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Abstract. The workshop “Geophysical Fluid Dynamics” addressed recent
advances in analytical, stochastic, modeling and computational studies of
geophysical fluid models. Of central interest were the reduced geophysical
models, that are derived by means of asymptotic and scaling techniques,
and their investigations by methods from the above disciplines. In partic-
ular, contributions concerning the viscous and inviscid geostrophic models,
the primitive equations of oceanic and atmospheric dynamics, tropical atmo-
spheric models and their coupling to nonlinear dynamics of phase changes
moisture, thermodynamical effects, stratifying effects, as well as boundary
layers were presented and discussed.

Mathematics Subject Classification (2010): 76-XX, 86A10, 35-XX, 60Hxx.

Introduction by the Organisers

This workshop was aiming to bringing together experts from diverse scientific dis-
ciplines with common interest in geophysical fluid dynamics and to encompass
their scientific exchange concerning their investigation of various classes of geo-
physical fluid models. These models have been of great scientific interest due to
the complex structure of their underlying coupled nonlinear dynamics. In partic-
ular, numerous scientific tools from mathematical analysis, stochastic dynamics,
modeling and computational sciences have been developed to examine their quan-
titative and qualitative behaviours. As in the case of the Navier-Stokes equations,
some of these detailed geophysical models still lack, however, basic understanding
concerning global existence and uniqueness of smooth solutions. In oceanic and
atmospheric dynamics, as well as in the theory of boundary layers, one often tends
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to derive and investigate reduced simplified models, whose derivations are based
on formal asymptotic procedures. These simplified models bring up difficult an-
alytical and physical questions concerning, e.g., the well-posedness, validity and
stability of these models for the relevant spatial and temporal scales. Notably,
identifying these relevant spatial and temporal scales of validity is already a ma-
jor mathematical challenge. Thus, a major goal of this workshop was to bridge
between recent theoretical advances, in those branches of mathematics relevant
to geophysical flows, and the physical understanding of the observed underlying
phenomena in those flows; and in particular to judge and validate the reliability
of these simplified models for the relevant physical spatial and temporal scales of
their derivation.

The mathematical investigation of these models involves many modern math-
ematical tools ranging from nonlinear partial differential equations and their sto-
chastic counter parts, harmonic analysis, dispersive estimates and transport theory
to evolution equations. As a first step one aims to prove the global well-posedness
of the underlying equations. This represents also an important step in the devel-
opment of numerical and computational schemes for simulation of these models.

Of particular interest in this context was also the understanding and analysis
of boundary layers, such as Prandtl’s boundary layer model. Furthermore, since
certain solutions of the inviscid primitive equations exhibit blow up in finite time,
several attempts were made to examine whether the fast rotation term, due to
Coriolis force, has a stabilizing effect on these solutions that allows to prolong its
life-span and whether certain smoothing techniques, which work well for the three-
dimensional Euler equations, may be transferred to this setting. Moreover, modern
tropical atmospheric moisture models, taking into account also phase transitions
of the clouds’ vapour/water, require the balance laws for energy and entropy.
Rigorous verifications of the fact that these models are consistent with the second
law of thermodynamics are important. Finally, recently developed downscaling
data assimilation algorithms for weather and climate predications were considered.

The meeting ignited lively and productive interaction and exchange of ideas
and was thus a very inspiring experience. Each lecture was allocated 40 minutes
followed by a very lively and interactive discussion of 20 minutes. Moreover, the
vibrant presence of young participants was very visible during the meeting. In
particular, they were encouraged to present their work in a special evening session,
which was fully attended by all participants.

In summary, the meeting brought together an excellent balanced mixture of
scientist from the various scientific communities. In particular, several leaders
from different disciplines met for the first time in person. Notably, the age, gender
and geographic diversity of the participants was more than adequate.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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László Székelyhidi Jr.
K41 solutions of the Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454

Ryo Takada (joint with Matthias Hieber, Alex Mahalov)
Time periodic initial value problem for rotating stably stratified fluids . . 1455

Joseph Tribbia
Turbulent Mixing and Atmospheric Predictability . . . . . . . . . . . . . . . . . . . . 1455

Amjad Tuffaha (joint with Igor Kukavica, Vlad Vicol, Fei Wang)
On the Incompressible Euler Equation with a Free Boundary . . . . . . . . . . 1456

Geoffrey K. Vallis
Simple Models of Convection and Convective Parameterization . . . . . . . . 1456

Beth A. Wingate
Think Globally, Act Locally: Numerical analysis with finite time scale
separation in oscillatory PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457

Mohammed Ziane (joint with M. Coti Zelati, A. Huang, I. Kukavica, R.
Temam)
The Mathematical theory of the primitive equations in the presence of
humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458



Geophysical Fluid Dynamics 1427

Abstracts

The initial value problem for the Euler equations of incompressible

fluids viewed as a concave maximization problem of optimal transport

type

Yann Brenier

Let us fix a time interval [0, T ] and denote by D the periodic box D = Rd/Zd.
The Euler model of an incompressible fluid of unit mass density, moving in D
during the time interval [0, T ], without external forces, assumes the existence of a
square-integrable, divergence-free vector field V , over [0, T ]×D, such that (written
in coordinates, with the usual implicit summation over repeated lower and upper
indices) ∂tV

i + ∂j(V
iV j) is a gradient field. In weak form, this means

(1)

∫

[0,T ]×D

∂iϕ(t, x)V
i(t, x)dxdt = 0,

for all smooth function ϕ over [0, T ]×D, which encodes that V is divergence-free
and

(2)

∫

[0,T ]×D

(

∂jAiV
iV j + ∂tAiV

i
)

(t, x)dxdt +

∫

D

P i
0(x)Ai(0, x)dx = 0,

for all smooth divergence-free vector fields A on [0, T ] × D, vanishing at t = T ,
which includes (weakly) the initial condition that V is P0 at time t = 0, P0 being
a given L2 divergence-free vector field on D.

Our goal is to solve, by a concave maximization method, the initial value prob-
lem for the Euler model with as initial condition a fixed divergence-free vector field
P0, square integrable over D and of zero spatial mean. The idea is very simple:
we try to find a divergence-free vector field V , weak solution to the Euler equation
with initial condition P0, of minimal kinetic energy. This leads to the saddle-point
problem

(3) I[P0] = inf
V

sup
A,ϕ

∫

[0,T ]×D

1

2
|V |

2
+ ∂jAiV

iV j + (∂tAi + ∂iϕ)V
i +

∫

D

P i
0Ai(0, ·)

over all L2 vector fields V on [0, T ] ×D, all smooth divergence-free vector fields
A vanishing at t = T , and all smooth real functions ϕ. We may interpret (A,ϕ)
as Lagrange multipliers for the constraint that V is a weak solution to the Euler
equations with initial condition P0, in the sense of (1,2). Investigating problem (3)
looks silly since the Euler equation to be solved is already included as a constraint!
Furthermore, for smooth solutions of the Euler equation on the periodic box, the
kinetic energy is constant in time and, therefore, depends only on the data P0, so
that...there seems to be nothing to minimize! However, for a fixed initial condi-
tion, weak solutions are not unique and the conservation of energy is generally not
true as well known since the celebrated results of Scheffer, Shnirelman, De Lellis
and Székelyhidi [4, 5, 3]. Therefore, since, in addition, weak solutions always exist,
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following Wiedemann [7], the minimization problem is definitely not meaningless.

In this talk, we mostly investigate the dual problem obtained by exchanging the
infimum and the supremum in (3), leading to a concave maximization problem
which can be shown to be solvable. The resulting maximization problem roughly
reads

sup
(E,B)

−

∫

[0,T ]×D

E · (Id + 2B)−1 · E + 2P0 ·E

where Id denotes the d× d identity matrix, E and B are respectively valued in Rd

and in the space of d× d symmetric matrices, and subject to

∂tB = LE, B(t = T, ·) = 0,

L being a suitable first-order constant coefficient (pseudo-)differential operator on
D, namely (in coordinates)

Lk
ijEk =

1

2
(∂jEi + ∂iEj) + ∂i∂j(−△)−1∂kEk, where ∂

k = δkj∂j and △ = δij∂i∂j .

Surprisingly enough, this problem looks very similar to the Monge optimal mass
transport problem with quadratic cost in its so-called ”Benamou-Brenier” formu-
lation [2, 1, 6], which would read

inf
ρ,Q

∫

[0,T ]×D

Q · ρ−1 ·Q,

where ρ and Q are respectively valued in R+ and Rd and subject to ∂tρ+∂iQ
i = 0,

while ρ is prescribed at t = 0 and t = T . Presumably, the maximization problem
can be treated by the same numerical method as the one used in [2]. Next, we check
that any local smooth solution of the Euler equations can be recovered, from the
maximization problem, for short enough times T . Finally, we make a connection
between the maximization problem and the theory of sub-solutions to the Euler
equations which has recently attracted a lot of interest after the celebrated work
of De Lellis and Székelyhidi [3] in the framework of Convex Integration theory.
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Global solutions to the isentropic compressible Navier-Stokes

equations with a class of large initial data

Daoyuan Fang

(joint work with Ting Zhang, Ruozhao Zi)

In this talk, we consider the global well-posedness problem of the isentropic com-
pressible Navier-Stokes equations in the whole space RN with N ≥ 2. In order to
better reflect the dispersive property of this system in the low frequency part, we
introduce a new solution space that characterizes the behaviors of the solutions
in different frequencies, and prove that the isentropic compressible Navier-Stokes
equations admit global solutions when the initial data are close to a stable equi-
librium in the sense of suitable hybrid Besov norm. As a consequence, the initial

velocity with arbitrary Ḃ
N
2 −1
2,1 norm of potential part P⊥u0 and large highly os-

cillating are allowed in our results. The proof relies heavily on the dispersive
estimates for the system of acoustics, and a careful study of the nonlinear terms.
This is the joint work with Ting Zhang and Ruozhao Zi.

