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Introduction by the Organisers

The workshop was organized by H. Eliasson (Paris), H. Hofer (Princeton) and
V. Kaloshin (Maryland). It was attended by more than 50 participants from 13
countries and displayed a good mixture of young, mid-career and senior people.
The workshop covered a large area of dynamical systems centered around classi-
cal Hamiltonian dynamics and symplectic methods: closing lemma; Hamiltonian
PDE’s; Reeb dynamics and contact structures; KAM-theory and diffusion; celes-
tial mechanics. Also other parts of dynamics were represented.

K. Irie presented a smooth closing lemma for Hamiltonian diffeomorphisms on
closed surfaces. This result is the peak of a fantastic development in symplectic
methods where, in particular, the contributions of M. Hutchings play an important
role.
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D. Peralta-Salas presented new solutions for the 3-dimensional Navier-Stokes
equations with different vortex structures. The proof uses highly oscillatory Bel-
trami fields and techniques of KAM-type.

L. Buhovsky presented new important works (with V. Humilière and S. Seyfad-
dini) on the C0-Arnold conjecture, and S. Seyfaddini presented new works (with
F. Le Roux and C. Viterbo) on conjugacy-classes in the group of area-preserving
homeomorphisms. Reeb dynamics and contact structures were studied in the talks
of A. Abbondandolo, M. Alves, D. Hein, J Nelson, D. Pomerleano and K. Zehmisch.
M. Hutchings talked about how to test numerically a conjecture of Viterbo.

Symplectic methods with applications to celestial mechanics and the restricted
3-body problem were presented in the talks of U. Frauenfeld, U. L. Hryniewicz,
O. van Koert and P. A. S. Salomão. KAM-theory and diffusion in Hamiltonian
systems where discussed in the talks of T. Castan, M. Gidea and M. Saprykina.

Several other topics in dynamics where discussed in different talks. M.-C.
Arnaud talked about weak KAM-theory, complete integrability and C1 Arnold-
Liouville theorem. W. Craig discussed Birkhoff normal forms for PDE’s. V.
Ginzburg talked about pseudo-rotations on projective spaces. S. Hohloch dis-
cussed dynamics of vector fields at a focus-focus equilibrium. G. Knieper talked
about geodesic flows and zero topological entropy. K. Kuperberg discussed a-
periodic flows. S. Tabachnikov introduced symplectic billiards and C. Ulcigrai
talked about central limit theorems for certain co-cycles over rotations.

The meeting was held in an informal and stimulating atmosphere. The weather
was unstable and the traditional walk to St. Roman, under the leading of Sergei
Tabachnikov, took place on Thursday.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Pedro Salomão in the “Simons Visiting Professors”
program at the MFO.
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Pseudo-rotations of Complex Projective Spaces . . . . . . . . . . . . . . . . . . . . . . 2040



Dynamische Systeme 1991

Abstracts

Computing the Ekeland-Hofer Zehnder capacity of four-dimensional

convex polytopes

Michael Hutchings

(joint work with Julian Chaidez)

Let X be a compact convex domain in R2n with smooth boundary such that
0 ∈ int(X). The Reeb vector field R on ∂X is characterized by dλ(R, ·) = 0 and
λ(R) = 1, where

λ =
1

2

n∑

i=1

(xi dyi − yi dxi) |∂X .

Define the Ekeland-Hofer-Zehnder capacity cEHZ(X) to be the minimum period
of a periodic orbit of the Reeb vector field R on ∂X . A fascinating conjecture of
Viterbo [2] implies that

cEHZ(X)n ≤ n! vol(X).

(This inequality is sharp for a ball.)
We introduce numerical methods for testing this conjecture.
More precisely, it is known that cEHZ is a symplectic capacity, i.e. monotone un-

der symplectic embeddings. Consequently, cEHZ(X) has a unique C0-continuous
extension to a function on arbitrary compact convex domains (which do not nec-
essarily have smooth boundary). We present a combinatorial algorithm for com-
puting cEHZ(X) when X is a convex polytope in R4 with no Lagrangian 2-faces.
If the polytope X is rational (i.e. its vertices have rational coordinates), then the
algorithm computes the exact value of cEHZ(X) (which in this case is a rational
number) in finite time.

As shown in [1], the EHZ capacity cEHZ(X) is the minimum symplectic action
of a piecewise differentiable loop γ : S1 → ∂X such that Jγ′(t) ∈ N+X , where
J denotes the standard almost complex structure on R2n and N+X denotes the
positive normal cone to X . The symplectic action of γ is the symplectic area of a
loop bounded by γ. For our polytope X , these loops can be found combinatorially.
A key ingredient of the algorithm is to use the Conley-Zehnder index, computed
using a quaternionic trivialization, to give an upper bound on the number of 2-faces
that an action-minimizing loop can cross.

References

[1] S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex
bodies, IRMN 2014, 165–193.

[2] C. Viterbo, Metric and isoperimetric problems in symplectic geometry, J. Amer. Math. Soc.
13 (2000), 411–431.
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Isolated elliptic fixed points for smooth Hamiltonians

Maria Saprykina

(joint work with B. Fayad, R. de la Llave)

KAM theory asserts that generically an elliptic fixed point of a Hamiltonian system
is stable in a probabilistic sense, or KAM stable: the fixed point is accumulated
by a positive measure set of invariant Lagrangian tori. It was conjectured by M.
Herman in his ICM98 lecture that for analytic Hamiltonians, KAM stability holds
in a neighborhood of an elliptic fixed point if its frequency vector is assumed to be
Diophantine. The conjecture is known to be true in two degrees of freedom, but
remains open in general. Partial results in this direction were recently obtained
by Eliasson, Fayad and Krikorian.

Below analytic regularity, Herman proved that KAM stability of a Diophantine
equilibrium holds without any twist condition in C∞ in 2 degrees of freedom. In
his ICM98 lecture Herman announced that KAM stability of Diophantine equi-
libria does not hold for smooth Hamiltonians in 4 or more degrees of freedom,
without giving any clew about the possible counter-examples. He also wrote that
nothing was known about KAM stability of Diophantine equilibria for smooth
Hamiltonians in 3 degrees of freedom. In a joint work with Bassam Fayad, we
settle this problem by presenting examples of smooth Hamiltonians for any d ≥ 3
having non KAM stable elliptic equilibria with arbitrary frequency.

In this talk we also present a result on KAM stability for a degenerate case (zero
frequency) of real analytic Hamiltonians. Namely, we show that if the Birkhoff nor-
mal form of a real-analytic Hamiltonian at an analytic invariant torus is convergent
and has a particular form (it is an analytic function of its quadratic part), then
there is an analytic canonical transformation—not just a power series—bringing
the Hamiltonian into its Birkhoff normal form. The latter result it based on a
joint work with Rafael de la Llave.

References

[1] B. Fayad, M. Saprykina, Isolated elliptic fixed points for smooth Hamiltonians, to appear
in AMS Contemporary Mathematics, volume to the memory of Anosov. arXiv:1602.02659.

[2] R. de la Lave, M. Saprykina, Convergence of the Birkhoff normal form implies convergence
of a normalizing transformation, preprint.

Existence of global cross-sections: from Schwartzman cycles to

holomorphic curves

Umberto L. Hryniewicz

(joint work with Pedro A. S. Salomão, Krzysztof Wysocki)

We consider a smooth closed 3-manifold M equipped with a smooth flow φt. It
is an important problem to decide whether a given collection of periodic orbits
γ1, . . . , γN bounds a global surface of section. In full generality this problem is
extremely challenging. For instance, in [2] Birkhoff conjectures that the retrograde
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orbit in the (planar circular) restricted three-body problem below the first critical
value of the Jacobi constant bounds a disk-like global surface of section. This
conjecture was confirmed in [11] when one of the primaries is much heavier than
the other and the satellite moves in one of the two bounded Hill regions, but for
arbitrary mass ratios the conjecture is wide open.

Recall that a global surface of section is an embedded compact orientable surface
S →֒M satisfying

(a) ∂S = γ1 ∪ · · · ∪ γN ,
(b) φt is transverse to int(S) and
(c) trajectories not in γ1 ∪ · · · ∪ γN hit int(S) infinitely many often in the

future and in the past.

Of course, such a global section reduces the study of the dynamics to that of the
associated return map, allowing powerful two-dimensional methods to come into
play. One can relax the above definition and only ask that S is immersed, its
interior is properly embedded in M \ L and its boundary components multiply
cover the γi (the order of the covering depends in i).

All this is, of course, a central topic of study in Schwartzman-Fried-Sullivan
theory [5, 12, 13]. A valuable source of information is [4]. Let us denote by L the
link γ1, . . . , γN and by Ti the period of γi. Given f ∈ H2(M,L;Z) we consider
rotation numbers ρf (γi) ∈ R defined as follows. Choose tubular neighborhood
Ni ≃ R/TiZ × D of γi with coordinates (t, reiθ), such that γi ≃ R/TiZ × 0. If
yf ∈ H1(M \ L;Z) is dual to f (yf counts algebraic intersection number with f)
then yf |N ≡ p(dt/Ti) + q(dθ/2π) for some p, q ∈ Z. One defines

ρf (γi) = p+ q lim
t→+∞

Tiθ(t)

2πt

where θ(t) is the infinitesimal argument of the transverse linearized flow along γi
in the local coordinates. This number is independent of the choice of coordinates.
One also needs to consider Borel probability measures in M \ L which are φt-
invariant. Denote by Pφ the set of such measures. The “real” intersection number
µ · f ∈ R is defined for every µ ∈ Pφ as

µ · f =

∫

M\L

βf (X)dµ

where X is the infinitesimal generator of φt and the closed 1-form βf in M \ L
represents yf and satisfies suitable properties that make the integrand bounded.
This integral does not depend on such a representative.

The following beautiful statement provides sufficient conditions, which are also
necessary under very mild non-degeneracy assumptions.

Theorem A. (Schwartzman-Fried-Sullivan) The global surface of section S
exists provided that

• ρf (γi) > 0 ∀i
• µ · f > 0 ∀µ ∈ Pφ
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In fact, L = ∂S is the binding of an open book decomposition of M all of whose
pages are global surfaces of section. Moreover, C∞-generically these conditions
are also necessary.

This theorem is a formulation (and a generalization) of work of Fried in terms
of invariant measures. It gives dynamical criteria to decide if L is a fibered link.
Theorem A is so beautiful that it is tempting not to pause and ask about its appli-
cability. Our main result is a version for three-dimensional Reeb flows which does
not need linking hypothesis for all invariant measures, but only for those induced
by a certain set of periodic orbits. In fact, in many concrete applications, there
are no periodic orbits preventing the construction of the global surface of section
and their existence follows immediately. We give more details.

Theorem B. (Hryniewicz-Salomão-Wysocki) Let φt be a Reeb flow on the
closed 3-manifold M , and let γ1, . . . , γN be periodic orbits. Assume that L =
γ1 ∪ · · · ∪ γN binds a planar open book decomposition supporting ξ, and consider
f ∈ H2(M,L;Z) the class of a page. There exists a finite set J ⊂ N such that
the following holds: if ρf (γi) > 0 ∀i and all periodic orbits γ′ ⊂ M \ L satis-
fying CZ(γ′) ∈ J algebraically intersect f non-trivially, then L bounds a genus
zero global surface of section for φt which represents the class f . Moreover, C∞-
generically these conditions are also necessary.

This statement allows for applications because the set J can be computed ex-
plicitly in many cases. For instance, J = {2} in the case of the tight three-sphere
and L is equal to an unknotted orbit with self-linking number −1. Hence we get

Corollary. (Hryniewicz-Salomão [10]) Let γ be a periodic orbit of a tight Reeb
flow on S3. Under a non-degeneracy assumption, γ bounds a disk-like global sur-
face of section if, and only if, it is unknotted, has self-linking number −1, satisfies
CZ(γ) ≥ 3 and all periodic orbits with CZ = 2 link with γ.

In the case of a pair of periodic orbits forming a Hopf link for a Reeb flow in
the universally tight RP 3 we have J = {0, 1, 2}. As a consequence we get

Corollary. Consider the planar circular restricted three-body problem with
small mass ratio and energy below the first critical value. Assume that the satel-
lite moves in one of the bounded Hill regions. Then any retrograde orbit is a
boundary component of an annulus-like global surface of section for the regular-
ized flow.

Corollary. (Birkhoff [1]) For any positively curved Riemannian two-sphere,
a simple closed geodesic traversed in both directions spans a annulus-like global
surface of section.
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These concrete applications are only possible because in Theorem B we need
only to consider a very small class of invariant measures. The tools come from
pseudo-holomorphic theory as developed by Hofer-Wysocki-Zehnder [6, 7, 8, 9]
and the relevant compactness theorem is the SFT-Compactness theorem [3].
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A Central Limit Theorem for certain cocycles over rotations

Corinna Ulcigrai

(joint work with Michael Bromerg)

We present an instance of a temporal Central Limit theorem in entropy zero dy-
namics. Limit theorems appear often in dynamics as follows. Let (X,B,m, T ) be
a measure preserving dynamical system. Let f : X → R be a Borel measurable
function and set Sn (x) = Sn (T, f, x) :=

∑n−1
k=0 f ◦T k (x) for the nth Birkhoff sum.

If T is ergodic with respect to m and f ∈ L1(X,m), the Birkhoff ergodic theorem
can be recasted as the Law of Large Numbers (LLN) for the random variables
(Xn)n where Xn := f ◦ T n and x is chosen randomly according to the measure
m. For many hyperbolic dynamical systems, under suitable assumptions on the
regularity of f and the rate of mixing of T , one can study the error term in the
LLN by proving a (spatial) Central Limit Theorem (CLT) for the r.v.s (Xn)n. On
the other hand, in many classical examples of dynamical systems with zero en-
tropy, for which (Xn)n are highly correlated, the CLT, and more in general spatial
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distributional limit theorems, fail to hold. For example, this is the case when T is
an irrational rotation and f is of bounded variation. In this case the CLT can be
proved only along subsequences (see [10, 8]).

