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Introduction by the Organisers

The workshopDifferentialgeometrie im Großen was held July 2 - July 8, 2017. The
participants were specialists in differential geometry and its neighboring fields, cov-
ering a broad spectrum of subareas which are in the focus of current developments.

The lectures during the five days of the meeting were roughly organized accord-
ing to different themes.

The first day of the meeting began with three talks on the latest developments
in the Ricci flow, followed by two afternoon talks on 3-manifolds and hyperbolic
geometry.

The second day featured three morning talks on geometric flows and their ap-
plications in complex geometry and minimal surfaces. The afternoon saw talks on
symmetric spaces and Higgs bundles.

Wednesday morning’s talks discussed Einstein metrics in both general relativity
and Kähler geometry. In the afternoon we had the traditional hike.

Thursday’s talks were mainly devoted to aspects of Riemannian geometry and
symmetric spaces. Finally, four talks were presented on the last day of the work-
shop on topics in Kähler and Riemannian geometry.
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The meeting gave a good overview of the current developments, and showed
significant progress in the field. The workshop was attended by researchers from
around the world, ranging from graduate students to scientific leaders in their
areas.

The atmosphere during the meeting was lively and open, and greatly benefited
from the ideal environment at Oberwolfach.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Ricci flow through singularities

Bruce Kleiner

(joint work with Richard Bamler)

After introducing singular Ricci flows, which are a kind of “Ricci flow through
singularities” in dimension three, the following results were discussed:

1. (Lott-K.) For any compact Riemannian 3-manifold M, there exists a singular
Ricci flow with initial condition M .

2. (Bamler-K.) For any compact Riemannian 3-manifold M , there is only one
singular Ricci flow with intial condition M , up to equivalence.

3. (Bamler-K.) Let {Mj} be a sequence of Ricci flows with surgery (in the sense
of Perelman) with surgery parameter δj . If the Mjs start from a fixed compact
Riemannian manifold M , and δj → 0, then Mj converges to the singular Ricci
flow with initial condition M as j → ∞.

Ricci flow beyond non-negative curvature conditions

Esther Cabezas-Rivas

(joint work with Richard H. Bamler and Burkhard Wilking)

The search for invariant curvature conditions has been crucial in many applications
of the Ricci flow. However, most of the known invariant curvature conditions are
rather restrictive, because they impose strong positivity requirements, like that
the scalar, Ricci or even sectional curvature is positive, which heavily constrains
the topology of the underlying manifold.

In [1] we generalize most of the known Ricci flow invariant non-negative cur-
vature conditions to less restrictive negative bounds that remain sufficiently con-
trolled for a short time, that is, deteriorate under the flow by at most a controlled
factor. These negative bounds hold for any metric after rescaling by a sufficiently
large factor and hence we don’t impose any topological restrictions.

The following theorem serves as an illustration for generalizations of a larger
class of invariant curvature conditions, as presented in Theorem 4 below.

Theorem 1. Given n ∈ N and a constant v0 > 0, there exist positive constants
C = C(n, v0) > 0 and τ = τ(n, v0) > 0 such that the following holds. Let (Mn, g)
be a closed Riemannian manifold satisfying

volg
(
Bg(p, 1)

)
≥ v0 for all p ∈ M and Rmg ≥ −ε ≥ −1,

i.e. the lowest eigenvalue of Rmg is bounded below by −ε ∈ [−1, 0]. Then the
Ricci flow g(t) with initial metric g exists until time τ , and we have the curvature
bounds

Rmg(t) ≥ −Cε and |Rmg(t)| ≤
C

t
for all t ∈ (0, τ ].
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Recall that we cannot expect that negative lower bounds for the curvature oper-
ator Rm are in general invariant under the Ricci flow (see [6] for a counterexample).
But our almost preservation theorem implies a variety of smoothing and gap results
of independent interest. For instance, we get a classification of closed manifolds
with almost non-negative curvature operator in the non-collapsed case:

Corollary 2. Given n ∈ N and positive constants D, v0, there exists a constant
ε = ε(n, v0, D) > 0 such that the following holds. Any closed Riemannian manifold
(Mn, g) with

diamg(M) ≤ D, volg(M) ≥ v0 and Rmg ≥ −ε

also admits a metric of non-negative curvature operator.

Within the proof one can show that the metric whose existence is asserted in
Corollary 2 is close to the original metric g in the Gromov-Hausdorff sense. This
motivates the next smoothing result.

Corollary 3. Let (X, dX) be the Gromov-Hausdorff limit of a sequence
{(Mi, gi)}∞i=1 of closed Riemannian manifolds satisfying

volgi(Mi) ≥ v0, Rmgi ≥ εi, diamgi (Mi) ≤ D.

for some sequence {εi} ⊂ (0, 1] with εi → ε∞, as i → ∞. Then there exists
τ = τ(n, v0) > 0, a smooth manifold M∞ and a smooth solution to the Ricci
flow (M∞, g∞(t))t∈(0,τ) which satisfies Rmg∞(t) ≥ ε∞ and is coming out of the
(possibly singular) space (X, dX) in the sense that

lim
tց0

dGH

(
(X, dX), (M∞, dg∞(t))

)
= 0.

Moreover, for any choice of ε∞, the space X is homeomorphic to the manifold M∞

and the Riemannian distance dg∞(t) converges uniformly to a distance function d0
on M∞ as t ց 0 such that (M∞, d0) is isometric to (X, dX).

By taking convergent sequences of manifolds as above one can generate a large
variety of singular spaces that can be smoothed out by the Ricci flow with lower
curvature bound.

Notice that the bound Rmg ≥ −ε can be rephrased by saying that the linear
combination Rmg + ε I, where I denotes the curvature operator of the unit round
n-sphere, is non-negative definite. Hereafter we denote curvature conditions by C
and we write Rmg ∈ C to indicate that Rmg satisfies the corresponding curvature
condition. Using this, we can extend Theorem 1:

Theorem 4. Given n ∈ N and a constant v0 > 0, there exist positive constants
C = C(n, v0) > 0 and τ = τ(n, v0) > 0 such that the following holds. Let (Mn, g)
be a complete Riemannian manifold with bounded curvature and consider one of
the following curvature conditions C:

(1) 2-non-negative curvature operator
(i.e. the sum of the lowest two eigenvalues is non-negative),
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(2) non-negative complex sectional curvature
(i.e. weakly PIC2, meaning that taking the cartesian product with R2 pro-
duces a non-negative isotropic curvature operator),

(3) weakly PIC1 (i.e. the cartesian product with R produces a non-negative
isotropic curvature operator),

(4) non-negative bisectional curvature, in the case in which (M, g) is Kähler
with respect to some complex structure J .

Assume that

volg
(
Bg(p, 1)

)
≥ v0 for all p ∈ M and Rmg + εI ∈ C,

for some ε ∈ [0, 1]. Then the Ricci flow g(t) with initial metric g exists until time
τ , is Kähler if (M, g) is Kähler, and we have the curvature bounds

Rmg(t) + Cε I ∈ C and |Rmg(t)| ≤
C

t
for all t ∈(0, τ ].

In [1] we also obtain the corresponding versions of Corollary 2 and Corollary 3 for
the curvature conditions (1)–(4) listed above.

The invariance of Rm ≥ 0 was first observed by Hamilton (see [7]) and further
studied by Böhm and the third author (see [2]). Preservation of 2-non-negative
curvature was originally proved by H. Chen [4]. The invariance of weakly PIC
was first showed in dimension four by Hamilton [8]; the general case was obtained
independently by S. Brendle and R. Schoen [3] and by H. T. Nguyen [9]. The
invariant conditions weakly PIC1 and PIC2 were in turn introduced by Brendle
and Schoen in [3] and play a key role in their proof of the differentiable sphere
theorem. Finally, non-negative bisectional curvature is known to be preserved
under the Kähler Ricci flow (cf. [10] and [11] for closed and complete manifolds
with bounded curvature, respectively).

In dimension 3, Theorem 4 and Corollaries 2 and 3 were established by Simon in
[12,13] for the case of almost non-negative and 2-non-negative curvature operator,
which in dimension 3 is equivalent to almost non-negative sectional and Ricci
curvature, respectively.

We finish by highlighting that in [1] we additionally establish a local version
of Theorem 4 in the case of non-negative curvature operator and non-negative
complex sectional curvature. By applying this local result to a sequence of larger
and larger balls, we obtain a short-time existence result on complete manifolds
with possibly unbounded curvature, which generalizes the existence result in [5].
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Local Ricci flow and limits of three dimensional spaces with Ricci
curvature bounded below

Miles Simon

(joint work with Peter Topping)

Given a three-dimensional Riemannian manifold containing a ball with an explicit
lower bound on its Ricci curvature and a positive lower bound on its volume,
we use a local Ricci flow to perturb the Riemannian metric on the interior to
a nearby Riemannian metric with comparable lower bounds on Ricci curvature
and volume, but additionally with uniform time dependant bounds on the full
curvature tensor and all derivatives thereof. The new locally defined Riemannian
manifold is then uniformly, in time, close to the initial ball with respect to distance,
and furthermore we obtain bounds on the local Hölder/Lipschitz constants which
describe the Hölder/Lipschitz equivalence of the metric spaces of the Riemannian
manifolds in question.

One consequence is that we obtain a local bi-Hölder correspondence between
the Gromov-Hausdorff limits of smooth non-collapsed manifolds with Ricci cur-
vature bounded from below, and the manifolds themselves. This is more than a
complete resolution of the three-dimensional case of the conjecture of Anderson-
Cheeger-Colding-Tian, describing how Ricci limit spaces in three dimensions must
be homeomorphic to manifolds, and we obtain this in the most general, locally non-
collapsed case. This is joint work with Peter Topping, and the proofs build on re-
sults and ideas from recent papers of Raphael Hochard [1], and Simon-Topping [2].
The results presented in this talk can be found in the paper of Simon-Topping [3].
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On spherical CR structures on 3-manifolds

Pierre Will

(joint work with Antonin Guilloux and John Parker)

1. Context

The complex hyperbolic 2-space H2
C

may be seen as the unit ball B2
C

⊂ C2,
equipped with its Bergman metric, which has pinched negative curvature. The
group of holomorphic isometries of H2

C
is identified with PU(2,1), and the sphere

at infinity ∂∞H2
C
is just S3. A standard reference for complex hyperbolic geometry

is Goldman’s book [11] Let Γ be a discrete subgroup of the group of PU(2,1). The
domain of discontinuity of Γ, denoted ΩΓ, is the largest open subset of S3 on
which Γ acts properly. It is the complement of the limit set of Γ, denoted ΛΓ. The
quotient Γ\ΩΓ is the manifold at infinity of Γ. Now, let M be a 3-manifold with
fundamental group π and ρ : π −→PU(2,1) be a representation of which image we
denote by Γ. We say that ρ is a spherical CR uniformization of M if Γ is discrete,
has isolated fixed points in H2

C
and if the manifold at infinity of Γ is M . Note that

certain isometries of H2
C
fix pointwise complex lines, and in turn fix pointwise a

circle in ∂H2
C
. This is the reason why we add the above condition on fixed points.

We refer the reader to [4] for more details about these definitions.
The starting point of our work is a result due to R. Schwartz that describes an

explicit spherical CR uniformisation of the Whitehead link complement (see [18,19]
or the survey paper [17]). Schwartz’s example is striking as it produces a com-
plex hyperbolic manifold (the quotient of H2

C
by the image of the representation)

of which boundary at infinity is a real hyperbolic manifold. Only a handful of
examples of such a situation is known to this day. Falbel and Deraux have de-
scribed in [6] a spherical CR uniformisation of the figure eight knot complement,
and Deraux proved in [5] that it is possible to deform it while keeping spherical
CR uniformisations of the same manifold. Schwartz also proved and applied to
his example a surgery theorem for these uniformisations, which implies that there
is an infinite number of closed hyperbolic 3-manifolds that admit spherical CR
uniformisations (Corollary 1.6 in [19]).

In fact, spherical CR uniformisations are examples of so-called (S3,PU(2, 1))-
structures, in the sense of Ehresmann see [3]. It is therefore natural to study
representations of π in PU(2,1), that arise as holonomies of these structures, and
the corresponding character varieties. A direct approach to the character variety of
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Figure 1. The Whitehead link. Its group has presentation
π = 〈u, v|[u, v][u, v−1][u−1, v−1][u−1, v] = 1〉.

representation in real forms of complex Lie groups have been described by Acosta
in [1]. It is also natural to rather consider the SL(3,C)-character variety. Indeed,
spherical CR structures are examples of CP 2-flag structures for which the target
Lie group is PGL(3,C) (we refer the reader to [2] for this aspect).

2. Results

In the rest of this exposition, we focus on the case where the 3-manifold M is the
Whitehead link complement. See Figure 1 for a presentation of the fundamental
group of its complement.

2.1. Finding representations of the Whitehead link group in SL(3,C).
There exists a general method for finding representations of fundamental groups
of triangulated hyperbolic 3-manifolds, which is inspired from the one described
by Thurston in [20]. We refer the reader to [7], [2] or [10]. This method is highly
non-trivial in terms of computation, and our ambition is more modest here. Here
is a way of finding a nice class of representations in the case of the Whitehead link
complement. Our first remark is the following

Lemma 1. The group Z3 ∗ Z3 is a quotient of π.

