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Introduction by the Organisers

This workshop, which continued the triennial series at Oberwolfach on real and
harmonic analysis that started in 1986, has brought together experts and young
scientists working in harmonic analysis and its applications such as linear and
nonlinear PDE, number theory, ergodic theory, and geometric measure theory,
with the objective of furthering the important interactions between these fields.

Major areas and results represented at the workshop are:

(1) Decoupling, originating in the work of Wolff in the nineties and further de-
veloped by Garrigos and Seeger in part as a result of previous meetings in
this series of Oberwolfach workshops, has seen a dramatic impact in recent
years through the work of Bourgain, Demeter, Guth, and coauthors. They
established sharp forms of decoupling inequalities that contain solutions to
a long standing conjecture of Vinogradov and other problems in number
theory such as Parsell–Vinogradov. Particularly surprising was the ro-
bustness of the proof of these number theoretic results requiring relatively
little number theoretic information. In connection with the polynomial
partitioning method, decoupling has found even more applications such as
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a complete solution in dimension three to a longstanding open problem of
almost everywhere convergence of solutions to the Schrödinger equation
to the initial data.

(2) In the last year there has been a breakthrough in the Kakeya problem, a
central problem in harmonic analysis and geometric measure theory that
has already been featured in previous meetings of this series. This work
was presented by one of its architects and extensively discussed. The
Kakeya problem is at the heart of many problems in harmonic analysis
such as the Fourier restriction problem and the behaviour of solutions
to dispersive partial differential equations. Remarkably, the decoupling
method discussed in the previous paragraph arose in large part from the
study of the Kakeya and restriction problems.

(3) Multilinear inequalities have attracted an increasing attention in pure
mathematics and computer science. One important class are the
Brascamp–Lieb inequalities of which nonlinear variants have been found
to be of interest in connection with various topics discussed at the meet-
ing such as the Kakeya problem and non-commutative harmonic analysis.
Singular Brascamp–Lieb inequalities of a particular entangled form have
seen applications in enumerative combinatorics and ergodic theory.

(4) The theory of singular integrals and related questions in geometric measure
theory. One central theme is the geometric characterization of analytic
properties of measures such as L2 boundedness of the Riesz transforms
in terms of rectifiability and other regularity conditions. Also questions
on directional singular integrals are intertwined with geometric measure
theory. The weighted theory of singular integrals has been recently com-
plemented with the technique of domination by sparse operators.

(5) Bellman function and other monotonicity techniques, discussed in the con-
text of singular integral theory in previous meetings of this series, have led
to a unified view on a wide class of sharp isoperimetric inequalities with
Gaussian measures such as log-Sobolev inequality, Beckner’s inequality,
and Bobkov’s inequality.

(6) Nonlinear Fourier analysis plays a role in solving integrable nonlinear
PDEs. New conserved quantities for certain nonlinear flows have been
constructed using a nonlinear Fourier transform, yielding long time infor-
mation about the flow.

(7) Existence and properties of extremizers for inequalities such as Stein–
Tomas Fourier restriction and a nonlinear Hausdorff–Young inequality
were the subject of multiple presentations.

(8) Other topics of current interest were discussed including subelliptic oper-
ators and sharp spectral multiplier results on nilpotent Lie groups. New
concepts of curvature suitable for analysis of geometric averaging operators
associated to submanifolds of intermediate dimensions.

The meeting took place in a lively and active atmosphere and greatly benefited
from the ideal environment at Oberwolfach. It was attended by 53 participants.
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The program consisted of 28 lectures of 40 minutes. The organisers made an effort
to include young mathematicians, and greatly appreciate the support through the
Oberwolfach Leibniz Graduate Students Program, which allowed to invite several
outstanding young scientists.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

On the Fourier transform norm for certain Lie groups

Ali Baklouti

Let G be a separable locally compact unimodular group of type I and Ĝ the unitary
dual of G endowed with the Borel structure. We regard the Fourier transform F
as a mapping of L1(G) to a space of µ-measurable field of bounded operators on

Ĝ defined for π ∈ Ĝ by L1(G) ∋ f 7→ Ff : Ff(π) = π(f), where µ denotes
the Plancherel measure of G. The mapping f 7→ Ff extends to a continuous
operator Fp : Lp(G) → Lq(Ĝ), where 1 < p ≤ 2 and q is its conjugate. We are
concerned with the norm of this linear map Fp. We give an estimate of this norm
for some classes of solvable Lie groups and we discuss the sharpness problem. For
arbitrary compact extensions of Rn, an extremal function is given as an extension
of a Gaussian function. Besides, as an example of non-compact extension, the
universal covering group of the Euclidean motion group of the plane is also treated
and an estimate of the norm is obtained.

Nonlinear perturbations of simple Brascamp–Lieb data

Jonathan Bennett

(joint work with N. Bez, S. Buschenhenke, T. Flock)

The general Brascamp–Lieb inequality simultaneously generalises a number of
important functional inequalities in analysis, including the multilinear Hölder,
Loomis–Whitney and Young convolution inequalities. It takes the form

ˆ

Rn

m∏

j=1

(fj ◦ Lj)pj ≤ C

m∏

j=1

(
ˆ

R
nj

fj

)pj
,(1)

where m,n, nj are natural numbers, Lj : Rn → Rnj are linear surjections, and
pj ∈ [0, 1] for each 1 ≤ j ≤ m. Following [BCCT1], we denote by BL(L,p)
the smallest constant C for which (1) holds for all nonnegative input functions
fj ∈ L1(Rnj ), 1 ≤ j ≤ m; i.e.

BL(L,p) = sup
f

BL(L,p; f) :=

´

Rn

∏m
j=1(fj ◦ Lj)pj

∏m
j=1

(
´

R
nj fj

)pj .

Here L,p, f denote the m-tuples (Lj), (pj), (fj) respectively.
Perhaps the most important results concerning BL(L,p) are the following:

Theorem 1 (Lieb [L]). The Brascamp–Lieb constant is exhausted by centred
gaussian inputs; i.e.

fj(x) = e−〈Ajx,x〉,

where Aj is a symmetric positive-definite nj × nj matrix.
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Theorem 2 (B–Carbery–Christ–Tao [BCCT1], [BCCT2]). BL(L,p) <∞ if and
only if

m∑

j=1

pjnj = n

and

(2) dim(V ) ≤
m∑

j=1

pj dim(LjV )

for all subspaces V of Rn.

Recently, beginning with [BCW], certain nonlinear variants of (1) have arisen in
harmonic analysis (see for example [BCW, BB, BHT, BH]). This involves replacing
the linear maps Lj by smooth submersions Bj in a neighbourhood of a point (0,
say) in Rn. It seems reasonable to expect that if BL(dB(0),p) < ∞, then there
exists a neighbourhood U of 0 ∈ Rn and a constant c such that

(3)

ˆ

U

m∏

j=1

(fj ◦Bj)pj ≤ cBL(dB(0),p)

m∏

j=1

(
ˆ

fj

)pj
.

This conjectural inequality is known for data of “Loomis–Whitney type” – that
is, for which

m⊕

j=1

ker(dBj(0)) = R
n;

see [BCW, BB, KS, C]. For data not of Loomis–Whitney type this has been
verified in some special cases in unpublished work of Stovall. For arbitrary data a
weaker version, requiring a small amount of regularity of the input functions fj ,
is also available – see [BBFL].

The purpose of this note is to report further partial progress on (3). For this
we require a definition.

Definition 1 (Simple Brascamp–Lieb data; see [BCCT1]). A Brascamp–Lieb
datum is simple if (2) holds with strict inequality for all nonzero proper subspaces
V .

It was shown in [V] that {L : (L,p) simple} is an open set, and so the simple
Brascamp–Lieb data is a natural class to consider from the point of view of per-
turbations. Of particular relevance for us is that for simple data the functional
BL(L,p; ·) has unique (up to elementary scalings) gaussian extremisers, and that
these extremisers (appropriately normalised) depend smoothly on L; see [BCCT1]
and [V] respectively. Simple Brascamp–Lieb data frequently arises in interesting
situations – for example the sharp Young convolution inequality for all nontrivial
Lebesgue exponents.

Theorem 3. Suppose B is an m-tuple of smooth submersions in a neighbourhood
of 0 ∈ Rn for which (dB(0),p) is simple. Then, given any ǫ > 0 there exists a
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neighbourhood U of 0 ∈ R
n such that

(4)

ˆ

U

m∏

j=1

(fj ◦Bj)pj ≤ (1 + ǫ)BL(dB(0),p)

m∏

j=1

(
ˆ

fj

)pj
.

We observe that the inequality (4) is a strengthening of (3) permitting c to be
taken arbitrarily close to 1. In the case of Loomis–Whitney data at least, further
refinements of this type follow from the factorisation approach of Carbery [C].
Our proof proceeds by the method of induction on scales, and is a variant of the
approach in [BB].

References

[BH] I. Bejenaru, S. Herr, Convolutions of singular measures and applications to the Za-
kharov system, J. Funct. Anal. 261 (2011), 478–506.

[BHT] I. Bejenaru, S. Herr, D. Tataru, A convolution estimate for two-dimensional hyper-
surfaces, Rev. Mat. Iberoamericana 26 (2010), 707–728.

[BB] J. Bennett, N. Bez, Some nonlinear Brascamp–Lieb inequalities and applications to
harmonic analysis, J. Funct. Anal. 259 (2010), 2520–2556.

[BBFL] J. Bennett, N. Bez, T. Flock and S. Lee, Stability of the Brascamp–Lieb constant and
applications, to appear in Amer. J. Math.

[BCCT1] J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp–Lieb inequalities: finiteness,
structure and extremals. Geom. Funct. Anal. 17 (2007), 1343–1415.

[BCCT2] J. Bennett, A. Carbery, M. Christ, T. Tao, Finite bounds for Hölder–Brascamp–Lieb
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Applications of Sparse domination through localization

Frédéric Bernicot

(joint work with Cristina Benea)

In this talk, we have presented several results obtained in [BB], inspired by the
very recent mathematical trend around the sparse domination : consider a L2-
bounded linear operator T on Rn (or a doubling Riemannian manifold), then we
consider the sparse domination of the bilinear form, which means that for two
functions f, g ∈ L2 there exists a sparse collection of dyadic cubes S := (I)I ⊂ D

such that

|〈Tf, g〉| .
∑

I∈S

(
 

I

|f | dx
)
·
(
 

I

|g| dx
)
· |I|.
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We recall that for α ∈ {0, 13 , 23}n, we denote the shifted dyadid grid

D
α :=

{
2−k

(
[0, 1]n +m+ (−1)kα

)
, k ∈ Z, m ∈ Z

n
}

and by D := ∪αDα, the full collection of dyadic cubes. In such a setting, a
collection of dyadic cubes S ⊂ D is called η-sparse for some η ∈ (0, 1) if for all
α ∈ {0, 13 , 23}n, there exists a collection of measurable subsets (EQ)Q∈S∩Dα such
that for all Q ∈ S ∩ Dα

EQ ⊂ Q and |EQ| ≥ η|Q|.

In [BB], we wanted to present the following general principle: if T is an operator
satisfying some specific extra properties, then it is possible to track this property
in the sparse domination and to obtain an improved domination. Indeed, we can
expect a domination of the form

|〈Tf, g〉| .
∑

I∈S
aI(f) · bI(g) · |I|,

with a sparse collection S and some coefficients aI(f) (resp. bI(g)) which can be
seen as a local version of the initial operator T (resp. T ∗), and so could reflect
some extra properties. We describe this principle in different situations:

• If T is a Calderón-Zygmund operator and satisfies a condition T (1) = 0 ∈
BMO then aI(f) can be chosen as the oscillation of f on I (reflecting the
T (1) = 0 condition). If T ∗(1) = 0 ∈ BMO then bI(g) can be chosen as the
oscillation. If both T (1) = 0 = T ∗(1) then we can have simultaneously the
oscillation on f and g. Such an observation can have some application for
the composition of two Calderón-Zygmund operators. Similar observations
can be done for a higher order regularity property than the oscillation (as
the gradient of a Calderón-Zygmund operator).

• If T is a Haar multiplier, then this “frequency structure” can be tracked
and we can have a sparse domination with

aI(f) =

(
 

I

|SI(f)|p dx
)1/p

(and similarly for bI(g)) for an arbitrary exponent p ∈ (0,∞) and where SI
stands for the localized square function. Observe that the fact that we can
play with the exponent p, is a consequence of the John-Nirenberg inequal-
ity. This result is obtained by a combination of this last inequality with a
suitable stopping time argument, to select the good sparse collection. As
an application, we have obtained that such a linear operator is bounded
in every weighted Hardy space Hp

ω for arbitrary exponent p ∈ (0,∞) and
arbitrary weight ω, with an implicit constant depending only on p. Here,
the weighted Hardy spaceHp

ω is the set of functions f whose the full square
function Sf belongs to Lpω.

• An other application of a similar decomposition is the following improv-
ment of the well-known fact: a H1 (Hardy space) function admits an
atomic decomposition. Indeed, it can be also proved that we can choose
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an atomic decomposition whose the collection of the supports of the atoms
is sparse.

• A last application that we have presented is the combination of the previ-
ous observations, applied to the operator T = Id. Indeed, for two generic
functions f, g ∈ L2 then it can be proved that

|〈f, g〉| .
∑

I∈S
oscI(f) · oscI(g) · |I|

and so

|〈f, g〉| .
ˆ

M♯f ·M♯g dx,

(where M♯ is the maximal sharp function) which can be viewed as a
polarized version of the L2-Fefferman-Stein inequality.
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Remarks on multijoints formed by lines and a k-plane.

Anthony Carbery

(joint work with Marina Iliopoulou)

We establish a result counting the multijoints formed by families of lines and a
family of k-planes in Fn where F is an arbitrary field. Indeed, let L1, . . . ,Ln−k be
families of lines in Fn each with cardinality L and let P be a family of k-planes
with cardinality P . We say that x ∈ Fn is a multijoint for L1, . . . ,Ln−k,P if there
are Lj ∈ Lj and K ∈ P which meet at x and such that the the directions of
{L1, . . . , Ln−k,K} span Fn. We denote the set of multijoints by J . We prove that

|J | ≤ CnLP
1/(n−k)

where Cn depends only on n. This is work in progress.

In the talk we relate this result to others in the area of continuous and discrete
multilinear kj-plane multilinear Kakeya theorems, in particular to recent work of
Ruixiang Zhang.
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Entangled multilinear forms and applications

Polona Durcik

(joint work with Vjekoslav Kovač, Luka Rimanić, Kristina Ana Škreb, and
Christoph Thiele)

As a model example we consider a quadrilinear singular integral form acting on
two-dimensional functions F1, F2, F3, F4 : R2 → C, given by

Λ(F1, . . . , F4) := p.v.

