 and has the Taylor series

(8) ψ(z) = −ψ2z
2 − ψ3z

3 − ψ4z
4 + . . . , as |z| < r0,

where ψ2 = a2

2 TrV 2, ψ3 = a3

3 Tr V 3, ... and a = 2
d .

For the functionD we define the Blaschke product B(z)
∏N
j=1

|zj|
zj

· (zj−z)
(1−zjz) , z ∈ D

if N ≥ 1 and B = 1 if N = 0. It is well known that the Blaschke product B(z),
z ∈ D converges absolutely for {|z| < 1} and satisfies B ∈ H∞ with ‖B‖H∞

≤ 1,
since D ∈ H∞. The Blaschke product B has the Taylor series at z = 0:

logB(z) = B0 −B1z −B2z
2 − . . . as z → 0,
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where B0 = logB(0) < 0, B1 =
∑N

j=1

(
1
zj

− zj

)
, B2 = 1

2

∑N
j=1

(
1
z2j

− z2j

)
, ...

We describe the canonical representation of D(z), z ∈ D.

Corollary 3. Let a potential V satisfy (1). Then there exists a singular measure
ν ≥ 0 on [−π, π], such that D(z) = B(z)e−Kν(z)eK(z) for all |z| < 1, where

Kν(z) =
1

2π

∫ π

−π

eit + z

eit − z
dν(t), K(z) =

1

2π

∫ π

−π

eit + z

eit − z
log |D(eit)|dt,

where log |D(eit)| ∈ L1(−π, π) and supp ν ⊂ {t ∈ [−π, π] : D(eit) = 0}.

Theorem 4. Let V satisfy (1) and let T = R/(2πZ). Then

ν(T)

2π
−B0 =

1

2π

∫

T

log |D(eit)|dt ≥ 0,

N∑

j=1

(
Reκ(λj) + i Imλj

)
=

d

2π

∫

T

e−itdµ(t) =
d

2

N∑

j=1

( 1

zj
− zj

)
,

∑
(1− |zj |) ≤ −B0 ≤ C2

∗
2
‖V ‖2p −

ν(T)

2π
,

∣∣∣
N∑

j=1

(
Reκj + i Imλj

)∣∣∣ ≤ dC2
∗‖V ‖2p,

There are a lot of papers about eigenvalues of Schrödinger operators in Rd with
complex-valued potentials decaying at infinity, see [2, 7] and references therein.

Schrödinger operators with decreasing potentials on the lattice Zd, d > 1 have
been considered by Boutet de Monvel-Sahbani [1], Isozaki-Korotyaev [3], Isozaki-
Morioka [4], Korotyaev-Moller [6], Shaban-Vainberg [8] and see references therein.
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Ground state on the dumbbell graph

Jeremy L. Marzuola

(joint work with Dmitry Pelinovsky)

In [1], we consider a cubic nonlinear Schr odinger equation on a dumbbell graph
consisting of two rings attached to a central line segment under the normal Kirch-
hoff boundary conditions. At small mass, we construct the branches bifurcating
off of the linear spectrum of the graph using Lyapunov-Schmidt expansions. In
particular, we are able to observe symmetry breaking bifurcations into odd and
even solutions off of a constrant branch. At large mass, we construct bound states
that live both in the ring and in the central link by modifying the bound state
that occurs on the real line in an appropriate manner. The method of construc-
tion at large mass uses careful analysis of Jacobi elliptic functions and should have
implications for other solutions on graphs, and should be able to be modified to
other nonlinearities as well through more general special function analysis.

To clarify things, let the central line segment be placed on I0 := [−L,L], whereas
the end rings are placed on I− := [−L − 2π,−L] and I+ := [L,L + 2π]. The
Laplacian operator is defined piecewise by

∆Ψ =



u′′−(x), x ∈ I−,
u′′0(x), x ∈ I0,
u′′+(x), x ∈ I+,


 , acting on Ψ =



u−(x), x ∈ I−,
u0(x), x ∈ I0,
u+(x), x ∈ I+,


 ,

subject to the Kirchhoff boundary conditions at the two junctions:
{
u−(−L− 2π) = u−(−L) = u0(−L),
u′−(−L)− u′−(−L− 2π) = u′0(−L),

(1)

and {
u+(L+ 2π) = u+(L) = u0(L),
u′+(L)− u′+(L+ 2π) = u′0(L).

(2)

The Laplacian operator ∆ is equipped with the domain D(∆) given by a subspace
of H2(I− ∪ I0 ∪ I+) closed with the boundary conditions (1) and (2).

The cubic NLS equation on the dumbbell graph is given by

(3) i
∂

∂t
Ψ = ∆Ψ+ 2|Ψ|2Ψ , Ψ ∈ D(∆),

where the nonlinear term |Ψ|2Ψ is also defined piecewise on I− ∪ I0 ∪ I+. The
energy of the cubic NLS equation (3) is given by

(4) E(Ψ) =

∫

I−∪I0∪I+

(
|∂xΨ|2 − |Ψ|4

)
dx,

and it is conserved in the time evolution of the NLS equation (3). The energy is
defined in the energy space E(∆) given by

E(∆) :=

{
Ψ ∈ H1(I− ∪ I0 ∪ I+) : u−(−L− 2π) = u−(−L) = u0(−L)

u+(L+ 2π) = u+(L) = u0(L)

}
.
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Ground states can be defined as solutions of the constrained minimization prob-
lem

(5) E0 = inf{E(Ψ) : Ψ ∈ E(∆), Q(Ψ) = Q0}.

Standing waves of the focusing NLS equation (3) are given by the solutions of
the form Ψ(t, x) = eiΛtΦ(x), where Λ and Φ ∈ D(∆) are considered to be real.
This pair satisfies the stationary NLS equation

(6) −∆Φ− 2|Φ|2Φ = ΛΦ Λ ∈ R , Φ ∈ D(∆).

The stationary NLS equation (6) is the Euler–Lagrange equation of the energy
functional HΛ := E − ΛQ, where the charge

(7) Q(Ψ) =

∫

I−∪I0∪I+
|Ψ|2dx

is another conserved quantity in the time evolution of the NLS equation (3).
The two main theorems can be stated as follows.

Theorem 1. There exist Q∗
0 and Q∗∗

0 ordered as 0 < Q∗
0 < Q∗∗

0 <∞ such that the
ground state of the constrained minimization problem (5) for Q0 ∈ (0, Q∗

0) is given
(up to an arbitrary rotation of phase) by the constant solution of the stationary
NLS equation (6):

(8) Φ(x) = p, Λ = −2p2, Q0 = 2(L+ 2π)p2.

The constant solution undertakes the symmetry breaking bifurcation at Q∗
0 and the

symmetry preserving bifurcation at Q∗∗
0 , which result in the appearance of new

positive non-constant solutions. The asymmetric standing wave is a ground state
of (5) for Q & Q∗

0 but the symmetric standing wave is not a ground state of (5)
for Q & Q∗∗

0 .

Theorem 2. In the limit of large negative Λ, there exist two standing wave solu-
tions of the stationary NLS equation (6). One solution is a positive asymmetric
wave localized in the ring:

(9) Φ(x) = |Λ|1/2sech(|Λ|1/2(x− L− π)) + Φ̃(x), Q0 = 2|Λ|1/2 + Q̃0,

and the other solution is a positive symmetric wave localized in the central line
segment:

(10) Φ(x) = |Λ|1/2sech(|Λ|1/2x) + Φ̃(x), Q0 = 2|Λ|1/2 + Q̃0,

where ‖Φ̃‖H2(I−∪I0∪I+) → 0 and |Q̃0| → 0 as Λ → −∞ in both cases. The positive
symmetric wave satisfying (10) is a ground state of the constrained minimization
problem (5) for Q0 sufficiently large.

