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Introduction by the Organisers

The workshop Partial differential equations, organised by Camillo De Lellis
(Zürich), Peter Topping (Warwick) and Rick Schoen (Irvine) was held July 30
- August 5, 2015. The meeting was well attended by 52 participants, including 8
females, with broad geographic representation. The program consisted of 21 talks
and left sufficient time for discussions.

There were several contributions concerning nonlinear PDE arising in geomet-
ric flows. The study of solitons, i.e. self-similar solutions, was a recurring theme.
Various contributions covered their existence, their uniqueness (once their asymp-
totic behaviour has been prescribed) and the elliptic variational problems that
they satisfy. In this latter direction, one talk presented the solution of a conjec-
ture by Colding, Ilmanen, Minicozzi and White on hypersurfaces minimizing the
entropy that arises most naturally in the study of mean curvature flow.

Several of the talks were related to the issue of understanding singularities in
flows, including understanding when flows can be continued uniquely beyond a
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singular time. New work on Ricci flow and its applications was presented, advanc-
ing our understanding of manifolds with lower curvature bounds. Several further
applications of flows were given, including to the study of isoperimetric inequali-
ties and to the min-max process. This latter topic was the focus of further talks,
alluded to below.

A number of experts in geometric measure theory have attended the workshop.
Here new results were presented in the existence and regularity theory of minimal
and constant mean curvature surfaces, on the structure of the singular sets and
the uniqueness of minimizers of variational problems and on classical measure-
theoretic questions. Most notably, two talks addressed the solutions of two long-
standing open problems: the existence of closed hypersurfaces with any assigned
constant mean curvature in general Riemannian manifolds up to dimension 7 and
the characterization of absolutely continuous measures in the Euclidean space
through the validity of Rademacher’s Theorem.

Two talks were concerned with problems in conformal geometry. One of these
considered various sharp properties of eigenvalues of the Laplacian and the struc-
ture of nodal sets. In a further talk we were updated on recent progress on the
study of eigenvalues and eigenfunctions on closed surfaces, focussing on their ex-
tremal cases.

In addition to the variational problems described above, we heard about recent
progress on the Willmore functional and the harmonic map functional.

Finally, a group of three talks dealt with metric measure spaces, describing
recent results in the theory of calculus on such spaces, curvature bounds and
isoperimetry.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Yannick Sire in the “Simons Visiting Professors” pro-
gram at the MFO.
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Abstracts

On the Converse of Rademacher Theorem and the rigidity of
mesaures in Lipschitz differentiability spaces.

Guido De Philippis

Rademacher’s Theorem asserts that a Lipschitz function f ∈ Lip(Rd,Rℓ) is diff-
ferentiable Ld-almost everywhere. A natural question, which has attracted the
attention of several researchers, is to understand how sharp is this result. Namely:

Question 1 (Strong converse of Rademacher Theorem). Given a Lebesgue null set
E ⊂ R

d is it possible to find some ℓ ≥ 1 and a Lipschitz function f ∈ Lip(Rd,Rℓ)
such that f is not differentiable in any point of E?

Question 2 (Weak converse of Rademacher Theorem). Let ν ∈ M+(R
d) be a

positive Radon measure such that every Lipschitz function is differentiable ν-almost
everywhere. Is ν necessarily absolutely continuous with respect to the Lebesgue
measure?

Clearly a positive answer to Question 1 implies a positive answer to Question 2.
Let us also stress that in answering Question 1 an important role is played by the
dimension ℓ of the target set , see point (2) below, while this does not have any
influence for what concern Question 2, see [4, Remark 7.2].

We refer to [1, 2, 4] for a detailed account on the history of these problems and
here we simply record the following facts:

(1) For d = 1 a positive answer to Question 1 is due to Zahorski [16].
(2) For d ≥ 2 there exists a null set E such that every Lipschitz function

f : Rd → Rd−1 is differentiable in at least one point of E. This is was
proved by Preiss in [13] for d = 2 and later extended by Preiss and Speight
in [14] to every dimension.

(3) For d = 2 a positive answer to Question 1 has been given by Alberti,
Csörnyei and Preiss as a consequence of their deep result concerning the
structure of null sets in the plane, [1, 2, 3]. Namely they show that for
every null set E ⊂ R2 there exists a Lipschitz function f : R2 → R2 such
that f is not differentiable at every point of E.

(4) For d ≥ 2 an extension of the result described in point (3) above (i.e. that
for every null set E ⊂ R2 there exists a Lipschitz function f : Rd → Rd

such that f is not differentiable at every point of E) has been announced
in 2011 by Csörnyei and Jones, [10].

Rademacher Theorem allows to easily prove several rigidity results by “trans-
lating” them at a linear level. For example it is an immediate consequence that
there is no bi-Lipschitz map from Rd to Rℓ if ℓ 6= d (this is also a consequence of
the much harder to prove “Invariance of the dimension” theorem).
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Following this line of reasoning Pansu [12] prove the analogous of Rademacher
Theorem between Carnot Groups, endowed with their Carnot Caratheodory metric
and Haar measure, with the explicit intention of showing non-imbedding results.

This theory has been further developed by Cheeger [6] which introduced the so
called Lipschitz differentiability spaces (see also [11]), a particular class of metric
measure spaces on which it is possible to develop a first order calculus and to
differentiate Lipschitz functions with respect to suitable charts, more precisely we
have the following:

Definition 1. A metric measure space (X, ν, ρ) is a Lipschitz differentiability
space if there a exists a family {(Ui, φi)}i∈N of Borel charts such that

(i) Ui ⊂ X is a Borel set and X =
⋃

i Ui up to a µ-negligible set,

(ii) φi : X → Rd(i) is Lipschitz
(iii) For every Lipschitz map f : X → R at ν-almost every x0 ∈ Ui there exists

a unique vector df(x0) ∈ Rd(i) with

lim sup
x→x0

|f(x)− f(x0)− df(x0) · (φ(x) − φ(x0))|
ρ(x, x0)

= 0.

In analogy with the converse of Rademacher Theorem in [6] raised he following
conjecture:

Question 3. Let (X, ν, ρ) be a Lipschitz differentiability space and let (U, φi) be
a a chart, then

(φi)♯(νxUi) ≪ Ld(i).

It has been known for several years that a positive answer to question 2 wipuld
have also given a positive answer to Cheeger’s conjecture 3,see [5, 9, 11, 15] and [7].

The aim of the talk is to provide a positive answer to Question 2, more precisely
we have the following theorem:

Theorem 2 (De Philippis-Rindler). Let ν ∈ M+(R
d) be a positive Radon measure

such that every Lipschitz function is differentiable ν-almost everywhere, then ν ≪
Ld.

Quite surprisingly the proof of the above theorem relies on a new structural
result concerning the singular part of PDE-constrained measures. This struc-
tural theorem is the main result in [8] and beside Theorem 2 it has also other
consequences concerning the structure of functions of Bounded Variations and of
Bounded Deformation.

The link between the result in [8] and Theorem 2 is due the beautiful theory
developed by Alberti and Marchese in [4]. More precisely they show the following:

Theorem 3 (Alberti-Marchese). . Let ν ∈ M+(R
d) be a positive Radon measure,

then the following are equivalent

(i) Every Lipschitz function is differentiable ν-a.e.
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(ii) There exists d R
d-valued measures µ1, . . . , µd ∈ M(Rd;Rd) with measure

valued divergence div µi ∈ M(Rd;R), such that ν ≪ |µi| for 1 = 1, . . . , d
and

(1) span

{
dµ1

d|µ1|
(x), . . . ,

dµd

d|µd|
(x)

}
= R

d for ν a.e. x.

Hence in order to prove Theorem 2 It is enough to show the following Lemma:

Lemma 4. Let µ1, . . . , µd ∈ M(Rd;Rd) Rd-valued measures such that div µi ∈
M(Rd;R), then for |µ1|s + · · ·+ |µd|s almost every point

dim span

{
dµ1

d|µ1|
(x), . . . ,

dµd

d|µd|
(x)

}
≤ (d− 1).

which is easily follows from the main result in [8], see Corollary 1.13 there.
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Nodal sets and negative eigenvalues in conformal geometry

Dmitry Jakobson

This is an extended abstract of the talk Nodal sets and negative eigenvalues in
conformal geometry at a conference on PDE in Oberwolfach on July 31, 2017.
The talk was based on joint work Yaiza Canzani, Rod Gover, Raphaël Ponge,
Asma Hassannezhad and Michael Levitin; the work in graph theory was joint with
Thomas Ng, Matt Stevenson and Mashbat Suzuki. The results appeared in the
following papers:

• [2] Y. Canzani, D. Jakobson, R. Gover and R. Ponge. Conformal invariants
from nodal sets. I. Negative eigenvalues and curvature prescription. Int. Math.
Res. Not. (9):2356-2400, 2014. With an appendix by R. Gover and A. Malchiodi.

• [3] Y. Canzani, D. Jakobson, R. Gover and R. Ponge. Nullspaces of Con-
formally Invariant Operators. Applications to Qk-curvature. Electronic Research
Announcements in Mathematical Sciences, Vol. 20 (2013), pp. 43–50.

• [5] R. Gover, A. Hassannezhad, D. Jakobson andM. Levitin. Zero and negative
eigenvalues of the conformal Laplacian. Jour. of Spectral Theory 6 (2016), 793–
806.

• [7] D. Jakobson, T. Ng, M. Stevenson and M. Suzuki. Conformally covariant
operators and conformal invariants on weighted graphs. Geom Dedicata (2015)
174:339?357.

The current abstract is an updated version of an extended abstract of a related
talk given at ICMAT in 2013.

Let M be a compact Riemannian manifold of dimension n ≥ 3, and let g be
a Riemannian metric on M . We study eigenfunctions of conformally covariant
operators, also called GJMS operators, see [6].

For any positive integer k if n is odd, or for any positive integer k ≤ n
2 if n is

even, there is a covariant, formally self-adjoint, differential operator Pk,g of order
2k such that

(i) Pk = ∆k
g + lower order terms.

(ii) If g1 = e2ωg is another metric in the conformal class [g], then Pk transforms
as follows:

(1) Pk,g1 = e−(n
2
+k)ωPk,ge

(n
2
−k)ω

The operator P1,g := ∆g+
n−2

4(n−1)Rg is called the Yamabe operator; here Rg denotes

the scalar curvature of g. The operator P2,g is called the Paneitz operator.
The nullspace kerPk,g is the subspace of L2(M) consisting of eigenfunctions u

of Pk,g with eigenvalue 0: {u ∈ L2(M) : Pk,gu = 0}. It follows easily from (1) that

(2) kerPk,g1 = e(k−
n
2
)ω kerPk,g0

The following results follow from (2).

Proposition 1. Let M be a compact manifold of dimension n ≥ 3, and let g be a
Riemannian metric on M .

• The dimension dimkerPk,g is an invariant of a conformal class [g].
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• The number of negative eigenvalues of Pk,g is conformally invariant.
• If n is even and k = n/2, then kerPk,g itself is conformally invariant.
• If dimkerPk,g ≥ 1, then the nodal set and nodal domains of any nonzero
eigenfunction u ∈ Pk,g are invariants of [g].

• If dimkerPk,g ≥ 2, then (non-empty) intersections of nodal sets of eigen-
functions in kerPk,g are conformally invariant, and hence so are their
complements.

Now assume that dimkerPk,g = m ≥ 2. Let u1,g, · · · , um,g be a basis of kerPk,g .

Set N :=
⋂

1≤j≤m u−1
j,g(0) and define Φ : M \ N → RP

m−1 by

Φ(x) := (u1,g(x) : · · · : um,g(x)) ∀x ∈ M \ N .

Note that the set N is independent of the choice of the basis u1,g, · · · , um,g, but
Φ depends on the choice of basis only up to the right action of PGLm(R).

Proposition 2. The class of Φ modulo the right action of PGLm(R) is an invari-
ant of the conformal class [g].

For even n and k = n
2 , the nullspace of Pn

2
always contains the constant func-

tions, so we may assume that u1,g(x) = 1. The counterpart of Φ in that case can
be defined by

Ψ(x) := (u2,g(x), · · · , um,g(x)) ∀x ∈ M,

Proposition 3. The class of Ψ modulo the right action of Rm−1 ⋉ PGLm−1(R)
is an invariant of [g].

Denote by dVg(x) the Riemannian measure defined by g.

Proposition 4. Assume M is compact and k < n
2 . Let u ∈ kerPk,g Then the

integral

∫

M

|ug(x)|
2n

n−2k dVg(x) is an invariant of [g].

The following result was proved in [5]:

Theorem 5. Let M be a compact manifold of dimension n ≥ 3. For an open and
dense subset of metrics g on M , 0 is not an eigenvalue of the conformal Laplacian
P1,g on M .

It would be interesting to prove a counterpart for the operators Pk,g, k ≥ 2.
We next discuss metrics g for which Pk,g has negative eigenvalues. For m ∈ N0,

denote by Gk,m the set of metrics g on M such that Pk,g has at least m negative
eigenvalues (counted with multiplicity). One can show that Gk,m is an open in
C2k-topology; and that if g ∈ Gk,m, then [g] ⊂ Gk,m. It follows from this that the
number of negative eigenvalues defines a partition of the set of conformal classes.
We also observe that by results of Kazdan-Warner [8] G1,0 consists of all metrics
that are conformally equivalent to a metric with nonnegative scalar curvature.

The following result can be deduced from Lokhamp [9], and was also proved in
[4]:
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Theorem 6. Assume M compact. Then for any m, there is a metric g on M for
which the Yamabe operator P1,g has at least m negative eigenvalues.

It follows that there exist infinitely many conformal classes of metrics on M for
which the nullspace of P1,g has dimension ≥ 1, and thus Propositions 1 and 2 all
apply.