Proof. This is due to the fact that the Whitehead link has a (non-hyperbolic)
surgery σ0 which is the connected sum of two Lens spaces L(3). We refer to [12]
for more details. �

Remark 1. (1) Seen as a hyperbolic manifold, the Whitehead link complement
has two cusps C1 and C2. The corresponding boundary tori have longitude
and meridian denoted by mi and ℓi (i = 1, 2). Topologically, the surgery
σ0 is obtained by making trivial the two loops m3

i ℓ
−1
i . In other words, σ0

is the surgery with slopes (−3,−3). In particular, this gives elements in
the kernel of the representations in X0.
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(2) At the group-theoretic level the surgery σ0 corresponds to the morphism
defined by

π −→ Z3 ∗ Z3

(u, v) 7−→ (st−1, st−1s),(1)

where s and t are the generators of Z3 ∗ Z3. In view of Lemma 1, any
group generated by two order three elements in SL(3,C) is the image of π
by a representation.

The first result of this talk is the following

Theorem 1 (Guilloux-Will). The SL(3,C)-character variety of the Whitehead link
group has an algebraic component X0 of (complex) dimension 4, which is formed
by representations that factor through the surgery σ0.

Remark 2. (1) A key ingredient in the proof of Theorem 1 is the description
of the SL(3,C)-character variety of the rank 2 free group given by Lawton
in [15].

(2) The only examples of SL(3,C)-character varieties for link groups that
have been described so far are those of torus knots (see [14]), and the
one of the figure eight knot, that have been worked out independantly
by Heusener-Muñoz-Porti in [13] and by Falbel-Guilloux-Koseleff-Roullier-
Thistlethwaite in [8].

(3) The least expected dimension for (non-degenerate) components of the
charater variety of the Whitehead link complement is 4. We refer the
interested reader to [9] for more details, and a lower bound on the di-
mension of (non-degenerate) components of SL(n,C) character varieties of
3-manifolds.

(4) The geometric component of the SL(3,C)-character variety of π is the one
that contains the (character of the) representation

ρgeom : π
ρhyp−→ SL(2,C)

irr−→ SL(3,C),

where ρhyp is the holonomy representation of the hyperbolic structure on
M and irr is the irreducible representation. The representation ρgeom is
faithful, and therefore the component X0 in Theorem 1 isn’t the geometric
one since all representations factorising through the surgery of Lemma 1
are non-faithful.

2.2. Analysing special representations in SU(2,1). We know focus on the
case of representations in the component X0 of which image is contained in
SU(2,1). In that case, we obtain actions of π on H2

C
(and ∂∞H2

C
). Now, in

the usual hyperbolic structure on M , the peripheral groups contain only parabolic
elements. We will restrict ourselves to representations that have the same feature,
and map element in periheral subgroups to parabolic isometries. The way the rep-
resentations in X0 were obtained has an important consequence : the images in
SU(2,1) of the (rank 2) peripheral subgroups in π are cyclic (this follows directly
from the first part of Remark 1). As observed in [12] and [16], our restriction
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about peripheral subgroups amounts to assume that the two words b1 = st and
b2 = st−1 are mapped to parabolic isometries (ρ(b1) and ρ(b2) generate respec-
tively the images of the cusps groups of C1 and C2. This class of groups is referred
to as diamond groups by Schwartz in Chapter 15 of [19]. To state our result, let
us state the following facts.

Remark 3. Parabolic elements in SU(2,1) come in two types.

(1) Type 1 parabolic elements preserve a complex totally geodesic embedded
copy of the Poincaré disc (a PU(2,1)-image of the first axis of coordinates
of the ball B2

C
), and rotate around it thourgh an angle θ. When θ = 0,

they are 2-step unipotent.
(2) Type 2 parabolic elements preserve a real copy of the Poincaré disc ( a

PU(2,1) image of R2 ∩H2
C
), and are 3-step unipotent.

The rotation angles of b1 and b2 give coordinates on the set of diamond groups
:

Proposition 1. Representations of Z3 ∗ Z3 in SU(2,1) such that b1 and b2 are
parabolic are classified up to PU(2,1)-conjugation by the two rotation angles θ1
and θ2 of ρ(b1) and ρ(b2).

Note that, in Proposition 1, the case where one of the rotation angles θi is zero
actually correspond to a type 2 parabolic element (thus 3-step unipotent). In fact,
it is not difficult to see that in this context, unipotent type 1 parabolics cannot
occur (see [16].

Theorem 2. The representation ρ0 : Z3 ∗ Z3 −→ SU(2,1) for which θ1 = θ2 = 0
is discrete, faithful, and is a uniformisation of the Whitehead link complement.

Remark 4. (1) In Theorem 2, faithfulness is meant when the source group is
Z3 ∗ Z3. Of course the representation isn’t faithful as a representation of
π.

(2) The uniformisation described by Schwartz in [18, 19] is not the same as
the one above. In fact, in his case the boundary parabolics aren’t both
unipotent (actually, only one is).

(3) The proof of Theorem 2 is made by constructing a fundamental domain
for the action of the group on H2

C
. Intersecting this fundamental domain

with ∂∞H2
C
we prove that the manifold at infinty is the Whitehead link

complement by describing an octahedron with face identifications analo-
gous to the one described in Thurston’s notes [20]. It turns out that the
representation ρ0 has a great deal of symmetry. This makes the geometric
analysis of its action much simpler than what Schwartz did in [18, 19].

(4) The character variety of Z3 ∗ Z3 in SU(2,1) has been analysed by Acosta
in [1]. It contains many points that are geometrically significant, among
which the uniformisation of the figure eight knot complement obtained by
Deraux and Falbel in [6], and its deformations [5].
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Finiteness and Rigidity for compact 3-manifolds with bounded entropy

Filippo Cerocchi

(joint work with Andrea Sambusetti)

We consider the set M ∂
ngt(E,D) (resp. Mngt(E,D)) of compact — with possi-

bly empty boundary and no spherical boundary components — (resp. closed),
orientable, non-geometric, Riemannian 3-manifolds with torsionless fundamental
group whose volume entropy and diameter are bounded from above by two posi-
tive constants E and D respectively. We recall that the entropy of a Riemannian



1930 Oberwolfach Report 31/2017

manifold X is defined as

Ent(X) = lim sup
R→+∞

1

R
log

(
Vol(B̃(x̃, R))

)

where B̃(x̃, R) is the ball of radiusR centered at the point x̃ ∈ X̃ in the Riemannian
universal cover of X . We prove the following:

Systolic estimate. For any X ∈ M ∂
ngt(E,D) we have:

(1) sysπ1(X) ≥
1

E
· log

(
1 +

4

e26E D − 1

)
=: s0(E;D)

The previous estimate stems from a general result concerning the existence of
rank 2 free sub(semi)groups with a prescribed generator in torsion free groups act-
ing non-elementarily and acylindrically on a simplicial tree (see [CS1] section §2).
The existence of such actions for compact, non-geometric 3-manifold groups has
been established by Wilton and Zalesskii in [Wi-Za] (see also [Cer2]). Inequality
(1) generalizes an analogous lower bound for the homotopy 1-systole of manifolds
whose fundamental group splits as a free product ( [Cer1]).

As a byproduct of Gromov’s Isosystolic Inequality ( [Gro1]) and of inequality (1)
we obtain the following:

Volume estimate. Let X ∈ Mngt(E,D) and assume that X is not homeomorphic
to the connected sum of k copies of S2 × S1. Then there exists a constant c
(independent of X) such that

(2) Vol(X) ≥ c · (s0(E,D))3

Let us make few comments about these results:

(i) the lack of S2 in the boundary of the manifolds in M ∂
ngt(E,D) is not

necessary for the systolic estimate, but is necessary for all the subsequent
rigidity and finiteness statements;

(ii) the torsionless assumption is necessary in the systolic estimate (see [Cer1]);
(iii) for any geometric manifold whose interior does not admit a complete met-

ric locally isometric to H3 there exists a sequence of metrics collapsing the
systole with uniformly bounded entropy and diameter;

(iv) to the knowledge of the author the existence of a uniform estimate of type
(1) for the entire class of 3-manifolds of hyperbolic type is still an open
problem, and the estimates that we possess depends on the injectivity
radius of the hyperbolic metric (see [BCG2]);

(v) the volume estimate does not hold for the connected sum of k-copies of
S2 × S1. Actually, it is possible to show that on such a manifold there
exists a sequence of metrics with uniformly bounded entropy and diameter,
systole bounded away from zero and arbitrarily small volume.

(vi) an analogous systolic estimate holds in general for any compact n-manifold
whose fundamental group is torsionless and admits a k-acylindrical split-
ting (see [CS1]).



Differentialgeometrie im Großen 1931

For a family M of compact Riemannian manifolds which satisfy a uniform lower
bound on the homotopy 1-systole there exists a critical distance δ0, depending on
this lower bound, such that if X,Y ∈ M and dGH(X,Y ) < δ0 then π1(X) ∼= π1(Y )
(see [Tus], [So-We]). We thus obtain a local π1-rigidity result:

π1-rigidity. Let δ0(E,D) = s0(E,D)
40

. If X,Y ∈ M ∂
ngt(E,D) and dGH(X,Y ) < δ0,

then π1(X) ∼= π1(Y ).

Since we are dealing with compact 3-manifolds the local rigidity of the funda-
mental group provides stronger informations:

Local rigidity statements. Let X,Y ∈ M ∂
ngt(E,D) and let dGH(X,Y ) < δ0:

(i) if X and Y are both irreducible then they are homotopy equivalent;
(ii) if X is irreducible with incompressible boundary then X and Y are homo-

topy equivalent;
(iii) if X is irreducible and closed then X and Y are diffeomorphic.

Remarks.

(1) There exists a sequence {(Xk, Yk)}k∈N of pairs of non homotopy equivalent,
reducible, orientable, closed Riemannian 3-manifolds whose entropy and
diameter are uniformly bounded in k such that dGH(Xk, Yk) → 0.

(2) The incompressibility of the boundary is necessary in (ii).

Even though in the reducible case as well as in presence of boundary components
a rigidity statement for the diffeomorphism type does not hold, we can still prove
the local finiteness of the diffeomorphism type. In [Swa] Swarup proved that there
exists only a finite number of pairwise non-homeomorphic irreducible, compact
3-manifold with a given fundamental group. As a consequence we have:

Local finiteness. Let X ∈ M ∂
ngt(E,D), the number of diffeomorphism types in

BGH(X, δ0) ∩ M ∂
ngt(E,D) is finite.

Combining this local finiteness result with Gromov’s Precompactness Theorem
we provide a simple proof of the following:

Global finiteness with a lower Ricci curvature bound. Let Rngt(k,D) be the set
of closed, orientable, non-geometric Riemannian 3-manifolds with torsionless fun-
damental group, satisfying RicciX ≥ −2 k2 and diam(X) ≤ D. Then Rngt(k,D)
contains a finite number of diffeomorphism types.

This result is to compare with Zhu’s finiteness theorem [Zhu]. We pay the price
of dropping the assumption of a lower bound on the volume by restricting ourselves
to the class of non-geometric 3-manifolds with torsionless fundamental group.
A more refined finiteness result will appear in [CS2]. We replace the lower Ricci
curvature bound by a much weaker upper bound on the entropy and we drop the
torsionless assumption.
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Global finiteness. Let M ∂
ng(E,D) be the set of compact — with possibly empty

boundary and with no spherical boundary component —, orientable, non-geomet-
ric, Riemannian 3-manifolds, whose entropy and diameter are uniformly bounded
by E and D respectively. The number of diffeomorphism types in M ∂

ng(E,D) is
finite.

It is worth noticing that the proof of the latter result does not rely on the
systolic estimates or on the consequent local rigidity results. Finally we announce
the following precompactness result which will also appear in [CS2]:

Precompactness Theorem. Let M−
ng(E,D) be the set of closed, orientable, non-

positively curved Riemannian 3-manifold with entropy and diameter bounded
respectively by E and D. The set M−

ng(E,D) is precompact in the Gromov-
Hausdorff topology.
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Supersymmetric string vacua and geometric flows

Duong H. Phong

(joint work with Sebastien Picard and Xiangwen Zhang)

1. The Hull-Strominger system

It is a fundamental problem in string theory to identify string vacua which are
still space-time supersymmetric. In 1986, C. Hull [7] and A. Strominger [14] inde-
pendently proposed the following system of equations for supersymmetric vacua
of the heterotic string. Let Y be a compact 3-dimensional complex manifold,
equipped with a nowhere vanishing holomorphic (3, 0)-form Ω. We look then for
a vector bundle E → Y , and Hermitian metrics ω on Y and Hᾱβ on E satisfying
the equations

F 2,0 = F 0,2 = 0, ω2 ∧ F 1,1 = 0 (1)

d†ω = i(∂ − ∂̄) log ‖Ω‖ω (2)

i∂∂̄ω − α′

4
(Tr(Rm ∧Rm)− Tr(F ∧ F )) = 0 (3)

Here F p,q denotes the (p, q)-components of the 2-form F . The expressions Rm and
F denote the curvatures of the metrics ω and Hᾱβ , viewed as 2-forms valued in
End(T 1,0(Y )) and End(E) respectively. The equation (1) implies that F should
be the curvature of the Chern unitary connection E defined by Hᾱβ . Since ω
may not be Kähler, there is a one-parameter line of natural unitary connections
on T 1,0(Y ) defined by ω, passing through the Chern unitary connection and the
Bismut connection. We shall specify our choice as we go along. The expression
‖Ω‖ω is the norm of Ω with respect to the metric ω, ‖Ω‖2ω = iΩ ∧ Ω̄(ω3/3!)−1.