The paper also includes careful numerical verification of these theorems using
a Petviashvilli type iteration argument as well as Newton solvers on graphs.
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Dynamics of relativistic solitons in networks: Metric graph based

approach

Davron Matrasulov

(joint work with K.Sabirov, D. Babajanov and P.Kevrekidis)

In this research we study dynamics of Dirac solitons in networks. The dynamics of
such solitons are modeled in terms of nonlinear Dirac equations on metric graphs.
Explicit soliton solutions of the problem are derived. Conditions(constraints) for
integrability are obtained.

It is shown that under such constraints transmission of relativistic solitons
through the network branching points (vertices) are reflectionless. Such a feature
can be useful from the viewpoint of ballistic transport in branched structures. . . .

Nonlinear evolution equations on networks have attracted much attention re-
cently [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Such interest is caused by a broad variety
of potential applications of the nonlinear wave dynamics and soliton transport in
networks, such as Bose-Einstein condensates (BECs) in branched traps, Josephson
junction networks, DNA double helix, polymer chains, etc.

Despite the rapidly growing interest in wave dynamics on networks, most of the
studies are mainly focused on nonrelativistic wave equations such as the nonlinear
Schrödinger equation [1, 2, 3, 4, 5, 6, 7, 10]. Nevertheless, there is a number
of works on the sine-Gordon equation in branched systems [8, 9, 11]. However,
relativistic wave equations such as the nonlinear Klein-Gordon and Dirac equations
are important in field theory and condensed matter physics and hence exploring
them on metric graphs is of interest in its own right. we address the problem of
In this work we address the sine-Gordon equation and nonlinear Dirac equation
on simple metric graphs by focusing on conservation laws and soliton transmission
at the graph vertices. Our prototypical example will be the Y-junction. Such
problem can be effective model for describing BEC dynamics graphene nanoribbon
Y-junctions.

For a metric star graph consisting of three semi-infinite bonds , the nonlinear
Dirac equation for each bond can be written as Lj where j parametrizes the bond
and L for each is of the form [12]

(1) (iγµ∂µ −m)Ψ + g2
(
Ψ̄Ψ
)
Ψ = 0,

where

(2) Ψ(x, t) =

(
φ(x, t)
χ(x, t)

)
; Ψ̄ = Ψ†γ0,

and γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
.
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Complete formulation of the problem requires imposing f vertex boundary con-
ditions which can be obtained from fundamental conservation laws. Here we use
conservations of energy and current. The current conservation, J̇ = 0 yields the
following vertex boundary condition:

(3) Re [φ1χ
∗
1]|x=0 = Re [φ2χ

∗
2]|x=0 + Re [φ3χ

∗
3]|x=0 .

Here we used the asymptotic conditions

(4) Ψ1 → 0 at x→ −∞ and Ψ2,3 → 0 at x→ ∞.

The energy conservation, Ė = 0 gives rise to

Im [φ1∂tχ
∗
1 + χ1∂tφ

∗
1]|x=0

= Im [φ2∂tχ
∗
2 + χ2∂tφ

∗
2]|x=0 + Im [φ3∂tχ

∗
3 + χ3∂tφ

∗
3]|x=0 .

(5)

Representing soliton solution of NLDE on a metric star graph in the form

(6) Ψj(x, t) = e−iωt
(

Aj(x)
iBj(x)

)
.

Then, from Eqs. (1) and (6) we have

(7)
dAj
dx

+ (m+ ω)Bj − g2j (A
2
j −B2

j )Bj = 0,

(8)
dBj
dx

+ (m− ω)Aj − g2j (A
2
j −B2

j )Aj = 0.

The vertex boundary conditions for the functions Aj and Bj can be written as

α1A1|x=0 = α2A2|x=0 + α3A3|x=0,

1

α1
B1|x=0 =

1

α2
B2|x=0 =

1

α3
B3|x=0.(9)

A static solution of the system (7), (8) obeying the asymptotic conditions (4)
can be written as [12]

Aj(x) =

√
(m+ ω) cosh2(βx)

m+ ω cosh(2βx)
·

×
√

2β2

g2j (m+ ω cosh(2βx))
,(10)

Bj(x) =

√
(m− ω) sinh2(βx)

m+ ω cosh(2βx)
·

×
√

2β2

g2j (m+ ω cosh(2βx))
,(11)

where β =
√
m2 − ω2. In order for these solutions of Eqs. (7) and (8) to solve

the problem on the metric graph, they need to also satisfy the vertex boundary
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conditions (9). This can be achieved if the constants αj and coupling parameters
gj fulfill the following conditions:

(12)
1

g21
=

1

g22
+

1

g23
.

Having found the these traveling wave solutions one can analyze vertex trans-
mission of Dirac solitons through the graph vertex [12].
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Spectral analysis of periodic Schrödinger operators on a broken

carbon nanotube

Hiroaki Niikuni

Carbon nanotubes (see Fig. 1), which were discovered in 1991, have been playing
important roles as materials due to its outstanding mechanical properties such
as thermal conduction, electrical conduction, hardness and tribology. Its elec-
trical conduction is related to the structure of spectrum of Schrödinger opera-
tors on carbon nanotubes. In the representative papers [2, 4], spectral properties
of Schrödinger operators on carbon nanotubes were studied from the view point
of quantum graphs. In general, a quantum graph is defined as a triplet of a
metric graph, a differential (Schrödinger) operator and a suitable boundary ver-
tex condition. In [4], Kuchment and Post studied spectral properties of periodic
Schrödinger operators on all class of carbon nanotubes, namely, zigzag, armchair,
and chiral carbon nanotubes. In [2], Korotyaev and Lobanov dealt with direct
and inverse spectral problems for periodic Schrödinger operators on a class of
zigzag carbon nanotubes. They gave an unitary equivalence between their quan-
tum graph and the direct sum of its corresponding periodic Schrödinger operator
on a one-dimensional periodic metric graph with a necklace structure (see also
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[1]). Moreover, they showed the existence of eigenvalues with infinite multiplici-
ties and the band-gap structure of the absolutely continuous spectrum by utilizing
one-dimensional tools for the corresponding Hill operators such as the monodromy
matrix and the Lyapunov function. They also give the results for resonances, the
asymptotic formulas of the spectral band edges. In [3], a scattering theory has
been discussed by Korotyaev and Saburova. They proved the existence and com-
pleteness of the wave operators for a class of perturbations to quantum graphs.

In the talk, the results discussed in [5] was introduced. In [5], we considered
periodic Schrödinger operators on a broken carbon nanotube. In a process to
refine single wall carbon nanotubes, we need metals such as Ni, Co, Y and Fe. So,
carbon nanotubes are strained with tiny particles of metals. In order to get rid
of these metals, we need to clean by acids. Carbon nanotubes are broken in this
process. Furthermore, carbon nanotubes can also be broken by abrasion. Thus,
it is important to study spectral properties of periodic Schödinger operators on
broken carbon nanotubes. Although there are a lot of patterns of broken carbon
nanotubes, we deal with a model of broken carbon nanotubes as in the right hand
side of Fig. 1.

Let us define a broken zigzag carbon nanotube and a periodic Schrödinger
operator on it. We fix N ∈ N, denote the number of zigzags in one round by 2N .
Let ΓN be a metric graph like the left hand side of Fig.1(We describe the precise
definition of ΓN in the talk.). Since there are 8 zigzags in the case of the right hand
side of Fig. 1, we consider that it is Γ4. Furthermore, we put Z := Z × J × ZN ,
where J = {1, 2, 3, 4, 5} and ZN := Z/(NZ). As in Fig. 2, we give a triplet of
numbers (n, j, k) ∈ Z for each edge of ΓN without any reduplication, and call it
Γn,j,k. We assume that the length of each edge is equal to 1. Then, Γn,j,k can
be identified with the closed interval [0, 1]. Moreover, we define the Hilbert space
L2(ΓN ) = ⊕ω∈ZL2(Γω) as ⊕ω∈ZL2(0, 1). For a real-valued function q ∈ L2(0, 1),
we define

(Hfω)(x) = −f ′′
ω(x) + q(x)fω(x), x ∈ (0, 1) ≃ Γ◦

ω, ω ∈ Z.

