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Abstract. Proof complexity is a multi-disciplinary intellectual endeavor that
addresses questions of the general form “how difficult is it to prove certain
mathematical facts?” The current workshop focused on recent advances in
our understanding of logic-based proof systems and on connections to algo-
rithms, geometry and combinatorics research, such as the analysis of approx-
imation algorithms, or the size of linear or semidefinite programming formu-
lations of combinatorial optimization problems, to name just two important
examples.
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Introduction by the Organisers

The workshop Proof Complexity and Beyond was organised by Albert Atserias
(Barcelona), Jakob Nordström (Stockholm), Toniann Pitassi (Toronto) and Alex-
ander Razborov (Chicago/Moscow). The workshop was held on August 13th-19th
and was attended by approximately 50 participants. The program featured a total
of 32 talks: 4 long lectures, 7 one-hour talks and 21 short talks. In addition, there
was an open problem session and during breaks intensive interaction took place in
smaller groups.

As originally conceived by Stephen Cook and Robert Reckhow in their seminal
article [4], propositional proof complexity is “the study of the length of the shortest
proof of a propositional tautology in various proof systems as a function of the
length of the tautology.” The original motivation for what came to be known as
Cook’s program was to shed light on the celebrated P vs. NP problem, today one
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of the Clay Mathematical Institute Millenium Problems. A significant portion of
the workshop was devoted to Cook’s program proper, i.e. attempts to further
advance our understanding of logic-based proof systems.

A major theme of the workshop stems from the following simple observation.
Two of the most fundamental mathematical results underlying algebraic and real
geometry, Hilbert’s Nullstellensatz and Stengle’s Positivestellensatz, are essentially
proof systems for proving unsatisfiability of a system of polynomial equations and
inequalities, respectively. In turn, the grading of “proofs” in such proof systems by
their “complexity” underlies several of the successful applications of these results
of classical mathematics to theoretical computer science and affine areas. A key
observation underlying this connection is that when the degree of the proof is
bounded, it can be found efficiently by a Gröbner basis algorithm or a semidefinite
program, which leads to a myriad of practical and theoretical applications in areas
that include optimization theory [7], probability theory [5], quantum information
theory [1], extremal combinatorics [6, 8], algorithms for machine learning [2], and
computational complexity [3].

We now proceed to describing concrete talks delivered at the workshop, and we
attempt to classify them into groups according to the above lines.

Semialgebraic proofs, combinatorial optimization and inapproximability
Semialgebraic proof systems are based on the duality theorem of linear program-
ming and the vastly more general duality theory for semialgebraic sets known as
Stengle’s Positivstellensatz. One interesting consequence of this duality is that
very similar questions are worked on by researchers in (at least) two different ar-
eas: proof complexity and combinatorial optimization/inapproximability. One of
our main intentions was to bring these two communities together, and here we
report on how this goal was achieved during the workshop.

Two long lectures by O’Donnell and Atserias gave an extensive overview
of this area from the two perspectives. Another long lecture by Lee was devoted
to the extension complexity in convex optimization that makes one of the most
striking applications of semi-algebraic proof systems today.

Two talks were devoted to Cutting Planes, which is one of the most promi-
nent proof systems used in Operation Research. Fleming presented a recent
breakthrough result making major progress on the long-standing open problem of
proving lower bounds on the size of cutting planes refutations for random k-CNF
formulas. Vinyals in his talk gave the first true size-space trade-offs for Cutting
Planes.

The Sum-of-Squares proof system (SoS) is the one directly based on the Pos-
itivestellensatz, and it is arguably the most important one in the family, partly
due to its connections with the Unique Games Conjecture (see, e.g., [3]). Not
surprisingly, quite a number of talks at the workshop were devoted to this system,
and its close cousins like Sherali-Adams, from several different perspectives.

Tulsiani and Kothari spoke of the complexity of the constraint satisfaction
problem (CSP) in this context, which is one of the most fundamental core problems
in the area. Ochremiak discussed a general theory of reductions between CSPs
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of various types based on classical algebraic constructions such as algebras of
polymorphisms. Schramm spoke of a recent result on the equivalence between
SoS and spectral algortihms in a somewhat broader context, andDawar connected
SoS to fixed-point logic with counting.

Finally, a number of talks gave applications of SoS beyond discrete optimization.
Guruswami focussed on the fundamental problem of optimizing homogeneous
polynomials over the sphere. Steurer and Potechin discussed very interesting
applications to machine learning, of which the famuous tensor completion prob-
lem makes an important example. Raymond spoke of intriguing and unexpected
connections between SoS and the theory of flag algebras [8] successfully employed
in Extremal Combinatorics.

Algebraic proof systems Algebraic proof systems have been extensively studied
in the last twenty years. Proofs in these systems are witnesses realizing Hilbert’s
Nullstellensatz: a proof of unsatisfiability for a system of polynomial equations
(representing a CNF formula, say) is an algebraic circuit witnessing that 1 is in
the ideal generated by the given polynomials.

A survey talk by Shpilka was devoted to the recent Ideal Proof Systems signif-
icantly deviating from the Cook-Reckhow paradigm. Tzameret spoke of promi-
nent proof systems naturally combining logic-based and algebraic reasoning; this
area has quite a number of concrete interesting open problems. Finally, Lauria
presented lower bounds for Graph Coloring for the Polynomial Calculus proof sys-
tem, which formalizes Gröbner basis computations and is strong enough to capture
successful algorithms used in practice.

Logic-based proof systems As we mentioned above, these are proof systems in
the proper sense, i.e., those in which lines encode normal mathematical statements
in a recognizable form.

Håstad spoke of his recent breakthrough result on improved lower bounds for
bounded-depth Frege proof systems. It required significant enhancements to the
classical restriction method, and it is widely expected that new methods will find
many further applications. Pudlák addressed in his talk the theory of disjoint
NP-pairs from the perspective of proof complexity.

Most other talks in this category pertained to even weaker proof systems cen-
tered around the celebrated Resolution proof systems. Concrete lower bounds
were represented in the talks by Berkholz (very strong trade-offs for resolution,
with spectacular applications to finite variable logic) and by de Rezende (size
lower bounds for regular resolution proofs of a prominent combinatorial principle).
The theme of regular resolution was taken up by Urquhart who gave a lovely
introduction to the area. Itsykson spoke of an important proof system, closely
related to resolution, that reasons about OBDD-representations of Boolean func-
tions. Beame’s talk was of even more practical flavor—it was devoted to the task
of verifying arithmetic circuits based on the resolution proof system.

Finally, the talks by Dantchev and Thapen explored another fascinating
concept in proof complexity closely connected to interactive proofs: what does it
mean for a propositional proof to be approximately correct?
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Beyond proof complexity Several interesting talks given at the workshop belong
to adjacent areas and can hardly be classified according to the above scheme.

The two areas where ties to proof complexity have been traditionally extremely
strong are circuit complexity and communication complexity. In the second part
of her long lecture, Pitassi gave an overview of spectacular recent developments
in those areas exploiting the method of hardness escalation. She concluded with
applications to proof complexity proper. This theme was continued in the talk
by Robere in which the first strongly exponential lower bound for the monotone
circuit size was discussed.

Sudan’s survey talk was devoted to the captivating framework of communica-
tion amid uncertainty attempting to capture real-life practice when communicat-
ing agents are even unsure about the rules of the game itself or even about the
language used for communication. Williams spoke of the task of multipoint arith-
metic evaluation from the perspective of the so-called Strong Exponential Time
Hypothesis. Beyersdorff gave an overview talk about various proof systems
used for refuting quantified Boolean formulas.

Open problem session On Tuesday evening an “Open Problem Session” was
held. The main goal of the activity was to give the participants an opportunity
to address the audience in somewhat informal terms about a research problem or
direction for which progress could constitute an important advance in the area.
A call for five minute informal presentations was announced on Monday morn-
ing with the promise of holding the first twelve proposals in order of arrival. At
the beginning of the session on Tuesday evening we had received seven proposals.
At the end of the session, a new call for last minute proposals was made, and
three additional research problems were presented. The diversity of the audience
backgrounds was reflected in the variety of problems presented. These ranged
areas from the relative complexity of Frege systems as compared to resolution-
modulo-theories systems (contributed by Kolokolova), through the complexity
of proof systems that model the operation of state-of-the-art SAT-solvers (con-
tributed by Johannsen), to an important but not so well-known problem that
asks for the complexity of the parity principle in dag-like Lovász-Schrijver proof
system (contributed by Beame). As mentioned by Beame in his presentation,
this last problem can be tracked back, in slightly different language, to a lecture
delivered by Laszlo Lovász himself at an Oberwolfach Workshop in Complexity
Theory in 1996 (see http://oda.mfo.de/view/bsz/325094934/DEFAULT/5/ for
the abstract of Lovász’s lecture).
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Abstracts

Selected Topics on Semialgebraic Proof Complexity

Albert Atserias

Semi-algebraic proof systems are designed to reason with polynomial inequalities
over the reals. Their significance for proof and algorithmic complexity is two-fold.
On one hand, the expressive power of polynomial inequalities is particularly well
suited for stating and reasoning about combinatorial optimization problems; this
includes elementary pigeonhole-based arguments, as well as more complex count-
ing arguments such as those arising in the theory of hypercontractivity in discrete
Fourier analysis. On the other hand, by elementary reductions to linear or semi-
definite programs, semi-algebraic proof systems tend to have relatively tractable
proof-search problems. This survey-like talk started by introducing the family
of semi-algebraic proof systems that I called “Lovász-Schrijver proof systems” in
recognition of their highly influential article [5]. Then I discussed the following as-
pects of it: (1) their most important proof complexity measures, including degree,
rank, length and size, in the most traditional style of proof complexity, (2) their
relationship to the linear and semi-definite programming hierarchies of Sherali-
Adams [10] and Lasserre/Sums-of-Squares [4, 7, 1], (3) their ability to efficiently
formalize some interesting counting arguments, including the pigeonhole principle
[5, 3] and the small-set expansion property of the noisy hypercube as an applica-
tion of hypercontractivity [1, 6], (4) the degree-size tradeoffs that apply to them
[8], and, last but not least, (5) the strong limitation result of Grigoriev [2] and
Schoenebeck [9] showing that, for certifying the unsatisfiability of sparse random
systems of parity equations, linear rank or degree is required.
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Verifying Multipliers in Resolution

Paul Beame

(joint work with Vincent Liew)

Recent decades have seen remarkable advances in our ability to verify hardware
and software, beginning in the 1980s using OBDDs and more recently using CDCL
SAT solvers. Nonetheless, there is an important area of formal verification where
roadblocks that were identified in the 1980s still remain: any verification prob-
lem in hardware or software that involves the detailed properties of nonlinear
arithmetic. Natural examples of such verification problems in software include
computations involving hashing or cryptographic constructions. At the highest
level of abstraction, nonlinear arithmetic over the integers is undecidable, but the
focus of these verification problems is on the decidable case of integers of bounded
size.

In particular, a notorious open problem is that of verifying properties of integer
multipliers in a way that both is general purpose and avoids exponential scaling
in the bit-width. Bryant [8] showed that this is impossible using OBDDs since
they require exponential size in the bit-width just to represent the middle bit of
the output of a multiplier. With the flexibility of CNF formulas, efficient rep-
resentation of multipliers is not a problem but, even with the advent of greatly
improved SAT solvers, there has been no advance in verifying multipliers beyond
exponential scaling. The problem of verifying nonlinear arithmetic, and multipli-
ers in particular, has recently been identified as one of the key gaps in our current
verification methods [4, 5, 7, 10].