The equation (1) is the familiar Hermitian-Yang-Mills equation for the Hermit-
ian metric Hᾱβ on E. If the conformal class of ω is known, its solvability is, by the
Donaldson-Uhlenbeck-Yau theorem extended to the Gauduchon case by Li and
Yau and Lübke and Teleman, equivalent to the stability of E with respect to ω.

It was pointed out by Li and Yau [8] that the equation (2) is equivalent to

d(‖Ω‖ωω2) = 0. (2′)

This is a conformal version of the notion of “balanced metric”, defined by Michel-
sohn [9] as a metric on n-dimensional complex manifolds satisfying the condition
d(ωn−1) = 0. The notion of balanced metric turns out to be natural in algebraic
and complex geometry, as it is preserved under birational modifications [1]. The
Hull-Strominger system can thus be interpreted as a notion of “canonical metric”
for conformally balanced manifolds.

The equation (3) is the main equation accounting for both the novelty and the
difficulty in solving the Hull-Strominger system. It originates from the famous
Green-Schwarz anomaly cancellation mechanism required for the consistency of
superstring theory. However, unlike more familiar notions of canonical metrics,
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which are defined by linear conditions in the curvature tensor, it involves its square
of the curvature tensor.

Calabi-Yau Kähler manifolds can be viewed as a special solution of the Hull-
Strominger system. Indeed, assume that Y is Kähler, with a nowhere vanishing
holomorphic (3, 0)-form Ω. Take E = T 1,0(Y ), ω a Kähler form on Y , and set
Hᾱβ = 0. Then the equation (3) is trivially satisfied. The equation (1) reduces to

Ric(ω) = 0.

Since Ric(ω) = i∂∂̄ log ‖Ω‖2ω, this implies that ‖Ω‖ω is constant. The equation (2)
follows then immediately from the fact that ω is Kähler. Thus the Hull-Strominger
system reduces to finding a Kähler metric with vanishing Ricci curvature, which
has been done by Yau in his solution of the Calabi conjecture. The fact that
Calabi-Yau Kähler manifolds provide a solution of the Hull-Strominger system is
just a rephrasing of the famous original work of Candelas, Horowitz, Strominger,
and Witten [2].

Many special solutions to the Hull-Strominger system are now known. They
were obtained by a wide variety of methods, including perturbations from Calabi-
Yau solutions, formal duality constructions from physics, and geometric construc-
tions (see e.g. [3] for recent results, and references therein). But the solution with
the greatest influence on the present work is actually the first non-Kähler solution,
found by Fu and Yau [5] by partial differential equations. By considering the toric
fibrations Y → X on K3 surfaces X constructed by Goldstein and Prokushkin
using an earlier construction of Calabi and Eckmann, Fu and Yau showed that the
Hull-Strominger system can be reduced to a single equation for a scalar function u
on X . This equation is a new equation of Monge-Ampère type, which they man-
aged to solve, despite the fact that the right hand side involves both the unknown
and its gradient [5, 6].

2. The Anomaly Flow

The goal of the present work is to develop a general method for finding general
solutions of the Hull-Strominger system. An initial difficulty is to implement
the conformally balanced condition (3), in the absence of a lemma such as the
∂∂̄-Lemma in the Kähler case. We circumvent this difficulty by introducing the
following flow, which we call the Anomaly flow,

∂t(‖Ω‖ωω2) = i∂∂̄ω − α′

4
(Tr(Rm ∧Rm)− Tr(F ∧ F )) (4)

H−1∂tH = −3
ω2 ∧ F

ω3
(5)

The equation (5) is the well-known Donaldson heat flow, whose stationary points
satisfy the equation (1). The really new equation is the equation (4), the point of
which is to preserve the conformally balanced condition, since the right hand side
of (4) is a closed (2, 2)-form. We have [10]
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Theorem 1 Let E → Y be a holomorphic vector bundle over a 3-fold Y with
nowhere vanishing holomorphic (3, 0)-form Ω. Consider the flow (4),(5) with Chern
unitary connection, and initial data ω(0) and H(0), where ω(0) is conformally
balanced. If |α′Rm(ω(0))| < 1, then the flow admits a solution in t ∈ [0, T ) for
some T > 0.

The difficult questions for the flow are its long-time existence and convergence.
For this, we need a more explicit expression for the flow in terms of a flow of
metrics instead of (2, 2)-forms ‖Ω‖ωω2 [11]

Theorem 2 Consider the anomaly flow with a conformally balanced initial metric
and the Chern unitary connection. Then the flow is given by

∂tgk̄j =
1

2‖Ω‖ω

{
− R̃k̄j + gsr̄gpq̄Tq̄sj T̄pr̄k̄ − α′gsr̄(R[k̄s

α
βRr̄j]

β
α − Φk̄sr̄j)

}
(6)

Here R̃k̄j = gpq̄Rq̄pk̄j is the Chern-Ricci tensor, i∂ω = 1
2Tk̄jmdzm ∧ dzj ∧ dz̄k

is the torsion tensor, and we have set Φ = Tr(F ∧ F ). The bracket [, ] denote
anti-symmetrization in each of the two sets of barred and unbarred indices.

The equation (6) suggests that, perhaps surprisingly, the Anomaly Flow can be
interpreted as a next-order modification of the Ricci flow by quadratic terms in
the curvature tensor.

3. Special Cases of the Anomaly Flow

The preceding comparison of the Anomaly flow with the Ricci flow shows that it
will be a much more difficult flow to study. Nevertheless, the following partial re-
sults suggest that it is a well-behaved flow, which should provide a viable approach
to the solution of the Hull-Strominger system.

(a) The case α′ = 0
This case can be viewed as an intermediate case between the Ricci flow and the

full Anomaly flow. It is still of geometric interest, and its stationary points are
pluriclosed metrics and hence Kähler, since they are also automatically conformally
balanced. We have

Theorem 3 Assume that the flow exists for t ∈ [0, 1
A ] and that

|Rm|+ |DT |+ |T |2 ≤ A, z ∈ X.

Then for any k ∈ N, there exists a constant Ck depending on a uniform lower
bound for ‖Ω‖ω so that

|DkRm| ≤ CkAt
− k

2 , |Dk+1T | ≤ CkAt
− k

2 .

This implies that the flow exists for all time t ≥ 0, unless there is a finite time
T and a sequence (zj , tj) with tj → T , and either ‖Ω(zj, tj)‖ωj

→ 0, or

(|Rm|+ |DT |+ |T |2)(zj , tj) → ∞.

(b) The case of Goldstein-Prokushkin fibrations
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Let (X, ω̂) be a Calabi-Yau surface, with Ricci-flat metric ω̂, and holomor-
phic form ΩX normalized so that ‖ΩX‖2ω̂ = 1. Given any two forms ω1, ω2 ∈
2πH2(X,Z) with ω1 ∧ ω̂ = ω2 ∧ ω̂ = 0, Goldstein and Prokushkin (2004) con-
struct a toric fibration π : Y → X , equipped with a (1, 0)-form θ on Y satisfying

∂θ = 0, ∂̄θ = π∗(ω1 + iω2). Furthermore, the form Ω =
√
3ΩX ∧ θ is a holomor-

phic nowhere vanishing (3, 0)-form on Y , and for any scalar function u on X , the
(1, 1)-form ωu = π∗(euω̂) + iθ ∧ θ̄ is a conformally balanced metric on Y .

Fu and Yau [5,6] looked for a solution of the Hull-Strominger system on Y, π∗(E)
under the form (ωu, π

∗(H)), where H is a Hermitian-Yang-Mills metric on a stable
vector bundle E → (X, ω̂). Then the only equation left to solve is the anomaly
equation (3). In a key calculation, they showed that this equation descends to
a Monge-Ampère type equation on X , which they showed admits a solution if
and only if an integrability condition, depending only on the (X,ω1, ω2) data, is
satisfied. A key test for the Anomaly flow is whether it can recapture the solution
of Fu-Yau in this setting. In [12], we show that it does:

Theorem 4 Consider the Anomaly flow

∂t(‖Ω‖χχ2) = i∂∂̄χ− α′

4
Tr(Rm(χ) ∧Rm(χ)− F ∧ F )

on a Goldstein-Prokushkin fibration π : Y → X , with initial data χ(0) = π∗(Mω̂)+
iθθ̄, where M is a positive constant. Assume the integrability condition on
(X,ω1, ω2). Then there exists M0 > 0, so that for all M ≥ M0, the flow ex-
ists for all time, and converges to a metric ω∞ with (ω∞, π∗(H)) satisfying the
Hull-Strominger system.

The proof makes fundamental use of the maximum principle for non-linear heat
equations, but with the diffusion operator given by

∆F = F pq̄∇p∇q̄, F pq̄ = gpq̄ + α′‖Ω‖3ωρ̃pq̄ −
α′

2
(Rgpq̄ − Rpq̄)

instead of just the Laplacian, as in the case of the Ricci flow. We choose the initial
data so that |α′Rm(χ)| << 1 and the diffusion operator ∆F is positive definite.
The key and most difficult step is to prove that this condition is preserved along
the flow. Remarkably, this can be done independently of the sign of α′, so that we
recover at one stroke both results of Fu and Yau for α′ > 0 [5] and α′ < 0 [6].

(c) The case of unimodular Lie groups
Finally, we discuss the case of the Anomaly flow on unimodular Lie groups,

where all invariant metrics are automatically balanced, and the flow can be reduced
as a system of ordinary differential equations. The stationary points of the flow
have been found by Fei and Yau [4], and our main interest is in the behavior of
the flow. In this case, we consider general unitary connections, defined by

∇k̄W
p = ∂k̄W

p + κT̄rk̄
pW r

where κ is a real parameter. The values κ = 0 and κ = 1 correspond respectively
to the Chern and the Bismut connection. We have [13]
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Theorem 5 Assume that α′τ > 0, where τ = 2κ2(2κ− 1).
(1) When Y = C3, any metric is a stationary point for the flow, and the flow

is consequently stationary for any initial metric ω(0).
(2) When Y is nilpotent, there is no stationary point. Consequently the flow

cannot converge for any initial metric. If the initial metric is diagonal, then the
metric remains diagonal along the flow, the lowest eigenvalue is constant, while
the other two eigenvalues tend to +∞ at a constant rate.

(3) When Y is solvable, the stationary points of the flow are the metrics gāb

g1̄2 = g2̄1 = 0,
α′τ

4
g33̄ = 1.

The Anomaly flow is asymptotically instable near any stationary point. However,
the condition g1̄2 = g1̄2 = 0 is preserved along the flow, and for any initial metric
satisfying this condition, the flow converges to a stationary point.

(4) When Y = SL(2,C), there is a unique stationary point, given by

gāb =
α′τ

2
δab.

The linearization of the flow at the fixed point admits both positive and negative
eigenvalues. In particular, the flow is asymptotically instable.
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Steady Kähler-Ricci solitons on crepant resolutions of Cn/G

Heather Macbeth

(joint work with Olivier Biquard)

The ‘fixed points’ of the Ricci flow are steady Ricci solitons. Such objects, natural
generalizations of Ricci-flat metrics, are pairs (g,X) of a Riemannian metric and
a vector field, satisfying the elliptic partial differential equation

Ric(g) + 1
2LXg = 0.

They arise in the study of the Ricci flow as models of singularities, and as backward
limits of ancient solutions. They are also critical points, in a suitable sense [Has11],
of the Perelman F -functional, and thus can be considered canonical among all such
pairs (g,X).

Steady Ricci solitons which are not Ricci-flat must be noncompact. The few
known examples include several which are Kähler, with holomorphic vector field:
Hamilton’s cigar soliton [Ham88] on C, H.-D. Cao’s generalizations [Cao96] on
Cn and KCPn−1 , and further generalizations by Dancer-M. Wang and B. Yang.
Non-Kähler examples include the well-known constructions of Bryant and of Ivey.
All these examples – and, we believe, all known examples – are highly symmetric,
and the soliton metric is given either explicitly or by solving an ODE.

In the new work outlined in this talk, we use PDE methods to construct new
steady Kähler-Ricci solitons (M,ω,X), in all complex dimensions n ≥ 2 (real
dimensions 2n ≥ 4), of infinitely many topological types in dimensions 2 and 3 at
least. Like all steady Kähler-Ricci solitons, they have first Chern class

c1(M) = [Ric(ω)] = [− 1
2LXω] = 0.