Continuous data assimilation algorithms for geophysical models

Aseel Farhat

(joint work with Michael Jolly, Evelyn Lunasin, Edriss S. Titi)

Analyzing the validity and success of a data assimilation algorithm when some
state variable observations are not available is an important problem meteorology
and engineering. In this talk, we will present an improved continuous data assimi-
lation (downscaling) algorithm for few fluid dynamics models that does not require
observations of all evolving state variables of the system. Rather than inserting the
observational measurements directly into the equations, a feedback control term is
introduced that forces the model towards its reference solution. For the 2D incom-
pressible Bénard convection problem, for example, our algorithm uses only velocity
measurements (temperature measurements are not necessary). In the case of the
3D Planetary Geostrophic model, our algorithm requires observations of temper-
ature only. The choice of the determining state variables for different dissipative
fluid models depends on the structure of the equations in each model.

The talk is based on joint works with Michael Jolly (Indiana University), Eve-
lyn Lunasin (The United States Naval Academy), and Edriss S. Titi (Weizmann
Institute of Science and Texas A&M University).
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On the motion of compressible inviscid fluids driven by stochastic

forcing

Eduard Feireisl

(joint work with Dominic Breit, Martina Hofmanová)

We consider the (barotropic) Euler system describing the motion of a compress-
ible inviscid fluid driven by a stochastic forcing. Adapting the method of convex
integration we show that the initial value problem is ill-posed in the class of weak
(distributional) solutions. Specifically, we find a sequence τM → ∞ of positive
stopping times for which the Euler system admits infinitely many solutions origi-
nating from the same initial data. The solutions are weak in the PDE sense but
strong in the probabilistic sense, meaning, they are defined on an a priori given
stochastic basis and adapted to the driving stochastic process.

References

[1] D. Breit, E.Feireisl, M. Hofmanová, On solvability and ill-posedness of the compressible
Euler system subject to stochastic forces, Arxiv preprint 2017

Could noise regularize 2D Euler equations?

Franco Flandoli

In recent years it has been discovered that suitable noise regularizes some classes
of PDEs (beyond the well-known fact that regularizes ODEs: recall for intance [13]
where it is proved well -posedness when the drift is just measurable bounded). By
the sentence ”regularization by noise” we mean that an equation with noise has
better well-posedness properties compared to the same equation without noise; for
instance, uniqueness may be restored by noise, or singuralities may be avoided.
The more succesfull classes are linear transport type equations with irregular coef-
ficients, both scalar [7] and vector valued [9]: with noise they have uniqueness and
no-blow-up properties under weaker assumptions on the coefficients compared to
the deterministic case. For nonlinear problems, restricting the attention to prob-
lems related to fluid-dynamics, one could mention for instance the better unique-
ness properties of dyadic models with noise [1], or in a different direction some
results for 3D Navier-Stokes equations [4], [10] (but in the present discussion we
mainly concentrate on inviscid problems).

Concentrating on the particular case of the 2D Euler equations on the torus
T2 = R2/Z2, we have investigated the properties of the equation, for the vorticity
ω (and velocity u)

∂tω + u · ∇ω +∇ω ◦ ξ = 0

div u = 0, ∇⊥u = ω.

The noise ξ is chosen in transport form, similarly to [7], [9] and other references. To
avoid the counterexample to regularization by noise described in [7], the noise must
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be relatively complex from the view-point of the spatial structure: for instance,
on

ξ (t, x) :=
∑

k∈Z2\{0}

|k|−α ek (x)
dW k

t

dt

where ek (x) =
k⊥

|k| e
ik·x and W k

t are independent Brownian motions. One can give

a rigorous meaning to this equation and prove several theorems, for instance the
existence in Lp [3] and the uniqueness in L∞ [2] (for the vorticity ω); these are
generalizations of known results of the deterministic case. Is it possible to prove
more?

The first and only rigorous result deals with very particular solutions: the case
of point vortices

ωt (dx) =
∑

ωiδXi
t
.

In the deterministic case there are examples of initial configurations which lead to
collapse in finite time [11]; but for almost every initial configuration with respect
to the Lebsgue measure, no collapse occurs and solutions are global. Under the
previous noise (any α), it has been proved [8] that for every initial configuration
collapse does not occur, with probability one; see also [5].

Concerning the case of function-valued solutions, a description of a potential
approach by Girsanov transform, but still not applicable because of important dif-
ficulties, is given in [6]. In the talk given in Oberwolfach, the theory of Shnirelman
[12] has been discussed, in the case of noise. The results under noise shown in the
talk were not rigorous, just an heuristic indication. Recall that [12] constructs a
counterexample to uniqueness of weak solutions of Euler equations. The heuristic
result described in the talk is that Shnirelman’s construction seems to be appli-
cable also to the noise case as soon as α > 1. On the contrary, for α = 1, the
noise seems to produce an obstruction to the proof of [12], a moderate indication
that it could produce a regularization. The same noise, α = 1, emerges from the
Girsanov approach outlined in [6] and it is therefore proposed as an interesting
case for future investigations.
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Multiscale asymptotics and analysis of moist atmospheric flows

Sabine Hittmeir

(joint work with R. Klein)

Model reductions in meteorology by scale analysis are inevitable and therefore have
a long history in meteorology. The key technique for a systematic study of com-
plex processes involving the interaction of phenomena on different length and time
scales is multiple scales asymptotics. Of particular interest here are hot towers,
which are large cumulonimbus clouds that live on small horizontal scales having
a diameter of the order of one kilometer. It is common belief by now that these
hot towers are to a great extent responsible for the vertical heat transport into the
upper troposphere within the innertropical convergence zone. Due to their major
contribution to the energy transport it is extremely important to develop a good
understanding of their life cycles. Moreover these deep convective clouds consti-
tute the building blocks of intermediate scale convective storms, which we study in
a next step by incorporating the setting of organised convection into the multiscale
approach. This requires not only the introduction of coordinates allowing for an
individual tilt for each columnar cloud, but also new systematic averaging proce-
dures, which enable us to quantify the modulation of the larger scale flow by the
moisture processes in the small scale regions. This work is joint work with R. Klein.

While the just described multiscale asymptotics are purely formal, in collabo-
ration with R. Klein, J. Li and E. Titi, we also proceed further in the rigorous
analysis of the atmospheric flow models with moisture and phase transitions. We
study the global existence and uniqueness of solutions for the moisture balance
equations coupled to the thermodynamic equation building the basis for the above
expansions, where in a first step we assume the flow field to be given.
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Primitive Equations in L
p spaces and maximal regularity

Amru Hussein

(joint work with Yoshikazu Giga, Mathis Gries, Matthias Hieber, Takahito
Kashiwabara)

The question of the well-posedness of the primitive equations Lp spaces is ad-
dressed from the perspective of maximal Lq-regularity. Maximal Lq-regularity for
the linearized system one can be used to study many quasi-linear and semi-linear
evolution equations. Here, focusing on the velocity equation, an explicit represen-
tation of the linearized Stokes-type operator in Lp as perturbation of the Laplacian
is derived which proves maximal Lq-regularity. Estimating the non-linearity one
can prove existence of strong solutions for arbitrarily large initial data in the Besov

(trace space) B
2/p
pq for p, q ∈ (1,∞) with 1/q+1/p ≤ 1 which can be extended glob-

ally using an H2 a priori bound. That solutions are smoothened instantaneously
to become real analytic follows directly methods used in maximal regularity theory.
The flexibility of the method allows to include various boundary conditions. We
aim to use this result also for our study of the limit case p = ∞ when constructing
reference solutions.

References
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On the semigroup approach to the primitive equations

Takahito Kashiwabara

(joint work with Y. Giga, M. Gries, M. Hieber, A. Hussein)

1. Formulation of primitive equations as a parabolic problem

We are concerned with the primitive equations which describe large-scale motion
of atmosphere or ocean:

(1)



















∂tv + u · ∇v −∆v +∇Hπ = 0 in Ω× (0, T ),

∂zπ = 0 in Ω× (0, T ),

div u = 0 in Ω× (0, T ),

v(0) = a in Ω.