Integer multipliers must satisfy natural ring identities of commutativity, dis-
tributivity, and associativity which ensure their correctness. Biere, in the text
accompanying benchmarks on these ring identities submitted to the 2016 SAT
Competition [6], writes that when given as CNF formulas, no known technique
is capable of handling bit-width larger than 16 for commutativity or associativity
of multiplication or bit-width 12 for distributivity of multiplication over addi-
tion. Since efficient verifications by CDCL SAT solvers requires the existence of
short resolution proofs [1], Biere conjectured [7] that there is a fundamental proof-
theoretic obstacle to succeeding on such problems; namely, verifying ring identities
for multiplication circuits, such as commutativity, requires resolution proofs that
are exponential in the bit-width n.

We show that such a roadblock to efficient verification of nonlinear arithmetic
does not exist by giving a general method for finding short resolution proofs for
verifying any degree 2 identity for Boolean circuits consisting of bit-vector adders
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and multipliers. This method is based on reducing the multiplier verification to
finding a resolution refutation of one of a number of narrow critical strips. We
apply this method to a number of the most widely used multiplier circuits, yielding
nO(1) size proofs for array, diagonal, and Booth multipliers, and nO(logn) size proofs
for Wallace tree multipliers.

These resolution proofs are of a special simple form: they are regular resolution
proofs, which have been identified in theoretical models of CDCL SAT solvers as
one of the simplest kinds of proof that those solvers naturally express [9].

(Based on a paper presented at the 2017 Computer-Aided Verification confer-
ence [2], with full version in [3].)
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Resolution Trade-Offs for XOR-Formulas with Applications to Finite
Variable Logics and the Weisfeiler-Leman Algorithm

Christoph Berkholz

(joint work with Jakob Nordström)

We establish strong trade-offs between the width and the depth of resolution refu-
tations of CNF formulas that encode unsatisfiable XOR-formulas. The main mo-
tivation for this are applications in finite model theory and the proofs combine
techniques from both worlds. The trade-offs in the resolution calculus help us
to establish near-optimal lower bounds on the quantifier depth in finite variable
logics, which in turn imply strong lower bounds on the number of refinement steps
in the k-dimensional Weisfeiler-Leman algorithm.

Using systems of linear equations over Z2 (also called XOR-formulas) as a source
of hardness has a long tradition in proof complexity (e. g. Tseitin Tautologies,
random 3-XOR) as well as in finite model theory (e. g. the Cai-Fürer-Immerman
construction and its variants). The first contribution of our work is to make
a precise connection between complexity measures on XOR-formulas from both
worlds: We show that the width and the depth needed to proof the unsatisfiability
of the CNF-encoding of an XOR-formula in resolution corresponds to the number of
variables and the quantifier rank need to distinguish a pair of relational structures
based on the same XOR-formula in first-order logic and its extension with counting
quantifiers.

Our main goal is to prove trade-offs between these two measures. In terms of
resolution our main result states that there is an n-variable XOR-formula that
can be refuted in width k, but where every width-k refutation requires depth
nΩ(k/ log k). This nearly matches the trivial O(nk) upper bound. By the above
correspondence our result implies an nΩ(k/ log k) lower bound on the quantifier rank
needed to distinguish two n-element relational structures in k-variable fragments
of first order logic—before the best lower bound was only linear in n [3].

To obtain these results we make use of two unrelated techniques from proof
complexity and finite model theory. One key component in our proof is the hard-
ness condensation technique introduced by Razborov [5], who established similar
width/depth trade-offs for CNF formulas that do not encode XOR formulas. This
technique can be applied to prove a certain type of supercritical trade-off results
that have the property that the restriction of one parameter (the width) causes
the other parameter (the depth) to grow beyond its worst-case. Our width/depth
trade-off is also of that shape, as there is always a resolution refutation of depth at
most n, but restricting the width to k causes the depth to be at least nΩ(k/ log k).

We apply this condensation technique to a modified version of a construction by

Immerman [4], which was used to prove a Ω(2
√
logn) lower bound on the quantifier

depth of first-order counting logic.
After introducing the problem at hand from the proof complexity and the finite

model theory side, the talk focuses on how the combination of both worlds lead to



Proof Complexity and Beyond 2313

the new trade-off result. The talk is based on a joint work with Jakob Nordström
[1] (full version [2]), which appeared at LICS 2016.
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Proof Complexity of Quantified Boolean Formulas

Olaf Beyersdorff

(joint work with Joshua Blinkhorn and Luke Hinde)

Quantified Boolean formulas (QBF) are a natural extension of SAT problems, in
which variables can be quantified by either universal or existential Boolean quan-
tifiers, as opposed to the solely existential quantifiers implicit in a SAT problem.
Determining whether such QBFs are true is the canonical PSPACE-complete prob-
lem, and is the subject of much practical and theoretical study.

Many different proof systems for QBFs have been proposed, in most cases build-
ing on a base propositional proof system, but with additional rules for dealing with
universal quantifiers. One common such method is to add a ∀-reduction rule, which
can be applied to any C-Frege system [2], such as Resolution (resulting in QU-Res

[12, 14]), as well as to systems such as Cutting Planes (CP) [4, 10] and Polynomial
Calculus (PCR) [1, 9].

On propositional formulas, any QBF proof system reduces to a propositional
proof system, with the corresponding lower bounds. Strategy extraction [2, 13]
allows us to lift circuit lower bounds to QBF proof complexity lower bounds by
computing witnessing functions, or winning strategies, for the universal variables
from a refutation. For strong systems such as Frege+∀red, propositional hardness
and strategy extraction suffice to prove all superpolynomial lower bounds [6], how-
ever this is not the case for weaker systems such as QBF Resolution systems [5].
For these weaker systems, some additional lower bound techniques do exist for
formulas with a particular structure (e.g. feasible interpolation [3, 15]), but there
are relatively few general techniques.

We present such a technique for any proof system P+∀red, which can be applied
to any QBF. This lower bound relies on two semantic properties: the cost of a
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QBF, which can be interpreted as the minimum number of different responses
a winning strategy for the universal variables may produce, and the capacity of
a proof, interpreted as the maximum number of different universal assignments
which are obtained in strategy extraction from a line of the proof. Defining these

formally, we obtain the Size-Cost-Capacity Theorem, that |π| ≥ cost(Φ)

capacity(π) for

any proof π of a QBF Φ.
Given a QBF proof system P+∀red, we therefore seek upper bounds on the

capacity of proofs in P+∀red. In the case of QU-Res and CP+∀red, we prove that
in fact the capacity is equal to 1 for all proofs. For PCR+∀red, capacity is not
constant, but nevertheless, it holds that capacity(π) ≤ |π|, and so in all three
systems, Size-Cost-Capacity implies that QBFs with superpolynomial cost require
proofs of superpolynomial size.

To exemplify this technique, we define the equality formulas. These natural
QBFs are simple to construct, but there is a unique response for the universal
player to any assignment, so it is clear the formulas have exponential cost. As a
result of the capacity bounds, we therefore immediately obtain exponential proof
size lower bounds for the equality formulas in QU-Res, CP+∀red and PCR+∀red.

As the major application of this new technique, we prove exponential lower
bounds with high probability for a class Q(n,m, c) of randomly generated QBFs,
the first such lower bound on random QBFs. These random QBFs are essentially
a disjunction of randomly generated (1,2)-QCNFs [8], regularly used as a model
for random QBFs [7], but with a rearranged quantifier prefix. By choosing the
number of clauses and variables carefully, we can apply results on the truth of
random (1,2)-QCNFs [11], and the unsatisfiability of random 2-SAT problems
[16]. By combining these results, we are able to obtain an exponential cost lower
bound on Q(n,m, c) with high probability.
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[11] N. Creignou, H. Daudé, U. Egly, and R. Rossignol. Exact location of the phase transition
for random (1, 2)-QSAT. RAIRO - Theor. Inf. and Applic. 49(1), 23–45 (2015)

[12] A.V. Gelder. Contributions to the theory of practical quantified boolean formula solving.
In: International Conference on Principles and Practice of Constraint Programming (CP).
pp. 647–663 (2012)

[13] A. Goultiaeva, A.V. Gelder, and F. Bacchus. A uniform approach for generating proofs
and strategies for both true and false QBF formulas. In: International Joint Conference on
Artificial Intelligence IJCAI. pp. 546–553 (2011)
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Randomised Approximate Proofs

Stefan Dantchev

(joint work with Joshua Blinkhorn and Luke Hinde)

Recently, the notion of random resolution distributions has been proposed by
Pudlák and Thapen in [3] (see also [1] for motivation), and some basic results
have been proven. This has been the first attempt to introduce randomness to
propositional proofs in the context of proof complexity. We suggest an alternative
definition of randomised approximate resolution (ra-resolution) refutations,
which is less restrictive, and, in our opinion, looks more natural. In particular,
there is straightforward translation of a randomised algorithm that solves the
search problem for an unsatisfiable set of clauses into a ra-resolution refutation.
(The search problem is: given an assignment of the variables, find a clause falsified
by it.)

As a matter of fact, our motivation comes entirely from the question if a ran-
domised algorithm for the search problem can be turned into any kind of meaning-
ful refutation, while Pudlák and Thapen’s main motivation comes from questions
concerning various separations of theories within Bounded Arithmetic. It turns out
that both systems suffer from a nasty drawback, namely neither is a propositional
proof system in the sense of Cook and Reckhow [2].

Our definition of a ra-resolution refutation is as follows.
Given a propositional contradiction F in cnf and a probability 0 ≤ ε < 1, an

ε-approximate resolution (ε-ra resolution) refutation of F is a probability
distribution D over pairs (R,Π), where R is a cnf over the variables of F and Π
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is a resolution refutation of F ∧ R, and such that for every assignment x of the
variables of F

Prob(R,Π)∼D [the cannonical path of x ends in a clause of R in Π] ≤ ε

holds.
We prove some very general basic properties of these refutations. We also

provide a number of of upper and lower bounds that give various separations
between ra-resolution and resolution.
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The Symmetry Gap in Combinatorial Optimization

Anuj Dawar

(joint work with Matthew Anderson, Bjarki Holm and Pengming Wang)

Fixed-point Logic with Counting (FPC), is a natural and powerful fragment of the
class of polynomial-time decidable properties that is much studied in the context
of finite model theory. See [3] for a short introduction. Though originally defined
in logical terms, it has a circuit characterization as the class of properties decided
by families of polynomial-time uniform symmetric circuits [1]. It is capable of
expressing many polynomial-time algorithms but we can prove that some problems
such as XOR-Sat are not in FPC. The method of proof is based on showing that
every property in FPC is closed under ≡k, the k-dimensional Weisfeiler-Leman
equivalence for some k. A direct proof of this, based on the circuit characterization,
can be found in [4]. For any class of finite structures C, we define its counting width
νC : N → N to be the function that takes n to the least value of k such that the
collection of structures in C with at most n elements is closed under ≡k. Then,
any class in FPC has counting width bounded by a constant, while XOR-Sat has
counting width Ω(n).