A different point of view, recently popularized by Dolgopyat and Sarig in
[9], is to investigate so called temporal limit theorems. Motivated by single or-
bit dynamics, instead of randomizing space, one considers the Birkhoff sums
Sn (x0) over a single orbit of some fixed initial condition x0 ∈ X and random-
izes time as follows. Define a sequence of occupation measures on R by νn (F ) :=
1
n# {1 ≤ k ≤ n : Sk (x0) ∈ F} for every Borel measurable F ⊂ R and consider
a sequence of r.v. Yn distributed according to νn. We say that (T, f) satisfies a
temporal limit theorem along the orbit of x0, if there exists a random variable with
no atoms Y , and two sequences An ∈ R and Bn → ∞ such that (Yn − An)/Bn

converges in distribution to Y . If the limit Y is a Gaussian random variable, we
call this type of behavior a temporal CLT along the orbit of x0. We refer the
interested reader to [9] and the reference therein for examples of temporal limit
theorems in dynamics.

Perhaps surprisingly, many examples of dynamical systems with zero entropy
satisfy a temporal CLT. One example is the following result by Beck. Let us
denote by Rα the rotation on the interval T = R \ Z by an irrational number
α ∈ R, given by Rα(x) = x + α mod 1. Let fβ(x) := χ[0, β) (x) − β where χI

denots the indicator function of the interval I. Beck proved in [3, 4] that if α is a
quadratic irrational and β is rational, then the pair (Rα, fβ) satisfies a temporal
CLT along the orbit of x0 = 0. More precisely, he shows that there exist constants
C1 and C2 such that for all a, b ∈ R, a < b,

1

n
#

{
1 ≤ k ≤ n :

Sn (Rα, fβ, 0)− C1 logn

C2

√
logn

∈ [a, b]

}
→ 1√

2π

b∫

a

e−
x2

2 dx.

In [2], a geometric proof of this result is given for β = 1
2 and, using the same

methods, a temporal CLT is proved in [9] for any initial point x.
In [5], we prove the following generalization of Beck’s result. Let us write

α ∈ BA if α is badly approximable (or bounded type), i.e. if there exists a constant
c > 0 such that |α− p/q| ≥ c/ |q| for any p, q ∈ Z, q 6= 0. For α ∈ (0, 1) \Q, let us
say that β is badly approximable with respect to α and write β ∈ BA(α) if there
exists a constant c > 0 such that |qα− β − p| > c

|q| for all p, q ∈ Z, q 6= 0. One

can show that given α ∈ BA, the set BA(α) has full Hausdorff dimension.

Theorem 1 (Bromberg-U’, [5]). Let α ∈ BA. For every β ∈ BA(α) and every
x ∈ T there exists a sequence of centralizing constants An := An (α, β, x) and a
sequence of normalizing constants Bn := Bn (α, β) such that for all a < b

1

n
#

{
1 ≤ k ≤ n :

Sn (Rα, fβ, x)−An

Bn
∈ [a, b]

}
→ 1√

2π

b∫

a

e−
x2

2 dx.



Dynamische Systeme 1997

Thus, for every α ∈ BA and β ∈ BA(α), the pair (Rα, f) satisfies the temporal
CLT along the orbit of any x ∈ T. Notice that quadratic irrationals belong to BA
and, when α ∈ BA, it follows from the definition that any rational number β is in
BA(α). Thus, our result provides a strict generalization of the results of [3, 4, 9].
Dolgopyat and Sarig informed us that in ongoing work they are also able to prove a
temporal CLT for the case in which α is badly approximable and β is rational, but
their methods do not cover irrational values of β. Furthermore, they can show that
the temporal CLT fails for a full Lebesgue measure set of α, thus the assumption
α ∈ BA is crucial. It would be interesting to see whether a temporal CLT holds
for a larger class of values of β. In particular, Dolgopyat asked us whether, for
every α ∈ BA, one can prove temporal limit theorems for a.e. β ∈ (0, 1). We
believe that our methods might allow us to answer this question.

The proof of our result exploits renormalization and a symbolic coding that
allows to encode the dynamics via the formalism of adic and Vershik maps [13].
Two recent related results in the context of substitution systems (which correspond
to the stationary special case of the Vershik formalism) were proved in [6] and [11].
The renormalization algorithm that we exploit is given by the classical continued
fraction algorithm for rotations, with additional data which records the relative
position of the break point β of the function fβ under renormalization. This
algorithm produces what is known as Ostrowski expansion of β with respect to α
in the context of non homogeneous Diophantine approximations (see also [1] for
the relation with the geodesic flow on the space of affine lattices). Renormalization
produces a sequence of Rohlin skyscrapers formed by three towers which represent
the dynamics (the two towers of the classical continued fraction, one of which is cut
into two by the relative position of β). By recording the sequence of towers to which
a given point belongs, one gets a Vershik-type coding. Furthermore, by defining
on the symbolic space a sequence of Markov measures, we get a non-homogeneous
Markov chain determined by (α, β). In order to study temporal distributions
of Birkhoff sums of fβ , we refine this coding further (by coding with respect to
subtowers of a renormalization level inside the next) and define a sequence of
functions (ξn)n of the Markov chain. The construction is made so that temporal
distribution of the Birkhoff sums Sk (Rα, fβ, x) where x belongs to the base of a
renormalization tower and k runs from 0 to h − 1 where h is the corresponding
tower height, are given by the distribution of the r.v.

∑n
k=1 ξk where n is the

level of the renormalization tower (see the key Proposition 2.6 in [5] for a precise
statement). Thus, the temporal CLT is reduced to a CLT for non-homogeneous
Markov chain (first proved by Dobrushin). We verify the assumptions of a general
CLT for ϕ-mixing triangular arrays of r.v.s by Utev [12]. In particular, growth of
the variance is deduced from the function fβ not being a coboundary, while we
use the assumption that β ∈ BA(α) to show that the r.v. in the Markov chain are
sufficiently independent. It is here that we hope to have room to improve in order
to prove a CLT for a.e. β.

Finally, let us point out that the Vershik formalism and Markov chain reduction
that we exploit in [5] is quite general and there are other entropy zero dynamical
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systems for which one can hope to prove temporal limit theorems using similar
techniques. For example, the Rauzy-Veech algorithm provides a framework to
encode linear flows on translation surfaces and interval exchange transformations
through a Vershik adic coding (see [7]). In work in progress, we identify a class
of cocycles for which one can prove temporal CLTs for linear flows on infinite
translation surfaces and more in general for certain S−adic systems.
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Systolic inequalities in Reeb dynamics

Alberto Abbondandolo

(joint work with Barney Bramham, Umberto L. Hryniewicz, Pedro A. Salomão)

Classical systolic inequalities. We start by reviewing some of the classical
results in systolic geometry, see [8] and reference therein. Given a closed n-
dimensional Riemannian manifold (M, g), one defines the quantities

ρ(M, g) :=
(minimal length of closed geodesic on (M, g))n

vol(M, g)
,

ρnc(M, g) :=
(minimal length of non-contractible closed geodesic on (M, g))n

vol(M, g)
.

The second of these numbers, which is defined only for non-simply connected
manifolds, coincides with the length of a shortest non-contractible closed curve on
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(M, g), as such a curve is necessarily a closed geodesic, and is called the systolic
ratio of (M, g). Clearly, ρ ≤ ρnc.

Both the ratios ρ and ρnc can be made arbitrarily small by a suitable choice
of g. Classical question in systolic geometry are: Are ρ and ρnc bounded from
above on the space of Riemannian metrics on a given manifold M? If so, are there
maximizing metrics and how do they look like?

The first results of this kind go back to the fourties, when Loewner and Pu
proved that ρnc(T

2, ·) is maximized by the flat metric given by the lattice in R2

which is generated by two sides of an equilateral triangle, while ρnc(RP
2, ·) is

maximized by the round metric. Starting from the seventies, Gromov studied
these questions systematically and showed that when M is a surface other than
S2, the quantity ρnc(M, ·) has the non-sharp upper bound 2. In general, ρnc(M, ·)
is not expected to achieve its maximum on the space of smooth metrics: Indeed, a
simple perturbation argument shows that any metric maximizing ρnc(M, ·) would
have non-contractible closed geodesics of minimal length through any of its points,
and this is not possible for surfaces of high genus. In the early eighties, Gromov
also proved a ground breaking result stating that ρnc(M, g) ≤ Cn for all metrics g
on an essential manifold M , where the number Cn depends only on the dimension
n of M .

The first result about the simply connected case is due to Croke, who at the
end of the eighties proved that ρ(S2, ·) is bounded from above. Contrary to what
one may expect, the round metric does not maximize ρ(S2, ·). Indeed, the value
of ρ at the round metric on S2 is π, but Calabi and Croke exhibited a sequence
of smooth metrics converging to a singular one with value of ρ converging to the
number 2

√
3, which is slightly larger than π. This value is currently believed to

be the supremum of ρ(S2, ·), but this conjecture is open. Here it is interesting
to notice that S2 admits a large class of Zoll metrics, that is smooth metrics all
of whose geodesics are closed and have the same length, and that these have all
systolic ratio π, as proved by Weinstein. Babenko and Balacheff conjectured that
the round metric is a local maximizer of ρ(S2, ·). The presence of a large set
of Zoll metrics, which have the same systolic ratio of the round one, makes this
question difficult to attack by classical symmetrization techniques. We will see
that symplectic techniques allow us to give a positive answer to this conjecture.

Systolic ratio in Reeb dynamics. As Álvarez Paiva and Balacheff showed in
[5], it is fruitful to extend the notion of systolic ratio to Reeb dynamics. We recall
that a contact form on a (2n − 1)-dimensional manifold W is a 1-form α such
that α ∧ (dα)n−1 is a volume form. The kernel of α is a hyperplane distribution
on W and is called a contact structure. The non singular vector field Rα which
is uniquely defined by the identities ıRα

dα = 0 and ıRα
α = 1 is called the Reeb

vector field of α. The systolic ratio of a contact form α on a (2n− 1)-dimensional
closed manifold W can be defined as

ρ(W,α) :=
(minimal period of closed orbit of Rα)

n

vol(W,α ∧ (dα)n−1)
.



2000 Oberwolfach Report 32/2017

Here we are assuming that Rα does indeed have periodic orbits, which is believed
to be always true (Weinstein conjecture) and is proved in many cases, including
all contact forms on closed 3-manifolds.

The unit cotangent bundle S∗
gM of an n-dimensional closed Riemannian mani-

fold (M, g) admits the contact form αg which is obtained by restricting the canon-
ical Liouville 1-form p dq of T ∗M to S∗

gM . The Reeb flow of α coincides with the
geodesic flow and

ρ(S∗
gM,αg) =

ρ(M, g)

nωn
,

where ωn denotes the volume of the unit euclidean n-ball. So the systolic ratio of
contact form is a genuine generalization of the metric one. This identity, together
with the fact that the contact volume vol(W,α∧ (dα)n−1) is uniquely determined
by the Reeb flow of α, shows that two metrics whose geodesic flows are smoothly
conjugate have the same systolic ratio, which is then a dynamical invariant and
not just a metric one. For example, all Zoll metrics on S2 produce smoothly
conjugated geodesic flows and have systolic ratio π.

Another important class of contact forms is given by the restriction of following
1-form on R2n

λ0 :=
1

2

n∑

j=1

(xj dyj − yj dxj)

to the boundary ∂A of an open bounded domain whose boundary is smooth and
transverse to the radial direction. In the particular case in which A is a 2n-ball,
one obtains a Zoll Reeb flow, that is a flow all of its orbits are closed and have the
same period, having systolic ratio ρ = 1. A weak form of a deep open conjecture
of Viterbo [10] states that

ρ(∂C, λ0|∂C) ≤ 1

when the domain C is convex, with equality holding if and only if C is sym-
plectomorphic to a ball. The best general result about this conjecture is due to
Artstein-Avidan, Milman and Ostrover [7], who proved an upper bound which
is independent of the dimension. Moreover, the Viterbo conjecture is known to
imply the Mahler conjecture in convex geometry as a very particular case, see [6].
Our first result is the following:

Theorem 1. If the contact form α on S3 is C3-close enough to a Zoll contact
form then

ρ(S3, α) ≤ 1,

with equality if and only if α is Zoll.

See [2]. The proof uses a reduction to disk maps through global surfaces of
section and a fixed point theorem relating the action of fixed points to the Calabi
invariant. This results has been very recently generalized to arbitrary closed 3-
manifolds by Benedetti and Kang. In higher dimension, the local maximality of
Zoll contact forms is still open, but a weaker result in this direction has been
proven in [5].
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The above theorem has several interesting corollaries. One is that Zoll metrics
on S2 are C2-local maximizers of the systolic ratio, giving a positive answer to the
conjecture of Babenko and Balacheff mentioned above. This result remains true
for Finlser metrics (but in the general non-reversible case one has to replace the
C2-topology by the C3-one). See also [1] for more precise results in the Riemannian
case.

Another consequence of Theorem 1 is that the Viterbo conjecture holds true for
convex domains in R4 which are C3-close to a symplectic ball. The characterization
of the equality case uses the fact that if the Reeb flow on the boundary of a
starshaped domain A ⊂ R4 is Zoll, then A is symplectomorphic to a ball.