It would be interesting to obtain similar results for Pk,g , k ≥ 2. For k = 2, we
can prove the following

Theorem 7. Assume M = Σ × Σ, where Σ is a compact surface of genus ≥ 2.
Then, for any m, there is a metric g on M for which the Paneitz operator P2,g

has at least m negative eigenvalues.

There is a similar result on compact Heisenberg manifolds.
In addition, as an application of Courant’s nodal domain theorem, we obtain

Theorem 8. Let g be a metric such that the Yamabe operator P1,g has exactly
m negative eigenvalues. Then any eigenfunction u ∈ kerP1,g has at most m + 1
nodal domains.

We next mention an application to the scalar curvature prescription problem;
we refer to [2, 3] for more details.

Theorem 9. Let 0 6≡ u ∈ kerP1,g and let Ω be a nodal domain of u. Then, for
any metric g1 ∈ [g], the scalar curvature Rg1 cannot be everywhere nonnegative on
Ω.

Related results appear in [1].
In conclusion, we remark that in [7], the authors defined conformally covariant

operators on weighted graphs; the definition of conformally equivalent metrics was
given in the Computer Science literature related to image processing. Examples of
conformally covariant operators include the adjacency matrix, the incidence matrix
(discrete version of the gradient), and the edge Laplacian; the vertex Laplacian is
in general not conformally covariant. The authors also established graph-theoretic
analogues of several results in [2, 3], see [7] for details.
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Mean curvature flow and entropy

Lu Wang

(joint work with Jacob Bernstein)

The entropy of a hypersurface, Σ, in Rn+1 is

λ[Σ] = sup
(x0,t0)∈Rn+1×R+

(4πt0)
n
2

∫

Σ

e−
|x−x0|2

4t0 dHn,

where Hn is the n-dimensional Hausdorff measure. It was introduced by Colding
and Minicozzi [6] in their study of generic properties of mean curvature flow. By
Huisken’s monotonicity formula, entropy is non-increasing under mean curvature
flow. It is known that hyperplanes have the lowest entropy among all hyper-
surfaces. It is a natural question that which hypersurface has the second lowest
entropy. Suggested by the dynamical approach of Colding and Minicozzi, they
together with Ilmanen and White conjectured, in [5], that

Conjecture 1. For 2 ≤ n ≤ 6, if Σ is a closed hypersurface in Rn+1, then
λ[Σ] ≥ λ[Sn], and the equality holds if and only if Σ is a round sphere.

First, J. Bernstein and myself used a weak mean curvature flow to prove Con-
jecture 1 – cf. [1]. Recently, J. Zhu [9] has generalized this conjecture to all
dimensions. Next, we established a topological rigidity for closed hypersurfaces of
small entropy in dimensions 2 and 3 – cf. [2, 3].

Theorem 1. For n = 2, 3, if Σ is a closed hypersurface in Rn+1 and λ[Σ] ≤
λ[Sn−1], then Σ is diffeomorphic to S

n.

Furthermore, we prove a quantitative Hausdorff stability theorem for round
2-sphere under perturbations of entropy – cf. [4].

Theorem 2. There is a universal constant C so that if Σ is a closed surface in
R3, there is a ρ > 0 and y ∈ R3 such that

distH(Σ, y + ρS2) < Cρ(λ[Σ]− λ[S2])1/8.

Here distH denotes the Hausdorff distance.

One of the key ingredients in the proof of Theorem 2 is a new local curvature
estimate for mean curvature flow of small entropy, which is a variant of Brakke’s
local regularity theorem of White [8]. Very recently, using a complete different
method, S. Wang [7] proved a qualitative Hausdorff stability for round n-sphere
under perturbations of entropy for all n.
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Structure of the singular sets of Q-valued functions

Daniele Valtorta

(joint work with Camillo de Lellis, Andrea Marchese and Emanuele Spadaro)

Dirichlet minimizing Q-valued maps have been introduced by Almgren in order to
model the branching singularities of minimal surfaces in codimension greater or
equal than 2. In order to define them precisely, we introduce AQ(R

n) as the set of
unordered Q-tuples of points in Rn. In other words P ∈ AQ(R

n) can be written
as

P =

Q∑

i=1

JpiK , pi ∈ R
n ,

where JpiK is just the Dirac delta measure at pi. This space has a natural distance
function, and one can define the space of W 1,2 functions with values in AQ(R

n)
and so also Dirichlet energy and Dirichlet minimizers.

Regular points of these functions are those points where it is possible to write the
function as the sum of Q separate single-valued harmonic functions. In particular,
x is regular for u if there exists r > 0 such that for all y ∈ Br(x)

u(y) =

Q∑

i=1

δui(x) ,

where ui are harmonic functions and either ui(x) 6= uj(x), or ui ≡ uj . Here δx
is the Dirac mass at the point x. The singular set S(u) is the complement of the
regular set, so for all x ∈ S(u), at least two valued of the function “collapse” onto
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each other. An interesting subset of the singular set is the set where all the values
of the function collapse:

∆Q = {x ∈ S(u) s.t. u(x) = Qδp for some p ∈ R
n} .

As an example of singularity for such maps, one can consider the two-valued map
u : C → C, u(z) = z1/2. The origin is a singular point for u.

Although singularities are what makes these functions interesting objects (oth-
erwise in some sense they would be simply sums of classical well-behaved harmonic
functions), we don’t want the singular set to be too “wild”. The result we prove in
this work is that the singular set S(u) is m− 2 rectifiable, and moreover we prove
the uniform volume estimates

Vol
(
Br

(
∆Q ∩B1(p)

))
≤ C(m,Q,N(0, 2))r2 .

Here N(x, r) denotes Almgren’s frequency, which is defined as

N(x, r) =
r
∫
Br(x)

|∇u|2
∫
∂Br(x)

|u|2 .

This object and its properties, along with a Reifenberg-type theorem, are the main
tool used to prove our estimate. In particular, N can be used to control how much
the map u is close to being homogeneous of a certain degree, in the sense that

∫

B2(0)\B1/2(0)

|z ·Du(z)−N(0, |z|)u(z)|2 dz ≤ C(N(0, 4)−N(0, 1/4)) .(1)

Note that if z · ∇u(z) = Hu(z) for all z ∈ Rm, then u is H-homogeneous wrt the
origin.

This technique can be adapted to prove other singular set estimates in GMT.
For example, in [3] Focardi and Spadaro show that the free boundary in thin
obstacle problems is rectifiable with uniform volume bounds. Another example is
given by the study of liquid crystals carried out by Onur Alper in [1], building on
a work by himself, Robert Hardt and Fang-Hua Lin.

Moreover, this technique is based on the quantitative stratification developed
in [4] to study the singularities of harmonic maps between Riemannian manifolds.
Aside from technical details, the main difference between [4] and this work is that
while the tangent maps of harmonic maps are always 0-homogeneous, for Q-valued
harmonic functions the tangent maps have variable degree of homogeneity. This
extra complication requires a special estimate on the variation of the frequency
N(x, r) as a function of x.
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Applications of mean curvature flow

Robert Haslhofer

(joint work with Reto Buzano, Or Hershkovits, Dan Ketover, Mohammad Ivaki)

We discussed some recent topological, geometric and analytic applications of mean
curvature flow.

To put the topological application into context, consider the moduli space of
embedded n-spheres in Rn+1, i.e. the space M(Sn) = Emb(Sn,Rn+1)/Diff(Sn)
equipped with the smooth topology. By a theorem of Smale [15] the space M(S1)
is contractible, and by Hatcher’s solution of the Smale conjecture M(S2) is also
contractible. For n ≥ 3, there are many non-vanishing homotopy groups, see
e.g. [3]. In the view of the topological complexity of M(Sn) for general n, it is
an interesting question whether one can still derive some positive results on the
space of embedded n-spheres under some curvature conditions. Motivated by the
topological classification result from [10], we consider the subspace M2-conv(S

n) ⊂
M(Sn) of 2-convex embedded n-spheres in Rn+1, i.e. we impose the condition that
the sum of the two smallest principal curvatures is positive. We proved:

Theorem 1 (Buzano-Haslhofer-Hershkovits [2]). The moduli space M2-conv(S
n)

is path-connected in every dimension n.

Our proof uses mean curvature flow with surgery [8, 10], a connected sum op-
eration for 2-convex hypersurfaces, and a scheme inspired by the work of Marques
on the moduli space of positive scalar curvature metrics on the three-sphere [13].

For the geometric application, recall first that by a classical theorem of Luster-
nik-Schnirelmann [5, 12] every (S2, g) contains at least 3 simple closed geodesics.

Moving up one dimension, one might hope to prove that any (S3, g) contains
at least 4 embedded minimal two-spheres. The existence of at least 1 embedded
minimal two-sphere was established by Simon-Smith [14]. While there are indeed 4
cohomology classes α, . . . , α4 in the space of embedded two-spheres, the the major
difficulty is the phenomenon of multiplicity in min-max theory. Namely, it could
happen that the min-max spheres associated with the second, third and fourth
family, just give the Simon-Smith sphere counted with higher integer multiplicities.

Using combined efforts from min-max theory and mean curvature flow we
proved:

Theorem 2 (Haslhofer-Ketover [7]). Any (S3, g) equipped with a bumpy metric
contains at least 2 embedded minimal two-spheres. More precisely, exactly one of
the following alternatives holds:
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(1) (S3, g) contains at least 1 stable embedded minimal two-sphere, and at least
2 embedded minimal two-spheres of index one.

(2) (S3, g) contains no stable embedded minimal two-sphere, at least 1 embed-
ded minimal two-sphere Γ1 of index one, and at least 1 embedded minimal
two-sphere Γ2 of index two. In this case, |Γ2| < 2|Γ1|.

We note that White [16] previously proved the existence of at least 2 minimal
two-spheres in the special case that (S3, g) has positive Ricci curvature.

Illustrative examples for Theorem 2 are dumbbells for case (1) and ellipsoids
for case (2). The main way how mean curvature flow enters the proof is via
the following theorem (of independent interest) which establishes the existence of
smooth mean convex foliations in three-manifolds:

Theorem 3 (Haslhofer-Ketover [7]). Let D ⊂ (M3, g) be a smooth three-disc with
mean convex boundary. Then exactly one of the following alternatives holds true:

(1) There exists an embedded stable minimal two-sphere Γ ⊂ Int(D).
(2) There exists a smooth foliation {Σt}t∈[0,1] of D by mean convex embedded

two-spheres.

Namely, if (S3, g) contains no stable embedded minimal two-sphere then we can
use Theorem 3 to produce a foliation {Σt}t∈[−1,1] of (S

3, g) such that the Simon-
Smith sphere sits in the middle as Σ0 and such that |Σt| < |Σ0| for all t 6= 0. We
can then construct a suitable 2-parameter sweepout {Σs,t} detecting α2 with

(1) sup
s,t

|Σs,t| < 2|Γ1|.

Roughly speaking, Σs,t looks like Σs connected to Σt along a small neck, which we
open up near (s, t) ≈ (0, 0), using the catenoid estimate from [11]. The estimate
(1) ensures that min-max for Σs,t doesn’t give Γ1 with multiplicity two.

The proof of Theorem 3 is again based on mean curvature flow with surgery,
refining the methodology from the proof of Theorem 1.

Finally, for the analytic application we consider the Allen-Cahn equation

(2) ∆u =
1

ǫ2
u(1− u2)

on any bumpy (S3, g). The recent work of Gaspar-Guaraco [4] establishes the
existence of solutions of arbitrarily large index as ǫ becomes smaller. In a different
direction, we examine solutions of low index / with a simple interface, and prove:

Theorem 4 (Haslhofer-Ivaki [6]). The Allen-Cahn equation (2) on any bumpy
(S3, g) has at least 4 solutions with spherical interface and index at most two.
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Recent advances about calculus on RCD spaces

Nicola Gigli

Aim of the talk has been to give a survey over recent developments of calculus on
RCD spaces. The theory is built upon the concept of Sobolev space W 1,2(X, d,m)
of real valued functions on a metric measure space (X, d,m), as introduced by
Cheeger in [6] (see also [17], [1]). Such Sobolev space is always a Banach space
and to each f ∈ W 1,2(X) is associated a non-negative function |Df | ≥ 0, called
minimal weak upper gradient, playing the role of the modulus of the distributional
differential. Adapting ideas of Weaver ([19]) one can see |Df | as the ‘pointiwise
norm’ of a suitably defined 1-form by introducing the concept of L2-normed L∞-
module. These are Banach spaces (M, ‖ ·‖M ) which are also modules over the ring
of L∞(X,m)-functions and for which there is a map | · | : M → L2(X,m), called
pointwise norm, such that

|v| ≥ 0 |fv| = |f | |v| ‖v‖2M =

∫
|v|2 dm

for every v ∈ M , f ∈ L∞.
It turns out ([9], [11]) that there exists a unique, up to unique isomorphism,

couple (L2(T ∗X), d) with L2(T ∗X) being a module in the sense just described and
d : W 1,2(X) → L2(T ∗X) linear and such that

i) |df | = |Df | m-a.e. for every f ∈ W 1,2(X),
ii) L∞-linear combinations of {df : f ∈ W 1,2(X)} are dense in L2(T ∗X).
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Such L2(T ∗X) will be called cotangent module and its elements L2 1-forms, while
d is called differential. By duality and in a quite natural way, one can introduce
the tangent module L2(TX) and under reasonable rectifiability assumptions such
tangent module is canonically isomorphic to the space of ‘L2-sections of the bundle
obtained by considering pointed-Gromov-Hausdorff limits of rescaled spaces’ ([12]).