We proved in [2] that the ellipsoid method can be implemented in FPC. To be
precise, we show that the problem of determining the feasibility of an explicitly
given linear program (suitably represented as a class of structures) is in FPC.
More generally, we show that the optimization problem for linear programs can be
reduced to the separation problem: if the separation problem is in FPC, then so
is the optimization problem. By constructing a suitable FPC separation oracle for
the Edmonds matching polytope in graphs, we are able to show that the problem of
determining the size of the maximum matching in a graph is FPC. More recently,
we have extended the technique to weak optimization and weak separation in
semidefinite programs and obtained a dichotomy in the context of finite valued
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constraint satisfaction problems (a class of problems that generalizes the class of
Max-CSP problems). We show that for any such problem, its counting width is
either bounded by a constant or is Ω(n). By showing that a degree-d Lasserre sums-
of-squares relaxation of such a problem is definable in FPC, we obtain another
dichotomy: any finite valued CSP is either solvable by its basic linear programming
relaxation or cannot be solved exactly by a sub-linear degree Lasserre lift of that
relaxation [5, 6].
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k-Clique is Hard on Average for Regular Resolution

Susanna F. de Rezende

(joint work with Albert Atserias, Ilario Bonacina, Massimo Lauria,
Jakob Nordström and Alexander Razborov)

The problem of deciding whether a graph on n vertices has a k-clique is a funda-
mental problem in graph theory. A trivial enumeration algorithm can determine
this in time O(nk) and unless the Exponential Time Hypothesis (ETH) is false
there is no f(k) · no(k)-time algorithm for solving this problem[5].

A natural question is whether we can prove an unconditional lower bounds for
a restricted class of algorithms. For example, can we show that resolution requires
size nΩ(k), or even nΩ(g(k)) for some increasing function g, to prove the absence of
k-cliques in a graph? This question was mentioned in [4] and remains open.

We make progress in this direction and show that, to certify the absence of
k-cliques, regular resolution almost surely requires size nΩ(k) for graphs sampled
at random from the appropriate Erdős–Rényi model.

The first result in this direction was by Beame, Impagliazzo and Sabharwal [1].
They show that resolution requires size 2Ω(k) to establish that a graph does not
contain a k-clique. Their proof uses the width method of Ben-Sasson and Wigder-
son [2], which cannot yield an nΩ(k) lower bound since there are resolution proofs
of width O(k).
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Beyersdorff, Galesi and Lauria [3] show that tree-like resolution requires size
nΩ(k) to prove the absence of k-cliques in complete (k − 1)-partite graphs and in
Erdős–Rényi graphs. They also show that in order to extend this result to regular
resolution we cannot use (k − 1)-colorable graphs since for these graphs there are
regular proofs of size O(2kk2n2).

The results mentioned so far all use the more natural unary encoding of the
statement that a graph contains a k-clique. For the binary encoding, a lower
bounds of nΩ(k) for k up to logn can be obtained by careful reading of [6].
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Random O(logn)-CNF formulas Are Hard for Cutting Planes

Noah Fleming

(joint work with Denis Pankratov, Toniann Pitassi and Robert Robere)

Random k-SAT formulas form one of the most important testbeds of hard examples
for algorithms in the AI and SAT communities. Furthermore, the conjectured
hardness of certifying the unsatisfiability of random k-SAT instances has been
connected to many areas in TCS. In 1988, Chvaátal and Szeméredi [1] proved that
for any k ≥ 3, random k-CNF formulas require an exponential number of lines
to refute in Resolution. This result was further improved by several authors, and
extended to k-DNF Resolution and Polynomial Calculus. Since then, it has been
an open problem to prove similar results for other proof systems.

In this work [2], we make progress towards resolving this question for Cutting
Planes. We show that Cutting Planes refutations of random O(log n)-CNF formu-
las require exponentially many lines. This was proved independently by Pudlák
and Hrubes̆ [3].

In 1997, Pudlák [6] obtained the first exponential lower bounds on the length
of Cutting Planes refutations of split formulas (formulas of a very specific type
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which are essentially the conjunction of two contradictory statements). This was
achieved by showing that any Cutting Planes refutation of a split formula implies a
real monotone circuit of the same size for separating an associated set of minterms
and maxterms. Lower bounds were then obtained by proving lower bounds on the
size of monotone real circuits for this separating set of minterms and maxterms.
To obtain our lower bound, we generalize this, showing that a Cutting Planes
refutation of any unsatisfiable formula implies a real monotone circuit of the same
size for separating a set of minterms and maxterms. Furthermore, we characterize
exactly when this technique can be applied by proving an if and only if direction for
a stronger proof system, one that simulates Cutting Planes. That is, there exists
a small real monotone circuit for separating this set of minterms and maxterms if
and only if there exists a short refutation in this proof system. In order to prove
this equivalence, we show that refutations in this proof system are equivalent to
PLS games (a DAG-like model of communication introduced by Razborov [7]) and
then make use of an equivalence between PLS games and real monotone circuits
proved by Pudlák and Hrubes̆ [4]. The final task is to obtain a lower bound on the
set of minterms and maxterms obtained via this equivalence for random O(log n)-
CNF formulas. To do this, we appeal to the method of symmetric approximations
[5].

The aim of this talk is to give a high-level exposition of how this lower bound can
be obtained, with a particular focus on proving the the equivalence between real
monotone circuits and refutations. Furthermore, I will outline why this method
cannot be used to solve certain other long-standing open problems for Cutting
Planes, such as obtaining lower bounds on the Tseitin formulas, and the difficulties
of using this approach to prove Cutting Planes lower bounds on random constant-
width CNF formulas.
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Sum-of-Squares Certificates of Maxima of Polynomials over the Sphere

Venkatesan Guruswami

(joint work with Vijay Bhattiprolu, Mrinalkanti Ghosh, Euiwoong Lee, and
Madhur Tulsiani)

We consider the following basic problem: given an n-variate degree-d homogeneous
polynomial f with real coefficients, compute a unit vector x ∈ R

n that maximizes
|f(x)|. Besides its fundamental nature, this problem arises in diverse contexts
ranging from tensor and operator norms to graph expansion to quantum informa-
tion theory. The homogeneous degree 2 case is efficiently solvable as it corresponds
to computing the spectral norm of an associated matrix, but the higher degree case
is NP-hard.

In this work, we give approximation algorithms for this problem. Our algo-
rithms leverage the tractability of the degree-2 case, and output the best so-
lution among a carefully constructed set of quadratic polynomials. They offer
a trade-off between the approximation ratio and running time: in nO(q) time,
we get an approximation within factor Od((n/q)

d/2−1) for arbitrary polynomials,

Od((n/q)
d/4−1/2) for polynomials with non-negative coefficients, and Od(

√
m/q)

for sparse polynomials with m monomials. The approximation guarantees are
with respect to the optimum of the level-q sum-of-squares (SoS) SDP relaxation
of the problem (though our algorithms do not rely on actually solving the SDP).
We give approximation algorithms for this problem that offer a trade-off between
the approximation ratio and running time: in nO(q) time, we get an approxi-
mation within factor Od((n/q)

d/2−1) for arbitrary polynomials, Od((n/q)
d/4−1/2)

for polynomials with non-negative coefficients, and Od(
√
m/q) for sparse poly-

nomials with m monomials. The approximation guarantees are with respect to
the optimum of the level-q sum-of-squares (SoS) SDP relaxation of the problem
(though our algorithms do not rely on actually solving the SDP). Known polyno-
mial time algorithms for this problem rely on “decoupling lemmas.” Such tools
are not capable of offering a trade-off like our results as they blow up the number
of variables by a factor equal to the degree. We develop new decoupling tools that
are more efficient in the number of variables at the expense of less structure in
the output polynomials. This enables us to harness the benefits of higher level
SoS relaxations. Our decoupling methods also work with “folded polynomials,”
which are polynomials with polynomials as coefficients. This allows us to exploit
easy substructures (such as quadratics) by considering them as coefficients in our
algorithms.

We complement our algorithmic results with some polynomially large integral-
ity gaps for d-levels of the SoS relaxation. For general polynomials this follows
from known results for random polynomials, which yield a gap of Ωd(n

d/4−1/2) [2]
(this was extended to higher levels in [3]). For polynomials with non-negative

coefficients, we prove an Ω̃(n1/12) gap for the degree 4 case, based on a novel dis-
tribution of 4-uniform hypergraphs. We establish an nΩ(d) gap for general degree
d, albeit for a slightly weaker (but still very natural) relaxation. Toward this, we
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give a method to lift a level-4 solution matrix M to a higher level solution, under
a mild technical condition on M .
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On Small-Depth Frege Proofs for Tseitin for Grids

Johan Håstad

We study Frege proofs where each formula appearing in the proof is of depth at
most d where this crucial parameter ranges from constant to almost logn where
n is the number of variables in our formula. We are interested in refutations of
any contradictory formula but the Pigeon-Hole-Principle (PHP) and the Tseitin
formulas [9] for graphs play a central role. The latter says1 that in a graph with
an odd number of vertices we cannot have a labeling of the edges by bits such that
each vertex is adjacent to an odd number of edges labeled one.

The first strong result for general depth d was obtained by Ajtai [1] showing
that PHP cannot be proved in constant depth and polynomial size. Ajtai did not
work out an explicit lower bound for the depth of polynomial size proofs but in a
later reformulation by Bellantoni et al. [2], a lower bound of Ω(log∗ n) was given.
This was later strengthened [5, 6] to obtain Ω(log logn) lower bounds for PHP.
Similar bounds were later proved by Urquhart and Fu [10] and Ben-Sasson [3] for
Tseitin formulas for the complete graph and for constant-degree expander graphs,
respectively.

On the positive side Buss [4] proved that there are polynomial size O(log n)-
depth proofs for the PHP and this can be modified to handle the Tseitin formulas.

The exponential gap between the depth bounds log logn and logn was recently
partly closed by Pitassi et al. [7] obtaining a Ω(

√
logn) lower bound for Tseitin

formulas on a certain 3-regular expander graph. It is curious to note the the size
lower bounds of [7] when considering depth d is exponential in Ω((log n)2/d2) and
thus only weakly superpolynomial. For small values of d, this bound is weaker

then the bounds of the form exp(nc−d

) obtained in previous papers but extended
the range of d for which it is superpolynomial.

1This is the special case where all charges are one.
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In the current work we study the Tseitin formulas for the 2-dimensional grid
and almost close the gap obtaining size lower bounds exp(Ω(n1/58(d+1))) for depth
d proofs and hence the depth lower bound Ω(logn/log log n) for polynomial size
proofs. Our proofs follow the same paradigm as earlier proofs and in particular the
key component is defining a set of restrictions that give values to most variables.
To be more precis we study projections (first formalized in [8]) that either assign
constants to variables or identifies a variable with either a new variable or the
negation of such a variable. A key property not used in restrictions from the
1980’ies is that many old variables are identified with the same new variable.

These restrictions are probabilistic and quite involved but manage to fulfill the
two main properties needed. Firstly, with high probability they reduce a Tseitin
formula of the grid to a Tseitin formula on a smaller grid. Secondly, it is possible
to prove a switching lemma which essentially says that, with high probability,
it is possible to reduce the depth of any occurring formula by one. Applying
d consecutive restrictions to a supposed small formula consisting of formulas of
depth d gives the desired contradiction.
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Some Separations for OBDD-Based Proof Systems

Dmitry Itsykson

(joint work with Sam Buss, Alexander Knop and Dmitry Sokolov)

We consider proof systems that operate with branching programs (BP): such proof
systems represent clauses of the formula as branching programs and derive constant
false BP by means of inference rules. We mainly consider very restrictive kind of
branching programs — k-OBDDs that on every path from the source to a sink
read variables in the fixed order for at most k passes. We consider three inference
rules:

(1) join rule that allows to derive the conjunction of two k-OBDDs in the
same order;

(2) weakening rule that allows to derive any k-OBDD that is semantically
implied by the original one, and

(3) reordering rule that allows to derive a representation of k-OBDD in the
another order.