Here, Ω = (0, 1)2× (−h, 0) =: G× (−h, 0) is a box domain; u = (v, w) = (v1, v2, w)
denotes the three-dimensional velocity, and v and w are its horizontal and vertical
components, respectively; π means the pressure. Differential operators are also
separated into horizontal and vertical components, e.g., ∇ = (∂x, ∂y, ∂z), ∇H =
(∂x, ∂y).
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We equip system (1) with the following boundary conditions:

∂zv = w = 0 on Γu,

v = w = 0 on Γb,

v, w, p are periodic on Γl,

where Γu = G × {z = 0},Γb = G × {z = −h},Γl = ∂G × [−h, 0] denote the top,
bottom, and lateral parts of the boundary, respectively.

Local-in-time strong solvability of (1) for a ∈ H1(Ω)2 is established by [2] in
the L2-framework. Later, in [1] it is shown that the local strong solution can be
extended globally in time. In this study, we extend those results to the Lp-setting
by adopting an analytic semigroup approach.

In order to formulate (1) as a semilinear parabolic equation, we first eliminate
w as

w =

∫ 0

z

divHv dζ,

which follows from (1)3 and w|Γu = 0. Since w|Γb
= 0, we obtain the constraint

divH v̄ = 0, where v̄ =
∫ 0

−h v dz stands for the vertical average. Then, regarding π

as a function defined in the 2D domain G, we rewrite (1) as

(2) ∂tv + v · ∇Hv +

∫ 0

z

divH dζ ∂zv −∆v +∇Hπ = 0, divH v̄ = 0.

Next we incorporate the constraint divH v̄ = 0 into a functional analytical set-
ting. For this we introduce the hydrostatic Helmholtz projecter P : Lp(Ω)2 →
Lp(Ω)2 by Pf = f − ∇Hq, where q is the weak solution of ∆Hq = divH f̄ . Then
P becomes a bounded linear operator in Lp(Ω)2 for p ∈ (1,∞), and we obtain

X := Range(P ) = {v ∈ Lp(Ω)2 | divH v̄ = 0 in G, v̄ · ν∂G is anti-periodic on ∂G}.

We further define the hydrostatic Stokes operator by Av = −P∆v with

D(A) = {v ∈W 2,p
per(Ω)

2 | divH v̄ = 0, ∂zv|Γu = v|Γb
= 0},

where W 2,p
per(Ω) denotes the W

2,p(Ω)-functions with the periodic boundary condi-
tions on Γl.

Using A, one can formulate (2) as a semilinear parabolic equation

∂tv +Av = Fv := −P (v · ∇Hv +

∫ 0

z

divH dζ ∂zv), v(0) = a,

which is formally equivalent to the following integral equation by the Duhamel
formula:

(3) v(t) = e−tAa+

∫ t

0

e−(t−s)AFv(s) ds, ∀t ≥ 0.

Below we construct a solution of (1) based on this representation (such solution is
called a mild solution of PDEs).
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2. Main result

The operator calculus e−tA appearing in (3) is well-defined as an analytic semi-
group, which follows from analysis of the resolvent problem for the linear primitive
equations.

Theorem 1. Let λ ∈ C such that | argλ| < π − ǫ with ǫ > 0 and let p ∈ (1,∞).
Then, for all f ∈ X there exists a unique solution of λv +Av = f satisfying

|λ|‖v‖Lp(Ω) + ‖v‖D(A) ≤ C‖f‖Lp(Ω).

Corollary 2. For 1 < p <∞, A generates an analytic semigroup e−tA in X.

Now we state local-in-time well-posedness result, which is proved by the cel-
ebrated Fujita–Kato method. For this we need a complex function space Vθ :=
[X,D(A)]θ for 0 ≤ θ ≤ 1 to describe intermediate regularity between X and D(A).
The most important property of Vθ is ‖e−tAa‖Vθ1+θ2

≤ Ct−θ1‖a‖Vθ2
.

Theorem 3. Let p ∈ (1,∞) and a ∈ V1/p. Then, for some T ∗ there exists a
unique solution of (3) in 0 ≤ t ≤ T ∗ such that

v ∈ C([0, T ∗];V1/p) ∩ C
1((0, T ∗];X) ∩C((0, T ∗];D(A)),

with t1/2−1/(2p)‖v(t)‖V1/2+1/(2p)
→ 0 as t→ 0. Furthermore,

T ∗ ≥ (C‖a‖V1/p+ǫ
)−1/ǫ, ∀ǫ ∈ (0, 1− 1/p].

Remark 1. We may characterize V1/p as

V1/p = {v ∈ H2/p,p
per (Ω)2 | divH v̄ = 0, v|Γb

= 0}.

If in particular p = 2, then this essentially agrees with the space for initial values
utilized in [1, 2].

To obtain global-in-time well-posedness, we require an a priori bound for the
solution of (1) in the H2-norm. For the proof we basically follow the idea of [1], but
the argument becomes more involved because of the Dirichlet boundary condition
on Γb.

Theorem 4. Let v ∈ C1([0, T ];L2(Ω)2) ∩ C([0, T ];H2(Ω)2) be a solution of (1)
with a ∈ H2(Ω)2. Then there exists a continuous function B = B(T, ‖a‖H2(Ω))
such that

max
0≤t≤T

‖v(t)‖H2(Ω) ≤ B(T, ‖a‖H2(Ω)).

Combining Theorems 2 and 3, we are able to conclude our main theorem.

Theorem 5. Let p ∈ (1,∞) and a ∈ V1/p. Then, there exists a unique solution
of (1) such that

v ∈ C([0,∞);V1/p) ∩ C
1((0,∞);X) ∩C((0,∞);D(A)).

Moreover we have exponential decay as t→ ∞ : ‖v(t)‖D(A) ≤ Ce−ct.
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For the detailed proofs of the theorems above, we refer to our papers [3, 4].
Finally, let us mention our ongoing work where we study the endpoint case cor-
responding to p = ∞. The difficulty in this case is that hydrostatic Helmholtz
projector P is no longer bounded in L∞-type spaces. However, we expect that the
analytic-semigroup approach may also be applicable to this case. In particular we
believe that a unique strong solution may be constructed for a ∈ C(G;Lp(−h, 0)).
We would like to report more details of this result elsewhere.
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Clouds and the Climate System

Boualem Khouider

Convective clouds in the tropics are organized on multiple spatial and tempo-
ral scales, ranging from the convective cell of 1-10 km and a few hours to cloud
clusters and super-clusters associated with mesoscale to planetary scale wave-like
disturbances with life times of a few days to 1-2 months. Global climate mod-
els (GCM) used for climate and weather predictions solve the equations of fluid
motion on grids ranging from 20 to 200 km on which the multiscale processes as-
sociated with tropical clouds and the corresponding interactions across scales are
not resolved but represented by sub-grid models known as parametrization. This
is a very challenging mathematical modeling problem and current GCMs poorly
represent the rainfall patterns and climate variability associated with organized
tropical convection. In this talk, I give an overview of this difficult problem and
discuss the ideas behind the stochastic multicloud model which aims at designing
a parameterization based on the theory of particle interacting systems to represent
individual clouds of various types and their complex interactions with each other
and with the climate system. Moreover, I show a few results of its successful im-
plementation in a state of the art climate model to demonstrate the importance of
using such a mathematical framework to represent clouds in climate and weather
prediction models.
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Analysis of a three-time-scale asymptotic problem in atmospheric fluid

dynamics

Rupert Klein

(joint work with Didier Bresch, Martin Papke, Dennis Jentsch)

The analogue of the incompressible flow equations for atmospheric motions are
fluid flow models of the “soundproof” type, usually called “anelastic” [1, 2] or
pseudo-incompressible [3]. In the simplest setting of flow in a non-rotating system
with realistic background stratification of the entropy (potential temperature),
these flow models support advection and internal gravity waves as the main flow
modes while sound waves are suppressed owing to a velocity divergence constraint.
The full compressible flow equations do support sound propagation, of course, and
the challenge in systematically deriving any of the soundproof models from the
full compressible flow equations consists of a model reduction from three to the
remaining two active modes.

In addition, for stratifications of potential temperature found in the troposphere
(lowest ∼ 10 km of the atmosphere), sound, internal waves, and advection all
feature asymptotically separated characteristic time scales, [4]. After a suitable
nondimensionalization, sound waves have characteristic time ts = O(ε), where ε
is the Mach number, the internal wave time scale is intermediate with ti = O(εν)
with 0 < ν < 1, and the advective time scale is slowest with ta = O(1). Therefore,
in removing the very fast sound modes by asymptotic arguments while leaving
internal waves and advection intact one ends up with an equation system that
still features the fast internal wave and slow advection time scales ti = O(εν) and
ta = O(1), and can therefore not be understood as “the ε = 0 limit equations”. As
a consequence, a systematic justification of these soundproof limit models in such
a realistic scenario cannot proceed along established lines by proving convergence
of solutions of the full equations to those of some ε-free limit equation system in
a suitable function space.

This presentation suggested the alternative route of showing that the full com-
pressible and soundproof flow models have the same asymptotic behavior over the
slow advective time scale. To this end, arguments from [4] were recalled that pro-
vide a formal asymptotic reasoning and reveal that the internal waves of the full
compressible and soundproof models stay asymptotically close in spacial structure
and phase over advective time scales if 0 ≤ ν < 2/3.