In arbitrary metric measure spaces it seems hard to go beyond the first order
theory, but on RCD(K,N) spaces a reasonably well-developed second-order calcu-
lus can be developed. Recall that, leaving aside some technicality, a RCD(K,N)
space can be defined as a metric measure space such that W 1,2(X) is Hilbert and
the Bochner inequality

(1) ∆
|∇f |2
2

≥ (∆f)2

N
+ 〈∇f,∇∆f〉+K|∇f |2

holds in the appropriate weak sense ([2], [10], [3], [8], [4]). Starting from this defi-
nition and using the self-improvement properties of Bochner’s inequality pioneered
by Bakry ([5]) it is possible to show that it also holds

(2) ∆
|X |2
2

≥ |∇X |2HS − 〈X, (∆HX
♭)♯〉+K|X |2

again in the appropriate weak sense. Notice that for X = ∇f , (2) reduces to (1)
with the additional non-negative contribution |Hessf |2

HS
on the right hand side.

Here the language of L2-normed modules provides natural spaces where objects
like the Hessian or the covariant derivative belong, and one of the effects of the
improved formula (2) is the bound

(3)

∫
|Hessf |2HS dm ≤

∫
(∆f)2 −K|∇f |2 dm

obtained integrating (2) for X = ∇f . Since functions with gradient and Laplacian
in L2 are easy to build using the heat flow, (3) grants that there are ‘many’
functions with Hessian in L2. Starting from this, it will not be hard to build
a second order calculus and an indication of the novelty of the theory is in the
fact that one can prove that the exterior differential is a closed operators on the
space of k-forms for any k ∈ N, whereas previously known results only covered
the case k = 0 ([6], [19], [7]). In particular, quite natural versions of the de
Rham cohomology and of the Hodge theorem can be provided. An example of
link between this theory and the geometry of the space is the following result ([9],
[13]), which generalizes a classical theorem of Bochner:

Theorem 1. Let (X, d,m) be a RCD(0, N) space. Then the dimension of the first
cohomology group is ≤ N . If it is exactly N , then the space is a flat torus.

In a different direction we remark that the Hessian operator, which is introduced
by means reminiscent of Γ-calculus, describes second variations along geodesics in
the following sense ([14]):

Theorem 2. Let (X, d,m) be a compact RCD(K,N) space, N < ∞, f ∈ H2,2(X)
and (µt) a W2-geodesic made of measures with uniformly bounded densities. Then
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the map t 7→
∫
f dµt is C2([0, 1]) and it holds

d2

dt2

∫
f dµtt=0 =

∫
Hess(f)(∇ϕ,∇ϕ) dµ0,

where ϕ is a Kantorovich potential from µ0 to µ1.

Finally we notice that these calculus tools allow to define the Ricci curvature
as:

Ric(X,X) := ∆
|X |2
2

− |∇X |2HS + 〈X, (∆HX
♭)♯〉.

It turns out that Ric(X,X) is a measure-valued tensor which controls the geome-
try of the space ([9], [15]) and behaves well under perturbations of the underlying
space ([18], [16]).
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Uniqueness of mean curvature flow through (some) singularities

Or Hershkovits

(joint work with Brian White)

It is an old idea in geometric analysis, and PDEs in general, to separate the
questions of existence and regularity; one is often led to defining a weak notion of
solution, the existence of which can be shown by one set of ideas, while studying
its properties may require different methods. In the study of mean curvature flow,
one very useful notion of weak solution is that of the level set flow, introduced
numerically in [7] and developed rigorously in [2, 1].

Given a closed set X ⊆ Rn+1, its level set flow t ∈ [0,∞) 7→ Ft(X) is a
one-parameter family of closed sets starting at F0(X) = X and satisfying the
avoidance principle: Ft(X) ∩ M(t) = ∅, provided t ∈ [a, b] 7→ M(t) is a smooth
mean curvature flow with [a, b] ⊆ [0,∞) and with M(a)∩Fa(X) = ∅. Indeed, the
level set flow is fully characterized as the maximal family of sets satisfying the two
properties above [6, 5, 11].

Ideally, weak solutions should coincide with smooth solutions whenever the
latter exist. In our case, if t ∈ [0, T ) 7→ M(t) is a smooth mean curvature flow of
closed, embedded hypersurfaces in Rn+1, then Ft(M0) = M(t) for every 0 ≤ t < T ,
as was shown in [2, 1].

Although in many regards the level set flow resembles mean curvature flow of
smooth surfaces, it was observed already in the original paper [2] that if X is a
smooth closed planar curve that crosses itself, then Ft(X) will instantly develop
an interior. In general, if the interior of Ft(X) is empty for t = 0 and nonempty
at some later time, we say that X fattens under the level set flow. Even if the
initial hypersurface is smooth and embedded, fattening can occur after the surface
becomes singular, as described in [10].

Although the level set flow is unique, the fattening phenomenon is related to
non-uniqueness for other weak formulations of mean curvature flow. For example,
let M ⊂ Rn+1 be a smooth, closed hypersurface. Let U be the compact region it
bounds. Then

(1)

t ∈ [0,∞) 7→ Mouter(t) := ∂Ft(U),

t ∈ [0,∞) 7→ Minner(t) := ∂Ft(U c), and

t ∈ [0,∞) 7→ Ft(M)

all may be regarded as weak versions of mean curvature flow starting from M . In
particular, if the flow Minner(·) or Mouter(·) is smooth in some region of spacetime,
then it is indeed ordinary mean curvature flow in that region. If Ft(M) has interior,
then it differs from Minner(t) and Mouter(t), since neither of those sets has interior.
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One can also show, in this case, that Minner(t) 6= Mouter(t). Thus if M fattens,
then Ft(M), Minner(t) and Mouter(t) are three distinct flows.

In light of the above, it is desirable to find conditions that prevent fattening.
We have already mentioned that a smooth hypersurface cannot fatten until after
singularities form. Short-time non-fattening for initial sets satisfying a Reifenberg
condition with small Reifenberg parameter was established by the first author
in [4] (see also [3] for the higher co-dimension surfaces). In that case, the flow
immediately becomes smooth (though it may later develop singularities), and the
non-fattening follows from short-time existence of smooth flows (with suitable
estimates) serving as barriers to the level set flow. In the presence of singularities,
two initial conditions are known to imply non-fattening for all time: the star-
shapedness ofM [8] and mean convexity ofM [2]. (See also [9] for a more geometric
proof that mean convex sets do not fatten.)

The facts that surfaces can fatten only after they become singular and that
mean convex surfaces never fatten suggest the following conjecture:

An evolving surface cannot fatten unless it has a singularity with
no spacetime neighborhood in which the surface is mean convex.

According to the conjecture, to ensure nonfattening, we do not need mean con-
vexity everywhere; it suffices to have it near the singularities.

A major difficulty in concluding non-fattening from local data around singu-
lairiteis is that the effect of the fattening (presumably resulted by the singular-
ity) is present globally instantaneously. This phenomenon is very much related
to the strong maximum principle: If V ⊆ V ′ are two compact domains with
smooth,connected boundary with V 6= V ′ then Ft(∂V ) ∩ Ft(∂V

′) = ∅ for every
t > 0. Thus a key challenge in attacking the problem is to unite the information
from the local mean convex structure and the local regular structure.

In this talk, I presented a precise formulation of this conjecture, as well as its
proof.
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Min-max theory for constant mean curvature (CMC) hypersurfaces

Xin Zhou

(joint work with Jonathan Zhu)

The mean curvature of a hypersurface Σn in a Riemannian manifold Mn+1 mea-
sures the changing rate of the area functional. Σ has constant mean curvature c
if and only if it is a critical point of the Lagrange-multiplier functional

(1) Ac = Area−cVol .

CMC hypersurfaces is a classical topic in differential geometry, and play an essen-
tial role in many areas, e.g. isoperimetric problems [24], the modeling of interface
phenomena [14] and general relativity [11, 4]. Many attempts have been made
to construct more CMC hypersurfaces, especially with prescribed constant mean
curvature, c.f. [9, 10, 29, 30, 12, 31, 7, 22, 26]. However, these works left wide
open the question of which values may be prescribed - that is, for which constants
c does there exist a closed hypersurface of constant mean curvature c?

We construct, via a min-max approach, nontrivial closed CMC hypersurfaces of
any prescribed mean curvature, in any smooth closed Riemannian manifold Mn+1

of dimension at most seven.

Theorem 1. Let Mn+1 be a smooth, closed Riemannian manifold of dimension
3 ≤ n+ 1 ≤ 7. Given any c ∈ R, there exists a nontrivial, smooth, closed, almost
embedded hypersurface Σn of constant mean curvature c.

An immersed hypersurface Σ is said to be almost embedded if Σ has local de-
compositions into smoothly embedded components that (pairwise) lie to one side
of each other. That is, the sheets may touch but not cross. Almost embedded
hypersurfaces are automatically Alexandrov embedded.

We want to compare our result with a classical problem by Arnold [3, page
395] and Novikov [21, Section 5] on the periodic orbits of a charged particle in a
magnetic field on a topological two sphere. It is conjectured that there exist closed
embedded curves of any prescribed constant geodesic curvature. This conjecture
remains open, and we refer to [8, 25] for more backgrounds and some partial results
of this conjecture. Our result can be viewed as a complete resolution of the higher
dimensional analog of Arnold-Novikov conjecture.

When c 6= 0, we can prove that our min-max procedure converges to the con-
structed hypersurface Σ with multiplicity 1. This is a stark contrast to the minimal
(c = 0) case, for which the min-max multiplicity 1 conjecture is a fundamental
open problem [16].
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The existence problem for CMC hypersurfaces has been studied from a number
of perspectives. The boundary value problems were substantially developed by
Heinz [9], Hildebrandt [10], Struwe [29] using the mapping method, and by Duzaar-
Steffen [7] using geometric measure theory, while both approaches can only produce
CMC hypersurfaces with some upper bound on the mean curvature. For the
case of closed CMC hypersurfaces, the more classical approach is to solve the
isoperimetric problem for a given volume. Indeed, for each fixed volume there
exists a smooth isoperimetric hypersurface (up to a singular set of codimension 7,
c.f. [20]). However, this approach does not yield any control on the value of the
mean curvature.

Perturbative methods consist of another class of approaches. One may deform
a closed minimal hypersurface to a CMC hypersurface, but only for very small
values of the mean curvature. On the other end, there are many attempts to
construct foliations by CMC hypersurfaces near minimal submanifolds of strictly
lower dimension, c.f. Ye [31], and others [22]. The hypersurfaces produced by
this approach necessarily have large mean curvatures, which in fact diverge as the
hypersurfaces condense onto the minimal submanifold.

We also mention the gluing procedures by Kapouleas [12] as well as the degree
theory developed by Rosenberg-Smith [26]. These provide important examples of
CMC hypersurfaces, but the former method is typically restricted by the avail-
ability of known solutions, whilst the latter can only produce CMC hypersurfaces
of fairly large mean curvature. Finally, we remark that Meeks-Mira-Perez-Ros
[18, 19] were able to determine, in the special case of homogeneous ambient 3-
manifolds, precisely the values for which there exists a CMC 2-sphere with the
specified mean curvature.

Our approach to prove Theorem 1 directly uses the Ac-functional from a vari-
ational point of view. It is easy to see that the minimization method does not
succeed in detecting a nontrivial critical point for the Ac-functional. In fact, the
minimizer of Ac among domains Ω in M with smooth boundary is always the total
manifold M , as Ac(M) = −cVol(M) ≤ Ac(Ω). Therefore, the min-max method
becomes the natural way to find nontrivial critical points of Ac.

For finding critical points of the area functional - that is, minimal hypersurfaces
- the min-max method has been greatly successful. In [1], Almgren initiated a
celebrated program to develop a variational theory for minimal submanifolds in
Riemannian manifolds of any dimension and co-dimension using geometric measure
theory, namely the min-max theory for minimal submanifolds. He was able to
prove the existence of a nontrivial weak solution as stationary integral varifolds
[2]. Higher regularity was established in the co-dimension-one case by the seminal
work of Pitts [23] (for 2 ≤ n ≤ 5) and later extended by Schoen-Simon [37] (for
n ≥ 6). Colding-De Lellis [5] established the corresponding theory using smooth
sweepouts based on ideas of Simon-Smith [28]. Indeed, the preceeding body of
work completely resolved the c = 0 case of Theorem 1.

Very recently, Marques-Neves [15, 17] found surprising applications of the Alm-
gren-Pitts min-max theory to solve a number of longstanding open problems in



Partial Differential Equations 2187

geometry, including their celebrated proof of the Willmore conjecture. Due to
these tremendous successes, there have been a vast number of developments of
this program in various contexts, including [6, 16, 13]. In this regard, our work
represents a natural extension of the min-max method to the CMC setting.
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Willmore minimizers with prescribed isoperimetric ratio

Ernst Kuwert

(joint work with Yuxiang Li)

For smooth immersed surfaces f : S2 → R3 we consider the problem of minimizing
the Willmore energy W(f) with prescribed isoperimetric ratio I(f) = σ ∈ (0, 1].
Here

W(f) =
1

4

∫

S2

H2 dµf ,(1)

I(f) =
√
36π

V(f)
A(f)3/2

,(2)

where H denotes the mean curvature, µf the induced surface measure, A(f) the
area and V(f) the enclosed volume. Our normalization is such that W(S2) = 4π
and I(S2) = 1 for the round sphere. We put

(3) β(σ) = inf
f :S2→R3, I(f)=σ

W(f).

In [6] Schygulla proved that the infimum is indeed attained by a smooth embedding
of the sphere, for any given ratio σ ∈ (0, 1]. Moreover he showed that the infimum
β(σ) is strictly decreasing with β(σ) → 8π as σ ց 0. For surfaces of higher genus
an existence result was obtained more recently by Keller, Mondino and Rivière,
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assuming certain inequalities for the infimum of the energy [3]. The minimizers
solve the Euler Lagrange equation

(4)
1

2

(
∆gH + |A◦|2H

)
= Λ σ(f)

( 1

V(f) +
3

2µ(f)
H
)
,

where Λ ∈ R is a Lagrange multiplier.