Our second result says that the general results of Gromov about boundedness
of the systolic ratio in metric geometry do not survive to the generalization to the
contact setting:

Theorem 2. Let ξ be a contact structure on a closed 3-manifold W . Then

sup{ρ(W,α) | α contact form on W with kerα = ξ} = +∞.

In particular, one can find starshaped domains A in R4 with volume 1 and
such that the all closed Reeb orbits of λ0|∂A have arbitrarily large period. This
particular case is proved in [2], the general one in [3].

Our last result concerns dynamically convex contact forms on S3. These are
contact forms all of whose closed Reeb orbits have Conley-Zehnder index at least
three. Hofer, Wysocki and Zehnder [9] showed that the restriction of λ0 to the
boundary of a smooth strictly convex domain in R4 is dynamically convex, and
that many results holding in the convex case extend to the dynamically convex
one. The next results shows that the Viterbo conjecture fails for dynamically
convex contact forms:

Theorem 3. For every ǫ > 0 there is a dynamically convex contact form α on S3

such that

ρ(S3, α) > 2− ǫ.

This class of examples, together with more general ones, is constructed in [4].
Actually, at the time of writing there is no known example of dynamically convex
contact form which does not come from a convex domain. The example which we
construct in the above theorem is either the first example of such contact form
or is a counterexample to the Viterbo conjecture. Unfortunately we do not know
which of the two possibilities is true.
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A transversal point of view on weak K.A.M solutions

Marie-Claude Arnaud

We are interested in some weak solutions of the Hamilton-Jacobi equations for
Hamiltonians that are

• either autonomous H : Tn × Rn → R;
• or 1-periodic time dependent H : Tn × Rn × T → R;

and are uniformly superlinear and C2-convex in the Rn direction. We also require
that the flow is complete. Such Hamiltonians are said to be Tonelli.

A geodesic flow or a mechanical system is defined via such a Hamiltonian.
Jürgen Moser (see [3]) proved that any smooth exact symplectic twist map of
the 2-dimensional annulus T × R is the time 1 map of a Tonelli time dependent
Hamiltonian.
For an unknown function uc : T

n → R or uc : T
n×T → R and a parameter c ∈ Rn,

the Hamilton-Jacobi equations are:

• stationary in the autonomous setting: H(q, c+ duc(q)) = α(c);

• evolutive in the time-dependent case: ∂uc

∂t (q, t) + H(q, c + ∂uc

∂q (q, t), t) =

α(c).

We are interested in the c-dependence of the weak K.A.M. solutions (that are
also called viscosity solutions) of these equations. Guided by what happens in the
classical completely integrable case, we raise the following questions:

• can we choose (q, c) 7→ u(q, c) very regular?
• once we know u, can we say something on the dynamics?

1. The case of exact symplectic twist maps of the 2-dimensional

annulus

What is in this section is a joint work with Maxime Zavidovique.
We fix the time t = 0 and use the notation u(q, c) = uc(q) instead of uc(q, 0). We
denote by π1 : T× R → T the projection.
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Theorem 1. Let f be a C1 symplectic twist diffeomorphism of T×R. Then there
exists a continuous map u : T× R → R such that

• u(0, c) = 0;
• each uc = u(., c) is a weak K.A.M. solution for the cohomology class c and

then:
• each uc = u(., c) is semi-concave ;
• each graph of c+ ∂uc

∂θ is backward invariant by f .

Remarks 1. (1) The choice of solution we do is not the same than the dis-
counted one given in [2] : we built an example for which the choice given
in [2] is not continuous.

(2) In our setting, it can even be proved that c 7→ graph(c+duc) is continuous
for the Hausdorff distance.

Theorem 2. With the notations of Theorem 1, we have equivalence of

(1) f is C0 integrable;
(2) the map u is C1.

Moreover, in this case, u is unique and we have

• the graph of c+ ∂uc

∂θ is a leaf of the invariant foliation;

• hc : θ 7→ θ+ ∂uc

∂c (θ) is a semi-conjugation between the projected Dynamics

gc : θ 7→ π1 ◦ f(θ, c+ ∂uc

∂θ (θ)) and a rotation R of T, i.e. hc ◦ gc = R ◦ hc.
Remarks 2. (1) What is the most surprising in Theorem 2 is the fact that

in the C0 integrable case the semi-conjugation hc continuously depends
on c even at the c where the rotation number is rational. At a irrational
rotation number, this is an easy consequence of the unicity of the invariant
measure supported on the corresponding leaf. What happens for a rational
rotation number is more subtle.

(2) Observe that in the Ck-integrable case for k ≥ 1, we can only claim that
u and ∂u

∂θ are Ck: so in the C0 case, even the derivability with respect to
c is surprising; this surely is related to the 2-dimensional setting in which
we work.

An interesting question concerns the restricted Dynamics to the leaves in the
C0-integrable cases. A priori, such a Dynamics can be a Denjoy counter-example
(but we have no example for such a phenomenon). With more regularity of the
foliation, we obtain the following result.

Theorem 3. With the notations of Theorem 2, we have equivalence of

(1) f is Lipschitz integrable;
(2) the map u is C1 with ∂u

∂θ locally Lipschitz continuous and ∂u
∂c uniformly

Lipschitz in the variable θ on any compact set of cs.

In this case, there exists Φ : T×R → T×R symplectic homeomorphism that is C1

in the θ variable such that:

∀(x, c) ∈ T× R,Φ ◦ f ◦ Φ−1(x, c) = (x + ρ(c), c);
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where ρ : R → R is an increasing homeomorphism.

Remarks 3. (1) In this case, all the leaves are C1 and the foliation is a C1

lamination;
(2) the last part of Theorem 3 provides some analogue of the Arnol’d-Liouville

coordinates that exist for the completely integrable Hamiltonian systems.

2. The case of autonomous Tonelli Hamiltonians

What is in this section is a joint work with Jinxin Xue (see [1]).

Theorem 4. Suppose that H : Tn ×Rn → R is a Tonelli Hamiltonian that has a
C1 invariant foliation into C1 Lagrangian graphs on an open subset U ⊂ Tn×Rn.
Then there exists a neighborhood U of 0 in Rn and a symplectic homeomorphism
φ : Tn × U → U that is C1 in the direction of Tn such that

∀ c ∈ U, φ ◦ ϕH
t ◦ φ−1(x, c) = (x+ tρ(c), c)

where ρ : U → Rn is a homeomorphism onto ρ(U).

Observe that the conjugacy φ that we obtain has the same regularity as the
foliation in the direction of the leaves but is just C0 in the transverse direction. If
we replace the C1-integrability by a Lipschitz integrability, we loose any transverse
regularity and we just obtain some results along the leaves.

Theorem 5. Suppose that the Hamiltonian H : Tn × Rn → R is Tonelli and
has a Lipschitz invariant foliation into Lipschitz Lagrangian graphs on V ⊂ Tn ×
Rn. Then restricted to each leaf, the Hamiltonian flow has a unique well-defined
rotation vector, and is bi-Lipschitz conjugate to a translation flow by the rotation
vector on Tn. Moreover, all the leaves are in fact C1.

Observe that we do not know if the conjugacies are C1.
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Birkhoff normal forms for Hamiltonian partial differential equations

Walter Craig

The laws of physics are often expressed in terms of partial differential equations
that can be formulated as Hamiltonian systems. This is the fundamental fact
that motivates the efforts to describe the basic flow-invariant structures of their
phase space M, which is normally a Hilbert or Banach space encompassing the
requisite infinite number of degrees of freedom. In this talk I will however address
several issues that have to do with the initial question of existence of solutions, and
their time of existence before singularity formation. We will study two equations,
which we express through their respective Lagrangians; the nonlinear Schrödinger
equation

(1) LNLS =

∫
im

(
ūu̇

)
− 1

2 |∇u|2 − F (|u|2) dx , u : x→ C ,

with F (|u|2) ∼ O(|u|m) and the quasilinear wave equations

(2) LQW =

∫
1
2 u̇)2−G(∂xu, u̇) dx , (u, u̇) : x→ R2 ,

with G(v) ∼ O(|v|m). The resulting Euler - Lagrange equations are the nonlinear
Schrödinger equation

(3) ∂tu = −i
(
1
2∆u − F ′(|u|2)u

)

and respectively the quasilinear wave equation

(4) ∂2t u−∆u+

d∑

j=1

∂xj
(∂uxj

G) + ∂t(∂u̇G) = 0 .

The key point of the talk today is that we will take x ∈ Rd, d ≥ 1. In this
setting of a noncompact spatial domain, solutions of the linear equations tend
to disperse. The existence of small amplitude nonlinear solutions is therefore a
competition between this dispersion and the tendency for the nonlinearities to
promote singularities. A classical theorem to this effect is the following, which
follows from work of S. Klainerman and J. Shatah in the mid 1980s.

Theorem 1. [3][4] Given initial data u0(x) for the nonlinear Schrödinger equation
(3) in an appropriate Sobolev space u ∈ Br(0) ⊆ MNLS ⊆ L2(Rd), if

d

2
(m− 2) > 1

and r is sufficiently small then the time of existence Tr = +∞
Given initial data (u0(x), u̇0(x)) for the quasilinear wave equation (4) in an

appropriate Sobolev space u ∈ Br(0) ⊆ MQW ⊆ (L2(Rd))2, if

d− 1

2
(m− 2) > 1

and r is sufficiently small then the time of existence Tr = +∞
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This sort of result is in contrast to the situation in which x ∈ Md a compact
manifold (such as Md = Td) for which solutions of the linear equations are recur-
rent and little or no decay is possible. In these settings the emphasis has been
on KAM theory, which produces some quasiperiodic solutions for which T = +∞,
averaging theories such as Birkhoff normal forms which gives rise to lower bound
estimates such as T ≥ rN , and Nekhoroshev stability, which gives lower bounds

such as T ≥ eC/rβ . In a few cases, constructions of cascade orbits provide upper
bounds on growth of action variables and Sobolev norms.

Given the role of the order m of the nonlinear term, it is a motivation to
transform these partial differential equations in order to eliminate as much as
possible the inessential components of the nonlinearity. Because of their nature
as Hamiltonian systems, it is therefore natural to consider Birkhoff normal forms
transformations. For this purpose denote a phase space point z in the NLS case
by z = u(x), and in the case of the wave equation set

z =
1√
2

(
|Dx|1/2u(x) +

i

|Dx|1/2
p(x)

)
.

In both cases we denote the Hamiltonian function that stems from the Legendre
transform of the respective Lagrangians by

H(z) = H(2) +H(3) + · · ·+H(N) +R(N+1)

where we have developed the Taylor expansion with remainder about the elliptic
stationary point z = 0 up to order N ≥ 3. We seek a canonical transformation
w = τ(z) that will eliminate to the extent possible the inessential nonlinearities,
leaving only the essential terms in the form

H+(w) = H(2) + (Z(3) + · · ·+ Z(N)) +R
(N+1)
+ .

In finite degree of freedom Hamiltonian systems, and as well from the case of
compact domains x ∈ Md, the obstructions to eliminating nonlinear terms are
due to resonance, and the essential nonlinearities Z(3) + · · · + Z(N) are precisely
the resonant terms. To identify these, the frequencies for the Schrödinger equation
are given by the dispersion relation ω(k) = 1

2 |k|2 for k ∈ Rd, and for the wave
equation by |k|. A resonance relation for the term of order m is stated in terms
of multiindices P , Q such that |P |+ |Q| = m

〈ω|P −Q〉 =
∑

P,Q,|P |+|Q|=m

pkω(k)− qkω(k) = 0 .

However in the case of x ∈ Rd the spectrum is continuous, and the effect of
a resonance may well be less relevant. This is the conclusion of the following
theorem on normal forms for the NLS.

Theorem 2 (Craig, Selvitella & Wang 2013 [2]). Consider the nonlinear Schrö-
dinger equation (3) with F = ±|u|4 +O(|u|5) defined on the Sobolev space M :=
Hs,s(Rd) for s > d/2.
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(1) The m = 4 resonant set Q3d−1 is a 3d− 1 dimensional quadric surface, given
by

ω(k1) + ω(k2)− ω(k3)− ω(k4) =
1
2 (|k1|2 + |k2|2 − |k3|2 − |k4|2) = 0 ,

k1 + k2 + k3 + k4 = 0 .

(2) Nonetheless for all r > 0 sufficiently small there is a canonical transformation
w = τ(z) mapping the ball Br(0) ∈ M into B2r(0) which eliminates all nonreso-
nant and all resonant terms, namely Z(4) = 0.

(3) The transformation τ = τ (4) is holomorphic.

In principal this normal forms transformation may be iterated for higher values
of m. The solution map for equation (3) is holomorphic as well.

Quasilinear wave equations: Quasilinear nonlinearities are more serious. Let
m = 3 and consider third order resonance conditions

ω(k1)− ω(k2)− ω(k3) = 0 , k1 + k2 + k3 = 0 ,

which has to do with the nonlinear interaction of three principal Fourier modes.

Lemma 3. All m = 3 resonances are co-linear, namely for (k1, k2, k3) ∈ R3d if

|k1| − |k2| − |k3| = 0 , k1 + k2 + k3 = 0

then k1 k2 and k3 are multiples of some basic k0 ∈ Rd.

Klainerman identified a class of nonlinear equations for which the quadratic
nonlinear term, namely the term in the equation stemming from the cubic term
of the Hamiltonian, has less effect on the time decay. These are termed null
forms, and not surprisingly the null condition enters into the considerations of
normal forms. Natural phase spaces for the quasilinear wave equation (4) are
M = Hr(Rd) for r > (n + 2)/2 the usual Sobolev spaces, and alternatively the
scale of invariant norm Sobolev spaces Zr(Rd) that will be defined below.