ˆ

R4

F1(x, y)F2(u, y)F3(x, v)F4(u, v)κ(x− u, y − v)dxdudydv,

where κ̂ is a smooth function on R2 \ {(0, 0)} satisfying the standard symbol
estimates. That is, for any multi-index α there is a finite constant Cα such that

|∂ακ̂(ξ, η)| ≤ Cα‖(ξ, η)‖−|α|

for all (0, 0) 6= (ξ, η) ∈ R2. Informally we refer to this form as being entangled,
because the two-dimensional functions share certain one-dimensional variables.

The case when F4 is constant was proposed by Demeter and Thiele [DT] as the
dual of a particular instance of the two-dimensional bilinear Hilbert transform.
This was the only case which was left unresolved in [DT]. Its boundedness in a
certain range of Lp spaces was obtained by Kovač [K12]. The general case of the
above quadrilinear form, i.e. when the constant function is replaced by a general
function F4, was studied in [Dα], [Dβ]. The dyadic model of the above quadrilinear
form had been previously addressed in [K12], [K11].

A related object is the so-called triangular Hilbert transform, which is a trilinear
singular integral form given by

ΛT(F1, F2, F3) := p.v.

ˆ

R3

F1(x, y)F2(y, z)F3(z, x)
1

x+ y + z
dxdydz.

By choosing the functions Fj properly, the triangular Hilbert transform specializes
to the Carleson operator and the bilinear Hilbert transform. Lp boundedness of
the triangular Hilbert transform is a major open problem.

The papers [Z] and [T] initiated the study of the truncated triangular, and
more generally, the truncated simplex Hilbert transform. The truncated triangular
Hilbert transform is defined by

ΛT,r,R(F1, F2, F3) :=

ˆ

r<|x+y+z|<R
F1(x, y)F2(y, z)F3(z, x)

1

x+ y + z
dxdydz,

where 0 < r < R <∞. An application Hölder’s inequality yields the bound

|ΛT,r,R(F1, F2, F3)| ≤ C
(
log

R

r

)α
‖F1‖Lp1(R2)‖F2‖Lp2 (R2)‖F3‖Lp3(R2)(1)

with α = 1, for any choice of exponents 1 ≤ p1, p2, p3 ≤ ∞ which satisfy the
Hölder scaling. An estimate with α = 0 would imply an estimate for ΛT.

The paper [DKT] establishes cancellation estimates (1) for the triangular Hilbert
transform with a power 0 < α < 1 depending only on the exponents 1 < p1, p2, p3 <
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∞, which satisfy the Hölder scaling. More generally, the paper [DKT] obtains can-
cellation estimates analogous to (1) for the truncated simplex Hilbert transform.
Such estimates can be obtained by a structural induction, the base of the induction
being of similar complexity as the form Λ and its higher-dimensional variants.

Bounds for multilinear singular integrals have applications to questions on dis-
tances in point configurations in positive density subsets of the Euclidean space.
The upper Banach density of a set A ⊆ Rd is

δd(A) := lim sup
N→∞

sup
x∈Rd

∣∣A ∩ (x+ [0, N ]d)
∣∣

|x+ [0, N ]d| .

If d ≥ 2, a set of positive upper Banach density in Rd contains all large distances.
More precisely, if d ≥ 2 and δd(A) > 0, there exists λ0(A) such that for any
λ ≥ λ0(A) the set A contains points x, x + s with ‖s‖ℓ2 = λ. This was shown
independently by Bourgain [B], Falconer and Marstrand [FM], and Furstenberg,
Katznelson and Weiss [FKW]. However, the same statement fails if x, x + s is
replaced by a three-term arithmetic progression x, x + s, x + 2s. A counterex-
ample was constructed in [B], and it uses the fact that the ℓ2 norm satisfies the
parallelogram identity.

One may ask what holds true if ℓ2 is replaced by ℓp for p 6= 2. Cook, Magyar,
and Pramanik [CMP] showed that if 1 < p < ∞, p 6= 2, and the dimension d
is large enough, then an arbitrary measurable subset of Rd contains three-term
arithmetic progressions x, x + s, x + 2s such that the ℓp norm of the common
difference s attains all sufficiently large real values. The authors of [CMP] reduced
this problem to the bounds for certain singular integrals related to the bilinear
Hilbert transform.

The paper [DKR] generalizes the result from [CMP] to corners in subsets of
Rd × Rd. The main result obtained in [DKR] is the following.

Theorem 1. For any 1 < p < ∞, p 6= 2, there exists dp ≥ 2 such that for every
integer d ≥ dp the following holds. For any measurable set A ⊆ Rd × Rd with

δd(A) > 0 one can find λ0(A) > 0 such that for any real number λ ≥ λ0(A), there
exist x, y, s ∈ Rd such that (x, y), (x + s, y), (x, y + s) ∈ A and ‖s‖ℓp = λ.

The proof of this theorem leads to studying bounds for certain higher-dimensio-
nal versions of the singular integral form

p.v.

ˆ

R4

F1(x, y)F2(u, y)F3(x, v)F4(u, v)κ(y − x− u, v − x− u)dxdudydv.(2)

Generalizations of [CMP] to longer progressions and generalizations of [DKR]
to higher-dimensional corners seem to be out of reach of the currently available
techniques. The approach from [CMP], [DKR] leads to operators which are of
similar complexity as the multilinear and simplex Hilbert transform. Bounds for
the multilinear and simplex Hilbert transform remain an open problem.
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A further application of estimates for multilinear forms is in the study of quan-
titative Lp norm convergence of ergodic averages

1

n

n−1∑

i=0

f(Six)g(T ix)(3)

as n → ∞, where S, T : X → X are two commuting measure preserving transfor-
mations on a probability space (X,F , µ), and f, g ∈ L∞(X). The paper [DKST]
establishes quantitative bounds for convergence of the sequence of averages (3) in
the norm by bounding its norm-variation.

The problem of showing quantitative bounds for norm convergence of (3) can be
transferred to a problem on the Euclidean space. That is, one is lead to studying
norm-variations of certain sequences of averages on R2. These in turn relate to
multilinear forms such as (2).
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Wiener’s lemma and orbits along primes

Tanja Eisner

(joint work with Bálint Farkas)

The classical Wiener lemma states that every complex Borel measure µ on the
unit circle T satisfies

lim
N→∞

1

N

N∑

n=1

|µ̂(n)|2 =
∑

a atom

|µ({a})|2,

where µ̂(n) denotes the nth Fourier coefficient of µ. As a corollary, a probability
measure µ on T satisfies limn→∞ µ̂(n) = 1 if and only if µ is a Dirac measure.

Motivated by ergodic theorems along subsequences due to Furstenberg, Bour-
gain, Wierdl, Nair and others, we consider the following natural question.

Question. For which subsequences (kn) ⊂ N do the assertion of Wiener’s lemma
and the corollary hold along (kn)?

We first state a generalization of Wiener’s lemma to good subsequences, i.e.,
subsequences (kn) ⊂ N for which the limit

lim
N→∞

1

N

N∑

n=1

λkn

exists for every λ ∈ T. Moreover, we call a subsequence (kn) ⊂ N extremal if every
probability measure µ on T with limn→∞ µ̂(kn) = 1 is Dirac. We discuss classes of
examples of extremal sequences such as sequences of positive upper density, primes,
polynomials and polynomials of primes as well as connections to sequences coming
from ergodic theory such as return times sequences and rigidity sequences.

We further discuss consequences for orbits of operators. For example, if a
contraction T on a Hilbert space satisfies limn→∞ T pn = I in the weak operator
topology, where pn denotes the nth prime, then T = I. Here, pn can be replaced by
p2n or other polynomial of primes with certain algebraic property. More directions
of research (such as extensions to Banach space operators) are indicated at the
end of the talk.

Existence of optimizers for the Stein–Tomas inequality

Rupert L. Frank

(joint work with Elliott H. Lieb and Julien Sabin)

Many results in analysis concern the boundedness of linear operators. Once this
boundedness is established, there are several natural follow-up questions: What
is the norm of the operator and is the norm attained (that is, is the supremum
defining the norm a maximum)? Moreover, are optimizing sequences (that is,
normalized sequences approaching the supremum in the definition of the norm)
precompact? In the presence of symmetries, one is interested in precompactness
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modulo symmetries. Note that precompactness of optimizing sequences implies
that the norm is attained.

Here we are concerned with the precompactness of optimizing sequences for
the Stein–Tomas inequality. It is illuminating to compare it to the corresponding
problem for the Strichartz inequality.

The Strichartz inequality states that

Sd := sup
ψ 6≡0

‖eit∆/2ψ‖2+4/d

L
2+4/d
t,x (R×Rd)

‖ψ‖2+4/d

L2(Rd)

.

For d = 1, 2 the sharp constant was found in [Fo07] and all optimizers were iden-
tified. Precompactness modulo symmetries was shown in [K] for d = 1 and in [Sh]
for general d. It is conjectured that Gaussians are optimizers.

The Stein–Tomas inequality states that

RN := sup

´

RN |f̌ |q dx
‖f‖qL2(SN−1)

<∞ , q =
2(N + 1)

N − 1
, f̌(x) :=

ˆ

SN−1

f(ω)eiω·x dω .

For N = 3 the sharp constant was found in [Fo15]. Precompactness modulo
symmetries was shown in [CS] for N = 3 and in [Sh] for N = 2. It is conjectured
that constants are optimizers.

The restriction to dimensions d = 1, 2 in the Strichartz inequality and to N =
2, 3 in the Stein–Tomas inequality ensures that the exponents are even integers.

The following is our main result [FLS].

Theorem 1. Let N ≥ 2. If

(⋆) RN > ρN SN−1 with ρN =
2q/2√
π

Γ( q+1
2 )

Γ( q+2
2 )

,

then maximizing sequences for RN , normalized in L2(SN−1), are precompact in
L2(SN−1) up to modulation (i.e., multiplication by eia·ω) and, in particular, there
is a maximizer for RN .

That is, (⋆) guarantees precompactness and existence. Our proof also shows
that (⋆) holds with ≥ and that, if (⋆) holds with =, then there is a maximizing
sequence which is not precompact up to modulations. Thus, (⋆) is necessary and
sufficient for precompactness.

Corollary. Let N ≥ 2 and assume that SN−1 is attained for e−x
2

. Then (⋆) holds
and therefore, there is a maximizer for RN .

The main difficulty in the proof of the theorem lies in proving that the weak
limit of an optimizing sequence is not identically zero. To achieve this, one clearly
needs to take care of modulations, but this is mostly technical. The real problem
is to rule out concentration or, more precisely, concentration at an antipodal pair
of points. One needs to show that such concentration leads at most to a value of
ρNSN−1 of the variational quotient and by assumption (⋆) this is not possible for
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an optimizing sequence (for which the variational quotient tends to the strictly
larger quantity RN ). We note that if the sequence concentrates at a single point
the maximal value is SN−1, and therefore the fact that ρN > 1 means that there
is a non-local attractive interaction between antipodal concentration points. This
is in stark contrast to other optimization problems with (approximate) dilation
invariance and constitutes the main new feature of this problem.

The proof of the theorem is split into two parts. In the first part one shows
that ‘there is something somewhere’ (that is, one excludes vanishing in Lions’
terminology) and in the second part one shows that ‘there is nothing anywhere
else’ (that is, one excludes dichotomy). The second step uses a method introduced
by Lieb in his analysis of the sharp Hardy–Littlewood–Sobolev inequality and uses
the Brézis–Lieb lemma and an elementary inequality. For the first part one uses
the following refinement of the Stein–Tomas inequality.

Theorem 2. There are σN ∈ (0, 1) and CN such that for all f ∈ L2(SN−1)

‖f̌‖Lq(RN ) ≤ CN

(
sup
α

sup
Q∈D

|Q|−1/2
∥∥(χLθα (Q)χCαf)

∨∥∥
L∞(RN )

)1−σN

‖f‖σN

L2(SN−1)
.

Here D denotes the set of all dyadic cubes, and we have chosen finitely many
caps Cα centered at θα ∈ SN−1 with projections Lθα .

This should be compared with the following refined Strichartz inequality, which
says that there are σd ∈ (0, 1) and Cd such that for all ψ ∈ L2(Rd)

‖eit∆/2‖
L

2+4/d
t,x (R×Rd)

≤Cd
(
sup
Q∈D

|Q|−1/2
∥∥∥eit∆/2(χQψ̂)∨

∥∥∥
L∞

t,x(R×Rd)

)1−σd

‖ψ‖σd

L2(Rd)
.

Both inequalities are based on deep bilinear restriction estimates. These in-
equalities and their application are reminiscent of arguments in the construction
of a minimal obstruction to global well-posedness of the mass-critical non-linear
Schrödinger equation. There is an important difference, however, between the
Strichartz and the Stein–Tomas case. Namely, in the former case concentration
can be simply removed by scaling. In the latter case it needs to be discussed by a
separate argument, and this is where (⋆) comes into play.
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Sparse domination and weighted estimates for operators beyond

Calderón-Zygmund theory

Dorothee Frey

(joint work with F. Bernicot, S. Petermichl, and B. Nieraeth)

In recent years, after a solution was found to the the well-known A2 conjecture, the
role of sparse operators has become increasingly important in the weighted theory
of singular integral operators. Sparse domination yields optimal quantitative Ap
estimates for 1 < p < ∞ for Calderón-Zygmund operators. In this talk we report
on recent progress on optimal weighted estimates for operators beyond the class of
Calderón-Zygmund operators. The most prominent example of such an operator
is the Riesz transform ∇L−1/2 associated with an elliptic operator L = −divA∇,
with A ∈ L∞(Rn;Mn(C)). Our setting also includes multipliers and paraproducts
associated with L, and e.g. the Riesz transform associated with the Neumann
Laplacian on a convex doubling domain in Rn. Our assumptions are minimal
and in particular apply to operators whose unweighted continuity is restricted to
Lebesgue spaces with certain ranges of exponents (p0, q0) where 1 ≤ p0 < 2 < q0 ≤
∞. In [BFP], we show that these operators satisfy a sparse domination property.