In more recent work, presented last, we succeeded to demonstrate that the fast,
non-constant coefficient linear subsystem of the full compressible equations that
describes the propagation of sound and internal waves renders solutions controlled
in arbitrary Hs Sobolev norms provided the initial conditions are suitably pre-
pared. The key trick in overcoming the difficulty associated with non-constant
coefficients relies on proving “near orthogonality” of eigenmodes of the fast linear
system for large differences of the mode numbers.

It was shown furthermore, that acoustic and internal wave modes cannot res-
onate with each other for sufficiently small ε, and that the fast linear subsystem of
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the compressible equations feature a discrete spectrum. With these preliminaries,
a rigorous proof of the validity of the inviscid pseudo-incompressible equations as
a model for sound-free compressible motions in the atmosphere seems in reach.
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On Ocean Climate Models: Numerics, Physics and A Speculation

Peter Korn

The problem of modelling the circulation of the global ocean with its mathemat-
ical, physical and computational aspects is studied. After a brief review of the
evolution of the field of ocean modelling, where the close connection to the evolu-
tion of high-performance computing is emphasized, we highlight the importance
of efficient algorithms for the discretization of the partial differential equations of
ocean dynamics. The quest for efficient discretizations on modern computing ar-
chitectures has created a paradigm shift from ”structured” grids with rectangular
longitude-latitude cells towards ”unstructured grids”. The reason is that struc-
tured grids create on the sphere an inhomogeneous tessellation which impedes
the computational performance, while a homogenous tessellation of the sphere
necessarily implies an unstructured grid, composed for example of triangular or
hexagonal/pentagonal grid cells.
The dynamic equations of the ocean are the so-called ”primitive equations” that
govern the motion of an incompressible fluid under the hydrostatic and Boussi-
nesq approximation on the sphere and with a free surface. The discretization
of these equations on unstructured grids poses new challenges to numerical geo-
physical fluid dynamics and has motivated new structure-preserving discretization
approaches. A particular discretization on a triangular grid with a staggered dis-
tribution of variables was described [1]. The staggering (Arakawa C-type, also
known as Marker-and-Cell approach) requires reconstructions to calculate quanti-
ties such as temperature fluxes at locations where there originally are not defined.
These reconstructions affect crucially the properties of the discrete model. The key
result of the presented discretization approach was that a discrete Hilbert space
structure, provided by the class of admissible reconstructions, introduced in [1],
allows to preserve important conservation laws [4], and enables us to control an
inevitable computational mode while it leaves the favourable dispersion properties
of the C-grid nearly intact [3]. Our discretization us implemented in the ocean
general circulation model ICON-O and formulates the discrete ocean equations
in weak form and relies on admissible reconstructions to create a discrete Hilbert
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space structure.
The oceanic PDEs are supplemented by subgrid scale closures that take the spe-
cific physical conditions of the ocean into account. We consider isoneutral diffusion
and the eddy parametrization of Gent-McWilliams (see e.g. [5]). Isoneutral dif-
fusion is motivated by the observational evidence that mixing in the ocean takes
place within isoneutral surfaces and not across them. While this is satisfied by
isopycnal model by construction it has to be parametrized by ocean models using
a z-coordinate as vertical axis. The eddy parametrization by Gent-McWilliams
intends to capture the fact that mesoscale eddies advect tracers along isoneutral
surfaces and reduce potential energy by flattening the isoneutral surfaces. The
physically consistent discretization of these operators poses subtle numerical prob-
lems. We presented a discretization of isoneutral diffusion and eddy parametriza-
tion based on a variational formalism that has evolved naturally from the dis-
cretization methodology for the ocean primitive equations described above and
that agains benefits from the discrete Hilbert space structure [2].
Results from numerical experiments were shown that support our numerical anal-
ysis and that in addition demonstrate the computational performance of the
model that makes is a suitable instrument to address ocean modelling problems
at high-resolutions. We conclude with a speculative outlook that within the next
decade a computational barrier will be reached that -within the existing hard-
ware technology- will not allow to further increase the spatial resolution of ocean
models and at the same time run them for the long integration times that are
demanded by the world ocean circulation. Possible remedies of the computational
barrier include time-parallel algorithms or may create an increasing trend towards
stochastic modelling approaches.
Open problems in this field are the lack of understanding of the impact of differ-
ent discrete Hilbert space scalar products on the model dynamics, the extension
of structure-preserving discretizations to higher-order accuracy and stochastic en-
abled structure-preserving numerical schemes.
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Local existence and blowup results for the Prandtl equations

Igor Kukavica

(joint work with Vlad Vicol, Fei Wang)

In 1980, van Dommelen and Shen provided a numerical simulation that predicted
generation of a singularity in the Prandtl boundary layer equations from a smooth
initial datum, for a nonzero Euler background flow. We provide a proof of the
blowup by showing that a quantity related to the boundary layer thickness becomes
infinite in a finite time. We will also briefly survey available local and global
existence results and connections with the vanishing viscosity limit. The blowup
result is joint with Vlad Vicol and Fei Wang.

Global well-posedness of the anisotropic primitive equations

Jinkai Li

(joint work with Chongsheng Cao, Edriss S. Titi)

The primitive equations are derived from the Navier-Stokes equations by applying
the Boussinesq and hydrostatic approximations. Due to the strong turbulence in
the horizontal direction of the oceanic and atmospheric dynamics, the horizontal
viscosity, which is understood as the eddy viscosity, is assumed to be positive.
Noticing that the primitive equations with full dissipation exist a unique global
strong solution, while the inviscid primitive equations may develop finite time
singularities, it is natural to investigate the global well-posedness or finite time
blow-up of the primitive equations with partial viscosity or partial diffusivity.
In this talk we show that the primitive equations with only horizontal viscosity
have a unique global strong solution, as long as one still has either horizontal or
vertical diffusivity. These are joint works with Chongsheng Cao and Edriss S. Titi
[1, 2, 3, 4, 5].
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On Prandtl expansion for the Navier-Stokes flows in the half plane

Yasunori Maekawa

In this talk we give a rigorous justification of the classical Prandtl boundary layer
expansion around the monotone and concave boundary layer shear flows in a
Gevrey class. As a key step, we establish the estimate for the linearized system
which is considered to be optimal in view of the well-known Tollmien-Schlichting
instability.

Optimal mixing by incompressible flows

Anna L. Mazzucato

(joint work with Giovanni Alberti, Gianluca Crippa)

We consider a passive scalar ρ advected by an incompressible flow, that is, a
solution of the linear transport equation:

(1) ∂tρ+ u · ∇ρ = 0,

where u is a given, divergence-free vector field in Rd or Td. We study Lagrangian
solutions of the initial-value problem for (1), that is, solutions that can be obtained
by transporting the initial condition ρ0 with the flow X(x, t) of u, i.e.,

ρ(x, t) = ρ0(X
−1(x, t)),

when the flow exists at least a.e. .
Properties of the flow are reflected in how well it mixes the scalar, as measured

by the decay in time of a lengthscale, the mixing length. In two space dimensions,
a functional mixing length can be defined in terms of the negative homogeneous
Sobolev norm ‖ρ(·, t)‖Ḣ−1 . A related geometric mixing length can be introduced
in terms of rearrangements of sets. We discuss examples [1, 2] of velocity fields u
with Sobolev regularityW 1,p, 1 ≤ p ≤ ∞ that achieve the theoretical rate of decay
of the mixing scale, established in [3, 5], for a specific datum ρ0. An independent
construction was given in [6].

Our examples are geometric in flavor and rely on the construction of divergence-
free vector fields that realize the evolution of sets preserving the area of their
connected components, plus appropriate scaling arguments. These examples in
particular show that regular Lagrangian flows with velocity field in W 1,p with
arbitrary index 1 ≤ p < ∞ can compress a segment to a point or expand a
point to a segment in finite time. The associated ODEs are not uniquely solvable
pointwise and, as a matter of fact, the flow can be discontinuous in Sobolev spaces
(for a related example see [4]).
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Analysis of a feedback-control data assimilation algorithm

Cecilia F. Mondaini

(joint work with Ciprian Foias, Edriss S. Titi)

The general idea of data assimilation is to obtain a good approximation of the
state of a certain physical system by combining observational data with dynamical
principles inherent to the underlying mathematical model. It is widely used in
many fields of geosciences, mainly for oceanic and atmospheric forecasting.

The main difference among various data assimilation algorithms lies on the type
of method used for combining the observations with the theoretical model. One of
these methods consists in adding a term to the theoretical model which gradually
relaxes the solution towards the observations. This type of approach is called
nudging or newtonian relaxation, and has been considered by many researchers in
the past few decades ([7, 8, 9, 10]). In [1], the authors consider a similar nudging
approach, but in a much more general context, which is applicable to a large class
of dissipative PDEs and observational measurements. Their motivation comes
from ideas in control theory, and the term which is added to the original model is
called the feedback-control term.

As a paradigm, the authors in [1] consider a forecast model given by the 2D
incompressible Navier-Stokes equations

(1)
∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f , ∇ · u = 0.

where u = (u1, u2) and p are the unknowns, and represent the velocity vector
field and the pressure, respectively; while f and ν are given, and represent the
mass density of volume forces applied to the fluid and the kinematic viscosity
parameter, respectively. Thus, u is called the reference solution, and its exact
value is unknown.