Theorem 4 (Craig, French & Yang 2017 [1]). The Birkhoff normal forms trans-
formation τ (3) eliminates the cubic terms of the Hamiltonian of a null form wave
equation. However:

(1) The transformation τ (3) is not holomorphic, it is continuous on Bε(0) ⊆ M
but is not in general smooth.

(2) The auxiliary Hamiltonian K(3) that satisfies the cohomological equation

{H(2),K(3)} = H(3)

whose time-one flow map is designed to give the transformation τ (3) does not give
rise to a bounded vector field in general.

(3) The solution map ψt(z) of the vector field K(3) is continuous but is not in
general differentiable on M.

(4) The solution map ϕt(z) of the quasilinear wave equation is continuous but it
also is not smooth on any reasonable phase spaces M ⊆ L2(Rd).
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This issue of lack of smoothness of the solution map brings up the issue of what
it should mean to be a flow when one is treating partial differential equations as
dynamical systems on a phase space which is a Banach space.

We conclude with a definition of the invariant norm Sobolev spaces that are used
in this transformation theory. Recall that a phase space point for the quasilinear
wave equation, in complex symplectic coordinates is given by

z(x) =
1√
2

(
|Dx|1/2u(x) +

i

|Dx|1/2
p(x)

)
.

The standard energy spaces based on Sobolev norms on Rd are given by

Hr(Rd) = {z(x) : ∂αx z ∈ L2(Rd) , |α| ≤ r} ,
giving the scale of spaces Hr ⊆ Hr−1 · · · ⊆ L2.

The invariant norm Sobolev spaces are similar, however based on a larger family
of differential operators that are invariant under rotations and dilations as well
as translations of Rd. In addition to ∂αx these include the angular momentum
operators

Ωjℓ = xj∂xℓ
− xℓ∂xj

, j, ℓ = 1, . . . d

and the dilation operator

Λ =
n∑

k=1

xk∂xk
.

The scale of invariant norm Sobolev spaces Zr is defined as

Zr := {z : ΛβΩα∂σx
√
|Dx|z ∈ L2(Rn

x) , |α|+ |β|+ |σ| ≤ r}
The Fourier transform is one of the symplectic transformations that is used in
the analysis of the Hamiltonian vector fields XK(z). Under Fourier transform the
angular momentum and dilation operators satisfy

Ωjℓ = Ωjℓ(x) 7→ kj∂kℓ
− kℓ∂kj

= Ωjl(k)

Λ(x) 7→ −Λ(k)− dI ,

that is, the Lie algebra of angular momentum and dilation operators is invariant
under the Fourier transform. Using the above facts, the operators Ω and Λ obey
the Leibnitz rule with respect to the integral operators

XK(3)

(u, v) =

∫

ξ+ξ1+ξ2=0

k(ξ, ξ1, ξ2)u(ξ1)v(ξ2) dξ1

Namely, when operating on the vector field XK(3)

(u, v), considered as a bilinear
form, then

ΩXK(3)

(u, v) = XK(3)

(Ωu, v) +XK(3)

(u,Ωv)

ΛXK(3)

(u, v) = XK(3)

(Λu, v) +XK(3)

(u,Λv) .
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The scale of invariant norm Sobolev spaces is defined similarly to the usual scale
of Soblev spaces, namely

Zr := {z(x) : ΛβΩα∂σx
√
|Dx|z ∈ L2(Rd

x) , |α|+ |β|+ |σ| ≤ r}
= {z(x) : ΛβΩαkσ

√
|k|ẑ(k) ∈ L2(Rd

k) , |α|+ |β|+ |σ| ≤ r}
Zr ⊆ Zr−1 ⊆ . . . Zr−s ⊆ . . . L2(Rd)

Finally, we may state the definition of smoothness of the transformation τ (3) on a
scale of spaces, namely that, given z(x) ∈ Zr the first and higher Frechet deriva-
tives of the mapping τ (3) at the point z(x) are continuous, but on larger spaces
(of less smooth functions);

τ (3) : Bρ(0) ⊆ Zr → B2ρ(0) ⊆ Zr

∂zτ
(3)(z)− id : Zr−1 → Zr−1

. . .

∂βz τ
(3)(z) : Zr−|β| → Zr−|β| .
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Holomorphic curves and the three-body problem

Otto van Koert

In this talk we described applications of holomorphic curve techniques due to
Hofer, Wysocki and Zehnder, [5, 6, 7, 8, 9], and further developed by Hryniewicz
and Salomão, [10, 11] to classical Hamiltonian dynamical systems. These tech-
niques construct foliations of contact 3-manifolds, with some periodic Reeb orbits
removed, that are transverse to the Reeb flow. For example, in this way Hofer,
Wysocki and Zehnder, [6], proved that a hypersurface bounding a compact, strictly
convex set in R4 always admits a global disk-like surface of section.

In the first part of the talk we explained this background, and described how
convexity estimates give an effective way to construct global surfaces of section for
several Stark-Zeeman systems. These are magnetic Hamiltonians of the form

H =
1

2
‖p+A(q)‖2 + V0(q) + V1(q),
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where V0(q) = − 1
|q| . These Hamiltonians include many systems from celestial

mechanics as well as other well-studied problems, and have many features in com-
mon. After regularizing the singularity with the Levi-Civita scheme, we obtained
explicit results on the existence of global surfaces of section for the diamagnetic
Kepler problem, a well-studied model for chaos in physics, and the planar circular
restricted three-body problem, [1, 2, 4]. These results include cases that cannot
be proved by perturbative methods.

The construction using holomorphic curves can also be implemented numeri-
cally. When done naively, this unfortunately leads to a rather inefficient algorithm.
However, the proof by the holomorphic curve techniques provides a good hint on
how the global surface of section should behave. In particular, a shooting argu-
ment in classical work by Birkhoff, [3], gives a clue on what the binding orbits of
the surfaces of section should be. This allows us to come up with an alternative
algorithm. We described these numerical results in the second half of our talk.
These results illustrate the rich dynamics in these problems. The figure below
illustrates one of them, namely return maps for an annulus-type surface of section
in the RTBP.

Figure 1. Annulus return maps in RTBP for µ = 0 and µ =
0.5325: the former satisfies the twist condition, the latter does
not (at least not in these coordinates)
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Arnold’s J
+-invariant and periodic orbits in the restricted three body

problem

Urs Frauenfelder

(joint work with Kai Cieliebak, Otto van Koert)

By the Theorem of Whitney-Graustein the rotation number or Whitney index is
a complete invariant for homotopy classes of immersed curves in the plane. In
a generic homotopy of immersed curves three disasters might occur, triple inter-
sections and direct and inverse self-tangencies. Arnold’s J+-invariant does not
change under triple intersections and inverse self-tangencies but is sensible to di-
rect self-tangencies. This is of interest if one considers periodic orbits under a
force law. Because the force is proportional to acceleration such an orbit obeys a
second order ODE and therefore direct self-tangencies cannot occur.

One can show that Arnold’s J+-invariant does not change under addition of
exterior loops, although these affect the Whitney index. In the talk I explain
the relation of this fact to periodic orbits in the restricted three body problem.
The description of the orbit of the moon using Newton’s law of gravitation was
for a long time a challenging problem. Indeed, the heavy sun cannot be treated
as a small perturbation of the problem. Hill considered the problem in rotating
coordinates where the sun and earth both are at rest. The price one has to pay
for this transformation is that the moon in rotating coordinates is now subject to
four forces, the gravitational force of the sun, the gravitational force of the earth,
the Coriolis force and the centrifugal force. This is the content of the restricted
three body problem. Hill considered a family of periodic orbits for this problem
indexed by the period. This periodic orbit is a model for the orbit of a moon
and the period corresponds to a month which is referred to as the “lunarity”. Hill
observed that while for low lunarity the orbit is immersed for high lunarity at some
moments the velocity vanishes where the orbit gets a cusp. He thought that this is
the end of the family and referred to this orbit as “the moon of maximal lunarity”.
However, Adams and Poincaré convinced him that the family can be prolonged
further, while the cusps transform to exterior loops. In particular, the Whitney
index does not stay constant along this family, but the J+-invariant does.
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Dynamics near focus-focus singular fibers in semitoric systems

Sonja Hohloch

A semitoric system on a connected 4-dimensional symplectic manifold (M,ω) is a
completely integrable system Φ = (J,H) : (M,ω) → R2 such that

• J is proper.
• J induces an effective Hamiltonian S1-action.
• Φ has only nondegenerate singularities.
• The singularities do not have hyperbolic components.

This narrows the type of critical points down to focus-focus, elliptic-elliptic, and
elliptic-regular. The fibers of Φ are either regular (and therefore 2-tori due to the
Arnold-Liouville theorem) or singular, meaning they contain singular points. In
the latter case they are either ‘pinched tori’ having a focus-focus point at each
pinch or ‘circles’ consisting of elliptic-regular points or elliptic-elliptic fixed points
as sketched in Figure 1. A semitoric system is simple if a singular fiber contains
at most one focus-focus singular point.

Figure 1. Fibers of a semitoric system with two focus-focus and
two elliptic-elliptic critical points.
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Simple semitoric systems have been classified by Pelayo & Vũ Ngo.c [3, 4] by means
of the following five invariants:

1) The number of focus-focus singularities.
2) The Taylor series invariant given by the Taylor series expansion of a cer-

tain generating function at each focus-focus singular fiber.
3) An equivalence class of generalized polygons.
4) The height invariant given by the heights of the focus-focus values in the

generalized polygons.
5) The twisting-index invariant given by integers measuring the ‘relative

twistedness’ near focus-focus singularities.

Two of these invariants, namely the Taylor series invariant and the twisting index,
are still somewhat ‘mysterious’ due to lack of intuition and/or computed examples.
We hope to amend this by

(1) Identifying the Taylor series invariant somehow with the Birkhoff normal
form and computing it for the coupled angular momenta and the coupled
spin oscillators. This is an ongoing project with J. Alonso Fernández and
H. Dullin.

(2) Presenting a new compact semitoric system with two distinct focus-focus
singular fibers [2]. We suspect that the twisting index is in fact some kind
of Dehn twist. This is an ongoing project with J. Palmer.

Moreover, there exists now the new class of vertical almost-toric systems — a gen-
eralization of semitoric systems ‘compatible’ with taking subsystems, but enjoying
still many pleasant properties of semitoric systems. This is a joint work with S.
Sabatini, D. Sepe, and M. Symington [1]. Vertical almost-toric systems are in
particular suited for surgeries which is the topic of an ongoing project with the
same collaborators.
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[4] A. Pelayo, S. Vũ Ngo.c, Constructing integrable systems of semitoric type, Acta Math. 206
(2011), no. 1, 93–125.

Vortex reconnection in the three-dimensional Navier-Stokes equations

Daniel Peralta-Salas

(joint work with Alberto Enciso, Renato Lucà)

A fundamental feature of inviscid incompressible fluids is that the vorticity is
transported along the fluid flow. More precisely, if u(x, t) is the velocity field of a
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fluid and P (x, t) is its pressure, they satisfy the 3D Euler equations:

∂tu+∇uu = −∇P , div u = 0 , u(·, 0) = u0 ,

where ∇u stands for the covariant derivative along u. Then a simple computation
shows that the vorticity ω := curlu evolves according to the transport equation

∂tω = [ω, u] ,

where [·, ·] denotes the Lie bracket of vector fields. This equation ensures that the
vorticity at time t can be written in terms of the initial vorticity ω0 as

ω(·, t) = (φt,0)∗ ω0 ,

that is, as the push-forward of the initial vorticity along the non-autonomous flow
φt,0 generated by the velocity field u. It then follows that, as long as the solution
of the Euler equations does not blow up, there are no changes in the topology of
the vortex structures of the fluid, such as vortex tubes or closed vortex lines.

Definition 1: A closed vortex line (resp. a vortex tube) at time t is defined as
a periodic integral curve (resp. a smooth invariant two-dimensional torus) of the
vorticity ω(·, t) frozen at time t. The set of vortex structures at time t is defined
as the set of closed vortex lines and vortex tubes of ω(·, t).

In presence of viscosity, the vorticity is no longer transported along the flow
because the diffusion gives rise to a phenomenon known as vortex reconnection.
Viscous incompressible fluids are described by the 3D Navier–Stokes equations,

∂tu+∇uu− ν∆u = −∇P , div u = 0 , u(·, 0) = u0 .

where ν is a positive constant denoting the viscosity. We will study solutions to
these equations in the torus T3 with T := R/2πZ.

Definition 2: A vortex reconnection has occurred at time T if the sets of vortex
structures at time T and at time 0 are not diffeomorphic, so there has been a
change of topology [5, 1]. For example, a certain vortex tube can break and there
can appear vortex tubes or vortex lines that are knotted or linked in a different
way as the initial vorticity.

There is overwhelming numerical and physical evidence for vortex reconnec-
tion. Particularly relevant for our purposes are the recent experimental results
presented in [6, 7], where the authors study how vortex lines and tubes of different
knotted topologies reconnect in actual fluids using cleverly designed hydrofoils.
Nevertheless, a mathematically rigorous scenario of vortex reconnection has never
been constructed so far.

In [4] we filled this gap by providing a rigorous mechanism of vortex reconnection
in viscous incompressible fluids. Our proof is indirect, meaning that we prove that
there has been a change in the topology of the vortex lines and tubes of the
fluid, and even control the initial and final topologies, but we cannot describe
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the way in which the vortex tubes or lines break. In particular, we do not know
if this happens essentially as in the well-known bifurcation model of parallel or
anti-parallel reconnection [5, 7].