That is, for p ∈ (p0, q0) there exists C > 0 such that for all f ∈ Lp and g ∈ Lp
′

both supported in 5Q0 for some Q0 ∈ D, there exists a sparse collection S ⊂ D
(depending on f, g) with

∣∣∣∣
ˆ

Q0

Tf · g dx
∣∣∣∣ ≤ C

∑

P∈S
|P |
(
 

5P

|f |p0 dx
)1/p0 ( 

5P

|g|q′0 dx
)1/q′0

.(1)

Here, D is a family of a finite number of shifted dyadic grids, and a collection
S is called sparse if it satisfies a certain Carleson condition. Given the sparse
domination (1), we then establish weighted estimates for the operator T . We show
that for p ∈ (p0, q0), there exists cp > 0 such that for all ω ∈ Ap/p0 ∩RH(q0/p)′

(2) ‖T ‖Lp
ω→Lp

ω
≤ cp([ω]Ap/p0

[w]RH(q0/p)′
)α

with

α := max

{
1

p− p0
,
q0 − 1

q0 − p

}
.

Note that in the case (p0, q0) = (1,∞), one obtains the same estimate as for
Calderón-Zygmund operators.

We moreover show that given the sparse domination (1), the weighted estimate
in (2) is sharp. Since our assumptions on the operator T are minimal, we cannot
show optimality of (2) in itself, but in [FN] we establish optimality of (2), given
the asymptotic behaviour of the unweighted operator norm ‖T ‖Lp→Lp for p→ p0
and p → q0. The argument relies on a Rubio de Francia iteration argument. The
asymptotic behaviour is for example known in the case of the Riesz transform
on two copies of Rn glued smoothly along their unit circles, so that in this case
sharpness of (2) is established.
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In a second part, we report on progress on weighted weak type estimates. In
[FN], we deduce quantitative weighted bounds involving A1 directly from the
sparse domination assumption (1). It has to be mentioned that we do not use
any other properties of T . This is of particular importance since in the case
(p0, q0) = (1,∞), the class of operators satisfying (1) is strictly larger than the
class of Calderón-Zygmund operators. Our arguments use a Calderón-Zygmund
decomposition adapted to sparse operators with the property that the “bad” part
b cancels completely. We first obtain a strong type estimate involving A1. That
is, for p ∈ (p0, q0), T satisfying (1) and ω ∈ A1 ∩RH(q0/p)′ , we show that

(3) ‖T ‖Lp(ω)→Lp(ω) ≤ ccp[ω
(q0/p)

′

]
1
p′

A∞

[ω(q0/p)
′

]
1

p(q0/p)′

A1
,

with

cp =

[(
p′

q′0

)′] 1
q′
0

[(
p′0
p′

)′(
p

p0

)′] 1
p0

.

Similar to the case of Calderón-Zygmund operators, we deduce from the estimate
(3) weak type (p0, p0) bounds for T .
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Averages over submanifolds of intermediate dimension and the

Oberlin condition

Philip T. Gressman

The fundamental roles of affine arclength and affine hypersurface measures in
harmonic analysis, particularly relating to the Fourier restriction problem and to
the Lp-improving properties of convolution operators, have been widely recognized
for many decades [CZ, DM, S] and lead naturally to the question of how these
measures may be generalized to submanifolds of intermediate dimensions. Inspired
by an observation of D. Oberlin [O] for affine hypersurface measure, we construct
a measure µA on immersed submanifolds of dimension d in Rn for any d < n such
that the following hold:

• If the immersed submanifold M is acted upon by a measure-preserving
affine transformation of Rn, then the affine measure associated to the new
submanifold is simply the pushforward of the original measure via the
affine transformation.

• If the immersion satisfies sufficient algebraic regularity conditions (which
include the case when the immersion is real analytic in some coordinate
system), then the measure µA satisfies the so-called Oberlin condition:
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there is a finite positive constant C such that for any compact, convex set
K ⊂ Rn,

(1) µA(K) ≤ C|K|α,
where |·| denotes the Lebesgue measure ofK. Here the constant α is specif-
ically fixed to be the largest possible exponent for which some nonzero
measure on a d-dimensional submanifold of Rn exists satisfying (1). As
in the case of Oberlin’s original work, the value of α may be expressed
as a ratio d/Q, where Q is the appropriate analogue of a homogeneous
or scaling dimension. The condition (1) should be regarded as a kind of
measure-theoretic curvature condition, because (1) cannot hold for any
α > 0 if the support of the measure is contained an affine hyperplane in
Rn (simply because the µ-measure of a convex set K would be indepen-
dent of the thickness of K in the direction transverse to the hyperplane
while the Lebesgue measure could be taken arbitrarily small for sets K
which are “thin” in this transverse direction).

• Any measure µ on the immersed submanifold M which satisfies (1) for the
same exponent α must be pointwise dominated by some constant times
the affine measure µA.

The construction of this measure involves two important new ideas. The first is
that it is possible by a minor modification of a construction of Kempf and Ness
[KN] to canonically associate a measure to any tensor of type (0, k) on a manifold
M. This construction yields exactly the measure µA when applied to an affine
curvature tensor which is itself constructed rather directly from the immersion
and its various derivatives. The second new idea in the proof is a generalization
to higher dimensions of an earlier integral estimate [G] which shows that the
average value of a polynomial p of degree m on some measurable set E ⊂ R is
bounded below by a constant depending only on m times the supremum of p and
its derivatives (appropriately weighted) on some interval I which is independent
of p and contains some nontrivial proportion of the original set E (nontrivial
meaning that the proportion is bounded below by some constant depending on
m). In higher dimensions, the role of I is filled by a more general semialgebraic
set, and corresponding derivative estimates are given for some family of smooth
vector fields which are adapted both to the arbitrary measurable set E ⊂ Rn and
to the geometry of degree m polynomials in Rn restricted to E.
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Two-dimensional Parsell-Vinogradov systems

Shaoming Guo

(joint work with Jean Bourgain, Ciprian Demeter; Ruixiang Zhang)

For d, s ≥ 1 and k ≥ 2, consider the integer solutions

(1) x1,j , x2,j , ..., xd,j , y1,j, y2,j, ..., yd,j, 1 ≤ j ≤ s

of the system of Diophantine equations (often referred to as the Parsell–Vinogradov
system)

(2)

s∑

j=1

xi11,jx
i2
2,j ...x

id
d,j =

s∑

j=1

yi11,jy
i2
2,j...y

id
d,j.

Here 0 ≤ i1, i2, ..., id ≤ k are all integers such that 1 ≤ i1 + i2 + ... + id ≤ k. For
instance, when d = 1, the system (2) consists of k equation

(3)
s∑

j=1

xij =
s∑

j=1

yij, with 1 ≤ i ≤ k.

When d = k = 2, the system (2) becomes

x1,1 + x1,2 + ...+ x1,s = y1,1 + y1,2 + ...+ y1,s,

x2,1 + x2,2 + ...+ x2,s = y2,1 + y2,2 + ...+ y2,s,

x21,1 + x21,2 + ...+ x21,s = y21,1 + y21,2 + ...+ y21,s,

x22,1 + x22,2 + ...+ x22,s = y22,1 + y22,2 + ...+ y22,s,

x1,1x2,1 + x1,2x2,2 + ...+ x1,sx2,s = y1,1y2,1 + y1,2y2,2 + ...+ y1,sy2,s.

(4)

For a large constant N , we let Js,d,k(N) denote the number of integer solutions
(1) of the system of equations (2) with 0 ≤ x1,j , ..., xd,j, y1,j , ..., yd,j ≤ N for each
1 ≤ j ≤ s.

Closely related to the number of solutions (1) of the system of equations (2)
are several sharp decoupling inequalities. For d ≥ 1 and k ≥ 2, let Sd,k be the d
dimensional surface in Rn with

(5) n =

(
d+ k

k

)
− 1,

defined by

(6) Sd,k = {Φ(t1, t2, ..., td) : (t1, t2, ..., td) ∈ [0, 1]d},
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where the entries of Φ(t1, t2, ..., td) consist of all the monomials ti11 t
i2
2 ...t

id
d with

1 ≤ i1 + i2 + ... + id ≤ k. For a subset R ⊂ [0, 1]d, define the extension operator
associated to the set R by

(7) E
(d,k)
R g(x) =

ˆ

R

g(t) exp(x · Φ(t))dt.

For each p ≥ 2 and 0 < δ ≤ 1, we denote by V
(d,k)
p (δ, p) the smallest constant such

that

(8) ‖E(d,k)

[0,1]d
g‖Lp(Rn) ≤ V (d,k)

p (δ, p)(
∑

∆: cube in [0,1]d

l(∆)=δ

‖E(d,k)
∆ g‖pLp(Rn))

p,

The main results we proved are the following. Take d = 2. For each k ≥ 2, denote

(9) pk =
1

3
k(k + 1)(k + 2).

For p = pk and for each ǫ > 0, we have

(10) V (2,k)
p (δ, p) ≤ Cǫ

(1
δ

)2( 1
2− 1

p )+ǫ

.

Here Cǫ > 0 is a constant which depends only on ǫ. Moreover, our result further
implies

(11) Js,2,k(N) ≤ CǫN
2s+ǫ + CǫN

4s− k(k+2)(k+1)
3 +ǫ,

for every ǫ > 0. The case k = 3 of the estimate (11) was proven in [BDGuo]. The
other cases k ≥ 4 were handled in [GZ]. For the sharpness of (11), we refer to
[PPW]. For prior developments, we refer to [BDGuth], [W12], [W16] and [W17].
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Reflectionless measures for Calderón-Zygmund Operators

Benjamin Jaye

(joint work with Fedor Nazarov)

Fix d ≥ 2. For s ∈ (0, d), we call a functionK an s-dimensional Calderón-Zygmund
kernel if it is an odd function, smooth away from the origin, satisfying the decay
estimates |DαK(x)| ≤ C(α)|x|−s−|α| for every x ∈ Rd\{0} and multi-index α.

The basic question motivating the mathematics of this talk is the following:
The Basic Question. Fix an s-dimensional Calderón-Zygmund kernel K. If

µ is a finite (non-negative Borel) measure for which the inequality |K ∗ µ| ≤ 1
holds pointwise outside of the support of µ, then what can we say about µ?

This question first arose in the study of the removable sets for Lipschitz con-
tinuous solutions of elliptic partial differential equations, and as such, the s-Riesz
kernel x

|x|s+1 is of particular interest as it is the gradient of the fundamental solu-

tion of the operator (−∆)α, α = d−s+1
2 .

The non-homogeneous T (1)-theorem [NTV] enables the point-wise condition in
The Basic Question to be replaced by the L2(µ) boundedness of the Calderón-
Zygmund operator associated to K, meaning that there is a constant C > 0 such
that

sup
ε>0

ˆ

Rd

∣∣∣
ˆ

Rd\B(x,ε)

K(x− y)f(y)dµ(y)
∣∣∣
2

dµ(x) ≤ C‖f‖2L2(µ)

for every smooth function f with compact support. The advantage of the latter
condition is that it is more amenable to multiscale analysis, by decomposing the
operator in a suitable wavelet system. Beginning with the pioneering work of Jones
[Jo1, Jo2], David and Semmes [DS, DS2], a substantial literature has been devel-
oped concerning the kind of geometric conditions that one should expect on µ from
the boundedness of an associated Calderón-Zygmund operator, and very concrete
conjectures are in place [DS, JNT]. What is lacking in the theory are tools that, in
high dimension, act as a bridge between the analytic condition and the geometry
for fields of particular interest. The theory is particularly underdeveloped for the
s-Riesz transform when s ∈ (1, d − 1), where neither the Menger curvature for-
mula (exploited in [AT, Leg, MMV, MPV, Tol]) nor the strong maximum principle
(exploited in [ENV, HMM, JNRT, NToV]) are available.

A reflectionless measure ν associated to a Calderón-Zygmund kernel K is a
measure for which K ∗ ν is constant on the support of ν in a suitable weak sense.
The basic properties of reflectionless measures were systematically developed in
[JN1]. The paper [JN2] contains several several results which show that a descrip-
tion of the reflectionless measures associated to a Calderón-Zygmund kernel K
enables us to say a lot about the The Basic Question.

In the talk several open problems will be stated, the solutions to which would
shed light on the description of reflectionless measures of the s-Riesz transform.
One of the open problems, for which the reader can find much more information
in [EN], is as follows:
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Question. Fix s ∈ (1, d − 1), and set K(x) = x
|x|s+1 to be the s-Riesz kernel.

Is there a constant C > 0 such that whenever f is a non-negative smooth function
with compact support,

max
Rd

|K ∗ f | ≤ C max
Support of f

|K ∗ f |.

The answer to this question is ‘yes’ in the range s ∈ (0, 1)∪[d−1, d). The answer
is ‘no’ in general if one drops the assumption that the function f is non-negative.
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A sharp nonlinear Hausdorff-Young inequality for small potentials

Vjekoslav Kovač

(joint work with Diogo Oliveira e Silva and Jelena Rupčić)

Let us begin by describing the setting that is sometimes informally called the
nonlinear Fourier transform. Its more precise synonyms are the SU(1, 1)-scattering
transform and the Dirac scattering transform. More details can be found in the
unpublished note by Tao [T], while a similar discrete-time model is studied in the
lecture notes by Tao and Thiele [TT].

Take a measurable, bounded, and compactly supported function f : R → C and
an arbitrary number ξ ∈ R. The matrix-valued initial value problem

d

dx

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

]
=

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

][
0 f(x)e−2πixξ

f(x)e2πixξ 0

]
,

[
a(−∞, ξ) b(−∞, ξ)

b(−∞, ξ) a(−∞, ξ)

]
=

[
1 0

0 1

]

has unique absolutely continuous solutions a(·, ξ) and b(·, ξ). This way we arrive
at the functions a, b : R → C given by a(ξ) := a(+∞, ξ), b(ξ) := b(+∞, ξ), and
we can study properties of the “forward transform” f 7→ a, b. Observe that the
matrices containing a(x, ξ) and b(x, ξ) remain in the matrix group SU(1, 1), since
the matrices containing f(x)e−2πixξ belong to its Lie algebra su(1, 1).

It is useful to rewrite the problem as a system of two scalar differential equations,
and then in turn as a system of two integral equations,

a(x, ξ) = 1 +

ˆ x

−∞
f(y)e2πiyξb(y, ξ)dy, b(x, ξ) =

ˆ x

−∞
f(y)e−2πiyξa(y, ξ)dy.

Applying Picard’s iteration one arrives at multilinear expansions for a and b. By
the work of Christ and Kiselev [CK01a], [CK01b] these expansions are known to
converge and extend the definition of the transform to the functions f ∈ Lp(R)
for 1 ≤ p < 2. However, Muscalu, Tao, and Thiele [MTTβ] showed that these
expansions cannot be used for a general f ∈ L2(R).

It is useful to emphasize that we are not talking about the linear Fourier trans-
form on the group SU(1, 1). Indeed, f 7→ a, b are “very” nonlinear transformations
and, for instance, they do not allow us to use any general form of interpolation. On
the other hand, they still share many symmetries with the linear Fourier transform
(with respect to L1-dilations, translations, modulations, etc.); see [T].