We give an example of CNF formulas that have superpolynomial Resolution com-
plexity but have 1-OBDD(join) proofs of polynomial size. An example of formulas
that are hard for k-OBDD(join) but easy for Resolution was presented in [2, 6],
hence k-OBDD(join) is incomparable with Resolution. We prove that Tseitin
formulas and PHP are hard for k-OBDD(join, reordering) and also show that
k-OBDD(join, reordering) is strictly stronger than k-OBDD(join) [3].

The proof system 1-OBDD(join, weakening) was introduced by Atserias, Ko-
laitis and Vardi in 2004 [1]. They noticed that 1-OBDD(join, weakening) simu-
lates Cutting Plane with unary coefficients (CP*). In 2008 Krajicek proved an
exponential lower bound for the size of k-OBDD(join, weakening) proofs of trans-
formed Clique-Coloring tautologies using the combination of the monotone inter-
polation and a transformation that maps formulas hard for one order to formulas
hard for all orders [4]. In contrast we show that Clique-Coloring tautologies have
short 1-OBDD(join, weakening)-proof, thus 1-OBDD(join, weakening) is strictly
stronger than CP*. Using the existence of a short proof of Clique-Coloring and the
transformation proposed by Sigerlind [5] we show that k-OBDD(join, weakening,
reordering) is strictly stronger than k-OBDD(join, weakening).
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Optimal Sum-of-Squares Thresholds for Refuting Random CSPs

Pravesh Kothari

(joint work with Ryuhei Mori, Ryan O’Donnell and David Witmer)

Let P : {0, 1}k → {0, 1} be a nontrivial k-ary predicate. Consider a random
instance of the constraint satisfaction problem CSP(P ) on n variables with ∆n
constraints, each being P applied to k randomly chosen literals. Provided the
constraint density satisfies ∆ ≫ 1, such an instance is unsatisfiable with high
probability. The refutation problem is to efficiently find a proof of unsatisfiability.

We show that whenever the predicate P supports a t-wise uniform probability
distribution on its satisfying assignments, the sum of squares (SOS) algorithm of
degree d = Θ( n

∆2/(t−1) log ∆
) (which runs in time nO(d)) cannot refute a random

instance of CSP(P ). In particular, the polynomial-time SOS algorithm requires

Ω̃(n(t+1)/2) constraints to refute random instances of CSP(P ) when P supports
a t-wise uniform distribution on its satisfying assignments. Together with recent
work of Lee et al. [2], our result also implies that any polynomial-size semidefinite

programming relaxation for refutation requires at least Ω̃(n(t+1)/2) constraints.
More generally, we consider the δ-refutation problem, in which the goal is to

certify that at most a (1 − δ)-fraction of constraints can be simultaneously sat-
isfied. We show that if P is δ-close to supporting a t-wise uniform distribution
on satisfying assignments, then the degree-Θ( n

∆2/(t−1) log∆
) SOS algorithm cannot

(δ + o(1))-refute a random instance of CSP(P ). This is the first result to show a
distinction between the degree SOS needs to solve the refutation problem and the
degree it needs to solve the harder δ-refutation problem.

Our results (which also extend with no change to CSPs over larger alphabets)
subsume all previously known lower bounds for semialgebraic refutation of random
CSPs. For every constraint predicate P , they give a three-way hardness tradeoff
between the density of constraints, the SOS degree (hence running time), and
the strength of the refutation. By recent algorithmic results of Allen et al. [1]
and Raghavendra et al. [3], this full three-way tradeoff is tight, up to lower-order
factors.
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Graph Colouring is Hard for Algorithms Based on Hilbert’s
Nullstellensatz and Gröbner Bases

Massimo Lauria

(joint work with Jakob Nordström)

Given an undirected graph G = (V,E) and a positive integer k, the k-colouring
problem asks whether the vertices v ∈ V be coloured with at most k colours
so that no two vertices connected by an edge have the same colour. This graph
colouring problem is among the most studied NP-complete problems, and a survey
on algorithms for this problems is [8].

In this work we focus on algebraic algorithms as the one discussed in the se-
quence of papers [4, 6, 5, 7], and in general on algorithms that try to decide
the k-colouring problem by producing Nullstellensatz certificates or performing
Gröbner basis computations. The common theme of these algorithms is to encode
the k-colouring problem as a set of polynomial equations which is satisfiable if
and only if G is indeed k-colourable, and then to infer a formal contradiction to
show that G does not have such colouring. In the latter case such proofs of non-
k-colourability can be formalized as proof in the language of polynomial calculus
(PC) [1, 3]. Here we study the encoding:

k∑

j=1

xv,j = 1 v ∈ V (G),(1)

xv,jxv,j′ = 0 v ∈ V (G), j 6= j′ ∈ [k],(2)

xu,jxv,j = 0 (u, v) ∈ E(G), j ∈ [k].(3)

A PC proof of non-k-colourability is a sequence of polynomial equations over field
F so that each line is either one of the equations in the encoding, or it is derived
from previous lines using one of two inference rules, where α, β ∈ F:

p = 0 q = 0

αp+ βq = 0
(linear combination)

p = 0

xv,jp = 0
(multiplication)

The main complexity measures about a PC proof are the degree, namely the
largest degree among the polynomials occurring in the proof; and monomial size,
which is the cumulative numbers of monomials among all polynomials in the proof.
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The idea is that an algebraic algorithm will implicitly produce PC proofs of non-
k-colourability, so that the complexity of these proofs are connected to the running
time of the algorithm. By heavily capitalizing on results by [9] and [11] prove the
following.

Theorem 1. For any constant k ≥ 3 there are explicit families of graphs {Gn}n∈N

of size O(n) and constant vertex degree, which are not k-colourable but for which
the polynomial calculus proof system requires linear degree, and hence exponential
size, to prove this fact, regardless of the underlying field.

Our theorem allows us to answer an open question raised in, for example, [4, 5,
6, 10], namely to find hard graphs for their algorithms.

Corollary 2. There are explicit families of non-3-colourable graphs such that
the algorithms based on Hilbert’s Nullstellensatz over GF(2) in [4, 5] need to find
certificates of linear degree, and hence must solve systems of linear equations of
exponential size, in order to certify non-3-colourability.

This is the extended abstract of the paper presented at the 32nd Annual Com-
putational Complexity Conference (CCC ’17).
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Do You Even Lift?

James Lee

1. Lifts of polytopes

A polytope Q is called a lift of polytope P ⊆ R
d if P is the image of Q under

an affine projection, i.e. P = π(Q), where π : RD → R
n is the composition of

a linear map and possibly a translation and D ≥ d. By applying an affine map
first, one can assume that the projection is merely coordinate projection to the
first d coordinates. The extension complexity xc+(P ) of P is the minimal number
of facets in any lift of P .

Let us write P in two different ways: As a convex hull of vertices

P = conv (x1, x2, . . . , xn) ,

and as an intersection of half-spaces: For some A ∈ R
m×d,

P =
{
x ∈ R

d : Ax ≤ b
}
.

Given this pair of representations, we can define the corresponding slack matrix
of P by

Sij = bi − 〈Ai, xj〉 i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n} .
Here, A1, . . . , Am denote the rows of A.

If M ∈ R
m×n
+ is a non-negative matrix, then a rank-r non-negative factorization

of M is a factorization M = AB where A ∈ R
m×r
+ and B ∈ R

r×n
+ . One defines

the non-negative rank of M , written rank+(M), to be the smallest r such that M
admits a rank-r non-negative factorization.

Theorem 1 (Yannakakis Factorization Theorem). For every polytope P , it holds
that xc+(P ) = rank+(S) for any slack matrix S of P .

2. Non-negative rank and lifting theorems

In many models, one can prove a general relationship between the communication
complexity of a given problem and the query complexity of a related problem.
This goes by the name of “lifting” of query lower bounds to communication lower
bounds, and this was the topic of Toni Pitassi’s talk at the workshop.

Consider two finite domains A,B and a “gadget” g : A × B → {0, 1}. Given
f : {0, 1}n → R+, define the lifting of f using gadget g as the matrix Mg

f :

An × Bn → {0, 1} defined by

Mg
f (x, y) = f (g(x1, y1), . . . , g(xn, yn)) .
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We want to prove lower bounds on rank+(M
g
f ) (which corresponds to the amount of

communication in the “communication in expectation” model) using lower bounds
on the complexity of f in some simpler “query” model.

We will consider the two gadgets

IPm : {0, 1}m × {0, 1}m → {0, 1}
SELm : [m]× {0, 1}m → {0, 1} .

The first gadget is the inner product mod 2. The second gadget is defined by
SELm(i, x) := xi.

Here is the query model: A k-junta is a function q : {0, 1}n → R that depends
on at most k of its inputs. Let Ck,n denote the cone of non-negative k-juntas
q : {0, 1}n → R+. Define

deg+(f) := min {k : f ∈ Ck,n} .

Theorem 2 ([1]). For any f : {0, 1}n → R+ with E f = 1, it holds that

rank+

(
MSELm

f

)
≥ nΩ(deg+(f+2−n)) ,

where m ≤ cn for some c > 1.

The major drawback of this theorem is that its application could require m
to be exponential in n. This was remedied in a recent breakthrough of Kothari,
Meka, and Raghavendra.

Theorem 3 ([3]). For any f : {0, 1}n → R+ with E f = 1, it holds that

rank+

(
MSELm

f

)
≥ rank+

(
M IPm

f

)
≥ nΩ(deg+(f+n−2))

with m ≤ nO(1).

Applications of this theorem include the fact that no linear program of size

2n
o(1)

can approximate MAX-CUT within a factor better than 1/2 or MAX-3-
SAT within a factor better than 7/8. The proof of [3] is quite technical, but using
the methods introduced in the recent BPP lifting work of [2], proving this lifting
theorem for the selector gadget becomes relatively simple.

3. Semidefinite extension complexity

Define the positive semidefinite rank of a matrix M ∈ R
m×n
+ , written rankpsd(M),

as the smallest value r such that there exist symmetric positive semidefinite ma-
trices {Au, Bv ∈ R

r×r : u ∈ [m], v ∈ [n]} satisfying

Mu,v = Tr(AuBv) ∀u, v .
Let sosk denote the cone generated by all squares of degree-k multilinear poly-

nomials q : {0, 1}n → R, and define

degsos(f) := min {k : f ∈ sosk} .

One can prove the following.
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Theorem 4 ([4]). For any f : {0, 1}n → R+ with E f = 1, it holds that

rankpsd

(
MSELm

f

)
≥ nΩ(deg+(f+o(1))) ,

where m ≤ cn for some c > 1.

It is a fascinating open question whether one can show that this holds assuming
only m ≤ nO(1), and this would have strong consequences. For instance, it implies

that no SDP of size less than 2n
o(1)

can approximate MAX-3-SAT wthin a factor
better than 7/8.