We will next state a result proved in [4] on rigorous vortex reconnection. In
this theorem we will construct a finite cascade of reconnections at any sequence of
times (fixed a priori)

T1 < T2 < · · · < Tn ,

meaning that there is a smooth solution to the Navier–Stokes equations, which
one can even assume to be global, such that it has a subset of vortex structures at
time Tk (for each odd integer k) that does not have the same topology as any of the
subsets of the vortex structures present at the times Tk−1 or Tk+1. Furthermore,
the scenario of reconnection that we present is structurally stable, which roughly
speaking means that the phenomenon occurs for any initial datum that is close
enough in C4,α(T3) to the initial velocity discussed in the theorem (cf. [4] for a
precise definition).

Theorem: Given any constants 0 =: T0 < T1 < · · · < Tn andM > 0, for each odd
integer k in [1, n] let us denote by Sk any finite collection of closed curves and em-
bedded tori (pairwise disjoint but possibly knotted and linked) that are contained
in the unit ball of T3. Then there is a global smooth solution u : T3× [0,∞) → R3

of the Navier–Stokes equations, with an initial datum of norm ‖u0‖L2 = M and
of zero mean, which, for each odd integer k ∈ [1, n], exhibits at time Tk a subset
of vortex structures diffeomorphic to Sk that is not diffeomorphic to any subset
of the vortex structures of the fluid at time Tk−1 or Tk+1. This scenario of vortex
reconnection is structurally stable.

Let us give some heuristic ideas about the proof of this result. The first key
observation is that, in order to prove it, the real enemy is not only the fact that the
Navier–Stokes equations are notoriously difficult to analyze, but rather the need to
prove that a subset of vortex structures originating at time T is not diffeomorphic
to any subset of the vortex structures at time 0.

The proof hinges on choosing an initial datum that is the sum of several smooth
but highly oscillatory Beltrami fields Wk, that is

u0 =MW0 + δ1 W1 + · · ·+ δn Wn ,

where δk are small enough constants. We recall that a vector field W in T3 is a
Beltrami field if it satisfies the equation curlW = NW for some eigenvalue N (the
frequency of the field) of the curl operator.

The argument involves an interplay between the (very large) frequencies Nk of
the fields and their relative sizes that ensures that, at time Tk, the vortex structures
of the fluid are somehow related to those of Wk in the sense that:

cku(·, Tk) = Wk + small

for some constant ck. Key to make this argument work is to find two families of
Beltrami fields with arbitrarily large frequencies and such that in the first family
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one can find a subset of vortex structures diffeomorphic to Sk (so this family is
used to construct Wk when k is odd) whereas in the second family all the vortex
structures are non-contractible.

The Beltrami fields Wk for k odd are constructed using the tools introduced
in [2, 3], while the Beltrami fields Wk for k even are explicit and read in terms of
the Cartesian coordinates (x1, x2, x3) as:

Wk = (2π)−3/2 (sinNkx3, cosNkx3, 0) .

Since the integral curves of these fields lie on the tori x3 = const it follows that
they are all non-contractible.

An essential property of these families is that they are “robustly non-equivalent”,
meaning that any (uniformly) small perturbation of a member of the first family is
not topologically conjugate to a small perturbation of any member of the second
family, and viceversa. This is proved using suitable estimates for Beltrami fields
with sharp dependence on the frequency and the KAM theory. It is worth men-
tioning that the frequencies we need to consider in the proof of the theorem are
much larger than ν−1/2, which explains why there is no hope of promoting this
scenario of vortex reconnection to the vanishing viscosity limit.

Finally, the global existence of the solutions follows from a suitable stability
theorem for the Navier–Stokes equation and the fact that our initial data are small
perturbations of Beltrami fields.
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Rigidity of conjugacy classes in group of area-preserving

homeomorphisms

Sobhan Seyfaddini

(joint work with Frédéric Le Roux, Claude Viterbo)

Let (Σ, ω) be a closed surface equipped with an area form ω and denote by
Ham(Σ, ω) the C0 closure of Hamiltonian diffeomorphisms of (Σ, ω). This is
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often referred to as the group of Hamiltonian homeomorphisms of (Σ, ω). Very
little is understood about the algebraic structure of this group. For example, it is
not known whether it is simple or not and in the case where Σ = S2 we do not
know if it admits any homogeneous quasimorphisms. Investigating questions of
this nature, F. Béguin, S. Crovisier, and F. Le Roux were lead to the following
question:

Does there exist θ ∈ Ham(Σ, ω) whose conjugacy class is dense in Ham(Σ, ω)?

The answer to the above question turns out to be negative. In the case of sur-
faces with non-zero genus this is a consequence of the works of Entov-Polterovich-
Py [1] and Gambaudo-Ghys [2]. In the case of S2, the negative answer was pro-
vided by the author in [3]. In each of the above cases the question was answered
by constructing continuous conjugacy invariants. One can not associate a dy-
namical interpretation to these invariants, particularly in the case of S2, where
Hamiltonian Floer theory is used.

In an ongoing joint project with F. Le Roux and C. Viterbo, we show that one
can separate closures of conjugacy classes in Ham(Σ, ω) by simply counting fixed
points with appropriate multiplicities. Here is a more precise statement: Given
a Hamiltonian homeomorphism f denote by Conj(f) its conjgucay class and by
Conj(f) its closure. We say f is almost conjugate to g if there exists h1, . . . , hN ∈
Ham(Σ, ω) such that f = h1, g = hN and Conj(hi) ∩ Conj(hi+1) 6= ∅. Almost
conjugacy is an equivalence relation. Clearly, existence of a dense conjugacy class
would imply the triviality of this relation.

Theorem 1. Let (Σ, ω) denote a closed symplectic surface other than the sphere
and suppose that f, g ∈ Ham(Σ, ω) have finitely many fixed points. If f is almost
conjugate to g, then

∑

x∈Fixc(f)

|L(f, x)| =
∑

x∈Fixc(g)

|L(g, x)|.

We expect that our methods can be modified to prove the above statement in
the case Σ = S2.

One of the main ingredients of the proof of the above theorem is the theory of
barcodes which has recently surfaced in symplectic topology through the works of
Polterovich and Shelukhin. In fact, for us the above theorem has served as a good
motivation for developing the theory of barcodes for Hamiltonian homeomorphisms
of surfaces.

It would of course be very interesting to extend Theorem 1 to the setting where
f, g are non-smooth. We have made some progress in this direction which I will
outline here: Consider f ∈ Ham(Σ, ω) which has finitely many fixed points. We
say that f is smoothable if there exists some g ∈ Ham(M,ω) which is arbitrarily
C0-close to f and such that Fixc(g) = Fixc(f).

Theorem 2 (Le Roux, S., Viterbo). Theorem 1 is true for smoothable homeo-
morphisms.
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We can show that many homeomorphisms are smoothable and in fact we con-
jecture that all homeomorphisms are smoothable. Our main tool for establishing
smoothability is Le Calvez’s theory of transverse foliations.
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Shape of minimal sets in aperiodic flows

Krystyna Kuperberg

We revisit the aperiodic plugs constructed in 1993 by the speaker to solve the C∞

Seifert Conjecture [7] in dimension three. All of the known counterexamples to the
Seifert Conjecture are plug constructions. A plug was first constructed by F. W.
Wilson [12] in 1966, who answered the C∞ Seifert Conjecture for spheres S5, S7,
. . . . A 3-dimensional Wilson-type plug, with two circular orbits, is the starting
point for the examples in [7] and [8].

A C1 aperiodic flow on S3 was given by Paul A. Schweitzer in 1974 and im-
proved to C2+δ by Jenny Harrison in 1988. In 1996, Greg Kuperberg, modified
Schweitzer’s example to be volume-preserving. In 2003, Viktor L. Ginzburg and
Başak Z. Gürel, gave a C2 counterexample to the Hamiltonian version of the Seifert
Conjecture in dimension three. These examples have minimal sets of codimension
two and cannot be improved to C3 within the methods used.

In a private communication, William P. Thurston [11] remarked that the method
presented in [7] yields real analytic examples as well, and if the example is at least
C1, the flow is not measure preserving. In a joint paper [8], Greg Kuperberg and
the author, solve the Modified Seifert Conjecture in the Cω and PL categories.
The respective aperiodic dynamical system posseses only one minimal set, which
is of topological (covering) dimension two.

The flows (C∞ in [7], Cω and PL in [8]) are constructed by making an aperiodic
plug using self-insertions in a Wilson-type plug [12], see Fig. 1 and Fig. 2.1

The resulting plug contains a huge minimal set, usually of topological dimension
two, see [3] and [8]. PL examples of the self-inserted plug, with the minimal set
of dimension one as well as two, are given in [8]. The topological and algebraic
properties of the minimal set depend on the formulas of the self-insertions. We are
interested in algebraic properties in the category of the Shape Theory developed
by Karol Borsuk, Vietoris-Čech Homology, and Étale Homotopy.

An object in the shape theory is a pair (X,M) consisting of a compact metric
spaceX and an absolute retractM in whichX is embedded. Thus the shape theory

1Figures made by W. Kuperberg in 1993
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Figure 1. Self-insertion preparation
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Figure 2. Self-inserted aperiodic plug

approach is particularly convenient for flows defined on manifolds as invariant
compact sets are often naturally embedded in an absolute retract, a neighborhood
homeomorphic to Rn. The shape, movability or UV -properties, and Mittag-Leffler
conditions of the minimal set are studied. A tremendous progress in studying the
shape properties of the minimal sets described in [7] has been made by Steven
Hurder and Ana Rechtman in [5].

Although shape invariants do not depend on the choice of the absolute retract
M , embedding the objects with desired properties in a flow depends on M and its
dimension, see [10].

The following question remains outstanding: Let φ be a flow on R3 with a
compact set A invariant. Does every neighborhood of A contain a movable compact
invariant set containing A?
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Two or infinitely many Reeb orbits

Daniel Pomerleano

(joint work with Dan Cristofaro-Gardiner, Michael Hutchings)

The three-dimensional case of the Weinstein conjecture asserts that every contact
form on a closed three-manifold has at least one Reeb orbit. This was proved by
Taubes in 2007 [Tau1] using Seiberg-Witten theory. This result naturally leads to
the following question:

Question 1. What can one say about the number of simple Reeb orbits of a contact
form on a closed three-manifold?

Without any further assumptions on the contact manifold Y or the contact
form λ, a definitive result in this direction was obtained by Cristofaro-Gardiner
and Hutchings [CGHut], who showed that there are at least two simple Reeb orbits.
The lower bound of two is the best possible without further assumptions, because
there exist contact forms on S3 with exactly two simple Reeb orbits. One can also
take quotients of these examples by cyclic group actions to obtain contact forms on
lens spaces with exactly two Reeb orbits. In order to obtain stronger results, it is
standard to assume that λ is nondegenerate, thereby allowing one to make direct
use of the powerful theory of pseudoholomorphic curves in the symplectization
R× Y . An important result in this direction is:
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Theorem 2. (Hofer-Wyoscki-Zehnder [HWZ2, Cor. 1.10]) Let λ be a nondegen-
erate contact form on S3. Assume that

(a) ξ = Ker(λ) is the standard contact structure on S3.
(b) The stable and unstable manifolds of all hyperbolic Reeb orbits of λ intersect

transversely.

Then λ has either two or infinitely many simple Reeb orbits.

In this talk, we will explain the following generalization of Theorem 2:

Theorem 3. [CGHutPom] Let Y be a closed connected three-manifold and let λ
be a nondegenerate contact form on Y . Assume that c1(ξ) is torsion in H2(Y ;Z).
Then there are either two or infinitely many simple Reeb orbits.

By combining this with Theorem 1.5 of [HutTau], we obtain:

Corollary 4. Let Y be a closed connected three-manifold which is not S3 or a lens
space. Then every nondegenerate contact form λ on Y such that c1(ξ) ∈ H2(Y ;Z)
is torsion has infinitely many simple Reeb orbits.

The proof of Theorem 3 makes use of embedded contact homology (ECH), a
three manifold invariant which is defined using pseudoholomorphic curve theory.
While ECH(Y, λ) is defined in terms of symplectic geometry, it is known to be
canonically isomorphic to the Seiberg-Witten Floer cohomology of Y by work of
Taubes [Tau2, Tau3]. This allows one to import results from gauge theory into
symplectic geometry. In particular, using this isomorphism, one is able to produce
a certain infinite sequence of Fredholm index two curves in R× Y . The main step
of the proof is to show that, if λ has only finitely many simple orbits and c1(ξ) is
torsion, then at least one of these curves projects to a genus zero global surface
of section of the Reeb flow on Y . Following ideas of [HWZ1], the existence of a
genus zero global surface of section enables one to transfer dynamical questions
about the Reeb flow on Y to questions about periodic points of homeomorphisms
of surfaces. From here, Theorem 3 follows from known results.
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3 − 2 − 3 foliations and Hamiltonian dynamics near critical energy

levels

Pedro A. S. Salomão

(joint work with N. de Paulo, U. Hryniewicz)

We study the existence of 3−2−3 foliations for tight Reeb flows on connected sums
RP 3#RP 3. These are rational singular foliations of RP 3#RP 3 whose singular set
is formed by three binding orbits, two of them P3 and P

′
3 are non-hyperbolic and 2-

unknotted, and P2 is hyperbolic and unknotted. The regular leaves are transverse
to the Reeb vector field and consist of two rigid planes asymptotic to P2 which
separate P3 and P ′

3, two rigid cylinders connecting the double covers of P3 and P ′
3

to P2 and two one-parameter families of planes asymptotic to the double covers of
P3 and P ′

3. See the Figure 1.
Reeb flows admitting such 3 − 2 − 3 foliations arise naturally when studying

certain Hamiltonian flows near critical energy levels. Suppose that the critical
level H−1(0) of a Hamiltonian function H has a critical point pc which is a saddle-
center equilibrium point for the Hamiltonian flow (this is a Morse index 1 critical
point of H). Suppose also that for energies E < 0 small, the energy level H−1(E)
has two components diffeomorphic to RP 3 which converge, as E → 0−, to critical
subsets S0, S

′
0 ⊂ H−1(0) with S0 ∩ S′

0 = {pc} as a unique common singularity
(both S0 and S′

0 are homeomorphic to RP 3). See Figure 2. We show that if the
flow on S0∪S′

0 \{pc} is dynamically convex then for all energies E > 0 sufficiently
small the energy level H−1(E) contains a component WE diffeomorphic to the
connected sum RP 3#RP 3 which admits a 3− 2− 3 foliation. These foliations are
obtained as projections of finite energy foliations in the symplectization of WE .