One source of motivation for this setting comes from the eigenproblem for the
Dirac operator,

L :=

[
d
dx −f̄
f − d

dx

]
, L

[
ϕ(·, ξ)
ψ(·, ξ)

]
= −πiξ

[
ϕ(·, ξ)
ψ(·, ξ)

]
;

see [T]. This eigenvector equation for the imaginary eigenvalue −πiξ turns into
the above system for a and b, after we substitute a(x, ξ) := ϕ(x, ξ)eπixξ and
b(x, ξ) := ψ(x, ξ)e−πixξ. Another source of motivation are the general AKNS-ZS
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systems [AKNS], [ZS]. In a very special case, one can consider two bodies in a
plane with mutual interactions. If u1(t), u2(t) ∈ C determine their positions at
time t, ω1 6= ω2 are given angular velocities, and λ ∈ R is a certain spectral
parameter, then the motion of the system is governed by the differential equation

[
u′1(t)
u′2(t)

]
= iλ

[
ω1 0
0 ω2

] [
u1(t)
u2(t)

]
+

[
0 f(t)
f(t) 0

] [
u1(t)
u2(t)

]
.

This time we substitute a(t, λ) := u1(t)e
−iω1λt, b(t, λ) := u2(t)e

−iω2λt and once
again we arrive at the same system for a and b as before. The central problem
in this model is to determine if the system remains bounded for a.e. λ ∈ R; it is
related to the first question stated below.

One open question about our nonlinear Fourier transform is a nonlinear ana-
logue of the Carleson theorem: if f ∈ L2(R) and supp(f) ⊆ [0,+∞), does the
limit

lim
x→+∞

[
a(x, ξ) b(x, ξ)

b(x, ξ) a(x, ξ)

]

exist for a.e. ξ ∈ R? Even finiteness of supx |a(x, ξ)| for a.e. ξ ∈ R is open. Christ
and Kiselev [CK01b] showed the analogous claim for f ∈ Lp(R) when 1 ≤ p < 2,
while Muscalu, Tao, and Thiele [MTTα] established it in the Cantor group “toy-
model”, where the exponentials are replaced with characters of a different group.

Another open question is related to the nonlinear analogues of the Hausdorff-
Young inequalities, also due to Christ and Kiselev [CK01a], [CK01b]:

‖(log |a|2)1/2‖Lp′(R) ≤ Cp‖f‖Lp(R)

for 1 ≤ p ≤ 2 and its conjugated exponent p′. The case p = 1 is trivial (with
C1 = 1) by Grönwall’s lemma, while p = 2 leads to the well-known scattering
identity (with C2 = 1). This identity appears for instance in the work of Faddeev
and Buslaev [FB] and it is shown by the contour integration; see [MTTα]. It is
not known if the optimal constants Cp are bounded uniformly in 1 ≤ p ≤ 2; this
problem arises in the absence of any available interpolation. This uniformity was
confirmed by Kovač [K12], but only in the same Cantor group model mentioned
before.

Let us formulate the main result by Kovač, Oliveira e Silva, and Rupčić from
[KOR]. Fix an exponent 1 < p < 2, a number H > 0 interpreted as the “height”,
and a number W > 0 interpreted as the “width”. Let us also recall Babenko-

Beckner’s constant Bp := p1/2pp′−1/2p′
, which is known (by [Ba] and [Be]) to be

the norm of the linear Fourier transform from Lp(R) to Lp
′

(R). We only consider
functions f with controlled height and width, i.e. such that |f | ≤ H and that f is
supported in an interval of length at most W .

Theorem 1. There exist δ > 0 and ε > 0 (depending on p,H,W ) such that for
each f satisfying ‖f‖L1(R) ≤ δ one has

∥∥(log |a|2) 1
2

∥∥
Lp′ (R)

≤
(
Bp − ε‖f‖2L1(R)

)
‖f‖Lp(R).
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The theorem claims no uniform boundedness of the constants Cp in any sense,
because δ depends on p. Indeed, a uniform estimate for functions satisfying (say)
‖f‖L1(R) ≤ 1 follows simply from Grönwall’s lemma. Therefore, the emphasis of
the theorem is on the fact that the nonlinear Hausdorff-Young ratio beats the
linear one for sufficiently small values of ‖f‖L1(R).

The strategy of the proof is to denote by G the set of modulated Gaussians,

G(x) = Ce−Ax
2+Bx for some A > 0, B,C ∈ C, and to distinguish between the

following two cases.

Case 1. If the relative Lp-distance of f from G is greater than ‖f‖1/2
L1(R)

, then

we use Christ’s sharpened linear Hausdorff-Young inequality [C],

‖f̂‖Lp′(R) ≤
(
Bp − cp

dist2p(f,G)

‖f‖2Lp(R)

)
‖f‖Lp(R).

It compensates for the loss coming from an application of Grönwall’s lemma.

Case 2. If the relative Lp-distance of f from G is smaller than ‖f‖1/2
L1(R)

, then we

calculate a few terms of the multilinear expansion for (log |a|2)1/2 and approximate
f by a Gaussian. In the process of controlling the error terms we apply the standard
Menshov-Paley-Zygmund estimate several times.
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A weak type estimate for rough singular integrals

Andrei Lerner

Let Tf = p.v.f ∗K be a singular integral operator on Rn. We assume that T is
L2 bounded and |K(x)| ≤ C

|x|n for x 6= 0. For 0 < t < 1/2 define

ω(t) = sup
x 6=0,|y|≤t|x|

|x|n|K(x− y)−K(x)|.

Given 0 < η < 1, we say that a family of cubes S is η-sparse if for every cube
Q ∈ S, there exists a measurable set EQ ⊂ Q such that |EQ| ≥ η|Q|, and the sets
{EQ}Q∈S are pairwise disjoint.

In [CR, HRT, La, L16, LN], it was proved that if T is smooth enough, then the
following pointwise estimate holds:

(1) |Tf(x)| ≤ C
∑

Q∈S

( 1

|Q|

ˆ

Q

|f |
)
χQ(x).

Here S is a sparse family with the sparseness constant depending only on n. To
be more precise, first (1) was proved in [CR, LN] under the log-Dini condition

saying that
´ 1/2

0 ω(t) log 1
t
dt
t <∞. After that, the log-Dini condition was extended

to the Dini condition
´ 1/2

0 ω(t)dtt < ∞ in [La], with subsequent elaborations in
[HRT, L16].

Estimate (1), in particular, easily implies the A2 theorem of Hytönen [H] es-
tablishing the linear weighted bound:

(2) ‖T ‖L2(w) ≤ C[w]A2 ,

where [w]A2 = supQ⊂Rn
w(Q)w−1(Q)

|Q|2 .

A short proof of (1) is given in [L16], where the following principle was obtained:
if T is a sublinear operator of weak type (1, 1) and the grand maximal truncated
operator

MTf(x) = sup
Q∋x

‖T (fχRn\3Q)‖L∞(Q)

is of weak type (1, 1), then T satisfies the pointwise bound (1). In particular, if T
is a singular integral operator with ω satisfying the Dini condition, then

(3) MT f(x) ≤ CMf(x) + T ⋆f(x),

where M is the Hardy-Littlewood maximal operator and T ⋆ is the maximal sin-
gular integral. This estimate implies the weak type (1, 1) of MT , thus proving (1)
for this class of operators.
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Note that all the above mentioned results actually hold for more general non-
convolution Calderón-Zygmund operators. Also observe that the Dini condition
has played the crucial role for (3) and thus for (1) and (2). Therefore, it is natural
to ask whether one can extend (2) to singular integrals not satisfying such a good
smoothness condition.

We consider now a class of rough homogeneous singular integrals defined by

TΩf = p.v.f ∗K, with K(x) = Ω(x/|x|)
|x|n , where Ω ∈ L∞(Sn−1) and

´

Sn−1 Ωdσ = 0.

In [HRT], Hytönen, Roncal and Tapiola proved that

(4) ‖TΩ‖L2(w) ≤ C‖Ω‖L∞ [w]2A2
.

This is the currently best known dependence of ‖TΩ‖L2(w) on [w]A2 , and the central
open question is whether one can improve it to the linear one as in (2).

An attempt to adapt the previous approach, based on the use of the maximal
operator MTΩ , fails due to the lack of smoothness. Hence, a possible analogue
of (3) for MTΩ is also an open question. Moreover, it is still an open question
whether the maximal singular integral T ⋆Ω is of weak type (1, 1).

In [CCPO], Conde-Alonso, Culiuc, Di Plinio and Ou obtained a sparse domina-
tion principle not relying on the endpoint estimates of the maximal truncations.
In particular, they proved that for all p > 1,

(5) |〈TΩf, g〉| ≤ Cp′‖Ω‖L∞ sup
S

∑

Q∈S
〈f〉p,Q〈g〉1,Q|Q|,

where 〈f〉r,Q =
(

1
|Q|

´

Q |f |r
)1/r

, and the supremum is taken over all sparse families

with uniform sparseness constant.
It is not difficult to show, via a standard argument, that (5) implies (4). More

generally, if T satisfies

(6) |〈Tf, g〉| ≤ C(p′)α
∑

Q∈S
〈f〉p,Q〈g〉1,Q|Q| (p > 1, α > 0),

then ‖T ‖L2(w) ≤ C[w]1+αA2
.

In this talk, we discuss an approach to (6) based on the following modification of
the grand maximal truncated operator. Given an operator T , define the maximal
operator Mλ,T by

Mλ,T f(x) = sup
Q∋x

(T (fχRn\3Q)χQ)
∗(λ|Q|) (0 < λ < 1),

where the supremum is taken over all cubes Q ⊂ Rn containing the point x, and
f∗ denotes the non-increasing rearrangement of f .

Notice that Mλ,T f ↑MT as λ→ 0. On the other hand, if T is an arbitrary op-

erator of weak type (1, 1), then ‖Mλ,T ‖L1→L1,∞ ≤ C
λ . These observations suggest

that the dependence of

ΦT (λ) = ‖Mλ,T‖L1→L1,∞
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on λ is closely related to a sparse domination for T , where T is a given operator
of weak type (1, 1). Also, the behaviour of ΦT (λ) shows how good (or how bad)
the maximal truncations of T are, which is of independent interest.

In a recent work [L17], a sparse domination principle based on ΦT (λ) was
obtained. In particular, it was shown there that if ΦT (λ) ≤ C logα e

λ and T is
essentially self-adjoint, then (6) holds.

Our main new result [L17] is the following:

Theorem 1. If Ω ∈ L∞(Sn−1), then

(7) ΦTΩ(λ) ≤ Cn‖Ω‖L∞ log
e

λ
(0 < λ < 1).

The proof of this theorem is long and technical. One of its main ingredients is
a decomposition found by Seeger [S] in his proof of the weak type (1, 1) of TΩ.

By what was mentioned above, Theorem 1 recovers (5), and so (4). Any im-
provement of the logarithmical power in (7) would lead to the corresponding im-
provement of (4).

It is also of interest to try to improve (7) by showing that the maximal operator
(with Ω ∈ L∞)

MexpL,TΩf(x) = sup
0<λ<1

Mλ,TΩf(x)

log e
λ

is of weak type (1, 1). If this were true, a sparse domination for TΩ would be
improved to

|〈TΩf, g〉| ≤ C‖Ω‖L∞(Sn−1)

∑

Q∈S
〈f〉L logL,Q〈g〉1,Q|Q|

(that is, comparing to (5), p′〈f〉p,Q for p > 1 would be replaced by a smaller
〈f〉L logL,Q average).
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Recent progress on the pointwise convergence problems of

Schrödinger equations

Xiaochun Li

(joint work with Xiumin Du, Larry Guth)

The solution to the free Schrödinger equation

(1)

{
iut −∆u = 0, (x, t) ∈ Rn × R

u(x, 0) = f(x), x ∈ Rn

is given by

eit∆f(x) = (2π)−n
ˆ

ei(x·ξ+t|ξ|
2)f̂(ξ) dξ.

An interesting and important problem in PDE is to determine the optimal s,
for which limt→0 e

it∆f(x) = f(x) almost everywhere whenever f ∈ Hs(Rn). This
problem originates from L. Carleson, who proved convergence for s ≥ 1/4 when
n = 1. B. Dahlberg and C. Kenig showed that the convergence does not hold
for s < 1/4 in any dimension. P. Sjölin and L. Vega proved independently the
convergence for s > 1/2 in all dimensions. However, the pointwise convergence
holds for s < 1/2. For instance, some positive partial results were obtained by
J. Bourgain, Moyua-Vargas-Vega, Tao-Vargas. S. Lee used Tao-Wolff’s bilinear
restriction method to get s > 3/8 for n = 2. Recently J. Bourgain, via Bourgain-
Guth’s multilinear restriction method, proved that s > 1/2− 1/(4n) is a sufficient
condition for the pointwise convergence when n ≥ 2. In the two dimensinal case,
Bourgain’s result coincides with Lee’s.

For many years, it had seemed plausible that convergence actually holds for
s > 1/4 in every dimension. Only in 2012, Bourgain gave a counterexample
showing that this is false in sufficiently high dimensions. Improved counterexam-
ples were given by Lucá-Rogers and Demeter-Guo. Very recently, Bourgain gave
counterexamples showing that convergence can fail if s < n

2(n+1) , by using re-

sults related to Gauss sums. Later, Lucá-Roger also provided a different proof of
Bourgain’s divergence result.

It is very natural to conjecture

Conjecture 1. The convergence holds for f ∈ Hs(Rn) provided that s > n
2(n+1) .

We are able to answer this conjecture in two dimensional case.

Theorem 1. For every f ∈ Hs(R2) with s > 1/3, limt→0 e
it∆f(x) = f(x) almost

everywhere.

We use B(c, r) to represent a ball centered at c with radius r on R2. It is
routine and standard that Theorem 1 is a consequence of the boundedness of the
associated maximal function, i.e. there exists a constant Cǫ such that

(2)
∥∥ sup
0<t≤R

|eit∆f |
∥∥
L3(B(0,R))

≤ CǫR
ǫ‖f‖2,
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holds for all R > 0 and all f with suppf̂ ⊂ {ξ ∈ R
2 : |ξ| ∼ 1}. The proof of the

sharp maximal estimate (2) is based on the polynomial partitioning method and
Bourgain-Demeter’s decoupling theorem.