Fig. 1. The left one is a standard zigzag carbon nanotube. A
broken zigzag carbon nanotube which we deal with throughout

this talk is in the right picture.
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Assume that f ∈ Dom(H) satisfies the Kirchhoff vertex condition. Namely, f is
continuous on each vertex and satisfies no flux condition. Then, H is a self-adjoint
operator. In order to study the spectrum of H , we utilize the same method as
in [2]. In short, we put Γn,j = Γn,j,1 for n ∈ Z and j ∈ J. Let us consider the

following N operators on Γ1 (see Fig. 3), putting s = ei
2π
N . For k = 1, 2, . . . , N ,

we define N operators Hk in L2(Γ1) as follows:

(Hkfn,j)(x) = −u′′n,j(x) + q(x)un,j(x), x ∈ (0, 1) ≃ Γ◦
n,j, (n, j) ∈ Z1.

Let f = (fn,j) ∈ Dom(Hk) satisfies the Kirchhoff condition except for

−u′n,1(1)+u′n,2(0)− sku′n,5(1) = 0, un,1(1) = un,2(0) = skun,5(1) for (n, j) ∈ Z1.

Then, we obtain σ(H) =
⋃N
k=1 σ(Hk). Thus, it is sufficient to examine σ(Hk).

In order to describe our main results, we give notations. Let θ(x, λ) and ϕ(x, λ)
be the solutions to the Schrödiger equation corresponding to the operator L :=

− d2

dx2 + q(x) in L2(R) as well as the initial conditions θ(0, λ) = 1, θ′(0, λ) = 0 and

ϕ(0, λ) = 0, ϕ′(0, λ) = 1, respectively. The function ∆(λ) = θ(1,λ)+ϕ′(1,λ)
2 is called

the Lyapunov function corresponding to L. Moreover, let σD(L) be the set of the
Dirichlet eigenvalues corresponding to L. For k = 1, 2, . . . , N , we put sk = sin πk

N
and define

D(k, λ) =
2∆2(λ)D(λ) + s2k√

4∆4(λ) − 4∆2(λ)s2k + s2k
on C \ Pk,(1)

where θ1(λ) = θ(1, λ), ϕ′
1(λ) = ϕ′(1, λ), Pk = {λ ∈ C| 4∆4(λ)−4∆2(λ)s2k+s

2
k =

0} and

∆2(λ)D(λ) = 4∆4(λ) +
θ1(λ)ϕ

′
1(λ)− 7

2
∆2(λ) +

1− θ1(λ)ϕ
′
1(λ)

8
.(2)

Let σ∞(Hk) be the set of eigenvalues with infinite multiplicities of Hk. Then, we
have the following:

Fig. 2. Before we rolled up Γ3, we obtain the sheet seen in the
picture . The indexes in this picture imply the ones of Γn,j,k.
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Fig. 3. The degenerate broken zigzag nanotube

Theorem 1. For k = 1, 2, . . . , N , we have σ(Hk) = σ∞(Hk) ∪ σac(Hk), where

σ∞(Hk) = σD(L) and σac(Hk) = {λ ∈ R| D(k, λ) ∈ [−1, 1]}.(3)

Thus, D(k, λ) plays a role of the spectral discriminant of Hk. The properties
of D(k, λ) will be studied by utilizing the Rouché’s theorem of the version for
meromorphic functions. In the talk, the following results were introduced.

Theorem 2. (i) We have σac(H) =
⋃N
k=1 σac(Hk).

(ii) For k = 1, 2, . . . , N , we have σac(Hk) = σac(HN−k).
(iii) For k = 1, 2, . . . , N , there exists real sequence

λ+k,0 < λ−k,1 ≤ λ+k,1 < λ−k,2 ≤ λ+k,2 < · · · < λ−k,n ≤ λ+k,n < · · ·
such that σac(Hk) =

⋃∞
j=1[λ

+
k,j−1, λ

−
k,j ].

(iv) We have the following inequality:

λ+0,0 < λ−0,1 < λ+0,1 < λ−0,2 < λ+0,2 < λ−0,3 < λ+0,3 < λ−0,4 ≤ λ+0,4

< λ−0,5 < λ+0,5 < λ−0,6 < λ+0,6 < λ−0,7 < λ+0,7 < λ−0,8 ≤ λ+0,8 < · · · .
(v) Assume that N = 2ℓ. Then, we have λ−ℓ,n < λ+ℓ,n for all n ∈ N.

(vi) For k = 1, 2, . . . , ℓN , we have

λ+k,0 < λ−k,1 ≤ λ+k,1 < λ−k,2 ≤ λ+k,2 < λ−k,3 ≤ λ+k,3 < λ−k,4 < λ+k,4

< λ−k,5 ≤ λ+k,5 < λ−k,6 ≤ λ+k,6 < λ−k,7 ≤ λ+k,7 < λ−k,8 < λ+k,8 < · · · .
Furthermore, we see the followings on the equality of the above inequality:

(a) If sk 6=
√

7
8 , then we have λ−k,2n−1 6= λ+k,2n−1 for n ∈ N and k =

1, 2, . . . , ℓN . If q ≡ 0 and sk =
√

7
8 , then we have λ−k,2n−1 = λ+k,2n−1

for n ∈ N and k = 1, 2, . . . , ℓN .
(b) If k 6= N

6 , then we have λ−k,4n−2 6= λ+k,4n−2 for any k = 1, 2, . . . , ℓN . If

q ≡ 0 and k = N
6 , then we have λ−k,4n−2 = λ+k,4n−2 for any n ∈ N and

k = 1, 2, . . . , ℓN .

(vii) Let {ηn}∞n=1 = {λ ∈ R| ∆(λ) = 0}, {µn}∞n=1 = σD(L) and {ξn}∞n=1 =
{λ ∈ R| ∆2(λ) = 5

12} be labelled in the increasing order each other. Then, we

have λ−k,4n−2 ≤ ηn ≤ λ+k,4n−2, λ
−
k,4n ≤ µn ≤ λ+k,4n for any n ∈ N and k =
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0, 1, 2, . . . , N . If k = 0, 1, 2, . . . , ℓN , we have λ−k,4n−3 ≤ ξ2n−1 ≤ λ+k,4n−3 and

λ−k,4n−1 ≤ ξ2n ≤ λ+k,4n−1 for any n ∈ N.

(viii) For n ∈ N, we put λ−n = max0≤k≤ℓN λ
−
k,n and λ+n = min0≤k≤ℓN λ

+
k,n.

Then, we have
ℓN⋃

k=0

σac(Hk) =

∞⋃

n=1

[λ+n−1, λ
−
n ].

Especially, we have

σac(H) =

{⋃∞
n=1[λ

+
n−1, λ

−
n ] if N = 2ℓ− 1,(⋃∞

n=1[λ
+
n−1, λ

−
n ]
)
∪ σac(Hℓ) if N = 2ℓ.

(ix) For n ∈ N, we put γn := (λ−n , λ
+
n ). Then, we have the followings:

(a) For n ∈ N, we see that λ−0,4n 6= λ+0,4n if and only if γ4n 6= ∅.
(b) For n 6≡ 0 (mod 4), we see that γn 6= ∅ if and only if there does not exist

k ∈ {1, 2, . . . , ℓN} satisfying λ−k,n = λ+k,n.
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Standing waves for the NLS on the double-bridge graph and a

rational-irrational dichotomy

Diego Noja

(joint work with Sergio Rolando and Simone Secchi)

We study a boundary value problem related to the search of standing waves for the
cubic focusing nonlinear Schrödinger equation (NLS) on graphs (see for general
introduction and more recent results [1, 2] and references therein). Precisely we
are interested in characterizing a class of standing waves of NLS posed on the
double-bridge graph G, in which two semi-infinite half-lines are attached at a circle
at different vertices.