We also discuss the existence of 3 − 2 − 3 foliations in the Euler’s problem of
two fixed centers on the plane, after a suitable regularization.
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Figure 1. This is a slice of a 3 − 2 − 3 foliation. The four dark
dots represent the two binding orbits P3 and P ′

3. The other two
dots represent the hyperbolic orbit P2. The one-parameter family
of planes asymptotic to the double covers of P3 and P ′

3 are rep-
resented by dashed curves. The rigid planes U1 and U2 and the
rigid cylinders V and V ′ are represented by bold curves.
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Figure 2. If the critical subset S0 ∪ S′
0 is dynamically convex

then the component WE diffeomorphic to RP 3#RP 3 admits a
3− 2− 3 a foliation for small positive energies.
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Construction of diffusing orbits in Hamiltonian systems

Marian Gidea

(joint work with Maciej Capiński, Rafael de la Llave, Jean-Pierre Marco, Tere
Seara)

1. Main results

This report is concerned with the Arnold diffusion problem for nearly integrable
Hamiltonian systems, both the a priori unstable case, and the a priori stable case.

Geometrically, in the a priori unstable case the dynamics is organized by a
normally hyperbolic invariant cylinder along a single, simple resonance, while in
the a priori stable case, the dynamics is organized by a network of normally hy-
perbolic invariant cylinders along multiple, simple or higher order resonances. In
either case, one can distinguish two dynamics: an inner dynamics, defined by the
restriction of the Hamiltonian flow to the cylinders, and an outer dynamics, de-
fined by excursions along homoclinic/heteroclinic trajectories to the cylinders. The
outer dynamics can be described via certain geometrically defined scattering maps.

We provide a mechanism of diffusion based on algorithmic constructions of
diffusing pseudo-orbits – consisting of orbit segments of the inner dynamics in-
terspersed with orbit segments of the outer dynamics –, and on a very general
shadowing lemma for normally hyperbolic invariant manifolds. The novelty of our
method is that it require very little knowledge on the inner dynamics.

1.1. Shadowing Lemma. Assume that f : M → M is a sufficiently smooth map
on a compact manifold, and C ⊆ M is a compact, normally hyperbolic invariant
cylinder with Wu(C ) and W s(C ) intersecting transversally. If the homoclinic in-
tersection satisfies some strong transversality conditions, there exists a well defined
scattering map σ : U → C , where U ⊆ C is an open set.

Theorem 1 (Shadowing Lemma). For every δ > 0 there exists n∗ ∈ N, and a
family of functions m∗

i : N2i+1 → N, i ≥ 0, such that, for every pseudo-orbit
{yi}i≥0 in C of the form

(1) yi+1 = fmi ◦ σ ◦ fni(yi), i ≥ 0,

with ni ≥ n∗ and mi ≥ m∗
i (n0, . . . , ni−1, ni,m0, . . . ,mi−1), there exists an orbit

{zi}i≥0 of f in M such that, for all i ≥ 0,

zi+1 = fmi+ni(zi), and d(zi, yi) < δ.

1.2. Diffusion in the a priori unstable case. Consider the Hamiltonian system
of the form

Hε(p, q, I, φ, t) = h0(I) +

n∑

i=1

±
(
1

2
p2i + Vi(qi)

)
+ εH1(p, q, I, φ, t; ε).(2)

where (p, q, I, φ, t) ∈ Rn × Tn × Rd × Td × T1.
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Theorem 2. Assume that h0, Vi, and H1 are sufficiently smooth, each potential
Vi is 1-periodic in qi and has a non-degenerate global maximum, for i = 1, . . . , n,
and H1 satisfies some explicit non-degeneracy conditions that hold for an open and
dense set of smooth functions. Then there exists ε0 > 0, and ρ > 0 such that, for
each ε ∈ (0, ε0), there exists a trajectory (p(t), q(t), I(t), φ(t)) of Hε and T > 0
such that

‖I(T )− I(0)‖ > ρ.

The main idea is that for ε > 0 small the Hamiltonian flow has a normally
hyperbolic invariant cylinder C and a well defined scattering map σε of the form
σε = id + εJ∇S + O(ε2), where the function S can be computed in terms of
convergent integrals of H1 along homoclinic trajectories of H0. For some open
and dense set of perturbations H1, the vector field J∇S has an integral curve
that moves O(1) in the action direction I. Using Poincaré Recurrence Theorem,
we obtain an orbit of the form (1), along which I also changes by O(1). Finally,
Theorem 1 implies the existence of a true orbit along which I also changes by
O(1). See [2] for details.

1.3. Diffusion in the a priori stable case. We consider a Hamiltonian system
of the form:

(3) H(I, φ, t) = H0(I) +H1(I, φ),

with (I, φ) ∈ R3 × T3. Fix a regular level set of the unperturbed energy H−1
0 (e)

in the action space R3, on which the Hamiltonian vector field is complete. In
[4], it is shown that, there exists ε0 > 0, such that, for an open and dense set
of perturbations H1 in inside some generalized ball of radius ε0, there exists a fi-
nite ordered sequence (Ck)1≤k≤k∗

of normally hyperbolic invariant cylinders inside
H−1(e), with Ck ≃ T2 × [a, b], such that:

(i) Each cylinder Ck admits a global surface of section Ak ≃ T1 × [a, b], such
that the return map φk to Ak is a monotone twist map;

(ii) Each cylinder Ck admits homoclinic connections, that is,
Wu(Ck) ∩W s(Ck) 6= ∅;

(iii) Each consecutive pair of cylinders Ck and Ck+1 in the chain, for 1 ≤ k ≤
k∗ − 1, admits heteroclinic connections, that is, Wu(Ck)∩W s(Ck+1) 6= ∅.

A chain of cylinders (Ck)1≤k≤k∗
satisfying the above conditions, plus some

additional technical conditions on the homoclinic and heteroclinic connections as
well as on the twist map on each Ak is called a δ-good chain of cylinders; see [3].

Theorem 3. For every δ-good chain of cylinders (Ck)1≤k≤k∗
contained in

H−1(e), there exists a trajectory which intersects the δ-neighborhood in H−1(e)
of any essential sub-torus of Ck, 1 ≤ k ≤ k∗.

A key step of the argument is to show that there exists a pseudo-orbit of a certain
polysystem, which travels from a δ-neighborhood of T1 ×{a} to a δ-neighborhood
of T1 × {b}, while it visits a δ-neighborhood of each essential invariant circle in
Ak. The aforementioned polysystem consists of the twist map φk and a family
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of scattering maps {σj
k}j induced by the homoclinic connections associated to the

cylinder Ck. To produce such a pseudo-orbit, we apply the following algorithmic
construction. Start with a δ-neighborhood of T1 × {a} and take the union of all
forward iterates under φk. At the boundary, there is an essential invariant circle
for φk. The conditions on the homoclinic connections are so that for every essential
invariant circle for φk there is scattering map σj

k that takes points from below that
circle onto points above the circle. Repeating the procedure finitely many times
yields a pseudo-orbit as in (1) that reaches a δ-neighborhood of T1×{b}. Theorem
1 yields a true orbit with similar characteristics.

2. Application to celestial mechanics

We use the methodology outlined in Section 1.2 to show the existence of Arnold
diffusion in the planar elliptic restricted three body problem. We view this model
as a perturbation of the planar circular restricted three-body problem, with the
perturbation parameter being the eccentricity of the orbits of the primaries. We
prove that, for all sufficiently small (non-zero) values of the eccentricity, there are
orbits that change the energy by a quantity independent of the eccentricity. We
provide explicit constructions of diffusing orbits and quantitative estimates on the
diffusion time. Our argument involves rigorous numerical computations ; see [1].
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Algebraic growth of wrapped Floer homology and contact spheres

with positive entropy.

Marcelo R. R. Alves

(joint work with Matthias Meiwes)

The topological entropy is an important measure of the complexity of a dynamical
system: it codifies in a single non-negative number the amount of exponential
instability of the system. Positivity of the topological entropy is seen as a condition
that implies the presence of some chaotic behaviour in the system. In this talk we
present the following result of the author and Matthias Meiwes obtained in [4].
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Theorem 1.

A) Let S2n−1 be the (2n − 1) - dimensional sphere with its standard smooth
structure. For n ≥ 4 there exists a contact structure on S2n−1 for which
every Reeb flow has positive topological entropy.

B) There exists a contact structure on S3 × S2 for which every Reeb flow
positive topological entropy.

In order to present this result in the proper context we recall what is known
about the topological entropy of Reeb flows and its relation to topological invari-
ants of contact manifolds.

Recall that on a contact manifold (Y, ξ) there is a distinguished class of flows
called Reeb flows. Although the dynamics of distinct Reeb flows on a given (Y, ξ)
can be quite different, there exist dynamical properties that hold for all Reeb flows
on (Y, ξ) because they are related to the topology of (Y, ξ).

The first results connecting the behaviour of contact topological invariants
to the topological entropy of Reeb flows are due to Frauenfelder, Macarini and
Schlenk. Based on the methods developed in [5], it was shown in [6] that if Q is a
simply connected rationally hyperbolic manifold or if π1(Q) grows exponentially,
then every Reeb flow on the unit cotangent bundle (S∗Q, ξgeo) equipped with the
geodesic contact structure has positive topological entropy. This was a generalisa-
tion to Reeb flows of a result which was known to hold in the class of geodesic flows:
the geodesic flow of any Riemannian metric on Q is a Reeb flow on (S∗Q, ξgeo),
and positivity of the topological entropy for geodesic flows on the manifolds Q
studied in [6] is the result of the combined works of several mathematicians (see
[7]). For simplification we introduce the following terminology.

Definition. If all Reeb flows on a contact manifold (Y, ξ) have positive topological
entropy we say that (Y, ξ) has positive entropy.

In previous work of the author many new examples of contact 3-manifolds
with positive entropy were discovered. In [1, 2, 3] it was shown that contact 3-
manifolds with positive entropy exist in abundance: there exist hyperbolic contact
3-manifolds and non-fillable contact 3-manifolds with positive entropy, and also 3-
manifolds which admit infinitely many non-diffeomorphic contact structures with
positive entropy. These results were obtained by studying the exponential growth
rate of topological invariants that come from Symplectic Field Theory, and they
showed that the class of contact 3-manifolds with positive entropy is much larger
than the class of unit cotangent bundles of higher genus surfaces that were studied
in [6].

One common feature of all known examples of contact 3-manifolds with positive
entropy is that the fundamental group of the underlying smooth 3-manifold has
exponential growth. This motivates the following

Conjecture. If a contact 3-manifold (Y, ξ) has positive entropy, then π1(Y ) grows
exponentially.

Theorem 1 shows that, in contrast to what we expect to hold in dimension
3, the phenomenon in higher dimensions is quite flexible from the topological
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point of view. Basically, there is no restriction on the smooth topology of a high-
dimensional contact manifold with positive entropy.

To prove Theorem 1 we introduced in [4] a new measure of growth rate of
the wrapped Floer homology HW(M,L) of an asymptotically conical exact La-
grangian L in a Liouville domain M , which we call algebraic growth. Recall
that the homology HW(M,L) comes with a product, the triangle product, which
makes HW(M,L) into an algebra1. The algebraic growth measures the exponential
complexity of HW(M,L) as an algebra.

The algebraic growth of HW(M,L) is related to the “usual” symplectic growth
of HW(M,L) which comes from the action filtration that exists in Floer homology.
This relation is a consequence of the spectral triangle inequality for the triangle
product of HW(M,L). Combining this with geometric ideas of [3] one can obtain
lower bounds for the topological entropy of Reeb flows from the algebraic growth
of HW(M,L).

We believe that the methods developed in [4] will open way for further investiga-
tion on the relations between the rich algebraic structures that exist in symplectic
topological invariants and the dynamics of Reeb flows and symplectomorphisms.
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Reeb dynamics and contact homology

Jo Nelson

(joint work with Michael Hutchings)

Contact geometry is the study of certain geometric structures on odd dimensional
smooth manifolds. A contact structure is a hyperplane field specified by a one
form which satisfies a maximum nondegeneracy condition called complete non-
integrability. The associated one form is called a contact form and uniquely de-
termines a vector field called the Reeb vector field on the manifold. I will explain

1The homology HW(M,L) is an algebra when one works with coefficients in Z2 or any other
field. If one uses Z coefficients the structure one obtains is that of a ring.