References

[1] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large LP relaxations. J. ACM, 63(4):Art. 34, 22, 2016.
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When SOS Fails (Maybe It’s Because Everything Fails)

Ryan O’Donnell

I discussed the SOS (Sum Of Squares) proof system, and lower bounds for it, in
the context of random CSPs (constraint satisfaction problems). The SOS proof
system (also known as Lasserre, Static LS+, or Positivstellensatz), was introduced
in works of Grigoriev–Vorobjov [7], Lasserre [9], and Parrilo [11]. It is a very
powerful proof system, able to capture both “local” refutation methods and also
“spectral” refutation methods. Furthermore, it is “automatizable” in the sense
that when n-variable degree-d refutations exist, they can be found in poly(nd) time
(subject to certain technical caveats; see [10, 13]). Proving lower bounds for SOS
refutations is therefore both desirable and plausible. However, due to the power
of SOS, we might need to seek unsatisfiable formulas that are not hard to refute
due to some limitation of SOS, but rather are hard to refute due to a (suspected)
lack of any kind of succinct proof. The main candidates for such problems come
from random instances of CSPs. SOS lower bounds for random CSPs also give
evidence for Feige’s Hypothesis [3], candidate cryptographic primitives proposed
by Goldreich [5], and hardness of learning [2].

A classic example of a random CSP is random 3SAT, with n variables, m
clauses/constraints, and “constraint density” ∆ = m/n. Once ∆ > 4.2667, ran-
dom 3SAT formulas will with high probability (whp) be unsatisfiable; this state-
ment is trivial to prove once ∆ > 10, say. On the other hand, once such a random
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formula is fixed, refuting it might be very difficult; indeed, there might not even
exist any kind of succinct refutation. When ∆ ≪ √

n, no known algorithm for
finding refutations (whp) exists. On the other hand, for ∆ ≫ √

n, Friedman and
Goerdt [4] gave a “spectral” algorithm that finds refutations whp. It is folklore
these refutations can be made in “constant-degree SOS”. A natural question is to
show that succinct (“constant-degree”) SOS refutations do not exist for random
3SAT when ∆ ≪ √

n. This was done by Grigoriev [6] and Schoenebeck [14].
In the talk, I described how SOS lower bound bounds can be proved by means

of giving an appropriate satisfying (degree-d) pseudoexpectation; i.e., a linear map

Ẽ[·] on polynomials of degree at most d which satisfies Ẽ[1] = 1, Ẽ[“C”] = 1 for

the arithmetization “C” of every 3SAT clause C, and Ẽ[p(x)2] ≥ 0 for every poly-
nomial of degree at most d/2. The intuition is that such pseudoexpectations “look
like” they come from probability distributions over satisfying assignments, as long
as only one looks at expressions of degree at most d. Grigoriev and Schoenebeck’s
lower bounds show that for ∆ ≪ √

n, satisfying O(1)-degree pseudoexpectations
exist whp for random 3SAT formulas. Conversely, Friedmand and Goerdt’s work
can be seen as showing that when ∆ ≫ √

n, satisfying O(1)-degree pseudoexpec-
tations do not exist whp for random 3SAT formulas.

Finally, I discussed recent work in extending such results to general CSPs,
and considering tradeoffs between constraint density, SOS degree, and quality
of refutation (meaning refuting even that a 1 − δ fraction of constraints can be
satisfied). Such work includes positive results for SOS by Allen et al. [1] and
Raghavendra et al. [12], and matching negative results by Kothari et al. [8].
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Proof Complexity Meets Algebra

Joanna Ochremiak

(joint work with Albert Atserias)

In my talk I discussed a way to develop the standard theory of reductions between
constraint satisfaction problems so that it applies to the most studied propositional
and semi-algebraic proof systems.

The literature on CSPs has focussed on three different types of conditions that, if
met by two constraint languages, give a reduction from the CSP of one language to
the CSP of the other. These conditions are a) pp-interpretability, b) homomorphic
equivalence, and c) addition of constants to the core (see [4, 8]). Those three
types of reductions correspond to classical algebraic constructions at the level of
the algebras of polymorphisms of the constraint languages. Thus, for any fixed
algorithm, heuristic, or method M for deciding the satisfiability of CSPs, if the
class of constraint languages that are solvable by M is closed under these notions
of reducibility, then this class admits a purely algebraic characterization.

Our first result is that, for most proof systems P in the literature, each of these
methods of reduction preserves the proof complexity of the problem with respect
to proofs in P . We show this for DNF-resolution with terms of bounded size,
bounded-depth Frege, and Frege, Sherali-Adams, SOS, and Lovász-Schrijver of
bounded and unbounded degree.

Our second main result is an application: we obtain unconditional gap theo-
rems for the proof complexity of CSPs. Building on the bounded-width theorem
for CSPs [3, 7], the known correspondance between local consistency algorithms,
existential pebble games and bounded width resolution [2, 12], the lower bounds
for propositional and semi-algebraic proof systems [1, 5, 6, 9, 10, 13], and a modest
amount of additional work to fill in the gaps, we prove a strong gap theorem which
says that for any finite constraint language B exactly one of the following holds:
either B has resolution refutations of bounded width and hence polynomial size,
or B has neither Frege refutations of bounded depth and subexponential size, nor
SOS refutations of sublinear degree. Moreover, the first case happens precisely
if B has bounded width. The collapse of SOS to bounded width was already
known [14]; we give a different proof.
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Our third main result is about proof systems that operate with polynomial
inequalities beyond SOS. The above theorem raises a question: is there a natural
proof system for which the class of languages that have efficient unsatisfiability
proofs is closed under the standard reducibility methods for CSPs, and that at
the same time has efficient unsatisfiability proofs beyond bounded width? We
give an example of such a proof system by showing that bounded-degree Lovász-
Schrijver satisfies both requirements: unsatisfiable systems of linear equations
over the 2-element group have LS refutations of bounded degree and polynomial
size. Proving this amounts to showing that Gaussian elimination over Z2 can
be simulated by reasoning with low-degree polynomial inequalities over R. The
proof of this counter-intuitive fact relies on earlier work in proof complexity for
reasoning about gaps of the type (−∞, c]∪[c+1,+∞), for c ∈ Z, through quadratic
polynomial inequalities [11].
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Sum of Squares Methods: Beyond 0/1

Pablo A. Parrilo

Summary: We present a short survey of sum of squares methods, beyond purely combi-

natorial situations. We discuss applications to dynamical systems, approximation of the

joint spectral radius, as well as outline different methodologies for exploiting structure

(e.g., symmetries).

Sum of squares and SDP. Semidefinite programming (SDP) is a natural class of
convex optimization problems, that generalize linear programming to symmetric
matrices. The condition that a multivariate polynomial is a sum of squares (SOS)
can be rewritten as a semidefinite program. The reason is the following theorem:

Theorem 1. [8] A polynomial p(x) is SOS if and only if p(x) = zTQz, where z
is a vector of monomials in the xi variables, Q ∈ SN and Q � 0.

The vector of monomials z (and therefore N) in general depends on the degree
and sparsity pattern of p(x). If p(x) has n variables and total degree 2d, then z
can always be chosen as a subset of the set of monomials of degree less than or
equal to d, of cardinality N =

(
n+d
d

)
.

Sum of squares appear naturally in the construction of infeasibility certificates
for systems of polynomial equations/inequalities over the reals, via the Positivstel-
lensatz (or Real Nullstellensatz, see e.g. [4]). Table 1 summarizes different classes
of infeasibility certificates, according to the nature of the equations and the un-
derlying field.

Degree \ Field Complex Real
Linear Range/Kernel Farkas Lemma

Linear Algebra Linear Programming
Polynomial Nullstellensatz Positivstellensatz

Bounded degree: Linear Algebra Bounded degree: SDP
Gröbner bases

Table 1. Infeasibility certificates and associated computational techniques.

Dynamical systems and Lyapunov stability. Consider a dynamical system
given by differential equations of the form

ẋ(t) = f(x(t))

where f is a polynomial map and f(0) = 0. The system is globally asymptotically
stable if all solutions satisfy x(t) → 0, as t → ∞, for all possible initial conditions
x(0) (plus a technical condition, omitted here for simplicity).

For a system to be globally asymptotically stable, it is sufficient to show the
existence of a Lyapunov function that satisfies

V (x) > 0, V̇ (x) =

(
∂V

∂x

)T

f(x) < 0
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for all x ∈ R
n \ {0} (see e.g., [5]). The SOS approach makes possible to search

over affinely parametrized polynomial (or rational) Lyapunov functions:

V (x) is sos, −V̇ (x) = −
(
∂V

∂x

)T

f(x) is sos.

These conditions can be expressed as sum of squares constraints in terms of the
coefficients of the Lyapunov function. Since both conditions are affine in the
coefficients of V (x), they can be transformed into a standard SDP formulation.
Similar approaches have been developed for more complicated problems in systems
and control theory, including non-polynomial, time-delayed, stochastic, uncertain,
or hybrid systems; see e.g. [6, 10, 1] and the references therein.
Joint spectral radius. The joint spectral radius [11] of a finite set of matrices
is defined as

(4) ρ(A1, . . . , Am) := lim sup
k→+∞

max
σ∈{1,...,m}k

||Aσk
· · ·Aσ2Aσ1 ||1/k.

This quantifies the maximum growth (or decay) rate that can be obtained by tak-
ing arbitrary products of the matrices Ai. It is well known that computing ρ is
hard from a computational viewpoint, and even approximating it is difficult [3, 12].
Nevertheless, it is possible to give SOS-based algorithms with provable approxi-
mation properties.

Theorem 2 ([9]). Let p(x) be a strictly positive homogeneous polynomial of degree
2d that satisfies

p(Aix) ≤ γ p(x), ∀x ∈ R
n i = 1, . . . ,m.

Then, ρ(A1, . . . , Am) ≤ γ
1
2d .

Consider the following SOS relaxation of the conditions in Theorem 2:

ρSOS,2d := inf
p(x),γ

γ s.t.

{
p(x) is SOS

γ2dp(x)− p(Aix) is SOS

where p(x) is a homogeneous polynomial of degree 2d.

Theorem 3 ([9]). The SOS-based approximation ρSOS,2d satisfies

η−
1
2d · ρSOS,2d(M) ≤ ρ(M) ≤ ρSOS,2d(M),

where η := min{m,
(
n+d−1

d

)
}.

References

[1] A. A. Ahmadi, M. Krstic, and P. A. Parrilo. A globally asymptotically stable polynomial

vector field with no polynomial Lyapunov function. In IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC), pages 7579–7580. IEEE, 2011.

[2] G. Blekherman, P. A. Parrilo, and R. Thomas, editors. Semidefinite optimization and convex
algebraic geometry, volume 13 of MOS-SIAM Series on Optimization. SIAM, 2012.

[3] V. D. Blondel and J. N. Tsitsiklis. The boundedness of all products of a pair of matrices is
undecidable. Systems & Control Letters, 41:135–140, 2000.

[4] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer, 1998.
[5] H. Khalil. Nonlinear Systems. Macmillan Publishing Company, 1992.



Proof Complexity and Beyond 2335

[6] A. Papachristodoulou and S. Prajna. On the construction of Lyapunov functions using the
sum of squares decomposition. In Proceedings of the 41th IEEE Conference on Decision
and Control, 2002.

[7] P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, May 2000.

[8] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math. Prog.,
96(2, Ser. B):293–320, 2003.

[9] P. A. Parrilo and A. Jadbabaie. Approximation of the joint spectral radius using sum of
squares. Linear Algebra and its Applications, 428(10):2385–2402, 2008.

[10] S. Prajna, A. Jadbabaie, and G. J. Pappas. Stochastic safety verification using barrier
certificates. In Proceedings of the 43th IEEE Conference on Decision and Control, 2004.

[11] G. C. Rota and W. G. Strang. A note on the joint spectral radius. Indag. Math., 22:379–381,
1960.