• e1 = (0, L1), e2 = (L1, L1 + L2), L1 + L2 = L
• e3 = (0,+∞) = e4

At vertices Kirchhoff or ”free” boundary conditions are imposed, assuring self-
adjointness of the corresponding laplacian HG . The NLS equation is

i
dψt
dt

= HGψt − |ψt|2 ψt
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Fig. 1. The double bridge graph

and the standing waves are solutions of the form ψt = e−iωtu(x) where ω ∈ R and
u is a real function on the double bridge G with components uj , see Figure 1. So
the boundary value problem for standing waves profiles is

(1)





−u′′j − u3j = ωuj, uj ∈ H2(Ij)

u1(0) = u2(L) = u3(0), u1(L1) = u2(L1) = u4(0)

u′1(0)− u′2(L) + u′3(0) = 0, u′1(L1)− u′2(L1)− u′4(0) = 0.

It is easy to show that for ω > 0 only solution compactly supported on the ring
exist and only for a rational value of L1/L2. Their profiles are given by Jacobi
cnoidal functions and constitute continuous branches of standing waves bifurcating
from the linear eigenstates of the problem (cubic term suppressed). They can
be continued in all the range (−∞, λn) where λn is any eigenvalue of the linear
Schrödinger equation on the double bridge graph; see figure (A). All the compactly
supported standing waves belong to these branches.
For ω < 0 one can have nontrivial solutions on the half-line and any solution on
the double bridge graph is composed by an elliptic function (cnoidal or dnoidal,
and not necessarily the same) on every bounded edge and a piece of soliton on the
half-lines.
It is known that no ground state exists for the NLS on the double bridge graph
([3]), at variance with the simpler structure of the tadpole graph ([4, 5]).
However, the complete classification of standing waves for this BVP is open for
ω < 0, and so we simplify the analysis imposing the following requests

• u3, u4 are nontrivial
• u1, u2 are the restriction to e1, e2 of some u ∈ H2

per([0, L])

The corresponding reduced BVP becomes

(P±)

{
−u′′ − u3 = ωu, u ∈ H2

per([0, L]), ω < 0

u(0) = ±u(L1) =
√
2|ω|

where the sign ± distinguishes the cases of u3 and u4 with the same sign or with
different signs. (P±) is a nonlinear boundary value problem in which the spectral
parameter ω appears explicitly in the boundary conditions (a so called ”energy
dependent” boundary condition).
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Ultimately, our results refer to this system and are described in [6].
Two main phenomena occur, depending on the quantity L1/L2 being rational or
not.
If L1/L2 ∈ Q there are two families of new solutions. Firstly, from every solution
branch coming from a linear eigenvalue, a secondary global branch bifurcates at
ω = 0 (a pitchfork bifurcation). A second independent family is given by a de-
numerable sequence of solutions u±n to both problems (P±). The corresponding
sequence ωn diverges to −∞ (see Figure A).
If L1/L2 ∈ R \Q a denumerable sequence of solutions for both (P±) again exists,
the corresponding frequency sequence ωn is unbounded from below (a subsequence
diverges to −∞), but other limit points of the sequence ωn exist. Using basic tools
from diophantine analysis, it can be shown that whatever be L1/L2 ∈ R \ Q, a
limit point of frequencies always exist in a certain interval [a±, 0], with a± < 0 (see
Figure B). Moreover numerical evidence shows that other limit points are possible,
depending on the special choice of the ratio L1/L2 ∈ R \Q.
Finally, any non positive real number (so, including 0) can be a limit point of a set
of admitted frequencies up to the choice of a suitable irrational geometry L1/L2.
We end with the following remarks.
As stressed, the above sketched results refer to the systems (P±). In this sense
they describe properties of the ”nonlinear spectrum” of the corresponding eigen-
parameter dependent boundary value problem. A non trivial structure of the
discrete spectrum appears, and in the irrational case a limit point of frequencies
always exists.
Are these properties general features of a nonlinear BVP with an energy depen-
dent boundary condition?

As regards the original boundary value problem (1) describing the totality of
standing waves on a double bridge graph, its complete set of solutions is not yet
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known, and neither is its relation with the reduced problem (P±). The structure
for ω > 0 is the same as in the reduced case: branches bifurcating from linear
eigenvalues for L1/L2 ∈ Q and their disappearance in the case L1/L2 ∈ R\Q. For
ω < 0 a reasonable conjecture is that new continuous branches arise, both in the
rational and the irrational geometry. These branches, not related to any evident
linear background, should contain the discrete families displayed in the reduced
case and previously discussed. Work is in progress by these same authors.
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Approximating Dirichlet partitions using geometric graphs

Braxton Osting

(joint work with Todd H. Reeb)

Let U ⊆ Rd with d ≥ 2 be an open bounded domain with Lipschitz boundary.
A k-partition of U is a collection of k disjoint open sets {Uℓ}ℓ∈[k], such that

U = ∪ℓ∈[k]Ui. A Dirichlet k-partition of U is a k-partition, {Uℓ}ℓ∈[k], that attains

(1) min
{Uℓ}ℓ∈[k]

k∑

ℓ=1

λ1(Uℓ), where λ1(U) := min
u∈H1

0 (U)
‖u‖L2(U)=1

E(u).

Here, E(u) :=
∫
U |∇u|2 dx is the Dirichlet energy so that λ1(U) is the first Laplace-

Dirichlet eigenvalue of U . In the upper right panel of Figure 1, a partition of a
“clover” domain is plotted together with the first Laplace-Dirichlet eigenfunction
of each component. In this talk, we consider the problem of approximating a
Dirichlet partition of U via a discrete problem solved on a weighted geometric
graph, constructed by uniformly sampling points from U .

We denote by B ⊂ Rd, a Euclidean ball compactly containing U . We use this
auxiliary domain to emulate Dirichlet boundary conditions on ∂U in the discrete
problem. Similar to [2, 3], we construct a sequence of weighted geometric graphs
G(n) = (V (n),W (n)) from the first n points V (n) = {xi}i∈[n] of a sequence of
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random points {xn}n∈N of B sampled uniformly and independently. The edge
incident to vertices xi and xj (i = j possibly) has weight

W
(n)
ij =

1

εdn
η

(
xi − xj
εn

)
,

where η : Rd → [0,∞) is a similarity kernel and εn > 0 is an admissible sequence
tending to zero as n → ∞; see [4] for the precise assumptions on η and {εn}. In
Figure 1, a geometric graph is illustrated in the lower left panel.

We say that a vertex k partition, {Vℓ}ℓ∈[k] ⊂ V (n) is a discrete Dirichlet k-

partition of the geometric graph G(n) = (V (n),W (n)) if it attains

(2) min
{V (n)

ℓ
}ℓ∈[k]

k∑

ℓ=1

λ1(V
(n)
ℓ ), where λ1(S) := min

u∈L2
U (V (n))

u|Sc=0
‖u‖νn=1

En,ε(u).

Here En,ε(u) :=
1

n2ε2

∑n
i,j=1W

(n)
ij (u(xi)− u(xj))

2 is a weighted discrete Dirichlet

energy, L2
U (V

(n)) := {u : V (n) → R : u(xi) = 0 if xi ∈ B \ U}, is the class of

L2 vertex functions which vanish on B \ U , and ‖u‖νn =
(
1
n

∑n
i=1 u(xi)

2
) 1

2 is

a weighted variant of the L2-norm. In Figure 1, a k-Dirichlet graph partition
is illustrated in the lower right panel. Computational methods for computing
Dirichlet graph partitions and many examples can be found in [5, 6, 7, 8].

Theorem 1 (Convergence of Dirichlet partitions [4, Corollary 1]). In the above

setting, let {V (n)
ℓ }ℓ∈[k] and {Uℓ}ℓ∈[k] denote Dirichlet k-partitions of G(n) and U ,

respectively. Then, with probability one with respect to the sampled points, V
(n)
ℓ

converges along a subsequence to Uℓ in the Hausdorff distance as n → ∞ for all
ℓ ∈ [k].