Dynamische Systeme 2029

how to make use of J-holomorphic curves to obtain a Floer theoretic contact in-
variant whose chain complex is generated by closed Reeb orbits. In particular, I
will explain the pitfalls in defining contact homology and discuss my work (in part
joint with Michael Hutchings) which gives a rigorous construction of cylindrical
contact homology via geometric methods. I will also discuss some computations
and applications of contact homology in the study of Reeb dynamics.
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Introducing symplectic billiards

Serge Tabachnikov

This is a report on a joint work in progress with P. Albers (Heidelberg).
Two types of billiards have been extensively studied: the conventional, inner

(Birkhoff) billiards, and the outer billiards. Both systems have variational formu-
lations: the trajectories of Birkhoff billiards are polygons inscribed into the billiard
table and having extremal perimeter length, and the trajectories of outer billiards
are circumscribed polygons of extremal area. It makes sense to consider two other
kinds of billiards: inner ones, extremizing the area, and outer ones, extremizing
perimeter length. In this work, we are concerned with the former kind of billiards
and their multi-dimensional version.

The definition of the dynamical system is as follows. Let γ be a closed convex
planar curve. The symplectic billiard is a transformation T of the space of oriented
chords of γ given by the rule T (xy) = yz if the tangent line to γ at point y is
parallel to xz. This map has a generating function ω(x, y) where ω is the standard
area form.

One has a similar definition in linear symplectic space (R2n, ω): given a smooth
convex closed hypersurface M , the map T sends its chord xy to yz if the charac-
teristic direction to M at y is parallel to xz. This is again a discrete Lagrangian
system with the generating function ω(x, y).

The goal of the project it to extend to this setting results known for Birkhoff
and outer billiards. One of the main motivations is to investigate an interplay
between convex and symplectic geometries. The talk consists of two parts, the
planar and multi-dimensional ones. Here are some highlights.
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In R2:

• The map T has a generating function and, as a consequence, an invariant
area form Ω. Theorem: The total Ω-area of the phase space of the map
T equals four times the area of the central symmetrization of the billiard
table.

• Theorem: If the curvature of γ vanishes at some point, then the symplectic
billiard has no caustics. This is a version of Mather’s theorem [5].

• On the other hand, if γ is strictly convex and sufficiently smooth, Lazut-
kin’s theorem on the existence of invariant curves [4] applies. The role of
Lazutkin’s paramer is played by the affine length parameter on γ.

• Consider an n-gon P that is a periodic orbit of the symplectic billiard.
The reflection law determines the tangent lines to γ at every vertex of P ,
and this defines a distribution D on the space of n-gons.

Theorem: D is tangent to the level hypersurfaces of the area function
and is totally non-integrable on these level hypersurfaces; namely, the
tangent space at every point is generated by the vectors fields tangent to
D and by their first commutators.

• As a consequence, one can construct billiard tables with invariant curves
consisting of n-periodic points as horizontal curves of the distribution D.
For example, the so-called Radon curves have this property for n = 4.

• As another consequence, one has Theorem: The set of 3-periodic points of
the planar symplectic billiard has empty interior. If γ is strictly convex,
then the set of 4-periodic points also has empty interior (these are n = 3, 4
cases of a version of Ivrii’s conjecture for symplectic billiards). For Birkhoff
and outer billiards, see [1, 3, 10, 11].

• The areas of inscribed polygons that are periodic orbits of symplectic bil-
liard constitute the area spectrum of γ. One can apply the Melrose theory
of interpolating Hamiltonians [6] to prove that ellipses are recognizable
from the area spectrum (this follows from the affine isoperimetric inequal-
ity). One can also prove that if the curve is smooth and strictly convex,
the symplectic billiard does not have the finite blocking property (cf. [9]
for Birkhoff billiards).

• Polygonal symplectic billiards deserve a thorough study. As a first step, we
prove that all orbits in (affine-) regular polygons are periodic and describe
the periods. We prove that all orbits in trapezoids are periodic as well, and
describe the periods (there are three periods, for every trapezoid, making
an arithmetic progression with difference 8).

In R2n:

• We discuss two possible continuous limits of the symplectic billiard map
as the trajectory gets close to the boundary of the table. In one approach,
the limit of such a trajectory is an un-parameterized characteristic curve
on M . In the other approach, one considers the limits of odd- and even-
numbered points separately, and arrives at two closed parametric curves
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γ1(t) and γ2(t) on M , coupled by the relation

R(γ1(t)) ‖ γ′2(t), R(γ2(t)) ‖ γ′1(t),
where R(x) is the characteristic line at x ∈ M . Such a pair of curves is
critical for the functional

L(γ0, γ1) =

∫
ω(γ′0(t), γ1(t)) dt.

• To study symplectic billiards in ellipsoids, we apply a linear map that
takes a symplectic ellipsoid

x21 + y21
a1

+
x22 + y22
a2

+ . . .+
x2n + y2n
an

= 1

to the unit sphere and changes the symplectic structure to ω =
∑
ajdxj ∧

dyj . The Reeb operator is R = diag(ia−1
1 , . . . , ia−1

n ). The map R−1 :
Cn → Cn takes S2n−1 to

E =

{
(w1, . . . , wn) |

|w1|2
a21

+
|w2|2
a22

+ . . .+
|wn|2
a2n

= 1

}
.

Theorem: If (Z0, Z1, Z2, . . .) is a trajectory of the symplectic billiard in the
unit sphere, then (R−1(Z0), R

−1(Z2), R
−1(Z4), . . .) is a billiard trajectory

in E. Conversely, to a billiard trajectory (W0,W2,W4, . . .) in E there cor-
responds a unique symplectic billiard trajectory (Z0, Z1, Z2, . . .) in S

2n−1

with Z0 = R(W0), Z2 = R(W2), . . .
As a consequence, the symplectic billiard in ellipsoid is completely in-

tegrable (in fact, superintegrable). We describe the integrals and show
that symplectic billiard in ellipsoids are analogs of the discrete Neumann
system [7].

• Let M ⊂ R2n be a smooth strictly convex closed hypersurface. Concern-
ing periodic orbits of symplectic billiard inside M , we have two results.
Theorem: For every k ≥ 2, the symplectic billiard map has a k-periodic
trajectory.

This is a weak estimate, and for small periods, we have a stronger one.
Theorem: The number of 3- and of 4-periodic symplectic billiard orbits
inside M is not less than 2n. The proof is by way of equivariant Morse-
Lusternik-Schnirelman theory applied to the symplectic area function on
inscribed polygons. For Birkhoff billiards and outer billiards, see [2, 8].
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Local invariant Morse homology in dynamics

Doris Hein

(joint work with U. Hryniewicz, L. Macarini)

In Hamiltonian dynamics, local Floer homology is a useful tool to study periodic
orbits. In the contact case, the homology theories are less developed. In particular,
relations between local homology of a periodic orbit and its iterations are unclear.
In our work, we define an invariant of closed Reeb orbits that can be seen as a
local contact homology. It has many features of local Hamiltonian Floer homology
and gives hope to be useful in the study of contact dynamics.

As a first step, we consider a tubular neighborhood U = S1 ×D2n of a closed
Reeb orbit γ such that γ = S1 × {0}. We assume that γ is 1-periodic and set
S1 = R/Z. Then we identify the germ of the Reeb flow near γ with the germ of
a Hamiltonian diffeomorphism with Hamiltonian Ht. Using generating functions
and Chaperon’s discrete action functional, we define homology groups H∗(H, k),
which can be seen as a substitute for local contact homology. The most important
properties are similar to those of local Floer homology:

• Non-triviality: For good, non-degenerate orbits, H∗(H, k) has one gen-
erator in degree of the Conley-Zehnder index.

• Invariance: If γ = ηk is a k-times iterated orbit, H∗(H, k) is invariant
under the Z/kZ-action by time-shift.

• Homotopy invariance: If 0 is uniformly isolated as a k-periodic orbit
of ϕs

H along a homotopy Hs
t of germs of 1-periodic Hamiltonians, then

H∗(H
0, k) ∼= H∗(H

1, k).
• Support: H∗(H, k) 6= 0 only if ∗ ∈ [∆(H, k) − n,∆(H, k) + n], where ∆
is the mean Conley-Zehnder index of γ.

• Persistence: If m ∈ N is admissible and good, then there is an isomor-
phism H∗(H, k) → H∗+sk,m

(H, km), where sk,m = CZ(γm)− CZ(γ).

The main importance is the persistence result, which has been proved in the
Hamiltonian case by Ginzburg and Gürel and has given useful dynamical impli-
cations. Moreover, with our definition of H∗(H, k), we can copy the definition
of symplectically degenerate maximal from the Hamiltonian case and hope for
equally strong dynamical applications.
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The most remarkable feature of H∗(H, k) is that we can use it by working
explicitly with Morse chain complexes. Indeed, H∗(H, k) is a direct limit of the
local invariant Morse homology of Chaperon’s discrete action functional letting
the discretization become finer to cover the continuous case. As this is a limit
over a sequence of isomorphisms, we can work with the limit by working with
the individual local invariant Morse homology groups and the corresponding chain
complexes and thus get a very hands-on tool to study periodic Reeb orbits.
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Periodic orbits in virtually contact structures

Kai Zehmisch

(joint work with Youngjin Bae, Kevin Wiegand)

Many non-exact magnetic Hamiltonian systems such as on products of closed
hyperbolic surfaces admit energy surfaces that are not of contact type, but a
certain cover of these are. In order to find closed characteristics one is intended to
study finite energy planes in symplectizations of a non-compact contact manifold.
For contact forms that admit a uniform bound on all covariant derivatives up to
order three existence of periodic orbits can be ensured in many instances.

Let M be a closed connected manifold of dimension 2n− 1 for n ≥ 2. Let ω be
an odd-dimensional symplectic form on M , i.e. a closed 2-form whose kernel is a
1-dimensional distribution. We assume that (M,ω) is virtually contact as in [3].
This means that we can choose a virtually contact structure

(
π : M ′ →M,α, ω, g

)

on (M,ω), where π is a covering of M , α is a contact form on the covering space
M ′

such that π∗ω = dα, and g is a Riemannian metric on M , whose lift π∗g to M ′

is denoted by g′. By definition of a virtually contact structure the primitive α is
bounded with respect to the norm | . |(g′)♭ of the dual metric (g′)♭ of g′. Moreover,
there exists a constant c > 0 such that for all v ∈ ker dα the following lower
estimate holds true:

|α(v)| > c|v|g′ .

In addition, we assume that the chosen virtually contact structure is non-trivial,
i.e. that ω is not the exterior differential of a contact form on M . We say that
the contact form α is C3-bounded provided that the covariant derivatives ∇kα for
k = 0, 1, 2, 3 are bounded with respect to g′.

Theorem. ([1]) Let (M ′, ξ = kerα) be the total space of a virtually contact struc-
ture on a closed odd-dimensional symplectic manifold (M,ω). Assume that the
contact form α is C3-bounded. Then the Reeb vector field of α on M ′ admits
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a contractible periodic orbit provided that one of the following conditions for the
(2n− 1)-dimensional contact manifold (M ′, ξ) is satisfied:

(1) n = 2 and ξ is overtwisted,
(2) n = 2 and π2M

′ 6= 0,
(3) n ≥ 3 and (M ′, ξ) contains a Legendrian open book with boundary,
(4) n ≥ 3 and (M ′, ξ) contains the upper boundary of the standard symplectic

handle of index 1 ≤ k ≤ n− 1 whose belt sphere S2n−1−k ⊂M ′ represents
a non-trivial element in
(a) in π2n−2M

′ if k = 1,
(b) in π3M

′ if n = 3 and k = 2,
(c) in π4M

′ if n = 4 and k = 3,
(d) in the oriented bordism group ΩSO

2n−1−kM
′ if k ≥ 2,

(5) n ≥ 3 and (M ′, ξ) is obtained by covering contact connected sum as intro-
duced in [3] such that the underlying connected sum decomposition of M is
non-trivial and ω is not the exterior differential of a contact form on M .

To handle the non-compactness ofM ′ local compactness properties of holomor-
phic curves have to be ensured. For holomorphic curves uniformly close to the
zero section in the symplectization of (M ′, α) the required uniform lower and up-
per bounds on the contact form α suffice to guaranty a tame geometry. This leads
to monotonicity type estimates. In order to mimic Hofer’s [2] asymptotic analysis
we use the deck transformation group of R ×M ′ which acts by isometries. The
action on the tame structure in R-direction is controlled by the use of the Hofer
energy. The action on the contact form α in the direction of M ′ is controlled by
an Arzelà–Ascoli type argumentation that requires higher order bounds on the
contact form. The upshot is that the holomorphic analysis developed allows a
reduction in the search of periodic orbits to finding bounded primitives of higher
order on non-compact covering spaces.
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Stability in the three-body problem

Thibaut Castan

Arnold showed the existence of quasi-periodic solutions in the plane planetary
three-body problem, provided that the mass of two of the bodies, the planets, is
small compared to the mass of the third one, the Sun. This smallness condition
depends in a sensitive way on the analyticity widths of the Hamiltonian of the
three-body problem, expressed with the help of some transcendental coordinates.
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Hénon gave a minimal ratio of masses (10−320) necessary to the application of
Arnold’s theorem. The main objective of my work was to determine a sufficient
condition on this ratio. A first part of this work was to estimate these analyticity
widths, which requires a precise study of the complex Kepler equation, as well
as the complex singularities of the disturbing function. A second part consists
in reworking the work of Arnold to put the Hamiltonian under a suitable nor-
mal form, in order to apply the KAM theorem (KAM standing for Kolmogorov-
Arnold-Moser). Working with the secular Hamiltonian, one can then quantify its
non-degeneracy, as well as estimate the norm of the perturbation. Finally, it is
necessary to derive a quantitative version of the KAM theorem, in order to iden-
tify the hypotheses necessary for its application to the plane three-body problem.
After this work, it is shown that the KAM theorem can be applied for a ratio of
masses that is close to 10−85 between the planets and the star.
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C
0 Arnold conjecture via spectral invariants

Lev Buhovsky

(joint work with Vincent Humilière, Sobhan Seyfaddini)

The direct generalisation of the Arnold conjecture to C0 symplectic geometry fails
in dimension greater than 2. I will sketch a proof of this fact, and will state a C0

formulation of the Arnold conjecture given in terms of spectral invariants, which
holds for symplectically aspherical symplectic manifolds.
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Geodesic flows on closed surfaces with vanishing topological entropy

Gerhard Knieper

(joint work with E. Glasmachers, J. P. Schröder)

A classical and well studied invariant measuring the orbit growth of a dynamical
system is the topological entropy. Due to a classical result of A. Katok (see
[6, 7]) the topological entropy is particularily interesting in low dimension. If
φt : V → V is a flow on a closed 3-dimensional manifold with non-vanishing
speed the topological entropy htop(φ

t) is positive if and only if the flow carries a
horseshoe. A similar statement holds for maps on closed surfaces. In particular,
in this cases positive topological entropy implies the exponential growth rate of
hyperbolic periodic orbits. Hence, it is of great interest to understand the dynamics
in case of vanishing topological entropy. The dynamics does not need to be simple
as the example of the horocycle flow, which is mixing and uniquely ergodic, shows.
In this talk we discussed results and open problems corresponding to the following
question. Let (M2, g) be a closed Riemannian or Finsler surface and φtg : SM2 →
SM2 the geodesic flow on the unit tangent bundle. Consider the set

EZ(M2) = {Riemannian (Finsler) metrics g such that htop(φ
t
g) = 0}.