[12] J. N. Tsitsiklis and V. Blondel. The Lyapunov exponent and joint spectral radius of pairs
of matrices are hard- when not impossible- to compute and to approximate. Mathematics
of Control, Signals, and Systems, 10:31–40, 1997.

Part I: Proof Complexity Primer
Part II: Lifting in Communication Complexity and Proof Complexity

Toniann Pitassi

In the first half of my talk, I will give a brief introduction to proof complexity. I
will introduce all of the standard proof systems that will be discussed this week
(including propositional proof systems, algebraic proof systems and semi-algebraic
proof systems). I will give a brief survey of the known lower bound techniques and
state of the art in proof complexity lower bounds.

In the second half of the talk, I will discuss the “lifting” in communication com-
plexity. Communication complexity attempts to understand the limits and power
of communication in solving computational problems through the joint efforts of
multiple parties. Since its introduction in the 1970’s, communication complexity
has found an astounding variety of applications across computer science, includ-
ing: networks, streaming algorithms, distributed computing, circuit complexity,
computational geometry, data structures, and game theory.

In the second half of this talk we will discuss hardness escalation, or lifting in
communication complexity, a growing research area whereby lower bounds and
separations in communication complexity are obtained by developing “simulation
theorems”. The basic idea of a simulation theorem is to start with an arbitrary
function and “lift it” via function composition in order to get a new function whose
communication complexity is essentially the same as the query complexity of the
original function. In query complexity, the objects of study are decision trees,
perhaps the simplest, most basic model of computation. A simulation theorem
thus shows that the optimal communication protocol for the composed function is
essentially the trivial one which mimics the decision tree protocol.

The first hardness escalation theorem was [1] who proved a simulation theorem
for deterministic decision trees and deterministic communication protocols. Since
then, many other simulation theorems have been developed for other decision tree
models and their corresponding communication complexity classes.
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These simulation theorems have introduced new tools into complexity theory,
and have led to the resolution of many open problems including: graph theory,
combinatorial optimization, circuit complexity and cryptography, proof complexity
and communication complexity. Moreover the field has led to a revival of query
complexity, with new techniques leading to the resolution of some longstanding
open problems.

In query complexity the objects of study are decision trees, one of the simplest
and most basic models of computation. As with most complexity classes, deci-
sion trees come in many flavors: deterministic, nondeterministic, randomized, etc.
Query complexity was intended to separate complexity classes relative to oracles.

Prove a general communication-to-query simulation theorem stating that for
a large class of communication problems F any protocol for F can be efficiently
simulated by a decision tree solving a related problem f . With a simulation
theorem at hand, communication lower bounds can be obtained by just proving a
decision tree lower bound, a much more tractable problem.

After reviewing the many lifting theorems that have been proven for various
models of communication complexity, we will focus on their applications in proof
complexity.
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Exact Tensor Completion with Sum-of-Squares

Aaron Potechin

(joint work with David Steurer)

In the matrix completion problem, we are given some entries of a matrix and we
are asked to fill in the remaining entries. A canonical example of this problem is
the Netflix challenge where we are given the ratings of users on some movies and
we are asked to predict their ratings on other movies. While the matrix completion
problem is impossible to solve in general, it can be solved efficiently if the matrix
has the additional structure of being low-rank.

The tensor completion problem is analogous to the matrix completion problem
except that there is a third dimension. This makes the problem considerably more
difficult, as even if we are given the entire tensor, it can be NP-hard to find the
minimal rank decomposition [2]. Thus, we expect the tensor completion problem
to be difficult in general but we can hope to solve special cases of the problem.
In this paper, we show that degree 4 sum of squares solves the tensor completion
problem exactly when the components are orthogonal.

This work was primarily inspired by two papers, “A Simpler Approach to Ma-
trix Completion” by Benjamin Recht [3] and “Noisy Tensor Completion via Sum
of Squares” by Boaz Barak and Ankur Moitra [1]. We asked whether Recht’s
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techniques could be generalized to tensor completion and whether the tensor com-
pletion result could be made exact or some error is necessary. With this work, we
provide a partial affirmative answer to both questions.

To prove our results, we view the analysis of nuclear norm minimization for
matrix completion in terms of a dual certificate which certifies that the true answer
is optimal. We then adapt this certificate to the tensor completion problem. A
key idea for both our analysis and Barak and Moitra’s analysis is to use SOS-
symmetry, this is what allows us to do better than flattening the tensor into an
n× n2 matrix and using matrix completion.

One open problem is to generalize our results beyond the non-orthogonal case.
We only prove it for the orthogonal case, but this is likely a flaw in our analysis
rather than the algorithm itself. Indeed, Barak and Moitra obtained noisy com-
pletion in a somewhat more general setting. A second open question is whether
the sum of squares algorithm for tensor completion can be modified to be faster
and useable in practice.
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The Canonical NP-Pairs of Bounded Depth Frege Systems

Pavel Pudlak

Definition 1 ([2]). Let P be a propositional proof system. The canonical pair of
P is the pair of disjoint NP sets (A,B) where

A = {(φ, 1m) : φ is satisfiable}
B = {(φ, 1m) : φ has a P -refutation of size at most m}.

We want to characterize the canonical pairs of bounded depth Frege systems,
i.e., we want to find pairs defined by combinatorial conditions (rather than logi-
cal) that are equivalent to these canonical pairs with respect to polynomial time
reductions. So far only the canonical pair for Resolution has been characterized [1].

We propose a characterization based on certain games defined as follows. The
games are played on k × n square grids, where k is a constant, called the depth of
the game, and n is a parameter. Two players alternate and fill in the squares with
elements from an alphabet Σ. They start at the left upper corner and gradually
fill the first row. Then they fill the second row in the opposite direction, i.e., the
right-left direction. Next they fill the third row in the left-right direction, and so
on.
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Let us denote by A = {aij} the matrix they construct. An upper segment
(a1j , a2j , . . . , aij)

T of a column in A will be called a position. Legal moves are
determined by positions. In more detail, for every pair (i, j), if i is odd and j < n,
then legal moves ai,j+1 are determined only by the position (a1j , a2j , . . . , aij)

T ,
and if i is even and j > 1, then legal moves ai,j−1 are determined only by the
position (a1j , a2j , . . . , aij)

T . If i is odd, then legal moves ai+1,n are determined
by (a1n, . . . , ain)

T , and if i is even, then legal moves ai+1,1 are determined by
(a11, . . . , ai1)

T . The game ends when the players reach a winning/loosing position,
or when there is no legal move for the player in turn.

Thus the game is determined by a set of winning/loosing positions, and for
every position, a set of legal moves. If we assume that the size of the alphabet Σ
is polynomial in n, then the size of the description of the game is also polynomial
in n.

Positional strategies of the players are defined in the same way as legal moves
the only difference being that strategies determine moves of only one player and
for each position they give only one choice, or none in case of an end position. For
k > 1, it is possible that neither player has a positional winning strategy.

Let a depth k be fixed. We define a pair of disjoint NP set by

Ak := {G | Player 1 has a positional winning strategy in G},
Bk := {G | Player 2 has a positional winning strategy in G},

where Gs are depth k games.

Our aim is to prove that these pairs characterize the canonical pairs of bounded
depth Frege proof systems. A substantial amount of lemmas needed to prove this
conjecture has been proven, however there is still an important part that has to
be finished. Our proof borrows ideas from [3]. The depth k of the games does not
correspond exactly to the depth of the Frege systems; more work will be needed
to get a precise characterization.
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Symmetric Sums of Squares over k-Subset Hypercubes

Annie Raymond

(joint work with James Saunderson, Mohit Singh, and Rekha Thomas)

Polynomial optimization over discrete hypercubes plays a central role in many ar-
eas such as combinatorial optimization, decision problems and proof complexity.
In many situations, it is natural to consider k-subset hypercubes by which we mean
discrete hypercubes whose coordinates are indexed by the k-element subsets of a
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ground set [n]. For instance, a major focus in extremal graph theory is to optimize
the edge (hyperedge) density in families of graphs (hypergraphs) with specified
structure which can be cast as optimization problems over k-subset hypercubes.
In this scenario, as in many others, the polynomial to be optimized is often sym-
metric which allows representation-theoretic techniques to dramatically cut down
on computations. Here, we consider the general problem of optimizing a symmet-

ric polynomial over a k-subset hypercube Vn,k := {0, 1}(
n
k) when k ≥ 2; the case

k = 1 was handled in [2]. See [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 23, 24]
for other uses of symmetry in semidefinite programming.

Phrased differently, our central problem is to certify the non-negativity of a
symmetric polynomial p over Vn,k which can be done by finding a sum of squares
(sos) expression that equals p as a function on Vn,k. In [12], Gatermann and
Parrilo showed how to use representation theory to simplify the computations
involved in finding a sos representation of a polynomial p that is invariant under
the action of a finite group. We propose a variant of their method that is adapted
to the combinatorics in our setting, and hence, offers many simplifications and
advantages. For every symmetric polynomial that has a sos expression of a fixed
degree, our method finds a succinct sos expression whose size depends only on
the degree and not on the number of variables. Our results relate naturally to
Razborov’s flag algebra calculus for solving problems in extremal combinatorics
([19, 20, 21, 22]). This connection exposes a family of non-negative polynomials
first appearing in [13] that cannot be certified exactly with any fixed set of flags.
Moreover, the polynomial setting allows flags to be used for finite problems as well
as for sparse graph theoretical problems in a systematic way.
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Unified and Optimal Lower Bounds for Monotone Computation

Robert Robere

(joint work with Toniann Pitassi)

A classic counting argument due to Shannon [8] shows that almost all boolean
functions have high complexity — more formally, all but an exponentially small
fraction of boolean functions with n input variables require strongly exponential
(i.e. 2Ω(n)) size circuits. On the other hand, the best lower bounds on circuit size
(with, say, AND, OR, and NOT gates) for any explicit function is on the order of
5n− o(1), which is not even superlinear [4]! The state of affairs is not much better
for boolean formulas, for which we merely have the cubic lower bounds Ω(n3−ε)
for all ε > 0 [3]. Even for monotone circuits and formulas, which are relatively
well understood, the best lower bounds for explicit functions are not strongly
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exponential: for monotone circuits the strongest lower bound is 2Ω((n/ logn)1/3) by
Harnik and Raz [2], and for monotone formulas the best lower bound is 2Ω(n/ log n)

by Göös and Pitassi [1].
In this talk, we discuss some recent work (joint with Toniann Pitassi [5]) in which

we prove the first strongly exponential lower bounds for computing an explicit
function (i.e. one computable in NP) in a wide variety of monotone circuit models.
More precisely, we prove the following theorem:

Theorem 1. For all sufficiently large N , there is an explicit monotone boolean
function f : {0, 1}N → {0, 1} such that every monotone formula, switching net-
work, real span program, or comparator circuit computing f requires size 2cn for
some universal constant c > 0.

The lower bounds are proved via Razborov’s rank measure [6], which is a com-
plexity measure on boolean functions that is strong enough to bound all of these
circuit models simultaneously. To prove a lower bound on this rank measure we use
a framework introduced in [7] involving a lifting theorem that reduces the problem
to bounding a new complexity measure on search problems called the algebraic gap
complexity. We also discuss some recent extensions of this work, specifically: an
extension of the lower bounds to monotone span programs over all fields, and an
equivalence (for certain search problems) between algebraic gap complexity and
Nullstellensatz degree (this second result, in particular, yields a characterization
of the minimal monotone span program size by Nullstellensatz degree for certain
structured boolean functions).