Conjecture 1 can be reduced to the following question:

Conjecture 2. Is the following sharp maximal inequality true, for any f ∈ L2

with frequency support in {ξ ∈ Rn : |ξ| ∼ 1},
(3)

∥∥ sup
0<t≤R

|eit∆f |
∥∥
L

2(n+1)
n (Bn(R))

≤ Rǫ‖f‖2?

Here Bn(R) stands for a ball in Rn, of radius R.

We expect that some refined Strichartz estimates can be used to resolve (3).

Sub-elliptic harmonic analysis

Alessio Martini

Harmonic analysis and the Laplace operator. Many fundamental results and
open questions of classical harmonic analysis are related to the Laplace operator

∆ = −∑d
j=1 ∂

2
j on Rd. Of particular interest are Lp-boundedness properties of

operators of the form F (∆) and their relations with size and smoothness properties
of the corresponding multipliers F : R → C. A paradigmatic example is the
celebrated Bochner–Riesz conjecture on the Lp-boundedness of (1 −∆)δ+, which,
despite recent breakthroughs, has so far been settled only in dimension d ≤ 2. On
the other hand, for p = 1 a complete solution to the Bochner–Riesz problem has
been long available and follows from a general result: if F is compactly supported
and belongs to an L2 Sobolev space of order s > d/2, then F (∆) is bounded on
L1. The Mihlin–Hörmander theorem further extends this result to non-compactly
supported F . All these results are sharp: the smoothness threshold d/2 related
to (weak or strong) L1 boundedness cannot be lowered. In addition, these results
admit a robust version, where ∆ is replaced by a more general elliptic operator
on a manifold M : under some constraint on the geometry, one obtains essentially
the same results as in the Euclidean case [SS, GHS], and the critical order of
smoothness related to L1 boundedness is d/2, where d is the dimension of M .

Ellipticity, however, is not always a natural assumption: in the context of sub-
Riemannian geometry, the natural substitute L of the Laplace operator, called
sub-Laplacian, need not be elliptic, but satisfies sub-elliptic estimates. Weaken-
ing the ellipticity assumption has substantial consequences. On a sub-Riemannian
manifold, the geodesic distance, despite being compatible with the manifold topol-
ogy, is not locally equivalent to any Riemannian distance: the volume of balls of
small radius goes as a power RQ of the radius R, where Q, called “homogeneous
dimension”, is strictly larger than the topological dimension d of the manifold.
Moreover, many basic questions of harmonic-analytic character on the functional
calculus of a sub-Laplacian are still open, even in the “easier” L1 theory.
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Homogeneous sub-Laplacians on stratified groups. Consider the case of
a homogeneous sub-Laplacian L on a nonabelian stratified group G. Homoge-
neous sub-Laplacians are local models for more general sub-Laplacians on sub-
Riemannian manifolds, in a similar way as the Euclidean Laplacian is the local
model for second-order elliptic operators. A result due to Christ [C] and to Mauceri
and Meda [MM90] tells us that weak type (1, 1) and Lp-boundedness of F (L) for all
p ∈ (1,∞) hold if F satisfies a local scale-invariant smoothness condition of order
s > Q/2. Since, for many purposes, Q is the appropriate dimensional parameter
associated to the sub-Laplacian L on G, one might expect that the threshold Q/2
is sharp. However the sharp threshold ς(L) is known only in few particular cases,
and, in those cases, it turns out to be strictly lower than Q/2. The mismatch
between the sharp Mihlin–Hörmander threshold and the natural dimensional pa-
rameter associated to a sub-Laplacian L was first discovered in the case of the
Heisenberg groups Hn, for which Müller and Stein [MS] proved that ς(L) = d/2;
independently, Hebisch [H] proved that ς(L) ≤ d/2 on all Métivier groups (a class
of 2-step groups including the Hn). In view of these results “of Euclidean type”, it
is natural to ask whether d/2 is the sharp threshold on all 2-step (or higher-step)
groups. However an arbitrary 2-step group may be much more complicated than
a Métivier group: for example, among the free 2-step groups Nn,2 (n = 2, 3, . . . ),
only N2,2 is Métivier.

In the last few years, in collaboration with Müller, we have made significant
progress on this problem. The class of 2-step groups where ς(L) ≤ d/2 is now
known to be much wider than Métivier groups [MM13, MM14b, M15] and includes,
e.g., all the groups with dimension d ≤ 7 or arbitrarily large dimension but with at
most 2-dimensional second layer. The newly developed techniques allow treating
2-step groups with a much greater structural complexity, and in particular they
apply to the free group N3,2. Moreover it is now proved that d/2 ≤ ς(L) < Q/2
for all homogeneous sub-Laplacians L on all 2-step groups [MM16]; this confirms
that all the known Euclidean-type results on 2-step groups are indeed sharp and
moreover tells us that the Christ–Mauceri–Meda theorem is never sharp on 2-step
groups.

Dropping dilation and translation symmetries. For more general sub-elliptic
operators L on manifolds, the problem of determining the sharp threshold ς(L)
presents additional challenges. In fact, even in the simplest cases where the local
model is reasonably well understood, no robust sharp results are available.

Sharp results are known, however, in the presence of symmetries, as in the case
of complex spheres [CS, CKS], where the action of the unitary groups yields precise
information on invariant sub-Laplacians. Recently, we have obtained analogous
sharp results for the Kohn Laplacian acting on forms on complex spheres [CCMS,
M17] (joint work with Casarino, Cowling and Sikora) and for sub-Laplacians on
quaternionic spheres [ACMM] (joint work with Ahrens, Cowling and Müller); the
latter is the first result of this kind on a compact sub-Riemannian manifold whose
horizontal distribution has codimension greater than one.
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Another well-understood case is that of the Grushin operators G = −∆x −
|x|2∆y on Rd1x × Rd2y . Unlike before, here we have no invariance with respect to
a transitive group action. Nevertheless, in collaborations with Müller and Sikora,
we could show that ς(G) = (d1 + d2)/2 [MS, MM14a]. Furthermore, in a recent
work with Casarino and Ciatti [CCM], we proved a sharp multiplier theorem for a
a Grushin-type operator on a sphere, which is neither homogeneous with respect
to a system of dilations nor admitting a transitive group of symmetries.

Groups of exponential growth. In all the examples above the associated sub-
Riemannian geometry is doubling. This need not be the case for an arbitrary
sub-Riemannian manifold, as it is shown, e.g., by group-invariant sub-Laplacians
on Lie groups of exponential growth. Recently, in collaboration with Ottazzi and
Vallarino, we extended the Christ–Mauceri–Meda theorem to a particular class
of exponential solvable groups and sub-Laplacians [MOVα]. The proof hinges
on a Calderón–Zygmund decomposition adapted to the underlying non-doubling
geometry, and on suitable gradient heat kernel estimates for large times. This
appears to be the first “genuinely Mihlin–Hörmander-type” result for sub-elliptic
non-elliptic operators L with differentiable L1 functional calculus on exponentially
growing groups, and opens the perspective of investigating the sharp threshold
ς(L) in this context. In addition, this result can be applied to prove a multiplier
theorem for sub-Laplacians with drift on Lie groups [MOVβ].
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Some new results concerning Hardy spaces on the hyperbolic disc

Stefano Meda

(joint work with Alessio Martini, Maria Vallarino, Sara Volpi)

The classical Hardy space H1(Rn) may be defined in several equivalent ways, e.g.,
via the Riesz transformR, the maximal heat operatorH∗ and the maximal Poisson
operator P∗. Recall that the Riesz transform R is the operator ∇(−∆)−1/2, where
∇ and ∆ denote the standard gradient and Laplacian on Rn, respectively, and that
the heat and Poisson semigroups are defined by

Htf = et∆f and Ptf = e−t(−∆)1/2f.

Set
H∗f = sup

t>0

∣∣Htf
∣∣ and P∗f = sup

t>0

∣∣Ptf
∣∣,

and define
H1

R(Rn) := {f ∈ L1(Rn) :
∣∣Rf

∣∣ ∈ L1(Rn)}
H1

HR
n) := {f ∈ L1(Rn) : H∗f ∈ L1(Rn)}

H1
P(R

n) := {f ∈ L1(Rn) : P∗f ∈ L1(Rn)}.
A celebrated result [FeS] states that H1

R(Rn), H1
HRn) and H1

P(R
n) are the same

space, usually denoted by H1(Rn) (see [S, Ch. 3 and 4]). Furthermore R.R. Coif-
man in one dimension [C] and R. Latter in higher dimensions [L] proved that
H1(Rn) admits an atomic characterisation. This is important for the applica-
tions, because it reduces the problem of establishing the boundedness of a linear
operator T from H1(Rn) to L1(Rn) to the easier problem of showing that T is
uniformly bounded on atoms.

The three spaces defined above have natural analogues on every Riemannian
manifold. Indeed, given a complete connected noncompact Riemannian manifold
M , denote by ∇ the associated covariant derivative on M , and by L (minus)
the Laplace–Beltrami operator. We write R for the Riesz transform ∇L−1/2 on
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M , Ht for the heat semigroup {e−tL : t ≥ 0} and Pt for the Poisson semigroup

{e−tL1/2

: t ≥ 0}. Then H1
R(M), H1

H(M) and H1
P(M) may be defined much as

above. A natural question is then whether H1
R(M), H1

H(M) and H1
P(M) agree

and admit an atomic decomposition.
There is an extensive literature concerning this problem in the case where the

Riemannian measure of M is doubling. Not surprisingly, it turns out that, if
in addition the Ricci curvature is bounded from below and the injectivity radius
is positive, then H1

H(M) and H1
P(M) agree and admit an atomic decomposition

[AMR, HLMMY, DKKP]. Also, in this generality,H1
H(M) is contained inH1

R(M),
equivalently R is bounded from H1

H(M) to L1(M). The question whether H1
H(M)

agrees with H1
R(M) is much more delicate, and there are very few results in the

literature. Amongst them it is worth mentioning the related work of Christ and
Geller [CG], based on previous work of A. Uchiyama, who proved that on stratified
groups G the Hardy space H1(G), as defined in the book of Folland and Stein
[FoS], agrees with the Hardy space defined in terms of Riesz transforms associated
to a sub-Laplacian on G, and the work of Dziubanski and his collaborators, who
established a similar result for certain Schrödinger operators on Rn [DP, DZ].

On the contrary, to the best of our knowledge, there are no results in the
literature concerning the analogue of the Fefferman–Stein characterisations in the
case where M is, say, the hyperbolic disc. Quite recently, in a series of papers
[MMV11, MMV12, MMV15] Mauceri, Meda and Vallarino introduced an atomic
Hardy-type space X1(M) for a class of Riemannian manifolds that include the
hyperbolic disc. The space X1(M) provides endpoint results when p = 1 for a
class of interesting operators on M that includes the Riesz transform and the
imaginary powers of L. In view of the discussion above, it is natural to speculate
whether X1(M) agrees with H1

H(M), H1
P(M) or H1

R(M).
In my talk I shall describe the results we have proved so far in the special case

of Riemannian symmetric spaces X of the noncompact type and real rank one.
The prototype of such spaces is the hyperbolic disc D. We have reasons to believe
that similar results hold on higher rank symmetric spaces. I need to introduce the
space

H̃1
R(X) := {f ∈ h1(X) :

∣∣Rf
∣∣ ∈ L1(X)},

which is contained in H1
R(X). Here h1(X) denotes the Goldberg-type space intro-

duced by M. Taylor (see [T]). Our main result is the following.

Theorem 1. The following hold:

(a) H1
H(X), H1

P(X) and H1
R(X) are different spaces, and each of them is dif-

ferent from X1(X);

(b) H̃1
R(X) does not admit an atomic decomposition, in the sense that the

space of functions with compact support in H̃1
R(X) is not dense in H̃1

R(X).

The comparison betweenH1
H(X), H1

P(X) andH
1
R(X) is accomplished by relating

them to a one-parameter family {Xγ(X) : γ > 0} of isometric copies of h1(X). In
the case where γ is a positive integer, the space Xγ(X) was introduced in S. Volpi’s
thesis [V].
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The proof that H̃1
R(X) does not admit an atomic decomposition hinges on the

spherical analysis on rank one semisimple Lie groups, specifically on the Paley–
Wiener theorem for the Helgason–Fourier transform.

Similar results hold in the discrete setting, e.g., on homogeneous trees [CM].
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Composition of singular integral operators with different

homogeneities

Alexander Nagel

(joint work with Fulvio Ricci, Elias M. Stein, Stephen Wainger)

We study algebras of singular integral convolution operators on Rn and homoge-
neous nilpotent Lie groups that arise when considering the composition of Calde-
rón-Zygmund operators with different homogeneities. Thus let Da

λ(x1, . . . , xn) =
(λa1x1, . . . , λ

anxn). A Calderón-Zygmund kernel adapted to the dilations Da

λ is a
tempered distribution K on Rn, given away from the origin by integration against
a smooth function K, and satisfying the following.

(a) Differential inequalities : For every multi-index γ there is a constant Cγ >

0 so that |∂γxK(x1, . . . , xn)| ≤ Cγ(|x1|
1
a1 + · · ·+ |xn|

1
an )−

∑n
j=1 aj(1+γj).

(b) Cancellation conditions: Let ψr(x1, . . . , xn) = ψ(ra1x1, . . . , r
anxn). There

exists C > 0 so that for all r > 0 and all normalized bump functions ψ it
follows that |〈K, ψr〉| ≤ C.

We can now formulate the following problem. Let Ka,Kb be Calderón-Zygmund
kernels on Rn associated to homogeneities Da

λ and Db

λ . Let Ta[ϕ] = ϕ ∗ Ka and
Tb[ϕ] = ϕ ∗Kb where the convolution is on a homogeneous nilpotent Lie group G
with automorphic dilations Dd

λ . Suppose that both Ta and Tb extend to bounded
operators on L2(Rn). (This is always the case, for example, if G = Rn with
standard vector addition, and on homogeneous nilpotent Lie groups if Ka and Kb

have compact support and if a1
d1

≥ a2
d2

≥ · · · ≥ an
dn

and b1
d1

≥ b2
d2

≥ · · · ≥ bn
dn

.)

Then Ta ◦ Tb is a bounded operator on L2(Rn) and if a = b the composition is
convolution with a Calderón-Zygmund kernel with the same homogeneity. However
if a 6= b we can ask what is the nature of the Schwartz kernel of T1 ◦ T2 and what
is the algebra of operators generated by such convolutions.