In his paper Schygulla also studies the limit for a sequence of minimizers with
isoperimetric ratio converging to zero. He shows that up to translations and dila-
tions, the sequence converges in the varifold sense to a round sphere of multiplicity
two [6, Thm. 2]. In our recent work with Yuxiang Li [5] we study this singular
limit more precisely, obtaining the following asymptotic results. Here we denote
by N,S the north and south pole of S2 and by πN , πS the stereographic projections
from the two poles.

Theorem. Let fk : S2 → R3 be conformally parametrized W-minimizers for pre-
scribed isoperimetric ratio I(fk) = σk → 0. After conformal reparametrization,
scaling and translating, and passing to a subsequence, the following hold:

(1) A(fk) = 1,

(2) fk converges locally smoothly on S2\{N} to a conformal immersion f0 :
S
2 → R

3 with f0(N) = 0.

(3) There exist rk → 0 such that the sequence f1
k (z) = fk ◦π−1

S (rkz) converges
locally smoothly on R2 to a conformal immersion f1 : R2 → R3 with
f1(∞) = 0.

(4) Both f0, f1 are conformal equivalences to the same round sphere S of area
1/2, with opposite orientation.

(5) There exist tk, λk → 0, such that the sequence f2
k (z) = λ−1

k fk ◦ π−1
S (tkz)

converges locally smoothly on R2\{0} to a conformally parametrized
catenoid f2 : R2\{0} → R3, with the origin and the center of S on the
symmetry axis.

(6) We have the energy identity

lim
k→+∞

∫

S2

|Afk |2 dµfk =
∑

i=0,1,2

∫
|Afi |2 dµfi

(7) We have limk→∞

(
log tk : logλk : log rk

)
= (1 : 1 : 2), and

limk→∞ Λk/λk ∈ (0,∞) exists.

The geometric problem which is addressed here is partially motivated by a
model for cell membranes due to Helfrich [2]. In the axially symmetric case the
Helfrich minimizers are described by ordinary differential equations, which were
studied by various authors using numerical approximations, see e.g. [1]. In the



2190 Oberwolfach Report 35/2017

case of topological spheres the Helfrich energy reduces to

EC(f) =
1

4

∫

S2

(H − C)2 dµg,

where C ∈ R is a parameter called the spontaneous curvature. The literature
addresses the minimization of EC(f) with both area and enclosed volume pre-
scribed. The special case C = 0 corresponds exactly to our variational problem,
since the two constraints are reduced to the isoperimetric ratio by scaling. In [1]
Berndl, Lipowsky and Seifert distinguish three kinds of shapes depending on the
isoperimetric ratio σ, which they call the reduced volume: the prolate-dumbbell,
the oblate-discocyte and the stomatocyte type. The stomatocyte parameter range
is indicated as 0 < σ ≤ 0.591, and it is noted that a neck develops as σ → 0.
Here we provide a rigorous analysis of this neck formation, without assuming axial
symmetry.
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Negative lower curvature bounds under Ricci flow

Esther Cabezas-Rivas

(joint work with Richard H. Bamler, Burkhard Wilking)

We generalize most of the known Ricci flow invariant non-negative curvature con-
ditions to less restrictive negative bounds that remain sufficiently controlled for a
short time. As an illustration of the contents of [1], we prove that metrics whose
curvature operator has eigenvalues greater than −1 can be evolved by the Ricci
flow for some uniform time such that the eigenvalues of the curvature operator
remain greater than −C. Here the time of existence and the constant C only
depend on the dimension and the degree of non-collapsedness.

More precisely, we denote by Rmg the curvature operator of a Riemannian
n-manifold (M, g) and I represents the curvature operator of the unit round n-
sphere. Notice that the bound Rmg ≥ −ε can be rephrased by saying that the
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linear combination Rmg + ε I is non-negative definite. Hereafter we denote cur-
vature conditions by C and we write Rmg ∈ C to indicate that Rmg satisfies the
corresponding curvature condition. Using this, we can state our main result:

Theorem 1. Given n ∈ N and a constant v0 > 0, there exist positive constants
C = C(n, v0) > 0 and τ = τ(n, v0) > 0 such that the following holds. Let (Mn, g)
be a complete Riemannian manifold with bounded curvature and consider one of
the following curvature conditions C:

(1) non-negative curvature operator,
(2) 2-non-negative curvature operator

(i.e. the sum of the lowest two eigenvalues is non-negative),
(3) non-negative complex sectional curvature

(i.e. weakly PIC2, meaning that taking the cartesian product with R2 pro-
duces a non-negative isotropic curvature operator),

(4) weakly PIC1 (i.e. the cartesian product with R produces a non-negative
isotropic curvature operator),

(5) non-negative bisectional curvature, in the case in which (M, g) is Kähler
with respect to some complex structure J .

Assume that

volg
(
Bg(p, 1)

)
≥ v0 for all p ∈ M and Rmg + εI ∈ C,

for some ε ∈ [0, 1]. Then the Ricci flow g(t) with initial metric g exists until time
τ , is Kähler if (M, g) is Kähler, and we have the curvature bounds

Rmg(t) + Cε I ∈ C and |Rmg(t)| ≤
C

t
for all t ∈(0, τ ].

Finally, let us explain the main idea of the proof of Theorem 1 for the case (1),
the other cases will follow similarly, modulo some technical details. Denote by ℓ
the negative part of the smallest eigenvalue of Rm. Our hypotheses guarantee that
ℓ ≤ 1 at time 0. By standard formulas, ℓ roughly satisfies an evolution inequality
of the form

(1) ∂tℓ ≤ ∆ℓ+ C1scal · ℓ+ C2ℓ
2.

Traditionally, the invariance of a curvature condition is reduced to a pointwise
invariance property via a maximum principle (ode-pde comparison). Unfortu-
nately, this strategy only works for specific curvature conditions. Indeed, in di-
mensions n ≥ 3, the bound Rm ≥ ε satisfies this pointwise invariance only if ε ≥ 0.
This is why we cannot assert strict invariance of the lower bound on Rm.

The degree to which this invariance fails at each point is measured by the
reaction term C1scal · ℓ+C2ℓ

2 in (1). Our goal will be to show that this failure is
compensated by the diffusion of (1). In other words, we will bound the influence
of the reaction term on ℓ in an integral sense. For example, if we consider the
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evolution of the integral of ℓ, then we obtain

(2)
d

dt

∫

M

ℓdµt ≤
∫

M

(
∆ℓ+ C1scal · ℓ+ C2ℓ

2 − ℓ · scal
)
dµt

= (C1 − 1)

∫

M

scal · ℓdµt + C2

∫

M

ℓ2dµt.

A crucial step in our proof will be to show that we can choose C1 = 1 in (1),
which implies that the first term on the right-hand side of (2) vanishes. So as
long as ℓ remains bounded, its integral cannot grow too fast. We generalize this
principle and derive a Gaussian estimate for the heat kernel of the linearization
of (1) under certain a priori assumptions. This estimate will enable us to derive
pointwise estimates for ℓ by localizing (2). The theorem above will then follow via
a continuity argument.

As a first application we show that volume non-collapsed closed manifolds that
satisfy certain almost non-negative curvature conditions also admit metrics that
satisfy the corresponding strict condition.

Corollary 2. Given n ∈ N and positive constants D, v0, there exists a constant
ε = ε(n, v0, D) > 0 such that the following holds.

Let C be one of the curvature conditions listed in items (1)− (5) of Theorem 1.
Then any closed Riemannian manifold (Mn, g) with

diamg(M) ≤ D, volg(M) ≥ v0 and Rmg + ε I ∈ C
also admits a metric whose curvature operator lies in C.

In [4] J. Lott asks whether each simply connected manifold with almost non-
negative curvature operator is diffeomorphic to a torus bundle over a compact
symmetric space. Corollary 2 gives an affirmative answer to Lott’s question in the
non-collapsed case. It will be clear from the proof that the metric whose existence
is asserted in Corollary 2 is close to the original metric g in the Gromov-Hausdorff
sense. This motivates the following smoothing result for singular limit spaces of
sequences of manifolds with lower curvature bounds.

Corollary 3. Let C be as in Corollary 2 and (X, dX) be the Gromov-Hausdorff
limit of a sequence {(Mi, gi)}∞i=1 of closed Riemannian manifolds satisfying

volgi(Mi) ≥ v0, Rmgi + εi I ∈ C, diamgi (Mi) ≤ D .

for some sequence {εi} ⊂ (0, 1] with εi → ε∞, as i → ∞. Then there exists
τ = τ(n, v0) > 0, a smooth manifold M∞ and a smooth solution to the Ricci flow
(M∞, g∞(t))t∈(0,τ) which satisfies Rmg∞(t) + ε∞I ∈ C and is coming out of the
(possibly singular) space (X, dX) in the sense that

lim
tց0

dGH

(
(X, dX), (M∞, dg∞(t))

)
= 0.

In particular, for ε∞ = 0 the limiting g∞(t) satisfies the corresponding non-
negative curvature condition C for all t ∈ (0, τ).
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Moreover, for any choice of ε∞, the space X is homeomorphic to the mani-
fold M∞ and the Riemannian distance dg∞(t) converges uniformly to a distance
function d0 on M∞ as t ց 0 such that (M∞, d0) is isometric to (X, dX).

By taking convergent sequences of manifolds as above one can generate a large
variety of singular spaces that can be smoothed out by the Ricci flow with lower
curvature bound. In the case (5), Corollary 3 implies a statement that is similar to
a result of Gang Liu (cf. [3]) on the structure of limits of spaces whose bisectional
curvature is uniformly bounded from below.

In dimension 3, Theorem 1 and Corollaries 2 and 3 were established by Simon in
[5, 6] for the case of almost non-negative and 2-non-negative curvature operator,
which in dimension 3 is equivalent to almost non-negative sectional and Ricci
curvature, respectively.

We finish by highlighting that in [1] we additionally establish a local version
of Theorem 1 in the case of non-negative curvature operator and non-negative
complex sectional curvature. By applying this local result to a sequence of larger
and larger balls, we obtain a short-time existence result on complete manifolds
with possibly unbounded curvature, which generalizes the existence result in [2].
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Isoperimetric inequalities for eigenvalues on Surfaces

Nicolai Nadirashvili

(joint work with Alexei Penskoi)

We discuss some sharp inequalities for the highest eigenvalues on two-dimensional
Riemannian manifolds for the Laplacian.
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Quantitative Isoperimetry à la Levy-Gromov

Fabio Cavalletti

(joint work with Francesco Maggi, Andrea Mondino)

Comparison theorems are an important part of Riemannian Geometry. The typical
result asserts that a complete Riemannian manifold with a pointwise curvature
bound retains some metric properties of the corresponding simply connected model
space. We are interested here in the Levy-Gromov comparison Theorem, stating
that, under a positive lower bound on the Ricci tensor, the isoperimetric profile
of the manifold is bounded from below by the isoperimetric profile of the sphere.
More precisely, define the isoperimetric profile of a smooth Riemannian manifold
(M, g) by

I(M,g)(v) = inf
{

P(E)

volg(M)
:
volg(E)

volg(M)
= v

}
0 < v < 1 ,

where P(E) denotes the perimeter of a region E ⊂ M . The Levy-Gromov compar-
ison Theorem states that, if Ricg ≥ (N − 1)g, where N is the dimension of (M, g),
then

(1) I(M,g)(v) ≥ I(SN ,g
SN

)(v) ∀v ∈ (0, 1) ,

where gSN is the round metric on SN with unit sectional curvature; moreover, if
equality holds in (1) for some v ∈ (0, 1), then (M, g) ≃ (SN , gSN ).

Our main result is a quantitative estimate, in terms of the gap in the Levy-
Gromov inequality, on the shape of isoperimetric sets in (M, g). We show that
isoperimetric sets are close to geodesic balls. Since the classes of isoperimetric
sets and geodesic balls coincide in the model space (SN , gSN ), one can see of our
main result as a quantitative comparison theorem. In detail, we show that if
Ricg ≥ (N−1)g and E ⊂ M is an isoperimetric set inM with volg(E) = v volg(M),
then there exists x ∈ M such that

(2)
volg

(
E∆BrN (v)(x)

)

volg(M)
≤ C(N, v)

(
I(M,g)(v)− I(SN ,g

SN )(v)
)O(1/N)

where Br(x) denotes the geodesic ball in (M, g) with radius r and center x, and
where rN (v) is the radius of a geodesic ball in SN with volume v volg

SN
(SN ). More

generally the same conclusion holds for every E ⊂ M with volg(E) = v volg(M),
provided I(M,g)(v) on the right-hand side of (2) is replaced by P(E)/volg(M). In
the course of proving (2), we improve on another basic comparison result, namely,
Meyer’s Theorem: if Ricg ≥ (N − 1)g, then diam(M) ≤ π. Indeed, we prove that

(3) π − diam(M) ≤ inf
v∈(0,1)

C(N, v)
(
I(M,g)(v) − I(SN ,g

SN
)(v)

)1/N

.