Theorem 1 is illustrated in Figure 2 and can be proven as follows. The con-
tinuum (respectively graph) Dirichlet partitioning problem admits a variational
formulation: solutions are characterized by ground states of a Dirichlet energy
E (resp. {En,εn}n∈N) for mappings from U (resp. V (n)) into a singular space,

Σk := {x ∈ Rk :
∑k
i6=j x

2
i x

2
j = 0}, given by the coordinate axes [1]. Using methods

developed in [2, 3], we show that with probability one with respect to the sampled
points, as n → ∞, the discrete Dirichlet energies, En,εn , Γ-converge to (a scalar
multiple of) the continuum Dirichlet energy, E, with respect to the TL2 metric,
coming from the theory of optimal transport. This, along with a compactness
property for the aforementioned energies that we prove, implies the convergence,
along a subsequence, of the discrete ground states to a continuum ground state in
the TL2 sense. This, in turn, can be used to show the Hausdorff convergence of
the associated Dirichlet k-partitions along this subsequence.

Many open questions remain for both continuum and graph Dirichlet partitions.
One direction is to generalize Theorem 1 to non-uniformly sampled points, which
would require showing that a generalized Dirichlet energy admits a continuous
minimizer on H1

0 (U ; Σk). Another direction would be a convergence result for the
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Fig. 1. Illustration for the problem of approximating a Dirichlet
partition of U via a discrete problem on a geometric graph.

Fig. 2. An illustration of convergence for the clover domain in
Figure 1. As n→ ∞, Theorem 1 shows that the graph Dirichlet

partitions, {V (n)
ℓ }ℓ∈[k], converge to a continuum Dirichlet

partition, {Uℓ}ℓ∈[k], in the Hausdorff sense.

more general objective,
∑k
ℓ=1 λ

p
1(Uℓ) with p ∈ [1,∞]. In terms of computation,

there is a stochastic process associated with Dirichlet partitions, which could lead
to novel and improved numerical methods. Finally, Dirichlet graph partitions can
be used for the clustering task arising in machine learning. Here, for a very large
dataset, it is common to subsample the edges and/or vertices of the graph, which is
sometimes referred to as graph sparsification. The convergence result stated here,
or more appropriately referred to as a consistency result in the context of statistical
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learning, supports this practice, but quantifying the error incurred would require
a convergence rate of the Dirichlet partitions.
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Nonlinear Instability of Half-Solitons on Star Graphs

Dmitry Pelinovsky

(joint work with Adilbek Kairzhan)

In a series of papers [1, 2, 3, 4, 5], Adami, Cacciapuoti, Finco, and Noja analyzed
variational properties of stationary states on a star graph, which is the union
of N half-lines (edges) connected at a single vertex. For the standard Kirchhoff
boundary conditions at the vertex and for odd N , there is only one stationary state
of the NLS on the star graph. This state is represented by the half-solitons along
each edge glued by their unique maxima at the vertex. By using a one-parameter
deformation of the NLS energy constrained by the fixed mass, it was shown that
the half-soliton state is a saddle point of the constrained NLS energy [2]. On the
other hand, by adding a focusing delta impurity to the vertex, it was proven that
there exists a global minimizer of the constrained NLS energy for a sufficiently
small mass below the critical mass [1, 3, 4]. This minimizer coincides with the N -
tail state symmetric under exchange of edges, which has monotonically decaying
tails and which becomes the half-soliton state if the delta impurity vanishes. In the
concluding paper [5], it was proven that although the constrained minimization
problem admits no global minimizers for a sufficiently large mass above the critical
mass, the N -tail state symmetric under exchange of edges is still a local minimizer
of the constrained NLS energy when a focusing delta impurity is added to the
vertex.

Due to local minimization property, the N -tail state symmetric under exchange
of edges is orbitally stable in the time evolution of the NLS in the presence of the
focusing delta impurity. Although the second variation of the constrained energy
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was mentioned in the first work [1], the authors obtained all the variational results
in [3, 4, 5] from the energy formulation avoiding the linearization procedure. In
the same way, the saddle point geometry of energy at the half-soliton state in the
case of vanishing delta impurity was not related in [2] to the instability of the
half-soliton state in the time evolution of the NLS. It is quite well known that the
saddle point geometry does not necessarily imply instability of stationary states in
Hamiltonian systems because of the presence of neutrally stable modes of negative
energy [8].

The recent works of Adami, Serra, and Tilli [6, 7] were devoted to the existence
of ground states on the unbounded graphs that are connected to infinity after
removal of any edge. It was proven that the infimum of the constrained NLS
energy on the unbounded graph coincides with the infimum of the constrained
NLS energy on the infinite line and it is not achieved (that is, no ground state
exists) for every such a graph with the exception of graphs isometric to the real
line [6]. The reason why the infimum is not achieved is a possibility to minimize
the constrained NLS energy by a family of NLS solitary waves escaping to infinity
along one edge of the graph. The star graph with vanishing delta impurity is an
example of the unbounded graphs with no ground states, moreover, the constrained
NLS energy of the half-soliton state is strictly greater than its infimum. Thus, the
study in [6] provides a general argument of the computations in [2], where it is
shown that the one-parameter deformation of the half-soliton state with the fixed
mass reduces the NLS energy and connects the half-soliton state with the solitary
wave escaping along one edge of the star graph.

In the present work, we provide a dynamical characterization of the result in
[2] for the NLS with the power nonlinearity and in the case of an arbitrary star
graph. By using dynamical system methods (in particular, normal forms), we
verify that the half-soliton state is the saddle point of the constrained NLS energy
on the star graph and moreover it is dynamically unstable due to the slow growth
of perturbations. This nonlinear instability is likely to result in the destruction
of the half-soliton state pinned to the vertex and the formation of a solitary wave
escaping to infinity along one edge of the star graph.

Since the nonlinear saddle points are rarely met in applications of the NLS
equations, it is the first time to the best of our knowledge when the energy method
is adopted to the proof of the nonlinear instability of the stationary states.
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Limits of Laplacians on thin network-like domains

Olaf Post

(joint work with Pavel Exner)

In this talk, we presented results from [P05, EP09, P12, EP13] about domains
in Rd (d ≥ 2) shrinking to a metric graph. In particular, we show that the
(linear) Neumann Laplacian converges in a generalised norm resolvent sense to
the Kirchhoff Laplacian on the metric graph.

Metric graphs, thin network-like domains and their Laplacians. Let X0

be a metric graph with underlying discrete graph having V and E as vertex and
edge set, respectively. To each edge e ∈ E we associate a length ℓe > 0, and
identify an edge in X0 with an interval Ie := [0, ℓe]. A function on X0 can hence
be seen as a family f = (fe)e∈E with fe : Ie −→ C, f ∈ L2(X0) :=

⊕
e∈E L2(Ie). A

natural self-adjoint Laplacian A0 on X0 is now the so-called Kirchhoff or standard
Laplacian acting on each edge as (A0f)e = −f ′′

e for weakly differentiable functions
fe being continuous at each vertex and fulfilling

∑
e∈Ev

f ′
e(v) = 0, where f ′

e(v) is
the inwards derivative of fe at a vertex v ∈ V .

An example of a thin network-like domain Xε based on a metric graph X0 can
be defined as follows: assume that Xε is embedded in Rd (d ≥ 2) — for simplicity
with straight edges — and let Xε be the (open) ε-neighbourhood of X0 in Rd. As
operator Aε, we consider (minus) the Neumann Laplacian on Xε.