We introduce the following class of operators. Let E = {e(j, k)} be an n × n
matrix of positive real numbers satisfying the basic hypotheses e(j, j) = 1 and

e(j, l) ≤ e(j, k)e(k, l). Set Nj(x1, . . . , xn) = |x1|
e(j,1)
d1 + · · ·+ |xn|

e(j,n)
dn . Then P(E)

is the class of tempered distributions K, given by integration against a smooth
function K away from the origin on Rn, which satisfy

(a’) Differential inequalities: If K ∈ P(E) then away from the origin K is given
by a smooth function K and for each multi-index α there is a constant
Cα so that

∣∣∂αK(x1, . . . , xn)
∣∣ ≤ Cα

∏n
j=1Nj(x1, . . . , xn)

−dj(1+αj).

(b’) Cancellation Conditions: Let 0 ≤ m ≤ n− 1 and let ψ be any normalized
bump function of n −m variables. If r = (rm+1, . . . , rn) with each rj >
0 set ψr(xm+1, . . . , xn) = ψ(rm+1xm+1, . . . , rnxn). If m = 0 there is a
constant C independent of ψ and r so that

∣∣〈K, ψr

〉∣∣ ≤ C. If m ≥ 1 define

a tempered distribution K#
r on Rm by setting

〈
K#

r , ϕ
〉
=
〈
K, ϕ⊗ψr

〉
for all

ϕ ∈ S(Rm). Then away from the origin K#
r is given by a smooth function
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K#
r and

∣∣∂α1
x1

· · ·∂αm
xm
K#

r
(x1, . . . , xm)

∣∣ ≤ Cα

m∏

j=1

Nj(x1, . . . , xm, 0, . . . , 0)
−aj(1+αj)

with Cα independent of ψ and r. The same also holds for any permutation
of the variables x1, . . . , xn.

Theorem 1.

(a) Rank (E) = 1 if and only if there is a dilation structure on Rn for which
P(E) is the space of Calderón-Zygmund kernels.

(b) If rank (E) > 1 and K ∈ P(E) then K is integrable at infinity.
(c) If rank(E) = m and K ∈ P(E) then

∣∣{x ∈ Rn : |K(x)| > λ
}∣∣ .

λ−1 log(λ)m−1 for λ ≥ 1. Moreover there exists K ∈ P(E) so that
∣∣{x ∈

Rn : |K(x)| > λ
}∣∣ & λ−1 log(λ)m−1.

We can characterize elements of P(E) in terms of their Fourier transforms.
Set P0(E) =

{
K ∈ P(E) : K is rapidly decreasing outside the unit ball

}
. Such

distributions can be characterized by the behavior of their Fourier transform K̂.

The norm dual to Nj is given by N̂j(ξ) = |ξ1|
1

e(1,j)d1 + · · · + |ξn|
1

e(n,j)dn . Define

M∞(E) =
{
m ∈ C∞(Rn) :

∣∣∂αm(ξ)
∣∣ ≤ Cα

∏n
j=1

(
1 + N̂j(ξ)

)−αjdj}
.

Theorem 2. K ∈ P0(E) if and only if K̂ = m ∈ M∞(E).

The class P(E) contains distributions which are flag kernels relative to two
opposite flags. Suppose that K is a distribution satisfying appropriate cancellation
conditions and the following flag kernel differential inequalities:

∣∣∂γK(x)
∣∣ .





∏n
j=1

(
|x1|

aj
a1 + |x2|

aj
a2 + · · ·+ |xj−1|

aj
aj−1 + |xj |

)−1−γj

∏n
j=1

(
|xj |+ |xj+1|

bj
bj+1 + · · ·+ |xn−1|

bj
bn−1 + |xn|

bj
bn

)−1−γj

Note that the differential inequalities give no information when x1 = xn = 0 and
n ≥ 3.

Theorem 3. Suppose that a1
b1

≤ a2
b2

≤ · · · ≤ an
bn

with at least one strict inequality.

(a) The function K is integrable at infinity, and we can write K = K0 + K∞
where K∞ ∈ L1(RN ) ∩ C∞(RN ), and K0 is a two-flag kernel supported in
the unit ball.

(b) The kernel K0 belongs to the class P0(E) associated to the matrix E =

{e(j, k) where e(j, k) = bj
bk

if j ≤ k and e(j, k) =
aj
ak

if j > k.

(c) In particular the kernel K is given away from the origin by integration
against a smooth function.

When studying convolution on general homogeneous nilpotent Lie groups, we
need to impose an additional condition of double monotonicity: e(j, k) ≤ e(j, k+1)
and e(j, k) ≥ e(j + 1, k).
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Theorem 4. If G is a homogeneous nilpotent Lie group, if E satisfies the basic
hypotheses and is doubly monotone, and if K ∈ P(E) then the operator ϕ→ ϕ ∗K
extends to a bounded operator on Lp(G) for 1 < p <∞.

We now return to the original problem. Let Ka,Kb be compactly supported
Calderón-Zygmund kernels associated with the dilations Da

λ and Db

λ . Let G be a
homogeneous nilpotent Lie group with automorphic dilations Dd

λ . Assume a1
d1

≥
a2
d2

≥ · · · ≥ an
dn

and b1
d1

≥ b2
d2

≥ · · · ≥ bn
dn

. Put Ta[ϕ] = ϕ ∗ Ka, Tb[ϕ] = ϕ ∗ Kb.

Theorem 5. Let E = {e(j, k)} where e(j, k) = max
{
aj
ak
,
bj
bk

}
. The operator Ta◦Tb

is given by convolution with a tempered distribution L with L ∈ P(E).

Theorem 6. Let G ∼= Rn be a homogeneous nilpotent Lie group and let E be a
doubly monotone matrix. If K,L ∈ P0(E) then there exists M ∈ P0(E) such that
TK ◦ TL = TM.

Recent developments in sharp restriction theory

Diogo Oliveira e Silva

(joint work with Emanuel Carneiro, René Quilodrán, Mateus Sousa)

For the sake of concreteness, we start our discussion with the case of the unit
sphere Sd−1 equipped with surface measure σ, but the more general example of a
smooth compact hypersurface should be kept in mind. Given 1 ≤ p ≤ 2, for which
exponents q does the a priori Fourier restriction inequality

(1)
(ˆ

Sd−1

|f̂(ω)|qdσω
) 1

q ≤ C‖f‖Lp(Rd)

hold? One easily checks that, for any value of q, inequality (1) holds if p = 1 and
fails if p = 2. By duality, estimate (1) is equivalent to the adjoint restriction, or
extension, inequality

(2)
( ˆ

Rd

|ĝσ(x)|p′dx
) 1

p′ ≤ C‖g‖Lq′(Sd−1),

where p′ = p
p−1 denotes the exponent dual to p, and similarly for q. A complete

answer for q = 2 is given by the classical Tomas–Stein inequality, which establishes

the restriction inequality (1) for q = 2 in the sharp range 1 ≤ p ≤ 2(d+1)
d+3 . The

question of what happens for values of q < 2 is the starting point for the celebrated
Fourier restriction conjecture.

Tomas–Stein restriction estimates are very much related to Strichartz estimates
for linear partial differential equations of dispersion type. Let us illustrate this
point in one particular instance, that of solutions u(x, t) with (x, t) ∈ Rd+1 to the
Schrödinger equation iut = ∆u, with prescribed initial data. Strichartz established

(3) ‖u‖
L2+4

d (Rd+1)
≤ C‖f‖L2(Rd),
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provided that u is the solution of the Schrödinger equation satisfying u(x, 0) =
f(x). It turns out that Strichartz estimates for the Schrödinger equation corre-
spond to extension estimates on the paraboloid, a non-compact manifold which
exhibits some scale invariance properties that allow the reduction to the compact
setup of the Tomas–Stein inequality.

For the past several years, I have been very interested in extremizers and op-
timal constants for sharp variants of restriction and Strichartz-type inequalities.
Apart from their intrinsic mathematical interest and beauty, sharp inequalities
often allow for various refinements of existing inequalities. The following are nat-
ural questions, which can be posed in the particular case of Fourier restriction
inequalities:

• What is the value of the optimal constant?
• Do extremizers exist?

– If so, are they unique, possibly after applying the symmetries of the
problem?

– If not, what is the mechanism responsible for this lack of compact-
ness?

• How do extremizing sequences behave?
• What are some qualitative properties of extremizers?
• What are necessary and sufficient conditions for a function to be an ex-
tremizer?

Questions of this kind have been asked in a variety of situations, and in the context
of classical inequalities from Euclidean harmonic analysis they go back at least to
the early work of Beckner on the sharp Hausdorff–Young inequality, and of Lieb
on the sharp Hardy–Littlewood–Sobolev inequality. In comparison, sharp Fourier
restriction inequalities have a relatively short history, with the first works on the
subject going back to Kunze [K], Foschi [F] and Hundertmark–Zharnitsky [HZ].
These works concern extremizers and sharp constants for inequality (3) in the low
dimensional cases d ∈ {1, 2}. These are the cases for which the Strichartz exponent
2+ 4

d is an even integer, and one can rewrite the left-hand side of inequality (3) as

an L2 norm, and invoke Plancherel in order to reduce the problem to a multilinear
convolution estimate.

Sharp Fourier restriction theory is becoming increasingly more popular, as
shown by the large body of work that appeared in the last decade, and in par-
ticular in the last few years. We mention a recent survey [FO] on sharp Fourier
restriction theory which may be consulted for information complementary to that
on this abstract, and further references.

Perturbed paraboloids. Recent joint work with Quilodrán [OQ] focused on a
family of sharp Strichartz estimates for higher order Schrödinger equations. More
precisely, for an appropriate class of convex functions φ, we studied the Fourier
extension operator on the surface

(4) {(ξ, τ) ∈ R
2+1 : τ = |ξ|2 + φ(ξ)}.



2142 Oberwolfach Report 34/2017

One of our main tools was a new comparison principle for convolutions of certain
singular measures supported on non-compact manifolds that holds in all dimen-
sions. This is better illustrated in the following special case. Let µ0 and µ1 denote
the projection measures on the surfaces given by (4) with φ(ξ) ≡ 0 and φ(ξ) = |ξ|4,
respectively. Then the pointwise inequality

(µ1 ∗ µ1)
(
ξ, τ +

|ξ|2
2

+
|ξ|4
8

)
≤ (µ0 ∗ µ0)

(
ξ, τ +

|ξ|2
2

)

holds for every τ > 0 and ξ ∈ R2, and it is strict at almost every point of the
support of the measure µ1 ∗ µ1. This observation led to the exact determination
of some optimal constants and to a proof that extremizers do not exist in this
perturbed setting. Adapting ideas from the concentration-compactness principle
of Lions, we further investigated the behaviour of general extremizing sequences.
Generally speaking, the theory of concentration-compactness has proved a very
efficient tool in exhibiting the precise mechanisms which are responsible for the
loss of compactness in a variety of settings. In our concrete problem, extremizers
fail to exist because extremizing sequences concentrate. Concentration can only
occur at points where the convolution µ1 ∗ µ1 attains its maximum value, or at
spatial infinity. Last but not least, our methods further resolve a dichotomy from
the recent literature [JSS] concerning the existence of extremizers for a family of
fourth order Schrödinger equations.

Hyperboloids. In ongoing joint work with Carneiro and Sousa [COS], we are
investigating optimal constants and the existence of extremizers for the adjoint
Fourier restriction inequality on hyperboloids. The L2 → Lp adjoint restriction
inequality on the d-dimensional hyperboloidHd ⊂ Rd+1 holds provided 6 ≤ p <∞,

if d = 1, and 2(d+2)
d ≤ p ≤ 2(d+1)

d−1 , if d ≥ 2. Quilodrán [Q] recently found the

values of the optimal constants in the endpoint cases (d, p) ∈ {(2, 4), (2, 6), (3, 4)}
and showed that the inequality does not have extremizers in these cases. We are
able to answer two questions posed in [Q], namely: (i) we find the explicit value of
the optimal constant in the endpoint case (d, p) = (1, 6) (the remaining endpoint
for which p is an even integer) and show that there are no extremizers in this
case; and (ii) we establish the existence of extremizers in all non-endpoint cases in
dimensions d ∈ {1, 2}. This completes the qualitative description of this problem
in low dimensions.

An open problem. To finish, we would like to mention the following open prob-
lem: Do Gaussians extremize inequality (3) in all dimensions? It is known that
Gaussians are critical points of the associated Euler–Lagrange equation in all di-
mensions. If Gaussians were known to be extremizers, it would then be possible to
establish the unconditional existence of extremizers for the corresponding problem
on the unit sphere Sd−1. The methods outlined above are not enough to tackle this
problem when d ≥ 4, and we intend to gear the direction of our research towards
a better understanding of this fundamental question.
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Borderline weighted estimates for the maximal function and for rough

singular integral operators

Carlos Pérez

We will split the lecture in two parts:

Rough singular integral operators. One of the most relevant results in clas-
sical Harmonic Analysis is the classical good-lambda estimate between Calderón-
Zygmund operators and the maximal functions due to R. Coifman and C. Fef-
ferman. This result yields strong or weak Lp estimates with A∞ weights from
which the classical well known weighted estimates follow. We have shown in the
recent work [LPRR] that a corresponding result holds for rough singular integrals
TΩ, Ω ∈ L∞ and the Bochner-Riesz operator at critical level even though there is
no such as good-λ inequality available. This result is key in the solution of some
conjectures formulated by the author after the work of [P] and inspired by [DR],
[C] and [Se]. One of the key points is to combine some extrapolation theorems for
the class A∞ obtained in [CMP04] and [CCMP] together with a sparse formula
found by Conde-Culiuc-Di Plinio-Ou [CCPO].

Mixed weak type estimates. Muckenhoupt-Wheeden [MW] in the seventies
and Sawyer [Sa] in the eightees, established some one-dimensional highly nontrivial
extensions of the weak type (1, 1) property of the maximal function involving
weights. The one obtained by E. Sawyer provided another proof of the classical
Muckenhoupt Ap theorem. These results were conjectured to hold for the Hilbert
transform and for the maximal function in higher extensions. These conjectures
were proved and extended in different directions in [CMP05] and [OP]. Further
more difficult conjectures were formulated in [CMP05] that have been recently
settled in [LOP]. These questions are of interest in the context of Multilinear
Harmonic Analysis.
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a conjeture of Sawyer, Int. Math. Research Notices, 30 (2005), 1849-1871.
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Iterated Journé Commutators and multi-parameter BMO

Stefanie Petermichl

A classical result of Nehari [Ne] shows that a Hankel operator with anti-analytic
symbol b mapping analytic functions into the space of anti-analytic functions by
f 7→ P−bf is bounded with respect to an L2 norm if and only if the symbol belongs
to BMO. This theorem has an equivalent formulation in terms of the boundedness
of the commutator of the multiplication operator with symbol function b and the
Hilbert transform [H, b] = Hb − bH. To see this correspondence one rewrites the
commutator as a sum of Hankel operators with orthogonal ranges.