Our construction proceeds by taking Joyce’s well-known family [Joy00] (see also
[TY90,TY91]) of Ricci-flat Kähler metrics on crepant resolutions of orbifolds Cn/G
(which automatically have c1(M) = 0), and modifying their metrics near infinity
by gluing them to a G-quotient of Cao’s soliton on Cn. This produces a Kähler-
Ricci soliton metric, whose drift vector field is the radial vector fieldX = −2r∂/∂r,
in each sufficiently small Kähler class on M .

Joyce’s construction applies to crepant resolutions M of orbifolds Cn/G, where
G is a finite subgroup of SU(n) which acts freely on Cn \ {0}. We, in the soliton
setting, require the additional technical hypothesis that the crepant resolution M
of Cn/G be equivariant with respect to the action of the radial vector field X ;
that is, that X extend smoothly to a vector field on M .

The class of such manifolds M is quite broad. It includes the unique minimal
resolution of each 2-dimensional such orbifold (the Kleinian singularities), and at
least one crepant resolution of each 3-dimensional such orbifold. It also includes
the crepant resolution M = KCPn−1 of Cn/Zn, in each dimension n ≥ 2; in this
case our construction recovers Cao’s family of solitons on the manifolds KCPn−1 .

Such gluing constructions have been performed before in other geometric set-
tings, with pioneering constructions performed by Kapouleas (minimal surfaces),
Taubes (anti-self-dual metrics), and Joyce (metrics of special holonomy). Close
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antecedents for our work include Nguyen’s recent construction [Ngu09,Ngu13] of
mean curvature flow self-translators, and Biquard-Minerbe’s construction [BM11]
of noncompact Calabi-Yau surfaces of several different asymptotic behaviours.

The analogous construction problem for expanding Kähler-Ricci solitons has
also been recently studied [Sie13,CD16]; see Conlon’s abstract in this report.
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Minimal two-spheres in three-spheres

Robert Haslhofer

(joint work with Dan Ketover)

The min-max method goes back to Birkhoff, who in 1917 proved:

Theorem 1 (Birkhoff [1]). Any closed Riemannian two-sphere contains at least
one closed geodesic.

Loosely speaking, Birkhoff considered sweepouts of the two-sphere by closed
curves, and argued that the longest slice in a sweepout that is pulled tight is
a closed geodesic. There are also higher non-trivial families of curves one can
consider to produce more geodesics:

Theorem 2 (Lusternik-Schnirelmann [4, 9]). Any closed Riemannian two-sphere
contains at least three simple closed geodesics.
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In one higher dimension, one can consider sweepouts of three-spheres by two-
spheres, and hope to produce an embedded minimal two-sphere. In 1983, Simon
and Smith carried this out (adapting the more general min-max theory of Almgren
and Pitts to the case of surfaces with fixed topology) and proved:

Theorem 3 (Simon-Smith [10]). Let M be a three-manifold diffeomorphic to S3.
Then M contains an embedded minimal two-sphere.

In analogy with the case of simple closed geodesics on two-spheres, there are
also higher parameter families of two-spheres on three-spheres that one can con-
sider. One might hope that the families detecting the relevant cohomology classes
α, . . . , α4 produce via min-max four distinct minimal two-spheres. The major
difficulty is the phenomenon of multiplicity. Namely, it could happen that the
min-max spheres associated with the second, third and fourth family, just give the
sphere associated to the first family counted with higher integer multiplicities.

Using combined efforts from min-max theory and mean curvature flow we prove:

Theorem 4 (Haslhofer-Ketover [5]). Let M be a three-manifold diffeomorphic
to S3 and endowed with a bumpy metric. Then M contains at least 2 embedded
minimal two-spheres. More precisely, exactly one of the following alternatives
holds:

(1) M contains at least 1 stable embedded minimal two-sphere, and at least 2
embedded minimal two-spheres of index one.

(2) M contains no stable embedded minimal two-sphere, at least 1 embedded
minimal two-sphere Γ1 of index one, and at least 1 embedded minimal
two-sphere Γ2 of index two. In this case, |Γ2| < 2|Γ1|.

We note that White [11] previously proved the existence of at least 2 minimal
two-spheres in the special case that M has positive Ricci curvature.

A natural family of examples to illustrate Theorem 4 are ellipsoids. Namely,
given a > b > c > d > 0, consider the ellipsoid

E(a, b, c, d) :=

{
x2
1

a2
+

x2
2

b2
+

x2
3

c2
+

x2
4

d2
= 1

}
⊂ R4.

Observe that E contains at least 4 minimal ‘planar’ two-spheres, which are given
by the intersection with the coordinates hyperplanes {xi = 0}. However, by the
area estimate |Γ2| < 2|Γ1|, if a ≫ b the second minimal two-sphere Γ2(a) ⊂ E
produced by Theorem 4 is not planar. Moreover, as a → ∞, the minimal two-
spheres Γ2(a) converge as varifolds to a minimal two-sphere with multiplicity two.

Let us now sketch the main ideas of the proof of Theorem 4.
If M admits a stable embedded minimal two-sphere, then the manifold is a kind

of dumbbell. Considering 1-parameter sweep-outs of both halves and using [7] we
show that each half contains an unstable two-sphere of index one in its interior.

Let us now consider the case that M does not contain any stable embedded
minimal two-spheres. Using Simon-Smith’s existence theorem (Theorem 3) we
obtain 1 embedded minimal two-sphere Γ1 of index one. Sliding the Simon-Smith



Differentialgeometrie im Großen 1941

sphere a bit to both sides we can decompose M = D1 ∪ Z ∪ D2 where Z is the
short cylindrical region obtained by sliding the Simon-Smith sphere around, and
D1 and D2 are smooth embedded 3-discs with mean convex boundary. To proceed,
we prove the following general theorem establishing the existence of smooth mean
convex foliations in three-manifolds:

Theorem 5 (Haslhofer-Ketover [5]). Let D ⊂ M3 be a smooth three-disc with
mean convex boundary. Then exactly one of the following alternatives holds true:

(1) There exists an embedded stable minimal two-sphere Γ ⊂ Int(D).
(2) There exists a smooth foliation {Σt}t∈[0,1] of D by mean convex embedded

two-spheres.

Let us first explain how to finish the proof of Theorem 4 using Theorem 5.
Recalling that M = D1∪Z∪D2 and using the foliations of D1 and D2 produced

by Theorem 5 we can build an optimal foliation of M , by which we mean a smooth
foliation {Σt}t∈[−1,1] of M by two-spheres so that the Simon-Smith sphere sits in
the middle of the foliation as Σ0 and all other slices have less area. From the one
parameter family {Σt} we can then form a two parameter family {Σs,t} detecting
α2 and such that

(1) sup
s,t

|Σs,t| < 2|Γ1|.

Roughly speaking Σs,t looks like Σs connected to Σt along a small neck, which
we open up near (s, t) ≈ (0, 0), using the catenoid estimate from [8].

The area bound (1) ensures that min-max for our two-parameter family doesn’t
simply produce Γ1 with multiplicity two. We conclude that there exists an em-
bedded minimal two-sphere Γ2 with |Γ1| < |Γ2| < 2|Γ1| and index two.

To obtain some intuition for Theorem 5 (which is of independent interest), imag-
ine that the disc D evolves by mean curvature flow. Recall that mean-convexity
is preserved under mean curvature flow. In the simplest possible scenario, the
mean curvature flow of D remains smooth and either becomes extinct in finite
time in a round point, giving the foliation from (2), or converges for t → ∞ to
a minimal embedded two-sphere, giving (1). Of course, in general the situation
is more complicated since the mean curvature flow typically develops local singu-
larities. One way to continue the flow through singularities is given by the level
set method, and in fact our proof shows that case (2) happens if and only if the
level set flow becomes extinct in finite time. The main issue however is that the
foliation produced by the level set flow is in general singular.

To produce a smooth foliation instead of a singular foliation we use mean cur-
vature flow with surgery. Mean curvature flow with surgery in general ambient
manifolds has been constructed first by Brendle-Huisken [2]. However, since we
also need a canonical neighborhood theorem for our application we instead extend
the approach from Haslhofer-Kleiner [6] to the setting of general ambient mani-
folds. We then combine the existence theorem, the canonical neighborhood theo-
rem, and methods from the recent topological application of mean curvature flow
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with surgery by Buzano-Haslhofer-Hershkovits [3] to produce the desired smooth
foliation.
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Equivariant Minimal Surfaces in Symmetric Spaces of Non-Compact
Type

Nicolas Tholozan

(joint work with Brian Collier and Jérémy Toulisse)

Let Σ be a closed surface of genus at least 2 and ρ a homomorphism from π1(Σ)
to a semi-simple Lie group G. Let X denote the symmetric space G/K, where K
is a maximal compact subgroup. Recall that X carries a G-invariant Riemannian
metric gX of non-positive curvature.

Since X is contractible, there always exist smooth ρ-equivariant maps from the

universal cover Σ̃ of Σ to X , and all these maps are homotopic through equivariant
maps. A natural question is whether one can find a ρ-equivariant map whose
image is a minimal surface. For quasi-Fuchsian representations into PSL(2,C),
this question can be seen as a “Plateau problem at infinity”, namely, finding a
ρ-invariant minimal disc in the hyperbolic 3-space whose boundary at infinity is
given by the limit circle of the representation.

A classical strategy to address this problem, which dates back at least to the
works of Schoen–Yau [8] and Sacks–Uhlenbeck [7], consists in minimizing a certain
energy functional on the Teichmüller space of complex structures on Σ.

To avoid complications let us assume from now on that the image of ρ is Zariski
dense in G. Then, for any complex structure J on Σ, one can find a unique
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ρ-equivariant harmonic map fJ,ρ from (Σ̃, J) to X . Let Eρ(J) denote the total
energy of fJ,ρ. The following are equivalent:

(i) The map fJ,ρ is conformal, that is, the pullback metric f∗
J,ρgX is in the

conformal class defined by J ,
(ii) The map fJ,ρ is a branched minimal immersion, meaning that fJ,ρ in an

immersion whose local image is a minimal surface in the complement of a
finite subset of Σ,

(iii) The complex structure J is a critical point of the energy functional Eρ

defined on the Teichmüller space of Σ.

When the representation ρ is a quasi-isometric embedding, the energy functional
is proper and thus admits a global minimum. The above strategy thus guaranties
the existence of an equivariant branched minimal immersion for a wide class of rep-
resentations with interesting geometric properties, including quasi-Fuchsian rep-
resentations into PSL(2,C) (or more generally convex cocompact representations
into Lie groups of rank 1) as well as Hitchin representations into real split Lie
groups (see [5]) and maximal representations into Hermitian Lie groups (see [1]).

A drawback of this strategy is that the minimal surface obtained may not be
embedded, or not even an immersion. Moreover, the energy functional may have
several critical points, giving rise to several branched minimal immersions. For in-
stance, one can find quasi-Fuchsian representations into PSL(2,C) with arbitrarily
many branched minimal immersions (see [4]). Among these, only the global energy
minimlizer is known to be an embedding.

In contrast, for Hitchin representations into real split Lie groups of rank 2
(namely SL(3,R), Sp(4,R) and G2), Labourie proved in [6] that the branched
minimal immersion is unique. For SL(3,R), it is known to be an embedding.
In [3], we extend this result to maximal representations in rank 2.

Theorem 1. Let ρ be a maximal representation of π1(Σ) into a Hermitian Lie
group G of real rank 2. Then there exists a unique ρ-equivariant branched min-

imal immersion of Σ̃ into the symmetric space of G. Moreover, this map is an
embedding.

Quasi-Fuchsian, Hitchin and maximal representations are the main exemples of
Anosov representations, defined in [5]. These representations all admit a “limit
circle” in some flag variety of G. Heuristically, the qualitative difference between
quasi-Fuchsian representations on one side and Hitchin and maximal representa-
tions on the other side is that the limit circle of a quasi-Fuchsian representation
can be arbitrarily “twisted”, while the limit curve of a Hitchin or maximal repre-
sentation has more regularity (it is a Lipschitz curve with a certain “cyclic order”).
This suggests that both Labourie’s and our result should be true in higher rank.

Let us finally explain briefly the steps of the proof of Theorem 1:

• We start by reducing to the case where G = SO(2, n) (using the classifica-
tion from [1] of the possible Zariski closures of maximal representations).
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• Let us now choose a complex structure J on Σ such that fJ,ρ is a branched
minimal immersion. We transcribe this property, as well as the maximality
of ρ, in terms of the Higgs bundle on (Σ, J) associated to ρ.

• The particular structure of this Higgs bundle allows us to construct a ρ-

equivariant minimal spacelike embedding f̂J,ρ of Σ̃ into the homogeneous
space SO(2, n)/SO(2, n − 1), which is pseudo-Riemannian of signature

(2, n− 1). Moreover, the map fJ,ρ is the Gauss map of f̂J,ρ. This shows
in particular that fJ,ρ is an embedding.