We can decompose Xε into open edge and vertex neighbourhoods Xε,e and
Xε,v, respectively (up to subsets of measure 0), where each Xε,v is ε-homothetic
and where Xε,e is isometric to a product (0, ℓe − εae) × Yε,e with Yε,e being a
ball of radius ε. Here, ae > 0 is due to the fact that the vertex neighbourhoods
need some space. To make the presentation technically simpler, it is conveniant
to assume that ae = 0 (the embedded case ae > 0 is then a perturbation, see
e.g.[P12, Sec. 5.3.2]). Moreover, we assume that the measure on Ye (the unscaled
space Y1,e) is 1, by a suitable scaling of the measure. If we allow different radii, we
will end up with pe = vold−1(Y1,e). leading to a Laplacian with so-called weighted
or generalised Kirchhoff conditions

∑
e∼v pef

′
e(v) = 0 (see e.g [EP09]).
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Convergence of the Laplacian on thin network-like domains. As the spaces
H0 := L2(X0) and Hε := L2(Xε) are a priori unrelated, we need a suitable identi-
fication operator, namely a bounded operator J : L2(X0) −→ L2(Xε) with

(Jf)e = fe ⊗ 1ε,e and (Jf)v = 0

where (Jf)e is the contribution on the edge neighbourhoood Xε,e and (Jf)v is the
contribution on the vertex neighbourhood, according to the decomposition into
edge and vertex neighbourhoods. Moreover, 1ε,e is the constant function on Yε,e
with value ε−m/2 (the first normalised eigenfunction of Yε,e).

The setting (Jf)v = 0 seems at first sight a bit rough, but we cannot set
something like (Jf)v = ε−m/2f(v), since on L2(X0), the value of f at v is not
defined. There is a finer version of identification operators on the level of the
quadratic form domains, see [P12, Ch. 4] for details or [P11] for a review article.

Let us now calculate the sandwiched resolvent difference RεJ − JR0, where
Rε = (Aε + 1)−1 for ε ≥ 0: Let g ∈ L2(X0) and w ∈ L2(Xε), then we have

〈RεJ − JR0)g, w〉 = 〈Jg,Rεw〉L2(Xε) − 〈JR0g, w〉L2(Xε)

=
∑

e∈E

(
〈(−f ′′

e ⊗ 1ε,e, ue〉L2(Xε,e) − 〈fe ⊗ 1ε,e,−u′′e 〉L2(Xε,e)

)

=
∑

e∈E
εm/2

[∫

Ye

(−f ′
eue + feu

′
e) dYe

]
∂Ie

=
∑

v∈V

∑

e∼v
εm/2

∫

Ye

(
−f ′

e(v)ue(v) + fe(v)u
′
e(v)

)
dYe,

where u = Rεw ∈ domAε, f = R0g ∈ domA0 and where ue is the restriction of u
onto Xε,e. For the second equality, we used the self-adjointness of the transversal
(Neumann) Laplacian on Yε,e. For the third equality, we use Green’s first formula,
and then some reordering. Consider now the averages

−
∫
v
uv :=

1

volXv

∫

Xv

uv dXv and −
∫
e
ue(v) :=

1

volYe

∫

Ye

ue(v) dYe,

then we express the sum over the first summands as

(1a)
∑

e∼v
εm/2

∫

Ye

f ′
e(v)ue(v) =

∑

e∼v
εm/2f ′

e(v)
(
−
∫
e
ue(v) − −

∫
v
uv
)
.

The equality holds as f ∈ domA0 fulfils the Kirchhoff condition. For the sum over
the second summands, we use the fact that fe(v) = f(v) is independent of e ∼ v
and obtain

(1b)
∑

e∼v
εm/2

∫

Ye

fe(v)u
′
e(v)

)
dYe = εm/2f(v)

∫

Xv

∆Xv
uv dXv,

performing again a partial integration (Green’s first formula, writing uv as 1 ·
uv). Summing up these contributions, we can express RεJ − JR0 as a sum of
two operators Sε, Tε : L2(X0) −→ L2(Xε) defined via (1a) resp. (1b), respectively.
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Moreover, it can be shown that the operator norm of the first is of order ε1/2,
while the second is of order ε3/2. In particular, we can show:

Theorem 1. The sandwiched resolvent difference RεJ − JR0 of the Neumann
Laplacian Aε on the thin neighbhourhood Xε and the Kirchhoff Laplacian A0 on
the metric graph X0 can be estimated in operator norm by a term of order ε1/2.
Moreover, Aε converges in generalised norm resolvent convergence to A0 (notion
explained below).

Convergence of operators acting in different Hilbert spaces. We have
already stated a relation of the two resolvents using an identification operator
J = Jε : H0 := L2(X0) −→ Hε := L2(Xε). We also want that J is close to some
unitary operator, although J need not to be injective nor surjective. We state the

following concept for abstract Hilbert spaces H, H̃ and self-adjoint, non-negative

operators A, Ã with resolvents R := (A+1)−1, R̃ := (Ã+1)−1, respectively. The
following generalises classical notions:

Definition 2. Let δ ≥ 0.

(1) A bounded operator J : H0 −→ Hε is called δ-quasi unitary if

‖(idH −J∗J)R‖H→H ≤ δ and ‖(idH̃ −JJ∗)R̃‖H̃→H̃ ≤ δ.

(2) We say that A and Ã are δ-quasi unitarily equivalent if there is a δ-quasi

unitary operator J such that ‖JR− R̃J‖H→H̃ ≤ δ.
(3) We say that Aε (acting in Hε) converges to A0 (acting in H0) in the gener-

alised norm resolvent sense if A0 and Aε are δε-quasi unitarily equivalent
for some δε → 0 as ε→ 0.

Remark 3. If δ = 0 in the first to cases, then 0-quasi-unitarity is just unitarity,
and similarly for 0-quasi-unitary equivalence. If Hε = H0 and J = idH0 in (3),
then A0 and Aε are δε-quasi unitarily equivalent if and only if Aε ≥ 0 converges to
A0 ≥ 0 in norm resolvent sense. Hence, generalised norm resolvent convergence is
a generalisation of classical norm resolvent convergence and unitary equivalence.

From the generalised norm resolvent convergence, we can conclude basically the
same statements as for the classical notion (such as norm convergence of functions
of Aε and A0, appropriately sandwiched etc.) and also uniform convergence of the
spectrum on compact subsets, see e.g. [P12, Ch. 4] and [P06, EP09, P11, EP13].

Outlook. To what extend can we adopt this general scheme of convergence of op-
erators acting in varying Hilbert spaces also to (mildly) non-linear operators? The
closest result here is probably [Kos00, Kos02]: Kosugi shows uniform convergence
of a family of semi-linear (Laplace-like) operators on thin tubular neighbourhoods
to a non-linear (Kirchhoff-like) operator on the metric graph.
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The NLS approximation for dispersive systems on graphs

Guido Schneider

For the nonlinear wave equation

(1) ∂2t u = ∂2xu− u− u3,

with x ∈ R, t ∈ R, u(x, t) ∈ R the NLS equation

(2) 2iω0∂TA = (1− c2g)∂
2
XA− 3A |A|2 ,

with T ∈ R, X ∈ R, and A(X,T ) ∈ C occurs as a universal amplitude equation
which can be derived via the multiple scaling ansatz

(3) εψNLS = εA
(
ε(x− cgt), ε

2t
)
ei(k0x+ω0t) + c.c.

in order to describe slow modulations in time and space of the envelope of the
spatially and temporarily oscillating wave packet. Herein, 0 < ε ≪ 1 is a small
perturbation parameter, cg is the group velocity, and the basic temporal and
spatial wave number ω0 and k0 are related by the linear dispersion relation ω2

0 =
k20 + 1. In [3] the following approximation result has been shown.

Theorem. For all s there exists an sA sufficiently large such that the following
holds: Let A ∈ C([0, T0], H

sA) be a solution of the NLS equation (2). Then there
exists an ε0 > 0 and a C > 0 such that for all ε ∈ (0, ε0) there are solutions u of
(1) which can be approximated by εψNLS defined in (3) such that

sup
t∈[0,T0/ε2]

‖u(t)− εψNLS(t)‖Hs < Cε2.