Let H2(T2) denote the Banach space of analytic functions in L2(T2). In [FS],
Ferguson and Sadosky study the symbols of bounded ‘big’ and ‘little’ Hankel
operators on the bidisk. Big Hankel operators are those which project on to a ‘big’
subspace of L2(T2) - the orthogonal complement of H2(T2); while little Hankel
operators project onto the smaller subspace of complex conjugates of functions in
H2(T2) - or anti-analytic functions. The corresponding commutators are

[H1H2, b],
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and

[H1, [H2, b]]

where b = b(x1, x2) and Hk are the Hilbert transforms acting in the kth variable.
Ferguson and Sadosky show that the first commutator is bounded if and only if the
symbol b belongs to the so called little BMO class, consisting of those functions that
are uniformly in BMO in each variable separately. They also show that if b belongs
to the product BMO space, as identified by Chang and Fefferman [CF85], [CF80]
then the second commutator is bounded. The fact that boundedness of the second
commutator implies that b is in product BMO was shown in the groundbreaking
paper of Ferguson and Lacey [FL]. The techniques to tackle this question in
several parameters are very different and have brought valuable new insight and
use to existing theories, for example in the interpretation of Journé’s lemma [J86]
in combination with Carleson’s example [Ca]. Lacey and Terwilliger extended this
result to an arbitrary number of iterates in [LT], requiring thus, among others, a
refinement of Pipher’s iterated multi-parameter version [Pi] of Journé’s lemma.

When leaving the notion of Hankel operators behind, their interpretation as
commutators allow for natural generalizations. Through the use of completely dif-
ferent real variable methods, Coifman, Rochberg and Weiss [CRW] extended Ne-
hari’s one-parameter theory to real analysis in the sense that the Hilbert transforms
were replaced by Riesz transforms. The missing features of the Riesz transforms
include analytic projection on one hand as well as strong factorisation theorems
of H1(D) on the other.

The authors in [CRW] obtained sufficiency, i.e. that a BMO symbol b yields
an L2(Rd) bounded commutator for certain more general, convolution type sin-
gular integral operators. For necessity, they showed that the collection of Riesz
transforms was representative enough:

‖b‖BMO ≤ C sup
1≤j≤d

‖[Rj, b]‖2→2.

Notably this lower bound was obtained somewhat indirectly through use of spher-
ical harmonics in combination with the mean oscillation characterisation of BMO
in one parameter.

These one-parameter results in [CRW] were extended to the multi-parameter
setting in [LPPW]. Both the upper and lower estimate have proofs very different
from those in one parameter. For the lower estimate, the methods in [FL] or [LT]
find an extension to real variables through operators closer to the Hilbert transform
than the Riesz transforms and an indirect passage on the Fourier transform side.

In a recent paper [DO] it is shown that iterated commutators formed with
any arbitrary Calderón-Zygmund operators are bounded if the symbol belongs to
product BMO.

The first part is concerned with mixed Hankel operators or commutators such
as

[H1, [H2H3, b]].
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We classify boundedness of these commutators by a mixed BMO class (little prod-
uct BMO): those functions b = b(x1, x2, x3) so that b(·, x2, ·) and b(·, ·, x3) are
uniformly in product BMO. Similar results can be obtained for any finite iteration
of any finite tensor product of Hilbert transforms.

The second part is concerned with a real variable analog or commutators of the
form

[R1,j1 , [R2,j2R3,j3 , b]],

where Rk,jk are Riesz transforms of direction jk acting in the kth variable. We
show necessity and sufficiency of the little product BMO condition when the Rk,jk
are allowed to run through all Riesz transforms by means of a two-sided estimate.
Our argument works for all higher iterates and tensor products.

It is a general fact that two-sided commutator estimates have an equivalent
formulation in terms of weak factorization. We find the pre-duals of our little
product BMO spaces and prove a corresponding weak factorization result.

Much like discussed in the base cases of our results [CRW], [LPPW], bounded-
ness of commutators involving Hilbert or Riesz transforms are a testing condition.
If these commutators are bounded, the symbol necessarily belongs to a little prod-
uct BMO. We then show that iterated commutators using a much more general
class than that of tensor products of Riesz transforms are also bounded: commu-
tators with Journé operators.

We make some remarks about the strategy of the proof.
In the Hilbert transform case, Toeplitz operators with operator symbol arise

naturally.
While Riesz transforms in Rd are a good generalisation of the Hilbert transform,

there is absence of analytic structure and tools relying on analytic projection or
orthogonal spaces are not readily available. We overcome this difficulty through
a first intermediate passage via tensor products of Calderón-Zygmund operators
whose Fourier multiplier symbols are adapted to cones. This idea is inspired by
[LPPW]. A class of operators of this type classifies little product BMO through
two-sided commutator estimates, but it does not allow the passage to a classifi-
cation through iterated commutators with tensor products of Riesz transforms.
In a second step, we find it necessary to consider upper and lower commutator
estimates using a well-chosen family of Journé operators that are not of tensor
product type. These operators are constructed to resemble the multiple Hilbert
transform. A two-sided estimate of iterated commutators involving operators of
this family facilitates a passage to iterated commutators with tensor products of
Riesz transforms. There is an increase in difficulty when the arising tensor prod-
ucts involve more than two Riesz transforms and when the dimension is greater
than two.

The actual passage to the Riesz transforms requires for us to prove a stability
estimate in commutator norms for certain multi-parameter singular integrals in
terms of the mixed BMO class. In this context, we prove a qualitative upper
estimate for iterated commutators using paraproduct free Journé operators. We
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make use of recent versions of T (1) theorems in this setting. These recent advances
are different from the corresponding theorem of Journé [J85]. The results we allude
to have the additional feature to provide a convenient representation formula for bi-
parameter in [Ma] and even multi-parameter in [Ou] Calderón-Zygmund operators
by dyadic shifts. While a sufficient form of this result for characterisation results
is contained in [OPS], the extension to all Lp as well as all Journé operators is
more recent and appears as a special case in [HPW], where a two-weight question
was addressed.
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Conserved energies and soliton stability in completely integrable PDEs

Daniel Tataru

(joint work with Herbert Koch)

This work is concerned with several one dimensional completely integrable pde
models, which include the cubic NLS, mKdV and KdV. To keep the presentation
simple we will just consider the the first two. The (de)focusing cubic Nonlinear
Schrödinger equation (NLS) is

iut + uxx ± 2u|u|2 = 0, u(0) = u0,

and the complex (de)focusing modified Korteweg-de Vries equation (mKdV) has
the form

ut + uxxx ± 2(|u|2u)x = 0, u(0) = u0,

with real or complex solutions in one space dimension on the real line.
These are part of an infinite family of commuting Hamiltonian flows, where

each of the Hamiltonians can be viewed as conservation laws for each of the flows.
The symplectic form is

ω(u, v) = ℑ
ˆ

uv̄ dx

and first several Hamiltonians are as follows:

H0 =

ˆ

|u|2dx,

H1 =
1

i

ˆ

u∂xūdx,

H2 =

ˆ

|ux|2 + |u|4dx,

H3 =i

ˆ

ux∂xux +
3

2
|u|2u∂xūdx,

H4 =

ˆ

|uxx|2 + 2||u|2x|2 + u2(ūx)
2 + (ūx)

2u2 +
3

2
|u|6dx.

Both of these equations have Ḣ− 1
2 as a scale invariant critical Sobolev space.

On the other hand the above energies only provide good Hk bounds when k is
an integer. The goal of this work is to rectify this, and consider Hs norms for
all s > − 1

2 . Rather than attempt to prove uniform bounds for Hs norms, as in
our prior work, our first goal here is to construct new conservation laws which
are equivalent to the Hs norms of the solutions. Precisely, our main result is as
follows:

Theorem 1. For each s > − 1
2 and both for the focusing and defocusing case the

energy functionals Es are globally defined

Es : H
s → R

with the following properties:
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(1) Es is conserved along the NLS and mKdV flow.
(2) If1 ‖u‖L2+DU2 ≤ 1 then

∣∣Es(u)− ‖u‖2Hs

∣∣ . ‖u‖2L2+DU2‖u‖2Hs .

(3) The map

Hσ × (−1

2
, σ] ∋ (u, s) → Es(u)

is analytic in u ∈ Hσ in the defocusing case. In the focusing case it is
analytic provided i

2 is not an eigenvalue for L, and it is continuous in
u ∈ Hσ in general. It is also continuous in s, and analytic in s for s < σ.

Here L is the corresponding Lax operator

L = i

(
∂x −u
±ū −∂x

)
,

whose eigenvalues (which only exist in the focusing case) correspond to to soliton
solutions, or soliton components of more general solutions.

Our conserved energies are defined in terms of the transmission coefficient T
associated to the Lax operator, which is a meromorphic function in the upper
half-plane. In order to be able to work with T for data which is only in Hs spaces,
our construction uses T only away from the real axis.

A second goal of our work is to use these energies in order to study the orbital
stability of multisoliton solutions for the focusing problem. Our main result here
is as follows:

Theorem 2. Multisoliton solution families are orbitally stable in Hs for both the
cubic NLS flow and mKdV.

This result is proved using Backlund type transforms which allow one to add
or remove solitons from a given solution. The main challenge is to be able to deal
with solitons which have nearly identical scale and velocity parameters.
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Bochner-Riesz profile of an anharmonic oscillator

Adam Sikora

(joint work with Peng Chen and Waldemar Hebisch)

We investigate one dimensional Schrödinger type operator with the anharmonic
potential

L = − d2

dx2
+ |x|.

It is well-known that this type of operator is self-adjoint and admits a spectral
resolution, which allows us to study the corresponding Bochner-Riesz means and
more general spectral multipliers. To recall the notion of Bochner-Riesz means we
set

σαR(λ) =

{
(1− λ/R)α for 0 ≤ λ ≤ R

0 for other λ.

We then define the operator σαR(L) and σαR(H) using the spectral theorem. The
main problem considered in Bochner-Riesz analysis is to find exponent αcr(p) such
that the operators σαR(L) are bounded uniformly in R on Lp for all α > αcr(p).
In most of the cases full description of Bochner-Riesz profile of general differential
operators or even of the standard Laplace operator is an open problem, see e.g. [S].

Our study is motivated by results described in [AW, T], where combination
of results obtained by Askey, Wainger and Thangavelu provide full description of

convergence of Bochner-Riesz means for the harmonic oscillator H = − d2

dx2 + x2

and it is one of very few examples when such full picture was obtained. Also in the
case of the operator L which we consider here we obtain a complete description of
the critical exponent αcr(p) for all 1 ≤ p ≤ ∞.

We show that the Bochner-Riesz profile of the operator L completely coincides

with such profile of the harmonic oscillator H = − d2

dx2 + x2. It is especially sur-
prising because the Bochner-Riesz profile of the one-dimensional standard Laplace
operator is known to be essentially different and the case of operators H and L
resembles more the profile of multidimensional Laplace operators. To be more
precise we recall the description of convergence of Bochner-Riesz means, which
follows from Askey, Wainger and Thangavelu’s results. It is stated in [T, Theorem
5.5] and can be summarised in the following way.

Proposition. Consider the operator H = − d2

dx2 + x2. Then σαR(H) is uniformly
bounded on Lp if the point (1/p, α) belongs to regions A or B, that is if α >
max{0, 23 | 12 − 1

p | − 1
6}, see figure 1. Next if (1/p, α) belongs to regions C, that is if

α < max{0, 23 | 12 − 1
p | − 1

6}, then supR>0 ‖σαR(H)‖p→p = ∞.

Our main result gives a complete picture of Bochner-Riesz convergence for the
operator L.

Theorem 1. Suppose that L = − d2

dx2 + |x|. Then σαR(L) is uniformly bounded

on Lp if α > max{0, 23 | 12 − 1
p | − 1

6}, which means the point (1/p, α) belongs to
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Figure 1. Convergence of Bochner-Riesz means for operators

− d2

dx2 + |x| and harmonic oscillator − d2

dx2 + x2.

regions A or B. Moreover if α < max{0, 23 | 12 − 1
p | − 1

6}, this is if (1/p, α) belongs

to regions C, then supR>0 ‖σαR(L)‖p→p = ∞.

Figure 1 describes the convergence of Bochner-Riesz means for the operators L
and H. Note that the means are convergent in both regions A and B. The range A
is common for all abstract operators in dimension 1. However the division between
the parts B (convergent) and C (divergent) possibly depends on the operator.
Indeed in case of the standard Laplace operator on R or on one dimensional torus
Bochner-Riesz means converge in both regions B and C whereas for considered
operators L and H the means are uniformly bounded only in B and they are not
convergent in the part C.

The details discussion of the described results can be found in [CHS].
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Three Lower Bounds in Harmonic Analysis

Stefan Steinerberger

This talk discussed three problems in harmonic analysis that are concerned with
bounding quantities from below. Interesting open problems arise.
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0.1. Poincaré inequalities. The classical Poincaré inequality on the torus T
d

states

‖∇f‖L2(Td) ≥ ‖f‖L2(Td)

for functions f ∈ H1(Td) with vanishing mean. A natural interpretation is that
a function with small derivatives cannot substantially deviate from its mean on a
set of large measure. This talk discussed a substantial improvement [S16].

Theorem 1. There exists a set ∅ 6= B ⊂ Td such that for every α ∈ B there is a
cα > 0 so that

‖∇f‖d−1
L2(Td)

‖ 〈∇f, α〉 ‖L2(Td) ≥ cα‖f‖dL2(Td)

for all f ∈ H1(Td) with mean 0. If d ≥ 2, then B is uncountable but Lebesgue-null.

The exponents are optimal. The proof is simple and based on elementary prop-
erties of Fourier series – we believe it to be of great interest to understand under
which conditions comparable inequalities exist on a general Riemannian manifold
(M, g) equipped with a suitable vector field. The entire problem seems to relate
to rather subtle dynamical properties of the vector field.

Figure 1. A well-mixing flow transports (dashed) every point
relatively quickly to a neighborhood of every other point.

It would be of great interest to understand to which extent such inequalities
can be true in a more general setup. It is not even clear to us whether comparable
inequalities hold in Lp(Td). Generally, for suitable vector fields Y on suitable
Riemannian manifolds (M, g) it seems natural to ask whether there exists an
inequality of the type

‖∇f‖1−δLp(M)‖ 〈∇f, Y 〉 f‖δLp(M) ≥ c‖f‖Lp(M)

for some δ > 0 and all f ∈ W 1,p(M) with mean 0. The parameter δ can be
expected to be related to the mixing properties of the flow – it is difficult to
predict what the generic behavior on a fixed manifold might be (say, for a smooth
perturbation of the flat metric on the torus).
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0.2. Integral operators. The second part of the talk was concerned with results
obtained jointly with Rima Alaifari (ETH), Lillian Pierce (Duke) [APS] and Roy
Lederman (Princeton) [LS]. A sample result from [LS] is as follows.