References
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Duality of Low-Degree SoS Refutations and Efficient Spectral
Algorithms in the Average Case

Tselil Schramm

(joint work with Sam Hopkins, Pravesh Kothari, Aaron Potechin,
Prasad Raghavendra and David Steurer)

It is well-known that semidefinite programs (such as the Sum-of-Squares semi-
definite programming relaxation) capture spectral arguments. In fact, for many
NP-hard optimization problems such as Max-Cut, graph coloring, and more, the
best known spectral algorithms obtain far weaker approximation guarantees than
the best semidefinite programs (see for example [10] versus [4]).

However, in the average case, this gap between semidefinite programming and
spectral algorithms seems to disappear. A recent line of work has shown that the
reverse is also true for many average-case problems: spectral algorithms are just
as powerful as Sum-of-Squares semidefinite programming relaxations for planted
clique [2, 3], refuting random constraint satisfaction problems [1, 5, 7, 8, 9], finding
maxima of polynomials with random coefficients [6], and more.

In this talk, I will discuss a recent result which shows the equivalence of SoS
and spectral algorithms is not a coincidence, and can be shown in a black-box
fashion for a broad class of average-case problems. By combining convex duality
arguments with simple Fourier-analysis, we show that average-case problems with
solutions that are robust to random restriction cannot be well-approximated by the
Sum-of-Squares semidefinite program of size S unless there is a spectral algorithm
with equal performance running in time poly(S).
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The Ideal Proof System and Proof Complexity Lower Bounds from
Algebraic Circuit Complexity

Amir Shpilka

(joint work with Grochow-Pitassi and Forbes-Shpilka-Tzameret-Wigderson)

Propositional proof complexity aims to understand and analyze the computational
resources required to prove propositional tautologies, in the same way that circuit
complexity studies the resources required to compute boolean functions. A typical
goal would be to establish, for a given proof system, super-polynomial lower bounds
on the size of any proof of some propositional tautology. The seminal work of
Cook and Reckhow [8] showed that this goal relates quite directly to fundamental
hardness questions in computational complexity such as the NP vs. coNP question:
establishing super-polynomial lower bounds for every propositional proof system
would separate NP from coNP (and thus also P from NP). We refer the reader to
Kraj́ıček [13] for more on this subject.

Propositional proof systems come in a large variety, as different ones capture
different forms of reasoning, either reasoning used to actually prove theorems, or
reasoning used by algorithmic techniques for different types of search problems
(as failure of the algorithm to find the desired object constitutes a proof of its
nonexistence). Much of the research in proof complexity deals with propositional
proof systems originating from logic or geometry. Logical proof systems include
such systems as resolution (whose variants are related to popular algorithms for
automated theory proving and SAT solving), as well as the Frege proof system
(capturing the most common logic text-book systems) and its many subsystems.
Geometric proof systems include cutting-plane proofs, capturing reasoning used
in algorithms for integer programming, as well as proof systems arising from sys-
tematic strategies for rounding linear- or semidefinite-programming such as the
lift-and-project or sum-of-squares hierarchies.

In this talk we focus on algebraic proof systems, in which propositional tautolo-
gies (or rather contradictions) are expressed as unsatisfiable systems of polynomial
equations and algebraic tools are used to refute them. This study originates with
the work of Beame, Impagliazzo, Kraj́ıček, Pitassi and Pudlák [3], who introduced
the Nullstellensatz refutation system (based on Hilbert’s Nullstellensatz), followed
by the Polynomial Calculus system of Clegg, Edmonds, and Impagliazzo [5], which
is a “dynamic” version of Nullstellensatz. In both systems the main measures of
proof size that have been studied are the degree and sparsity of the polynomials
appearing in the proof. Substantial work has lead to a very good understanding
of the power of these systems with respect to these measures (see for example
[1, 2, 4, 11, 12, 14] and references therein).

However, the above measures of degree and sparsity are rather rough measures
of a complexity of a proof. As such, Grochow and Pitassi [9] have recently advo-
cated measuring the complexity of such proofs by their algebraic circuit size and
shown that the resulting proof system can polynomially simulate strong proof sys-
tems such as the Frege system. This naturally leads to the question of establishing
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lower bounds for this stronger proof system, even for restricted classes of algebraic
circuits.

We give upper and lower bounds on the power of subsystems of the Ideal
Proof System (IPS), the algebraic proof system recently proposed by Grochow
and Pitassi [9], where the circuits comprising the proof come from various re-
stricted algebraic circuit classes. This mimics an established research direction in
the boolean setting for subsystems of Extended Frege proofs, where proof-lines are
circuits from restricted boolean circuit classes. All of the subsystems considered
in this talk can simulate the well-studied Nullstellensatz proof system, and prior
to our work there were no known lower bounds when measuring proof size by
the algebraic complexity of the polynomials (except with respect to degree, or to
sparsity).

We give two general methods of converting certain algebraic lower bounds into
proof complexity ones. Our methods require stronger notions of lower bounds,
which lower bound a polynomial as well as an entire family of polynomials it de-
fines. Our techniques are reminiscent of existing methods for converting boolean
circuit lower bounds into related proof complexity results, such as feasible interpo-
lation. We obtain the relevant types of lower bounds for a variety of classes (sparse
polynomials, depth-3 powering formulas, read-once oblivious algebraic branching
programs, and multilinear formulas), and infer the relevant proof complexity re-
sults. We complement our lower bounds by giving short refutations of the pre-
viously-studied subset-sum axiom using IPS subsystems, allowing us to conclude
strict separations between some of these subsystems.

Our first method is a functional lower bound, a notion of Grigoriev and Raz-

borov [10], which is a function f̂ : {0, 1}n → F such that any polynomial f agreeing

with f̂ on the boolean cube requires large algebraic circuit complexity. For our

classes of interest, we develop functional lower bounds where f̂(x) equals 1/p(x)
where p is a constant-degree polynomial, which in turn yield corresponding IPS
lower bounds for proving that p is nonzero over the boolean cube. In particular,
we show super-polynomial lower bounds for refuting variants of the subset-sum
axiom in various IPS subsystems.

Our second method is to give lower bounds for multiples, that is, to give explicit
polynomials whose all (nonzero) multiples require large algebraic circuit complex-
ity. By extending known techniques, we are able to obtain such lower bounds
for our classes of interest, which we then use to derive corresponding IPS lower
bounds. Such lower bounds for multiples are of independent interest, as they have
tight connections with the algebraic hardness versus randomness paradigm.
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From Proofs to Algorithms in Machine Learning

David Steurer

(joint work with Boaz Barak, Sam Hopkins, Jon Kelner, Pravesh Kothari,
Tengyu Ma, Aaron Potechin, Tselil Schramm and Jonathan Shi)

A common theme in several recent works is that proofs in restricted proof systems
like sum-of-squares, can inform the design of efficient algorithms, especially for
the kind of estimation problems that arise in statistics and machine learning. To
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illustrate this theme, we discuss the examples of tensor completion, dictionary
learning, and community detection.

Based on joint works with Boaz Barak, Sam Hopkins, Jon Kelner, Tengyu Ma,
Aaron Potechin, Tselil Schramm, and Jonathan Shi [1, 2, 3, 4, 5].
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Communication Amid Uncertainty

Madhu Sudan

The works of Boole [1], Turing [12] and Shannon [11] give us the amazing power
to capture many intellectual processes mathematically! And among processes of
interest is how human society aggregates knowledge. Individuals start by building
on knowledge gained by others and add to it by their own observations and rea-
son. The entire process is completely decentralized with many faulty ingredients,
including individual entities, but perhaps the most dominant source of errors is
the errors that occur while exchanging knowledge. Despite the abundance of such
errors it is remarkable that much of this knowledge is essentially correct! This
talk and the surrounding line of work is motivated by the question: “What are
the features of our communication methods that lead to such robustness in the
aggregation of information?” While the scope of this question is broad (and it is
our hope that others will also investigate it in fuller breadth), our specific focus in
this talk is on the role of shared context.

Much of the communication is made efficient by assuming that the parties in-
volved share a large common context (be it language, mathematical tools, common
knowledge etc.). But this context is shared only vaguely and no one piece of it
seems crucial for the communication to succeed. In this talk I will focus on some
of our efforts to abstract shared context in communication and ability to commu-
nicate effectively even when context is not perfectly shared using Yao’s model of
communication complexity [13] as a starting point. (See also [10].) In an attempt
to connect to the theme of this workshop, I will also briefly introduce the concept of
“contextual proofs”—where proofs are compressed by using (imperfectly) shared
context (“we’ll assume the reader is familiar with high school math”) and the
challenges that this seems to pose in communicating and verifying proofs—topics
that we believe are ripe for further study using the tools of proof complexity.
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This talk is based on a series of joint works. In the works with Juba [9], and
Goldreich and Juba [6] we initiated this line of queries in the setting where the level
of shared context was minimal and the emphasis was on the mere feasibility (rather
than efficiency) of reliable communication. Subsequent works [2, 3, 4, 5, 7, 8]
have attempted to isolate settings in the Yao model that emphasize the role of
(perfectly) shared context in making communication short, and study the effect of
weakening the sharing of context to some imperfect form.

References

[1] George Boole. An Investigation of the Laws of Thought on Which are Founded the Math-
ematical Theories of Logic and Probabilities. Macmillan. Reprinted by Dover Publications,
NY, NY, 1958., 1854.

[2] Clément Louis Canonne, Venkatesan Guruswami, Raghu Meka, and Madhu Sudan. Commu-
nication with imperfectly shared randomness. In Tim Roughgarden, editor, Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot,
Israel, January 11-13, 2015, pages 257–262. ACM, 2015.

[3] Badih Ghazi, Elad Haramaty, Pritish Kamath, and Madhu Sudan. Compression in a dis-
tributed setting. In Proceedings of ITCS 2016, page (to appear), 2016.

[4] Badih Ghazi, Ilan Komargodski, Pravesh Kothari, and Madhu Sudan. Communication with
contextual uncertainty. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 2072–2085. SIAM, 2016.

[5] Badih Ghazi and Madhu Sudan. The power of shared randomness in uncertain communi-
cation. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 49:1–49:14. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2017.

[6] Oded Goldreich, Brendan Juba, and Madhu Sudan. A theory of goal-oriented communica-
tion. Journal of the ACM, 59(2):8, 2012.

[7] Elad Haramaty and Madhu Sudan. Deterministic compression with uncertain priors. Algo-
rithmica, 76(3):630–653, 2016.

[8] Brendan Juba, Adam Tauman Kalai, Sanjeev Khanna, and Madhu Sudan. Compression
without a common prior: an information-theoretic justification for ambiguity in language.
In Bernard Chazelle, editor, ICS, pages 79–86. Tsinghua University Press, 2011.

[9] Brendan Juba and Madhu Sudan. Universal semantic communication I. In Proceedings of the
2008 ACM International Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 123–132. ACM, 2008.

[10] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University

Press, 1997.
[11] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Jour-

nal, 27:379–423, 623–656, 1948.
[12] Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 2(42):230–265, 1936. A correction ibid, 43,
544-546.

[13] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM Symposium
on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213.
ACM, 1979.



2348 Oberwolfach Report 37/2017

Random Resolution

Neil Thapen

(joint work with Pavel Pudlák)

The following system for refuting propositional CNFs was introduced in [2]. Let
F be a CNF in variables x1, . . . , xn and let 0 < ε < 1.