Assuming continuous in time and error-free measurements, the algorithm con-
sists in finding a solution v on [t0,∞) of the following problem

(2)
∂v

∂t
− ν∆v + (v · ∇)v +∇p = f − β(Ih(v) − Ih(u)),

(3) v(t0) = v0,

where β is the relaxation (nudging) parameter; h is the spatial resolution of the
observations; Ih is a spatial interpolation operator; and v0 is an arbitrary initial
condition. The purpose of the second term on the right-hand side of (2), the
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feedback-control term, is to force the coarse spatial scales of the approximating
solution v toward those of the reference solution u corresponding to the measure-
ments, while the viscosity term stabilizes the fine spatial scales and any spill-over
on these scales caused by the feedback term. Indeed, the authors in [1] show that,
within this idealized scenario of continuous in time and error-free measurements
and under suitable conditions on β and h, v converges exponentially to u as time
goes to infinity, in an appropriate norm.

Aiming at adapting the algorithm introduced in [1] to a more realistic situation,
in the work [3] with C. Foias and E. Titi, we constructed a new data assimilation
algorithm employing measurements collected discretely in time, which may be
contaminated by systematic errors. We prove that, under suitable conditions on
the spatial resolution, the time step between successive measurements and the
relaxation parameter, the approximating solution converges exponentially to the
reference solution up to a term which depends on the size of the errors. Also,
we studied the stationary statistical behavior of our algorithm, obtaining results
that yield information on averages of physical quantities of the unknown reference
solution by using computable averages of the same quantities associated to the
approximating solution. Such statistical approach has a great practical interest,
since most applications of data assimilation are for turbulent flows, where one is
usually interested in averages of the associated physical quantities due to their
more regular behavior in comparison to instantaneous values.

In the work [4], we analyze the data assimilation algorithm introduced in [1]
from a numerical analysis viewpoint. More specifically, we obtain an analytical
estimate of the error committed when numerically solving the approximate model
given in this data assimilation algorithm by using a post-processing technique for
the spectral Galerkin method, inspired by the theory of approximate inertial mani-
folds ([2]). Most importantly, our results show that, under suitable assumptions on
the relaxation parameter and the spatial resolution of the observations, the error
estimate in this case is uniform in time, as opposed to previous results obtained
when applying the same post-processing technique to, e.g., the 2D Navier-Stokes
equations directly, where the error estimate grows exponentially in time ([5, 6]).
This important difference is justified due to the presence of the feedback con-
trol term, that stabilizes the large scales of the approximate solution. Although
we considered the 2D Navier-Stokes equations as a paradigm, our results apply
equally to other dissipative evolution equations.
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A drop of water

Piotr B. Mucha

(joint work with Raphael Danchin)

The talk presented a solution to an open problem stated by P.L. Lions in his
monograph concerning inhomogenous Navier-Stokes system in 90’. The subject is
the following system

(1)
ρt + v · ∇v = 0 in Ω× (0, T ),
ρvt + ρv · ∇v −∆v +∇p = 0 in Ω× (0, T ),
div v = 0 in Ω× (0, T )

with initial data for v, ρ – the velocity and density of the fluid.
The presented result proved that solutions initiated by initial density being a

characteristic function of a set, with H1 initial velocity are uniquely determined.
We use a method of the shift of integrability, which allows to control the change
of coordinates into the Lagrangian setting. The talk based on results joint with
Raphael Danchin (Paris).
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Stability analysis for Compressible Navier-Stokes equations: theory

and numerics

Antonin Novotny

(joint work with E. Feireisl, T. Gallouet, R. Herbin, R. Hošek, B.J. Jin, D.
Maltese, Y. Sun)

In the first part of the talk, we introduce the notion of relative energy functional
which measures a ”distance” of a weak solution to the compressible Navier-Stokes
equations to any other sufficiently smooth state of the fluid. We reformulate
the thermodynamic stability conditions for the compressible fluids in terms of
the relative energy inequality which describes the evolution of the relative energy
functional. This process relies very much on the structure of the equations. The
relative energy functional encodes most of the stability properties of the weak so-
lutions to the compressible Navier-Stokes equations.

In the second part of the talk, we adapt the above procedure to some FV/FE
and FV/FD numerical schemes calculating compressible flows in order to investi-
gate: 1) Uniform error estimates of the discrete numerical solution with respect
to a strong solution. 2) The uniform stability of these numerical schemes in the
low Mach number regime.

The first part of the talk is based on several joint papers with E. Feireisl with
contribution of B.J. Jin and Y. Sun. The second part of the talk is based on sev-
eral joint works with T. Gallouet, R. Herbin, D. Maltese and further contribution
of E. Feireisl and R. Hošek.

On the quasi-geostrophic equations on compact surfaces

Jan Prüss

We present a new approach to the quasi-geostrophic equations via the theory
of quasilinear parabolic evolution equations. We can offer a complete picture of
the dynamics in the so-called subcritical case, including the critical spaces for
this problem, with very simple proofs. Our approach is based on the theory of
semilinear parabolic evolution equations.

On two phase problem for the Navier-Stokes equations in the whole

space

Yoshihiro Shibata

Let Ω+ be a bounded domain in RN and Γ its boundary that is a smooth compact
hypersurface. Let Ω− = RN \ Ω+ and two different incompressible viscous fluids
occupy Ω±, respectively. Let Ω±t and Γt be the time evolution of Ω± and Γ
for t > 0. Let nt be the unit outer normal to Γt. Problem is to find domains
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Ω±t, velocities v± = (v1±, . . . , v±N ) and pressures p± satisfying the Navier-Stokes
equations:

(1)



























∂tv + (v · ∇)v −Div (µD(v) − pI) = 0, div v = 0 in
⋃

0<t<T

Ωt × {t},

[[µD(v) − pI]]nt = σH(Γt)nt, [[v]] = 0, VΓt = v · nt on
⋃

0<t<T

Γt × {t},

v|t=0 = v0, Ω±t|t=0 = Ω±.

Here, Ωt = Ω+t ∪ Ω−t, h = h± for x ∈ Ωt±, µ = µ± for x ∈ Ω±t, µ± being
positive constants representing viscosity coefficients, σ positive constant (coeffi-
cient of surface tension), H(Γt) the doubled mean curvature of Γt, VΓt the evo-
lution speed of Γt in the nt direction, I the N × N identity matrix, D(v) =
∇v+ ⊤∇v the doubled deformation tensor whose (i, j) component is ∂ivj + ∂jvi,
and [[f ]](x0) = lim

x→x0
x∈Ω+

f(x)− lim
x→x0
x∈Ω−

f(x), which is the jump quantity of f at x0 ∈ Γt.

This problem has been studied by the following authors:

• V. Denisova, V. A. Solonnikov: in the L2 frame work and the Hölder space
framework.
(Port.Math.,71(1)(2014), 1-24; J. Math. Sci. (N.Y.)185(5)(2012), 668–
686, etc.)

• J. Pruess, G. Simonett, et al: Lp maximal regularity and Local well-
posedness. Lp-maximal regularity + Spectral analysis for the Laplace-
Bertrami operator, and Global well-posedness in the container. (Interface
and Free boundaries, 12(2010), 311–345; Progress in NDE and their Appl,
80 (2011),507–540; Birkhäuser Monographs in Math. 2016, ISBN:978-3-
319-27698-4, etc.)

But, global well-posedness in unbounded domains has not yet been treated. In
this abstract, the two global well-posedness results are announced in the case that
σ = 0 and σ > 0.

First of all, we mention that Maximal Lp-Lq regularity for the two phase prob-
lem for the Stokes equations does hold in a uniformly C2 (σ = 0 case) or C3 (σ > 0
case) domain under the assumption that weak Neumann problem is uniquely solv-
able (cf. Pruess and Simonnet, Monographs mentioned above, and also Shibata
and Shimizu, JDE 251 (2) (2011), 373–419, Maryani and Saito, Diff. Int. Eqns.
30(1-2) (2017), 1–52, etc).

Thus, Local well-posedness holds. Here, it is important that p and q can
be chosen differently to prove Global well-posedness for free boundary problem
in unbounded domain. In fact, in the unbounded domain case, we can get only
polynomially decay for suitable Lq space norm of solutions, so that we have to
choose p rather large to guarantee the Lp summability in time, which will be seen
below.

Global wellposedness, σ > 0 case
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Let BR = {x ∈ R
N | |x| < R} and SR = {x ∈ R

N | |x| = r}. We assume that
Assumption 1 |Ω+| = |BR| = RNωN/n, where | · | denotes the Lebesgue measure
and ωN is the area of the unit sphere.

Assumption 2

∫

Ω

x dx = 0.

Assumption 3 Γ = {x = (R + ρ0(Rω))ω | ω ∈ S1} with given small function ρ0
defined on SR.

Let

Γt = {x = (R+ ρ(Rω, t))ω + ξ(t) | ω ∈ S1}

where ρ is a unknown function and ξ(t) is the barycenter point of the domain Ωt

defined by

ξ(t) =
1

|Ω+|

∫

Ω+t

x dx.