In case of a cubic nonlinearity as for (1) the proof follows by a simple application
of Gronwall’s inequality. In case of quadratic terms in the original system the proof
is more involved and is based on normal form transformations and the validity of
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non-resonance conditions. The NLS equation is a universal amplitude equation
which can be derived and justified for many spatially homogeneous dispersive
systems. By applying the Fourier transform all such systems can be brought into
the form

(4) ∂tûj(k, t)) = iωj(k)ûj(k, t)) + nonlinear terms in convolution form

for j in some index set. The NLS ansatz in Fourier space is strongly concentrated
at the wave number k0 and the NLS equation describes solutions of (4) whose
initial conditions are strongly concentrated in Fourier space at the wave number
k0.

In [1] by applying Bloch transform the nonlinear wave equation

(5) ∂2t u(x, t) = χ1(x)∂
2
xu(x, t)− χ2(x)u(x, t) − χ3(x)u

3(x, t),

with x ∈ R, t ∈ R, u = u(x, t) ∈ R, and smooth 2π-spatially periodic coefficient
functions χj = χj(x), has been brought into the form of (4). The linearized
problem

∂2t v(x, t) = χ1(x)∂
2
xv(x, t)− χ2(x)v(x, t)

is solved by the Bloch waves

v(x, t) = fn(ℓ, x)e
iℓxe±iωn(ℓ)t

where n∈N, ℓ∈(−1/2, 1/2], with ωn+1(ℓ) ≥ ωn(ℓ), and fn(x, ℓ) satisfying

fn(ℓ, x) = fn(ℓ, x+ 2π) and fn(ℓ, x) = fn(ℓ+ 1, x)eix.

By the ansatz

(6) u(x, t) = εA(ε(x+ cgt), ε
2t)fn0(ℓ0, x)e

iℓ0xeiωn0(ℓ0)t + c.c.,

again a NLS equation can be derived and justified in the sense of the above the-
orem. Hence, the NLS equation is a universal amplitude equation which can be
derived and justified for many spatially periodic dispersive systems. In case of
quadratic terms in the nonlinearity the normal form transforms are more involved
since no convolution structure w.r.t. the Bloch index n exists.

Finally in [2] the validity of the NLS approximation for one-dimensional infi-
nite periodic quantum graphs such as drawn in Figure 1 has been established by
transferring the scalar problem into a vector valued problem of the form (4) on
the real line.

...-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-...

Fig. 1. The periodic graph with Kirchhoff boundary conditions
at the vertices.

The justification of the NLS approximation for original systems on periodic
graphs with quadratic nonlinearities is an open problem. Since Kirchhoff boundary
conditions correspond to very irregular coefficients in (5) the regularity conditions
on the periodic coefficients in [1] are not satisfied.

As in the spatially homogeneous and spatially periodic situation the theory also
transforms to higher dimensional periodic graphs such as rectangular or hexagonal
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graphs. One-dimensional periodic graphs are good candidates for the construction
of breather solutions.
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Nonlinear Schrödinger ground states on metric graphs: the L
2–critical

case

Enrico Serra

(joint work with Riccardo Adami, Paolo Tilli)

On a noncompact metric graph G:

∞

∞

∞

we consider the nonlinear Schrödinger (NLS) energy functional

(1) E(u,G) = 1

2

∫

G
|u′|2 dx− 1

6

∫

G
|u|6 dx

We are interested in ground states of fixed mass µ > 0. These are the absolute
minimizers of E with mass constraint∫

G
|u|2 dx = µ,

and solve the quintic NLS equation

u′′ + |u|4u = ωu on G,
with Kirchhoff boundary conditions at the vertices of G.

When the exponent of the potential term in (1) is strictly less than 6, the
problem is called L2–subcritical, and the existence or non existence of ground
states depends

• on the topology of G
• on the interplay between µ and the metric properties of G

This has been analyzed in the papers [1], [2].
When the exponent is 6, the problem is called L2–critical and it turns out that

it is much more delicate than the subcritical one. One of the reasons is that under
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the formal mass-preserving transformation

u(x) 7→ uλ(x) =
√
λu(λx),

the kinetic and the potential terms in E scale in the same way:

E(uλ, λ
−1G) = λ2E(u,G),

which is typical of problems with serious loss of compactness.
In the critical case the problem depends very strongly on µ and on the ground

state energy function
EG(µ) = inf

u∈H1
µ(G)

E(u,G),

which plays a central role in all of our results.
When G is the real line R, it is known that there exists a number µR > 0, the

critical mass, such that

ER(µ) =
{
0 if µ ≤ µR

−∞ if µ > µR

(
µR = π

√
3/2
)
.

Moreover ER(µ) is achieved if and only if µ = µR and consequently all ground
states have zero energy. The same behavior takes place on the half-line R+, with
the appropriate value for the critical mass: µR+ = µR/2.

Thus on the standard domains R and R+ the minimization process is extremely
unstable, with solutions existing for a single value of the mass. This behavior is due
to the same homogeneity of the kinetic and potential terms under mass-preserving
scalings and the invariance of R and R+ under dilations.

On a generic noncompact graph G however, the problem can be highly nontrivial
and entirely new phenomena may arise, depending on the topology of the graph.

The purpose of this talk is to describe these new phenomena, essentially by
classifying all graphs from the point of view of existence of ground states. The
results we present are contained in the paper [3].

To describe our results we first define the best constant in the Gaglardo-
Nirenberg inequality on G

‖u‖66 ≤ KG‖u‖42 · ‖u′‖22 ∀u ∈ H1(G)
as

KG = sup
u∈H1(G)
u6≡0

‖u‖66
‖u‖42 · ‖u′‖22

and then the critical mass for a generic noncompact graph G as

µG =

√
3

KG
.

It turns out that for every noncompact graph G,
µR+ ≤ µG ≤ µR.

The existence of ground states depends mainly on the topology of the graph G,
according to four mutually exclusive cases:
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1. G has a terminal point
2. G admits a cycle covering
3. G has exactly one half-line and no terminal point
4. G has none of the above properties

Precisely, the following results hold.

Theorem 1. Assume that G has at least one terminal point. Then

• µG = µR+

• when µ ∈ (µR+ , µR], EG(µ) = −∞
• when µ = µR+ , EG(µ) = 0 but is achieved if and only if G is a half-line.

Theorem 2. Assume that G has a cycle covering. Then

• µG = µR

• EG(µR) = 0 and is achieved if and only if G is R or a tower of bubbles.

In these first two cases, as a rule, ground states do not exist. In Theorem 1,
the terminal edge behaves like R+, almost supporting a half-soliton. In Theorem
2, the graph behaves like R, almost supporting a soliton. The “almost” however
cannot be eliminated, resulting in nonexistence of ground states.

Theorem 3. Assume that G has exactly one half-line and no terminal point. Then

• µG = µR+

• EG(µ) < 0 (and finite) for every µ ∈ (µR+ , µR]

• EG(µ) is achieved if and only if µ ∈ (µR+ , µR].

Theorem 4. Assume that G has no terminal point, no cycle covering and more
than one half-line. If, in addition,

µG < µR,

then

• EG(µ) < 0 (and finite) for every µ ∈ (µG , µR]

• EG(µ) is achieved if and only if µ ∈ [µG , µR].

The last two theorems result unveil completely new phenomena:

• ground states exist for a whole interval of masses
• ground states have negative energy

The proof of these two results is quite involved. It is easy to show that when µ
is larger than µG , EG(µ) < 0. The value of EG(µ) is then stabilized by the presence
of the compact part of G, preventing it to collapse to −∞. However, due to the
criticality of the exponent 6, much effort is required to prove that minimizing
sequences converge. The key point is the establishment of a modified Gagliardo-
Nirenberg inequality especially suited to deal with the critical case.
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NLS equation on metric graphs with localized nonlinearity

Lorenzo Tentarelli

(joint work with Enrico Serra)

We present some recent results on the bound states of the focusing NLS equation on
noncompact metric graphs. In particular, our work focuses on the case (introduced
in [9, 10]) where the nonlinearity is localized only on the “compact part” of the
graph.