Question: What are the dynamical and geometrical properties of this set?

Since by a classical result of Dinaburg this set is, for surfaces of genus at least
two, empty one only needs to consider S2 and T 2.

1. The case of the 2-sphere:

Theorem 1. (A. Katok [5])There exist non-reversible Finsler metrics on S2 ar-
bitrarily close to the round metric with

• only 2 closed geodesics (in particular, zero topological entropy).
• ergodic geodesic flow

Reversible Finsler metrics close to the round metric having zero topological
entropy and ergodic geodesic flow cannot exist as the following result shows.

Theorem 2. (J. P. Schröder [8]) Let g be a reversible Finsler metric on S2 with
positive flag curvature and zero topological entropy. Then the geodesic flow has no
dense orbit and is in particular not ergodic.

Proof. The positive curvature is used to obtain a global cross-section for the flow
based on a simple closed geodesic (Birkhoff annulus). Then the theorem follows
from an adaption of the results of Franks and Handel [2]. �

Questions:

• Is the theorem 2 true without curvature assumption?
• Is it possible to extend theorem 2 to non-reversible Finsler metrics provided
there are at least three periodic orbits?
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• Is it possible to generalize theorem 2 to Reeb flows on S3 with at least
three periodic orbits?

2. The case of the 2-torus:

Let T 2 = R2/Z2 be a torus with a reversible Finsler metric. Of importance is the
minmal set

M = {v ∈ ST 2 |the lift c̃v : R → R2 of the geodesic

cv : R → T 2 with initial condition v is globally minimal}

which defines a closed non-empty set invariant under the geodesic flow. By an
important result of Hedlund [1] there exists a constant D > 0 such that each
minimal geodesic c̃v : R → R2 stays in the D-tubular neigborhood of a Euclidean
line. In particular, each minimal geodesic has an asymptotic direction. In general
one defines

Definition 1. Let c : R → R2 be a geodesic then

δ(c) := lim
t→∞

c(t)

‖c(t)‖ ∈ S1.

is called the asymptotic direction. Denote by Mξ ⊂ M the set of all minimal
geodesics with asymptotic direction ξ ∈ S1.

Theorem 3. Let g be a reversible Finsler metric on T 2 with zero topological
entropy. Then,
(1) all geodesics have an asymptotic direction. More specifically the function

δ̂ : ST 2 → S1

with δ̂(v) = δ(c̃v) is continuous and its restriction to each fiber is montone and
surjective. Furthermore, all geodesics with respect to the lifted metric on R2 have
no self-intersection.

(2) if ξ = (x, y) ∈ S1 is irrational (i.e. y
x ∈ R \Q) then δ̂−1(ξ) = Mξ is given by

a Lipschitz graph T 2 →֒ ST 2.

(3) ) if ξ = (x, y) ∈ S1 is rational ( i.e. y
x ∈ Q ∪ {∞}) then either δ̂−1(ξ) =

Mξ is given by a Lipschitz graph T 2 →֒ ST 2 foliated by closed geodesics or the

boundary of the set δ̂−1(ξ) is given by Mξ = M+
ξ ∪M−

ξ , where M±
ξ are Lipschitz

graphs T 2 →֒ ST 2. Furthermore, the intersection Mper
ξ = M+

ξ ∩ M−
ξ consists

of closed geodesics and M±
ξ \ Mper

ξ are foliated by heteroclinic orbits. The set

Eξ = δ̂−1(ξ) \ Mξ is open and consists of non-minimal geodesics in case Eξ is
non-empty.

Proof. The proof has been given in [3] and [4] for Riemannian and reversible Finsler
metrics using the curve-shortening flow and has been extended to non-reversible
Finsler metrics [9] using variational methods. �
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Remark: Note that Eξ = δ̂−1(ξ) = ∅ for all rational ξ ∈ S1 implies that all
geodesics are minimal. By a wellknown Theorem of E. Hopf this holds for Rie-
mannian 2-torus if and only if the metric is flat.

Questions:

(1) Is it true that

µL(
⋃

ξ∈S1 rational

Eξ) < µL(ST
2)

where µL is the Liouville measure on ST 2?
(2) Does there exist some rational ξ ∈ S1 such that Eξ = ∅?
(3) Is the set {ξ ∈ S1 | ξ is rational and Eξ 6= ∅} finite?

While we believe that the answer to question (1) is yes, the answer to questions (2)
or (3) is likely to be no for general Finsler metrics and yes for Riemannian metrics.
The only known example of a Riemannian metric on T 2 with zero topological
entropy is given by the Liouville metrics

ds2 = (f(x) + g(y))(dx2 + dy2)

where f, g : R → R are positive 1-periodic smooth functions. In this case only
E±(1,0) and E±(1,0) are non empty. It might be true that the Liouville metrics

are the only Riemannian metrics on T 2 with zero topological entropy. This would
solve the longstanding open problem of classifying Riemannian metrics on T 2 with
integrable geodesic flows. However, as shown in [8], there are Finsler metrics on T 2

with zero topological entropy which have ergodic components of positive Liouville
measure located in the sets Eξ. In particular, the corresponding flows are not
integrable.
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A C
∞-closing lemma for Hamiltonian diffeomorphisms of closed

surfaces

Kei Irie

(joint work with Masayuki Asaoka)

Let (Y, λ) be a closed contact three-manifold, and U(Y, λ) denote the union of all
periodic Reeb orbits of (Y, λ). Our first main result is the following:

Theorem 1. ([5]) For any h ∈ C∞(Y,R≥0) \ {0}, there exists t ∈ [0, 1] such
that U(Y, (1 + th)λ) ∩ supph 6= ∅.

Theorem 1 easily implies a C∞-closing lemma for three-dimensional Reeb flows:

Corollary 1. ([5]) For any nonempty open set U of Y , there exists a sequence
(fj)j≥1 in C∞(Y,R>0) which converges to the constant function 1 in the C∞-
topology, and U(Y, fjλ) intersects U for every j.

The C2-version of Corollary 1 follows from the Hamiltonian C1-closing lemma
by Pugh-Robinson [6], thus the point is that we consider the C∞-topology. No-
tice that Corollary 1 cannot be generalized to arbitrary autonomous Hamiltonian
systems on sympelctic four-manifolds, due to the example by Herman [3].

The proof of Theorem 1 uses quantitative theory of embedded contact homol-
ogy (ECH). In particular, the key ingredient of the proof is the “volume theorem”
by Cristofaro-Gardiner, Hutchings and Ramos [2], which claims that the asymp-
totics of ECH spectral invariants recover the volume of a contact three-manifold.
Theorem 1 easily follows from the volume theorem and other basic properties of
ECH spectral invariants (spectrality and C0-continuity), together with the fact
that the set of all finite sums of periods of periodic Reeb orbits is a null set (i.e.
Lebesgue measure zero); see [5] or [1] Section 2 for further details.

Our second main result is a C∞-closing lemma for Hamiltonian surface diffeo-
morphisms, obtained in joint work with M. Asaoka:

Theorem 2.([1]) Let (S, ω) be a closed symplectic two-manifold, ϕ be a Hamil-
tonian diffeomorphism of (S, ω), and U be a nonempty open set of S. Then there
exists a sequence (ϕj)j≥1 of Hamiltonian diffeomorphisms of (S, ω), which con-
verges to ϕ in the C∞-topology, and each ϕj has a periodic orbit intersecting
U .

Let us sketch our proof of Theorem 2. First we take a fixed point q of ϕ which
corresponds to a contractible Hamiltonian loop. Then there exists a perturbation
ϕ′ of ϕ (the perturbation is supported on a neighborhood of q and sufficiently
small in the C∞-topology), such that q is a nondegenerate fixed point of ϕ′, and
ϕ′|S\{q} is C

∞-conjugate (as area-preserving diffeomorphisms) to a part of a return
map of a three-dimensional Reeb flow (associated to a global surface of section).
The construction of such a flow uses some classical results about area-preserving
maps (convergence of the Birkhoff normal form for hyperbolic fixed points, and
KAM theory for elliptic fixed points); see [1] for further details. Since we need a
perturbation from ϕ to ϕ′, which is supported on a neighborhood of q, we cannot
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assert that ϕ−1 ◦ ϕj is supported on U . Nevertheless, the speaker believes that
this is possible:

Conjecture. In Theorem 2, one can take (ϕj)j so that ϕ−1 ◦ ϕj is supported
on U for each j.

A possible approach to this conjecture is to develop a quantitative theory of
Periodic Floer homology (see [4]), in particular to find an analogue of the “volume
theorem” for Periodic Floer homology. The speaker thinks that this is a very
interesting problem in itself.
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Pseudo-rotations of Complex Projective Spaces

Viktor L. Ginzburg

(joint work with Başak Z. Gürel)

We consider generalizations, somewhat hypothetical, of pseudo-rotations of the 2-
sphere to projective spaces. These are the Hamiltonian diffeomorphisms ϕ : CPn →
CP

n with exactly n+1 periodic points. At this moment, there are no known exam-
ples of such Hamiltonian diffeomorphisms other than true rotations, i.e., Hamilton-
ian diffeomorphisms generated by quadratic Hamiltonians. However, it is believed
that the Anosov–Katok conjugation method, [1, 3], can be used to construct gen-
uine pseudo-rotations at least when n = 2. Carrying out this construction is an
important open problem.

We extend several results about pseudo-rotations in dimension two (n = 1) to
higher dimensions. Among these are a theorem on the existence of invariant sets
by Le Calvez and Yoccoz, [6], and the rigidity of pseudo-rotations by Bramham,
[2]. We also show that, consistently with the conjugation method, every pseudo-
rotation ϕ has a matching rotation, at least when n = 2, which is essentially
indistinguishable from ϕ as far the invariants of their periodic orbits are con-
cerned. The proofs utilize the action-index resonance relations and the variant of
the Lusternik–Schnirelmann inequality established in [4].
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Here are two sample results, the first of which generalizes the aforementioned
Le Calvez–Yoccoz theorem and the second is an extension of Bramham’s.

Theorem 1. Let ϕ : CPn → CP
n be a pseudo-rotation. Then for every fixed point

x of ϕ every neighborhood U of x contains an entire orbit ϕk(y), k ∈ Z, different
from {x}, i.e., the orbit x is not isolated as an invariant set.

The proof of this theorem relies on the method developed in [5] to show that
for CPn and some other symplectic manifolds a Hamiltonian diffeomorphism with
Floer-homologically non-trivial periodic orbit x, isolated as an invariant set, has
infinitely many simple periodic orbits. This, in turn, is a consequence of the fact
that the energy of a solution of the Floer equation asymptotic to xk and crossing
an isolating neighborhood of x is bounded away from 0 by a constant independent
of the order of iteration k.

Theorem 2. Let x0, . . . , xn be the fixed points of a pseudo-rotation ϕ : CPn →
CP

n. Assume that all iterations ϕk, k ∈ N, are non-degenerate and the vector of
the mean indices

∆ =
(
µ̂(x0), . . . , µ̂(xn)

)
∈ T = Rn+1/2(n+ 1)Zn+1

is exponentially Liouville. Then there exists a sequence of iterations ki → ∞ such

that ϕki
C0

→ id.

Here ∆ ∈ T is called exponentially Liouville if for every c > 0 there exists a
sequence ki → ∞ such that ‖ki∆‖ < exp(−cki), where ‖ ·‖ stands for the distance
to the zero in T.
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Institut de Mathématiques de Jussieu
U.P.M.C.
B.C.247
4 Place Jussieu
75252 Paris Cedex 05
FRANCE

Prof. Dr. Barney Bramham

Fakultät für Mathematik
Ruhr-Universität Bochum
44780 Bochum
GERMANY

Dr. Lev Buhovsky

School of Mathematical Sciences
Tel Aviv University
Ramat Aviv
Tel Aviv 69978
ISRAEL

Prof. Dr. Walter Craig

Department of Mathematics and
Statistics
McMaster University
1280 Main Street West
Hamilton ON L8S 4K1
CANADA

Prof. Dr. Daniel

Cristofaro-Gardiner

Department of Mathematics
Harvard University
One Oxford Street
Cambridge MA 02138-2901
UNITED STATES

Prof. Dr. Hakan Eliasson

U.F.R. de Mathématiques
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