We approach the proof of (2) and (3) from the synthetic point of view of metric
geometry. We regard an N -dimensional Riemannian manifold (M, g) with Ricg ≥
(N − 1)g as a metric measure space (X, d,m) satisfying the curvature-dimension
condition CD(N−1, N) of Sturm [3, 4] and Lott–Villani [2] and we actually obtain
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(2) in this larger class. It is worth to underline that indeed in [1] the Levy-Gromov
comparison Theorem (1) has been proved to hold for on essentially non-branching
metric measure spaces verifying the CD(N − 1, N) condition with any real number
N > 1.
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Optimal isoperimetric inequalities for surfaces in Cartan-Hadamard
manifolds via mean curvature flow

Felix Schulze

The classical isoperimetric inequality in Euclidean space states that for a bounded
open set Ω ⊂ Rn+1 with sufficiently regular boundary, the estimate

(1) |Ω| ≤ n−n+1

n ω
− 1

n
n+1|∂Ω|

n+1

n

holds. Here |Ω| and |∂Ω| denote the areas in dimension n+ 1 and n respectively.
ωn+1 is the measure of the n+1-dimensional unit ball. Equality is attained if and
only if Ω is a ball.

This was extended to higher codimension by Almgren; loosely formulated as fol-
lows:

Theorem 1 (Almgren, [1]): Corresponding to each m-dimensional closed sur-
face T in R

n+1 there is an (m+ 1)-dimensional surface Q having T as boundary
such that

|Q| ≤ γm+1|T |
m+1

m

with equality if and only if T is a standard round m sphere (of some radius) and
Q is the corresponding flat disk.

Again |Q| and |T | denote the areas in dimensions m+ 1 and m respectively, and
the constant γm+1 is defined via the required equality.

The proof of this inequality is based on the following area-mean curvature char-
acterisation of standard spheres by Almgren:

Theorem 2 (Almgren, [1]): Let V be a (sufficiently regular) m-dimensional sur-
face in Rn+1 without boundary. Then the following estimate holds

mm|Sm
1 | ≤ (sup

V
| ~H |)m|V | ,

where ~H is the mean curvature vector of V and Sm
1 the standard unit round m-

dimensional sphere. Furthermore, equality holds if and only if V is a standard
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round m-dimensional sphere (of some radius).

It is a natural question to ask in which Riemannian manifolds (Mn+1, g) the
inequality (1) is still true. We will say that (Mn+1, g) is Cartan-Hadamard if it is
smooth, complete, simply-connected with non-positive sectional curvatures.

Conjecture (Aubin, Burago-Zalgaller, Gromov-Lafontaine-Pansu): Let
(Mn+1, g) be Cartan-Hadamard. Then (1) holds.

The conjecture was proven for n+1 = 2 by Weil [7] in ’26, for n+1 = 3 by Kleiner
[4] in ’92 and for n+ 1 = 4 by Croke [2] in ’84.

In the proof of Kleiner an analogue of Theorem 2 above was used, based on the
Gauss-Bonnet formula. Following an idea of Simon [6], using the monotonicity
formula, this estimate extends to surfaces of low regularity in Cartan-Hadamard
manifolds and to any codimension:

Theorem 3 (Schulze ’08/’17, [5]): Let (Mn, g) be Cartan-Hadamard, n ≥ 3,
and Σ2 ⊂ M be a compact integer 2-rectifiable varifold with weak mean curvature
H ∈ L2(µ), where µ is the area measure (with multiplicities) on Σ. Then

(2)

∫
|H|2 dµ ≥ 16π .

We used this estimate in [5] to give an alternative proof of Kleiner’s result. In the
present work, we demonstrate that this extends to any codimension:

Theorem 4 (Schulze ’17): Let (Mn, g) be Cartan-Hadamard, n ≥ 3, and Σ2 ⊂
M be a smooth, closed, orientable, immersed surface. Let S be an area minimising
integer rectifiable 3-current such that ∂S = Σ. Then

|S| ≤ 1

6
√
π
|Σ| 32 .

The proof, as in [5], is based on the monotonicity of the following isoperimetric
difference along a mean curvature flow, starting from Σ. We consider (Σt)0≤t<ε

the smooth evolution of Σ0 = Σ by mean curvature flow. Assume that there exists
a smooth family of area-minimising 3-surfaces (St)0≤t<ε such that

∂St = Σt .

Consider the isoperimetric difference

It = |Σt|
3
2 − 6

√
π|St| .
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We can estimate, using (2):

− d

dt
|St| = −

∫

St

divSt(X) dH3 =

∫

Σt

〈 ~H,~n〉 dH2 ≤
∫

Σt

| ~H | dH2

≤
(∫

Σt

| ~H |2 dH2

)1/2

|Σt|1/2 ·
1

4
√
π

(∫

Σt

| ~H |2 dH2

)1/2

≤ 1

4
√
π
|Σt|1/2

∫

Σt

| ~H |2 dH2 = − 1

6
√
π

d

dt
|Σt|3/2 ,

where X is the variation vectorfield along the family (St)0≤t<ε and ~n the unit

outer conormal of St along Σt . This implies d
dtIt ≤ 0. If one would have that for

a maximal time T > 0 it holds that limt→T |St| = 0, then this would imply I0 ≥ 0,
which is the desired isoperimetric inequality.

Note that this computation is only valid as long as the flow and the family
(St)0≤t<ε remains smooth. To overcome this difficulty, we work with a weak
Brakke flow solution, starting from Σ, constructed via the elliptic regularisation
scheme of Ilmanen [3]. This solution is defined past singularities and one can show
that it exists only up to a finite time T > 0 where the spanning area goes to
zero. To extend the above monotonicity calculation to this weak setting, we work
with the approximating flows of the elliptic regularisation scheme in one dimen-
sion higher and an almost monotonicity of a suitable approximate isoperimetric
difference.
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On the uniqueness of minimisers of Ginzburg-Landau functionals

Luc Nguyen

(joint work with R. Ignat, V. Slastikov, A. Zarnescu)

Abstract. We provide necessary and sufficient conditions for the uniqueness of
minimisers of the Ginzburg-Landau functional for R

n-valued maps under a suit-
able convexity assumption on the potential and for H1/2 ∩ L∞ boundary data
that is non-negative in a fixed direction e ∈ Sn−1. Furthermore, we show that,
when minimisers are not unique, the set of minimisers is generated from any of
its elements using appropriate orthogonal transformations of Rn. We also prove
corresponding results for harmonic maps.

We consider the following Ginzburg-Landau type energy functional

(1) Eε(u) =

∫

Ω

[1
2
|∇u|2 + 1

2ε2
W (1− |u|2)

]
dx,

where ε > 0, Ω ⊂ Rm (m ≥ 1) is a bounded domain with smooth boundary ∂Ω
and the potential W ∈ C1((−∞, 1],R) satisfies

(2) W (0) = 0, W (t) > 0 for all t ∈ (−∞, 1] \ {0}, W is strictly convex.

We investigate the minimisers of the energy Eε over the following set

(3) A := {u ∈ H1(Ω;Rn) : u = ubd on ∂Ω}, n ≥ 1,

consisting of H1 maps with a given boundary data ubd ∈ H1/2 ∩ L∞(∂Ω;Rn).
There exists a large literature using various methods that addresses the question

of uniqueness of minimisers in the framework of Ginzburg-Landau type models
and the related harmonic map problem. See e.g. Béthuel, Brezis and Hélein [1],
Mironescu [6], Pacard and Rivière [7], Ye and Zhou [10], Farina and Mironescu
[2], Millot and Pisante [5], Jäger and Kaul [3, 4], Sandier and Shafrir [8, 9] and
the references therein.

We begin with a simple result on the uniqueness and symmetry of minimisers,
which will be subsequently extended in a much more general setting. Assume
Ω ⊂ R2 is the unit disk, u : Ω → R3, and the boundary data carries a given
winding number k ∈ Z \ {0} on ∂Ω, namely1

(4) ubd(cosϕ, sinϕ) = (cos(kϕ), sin(kϕ), 0) ∈ S
1 × {0} ⊂ R

3, ∀ϕ ∈ [0, 2π).

By restricting Eε to a subset of A consisting of suitable rotationally symmetric
maps, it is not hard to see that Eε admits critical points of the form

(5) uε(r cosϕ, r sinϕ) := fε(r)(cos(kϕ), sin(kϕ), 0)± gε(r)(0, 0, 1),

where r ∈ (0, 1), ϕ ∈ [0, 2π).

1We note that ubd is non-negative in e3-direction.
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Theorem 1. Let Ω = {x ∈ R
2 : |x| < 1} be the unit disk in R

2, u : Ω → R
3,

W ∈ C1((−∞, 1],R) satisfy (2), and boundary data ubd be given by (4) where
k ∈ Z \ {0} is a given integer. Then we have for every ε > 0:

(1) Any minimiser uε of Eε in the set A (with n = 3) has the representation
(5) where fε > 0, gε ≥ 0 in (0, 1).

(2) In the set of critical points of Eε in A and of the form (5), there is at
most one critical point satisfying gε > 0 and there is exactly one critical
point satisfying f̃ε > 0, g̃ε ≡ 0.

(3) If a critical point of Eε of the form (5) and satisfying gε > 0 exists, then
Eε has exactly two minimisers that are given by (fε,±gε) via (5).

Let us now return to the general case. One main restriction in our treatment
is the assumption that the boundary data is non-negative in a (fixed) direction
e ∈ S

n−1:

(6) ubd · e ≥ 0 Hm−1-a.e. in ∂Ω.

For any integrable Rn-valued map u on a measurable set ω we denote the
essential image of u on ω by u(ω) = {u(x) : x ∈ ω is a Lebesgue point of u}.

The following result establishes the minimising property and uniqueness (up to
certain isometries) for critical points of Eε that are positive in a fixed direction
e ∈ S

n−1 inside the domain Ω ⊂ R
m.

Theorem 2. Let m,n ≥ 1, Ω ⊂ R
m be a bounded domain with smooth boundary,

potential W ∈ C1((−∞, 1],R) satisfying (2), and a boundary data ubd ∈ H1/2 ∩
L∞(∂Ω;Rn) satisfying (6) in a fixed direction e ∈ Sn−1. Fix any ε > 0 and let
uε ∈ H1 ∩ L∞(Ω,Rn) be a critical point of Eε in A such that

(7) uε · e > 0 a.e. in Ω.

Then uε is a minimiser of Eε in A and we have the following dichotomy:

(1) If there exists a Lebesgue point x0 ∈ ∂Ω of ubd such that ubd(x0) · e > 0
then uε is the unique minimiser of Eε in the set A.

(2) If ubd(x) · e = 0 for Hm−1-a.e. x ∈ ∂Ω, then all minimisers of Eε in A
are given by Ruε where R ∈ O(n) is an orthogonal transformation of Rn

satisfying Rx = x for all x ∈ Spanubd(∂Ω).

Using the above theorem, we prove the following result which completely char-
acterises uniqueness and its failure for minimisers of the energy Eε.

Theorem 3. Let m, n, Ω, W , ubd and e ∈ S
n−1 be as in Theorem 2 and V ≡

Spanubd(∂Ω). Then for every ε > 0 there exists a minimiser uε of Eε on A and
this minimiser is unique unless both following conditions hold:

(1) ubd(x) · e = 0 Hm−1-a.e. x ∈ ∂Ω,
(2) the functional Eε restricted to the set

Ares := {u ∈ A : u(x) ∈ Span(V ∪ {e}) a.e. in Ω}
has a minimiser ũε with ũε(Ω) 6⊂ V .
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Moreover, if uniqueness of minimisers of Eε in A does not hold, then all minimis-
ers of Eε in A are given by Ruε where R ∈ O(n) is an orthogonal transformation
of Rn satisfying Rx = x for all x ∈ V .

Harmonic map problem. We note that Theorem 3 is similar to a well-known
result of Sandier and Shafrir [8] on the uniqueness of minimising harmonic maps
into a closed hemisphere. In fact, our proof of Theorem 3 can be adapted to give
an alternative proof of their result. Our argument does not assume the smoothness
of boundary data and does not use the regularity theory of minimising harmonic
maps, which appears to play a role in the argument of [8].

Theorem 4. Let m ≥ 1, n ≥ 2, Ω ⊂ Rm be a bounded domain with smooth
boundary, ubd ∈ H1/2(∂Ω; Sn−1) be a boundary data satisfying (6) in a direction
e ∈ Sn−1, and V ≡ Spanubd(∂Ω). Then there exists a minimising harmonic map
u ∈ A ∩ H1(Ω; Sn−1) and this minimising harmonic map is unique unless both
following conditions hold:

(1) ubd(x) · e = 0 Hm−1-a.e. x ∈ ∂Ω,
(2) the Dirichlet energy E(w) = 1

2

∫
Ω
|∇w|2 dx restricted to the set

A∗
res := {w ∈ A ∩H1(Ω; Sn−1) : w(x) ∈ Span(V ∪ {e}) a.e. in Ω}

has a minimiser ũ with ũ(Ω) 6⊂ V .

Moreover, if u is not the unique minimising harmonic map in A ∩ H1(Ω; Sn−1),
then all minimising harmonic maps in A ∩ H1(Ω; Sn−1) are given by Ru where
R ∈ O(n) satisfies Rx = x for all x ∈ V .
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[3] W. Jäger, H. Kaul, Uniqueness and stability of harmonic maps and their Jacobi fields,
Manuscripta Math. 28, 1-3 (1979), 269–291.
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Structure of Noncollapsing Ricci limit spaces

Wenshuai Jiang

(joint work with Jeff Cheeger, Aaron Naber)

Let (Mn
i , gi, pi) → (X, d, p) satisfy Rici ≥ −(n − 1)gi and V ol(B1(pi)) ≥ v > 0.

The singular set of X is defined by

S = {x ∈ X : no tangent cone at x is isometric to Rn }.
For any 0 ≤ k ≤ n, the stratification Sk is given by

Sk = {x ∈ X : no tangent cone at x splits an Rk+1 factor}.
It was proved by Cheeger-Colding [2, 3, 1] that

S = Sn−2 and dim Sk ≤ k.