Assume that Ω+ ⊂ BR with a large constant R > 0. Let L ≥ 3R. Given

ρ ∈ W
3−1/q
q (SR), let H(ξ, t) ∈ H3

q (ḂL) be a function such that H |SR = R−1ρ,

‖H‖H2
q (ḂL) ≤ C‖ρ‖

W
2−1/q
q (SR)

, and ‖H‖H3
q (ḂL) ≤ C‖ρ‖

W
3−1/q
q (SR)

, where ḂL =

BL \ SR.
Let ϕ ∈ C∞

0 (RN ) such that ϕ(x) = 1 for |x| ≤ L−2 and ϕ(x) = 0 for |x| ≥ L−1.
We use the Hanzawa transform defined by

x = eh(y, t) = y + ϕ(y)H(y, t)y + ξ(t) for y ∈ BR.

Let

u(y, t) = v ◦ eh, q(y, t) = p ◦ eh −
(N − 1)σ

R
,

Ωt = {x = y + ϕ(y)H(y, t)y + ξ(t) | y ∈ BR},

Γt = {x = (R+ ρ(Rω, t))ω | ω ∈ S1}.

And then, problem (1) is transformed to

(2)











































∂tu−Div (µD(u) − qI) = F (u, H) in Ω× (0, T ),

divu = Fd(u, H) = divFd(u, H) in Ω× (0, T ),

[[µD(u) − q]]ω − σ(BRρ)n = G(u, ρ) in SR × (0, T ),

[[u]] = 0 in SR × (0, T ),

∂tρ− n · Pu = D(u, ρ) on SR × (0, T ),

(u, ρ)|t=0 = (u0, ρ0) on Ω× SR.

Here, Ω = BR ∪BR with BR = {x ∈ RN | |x| > R}, RN = Ω ∪ SR,

BRρ = R−2(∆S1 +N − 1)ρ, Pu = u−
1

|BR|

∫

BR

u(y) dy.

∆S1 is the Laplace-Beltrami operator on S1, and F (u, H), Fd(u, H), Fd(u, H),
D(u, ρ) are nonlinear functions. Then, we have the following theorem that is our
global well-posedness theorem in the case that σ > 0.
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Theorem 1. Let N ≥ 3. Let q1 and q2 be exponents such that N < q2 <∞ and
1/q1 = 1/q2 + 1/N . Let b be a number such that N/q1 > b ≥ N/(2q2). Then,

there exists an ǫ > 0 such that if initial data u0 ∈ B
2(1−1/p)
q2,p ∩B

2(1−1/p)
q1/2,p

= Dp,q1,q2

and ρ0 ∈ B
3−1/p−1/q2
q2,p (SR) satisfy the smallness condition:

‖u0‖Dp,q1,q2
+ ‖ρ0‖B3−1/p−1/q2

q2,p (SR)
≤ ǫ

and the compatibility condition:

divu0 = 0 in Ω, [[µD(u0)]]ω− < [[µD(u0)]]ω, ω >= 0 on SR,

then problem (2) admits unique solutions u and ρ with

u ∈ Lp((0,∞), H2
q2(Ω) ∩H

2
q1/2

(Ω))H1
p ((0,∞), Lq2(Ω) ∩ Lq1/2(Ω)),

ρ ∈ Lp((0,∞),W 3−1/p−1/q2
q2 (SR)) ∩H

1
p ((0,∞),W 2−1/p−1/q2

q2 (SR))

possessing the estimate: E(u, ρ)(0,∞) ≤ Cǫ. Here,

E(u, ρ)(0, T )

=‖ < t >b (u, H)‖L∞((0,T ),H1
∞

(Ω)×H2
∞

(ḂL)) + ‖ < t >b− N
2q1 u‖Lp((0,T ),H1

q1
(Ω))

+ ‖ < t >
N
2q1 u‖L∞((0,T ),Lq1(Ω)) + ‖ < t >

b− N
2q2 ∂t(u, H)‖Lp((0,T ),Lq2(Ω)×H2

q2
(ḂL))

+ ‖ < t >b− N
2q2 (u, H)‖Lp((0,T ),H2

q2
(Ω)×H3

q2
(ḂL)).

Here, < t >= (1 + t2)1/2.

Global wellposedness, σ = 0 case

In this case, we can not use the Hanzawa transform, because of the lack of regu-
larity for the height function ρ. Thus, we use the partial Lagrange transform. Let
ϕ ∈ C∞

0 (RN ) such that ϕ(x) = 1 for |x| ≤ L− 2 and ϕ(x) = 0 for |x| ≥ L − 1 for
L ≥ 3R. Let u(ξ, s) = u±(ξ, s) for ξ ∈ Ω± be the lagrange velocity fields, and the
partial Lagrange transform is defined by

x = ξ + ϕ(ξ)

∫ t

0

u(ξ, s) ds = Xu(ξ, t) for ξ ∈ Ω±.

There exists a small constant σ > 0 such that if

∫ T

0

‖∇(ϕ(·)u(·, s))‖L∞(Ω) ds ≤ σ

then, the partial Lagrange transform is a diffeomorphism from Ω = Ω+ ∪ Ω+ =
RN \ Γ onto Ωt = {x = Xu(ξ, t) | ξ ∈ Ω}.
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By the partial Lagrange transform, problem (1) is transformed to

(3)































∂tu−Div (µD(u)− qI) = F (u), in Ω× (0, T ),

div v = f(u) = div f(u) in Ω× (0, T ),

[[µD(u)− qI]]n = g(u) on Γ× (0, T ),

[[u]] = 0 on Γ× (0, T ),

u|t=0 = v0, Ωt|t=0 = Ω,

with suitable nonlinear functions F (u), f(u), f(u) and g(u). Then, we have the
following theorem.

Theorem 2. Let N ≥ 3 and let q1 and q2 be exponents such that N < q2 < ∞
and 1/q1 = 1/q2 + 1/N and q1 > 2. Let b, p and p′ = p/(p − 1) be numbers
satisfying the conditions:

N

q1
> b >

1

p′
,
(N

q1
− b

)

p > 1,
(

b−
N

2q2

)

p > 1, b >
N

2q1
,

( N

2q2
+

1

2

)

p′ < 1, bp′ > 1,
(

b−
N

2q2

)

p′ > 1,
N

q2
+

2

p
< 1.

(4)

Then, there exists an ǫ > 0 such that if initial data v0 satisfies the compatibility
condition and the smallness condition: ‖v0‖B2(1−1/p)

q2,p (Ω)
+‖v0‖B2(1−1/p)

q1/2,p
(Ω)

≤ ǫ, then

problem (3) admits a unique solution u∈Lp((0,∞),H2
q2(Ω)

N )∩H1
p ((0,∞),Lq2(Ω)

N ),
possessing the estimate: [u]∞ < Cǫ with some constant C > 0 independent of ǫ.
Here

[u]T =
{

∫ T

0

((1 + t)b‖u(·, s)‖H1
∞(Ω))

p ds

+

∫ T

0

((1 + s)
(b− N

2q1
)
‖u(·, s)‖H1

q1
(Ω))

p ds+ ( sup
0<s<T

(1 + s)
N
2q1 ‖u(·, s)‖Lq1(Ω))

p

+

∫ T

0

((1 + s)
(b− N

2q2
)
(‖u(·, s)‖H2

q2
(Ω) + ‖∂tu(·, s)‖Lq2 (Ω)))

p ds
}1/p

.

Precipitating Quasi-Geostrophic Equations and Potential Vorticity

Inversion with Phase Changes

Leslie M. Smith

(joint work with Sam Stechmann)

A precipitating version of the quasi-geostrophic (QG) equations is derived system-
atically, starting from an idealized cloud-resolving model. The presence of phase
changes of water from vapor to liquid and vice versa leads to important differences
from the dry QG case. The precipitating QG (PQG) equations have two variables
to describe the full system: a potential vorticity (PV) variable and a variable M
including moisture effects. PV-and-M inversion allows the determination of all
other variables, and it involves an elliptic partial differential equation (PDE) that
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is nonlinear due to phase changes between saturated and unsaturated regions. The
phase interface location is unknown a priori from PV and M, and it is discovered
as part of the inversion process. An energy conservation principle suggests that
the model has a firm physical and mathematical foundation.