• Finally, we prove that there is at most one equivariant minimal spacelike
embedding by adapting an argument of Bonsante–Schlenker [2] for the case
n = 2 (for which this pseudo-Riemannian space is the 3-dimensional anti-
de Sitter space). The key fact here is that the “spacelike” condition gives
a strong control on the minimal embedding, which allows to “maximize
the distance” between two such embeddings and get a contradiction by a
maximum principle.
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Asymptotic geometric properties of Higgs bundle moduli spaces

Jan Swoboda

(joint work with Rafe Mazzeo, Hartmut Weiss and Frederik Witt)

In this talk, we present our resent results from [5] on the asymptotic geometry of
the L2 (or Hitchin) metric gL2 on the moduli space M of irreducible solutions to
the Hitchin self-duality equations

(1) H(A,Φ) := (FA + [Φ ∧ Φ∗h ], ∂̄AΦ) = 0

on a hermitian vector bundle (E, h) of degree 0 and rank 2 over a compact Riemann
surface X of genus γ ≥ 2, modulo unitary gauge transformations. The equations
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(1) are a system of nonlinear PDEs for a unitary connection A on E and a so-called
Higgs field Φ ∈ Ω1,0(X, sl(E)). Here, FA denotes the curvature of A and Φ∗h is the
hermitian conjugate of Φ. The study of these equations and the associated moduli
space was initiated in the seminal article [3]. There, gL2 has been introduced as
the ‘Weil-Petersson type’ metric

gL2((Ȧ1, Φ̇1), (Ȧ2, Φ̇2)) =

∫

X

〈Ȧ1, Ȧ2〉+ 〈Φ̇1, Φ̇2〉 dA

for a pair of tangent vectors (Ȧi, Φ̇i) satisfying the Coulomb gauge condition.

The moduli space M is a noncompact manifold with singularities of dimension
12(γ − 1). It can also be identified as the moduli space of stable Higgs pairs
{(∂̄E ,Φ) stable | ∂̄EΦ = 0} modulo complex gauge transformations, as well as
the twisted character variety of irreducible representations of π1(X) into GL(2,C)
modulo conjugation. The fact that gL2 is a hyperkähler metric reflects these
various incarnations.

Many topological and geometric properties of M are now understood, and in
the past few years a detailed picture has started to emerge about its asymptotic
geometric structure at infinity. A key role is played by the space M∞ of ‘limiting
configurations’ which are solutions of the decoupled equations

FA = 0, [Φ ∧ Φ∗h ] = 0, ∂̄AΦ = 0

obtained as a limiting form of the Hitchin equations (1), again modulo unitary
gauge transformations. These were initially defined and studied in [4], there for the
subset of solutions for which the corresponding holomorphic quadratic differentials
q = detΦ have simple zeroes (the so-called free region, denoted M′), and later
in greater generality by Mochizuki [6]. The subset M′

∞ of limiting configurations
over the space of holomorphic quadratic differentials with simple zeroes is the
main building block for the construction of diverging families of solutions in the
free region [4] and provide a natural compactification of M′.

Entirely distinct from those developments, a remarkable conjectural picture of the
asymptotic geometry of M has emerged from physics, and appears in the recent
work by Gaiotto, Moore and Neitzke [2]. That work develops a formalism of
spectral networks on Riemann surfaces, out of which they present a construction
of a hyperkähler metric gGMN which they conjecture to be precisely the L2 metric.
We refer to the survey paper by Neitzke [7] for an overview of this construction.
Briefly, they assert that

gGMN ∼ gsf +O(e−βt)

where gsf is a particular semiflat metric on M′ and the remainder denotes terms
which decay at some exponential rate as a certain radial variable t tends to infinity.
Here the term ‘semiflat’ appeals to the fact that gsf is induced by a special Kähler
metric gsK on the base B′ (the set of holomorphic quadratic differentials with
simple zeroes) of the Hitchin fibration det : M′ → B′, with each fiber det−1(q)
being an intrinsically flat, half-dimensional complex torus. We give a brief outline
of the construction of the latter metric, referring to the foundational article [1] for
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details. By definition, the term ‘special’ refers to a Kähler metric together with
a real, torsionfree, flat symplectic connection ∇. In the present situation, it is
associated with the spectral data of the points in B′: Let Sq denote the spectral
curve for q ∈ B′, which is a smooth two-sheeted branched cover of X . Each Sq

carries the Seiberg-Witten differential, a holomorphic (1, 0)-form λSW(q) which
is odd under the involution on Sq interchanging the two sheets. Fixing a local
symplectic basis α1(q), . . . , αm(q), β1(q), . . . , βm(q), m = 3γ − 3 of the odd first
homology group H1(Sq;Z)

odd, a pair of local holomorphic coordinates on B′, flat
with respect to ∇, are provided by the period integrals

zi(q) =

∫

αi(q)

λSW(q), wi(q) =

∫

βi(q)

λSW(q), i = 1, . . . ,m.

In terms of these, the special Kähler form equals

ωsK = −1

4

∑

i

dzi ∧ dw̄i + dz̄i ∧ dwi.

We note that the associated special Kähler metric gsK is an incomplete cone metric;
a Kähler potential is given by K(q) = 1

2

∫
X |q| dA.

These two seemingly different constructions of hyperkähler metrics on M′ lead
naturally to the challenge of understanding the relationship of the Gaiotto-Moore-
Neitzke metric gGMN and the L2 metric gL2 . This goal has been settled in the
recent preprint [5], where the following two results have been established.

Theorem 1. Consider the space M′
∞ of limiting configurations over the space

of holomorphic quadratic differentials with simple zeroes. It is possible to define
a renormalized L2 metric on this space, and this L2 metric on M′

∞ is naturally
identified with the Gaiotto-Moore-Neitzke semiflat metric gsf .

We then interpret the construction of large elements in M′ from [4] as giving a
coordinate system on this moduli space near the boundary of its compactification
provided by the elements of M′

∞. This can be used to compute the coefficients of
gL2 . Leaving aside the analytical details involved there, it leads to the following
conclusion.

Theorem 2. The L2 metric admits an asymptotic expansion

gL2 = gsf + t2
∞∑

j=0

t−(2+j)/3Gj +O(e−βt)

as t → ∞. Here each Gj is a symmetric two-tensor on M′, independent of the
radial variable t, and G0 6= 0.
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Collapsing in the Einstein flow

John Lott

The Einstein equation of general relativity is a weakly hyperbolic equation on
a Lorentzian 4-manifold (M, g). Given a foliation of M by spatial hypersurfaces
diffeomorphic toX , one can reduce Einstein’s equation to a flow on triples (h,K,L)
consisting of a Riemannian metric h on X , a symmetric 2-tensor field K on X and
a positive function L on X . The metric g is recovered as g = −L(t)2dt2 + h(t).
This “Einstein flow” goes back to the 1930’s.

The question that we address is the future asymptotics of an expanding universe.
We make the following simplifications : no matter, no cosmological constant and
compact X . The Einstein equation becomes the statement that (M, g) is Ricci
flat.

A standard assumption for the foliation is that for each t, the mean curvature
function H =

∑3
i,j=1 h

ijKij on X is constant. We make this assumption and

also assume that as a function of time, H : [T0,∞) → [H0, 0) is bijective and
increasing, where H0 < 0. The fact that H is negative means that the volume
forms of (X,h(t)) are expanding in t.

The Hubble time is the choice of time function t = − 3
H . Borrowing termi-

nology from Ricci flow, we say that a solution to the Einstein flow is type-III if
|Riem(M, g)| = O(t−2) as t → ∞, and type-II otherwise.

Under a noncollapsing assumption, Anderson showed that the future behavior
of a type-III Einstein flow is modelled by a flat Lorentzian cone over a hyperbolic
3-manifold [1]. We show that in the collapsing case, there are arbitrarily large
future time intervals that are modelled by a flat spacetime or a Kasner spacetime.

There are examples of type-II expanding CMC Einstein flows [2, 3]. In this
case, one can do a type-II blowdown as in Ricci flow. If the second fundamental
form K of the Einstein solution satisfies |K|2 ≤ const.H2 then we show that the
blowdown limit is a flat static Einstein solution. Here the limit is in the sense of
weak W 2,p convergence. The interpretation is that there are increasing oscillations
of the rescaled curvature tensor, that average it out to zero.
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Embeddings of the Heisenberg group and the Sparsest Cut problem

Robert Young

(joint work with Assaf Naor)

In this report, we describe some sharp bounds on bilipschitz embeddings of the
Heisenberg group into the Banach space L1. This solves a geometric question
that arose from work in theoretical computer science. This question arose from
the study of the Goemans–Linial algorithm for approximating the Sparsest Cut
problem [7, page 158] [10], which is currently the best known algorithm for ap-
proximating Sparsest Cut. The Sparsest Cut problem can be formulated as an
optimization problem over the L1–metrics, i.e., matrices of the form (‖vi− vj‖1)ij
where vi ∈ L1 for all i. This problem is NP–hard, but Goemans and Linial found
a fast approximate solution by minimizing over the class of negative-type metrics.

The accuracy of this solution depends on how close the set of negative-type
metrics is to the set of L1–metrics or, equivalently, how well a negative-type metric
space embeds in L1. If X is a metric space and p ∈ [1,∞], we let cp(X) be the
smallest distortion of a map X → Lp, that is, the infimum over all D ∈ [1,∞]
for which there exists an embedding f : X → Lp(R) such that d(x, y) ≤ ‖f(x) −
f(y)‖p ≤ Dd(x, y) for every x, y ∈ X . Goemans and Linial asked:

Question 1. Let α(n) = supX∈Nn
c1(X), where Nn is the set of n–point negative-

type metric spaces. What are the asymptotics of α(n)?

The function α(n), known as the Goemans–Linial integrality gap, measures how
the accuracy of the Goemans–Linial algorithm depends on the size of the problem.

Goemans and Linial asked whether α(n) is bounded, i.e., whether every nega-
tive-type metric space embeds bilipschitzly in L1. This hope was dashed in the
remarkable work [8], which proved a lower bound α(n) & 6

√
log logn by using an

example based on the Unique Games Conjecture. A very different approach was
introduced in [9] and [3], which showed that the Heisenberg group is bilipschitz
equivalent to a negative-type metric space that does not embed in L1 by a bilip-
schitz map and thus gave another proof that limn→∞ α(n) = ∞. This approach
was improved and quantified in [4], which showed that α(n) & (log n)δ for a small,
but effective, universal constant δ > 0.

In recent research, Naor and found sharp bounds on the L1–distortion of the
Heisenberg group, which imply sharp bounds on the Goemans–Linial integrality
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gap. Here, H2k+1
Z

denotes the (2k + 1)–dimensional Heisenberg group

(1) H2k+1
Z

=









1 x1 . . . xk z
0 1 0 0 y1

0 0
. . . 0

...
0 0 0 1 yk
0 0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣

xi, yi, z ∈ Z






.

Theorem 1. For every k ≥ 2 and every n > 0, let Bn(H
2k+1) ⊂ H2k+1 be the

ball of radius n. Then c1(Bn(H
2k+1)) &

√
logn. Consequently, α(n) &

√
logn.

The best known upper bound on α(n) is α(n) . (logn)
1
2
+o(1) [1]; this matches

our lower bound up to an iterated logarithm.
The proof relies on a new isoperimetric inequality that compares the perimeter

of a set with its vertical perimeter. Let S = {X1, . . . , Xk, Y1, . . . , Yk, Z} be the

standard generating set of H2k+1
Z

, so that Z generates its center. We say that a

set Ω ⊂ H2k+1
Z

is vertical if Ω = ZΩ. For every subset Ω ⊂ H2k+1
Z

, we define

|∂vΩ| =
( ∞∑

t=1

|Ω△ZtΩ|2
t2

) 1
2

,

where A△B is the symmetric difference of A and B and |A| is the number of
points in A. This measures how close Ω is to a vertical set.

We can decompose |∂vΩ| into contributions from many scales. For r > 0, let

|∂r
v
Ω| =

(2r−1∑

t=r

|Ω△ZtΩ|2
t2

) 1
2

.

If ∂Ω = {g ∈ Ω | gS 6⊂ Ω} is the boundary of Ω with respect to S, then

|∂r
v
Ω| .

(2r−1∑

t=r

|∂Ω|2d(1, Zt)2

t2

) 1
2

≈ |∂Ω|
(2r−1∑

t=r

t

t2

) 1
2

. |∂Ω|.

The ratio V (r) = |∂r
v
Ω|/|∂Ω| thus measures the verticality of Ω at a single scale,

and |∂vΩ| =
√∑∞

i=0 V (r)2.
Theorem 1 follows from the following isoperimetric inequality, which states that

a set that fails to be vertical at many scales must have a large perimeter.

Theorem 2. If k ≥ 2 and Ω ⊂ H2k+1
Z

is a finite subset, then |∂vΩ| . |∂Ω|.
We prove Theorem 2 using a new technique based on uniform rectifiability.