Our main result is the following theorem:

Theorem 1 ([4]). Let (Mn
i , gi, pi) → (X, d, p) satisfy Rici ≥ −(n − 1)gi and

V ol(B1(pi)) ≥ v > 0. For each 0 ≤ k ≤ n we have that Sk is k-rectifiable.

We introduced the quantitative singular set Sk
ǫ to study Sk. Before giving

the precise definition of Sk
ǫ , we constructed an example to give an intuition of

such quantitative set. We constructed a 2-dim Alexandrov space Y with infinite
singular points through gluing infinite 2-dim flat cones to a flat disc. Since each
2-dim flat cone has a definite L1 curvature depending on the cone angle upper
bound< 2π, by the global L1 curvature bound from Gauss-Bonnet formula, we
have for any ǫ > 0 that

#{x ∈ Y : cone angle at x ≤ 2π − ǫ } ≤ C(ǫ).(1)

Basing on this observation, we introduced as [5] the quantitative singular set Sk
ǫ

for any ǫ > 0:

Sk
ǫ (X) = {x ∈ X : dGH(Br(x), Br(x̄)) ≥ ǫr for any r ≤ 1

and any Br(x̄) ⊂ R
k+1 × C(Z) with cone vertex x̄.}

Roughly, the above Alexandrov space Y satisfies

{x ∈ Y : cone angle at x ≤ 2π − ǫ } = S0
ǫ (Y )

From the definition of Sk
ǫ we see that Sk

ǫ ⊂ Sk and Sk
ǫ′ ⊂ Sk

ǫ for any ǫ ≤ ǫ′.
Furthermore we have

Sk =
⋃

ǫ>0

Sk
ǫ .

Cheeger-Naber [5] proved for any δ, ǫ > 0 and r ≤ 1 that

V ol(Br(S
k
ǫ ) ∩B1(p)) ≤ C(ǫ, δ, n, v)rn−k−δ.

In this talk, we mainly focused on the quantitative set Sk
ǫ and we showed for any

ǫ > 0 that Sk
ǫ is k-rectifiable and Sk

ǫ has finite volume estimate V ol(Br(S
k
ǫ ) ∩

B1(p)) ≤ C(ǫ, n, v)rn−k which is sharp by the example (1). Furthermore, as a
direct application, we have that Sk is k-rectifiable which gives the proof of Theorem
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1. Applying the structure results of Sk
ǫ to bounded Ricci curvature limit, we gave

a new proof of the main result in [7]:

Theorem 2 ([7]). Let (Mn
i , gi, pi) → (X, d, p) satisfy |Rici| ≤ n− 1 and

V ol(B1(pi)) ≥ v > 0. Then

(1) S is n− 4-rectifiable.
(2) For any 0 < r ≤ 1, we have V ol(Br(S) ∩B1(p)) ≤ C(n, v)r4.

The main point here for bounded Ricci curvature limit is that Sn−4
ǫ = S for

some ǫ(n, v) > 0 by an ǫ-regularity in [6].

One key notion in our proof is the so called (k, δ, η)-neck region for given δ, η >
0. We introduced the so called (k, δ, η)-neck region for δ, η > 0 to study the
quantitative singular set Sk

ǫ . Instead of writing down the precise definition of the
neck region, we presented two examples to give an intuition of this abstract notion.
The definition of the neck region in [4] is just to make these two examples precise
in our setting.

Let (Mn
i , gi, pi) → (X, d, p) satisfy Rici ≥ −(n− 1)gi and V ol(B1(pi)) ≥ v > 0.

Given δ, η > 0 and 0 ≤ k ≤ n, a neck region N ⊂ B2(p) = B2(p) \ ∪x∈CB̄rx(x) is
an open subset of B2(p) ⊂ X associated with a closed set C = C0∪C+ ⊂ B̄2(p) and
radius function rx : C → R+ such that rx > 0 for x ∈ C+ and rx ≡ 0 on C0. The
radius function rx and the closed set C satisfy several conditions. Let us present
two examples to show that what the (k, δ, η) neck region N looks like.

Example 1: Let X = Rk × C(Y ) with p = (0k, ȳ) a cone vertex, where C(Y )
is not η-close to any splitting cone R×C(Z). For any 0 < r < 1 choose a minimal
r/10-dense subset {xi} of B2(p)∩Rk×{ȳ}. Let C = C+ = {xi}, C0 = ∅ and rx = r
for all x ∈ C. The open set Nr = B2(p) \ ∪x∈CB̄r(x) is a (k, δ, η)-neck region.

For r = 0, we can define C = C0 = B̄2(p) ∩ Rk × {ȳ}. Then the open set
N0 = B2(p)\C is a (k, δ, η)-neck region. Moreover Sk

η ∩B2(p) ⊂ C0. We will see in

the below decomposition theorem that Sk
η indeed contains in the set C0 associated

with a neck region.
For X = Rk × C(Y ), one can define more general neck regions by combining

the cases of r > 0 and r = 0 under the restrictions that {Brx(x), x ∈ C} satisfies
Vitali condition and B2(p) ∩Rk × {ȳ} is covered by ∪x∈CB̄rx/5(x). �

Example 2: Let X = Rk × Y and 0 < r < 1 with p = (0k, ȳ) ∈ {0k} × Y
such that Bs(ȳ) is δ

2s-close to a cone C(Zs) but not ηs-close to any splitting cone
R × C(W ) for all r ≤ s ≤ 1. It is worth pointing out that the cone C(Zs) may
not be the same for different scales s. Let us choose a minimal r/10-dense subset
{xi} of B2(p) ∩ Rk × {ȳ}. Let C = C+ = {xi}, C0 = ∅ and rx = r for all x ∈ C.
The open set N = B2(p) \ ∪x∈CB̄r(x) is a (k, δ, η)-neck region. �
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For each (k, δ, η)-neck region N ⊂ B2(p) = B2(p) \ ∪x∈CB̄rx(x) we can define
the packing measure

µN =
∑

x∈C+

rkxδx +Hk|C0
,

where δx is the Delta measure of x and Hk is the k-Hausdorff measure. One main
challenge of the whole proof is the following structure theorem on neck regions:

Theorem 3 (Neck Structure Theorem). Let (Mn
j , gj , pj) → (X, d, p) be a limit

with V ol(B1(pj)) > v > 0 and η > 0. Then for δ ≤ δ(n, v, η) if N = B2(p)\B̄rx(C)
is a (k, δ, η)-neck region, then the following hold:

(1) For each x ∈ C and B2r(x) ⊂ B2(p) the induced packing measure µN sat-
isfies the Ahlfors regularity condition A(n)−1rk < µN (Br(x)) < A(n)rk.

(2) C0 is k-rectifiable.

The proof of Theorem 3 relies on a bilipschitz estimate for splitting harmonic
functions. The bilipschitz estimate depends on a transformation argument de-
veloped in [6], telescoping estimate of harmonic functions and hessian L2 decay
estimate of harmonic functions. See [4] for more details.

Once we proved the neck structure theorem 3, we can prove the following de-
composition theorem which is the key goal toward the rectifiability of Sk.

Theorem 4 (Neck Decomposition). Let (Mn
i , gi, pi) → (X, d, p) satisfy

V ol(B1(pi)) > v > 0 and Rici ≥ −(n− 1). Then for each η > 0 and δ ≤ δ(n, v, η)
we can write

B1(p) ⊆
⋃

a

(
Na ∩Bra

)
∪
⋃

b

Brb(xb) ∪ Sk,δ,η(X) ,

Sk,δ,η(X) ∩B1(p) ⊆
⋃

a

(
C0,a ∩Bra

)
∪ S̃k,δ,η(X)

such that

(1) Na ⊆ B2ra(xa) are (k, δ, η)-neck regions.
(2) B2rb(xb) are ηrb-close to a cone Rk+1 × C(Z).
(3)

∑
a r

k
a +

∑
b r

k
b +Hk

(
Sk,δ,η(X)

)
≤ C(n, v, δ, η).

(4) C0,a ⊆ B2ra(xa) is the k-singular set associated to Na.

(5) S̃k,δ,η(X) satisfies Hk
(
S̃k,δ,η(X)

)
= 0.

(6) Sk,δ,η(X) is k-rectifiable.
(7) For any ǫ if η ≤ η(n, v, ǫ) and δ ≤ δ(n, v, η, ǫ) we have Sk

ǫ (X) ⊂ Sk,δ,η(X).

From (6) and (7) we see that Sk
ǫ is k-rectifiable. By a covering argument, we

can use (3) to prove the volume estimate of Sk
ǫ . See [4] for more details.

References

[1] J. Cheeger, Degeneration of Riemannian metrics under Ricci curvature bounds, Lezioni
Fermiane. [Fermi Lectures] Scuola Normale Superiore, Pisa, (2001).

[2] J. Cheeger, T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of
warped products, Ann. Math. 144 (1) (1996), 189–237.



2204 Oberwolfach Report 35/2017

[3] J. Cheeger, T. H. Colding, On the structure of spaces with Ricci curvature bounded below.
I., J. Differ. Geom. 46 (3) (1997), 406–480.

[4] J. Cheeger, W. Jiang, A. Naber, Rectifiablity of singular sets in lower Ricci curvature (2017),
preprint.

[5] J. Cheeger, A. Naber, Lower bounds on Ricci curvature and Quantitative Behavior of Sin-
gular Sets, Invent. Math. 191 (2013), 321–339.

[6] J. Cheeger, A. Naber, Regularity of Einstein manifolds and the codimension 4 conjecture,
Ann. of Math. (2) 182 (2015), no. 3, 1093–1165.

[7] W. Jiang, A. Naber, L2 Curvature Bounds on Manifolds with Bounded Ricci Curvature,
preprint (2016).

Minimal hypersurfaces in manifolds of finite volume

Yevgeny Liokumovich

(joint work with Gregory R. Chambers)

By a result of Bangert and Thorbergsson (see [Th] and [Ba]) every complete surface
of finite area contains a closed geodesic of finite length. We generalize this result
to higher dimensions.

Theorem 1. Every complete non-compact Riemannian manifold Mn+1 of finite
volume contains a (possibly non-compact) embedded minimal hypersurface of finite
volume. The hypersurface is smooth in the complement of a closed set of Hausdorff
dimension n− 7.

In fact, we prove this result not only for manifolds of finite volume, but for all
complete manifolds with sublinear volume growth.

Our result follows from a more general statement for which we will need to
introduce some technical definitions.

Let Mn+1 be a complete Riemannian manifold of dimension n+1. For an open
set U ⊂ M define the relative width of U , denoted by W∂(U), to be the supremum
over all real numbers ω, such that every Morse function f : U → [0, 1] has a fiber
of volume at least ω.

Theorem 2. Let Mn+1 be a complete Riemannian manifold of dimension n +
1. Suppose M contains a bounded open set U with smooth boundary, such that

V oln(∂U) ≤ W∂(U)
10 . Then M contains a complete embedded minimal hypersurface

Σ of finite volume. The hypersurface is smooth in the complement of a closed set
of Hausdorff dimension n− 7.

The proof is based on Almgren-Pitts min-max theory [Pi]. We consider a se-
quence of sweepouts of U and extract a sequence of hypersurfaces of almost max-
imal volume that converges to a minimal hypersurface. The main difficulty is to
rule out the possibility that the sequence completely escapes into the “ends” of
the manifold. Our key tool is a Proposition which allows us to rule out this possi-
bility. Loosely speaking, the content of the Proposition is that we can replace an
arbitrary family of hypersurfaces with a nested family of hypersurfaces which are
level sets of a Morse function, while increasing the maximal area by at most ε in
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the process. The ideas used in the proof of the Proposition are similar to the ideas
used to attack in analogous problem for curves on surfaces in [CR]. We use this
Proposition together with some hands on geometric constructions to show that
there exists a sequence of hypersurfaces that converges to a minimal hypersurface
and the volume of their intersection with a small neighbourhood of U is bounded
away from 0.
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Conformal Gap Theorems on S4 and CP 2

Sun-Yung Alice Chang

(joint work with Matt Gursky, Siyi Zhang)

There are many “Sphere Theorems”, where mathematicians work to characterize
up to homeomorphic or diffeomorphic type the spheres Sn with the surface measure
gc. Famous result includes the “quarter-pinching” theorem solved by Brendle-
Schoen in 2012 (which works for all n ≥ 4). In the special dimension when n = 4,
there is also a sharp pinching theorem by C. Margerin (’98); in which he defined
the “weak pinching condition” on compact, closed dimension four manifold (M4, g)
as

(WP )g :=:
|W |2 + 2|E|2

R2
,

where W denotes the Weyl curvature, E the traceless Ricci curvature and R the
scalar curvature of the metric g

Theorem 1 ([1]). On (M4, g), if Rg > 0 and (WP )g < 1
6 , then (M4, g) is

diffeomorphic to either (S4, gc) or (P
4, gc). Moreover this weak pinching condition

is sharp. The spaces (CP 2, gFS) (when
∫
M4 |W |2 does not vanish) and (S1 ×

S3, gprod.) (when Weyl vanishes) are the only space with WP ≡ 1
6 .

We remark that there are other pointwise curvature pinching theorems on
the sphere by C. Margerin (’84) and G. Huisken (’85) which hold for mani-
folds of dimension n ≥ 4, but the pinching constants are not sharp. Motivated
by the Gauss-Bonnet formula for 4-manifolds, we consider the Schouten tensor
Pg :=: 1

n−2 (Ricg − 1
2(n−1)Rg), and its second elementary symmetric function

σ2 :=: σ2(Pg); on 4-manifold, σ2 = 1
96R

2 − 1
8 |E|2; and we observe that on 4-

manifolds,

WP <
1

6
iff

1

4
|W |2 < 4σ2.
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It is based on this observation that in around 2002, Chang-Gursky-Yang extended

the above theorem of Margerin to its integral form:

Theorem 2 ([2]). On (M4, g), assume the Yamabe constant Y (g) > 0 and∫
M4 σ2 > 0; then
(i) If

1

4

∫

M4

|W |2 < 4

∫

M4

σ2,

then M is diffeomorphic to either S4 or RP 4.
(ii) If the inequality in (i) becomes equality and (M4, g) is not diffeomorphic to
either S4 or RP 4, then M4, g) is conformal equivalent to CP 2 with the Fubini-
Study metric gFS.