Precisely, let G = (V,E) be a connected noncompact metric graph (for details
see [6, 8, 12]) with a finite number of edges (and vertices), and denote by K =
(V

K
,E

K
) the compact core of G, that is, the metric subgraph of G consisting of all

its bounded edges.
Then, for fixed p > 2, we recall that a function u = (ue)e∈E : G → C is said to

be a bound state of the NLS equation on G with homogeneous Kirchhoff boundary
conditions and nonlinearity localized on K if and only if u ∈ H1(G) (see again
[6, 8, 12]) and satisfies:

(1) u′′e + χ
K
|ue|p−2ue = λue, ∀e ∈ E,

where λ ∈ R and χ
K
is the characteristic function of K, and

(2)
∑

e≻v

due
dxe

(v) = 0, ∀v ∈ V
K
,

where “e ≻ v” means that the edge e is incident at the vertex v and due

dxe
(v) stands

for u′e(v) or −u′e(v) depending on the “orientation” of the parametrization of e
(i.e., according as v is the starting or the endpoint of e). As a consequence, the
function ψ : R+ × G → C, defined by ψ(t, x) = eiλtu(x) is a stationary solution
of the NLS equation (on G with homogeneous Kirchhoff boundary conditions and
nonlinearity localized on K), namely, for all t ≥ 0, it satisfies (2) and

iψ̇e = −ψ′′
e − χ

K
|ψe|p−2ψe, ∀e ∈ E

(ψ̇e representing the derivative with respect to time).
We also stress that our investigation focuses only on the case p ∈ (2, 6), which

is usually called the L2–subcritical case.
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Now, it is well known that, if u is a ground state of mass µ, namely a minimizer
of the energy functional

E(u) :=
1

2

∫

G
|u′|2 dx− 1

p

∫

K
|u|p dx

constrained on the manifold

H1
µ(G) := {u ∈ H1(G) : ‖u‖2L2(G) = µ}, µ > 0,

then it fulfills (1)&(2), and hence it is a bound state of mass µ.
On the existence/nonexistence of the ground states we obtained two results.

Theorem 1 ([15]). Let p ∈ (2, 6) and µ > 0. Then infu∈H1
µ(G) E(u) ≤ 0. In

addition,
if inf

u∈H1
µ(G)

E(u) < 0 ⇒ the infimum is attained,

namely, there exists a ground state of mass µ.

Theorem 2 ([14, 15]). If p ∈ (2, 4), then for every µ > 0 there exists at least
a ground state of mass µ. On the other hand, if p ∈ [4, 6), then there exist two
constants µ1 > µ2 > 0 such that:

(i) for every µ > µ1, there exists at least a ground state of mass µ;
(ii) for every µ < µ2, there cannot exist any ground state of mass µ.

It is also interesting to discuss existence and nonexistence of those bound states
of mass µ that are not necessarily ground states. They may arise as constrained
critical points of E|H1

µ(G)
at higher energies.

Concerning existence and multiplicity of these bound states (with increasing
mass), we proved the following

Theorem 3 ([13]). For every k ∈ N, there exists µ̃k > 0 such that for all µ ≥ µ̃k
there exist at least k distinct pairs (±uj) of (real–valued) bound states of mass µ.
Moreover, for every j = 1, . . . , k

E(±uj) ≤ −Cp
µ

p+2
6−p

j
2p−4
6−p

+ σk(µ) < 0,

where σk(µ) ↓ 0 (exponentially fast), as µ → ∞, and Cp is a positive constant
depending only on p. Finally, for each j, the Lagrange multiplier λj related to uj
is positive.

On the other hand, we also established two nonexistence results, which depend
on the sign of the Lagrange multiplier λ.

Theorem 4 ([14]). Let p ∈ [4, 6). There exists µ3 > 0 such that, if µ < µ3, then
there is no bound state of mass µ with λ ≥ 0.

Theorem 5 ([14]). Let G be a tree with at most one pendant (i.e., an edge incident
at a vertex of degree one). Then, for every p > 2 and µ > 0, there is no bound
state of mass µ with λ ≤ 0.
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Remark 6. Easy computations show that Theorem 4 entails that, if p ∈ [4, 6)
and µ < µ3, then there does not exist any bound state supported on G (i.e., that
do not vanish on at least one half–line).

Remark 7. Combining Theorems 4&5 one obtains a sufficient condition for the
nonexistence of bound states.

Finally, we showed an existence result for those particular bound states that
are supported on K (i.e., that do vanish on all the half–lines).

Theorem 8 ([14]). Let p > 2 and λ ∈ R. Assume that G contains a cycle, whose
edges have pairwise commensurable lengths. Then, there exists µ > 0 such that
there is at least a bound state of mass µ with Lagrange multiplier λ and supported
on K.

Remark 9. Note that, in contrast to Theorems 4&5, Theorem 8 does not present
any restriction on the sign of λ. In addition, an analogous result holds even is G
has no cycles, provided that it contains two or more pendants.

Remark 10. Theorems 5&8 are valid even if the nonlinearity affects the whole
graph, that is, when there is no characteristic function in front of the nonlinear
term of (1). However, for a complete discussion of the “everywhere nonlinear”
problem (ground/bound states existence/nonexistence) we refer the reader to [1,
2, 3, 4, 5, 7, 11], and the references therein.
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The NLS limit for bosons in a quantum waveguide

Stefan Teufel

(joint work with Johannes von Keler)

We consider a system of N identical weakly interacting bosons confined to a thin
waveguide, i.e. to a region Tε ⊂ R3 contained in an ε-neighborhood of a curve
c : R → R3. The Hamiltonian of the system is

(1) HTε
(t) =

N∑

i=1

(−deltazi + V (t, zi)) +
∑

i≤j

a

µ3
w

(
zi − zj
µ

)
,

where zj ∈ R3 is the coordinate of the jth particle, deltazj the Laplacian on Tε with
Dirichlet boundary conditions, V a possibly time-dependent external potential and
w a positive pair interaction potential. The coupling a := ε2/N is chosen such
that for N -particle states supported along a fixed part of the curve the interaction
energy per particle remains of order one for all N ∈ N and ε > 0. For β > 0 the

effective range of the interaction µ :=
(
ε2/N

)β
goes to zero for N → ∞ and ε→ 0

and µ−3w(·/µ) converges to a point interaction. We consider in the following only
β ∈ (0, 1/3), the so called mean-field regime where a/µ3 still goes to zero.

We show in [2] that when taking simultaneously the NLS limit N → ∞ and the
limit of strong confinement ε → 0, the time-evolution of such a system starting
in a state close to a Bose-Einstein condensate is approximately captured by a
non-linear Schrödinger equation in one dimension. More precisely, we show that
all M -particle density matrices γM (t) of the solution ψN,ε(t) of the Schrödinger
equation

i ddtψ
N,ε(t) = HTε

(t)ψN,ε(t)

are asymptotically close to |ϕ(t)〉〈ϕ(t)|⊗M , where ϕ(t) = Φ(t)χ with Φ(t) the
solution of the one-dimensional non-linear Schrödinger equation

i∂tΦ(t, x) =
(
− ∂2

∂x2 + Vgeom(x) + V (t, x, 0) + b|Φ(t, x)|2
)
Φ(t, x) with Φ(0) = Φ0 .

Here χ is the ground state in the confined direction. The strength b of the nonlin-
earity depends on the details of the asymptotic limit. We distinguish two regimes:
In the case of moderate confinement the width ε of the waveguide shrinks slower
than the range µ of the interaction and b =

∫
Ωf

|χ(y)|4 d2y ·
∫
R3 w(r) d

3r, where

Ωf is the cross section of the waveguide and χ the ground state of the 2d-Dirichlet
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Laplacian on Ωf . In the case of strong confinement the width ε of the waveguide
shrinks faster than the range µ of the interaction and b = 0. The geometric po-
tential Vgeom(x) depends on the geometry of the waveguide and is the sum of two
parts. The curvature κ(x) of the curve contributes a negative potential −κ(x)2/4,
while the twisting of the cross-section relative to the curve contributes a positive
potential. Our analysis is based on an approach to mean-field limits developed by
Pickl [1].
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