First, we show that Theorem 2 follows from the continuous inequality

(2)

∫ ∞

0

vol(Ω△ZtΩ)2

t2
dt . area(∂Ω)2,

where Ω is a subset of the real Heisenberg group H2k+1, i.e., the set of matrices
of the form (1) with real coefficients, vol is Hausdorff (2k + 2)–measure, and area
is Hausdorff (2k + 1)–measure.
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Next, we define intrinsic corona decompositions in the Heisenberg group and
use them to bound (2). These generalize David and Semmes’s notion of corona
decompositions for sets E in Rn [5]. A corona decomposition of E consists of a
collection of Lipschitz graphs with small Lipschitz constants that approximate E
at many scales. For example, a zigzag in the unit grid that connects (0, 0) to
(100, 100) can be approximated by a diagonal line at large scales and by a union
of horizontal and vertical lines at small scales. A more complicated curve (for
instance, an iteration of the Koch snowflake) might need many approximating
graphs over a large range of scales. A collection of approximating graphs is a
corona decomposition if its total size is bounded by a Carleson packing condition.
We develop analogous notions in the Heisenberg group, based on the intrinsic
Lipschitz graphs defined by Franchi, Serapioni, and Serra Cassano [6].

Corona decompositions in Rn have been used to reduce the study of some types
of singular integrals on subsets of Rn to the case of Lipschitz graphs. Likewise,
when ∂Ω admits an intrinsic corona decomposition, we can use intrinsic corona
decompositions to reduce (2) to an inequality for intrinsic Lipschitz graphs. When
k ≥ 2, this inequality follows from a bound on c2(H

3) proven in [2] – that is, we
deduce an inequality about embeddings in L1 from an inequality on embeddings
of a lower-dimensional group in L2!

Finally, we show that when Ω ⊂ H2k+1 satisfies area∂Ω < ∞, then Ω can be
decomposed into sets whose boundaries all admit intrinsic corona decompositions.
This step can be divided into two parts. The first part is simpler; we decompose Ω
into sets Ei such that Ei, ∂Ei, and H2k+1 \Ei are all Ahlfors regular. The second
part is more involved; we use arguments based on the stability of monotone sets
in H2k+1 to construct approximating graphs and prove bounds on their size.

This resolves the question of the embeddability of H2k+1 in L1 when k ≥ 2, but
there are still open questions when k = 1. Our main inequality relies on reducing
(2) to an inquality for functions on a subgroup of H2k+1; when k ≥ 2, we can
reduce to H3, but when k = 1, we cannot. In fact, work in progress suggests that

H3 has smaller L1–distortion than H5 — that c1(Bn(H
2k+1)) . n

1
4 .
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Lipschitz graphs. Astérisque, (193):152, 1991.
[6] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Intrinsic Lipschitz graphs in

Heisenberg groups. J. Nonlinear Convex Anal., 7(3):423–441, 2006.



Differentialgeometrie im Großen 1951

[7] Michel X. Goemans. Semidefinite programming in combinatorial optimization. Math. Pro-
gramming, 79(1-3, Ser. B):143–161, 1997. Lectures on mathematical programming (ismp97)
(Lausanne, 1997).

[8] Subhash A. Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrability gap
for cut problems and embeddability of negative-type metrics into ℓ1. J. ACM, 62(1):Art. 8,
39, 2015.

[9] James R. Lee and Assaf Naor. Lp metrics on the Heisenberg group and the Goemans-Linial
conjecture. In Proceedings of 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), pages 99–108, 2006.

[10] Nathan Linial. Finite metric-spaces—combinatorics, geometry and algorithms. In Proceed-
ings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 573–
586, Beijing, 2002. Higher Ed. Press.

Degeneration of Kähler-Einstein manifolds with negative scalar
curvature

Jian Song

We conider any algebraic family of Kähler-Einstein manifolds of negative scalar
curvature over a punctured disc. We show that the Kähler-Einstein manifolds
converge, in pointed Gromov-Hausdorff topology to a unique finite disjoint union
of complete metric spaces homeomorphic to a projective semi-log cannonical model
with its locus of non log-terminal singularities removed.

Invisible boundary and the geodesic flow on metric spaces

Alexander Lytchak

(joint work with Vitali Kapovitch and Anton Petrunin)

In the talk I discuss the proof of the following theorem

Theorem 1. Let X be the boundary of a convex body in Rn+1. Then almost every
direction in the tangent bundle of X is the starting direction of an infinite geodesic.
The geodesic flow defined in this way preserves the Liouville measure.

Even the existence of a single infinite geodesic on any convex surface is appar-
ently a new result. The theorem arose in the attempt to prove the existence of
a geodesic flow on any Alexandrov space. While we could not prove the result in
full generalilty, we have reduced it to an analytic statement and have developed a
new analytic tool which might be interesting in its own right beyond the realm of
Alexandrov geometry.

Namely, for any Alexandrov space X (or more generally, any metric measure
space ) of Hausdorff dimension n, we consider the volume growth function br(x) :=
vol(B(x, r)), where B(x, r) is the ball of radius r around x. The function vr(x) =

1− br(x)
ωn·rn

measures the volume deviation from the Euclidean volume. Considering
vr as the measure Vr := vr · vol and letting r go to 0 we obtain information
about infinitesimal average regularity of X . For a smooth Riemannian manifold
without boundary Vr/r

2 converges to a multiple of the scalar curvature. More
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interestingly for our purposes, for a smooth Riemannian manifold with boundary
Vr/r converges weakly to a multiple of the canonical measure on the boundary.
This motivates the following definitions.

Definition 1. We say that the metric measure space (X, d, vol) has locally finite
mm-boundary if the signed Radon measures Vr/r are uniformly bounded, for 0 <
r < 1. We say that the mm-boundary vanishes if Vr/r weakly converges to 0.

Our main result is motivated by the idea that on a smooth Riemannian manifold
with boundary, the boundary is the obstacle for the existence of the geodesic flow.

Theorem 2. For any Alexandrov space X the following holds true.

(1) X has locally finite mm-boundary.
(2) The mm-boundary does not vanish if the topological boundary of X is not

empty.
(3) If the mm-boundary vanishes then almost every tangent direction of X is

the starting direction of an infinite geodesic and the geodesic flow preserves
the Liouville measure.

(4) If X is the boundary of the convex body or a general 2-dimensional Alexan-
drov space without boundary then the mm-boundary of X vanishes.

Thus, if on an Alexandrov space with empty topological boundary the geodesic
flow is not defined for all times, there must exist some topologically invisible
boundary, namely our mm-boundary. This mm-boundary is a Radon measure on
the Alexandrov space which is absolutely singular with respect to the volume and
which vanishes on subsets with finite (n− 1)-dimensional Hausdorff measure.

Asymptotic structure of self-shrinkers of mean curvature flow

Lu Wang

A surface, Σ ⊂ R3, is a self-shrinker if

(1) HΣ +
x⊥

2
= 0.

Here HΣ = −HΣnΣ = ∆Σx, nΣ is the unit normal of Σ, and x⊥ is the normal
part of the position vector. They are a special class of solutions to mean curvature
flow. Namely, let Σt =

√−tΣ for t < 0. Then {Σt}t<0 moves by mean curvature
vector, i.e.,

(2) (∂tx)
⊥ = HΣt

for x ∈ Σt.

Mean curvature flow is the negative L2-gradient flow of the area functional. Since
there is no closed minimal surfaces in R3, the flow starting from any closed surface
develops singularities in finite time. Combining Huisken’s monotonicity formula
[2] and Brakke’s compactness theorem [1], Ilmanen [3] proved that all possible
singularities at the first singular time of a compact mean curvature flow in R3 are
modeled by self-shrinkers of finite genus.
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From a variational view point, self-shrinkers are critical points of the Gaussian
surface area

(3) F [Σ] = (4π)−1

∫

Σ

e−
|x|2

4 dH2

where H2 is the 2-dimensional Hausdorff measure in R3. In other words, they are
minimal with respect to the conformal change of the Euclidean metric on R3,

(4) gij = e−
|x|2

4 δij .

However, this metric is incomplete, and the scalar curvature is negative and blows
up approaching infinity. Thus the general theory of minimal submanifolds does
not apply here.

Our goal is to investigate the moduli space of noncompact self-shrinkers in R3.
Besides the planes and round cylinders, there exist a one-parameter family of
noncompact shrinkers of high genus with one asymptotically conical end obtained
from desingularizing the sphere and plane; cf. [5] and [6]. Previously we estab-
lished some uniqueness theorems [8, 9] for noncompact self-shrinkers with given
asymptotics at infinity. We now turn to studying the asymptotic behaviors of self-
shrinkers. In [10] we confirmed a conjecture of Ilmanen [4, p. 39] for self-shrinkers
of finite topology.

Theorem 1. If Σ is a noncompact self-shrinker in R3 of finite topology and M is
an end of Σ, then one of the following holds:

• limτ→0+ τM = C in C∞
loc(R

3 \ {0}) for some regular cone C.

• limτ→0+ M − τ−1v = Rv ×
√
2 S1 in C∞

loc(R
3) for some nonzero vector v.

In particular, supp∈Σ |AΣ(p)| < ∞.

Here a regular cone means the link of the cone is a closed, smooth embedded
curve in unit sphere, Rv is the subspace of R3 spanned by v, and AΣ is the second
fundamental form of Σ.

It is known that the tangent space at infinity of a self-shrinker is a cone Ĉ;

cf. [4, p. 8] and [7]. To prove Theorem 1, we need to address the regularity of Ĉ
and that of the convergence as well. We appeal to the parabolic blow-up procedure
to M = {√−tM}t<0 at time 0. Invoking the ǫ-regularity theorem of Brakke [1] we
relate the regularity question to the multiplicity issue of tangent flows to M. The
technical heart is a so-called “sheeting” theorem for the convergence at time ∞ of
the flow obtained from rescaling of M. Its proof weaves analysis and geometry.
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Finsler geometry and quasigeodesics in higher rank symmetric spaces

Bernhard Leeb

(joint work with Misha Kapovich and Joan Porti)

The classical Morse Lemma for quasigeodesics asserts that, in negative curvature,
quasigeodesics have rigid geometry in the sense that they are uniformly close to
geodesics. To make this more precise, we recall that a map q : I → X from an
interval into a metric space is an (L,A)-quasigeodesic if

1

L
· |t1 − t2| −A ≤ d(q(t1), q(t2)) ≤ L · |t1 − t2|+A

for all t1, t2 ∈ I. If X is δ-hyperbolic in the sense of Gromov, then according to
the Morse Lemma the image q(I) of the quasigeodesic is contained in a tubular
neighborhood of uniform radius r = r(L,A, δ) of a(ny) geodesic in X with the
same endpoints q(ti).

In nonpositive curvature quasigeodesics are much more flexible and the Morse
Lemma no longer holds, as the case of euclidean plane already shows. We restrict
ourselves to the case of symmetric spaces X = G/K of noncompact type (G is a
noncompact connected semisimple Lie group and K a maximal compact subgroup)
and rank ≥ 2. (The rank one case is covered by the classical Morse Lemma.) For
simplicity, we assume that X is irreducible.

We obtain control on the geometry of quasigeodesics inX by imposing a regular-
ity condition. We require that for sufficiently separated points on the quasigeodesic
the segments connecting them are not almost singular of a certain type. There
are different degrees of regularity which one can impose and they depend on the
choice of a face τ ⊆ σ of the spherical Weyl chamber attached to X which we fix
throughout our discussion. The face τ corresponds to a conjugacy class of para-
bolic subgroups P < G. The larger the face, respectively, the smaller the parabolic
subgroups, the more restrictive will be the regularity condition.

In view of the natural identification G\(X ×X) ∼= ∆ with the euclidean Weyl
chamber ∆ associated to X , we define the ∆-distance as the quotient map d∆ :
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X×X → ∆ and regard it as a refined vector-valued metric on X . The Riemannian
distance dRiem on X is obtained by taking the euclidean norm, dRiem = ‖d∆‖.

The euclidean Weyl chamber is the complete euclidean cone over the spherical
Weyl chamber, ∂∞∆ ∼= σ. Let Θ ⊂ σ be a compact subset disjoint from the
faces of σ which do not contain τ . We say that an oriented segment xy ⊂ X
is Θ-regular if its ∆-length d∆(x, y) ∈ ∆ points towards Θ. Moreover, we say
that an (L,A)-quasigeodesic I → X is τ-regular if for some such Θ the segments
connecting q(t1) and q(t2) are Θ-regular for all t1, t2 ∈ I with |t1 − t2| sufficiently
large, cf. [KLP13,KLP17]. An equivalent notion had already been introduced by
Benoist in deep his work [Be97], see in particular part (5) of Lemma 3.5.

Also τ -regular quasigeodesics do not satisfy the classical Morse Lemma literally,
i.e. they are i.g. not uniformly close to geodesics with respect to the Riemannian
metric on X . However, they turn out to be bounded perturbations of geodesics
with respect to a suitable G-invariant “polygonal” Finsler metric dτFins depending
on the face type τ . To describe it, we choose a vector v ∈ ∆ pointing towards the
interior of the face τ , then take the dual linear functional λ = 〈v, ·〉 on ∆ and put

dτFins = λ ◦ d∆,

see [KL15] for a detailed discussion. The metric dτFins is in general non-symmetric,
but it is equivalent to dRiem as a consequence of G-invariance. In particular,
uniform dRiem-quasigeodesics are uniform dτFins–quasigeodesics and vice versa.