One remark that a crucial step in the proof of case (ii) in Theorem 2 above
is the observation that under the conditions of (ii), the metric g becomes the
critical point of the functional

∫
M4 |W |2, hence is Bach flat. That is 0 = Bij =

∇k∇lWkijl +
1
2R

klWkijl .

In this talk we discuss some “gap” theorems which can be viewed as extensions
of the theorem 2 above. First we recall an earlier result of gap theorem on (S4, gc).

Theorem 3 ((Chang-Qing-Yang, ’07; Li-Qing-Shi, ’15)). There exists some ǫ > 0,
so that if a Bach flat metric g on (M4, g), with Y (g) > 0, satisfying

∫
M4 σ2 >

4π2(1− ǫ), then (M4, g) is conformally equivalent to (S4, gc).

The above theorem was first established by Chang-Qing-Yang under the ad-
ditional assumption that, there exists some constant C with

∫
M4 |W |2 ≤ C; this

assumption was later dropped in the work of Li-Qing-Shi, in which they apply the
more recent work of Cheeger-Naber on the codimension 4 conjecture.

The two gap theorems we report on the workshop are:

Theorem 4. If M4 is topologically S4, then the gap in Theorem 3 above is ǫ = 1
2 .

Theorem 5. There exists some ǫ1 > O, such that on (M4, g) with b+2 (M) = 1, if
g is Bach flat with Y (g) > 0, satisfying

0 < 4

∫

M4

σ2 ≤
∫

M4

|W |2 ≤ 4(1 + ǫ1)

∫

M4

σ2

then (M4, g) is conformally equivalent to (CP 2, gFS).

In the rest of the talk, the speaker presents the proof of above two theorems.
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Asymptotic rigidity of shrinking gradient Ricci solitons

Brett Kotschwar

We describe some results obtained by reframing various problems in the classifi-
cation of noncompact shrinking Ricci solitons as problems of unique continuation
for appropriate parabolic systems of PDE. Shrinking Ricci solitons (shrinkers) are
generalized fixed points of the Ricci flow equation and models for the geometry of
a solution near a developing singularity. Their classification is critical to the the
understanding of the long-time behavior of the flow. Growing evidence suggests
that the class of complete noncompact shrinkers may be rigid enough to admit
a structural classification in terms of their geometries at infinity. At present, all
known examples of such solitons are either asymptotic to a regular cone at infinity
or locally reducible as products, and recent work of O. Munteanu and J. Wang
[3, 4] supports the conjecture that, at least in four dimensions, these are the only
possibilities. Our interest is in the associated question of uniqueness, namely: to
what extent is a noncompact shrinking soliton determined by its asymptotic geom-
etry?

In previous joint work with L. Wang [8], we have addressed this question in the
asymptotically conical case, showing that any two shrinkers which are asymptotic
to the same regular cone along some end of each must actually be isometric to
each other near infinity on those ends. This result, an analog of a theorem of
Wang for self-shrinkers to the mean curvature flow [10], uses the formulation in
[5] to reduce the problem to one of backward uniqueness for solutions to a certain
coupled system of mixed differential inequalities. This problem is then amenable
to the application of adapted versions of the Carleman estimates proven in [1] for
solutions to backward parabolic inequalities on the complement of a ball in Rn.

The result in [8] has the specific consequence that any isometry of the cone will
be reflected in an isometry of the corresponding end of the asymptotic shrinker and
it raises the question of what other geometric properties of the cone are necessarily
inherited by the shrinker. In this direction, we show in [7] that, if a complete
shrinker is asymptotic to a Kähler cone along an end, then the shrinker must itself
be Kähler. In this case, the problem reduces to that of the backward propagation of
the Kähler property along the Ricci flow, a problem we have previously considered
in [6] for smooth complete solutions of bounded curvature. In [7], we combine the
formulation in [6] with the Carleman estimates in [8] to treat the (incomplete)
asymptotically conical solutions associated to the shrinkers in our setting.



2208 Oberwolfach Report 35/2017

We have also considered the uniqueness in the asymptotically cylindrical case.
In recent work [9] with L. Wang, we prove that a shrinker which agrees to infinite
order at infinity with a generalized cylinder Sk × Rn−k for k ≥ 2 along some
end must be isometric to the cylinder on that end. This is again an analog of
a theorem of Wang [11] for self-shrinkers to the mean curvature flow, and, as in
that case, does not require the manifold to be complete nor place any a priori
restriction on the number of its ends. Examples constructed in [11] in the mean
curvature flow setting suggest that the assumption of infinite order-decay may be
necessary in this generality. The analysis of the associated problem of backward
uniqueness here is more involved than in the conical case, since the model solution
(the shrinking cylinder) becomes singular along the spherical factor at the terminal
time. To track the percolation of this singularity through the problem, we make
use of a prolonged system which is somewhat more elaborate than that considered
in [5, 8], and develop corresponding anisotropic Carleman inequalities in the spirit
of [2, 11].
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Regularity and compactness for stable codimension 1 CMC varifolds

Neshan Wickramasekera

(joint work with Costante Bellettini)

1. introduction

The talk reported on the recent joint work [5] of Costante Bellettini and the
speaker. The work considers codimension 1 integral n-varifolds V on an open
subset U ⊂ Rn+1 that have generalised mean curvature locally in Lp for some
p > n and that are, on any orientable piece away from the singular set and rel-
ative to a choice of orientation, stationary and stable with respect to the area
functional (with multiplicity) for “volume preserving” deformations. The main re-
sult (Theorem 1 below) gives two structural conditions (hypotheses (a) and (b) of
Theorem 1) on such a varifold V that imply that its support, away from a closed set
of Hausdorff dimension at most n−7, is locally either a single smoothly embedded
constant-mean-curvature (CMC) disk or precisely two smoothly embedded CMC
disks intersecting tangentially, with the value of the scalar mean curvature the
same constant everywhere. Simple examples show that neither of the two struc-
tural conditions can be dropped; see remarks (1) and (3) following Theorem 1.
The work also establishes an associated compactness theorem (Theorem 2 below).

This work is to be regarded an an extension to CMC hypersurfaces of the
regularity theory [9] (that if an n-dimensional stationary codimension 1 integral
varifold has stable regular set and satisfies the structural condition (a) of Theo-
rem 1, i.e. has no “classical singularities” (see the definition below in Section 3)
then it is regular except on a set of Hausdorff dimension n − 7, together with
the corresponding compactness theory and various applications). Some significant
additional technical difficulties needed to be accounted for in the CMC setting,
and in addition there were surprising subtleties in formulating the optimal set of
hypotheses.

One motivating factor for the work [5] is its potential applicability to the ques-
tion of existence of a CMC hypersurface in a compact Riemannian manifold with
a prescribed value of the mean curvature. In the case of zero mean curvature,
the affirmative answer to this question is a long known theorem resulting from
the combined work of Almgren, Pitts and Schoen–Simon. Based on a result of
Y. Tonegawa and the speaker ([8]) that establishes regularity of minimal hyper-
surfaces (limit interfaces) arising from sequences of stable solutions to the elliptic
Allen–Cahn equations with perturbation parameter ǫ → 0+, and standard PDE
min-max principles for semilinear equations, M. Guaraco ([6]) has recently given
a simple, elegant new proof of the existence, in any smooth compact Riemannian
manifold, of a minimal hypersurface that is smooth away from a codimension 7
singular set. This new proof avoids the intricate Almgren–Pitts geometric min-
max theory on the space of varifolds that was needed in the original proof, but for
the regularity conclusions it relies on the work [9] through its dependence on [8].
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2. variational hypotheses in the smooth setting

Since in Theorems 1 and 2 the variational hypotheses only concern orientable
portions of the regular part of the varifold, let us first consider the classical (i.e. C2)
setting, where V corresponds to an embedded, oriented C2 hypersurface M ⊂ U
with ∂ M ∩ U = ∅ and with ν a continuous choice of unit normal on M . For an
open set O ⊂⊂ U , write

AO (M) = Hn (M ∩O) and,

volO (M) =
1

n+ 1

∫

M∩O

x · ν(x) dHn(x).

Note that volO (M) is the volume enclosed by M in case M is the boundary of a
bounded open set Ω ⊂ O and ν is the outward pointing unit normal to M .
Definition: M is stationary in U with respect to the area functional for volume
preserving deformations if d

dt

∣∣
t=0

AO(ϕt(M)) = 0 for each open O ⊂⊂ U and

each smooth map ϕ : U × (−ǫ, ǫ) → U , ǫ > 0, with: (i) ϕt = ϕ(·, t) : U → U a
diffeomorphism for each t ∈ (−ǫ, ǫ), (ii) ϕ0 = identity, (iii) ϕt|U\O = identity|U\O

for each t ∈ (−ǫ, ǫ) and (iv) volO (ϕt(M)) = volO (M) for each t ∈ (−ǫ, ǫ).
Write HM for the mean curvature vector of M . Let λ ∈ R be a constant, and

let

JO(M) = AO(M) + λ volO (M).

It is well-known, and is straightforward to verify, that the following statements
are equivalent (see e.g. [4]):

(a) M is CMC with HM · ν = λ.
(b) λ = 1

AO(M)

∫
M∩O HM · ν dHn fr some open O ⊂⊂ U , and M is stationary

in U with respect to area for volume preserving deformations.
(c) For each open O ⊂⊂ U , M is stationary with respect to JO(·) for arbitrary

deformations (i.e. for ϕt as above but not necessarily with volO (ϕt(M)) =
volO (M) ∀t).

Definition: An embedded CMC hypersurface M in U is stable if for each open

O ⊂⊂ U , d2

dt2

∣∣∣
t=0

AO(ϕt(M)) ≥ 0 for all volO (·) preserving ϕt as in the definition

above. Stability of M is equivalent to the fact that
∫

M

|A|2ζ2 dHn ≤
∫

M

|∇ ζ|2 dHn

for each ζ ∈ C∞
c (M) with

∫
M ζ dHn = 0, where A is the second fundamental form

of M and ∇ is the gradient operator on M (see [4]).

3. The varifold setting and two special types of singularities

Now consider an integral n-varifold V = (M, θ) in U with generalized mean cur-
vature vector HV and associated weight measure ‖V ‖ (notation as in [7], except
for ‖V ‖ which is denoted µV in [7]). This means that M is an Hn measurable,
countably n-rectifiable subset of U , θ : M → N is a positive integer valued Hn
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measurable function on M , ‖V ‖ = Hn θ̃ where θ̃ = θ on M and θ̃ = 0 in U \M ,
HV ∈ L1

loc(‖V ‖) in U , and the formula

∫

M

divM X d‖V ‖ = −
∫

M

HV ·X d‖V ‖

holds for every X ∈ C∞
c (U ;Rn+1). Here divM X(x) =

∑n
j=1 τj · Dτj X(x) where

{τ1, . . . , τn} is any orthonormal basis for the approximate tangent space TxM
and Dτ denotes the directional derivative in the direction τ . Note that when
V = (M, 1) with M an oriented C2 hypersurface, the validity of this formula with
HV equal to the classical mean curvature vector of M follows from the divergence
theorem. In the varifold setting (where M is merely countably n-rectifiable), this
is the defining formula for the generalized mean curvature vector HV .

To have any hope of regularity of spt ‖V ‖∩U , we need HV ∈ Lp
loc(‖V ‖) for some

p ≥ n. Else spt ‖V ‖ ∩ U need not even be n-dimensional as can be seen by taking
the union of suitable countably many concentric spheres around rational points in
R3. If on the other hand HV ∈ Lp

loc (‖V ‖) in U for some p > n, then spt ‖V ‖∩U is
n-rectifiable, Hn (((spt ‖V ‖ \M)∪ (M \ spt ‖V ‖))∩U) = 0 and the C1 embedded
part reg1 V of spt ‖V ‖ ∩ U is a relatively open, dense subset of spt ‖V ‖ ∩ U. In

fact reg1 V is of class C1,1−n
p if n < p < ∞. The condition HV ∈ Lp

loc (‖V ‖) also
implies (via the well-known approximate monotonicity formula for the area ratio)

that the area density Θ (‖V ‖, p) = limρ→0
‖V ‖(Bn+1

ρ (p))

ωnρn exists for every p ∈ U , and

that spt ‖V ‖ ∩ U = {p ∈ U : Θ (‖V ‖, p) ≥ 1}. Here ωn denotes the volume of the
unit ball in Rn, and Bn+1

ρ (p) is the open ball in Rn+1 with centre p and radius ρ.
These facts were all established in the landmark work of Allard ([1]) that extended
earlier fundamental work of Almgren ([2]).
Definition: For an integral n-varifold V as above, the singular set singV is defined
by singV = (spt ‖V ‖\reg1 V )∩U, where reg1 V is the set of points p ∈ spt ‖V ‖∩U
near which spt ‖V ‖ is a C1 embedded hypersurface.

Note that a.e. regularity (i.e. the fact that Hn (sing V ) = 0) does not follow
from the assumption HV ∈ Lp

loc for some p > n; a construction due to Brakke ([3])
gives an integral 2-varifold V in R3 with HV ∈ L∞

loc such that singV has positive
H2 measure.