Our starting point is a model for precipitating dynamics with a Boussinesq
dynamical core, linearized thermodynamics, and asymptotically fast, warm-rain
cloud microphysics. The model was designed and analyzed by [1], and given by

Du

Dt
+ f ẑ× u = −∇

(

p

ρo

)

+ ẑ g

(

θ

θo
+Rvdqv − qr

)

, ∇ · u = 0(1a)

Dθe
Dt

+ w
dθ̃e
dz

= 0,
Dqt
Dt

+ w
dq̃t
dz

− VT
∂qr
∂z

= 0.(1b)

The dynamical variables are the velocity u = (u, v, w), pressure p, equivalent
potential temperature anomaly θe, and anomalous mixing ratio of total water
qt, all of which are functions of x = (x, y, z) and time t. The buoyancy b =
g (θ/θo +Rvdqv − qr) may be expressed as a function of θe, qt and z as described
below; VT is the fall speed of rain, taken to be a constant value here for simplicity.
Other notation and parameters are standard: D/Dt = ∂/∂t + u · ∇; f is the
Coriolis parameter; background potential temperature θo ≈ 300 K; gravitational
acceleration g ≈ 9.8 m s−2; Rvd = (Rv/Rd)− 1 ≈ 0.61, where Rv, Rd are the gas
constants for water vapor and dry air, respectively. All thermodynamic variables
have been decomposed into background functions of altitude and anomalies. For
example, the total equivalent potential temperature is θtote (x, t) = θ̃e(z)+ θe(x, t),

where θ̃e(z) is the background state. Though we will use constant dq̃t/dz and

dθ̃e/dz herein, extension to non-constant slopes is straightforward.
The total water qtott = qtotv + qtotr is the sum of contributions from water vapor

qtotv and rain water qtotr , which can be recovered using

(2) qtotv = min(qtott , qtotvs ), qtotr = max(0, qtott − qtotvs ),

where qtotvs (z) is the prescribed saturation mixing ratio. The buoyancy b has a
functional form that changes depending on whether the phase is unsaturated or
saturated:

(3) b = buHu + bsHs,

where Hu and Hs are Heaviside functions that indicate the unsaturated and sat-
urated phases, respectively, and are therefore functions of qt and qvs(z): Hu = 1
for qt < qvs(z); Hu = 0 for qt ≥ qvs(z); Hs = 1 −Hu. In terms of qt and θe, the
variables bu and bs are given by

(4)
bu
g

=

[

θe
θo

+

(

Rvd −
Lv

cpθo

)

qt

]

,
bs
g

=

[

θe
θo

+

(

Rvd −
Lv

cpθo
+ 1

)

qvs − qt,

]

and are both defined in unsaturated and saturated regions alike. The formulation
(3)–(4) is convenient because it separates the continuous functional dependence
within bu and bs from the discontinuous nature of the phase interface Hu and Hs.
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Figure 1. Simulation of a tropical squall line: vertical slice of
time-averaged rain water (kg/kg) and velocity vectors in the frame
of reference moving with the squall line.

In [1], it was demonstrated that (1)-(2) is able to capture regimes of organized
convection on horizontal length scales of several hundred kilometers, such as a
tropical squall line. Figure 1 shows that the simulated squall line has features of
observed tropical squall lines, such as the tilted structure with ascending front-to-
rear flow and the descending rear inflow [2].

QG scaling is appropriate for larger horizontal length scales L ∼ 1000 km, and
the purpose of the current work is to introduce a QG model with water included.
A precipitating QG system will aid in the understanding of midlatitude storm
dynamics, building upon dry QG, but including the important effects of latent
heat release. Similar to the dry scaling, the non-dimensional Rossby number Ro
and Froude numbers Fru, F rs are assumed to be small and comparable: Ro = ǫ,
Fru = (L/Lu)Ro = O(ǫ), Frs = (L/Ls)Ro = O(ǫ), ǫ → 0, where Lu (Ls) is the
deformation radius for an unsaturated (saturated) regions. Small Ro corresponds
to rapid rotation; small Fru, F rs imply, respectively, strongly increasing back-
ground temperature θ̃(z) and potential temperature θ̃e(z) such that dθ̃(z)/dz ≫ 1,

dθ̃e(z)/dz ≫ 1. The background water profile q̃t(z) is assumed to decrease rapidly

such that the ratio (Lv/cp)Gm ≡ −Lvdq̃t(z)/dz (cpdθ̃e(z)/dz)
−1 = O(1), where

the latent heat Lv ≈ 2.5 × 106 J kg−1 and specific heat cp ≈ 103 J kg−1 K−1.
Then all fields f(x, t) in the non-dimensional equations are expanded as f =
f (0) + ǫf (1) + ǫ2f (2) + · · · . The PQG model results from (1) keeping lowest-order
and next-order balances.

Returning to the dimensional equations, the lowest-order balance is geostrophic
and hydrostatic, given by

(5) f ẑ× u = −∇hψ, b(0)u Hu + b(0)s Hs =
∂ψ

∂z
,

where the stream function ψ = p/ρo, the vorticity ζ(0) = ∇2
hψ, and the lowest-

order vertical velocity w(0) = 0. The difference from dry QG is the phase interface
in the hydrostatic balance relation, represented by the Heaviside functions Hu, Hs.



1452 Oberwolfach Report 23/2017

At next order, one finds

(6)
Dhζ

(0)

Dt
= f

∂w(1)

∂z
,

Dhθ
(0)
e

Dt
+
dθ̃e
dz

w(1) = 0,
Dhq

(0)
t

Dt
+
dq̃t
dz
w(1) = VT

∂q
(0)
r

∂z
,

with the first-order vertical velocity w(1) appearing in all three equations. Denoting
Be = dθ̃e/dz and eliminating w(1) gives the PQG system

(7)
DhPVe
Dt

= −
f

Be

∂u
(0)
h

∂z
· ∇hθ

(0)
e ,

DhM

Dt
= Vr

∂q
(0)
r

∂z
,

where uh is the horizontal velocity and we use the definitions

(8) PVe ≡ ζ(0) +
f

Be

∂θ
(0)
e

∂z
, M ≡ q

(0)
t +GMθ

(0)
e .

PV-and-M inversion to find the streamfunction ψ may be written as

PVe = ∇2
hψ +

(9)
∂

∂z

[

Hu

(

f2

N2
u

∂ψ

∂z
+
Lv

cp

g

θ0

f

N2
u

M

)]

+
∂

∂z

[

Hs

(

f2

N2
s

∂ψ

∂z
+
Lv

cp

g

θ0

f

N2
s

qvs(z)

)]

,

where the buoyancy frequencies are N2
s = (g/θ0)Be, N

2
u = N2

s [1 + (Lv/cp)GM ].
Notice that the phase interface location is unknown a priori from PV and M, and
is discovered as part of the inversion process. In a channel V with w = 0 on top
and bottom and periodic boundary condition in (x, y), the PQG system (7)-(9)
conserves energy E =

∫

V
ε dV for ε given by

(10) ε = |∇hψ|
2+Hs

[

f2

N2
s

ψ2
z

]

+Hu

[

f2

N2
u

ψ2
z +

(

Lv

cp

g

θ0

)2
N2

s

N2
u

D

(

M −
N2

u

N2
s

qvs

)2
]

where D ≡ 1/(N2
u −N2

s ).
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Stochastic PDEs for Tropical Rainfall and the Madden-Julian

Oscillation

Samuel N. Stechmann

Stochastic partial differential equations are presented for two phenomena of trop-
ical atmospheric dynamics: (i) tropical rainfall and cloud clusters, and (ii) the
Madden-Julian Oscillation (MJO) and tropical intraseasonal variability.

First, a linear stochastic model is presented for the dynamics of water vapor
and tropical convection. Despite its linear formulation, the model reproduces a
wide variety of observational statistics from disparate perspectives, including (i) a
cloud cluster area distribution with an approximate power law; (ii) a power spec-
trum of spatiotemporal red noise, as in the ”background spectrum” of tropical
convection; and (iii) a suite of statistics that resemble the statistical physics con-
cepts of critical phenomena and phase transitions. The physical processes of the
model are precipitation, evaporation, and turbulent advection–diffusion of water
vapor, and they are represented in idealized form as eddy diffusion, damping, and
stochastic forcing. Consequently, the form of the model is a damped version of
the two-dimensional stochastic heat equation. Exact analytical solutions are avail-
able for many statistics, and numerical realizations can be generated for minimal
computational cost and for any desired time step. Given the simple form of the
model, the results suggest that tropical convection may behave in a relatively sim-
ple, random way. Finally, relationships are also drawn with the Ising model, the
Edwards–Wilkinson model, the Gaussian free field, and the Schramm–Loewner
evolution and its possible connection with cloud cluster statistics. Potential appli-
cations of the model include several situations where realistic cloud fields must be
generated for minimal cost, such as cloud parameterizations for climate models or
radiative transfer models. This is work with Scott Hottovy and was published in
the Journal of the Atmospheric Sciences in 2015.

Second, a stochastic model is presented for the MJO, which is the dominant
mode of variability in the tropical atmosphere on intraseasonal time scales and
planetary spatial scales. Despite the primary importance of the MJO and the
decades of research progress since its original discovery, a generally accepted the-
ory for its essential mechanisms has remained elusive. In previous work, a minimal
dynamical model has been proposed that recovers robustly the most fundamental
MJO features of (i) a slow eastward speed of roughly 5 m/s, (ii) a peculiar disper-
sion relation with frequency approximately independent of wavenumber, and (iii)
a horizontal quadrupole vortex structure. This model, the skeleton model, depicts
the MJO as a neutrally stable atmospheric wave that involves a simple multiscale
interaction between planetary dry dynamics, planetary lower-tropospheric mois-
ture, and the planetary envelope of synoptic-scale activity. In the stochastic ver-
sion of the model, it is shown that the skeleton model can further account for (iv)
the intermittent generation of MJO events and (v) the organization of MJO events
into wave trains with growth and demise, as seen in nature. The goal is achieved
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by developing a simple stochastic parameterization for the unresolved details of
synoptic-scale activity, which is coupled to otherwise deterministic processes in the
skeleton model. In particular, the intermittent initiation, propagation, and shut
down of MJO wave trains in the skeleton model occur through these stochastic
effects. This is work with Sulian Thual and Andrew J. Majda and was published
in the Journal of the Atmospheric Sciences in 2014.