The family of (unparametrized) dτFins-geodesics in X depends only on τ and
not on the choice of v. We refer to them as τ-Finsler geodesics. Riemannian
geodesics are also τ -Finsler geodesics. However, there are more (in rank ≥ 2); due
to the lack of strict convexity of balls, geodesic connections of pairs of points are
non-unique. Nevertheless, the geometry of τ -Finsler geodesics is very restricted.
Most importantly, they are contained in parallel sets (of type τ). In particular, if
τ = σ, they are contained in maximal flats.

The main result of [KLP14b], see Thm 1.3 there, can be paraphrased as follows:

Morse Lemma for regular quasigeodesics in symmetric spaces of higher
rank: τ -Regular quasigeodesics in X are uniformly close to τ -Finsler geodesics.

The bound depends on the quasiisometry constants L,A and on Θ. In [KLP14b],
this result had not been formulated in Finsler terms. The Finsler view point had
only gradually emerged during our study of asymptotic and coarse properties of
discrete isometry groups with “rank one behavior” acting on symmetric spaces and
euclidean buildings, see also [KLP16,KL17,KLP17,KLP13,KLP14a,KL15]. The
Higher Rank Morse Lemma is an important tool in our proof of the equivalence
of various different characterizations for this family of subgroups. For instance,
we showed that a finitely generated discrete subgroup Γ < G is τ -Anosov, a dy-
namical condition introduced in [La06,GW12], if and only if it is τ -URU, that is,
uniformly τ -regular and undistorted, thereby providing a simple characterization
of Anosov subgroups in terms of coarse geometry.
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Sheared pleated surfaces and limiting configurations for Hitchin’s
equations

Michael Wolf

(joint work with Andreas Ott, Jan Swoboda and Richard Wentworth)

1. Introduction

In this extended abstract, we report on ongoing joint work with Andreas Ott,
Jan Swoboda, and Richard Wentworth. Let S = Sg denote a closed differen-
tiable surface of genus g on which we will put various geometric structures.

We seek to interpret a stratum in the frontier of the character variety χg =
Hom(π1(S),PSL(2,C))/PSL(2,C) of (irreducible) genus g surface group represen-
tations into PSL(2,C). In particular, we refer to a recent work [4] of Mazzeo-
Swoboda-Weiss-Witt. These authors fix a Riemann surface structure, say X , on
S, and consider the moduli space M of stable PSL(2,C-Higgs bundles (up to
gauge equivalence) over X . They then consider those Higgs bundles for which the
Higgs field, say Φ, has determinant q = det(Φ) ∈ H0(X,K2

X), a holomorphic qua-
dratic differential on X, to have but simple zeroes. Roughly, they continue from
this restricted space to define a frontier for this portion of the moduli space by
adjoining to the associated portion of χg a moduli space M∞ consisting of (equiv-
alence classes of) limiting configurations. These limiting configurations are pairs
(Φ∞, A∞) of a singular Higgs field Φ∞ and singular connection A∞: together the
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pair satisfy a degenerate decoupled system of equations that is a limiting version
of the Hitchin system. See [4] for complete details.

In this talk, we seek to address two questions:

(1) What is the dependence of this stratum of limiting conditions on the initial
choice of Riemann surface X? For example, if (Φ∞, A∞) is a limit, under
the correspondences above, of a sequence ρn ∈ χg of (of equivalence classes
of) representations where we have chosen X as the background Riemann
surface, and if (Φ′

∞, A′
∞) is an accumulation point of those classes of rep-

resentations when we have chosen X ′ as a background Riemann surface,
then how does (Φ′

∞, A′
∞) relate to (Φ∞, A∞)?

(2) The Hitchin theory (see [3]) proceeds via consideration of ρn-equivariant

harmonic maps un : X̃ → SL(2,C)/SU(2). The latter symmetric space is
isometric to the hyperbolic three-space H3, so we seek an interpretation of
the limiting configuration pair (Φ∞, A∞) in terms of hyperbolic-geometric
objects.

We address these questions by relating limiting configurations (Φ∞, A∞) to

classes of shearings of a pleated surfaces Σ = (f̃ , (S, σ), ρ, λ). Here the pleated
surface Σ is defined by the following data: the surface S is equipped by a hyperbolic
metric σ for which λ is a geodesic laminations, and the map f : S̃ → H3 is an
isometry on complement S \λ of λ in S, as well as an isometry of λ onto its image
(geodesic). For full details, see [1] and the papers referenced within.

Given a pleated surface Σ = (f̃ , S, ρ, λ) and a number s, we create a pleated

surface Σs = (f̃s, Ss, ρs, λ) as follows. Set Ξλ
s to be the transverse cocycle associ-

ated to a left earthquake of S along λ. Then set Σs = Σs,µq,vert
= Ξλ

sΣ, the result
of shearing Σ along the lamination λ for a measure of sµq,vert, where here µq,vert

denotes the measure for the vertical foliation of q. Note that this operation results
in a pleated surface Σs with the same bending cocycle as the original surface Σ.
(Naturally, a similar construction of Σs,n = Ξλn

s Σn can be made for laminations
λn and measures µq1n,vert

.)

2. The pleated surface for a limiting configuration

Let ρn denote a sequence of irreducible SL(2,C) surface group representations
which leave all compact sets in the character variety χg, converging to a limiting

configuration (Φ∞, A∞) relative to a choice X of Riemann surface. Let hn : X̃ →
H3 denote the associated family of equivariant harmonic maps from the universal
cover X̃ to hyperbolic 3-space H3, normalized by some fixed choice of frames.

Let qn = det(Φn) be the Hopf differential of the harmonic map hn; here Φn refers
to the Higgs field. Our assumption that the limiting configuration (Φ∞, A∞) has
detΦ∞ a quadratic differential with simple zeroes implies that we may assume, for
n sufficiently large, that the differential qn also has only simple zeroes. We adopt
the notation that X̃ denotes the universal cover of X , and q̃n (respectively q̃)

denote the lifts to the universal cover X̃ of qn (resp. q), and so on. Let q1n = qn
‖qn‖
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denote the unit norm quadratic differential which is a multiple of the quadratic
differential qn. We might as well assume that ‖q‖ = 1 so that q1n → q.

Let X× denote the complement in X̃ of the zeroes of q̃ and the horizontal leaves
that emanate from those zeroes.

OnX×, let π denote the natural map which takes horizontal leaves ℓ of q to their
geodesic representatives π(ℓ) in the lamination λ, with an analogous definition for
πn : X× → λn. We may extend this map to the horizontal leaves which emanate
from the zeroes after some arbitrary choice of extending π (resp., πn) by taking
limits from the left. We continue to denote this map by π (resp. πn).

Proposition 1. There is a pleated surface Σ = (f̃ , S, ρ, λ) with the following
properties. The measured lamination λ is projectively equivalent to the measured
lamination naturally associated to the horizontal measured foliation of q = det(Φ).

Let s = s(n) = 2E(hn)
1
2 , and let Σs = ΞsΣ be as in the previous paragraph. We

then have the following estimates depending upon whether the Hopf differentials
qn are proportional or not.

(i) Suppose that q1n is independent of n. Then, for every ǫ, we may choose n suf-

ficiently large so that the images hn(X̃) are within distance ǫ of f̃s(X̃); moreover,
on the complement of any neighborhood of q−1(0), the map hn nearly agrees with

the projection fs ◦ π from the punctured surface X̃ to the lamination λ, i.e. when
d|q1n|(p, q

−1
n (0)) > ǫ, we have for n sufficiently large that dH3(hn(p), πn(p)) < ǫ.

(ii) In general, with no restriction on q1n other than q1n → q, we conclude that for
every (large) constant C and every ǫ, there is an n so that we have for n sufficiently
large for points p so that d|q1n|(p, q

−1
n (0)) > ǫ, then dH3(hn(p), πn(p)) < 2s− C.

Remarks 1.

1. In effect, the construction in this proposition results in a family ρs of repre-
sentations defining the pleated surfaces Σs that track a subsequence of the
representations induced by hn.

2. One can understand the second statement in the proposition in the following
way. A consequence of the first estimate is that if one takes a ’ray’ of rep-
resentations ρn whose Hopf differentials qn are all multiples of a single unit
quadratic differential q1n, then the harmonic map images hn(X̃) are tracked
very closely by shearings Σs = ΞsΣ of a single pleated surface Σ. Thus, if one
were to take a second family of representations ρ

′

n whose Hopf differentials q
′

n

are all multiples of a single unit quadratic differential q1
′

n , then the harmonic

map images h
′

n(X̃) are tracked very closely by shearings Σ
′

s = ΞsΣ of a single

pleated surface Σ
′

. But those shearings Σs and Σ
′

s are bent along measured
laminations which typically make some non-zero angle with other, so even
for quadratic differentials qn and q

′

n whose zeroes are are close the distances

between the images hn(p) and h
′

n(p) of a point p far from the zeroes will dis-

tance dH3(hn(p), h
′

n(p)) = 2s−O(1). This last estimate is because hn(p) will
lie close to one geodesic and be moved by the shearing along that geodesic
by a distance s+O(e−cs) and h

′

n(p) will lie close to another distinct geodesic
and be moved by the shearing along that geodesic by a distance s+O(e−cs).
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By elementary hyperbolic geometry, even if those geodesics intersect, the dis-
tance between the points hn(p) and h

′

n(p) will be at least 2s − C0 for some
absolute constant C0.

The proof of Proposition 1 uses estimates on high energy harmonic maps to H2

and H3 from [8] and [5]: the constructions borrow heavily from the easier parts of
Minsky’s thesis [5].

3. Bending Cocycles

With this basic correspondence in hand, we rapidly sketch the remainder of the
discussion.

The space of limiting configurations {(Φ∞, A∞)} fibers into Prym varieties
which share a common singular Higgs field Φ∞: in this construction a singu-
lar connection A∞ differs from another singular connection A0

∞ by a form α ∈
H1(X×, LΦ∞), where LΦ∞ = {γ ∈ su(2) : [γ,Φ∞] = 0} is a line bundle over X×

(the Riemann surface X punctured at Φ−1
∞ (0)). There is an equivalence relation

among the elements α ∈ H1(X×, LΦ∞) given by an integral relation among the
periods of the forms. Again, see [4] for full details on the structure of the space of
limiting configurations.

We show two results, which we summarize a bit informally, using only the
terminology developed so far.

Proposition 2. A form α ∈ H1(X×, LΦ∞) formally defines a bending cocycle b[α]
for a geodesic lamination λ ⊂ S corresponding to the horizontal foliation for Φ∞.

Let (Φ∞, A0
∞) denote the limiting configuration corresponding to the Hitchin

section of χg: these are also often referred to as the Fuchsian representations. Here
the associated pleated surface from Proposition 1 has a vanishing bending cocycle.

Thus, associated to a form α ∈ H1(X×, LΦ∞), we now have two pleated surfaces
(or more precisely, classes of shearings of pleated surfaces. The first, Σα is defined
via Proposition 2 by bending the Fuchsian pleated surface along λ = λ(Φ∞) so
that the resulting bending cocycle is α.

The second pleated surface Σα is obtained from α ∈ H1(X×, LΦ∞) by applying
the construction of Proposition 1 to the limiting configuration (Φ∞, A0

∞ + α).
The main result in the talk is that

Theorem 1. The pleated surfaces Σα and Σα agree up to shearing along λ.

The proof involves giving a hyperbolic geometry interpretation of the bundle
LΦ∞ and the elements α ∈ H1(X×, LΦ∞) (cf. Donaldson [2]), and then combining
these with some of the estimates on high energy harmonic maps as well as some
elementary observations as to the geometry of highly sheared pleated surfaces.
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Harmonic quasiisometric maps

Yves Benoist

(joint work with Dominique Hulin)

We prove that a quasiisometric map f : X → Y between pinched Hadamard
manifolds X and Y is always within bounded distance of a unique harmonic map
h : X → Y .

This result extends a previous recent result of M. Lemm and V. Markovic in [2]
who were dealing with the case where both X and Y are equal to the same real
hyperbolic space Hn.

In this talk I followed carefully the argument as it is explained in [1].
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Hopf’s Conjecture on the Euler characteristic holds if the manifold
has an isometry group of rank 5

Burkhard Wilking

(joint work with Lee Kennard)

We consider isometric effective action of a 5-torus T 5 on a positively curved man-
ifold. We then can analyze the rational topology of each fixed point component

F ⊂ MTd

. In fact F is either rational equivalent to rank 1 symmetric space to
S2 ×HP ℓ or S3 ×HP ℓ. As a consequence we can confirm that the Euler charac-
teristic of the underlying manifold is positive in even dimensions.
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New examples of gradient expanding Kähler-Ricci solitons

Ronan J. Conlon

(joint work with Alix Deruelle)

A Ricci soliton is a triple (M, g, X), where M is a Riemannian manifold with
a complete Riemannian metric g and a complete vector field X satisfying the
equation

(1) Ric(g)− 1

2
LXg + λg = 0

for some λ ∈ {−1, 0, 1}. We call X the soliton vector field. A soliton is said to be
steady if λ = 0, expanding if λ = 1, and shrinking if λ = −1. Moreover, ifX = ∇gf
for some real-valued smooth function f on M , then we say that (M, g, X) is a
gradient soliton. If g is Kähler with Kähler form ω, then we say that (M, g, X)
is a Kähler-Ricci soliton if in addition to g and X satisfying (1), the vector field
X is real holomorphic. In this case, one can rewrite the soliton equation as

(2) ρω − 1

2
LXω + λω = 0,

where ρω is the Ricci form of ω. If g is a Kähler-Ricci soliton and if X = ∇gf
for some real-valued smooth function f on M , then we say that (M, g, X) is a
gradient Kähler-Ricci soliton.