Let us now introduce two special types of singularities that will play a key role
in the main theorems given in the next section.
Definition: A point p ∈ spt ‖V ‖∩U is a classical singularity if there are α ∈ (0, 1)
and σ > 0 such that spt ‖V ‖∩Bn+1

σ (p) is the union of three or more embedded C1,α

hypersurfaces-with-boundary having common boundary S containing p, meeting
pairwise only along S, and with at least two of the hypersurfaces-with-boundary
meeting transversely.

Let singC V be the set of classical singularities of V .
Definition: A point p ∈ spt ‖V ‖∩U is a touching singularity of V if p 6∈ singC V ∪
reg1 V and there are σ > 0, an affine hyperplane L containing p, α ∈ (0, 1) and
two C1,α functions u1, u2 : L → L⊥ such that spt ‖V ‖ ∩ Bn+1

σ (p) = (graphu1 ∪
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graphu2) ∩Bn+1
σ (p). (Note that it follows from the definition that u1(p) = u2(p),

Du1(p) = Du2(p).)
Let singT V be the set of touching singularities of V .

4. main theorems

Theorem 1 (CMC REGULARITY THEOREM). Let V be an integral n-
varifold on an open subset U ⊂ R

n+1, n ≥ 2, with HV ∈ Lp
loc(‖V ‖) for some

p > n. Suppose that V satisfies the following:
Structural Hypotheses:

(a) singC V = ∅;
(b) For each p ∈ singT V , there is ρ > 0 such that Hn ({y : Θ (‖V ‖, y) =

Θ (‖V ‖, p)} ∩Bn+1
ρ (p)) = 0;

Variational Hypotheses:

(c) stationarity: for each open O ⊂⊂ U \ sing V such that reg1 V ∩ O is
orientable, the varifold W ≡ V O is stationary in O with respect to the
area functional AO(W ) = ‖W‖(O) for ambient deformations that leave
the region outside a compact subset of O fixed and preserve volO (W ) =
1

n+1

∫
x·ν d‖W‖, where ν is a choice of continuous unit normal on reg1 V ∩

O;
(d) stability: the C2 immersed part M of spt ‖V ‖ (which, by virtue of the hy-

potheses (a), (c) and the C2 assumption, contains reg1 V and is a CMC
hypersurface consisting locally of a single embedded disk or precisely two
embedded disks intersecting tangentially) is stable, as an immersion, with
respect to (multiplicity 1) area for volume preserving deformations, or
equivalently, the stability inequality

∫
M

|A|2ζ2 ≤
∫
M

|∇ ζ|2 holds for each

ζ ∈ C∞
c (M) with

∫
M ζ = 0.

Then there exists a closed set Σ ⊂ spt ‖V ‖ with dimH (Σ) ≤ n − 7 such that
spt ‖V ‖ \Σ locally near each point is either a smoothly embedded disk or the union
of precisely two smoothly embedded disks intersecting tangentially along a set con-
tained in a smooth (n− 1)-dimensional submanifold; moreover, if HV 6= 0 identi-
cally, then spt ‖V ‖ \Σ is an orientable smooth immersion and there is a constant
λ ∈ R \ {0} such that HV = λν on spt ‖V ‖ \ Σ where ν is a choice of orientation
on spt ‖V ‖ \ Σ.

Remarks: (1) Hypothesis (a) cannot be dropped, as shown by a piece of two
intersecting unit spheres or cylinders.
(2) If hypothesis (b) is dropped, then C2 regularity cannot be guaranteed, as
shown by the example Γ×Rn−1 where Γ is the following 1-dimensional varifold in
a suitable open subset of R2:
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In this picture, each arc is a piece of a unit circle, and the numbers 1, 2 denote the
multiplicity on an arc. The singular point is a touching singularity (not a classical
singularity, since no pair of arcs meet transversely). The only hypothesis of the
theorem not satisfied by this example is (b). The support of the varifold is not the
union of two C2 graphs (it is however the union of a C2 graph and a C1,1 graph).

Theorem 2 (CMC COMPACTNESS THEOREM). Let (Vj) be a sequence
of integral n-varifolds in open U ⊂ Rn+1, n ≥ 2, satisfying HVj ∈ L

pj

loc(‖Vj‖) for
some pj > n and (a)-(d) (as in the above theorem) with V = Vj.
If lim supj→∞ ‖Vj‖(K) < ∞ for each compact K ⊂ U and lim supj→∞ |HVj | < ∞
(note that |HVj | is constant for each j by the above theorem), then there is an inte-
gral n-varifold V in U satisfying the conclusions of Theorem 1, and a subsequence
{j′} such that Vj′ → V as varifolds in U .

In view of De Giorgi’s structure theorem for Caccioppoli sets, the following is
an immediate consequence of Theroem 1:

Corollary 3. If V is the multiplicity 1 varifold associated with the boundary of
a Caccioppoli set, and if the hypotheses (a), (c), (d) of Theroem 1 hold, then V
satisfies the conclusions of the Theorem 1.
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Expanding solutions of the harmonic map flow

Alix Deruelle

(joint work with Tobias Lamm)

In this short note, we consider the Cauchy problem for the harmonic map flow of
maps (u(t))t≥0 from Rn, n ≥ 3 to a Wickramasekera sphere Sm−1 ⊂ Rm, m ≥ 2:

(1)

{
∂tu = ∆u+ |∇u|2u, on Rn × R+,

u|t=0 = u0,

for a given map u0 : Rn → Sm−1 ⊂ Rm. Remark that equation (1) is equivalent
to ∂tu−∆u ⊥ TuS

m−1 for a family of maps (u(t))t≥0 with values in Sm−1. Recall
that this evolution equation is invariant under the scaling:

(u0)λ(x) := u0(λx), x ∈ R
n,(2)

uλ(x, t) = u(λx, λ2t), λ > 0, (x, t) ∈ R
n × R+.(3)

If u0 is invariant under scaling, i.e. if u0 is 0-homogeneous, solutions of the
harmonic map flow which are invariant under scaling are potentially well-suited for
smoothing u0 out instantaneously. Such solutions are called expanding solutions.
In this setting, it turns out that (1) is equivalent to a static equation, i.e. that
does not depend on time anymore. Indeed, if u is an expanding solution in the
previous sense then the map U(x) := u(x, 1) for x ∈ Rn, satisfies:

(4)





∆U +
r

2
∂rU + |∇U |2U = 0, on Rn,

lim
|x|→+∞

U(x) = u0(x/|x|).

Conversely, if U is a solution to (4) then the map u(x, t) := U(x/
√
t), for

(x, t) ∈ Rn × R+ is a solution to (1). Because of this equivalence, u0 can be
interpreted either as an initial condition or a boundary data at infinity.

The interest of expanding solutions is twofold. On one hand, these scale invari-
ant solutions are important with respect to the continuation of a weak harmonic
map flow between two closed Riemannian manifolds. Indeed, by the work of Chen
and Struwe [3], there always exists a weak harmonic map flow starting from a
smooth map between two closed Riemannian manifolds. It turns out that such
a flow is not always smooth and the appearance of singularities is caused by ei-
ther non-constant 0-homogeneous harmonic maps defined from Rn to Sm−1 called
tangent maps, or shrinking solutions (also called quasi-harmonic spheres) that are
ancient solutions invariant under scalings. Expanders can create an ambiguity in
the continuation of the flow after it reached a singularity by a gluing process. On
the other hand, one might be interested in using the smoothing effect of the har-
monic map flow. More precisely, it is tempting to attach a canonical map to any
map between (stratified) manifolds with prescribed singularities: it turns out that
0-homogeneous maps are the building blocks of such singularities and expanding
solutions are likely to be the best candidates to do this job.
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We investigate the question of existence of expanding solutions coming out of
u0 in case there is no topological obstruction, i.e. if u0 is homotopic to a constant.
Our main result is:

Theorem 1. Let n ≥ 3 and m ≥ 2 be two integers and let u0 : R
n → Sm−1 ⊂ Rm

be a Lipschitz 0-homogeneous map homotopic to a constant.
Then there exists a weak expander u(·, 1) =: U(·) of the harmonic map flow

coming out of u0 weakly. Moreover,

‖∇u(t)‖L2(B(x0,1)) ≤ C(n,m, ‖∇u0‖L2
loc(R

n), t)‖∇u0‖L2(B(x0,1)), ∀x0 ∈ R
n,

‖∂tu‖L2((0,t),L2
loc(R

n)) ≤ C(n,m, t)‖∇u0‖L2
loc(R

n),

where limt→0 C(n,m, ‖∇u0‖L2
loc(R

n), t) = limt→0 C(n,m, t) = 0.

In particular, u(·, t) tends to u0 as t goes to 0 in the H1
loc(R

n) sense and if u0

is not harmonic then u(·, t) is not constant in time.

Let us mention a few remarks about this theorem. The energy estimates of
Theorem 1 are reminiscent of and based on the fundamental work of Chen [2].
Theorem 1 and its proof provide the existence of a non constant in time (or equiv-
alently non radial) expanding solution in case the initial condition is not harmonic.
Since the initial condition u0 is allowed to have large local-in-space energy, it is
likely that uniqueness will fail. In particular, the authors do not know if the solu-
tion produced by Theorem 1 coming out of a 0-homogeneous harmonic map will
stay harmonic.

Now a few words about the proof of Theorem 1. A direct perturbative approach
does not seem appropriate without imposing either any further symmetry on the
initial condition u0 or any smallness of the L2

loc(R
n) energy of u0. Indeed, the

nonlinearity of the target manifold and the formation of singularities are the two
main obstacles. Therefore, we follow Chen’s penalization procedure [2]. As a pre-
liminary result, we prove the existence of expanding solutions of the homogeneous
Ginzburg-Landau flow with parameter K > 0:

(5)





∂tu = ∆u+

K

t
(1− |u|2)u, on Rn × R+,

u|t=0 = u0.

The reason why we introduce the factor t−1 in front of the termK(1−|u|2)u is to
make the Ginzburg-Landau flow invariant under the same scalings (2) and (3). The
next step consists in taking a limit of a sequence of expanding solutions of (5) as
K goes to +∞. Despite its physical relevance, the homogeneous Ginzburg-Landau
flow does not seem to give a precise estimate on the singular set as noticed by Chen
and Struwe [3]: this comes essentially from a lack of a good Bochner formula which
in turn is caused by the difficulty of controlling the vanishing set of an expanding
solution a priori. Therefore, we plan to prove the existence of expanding solutions
starting from the same initial condition u0 of a so called homogeneous Chen-Struwe
flow with parameter K.
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We would like to relate our work to previous articles on this subject. To our
knowledge, most of the literature concerns maps from Rn to an hemisphere of a
rotationally symmetric target manifold: see Germain and Rupflin [8], Biernat and
Bizón [1] and the more recent work due to Germain, Ghoul and Miura [7]. In
particular, our setting includes theirs in the case the target is a sphere since a
map from Rn with values in an hemisphere is homotopic to a constant. Of course,
since (1) reduces to an ODE in such a corotational setting, the above mentioned
works obtain more quantitative results even if the question of regularity is not
really addressed.

There are at least two equations that motivates this work. Jia and Šverák [9]
proved the existence of smooth expanding solutions of the Navier-Stokes equation.
In this case, the homogeneity is of degree −1. To prove Theorem 1, we proceed
similarly to their work by using Leray-Schauder degree theory. To do so, one needs
a path of initial conditions (uσ

0 )0≤σ≤1) : S
n−1 → Sm−1 connecting the restriction

u0
0 of u0 to Sm−1 to a simpler map u1

0. By simpler, we mean here that there is
an obvious solution coming out of u1

0 for which there is a uniqueness-in-the-small
result for a suitable function space. In the case of the Navier-Stokes equation,
the path is given for free: it suffices to contract the initial vector field to zero.
In our case, the path is given by assumption. There is also a deep analogy with
the Ricci flow that exhibits the same scale invariance. In the setting of the Ricci
flow, u0 is replaced by a metric cone C(M) over a closed Riemannian manifold
(M, g) endowed with its Euclidean cone metric dr2 + r2g and the topological
assumption on M similar to the triviality of the homotopy class of u0 is that it is
null cobordant. See [6] and [5] in the case (M, g) is a Riemmanian manifold with
curvature operator larger than 1 or [4] in a more algebraic context.
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Synthetic upper Ricci bounds and rigidity of metric measure cones

Karl-Theodor Sturm

(joint work with Matthias Erbar)

We present a synthetic notion of upper Ricci curvature bounds in terms of the L2-
Kantorovich-Wasserstein distance between heat flows. And we prove that every
Ricci-flat metric measure space which can be written as a metric cone is isomorphic
to the Euclidean space.

Recall from [1] that a metric measure space (X, d,m) has Ricci curvature
bounded from below by K iff for all t ≥ 0 and all probability measures µ and
ν on X

−∂t
∣∣
t=0

logW2(Ptµ, Ptν) ≥ K

where Pt denotes the dual heat semigroup on X acting on probability measures.
We say that (X, d,m) has Ricci curvature bounded from above by L iff for all
x ∈ X

− lim sup
y→x

∂t
∣∣
t=0

logW2

(
Ptδx, Ptδy

)
≤ L.

For weighted Riemannian spaces, these conditions are equivalent to lower or upper
bounds on the Bakry-Emery-Ricci tensor.

Assume now that the metric measure space (X ′, d′,m′) is a N -cone of another
metric measure space, say of (X, d,m). By the work of Ketterer, [2], we know that
the N -cone X ′ has Ricci curvature ≥ 0 iff the base space X satisfies a curvature-
dimension condition CD(N − 1, N) in the sense of Lott-Sturm-Villani.

Theorem 1. Assume that RicX′ ≥ 0. Then the following are equivalent:

• RicX′ < ∞
•
∫
X

∫
X
cos d(x, y) dm(x) dm(y) ≤ 0

• N ∈ N, X = SN , X ′ = RN+1.
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