K41 solutions of the Euler equations

László Székelyhidi Jr.

Consider the energy cascade in homogeneous isotropic three-dimensional turbu-
lence, postulated by Richardson, Kolmogorov, Onsager and others, interpreted
as a statement about single (weak) solutions of the Navier-Stokes equations with
viscosity ν. According to this picture

u = ū+

Nν
∑

q=1

wν
q + wν

diss,

where wν
q is concentrated on frequency λq ∼ 2q with kinetic energy δq ∼ λ

−2/3
q in

the inertial range 1 ≤ q ≤ Nν . For any Q≪ Nν the partial sum uQ = ū+
∑Q

q=1 wq

satisfies the Euler-Reynolds system

∂tuQ + uQ · ∇uQ +∇pQ = −div RQ,

where RQ ∼ 〈wQ+1 ⊗ wQ+1〉 ∼ δQ+1. As ν → 0 (and Nν → ∞), one expects
(i) wν

q → wq in L2, and (ii) wν
diss → 0 in L2, where wq is again concentrated on

frequency λq with kinetic energy δq. Statement (i) is closely related to Onsager’s
conjecture, asserting the existence of weak solutions u of the Euler equations with
the structure

u = ū+

∞
∑

q=1

wq,

where ‖wq‖L∞ . δ
1/2
q and ‖∇wq‖L∞ . δ

1/2
q λq with δq ∼ λ

−2/3
q . In the talk we

discuss the recently completed construction of dissipative weak solutions, following
work by T. Buckmaster, S. Daneri, C. De Lellis, P. Isett, L. Székelyhidi and
V. Vicol. These K41 solutions have, for any α < 1/3, the structure above with

λq ∼ ab
q

, δq ∼ λ2αq ,

with some large a≫ 1 and 1 < b < 1−α
2α .
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Time periodic initial value problem for rotating stably stratified fluids

Ryo Takada

(joint work with Matthias Hieber, Alex Mahalov)

We consider the time periodic problem for the 3D Boussinesq equations, describing
the motion of viscous incompressible fluids under the effects of both the rotation
and the stable stratification:



















∂tv + (v · ∇)v = ∆v − Ωe3 × v −∇p+ θe3 + g t > 0, x ∈ R3,

∂tθ + (v · ∇)θ = ∆θ −N2v3 + h t > 0, x ∈ R3,

∇ · v = 0 t > 0, x ∈ R3,

v(0, x) = v0(x), θ(0, x) = θ0(x) x ∈ R3.

Here, v = (v1(t, x), v2(t, x), v3(t, x))
T , p = p(t, x) and θ = θ(t, x) are the un-

known functions, representing the velocity field, the scalar pressure and the ther-
mal disturbance about a mean state in hydrostatic balance, respectively, while
g = (g1(t, x), g2(t, x), g3(t, x))

T and h = h(t, x) are given time periodic external
forces. N > 0 is the Brunt-Väisälä (buoyancy) frequency for the constant stratifi-
cation and Ω ∈ R \ {0} is the angular frequency of the background rotation.

Making use of the gerenal approach to time periodic problem [1] and the dis-
persive nature due to both the rotation and the stable stratification [2], we give
an explicit relation between the size of the time periodic external forces and the
buoyancy frequency which ensures the unique existence of time periodic solutions
to the above systems. In particular, it is shown that the size of the time periodic
external forces can be taken large in proportion to the strength of the rotation
and the stable stratification.

References

[1] M. Geissert, M. Hieber and T. H. Nguyen, A general approach to time periodic incompress-
ible viscous fluid flow problems, Arch. Ration. Mech. Anal. 220 (2016), 1095–1118.

[2] T. Iwabuchi, A. Mahalov and R. Takada, Global solutions for the incompressible rotating
stably stratified fluids, Math. Nachr. 290 (2017), 613–631.

Turbulent Mixing and Atmospheric Predictability

Joseph Tribbia

Atmospheric predictability is largely determined by the turbulent mixing of two
scalar fields. At large scales the lagrangian conservation of potential vorticity is
the determining dynamics that leads to quasi-geostrophic turbulence, a rapidly
decaying kinetic energy spectrum and a roughly two day doubling time of errors.
At the sub-mesoscale moist dynamics and the conservation of water species become
the determining factors in setting the time scale for the rapid loss of predictability
associated with the release of heat due to the phase changes of water.
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The consequences of this dual dynamics for scale interactions and the ultimate
limits of atmospheric predictability will be explored in this talk building on the
parameterization of moisture in [1].

References

[1] J. Lambaerts, G. Lapeyre, V. Zeitlin, Moist vs dry baroclinic instability in a simplified
two-layer atmospheric model with condensation and latent heat release , J. Atmos. Sci. 69
(2012), 1405–1426.

On the Incompressible Euler Equation with a Free Boundary

Amjad Tuffaha

(joint work with Igor Kukavica, Vlad Vicol, Fei Wang)

In this talk, we discuss results on the local-in-time existence and regularity of
solutions to the shallow water wave model consisting of the 3D incompressible
Euler equations on a free surface without surface tension, under minimal regularity
assumptions on the initial data and the Rayleigh-Taylor sign condition. We give
an overview of the result on local well-posedness in the rotational case when the
initial datum u0 satisfies u0 ∈ H2.5+δ and∇×u0 ∈ H2+δ, where δ > 0 is arbitrarily
small, under the Taylor condition on the pressure. This is based on joint works
with Igor Kukavica from the University of Southern California, Vlad Vicol from
Princeton university and Fei Wang from the University of Southern California.

Simple Models of Convection and Convective Parameterization

Geoffrey K. Vallis

We suggest a new way to parameterize convection, and perform some vey simple
numerical test. The metod involves conditionally averaging the equation, thereby
sampling the PDF of a quantity in a given grid box. One then obtains equations
of motion that predict two (or more) values of a field at any given location, repre-
senting for example convecting fluid and stable fluid. In this way the equations of
motion themselves can be used to parameterize convection that is subgrid-scale.
Some numerical experiments that integrate the two-fluid model show promising
results.
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Think Globally, Act Locally: Numerical analysis with finite time scale

separation in oscillatory PDEs

Beth A. Wingate

One of the fundamental issue standing in the way of designing new numerical
methods capable of taking advantage of new computer architectures is embedded
in the mathematical structure of the underlying PDEs. One such PDE that governs
many physical applications, including weather and climate, plasma physics, etc,
has the following mathematical form:

(1)
∂u

∂t
+

1

ǫ
L(u) +N(u,u) = D(u), u (0) = u0,

where the linear operator L has pure imaginary eigenvalues, the nonlinear term
N(u,u) is of polynomial type, the operator D encodes a form of dissipation,
and ǫ is a small non-dimensional parameter. For notational simplicity, we let
u (t) denote the spatial (vector-valued) function u (t, ·) = (u1 (t, ·) , u2 (t, ·) , . . .).
The operator ǫ−1L results in time oscillations on an order O (ǫ) time scale, and
generally necessitates small time steps if standard explicit numerical integrators
are used. Even implicit integrators need to use small time steps if accuracy is
required.

Therefore, examining the low-frequency content of the PDEs and making best
use of that in numerical algorithm development is essential if we are to make best
use of the new computer architectures. The type of equation (1) is known as a fast
singular limit, and as such we expect small scale oscillations will remain a part of
the solution even when the nonlinearity, or ’phase scrambler’ creates low frequency
dynamics. We are called to see if we can use the long-time, low-frequency dynamics
(think globally) to advance an accurate solution (act locally) for PDEs of the type
(1).

In this talk I introduce a parareal-type method[3, 1] for equations of the form
(1), where we have used the above strategy of using the long-time, low frequency
dynamics to drive a locally accurate solution. I show that under certain regularity
constraints this method has superlinear convergence [2] as ǫ → 0 and sketch the
ideas behind a new proof for superlinear convergence, one that relies on the role
of near-resonances inherent in the PDEs, for the case when ǫ is finite[4].
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The Mathematical theory of the primitive equations in the presence of

humidity

Mohammed Ziane

(joint work with M. Coti Zelati, A. Huang, I. Kukavica, R. Temam)

The work presented is a collaboration with M. Coti Zelati, A. Huang, I. Kukav-
ica, and R. Temam; A modification of the classical primitive equations of the
atmosphere is considered in order to take into account important phase transition
phenomena due to air saturation and condensation. We provide a mathematical
formulation of the problem that appears to be new in this setting, by making use
of differential inclusions and variational inequalities, and which allows to develop
a rather complete theory for the solutions to what turns out to be a nonlinearly
coupled system of non-smooth partial differential equations. Specifically we prove
global existence of quasi-strong and strong solutions, along with uniqueness results
and maximum principles of physical interest.

Reporter: Mathis Gries
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