The study of Ricci solitons and their classification is important in the context
of Riemannian geometry. For example, they provide a natural generalisation of
Einstein manifolds. Also, to each soliton, one may associate a self-similar solution
of the Ricci flow which are candidates for singularity models of the flow.

Given an expanding gradient Ricci soliton (M, g, X) with quadratic Ricci cur-
vature decay and appropriate decay on the derivatives, one may associate to it a
unique tangent cone (C0, g0) with a smooth link [2, 5, 10] which may be consid-
ered an initial condition of the Ricci flow g(t), t ≥ 0, associated to the soliton in
the sense that limt→0+ g(t) = g0 as a Gromov-Hausdorff limit. We consider the
converse to this statement, namely the following problem.

Problem. For which metric cones C0 is it possible to find an expanding (gra-
dient) Ricci soliton with tangent cone C0? Or more generally, given a metric
cone (C0, g0), when is it possible to find a Ricci flow g(t), t ≥ 0, such that
limt→0+ g(t) = g0 in the Gromov-Hausdorff sense?

Deruelle [5, 6] has shown that one can always solve this problem when the link
of the cone C0 is a sphere with positive curvature operator bounded from below by
the identity, and a result due to Lott and Wilson [9] shows that this question has
a positive answer at the level of formal expansions. When the cone C0 is Kähler,
Siepmann [10] has shown that the above question always has an affirmative answer
when C0 is furthermore Ricci-flat and admits an equivariant resolution satisfying
certain topological conditions. Our contribution is to remove the hypothesis of
Ricci-flatness from Siepmann’s result.
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Theorem 1 (C.-Deruelle [3]). Let C0 be a Kähler cone with complex structure
J0, Kähler cone metric g0, Ricci curvature Ric(g0), and radial function r. Let
π : M → C0 be a Kähler resolution of C0 with complex structure J and exceptional
set E such that

(a) the complex torus action on C0 generated by J0r∂r extends to M so that
X = π∗(r∂r) lifts to M ;

(b) H1(M) = 0 or H0, 1(M) = 0 or X |A = 0 for A ⊂ E for which H1(A) →
H1(E) is surjective.

Then for all c > 0, there exists a unique expanding gradient Kähler-Ricci soliton
gc on M with soliton vector field X = π∗(r∂r), the lift of the vector field r∂r on
C0, and with LJXgc = 0, such that

|(∇g0)k(π∗gc − cg0 − Ric(g0))|g0 ≤ C(k)r−4−k for all k ∈ N0

if and only if

(3)

∫

V

(iΘ)k ∧ ωdimC V −k > 0

for all positive-dimensional irreducible analytic subvarieties V ⊂ E and for all
1 ≤ k ≤ dimC V for some Kähler form ω on M and for some curvature form Θ of
a hermitian metric on KM .

We call a resolution of C0 satisfying condition (a) here an equivariant resolution.
Such a resolution of a complex cone always exists [8]. What is not clear a priori
is if this resolution satisfies condition (3). From (2), one can see that (3) is in
fact a necessary condition on M in Theorem 1 to admit an expanding Kähler-
Ricci soliton. Furthermore, as remarked in [7], an asymptotically conical (“AC”)
Kähler manifold of complex dimension n ≥ 2 can only have one end, hence in
these dimensions having one end is also a necessary condition on M in Theorem
1 to admit AC Kähler-Ricci solitons.

As an application of Theorem 1, we obtain new examples of AC gradient expand-
ing Kähler-Ricci solitons on the total space of certain holomorphic line bundles,
thereby extending previous work of Dancer-Wang [4].

Corollary 2 (C.-Deruelle [3]). Let L be a negative holomorphic line bundle over
a compact Kähler manifold D, let π : L → L× denote the blowdown of the zero
section of L, and let g0 be a Kähler cone metric on L× with Ricci curvature Ric(g0)
and with radial function r such that 1

a · r∂r is the Euler vector field1 on L \ {0} for
some a > 0.

Then for all c > 0, there exists a unique expanding gradient Kähler-Ricci soliton
gc on the total space of L with soliton vector field X = π∗(r∂r) a scaling of the
Euler vector field on L by a, such that

|(∇g0)k(π∗gc − cg0 − Ric(g0))|g0 ≤ C(k)r−4−k for all k ∈ N0

if and only if c1(KD ⊗ L∗) > 0.

1By the Euler vector field on a vector bundle E, we mean the infinitesimal generator of the
homotheties of E.
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Notice that Corollary 2 asserts that the total space of L⊗p admits an expanding
gradient Kähler-Ricci soliton asymptotic to a cone at infinity for any negative
line bundle L over a compact Kähler manifold whenever p is sufficiently large.
Corollary 2 follows from Theorem 1 after applying the adjunction formula and
noting that the blowdown map π : L → L× is a Kähler equivariant resolution of
L× with respect to any positive scaling of the standard C∗-action on these spaces
and that X restricted to the zero section of L, that is, the exceptional set of the
resolution π, vanishes, so that the final condition of hypothesis (b) of Theorem 1
is satisfied with A = E.

Our strategy of proof of Theorem 1 follows closely the work of Siepmann [10].
We first construct a background AC Kähler metric which serves as an “approx-
imate” expanding Kähler-Ricci soliton. We then perturb this metric to a pre-
cise expanding gradient Kähler-Ricci soliton by solving a complex Monge-Ampère
equation. Since we are missing a ∂∂̄-lemma (KM has the wrong sign), we re-
quire hypothesis (b) of Theorem 1 to set up the complex Monge-Ampère equation
which we then solve by implementing the continuity method as in the seminal
work of Aubin [1] and Yau [11] on the existence of Kähler-Einstein metrics on
compact Kähler manifolds, although we work with weighted function spaces in
order to compensate for the non-compactness of our situation. We also work in-
variantly under the corresponding real torus action in order to obtain an a priori
C0-estimate on the radial derivative of solutions in the closedness part of the con-
tinuity method. As a consequence of this invariance, our expanding Kähler-Ricci
solitons are also invariant under the corresponding real torus action from which
it follows from hypothesis (b) of Theorem 1 that they are necessarily gradient
Kähler-Ricci solitons.
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Sasaki-Einstein metrics and K-stability

Tristan C. Collins

(joint work with Gabor Székelyhidi)

Sasakian geometry is an odd-dimensional generalization of projective Kähler ge-
ometry, which has recently gained interest due to its role in both Kähler geom-
etry, where Sasakian manifolds appears as links of tangent cones, and theoret-
ical physics, where Sasakian manifolds play a role in the AdS/CFT correspon-
dence. A Riemannian manifold (S, g) is Sasakian if there is a complex structure
J on the metric cone (S × R>0, dr

2 + r2g) so that r∂r is real holomorphic, and
(S × R>0, dr

2 + r2g, J) is Kähler. Of particular interest are those Sasakian man-
ifolds for which g is also Einstein. The objective of this talk is to address the
question of when such metrics exist.

In general, Sasaki-Einstein metrics are obstructed. For example, if X is a Fano
Kähler manifold (ie. −KX is ample), then the U(1) bundle in KX defined by a
negatively curved metric is a Sasakian manifold, and this manifold is Einstein if
and only if X is Kähler-Einstein with positive scalar curvature. The famous Yau-
Tian-Donaldson conjecture, solved recently by Chen-Donaldson-Sun [1–3], predicts
that the existence of a Kähler-Einstein metric on a Fano manifold is equivalent to
K-stability, an algebro-geometric notion.

The aim of this talk is to introduce K-stability for Sasakian manifolds, and
discuss the connection with Sasaki-Einstein metrics. We introduce K-stability [4],
and discuss the connection with the Einstein-Hilbert functional, building on work
of Martelli-Sparks-Yau [6]. The main theorem of this talk is that (G-equivariantly)
K-stable Sasakian manifolds admit Sasaki-Einstein metrics [5]. By exploiting the
G-equivariance to restrict the number of test configurations we explicitly check
that the links of the Brieskorn-Pham singularities

Zp,q = x2 + y2 + zp + wq

and K-stable provided 2p > q and 2q > p. This produces infinitely many non-
isometric Einstein metrics on the five sphere.
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The renormalized volume of quasifuchsian manifolds

Jean-Marc Schlenker

The renormalized volume of quasifuchsian manifolds can be considered as a special
case of the renormalized volume of Poincaré-Einstein manifolds, see e.g. [6,8]. It is
also strongly related, however, to the Liouville functional in complex analysis, see
e.g. [13, 14]. It is also possible to define a corresponding Chern-Simons invariant,
with the volume and Chern-Simons invariant being the real and imaginary part of
a section of a complex line bundle, see [7].

LetM be a quasifuchsian manifold, homeomorphic to S×R, where S is a closed,
oriented surface of genus g ≥ 2. Its boundary at infinity ∂∞M is the disjoint union
of two copies of S, each endowed with a complex structure (c+, c−) ∈ TS × TS̄ .
Given two metrics h+ and h− on S compatible respectively with c+ and c−, it
follows from work of Epstein [5] that there exists an equidistant foliation (S±,r)r≥r0

of a neighborhood of infinity in M , unique up to the choice of r0, such that if I±,r

is the induced metric on S±,r then

lim
r→∞

2e−2rI±,r = h± .

We then define a quantity W (h+, h−) as the constant term in the asymptotic
expansion of the volume V (r) of the region between S+,r and S−,r:

V (r) = V2e
2r + V1r +W (h+, h−) + o(1) .

The renormalized volume VR(M) is then defined by maximizing W (h−, h+)
over the conformal classes at infinity, using the following statement.

Lemma 1. Among metrics h+, h− of area π|χ(S)| in the conformal classes at
infinity, W (h+, h−) is maximal exactly when h+ and h− have constant curvature
−2.

Using the Bers simultaneous uniformization theorem, VR can be considered
as a function VR : TS × TS̄ → R. It follows from its relation to the Liouville
functional (but can also be proved directly, see [10, 11]) that for c− ∈ TS̄ fixed,
VR(·, c−) : TS → R is a Kähler potential for the Weil-Petersson metric on TS .

The renormalized volume has a simple variational formula. In a first-order
deformation of M , determined by a first-order variation ċ of the complex structure
at infinity (considered as a Beltrami differential),

(1) V̇R = ℜ(〈ċ, q〉) .
Here q is the Schwarzian derivative of the uniformization map on the universal
covering of each connected component of the boundary at infinity of M , and 〈, 〉
is the duality pairing between Beltrami differentials and holomorphic quadratic
differentials. Specifically, if ∂+M is the upper boundary at infinity of M and

φ+ : ∂̃+M → D is the uniformization map to the disk, then q+ = −S(φ+), where
S denotes the Schwarzian derivative and S(φ+) is considered as a holomorphic
quadratic differential, and similarly for ∂−M .
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More recently [12], building on the construction in [10], the renormalized volume
was connected to the volume of the convex core, and bounded from above in terms
of the Weil-Petersson distance between c− and c+.

Theorem 1. Let VC denote the volume of the convex core of M , and let m and
l be the induced metric and measured bending lamination on the boundary of the
convex core. Then, under the conditions above:

(1) VR ≤ VC −Lm(l)/4 ≤ VR +Cg, where Cg is a constant depending only on
the genus of S,

(2) VR ≤ 3
√
π(g − 1)dWP (c−, c+).

Note that Lm(l) is bounded from above by a constant depending on the genus
only, see [2]. Note also that those results were extended to convex co-compact
hyperbolic manifolds, with significant differences for manifolds with compressible
boundary, see [1].

A direct consequence is that VC ≤ 3
√
π(g − 1)dWP (c−, c+) + C′

g, where C′
g

depends only on the genus of S. This adds some light to a result of Brock [3],
who proved that the volume of the convex core is quasi-equivalent (with constants
depending on the genus) to the Weil-Petersson distance between the conformal
metrics at infinity.

Theorem 1 has applications to the geometry of closed hyperbolic manifolds and
of the Weil-Petersson metric on moduli space.

Kojima and McShane [9] and Brock and Bromberg [4] show that given a pseudo-
Anosov diffeomorphism φ : S → S, its entropy ent(φ) is bounded from below by
1/3π|χ(S)| times the hyperbolic volume of the mapping torus Nφ.

Brock and Bromberg [4] also give a number of explicit estimates on the systoles,
and other geometric quantities of interest, on the moduli space MS equiped with
the Weil-Petersson metric. A particularly striking result is that the systole of MS

is bounded from below by 1/3
√
π(g − 1) times the volume of the smallest closed

hyperbolic 3-dimensional manifold.
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