Theorem 2. There exists c > 0 such that for all f ∈ L2(R), normalized to
‖f‖L2[−1,1] = 1 with compact support in [−1, 1]

ˆ 1

−1

|f̂(ξ)|2dξ &
(
c ‖fx‖L2[−1,1]

)−c‖fx‖L2[−1,1]

.

A sample result for the Hilbert transform (from [APS]) is as follows.

Theorem 3. For disjoint intervals I, J ⊂ R, there exist c1, c2 > 0

‖Hf‖L2(J) ≥ c1 exp

(
−c2

‖fx‖L2(I)

‖f‖L2(I)

)
‖f‖L2(I).

We have similar results for the Laplace transform. The proofs are based on
Slepian’s ‘happy miracle’ (the kernel of the integral operator arising as TT ∗ com-
mutes with a simple differential operator). This cannot be reproduced at a greater
level of generality. However, since Fourier/Laplace/Hilbert are rather diverse in-
tegral operators, it seems natural to assume that results of this type hold at a
greater level of generality. We believe this question to be quite interesting.

0.3. Topological Bounds on Fourier coefficients. The final lower bound dis-
cussed was concerned with a recent inequality for elementary Fourier series that
arose in the study of elliptic partial differential equations and has applications for
level sets of the torsion function around the maximum [S17].

Theorem 4. Assume f ∈ C(T) has n sign changes. Then

n/2∑

k=0

| 〈f, sin kx〉 |+ | 〈f, cos kx〉 | &n
‖f‖n+1

L1(T)

‖f‖nL∞(T)

.

The inequality is sharp up to the value of the implicit constant (that only
depends on n). It can be understood as a generalization of the Sturm oscillation
theorem.
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Riesz transforms, square functions, and rectifiability

Xavier Tolsa

The n-dimensional Riesz transform of a Radon measure µ in Rd is defined by

Rµf(x) =

ˆ

x− y

|x− y|n+1
f(y) dµ(y).

The geometric characterization of measures µ such that the associated Riesz trans-
form Rµ of codimension 1 (i.e. n = d−1) is bounded in L2(µ) is a difficult problem
with applications to other questions, such as the study of harmonic measure or
the bilipschitz invariance of Lipschitz harmonic capacity.

When µ is Ahlfors-David regular, that is µ(B(x, r)) ≈ rn for all x ∈ suppµ
and all 0 < r < diam(suppµ), by the solution of the David-Semmes problem in
codimension 1 by Nazarov, Volberg and Tolsa [NToV], it turns out that Rµ is
bounded in L2(µ) if and only if µ is uniformly n-rectifiable. For more general
measures, this characterization is much more delicate and, for the moment, there
is not a complete solution.

A natural conjecture is the following: a Borel measure in Rn+1 satisfying the
growth condition

(1) µ(B(x, r)) ≤ c0 r
n for all x ∈ suppµ, r > 0,

is bounded in L2(µ) if and only if
(2)
ˆ

B

ˆ r(B)

0

βµ,2(x, r)
2 Θµ(x, r)

dr

r
dµ(x) ≤ C µ(B) for any ball B ⊂ Rn+1, r > 0,

where r(B) stands for the radius of B, and Θµ(x, r) and βµ,2(x, r) are the density
and David-Semmes coefficients respectively defined by

Θµ(x, r) =
µ(B(x, r))

rn

and

βµ,2(x, r) =

(
inf
L

1

rn

ˆ

B(x,r)

(
dist(y, L)

r

)2

dµ(y)

)1/2

,

where the infimum is taken over all n-planes L ⊂ Rn+1.
Using a corona decomposition from [AT], one can show that the condition (2) is

stable by bilipschitz mappings, and thus a positive solution to the conjecture above
would imply that that the L2 boundedness of codimension 1 Riesz transforms is
also stable by bilipschitz mappings. More precisely, this means that if ϕ : Rn+1 →
R
n+1 is bilipschitz and ϕ#µ stands for the image measure of µ by ϕ, then the

L2(µ) boundedness of Rµ (assuming (1)) implies the L2(ϕ#µ) boundedness of
Rϕ#µ. In turn, this yields the invariance of the class of removable singularities of
Lipschitz harmonic functions, by the results of [Vo].

Although the preceding conjecture is still open, there are several positive partial
results:
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• In the case n = 1 the conjecture was proved by Azzam and Tolsa in [AT],
by using a corona type decomposition and the connection between the
Cauchy kernel and Menger curvature.

• In the AD-regular case, Θµ(x, r) ≈ 1 µ-a.e. and the conjecture is equiv-
alent to saying that µ is uniformly n-rectifiable, by [DS]. Then the con-
jecture holds because of the solution of the David-Semmes problem in
codimension 1 in [NToV].

• In [G], Girela-Sarrion proved the “easy” direction of the conjecture. That
is, he showed that the condition (2) implies the L2(µ) boundedness of Rµ.
The main tool to prove this is the corona decomposition from [AT].

• In the recent work [JNT] by Jaye, Nazarov and Tolsa, it is shown that if one
assumes, not only that the Rµ is bounded in L2(µ), but also all the singular
integral operators with a convolution type Calderón-Zygmund kernel of the
form K(x) = ψ(|x|)x, so that |∇jK(x)| ≤ 1/|x|n+j for j = 0, 1, then the
condition (2) holds.
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Hamming cube and martingales

Alexander Volberg

Let us consider smooth functions M(x, y), x ∈ I ⊂ R, y ≥ 0, I is a convex subset
of R, such that

(1) M :=

(
Mxx +My/y Mxy

Mxy Myy

)
≤ 0, My ≤ 0.

Each such function gives rise to an “isoperimetric” inequality with gaussian mea-
sure γn on Rn:

(2)

ˆ

M(f, |∇f |)dγn ≤M(

ˆ

fdγn, 0).

Examples are:

(1) log-Sobolev M(x, y) = x ln x− y2/(2x),
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(2) Bobkov’s inequality with M(x, y) = −
√
[Φ′(Φ−1(x))]2 + y2,

Φ(x) = 1√
2π

´ x

−∞ e−s
2/2ds,

(3) Beckner’s inequality when M(x, y) = x3/2 − 3
8x

−1/2y2.

By saturating (1) to Monge-Ampère PDE detM = 0 one can seek for new or
improved isoperimetries. Example is improved Beckner’s inequality when

M(x, y) :=
1√
2
(2x−

√
x2 + y2)

√
x+

√
x2 + y2.

If one wants (2) on Hamming cube Qn = {−1, 1}n, one needs to replace (1) by its
correct discrete version. It turns out to be the so-called 2-point inequality

(3) 2M(x, y) ≥M(x+ a,
√
a2 + (y + b)2) +M(x− a,

√
a2 + (y − b)2).

All functions mentioned above satisfy (3). How to ensure that M satisfy (3)?

Theorem 1. If

min
q≥0

max
p

(px− qy + U(p, q)) = max
p

min
q≥0

(px− qy + U(p, q)) =:M(x, y)

and U satisfies the main inequality

(4) 2U(p, q) ≥ U(p+ a,
√
a2 + q2) + U(p− a,

√
a2 + q2),

then M satisfies the 2-point inequality (3).

Theorem 2. U satisfies (4) if and only if

(5) U(p, q) = sup{
ˆ 1

0

F (f(x),
√
q2 + S2f(x))dx :

ˆ 1

0

fdx = p}

for some F .

One can recognize in (5) the formula for Bellman function of martingales esti-
mates.

Counting factorisations of Xn

Jim Wright

(joint work with Julia Brandes and Jonathan Hickman)

We give a precise count of the number solutions to the following system of poly-
nomial congruences:

(1)

x1 + x2 + · · ·+ xn = 0
x21 + x22 + · · ·+ x2n = 0

... mod N
xn1 + xn2 + · · ·+ xnn = 0.

By the Chinese remainder theorem, it suffies to consider the case when N = ps

is a prime power. When p > n we see that by the Newton-Girard formulae, the
number of solutions to (1) is the sames as the number of solutions to the system
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(2)

x1 + x2 + · · ·+ xn = 0
x1x2 + · · ·+ xn−1xn = 0

... mod ps

x1 · · ·xn = 0

of polynomial congruences given by the n elementary symmetric functions e1 =
x1 + · · ·+ xn, . . . , en = x1x2 · · ·xn of x1, . . . , xn. Since

(X − x1) · · · (X − xn) = Xn − e1X
n−1 + · · · (−1)nen,

we see that the number of solutions to (2) counts the number of factorisations of
the monomial Xn = (X − x1) · · · (X − xn) in the ring Z/psZ.

The problem of counting solutions to (1) is a special case of counting the solu-
tions (x1, . . . , xn) to

(3)

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn
x21 + x22 + · · ·+ x2n = y21 + y22 + · · ·+ y2n

... mod N
xn1 + xn2 + · · ·+ xnn = yn1 + yn2 + · · ·+ ynn

for a given set of integers y1, . . . , yn which we currently do not know how to do.
The number of solutions to (3) correspond to counting the number of factorisations
of a general polynomial P (X) = (X−y1) · · · (X−yn) in the coefficient ring Z/NZ

which in turn arises from the study of the Fourier Resriction Problem along curves
in the setting of local fields.

Our method giving a precise count of the number of solutions to (1) uses an ele-
mentary induction on scales argument, a basic technique from euclidean harmonic
analysis. A simple lifting argument shows that (1) with N = ps is equivalent to
the bounding the Haar measure of the sublevel set

{
x = (x1, . . . , xn) ∈ Z

n
p : |P1(x)|, . . . , |Pn(x)| ≤ p−s

}

in the p-adic ring Zp. Here | · | is the p-adic valuation and Pj(x) = xj1 + · · ·+ xjn
are the symmetric power polynomials.

Our arguments are elementary and in particular do not use any special proper-
ties of the p-adic valuation |·| or Haar measure on Zp. Consequently the arguments
also give precise bounds on the Lebesgue measure of the euclidean sublevel set

{
x = (x1, . . . , xn) ∈ [−1, 1]n : |P1(x)|, . . . , |Pn(x)| ≤ δ

}

where again Pj(x) = xj1 + · · ·+ xjn.
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A discretized incidence theorem in the plane

Joshua Zahl

(joint work with Nets Katz)

We prove an incidence theorem for points and lines in the plane that satisfy certain
non-concentration conditions. This is an ingredient in the proof that every Kakeya
set in R3 has Hausdorff dimension at least 5/2+ǫ for some absolute constant ǫ > 0.

Square functions for bi-Lipschitz maps and directional operators

Pavel Zorin-Kranich

(joint work with Shaoming Guo, Francesco Di Plinio, and Christoph Thiele)

Let v : R
2 → S1 be a 1/100-Lipschitz unit vector field. It is a long-standing

open problem, attributed to Zygmund, whether the associated directional maximal
operator

Mvf(x) := sup
0<r<1

1

r

ˆ r

−r
f(x+ v(x)t)dt

is bounded on any Lp(R2), 1 < p <∞. The Lipschitz regularity and the restriction
to small scales are necessary, as can be seen by considering a vector field pointing
into a Perron tree (the arrangement of triangles used to construct a Kakeya set,
see e.g. [S]):

A fruitful line of investigation haas been breaking the rotational symmetry of
the problem. Indeed, decomposing S1 into small arcs V and considering the set
X := {x ∈ R

2 : v(x) ∈ V } on which v points in the direction V , one can extend
v|X to a Lipschitz vector field on R2 pointing in the direction V by Kirszbraun’s
extension theorem. Hence without loss of generality one may assume that the
vector field is almost horizontal.

A singular integral version of Zygmund’s problem is attributed to Stein. The
question is whether the directional Hilbert transform

Huf(x, y) := p. v.

ˆ +1

−1

f(x+ r, y + u(x, y)r)
dr

r

is bounded on any Lp(R2) space, where u : R2 → [−1, 1] is 1/100-Lipschitz (here
we have used the reduction to a small arc of directions).

Let ψ be a Schwartz function on R such that

1±[99/100,103/100] ≤ ψ̂ ≤ 1±[98/100,104/100].

Let Ψ be another Schwartz function on R such that Ψ̂ is supported on±[1, 101/100].
Let Ptf := ψt ∗ f be the Littlewood–Paley operators associated to ψ, where
ψt(x) = t−1ψ(t−1x). It has been proved by Lacey and Li [LL] that Hu ◦ Pt is
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bounded on Lp uniformly in t ∈ (0,∞), even if the function u is merely measur-
able.

They have also shown that L2 estimates for Hu ◦ Pt imply an L2 estimate for
Hu provided that u is of the clss C1+ǫ. We have replaced [GPTZ] this regularity
hypothesis by a Lipschitz hypothesis, which is sharp in view of the Perron tree
example. This has been made possible by a one dimensional Littlewood-Paley
diagonalization estimate for bi-Lipschitz maps:

Theorem 1. Let A : R → R be a Lipschitz function with ‖A‖Lip ≤ 1/100 and
consider the change of variable TAf(x) := f(x+A(x)). Then

‖
∑

t∈2Z

|(1 − Pt)TA(Ψt ∗ f)|‖p .p,ψ,Ψ ‖A‖Lip‖f‖p, 1 < p <∞.

If the sum over t is replaced by a square sum, then the estimte would follow from
standard Littlewood–Paley theory and the Fefferman–Stein vector-valued maximal
inequality. When the Lipschitz norm of A becomes too large, then in general TA
fails to be a bijection and the estimate of the theorem breaks down. Also, the
Fourier support of Ψ is necessarily smaller than that of ψ.

In the case of u that is Lipschitz in the second variable, Theorem 1 allows
us to reduce the Lp boundedness of Hu essentially to that of its diagonal part∑

t∈2Z PtHuPt. Using the ideas in [BT] this leads to the following conditional
results that generalize those obtained in [LL, BT].

Theorem 2. Let u : R2 → R be such that u(x, ·) has Lipschitz constant ≤ 1/100
for almost every x ∈ R. Assume further that

(1) ∀f sup
0<t<t0

‖Hu(Ψt ∗2 f)‖p0 . ‖f‖p0

for some 1 < p0 ≤ 2 and t0 > 0, where ∗2 denotes convolution in the second
variable. If p0 = 2, then

(2) ‖Huf‖2 . ‖f‖2.
If 1 < p0 < 2, then

(3) ‖Huf‖p . ‖f‖p, 1 +
1

3− p0
< p <∞.
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