Definition. An ε-random resolution distribution, or ε-RR distribution, of F is a
probability distribution D on pairs (Bi,Πi)i∼D such that

(1) for each i ∈ D, Bi is a CNF in variables x1, . . . , xn and Πi is a resolution
refutation of F ∧Bi

(2) for every α ∈ {0, 1}n, Pri∼D[Bi is satisfied by α] ≥ 1− ε.

We will usually take ε = 1/2, although an amplification lemma means that the
exact value ε is not important. The appearance of this definition in [2] is motivated
by questions about formalizing approximate counting in bounded arithmetic, and
is indirectly related to the problem of separating the levels of constant-depth Frege.

The system is sound and complete. On the other hand, it is not a proposi-
tional proof system in the sense of Cook and Reckhow [3], because it is defined
by a semantic condition that cannot be tested in polynomial time, unless P =NP.
Nevertheless it makes sense to compare the complexity of proofs in it with proofs
in the standard proof systems, in particular with resolution and bounded depth
Frege.

We show some simple upper bounds. Random 3-CNFs have constant size
1/2-RR refutations, and rWPHP, a version of the weakpigeonhole principle, has
polynomial size, polylogarithmic width 1/2-RR refutations.

The main problem about the system posed in [2] is to find a CNF which has
small refutations in constant depth Frege, but does not have polylogarithmic width
1/2-RR refutations. A partial version of this problem was solved in [1].

We solve the full problem by showing that the family CPLSn of CNFs based
on the coloured polynomial local search principle [4], which has polynomial size
resolution refutations, requires large width in 1/2-RR. We also define a family
CPLS2n which has polynomial size Res(2) refutations, and show that it requires
exponential size in 1/2-RR.

The lower bounds follow from constructing suitable random restrictions and
proving a lemma that looks like a simple version of the switching lemma: that
every small-width CNF, with polynomially high probability, is either falsified or
unfalsifiable (over a well-behaved set of partial assignments) after a random re-
striction.
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Hardness Escalation in the Sherali-Adams Hierarchy
(From Weak to Strong LP Gaps for all CSPs)

Madhur Tulsiani

(joint work with Mrinalkanti Ghosh)

This work studies the approximability of constraint satisfaction problems (CSPs)
by linear programming (LP) relaxations. We show that for every CSP, the approx-
imation obtained by a basic LP relaxation, is no weaker than the approximation

obtained using relaxations given by Ω
(

logn
log log n

)
levels of the Sherali-Adams hierar-

chy on instances of size n. Equivalently, a lower bound for the basic LP (captured
by the lowest level of the Sherali-Adams hierarchy) can be escalated to a lower

bound for Ω
(

logn
log logn

)
levels of the hierarchy.

It was proved by Chan et al.[1] (and recently strengthened by Kothari, Meka
and Raghavendra [3]) that for CSPs, any polynomial size LP extended formulation
is no stronger than relaxations obtained by a super-constant levels of the Sherali-
Adams hierarchy. Combining this with our result also implies that any polynomial
size LP extended formulation is no stronger than simply the basic LP, which can be
thought of as the base level of the Sherali-Adams hierarchy. This essentially gives
a dichotomy result for approximation of CSPs by polynomial size LP extended
formulations.

Using our techniques, we also simplify and strengthen the result by Khot, Worah
and the second author [2] on (strong) approximation resistance for LPs. They
provided a necessary and sufficient condition under which Ω(log logn) levels of the
Sherali-Adams hierarchy cannot achieve an approximation better than a random

assignment. We simplify their proof and strengthen the bound to Ω
(

logn
log logn

)

levels.
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Resolution over Linear Equations: Survey and Open Problems

Iddo Tzameret

Recently, extensions of resolution that operate with linear equations instead of lit-
erals gained quite a lot of attention in proof complexity research. This refutation
system is interesting both on its own merit as a “minimal” extension of resolution
with counting gates, as well as from the perspective of lower bounds questions,
since it is the “weakest” subsystem of AC0[q]-Frege for which no lower bounds are
known to date. Thus, establishing lower bounds on (dag-like, unrestricted) resolu-

tion over linear equations modulo q can be viewed as a step towards AC0[q]-Frege
lower bounds, a problem that is open for decades.

This talk surveys briefly lower and upper bounds on (mostly restricted versions
of) resolution over linear equations. We will focus on cases when the linear equa-
tions are over the two element field F2, and over the integers Z. We then describe
important open problems concerning this refutation system as well as possible
approaches considered recently to solve these problems.

Raz and Tzameret [8] introduced the resolution over linear equation refutation
system, denoted R(linR), where the linear equations are over a ring R ([8] consid-
ered only the case R = Z). The system is defined as follows:

Definition 2 (R(linR)). Let K := {K1, . . . ,Km} be a collection of disjunctions of
linear equations over the ring R and variables x1, . . . , xn. An R(linR)-proof from
K of a disjunction of linear equations D is a finite sequence π = (D1, . . . , Dℓ) of
disjunctions of linear equations, such that Dℓ = D and for every i ∈ [ℓ], either
Di = Kj for some j ∈ [m], or Di is the Boolean axiom (xh = 0) ∨ (xh = 1)
for some h ∈ [n], or Di was derived by one of the following inference rules, using
Dj , Dk for some j, k < i:

Resolution: Let A,B be two, possibly empty, disjunctions of linear equations
and let L1, L2 be two linear equations. From A ∨ L1 and B ∨ L2 derive
A ∨B ∨ (L1 − L2).

Weakening: From a, possibly empty, disjunction of linear equations A derive
A ∨ L , where L is an arbitrary linear equation over X.

Simplification: From A ∨ (0 = k) derive A, where A is a, possibly empty,
disjunction of linear equations and k 6= 0.

An R(linR) refutation of a collection of disjunctions of linear equations K is a
proof of the empty disjunction from K.

The size of an R(linR) proof π is the total size of all the disjunctions of linear
equations in π, where coefficients are written in unary representation.

We state some known upper bounds, simulations and restricted lower bounds for
R(linZ) refutations. We write R(linR)⊢∗ τ to denote that τ has a polynomial-size
refutation in R(linR).

(1) R(linZ)⊢∗ m-to-n Pigeonhole Principle, for any m > n (written as a
CNF) [8];

(2) R(linZ)⊢∗ Tseitin (mod q) (written as a CNF) [8];
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(3) R(linZ) simulates Cutting Planes with coefficients written in unary, as well
as R(CP*) introduced by Kraj́ıček [4]. The latter system extends Cutting
Planes to operate with disjunctions of linear inequalities with coefficients
written in unary.

(4) [8] also showed exponential lower bounds on restrictions of R(linZ) where
the disjunctions in each proof-line have only constant many distinct lin-
ear forms (excluding single variables, that can occur freely), and where
coefficients of variables are bounded by some global constant.

Itsykson and Sokolov [3] studied the system R(linF2). They obtained lower
bounds for tree-like R(linF2) refutations. Note that in the case of R(linF2) there is
no need to have the Boolean axioms. We provide a partial list of what is known
about R(linF2):

(1) R(linZ) simulates R(linF2) [3];
(2) Let Ax = b be an unsatisfiable system of linear equations over F2. Then,

tree-like R(linF2) ⊢∗ Ax = b [3];
(3) Tree-like R(linF2) ⊢∗ Graph Matching Principle [3].

Loosely speaking, this means that tree-like R(linF2) captures basic modulo 2 ar-
guments. Itsykson-Sokolov [3] characterized tree-like R(linF2) refutations as linear
decision trees, which are decision trees that query linear equations modulo 2 in
the nodes, and terminates at leaves determining which of the initial clauses of an
unsatisfiable CNF falsifies the given truth-assignment.

(4) Exponential lower bounds on tree-like R(linF2) refutations of the n+ 1 to
n Pigeonhole Principle [3].

This lower bound is obtained via a Prover-Delayer game approach (similar to
Pudlák-Impagliazzo [7]).
The main problem left open: Prove super-polynomial lower bounds on (dag-like,
unrestricted) R(linF2) refutations.

Several groups of researchers have been trying recently to approach such a lower
bound:

(1) Algebraic approach: depth-3 IPS over F2 (where IPS is the Ideal Proof Sys-
tem from Grochow-Pitassi [2]) can be shown to simulate tree-like R(linF2);
similarly, depth-4 IPS is expected to simulate dag-like R(linF2) (this is
due to ongoing work by the speaker together with Fedor Part). This lends
itself to the possibility to achieve lower bounds on R(linF2) refutations via
low depth IPS over finite fields lower bounds (lower bounds on several
fragments of IPS have already been shown in Forbes et al. [1]).

(2) Feasible monotone interpolation approach: Kraj́ıček [5] and Kraj́ıček-Oli-
veira [6] considered the possibility of reducing the lower bound task of
R(linF2) to proving monotone circuits lower bounds. The monotone circuit
class obtained, for which lower bounds would entail R(linF2) lower bounds,
is the class of monotone circuits with oracles, which naturally is stronger
than standard monotone circuits.
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(3) Communication complexity approach: Sokolov [9] defined a dag-like com-
munication protocol, on which lower bounds would imply lower bounds on
R(linF2) refutations, in a similar way that standard (tree-like) communi-
cation protocols entail tree-like R(linF2) lower bounds.
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Regular and General Resolution Width

Alasdair Urquhart

It is known that the size of regular and general resolution refutations can dif-
fer widely. It can be shown [3] that there is a sequence of sets of clauses Π1,
Π2, . . . ,Πi, . . . for which the minimum regular resolution refutation of Πi has size

2Ω(Ri/(logRi)
7 log logRi), where Ri is the minimum size of an unrestricted resolution

refutation of Πi. However, for some well known examples, such as the graph-based
clauses of Tseitin [2] or the pigeonhole principle [1], the shortest known resolution
refutations are regular, and it is a plausible conjecture that in these cases, the
minimal refutations are always regular.

This conjecture seems to remain open, but it is possible to prove a similar result
for resolution width. This paper shows that the regular and general resolution
width coincide for the two cases above, though in the general case [3], unrestricted
and regular resolution width can diverge widely.
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How Limited Interaction Hinders Real Communication

Marc Vinyals

(joint work with Susanna F. de Rezende and Jakob Nordström)

In resolution, which is arguably the most well-studied proof system in proof com-
plexity, the input is an unsatisfiable formula in conjunctive normal form (CNF)
and new disjunctive clauses are derived from this formula until an explicit contra-
diction is reached (in the form of the empty clause without literals). The question
of time-space trade-offs for resolution was first raised by Ben-Sasson [4], who also
obtained such trade-offs for the restricted subsystem of tree-like resolution. Size-
space trade-offs for general, unrestricted resolution were later shown in [2, 3, 6, 18].

One can obtain exponential lower bounds on proof size (corresponding to run-
ning time) for proofs in sublinear but polynomial space [6, 18], and results in [2, 3]
even exhibit trade-offs where size has to be superpolynomial and space has to be
superlinear simultaneously. These results are true trade-offs in the sense that it
is actually possible to refute the formulas both in small size and in small space,
only not simultaneously. A third nice feature of the trade-offs are that the upper
bounds are on proof size and total space, whereas the (sometimes tightly match-
ing) lower bounds are on length and line space, meaning that one only charges one
time unit for each derivation step regardless of its complexity, and only one space
unit per “formula” (for resolution: per clause) regardless of how large it is. Thus,
the upper bounds are algorithmically achievable, while the lower bounds hold in
a significantly stronger model.

A stronger proof system than resolution is polynomial calculus [1, 8], where
the clauses of a formula are translated to multilinear polynomials and calcula-
tions inside the ideal generated by these polynomials (basically corresponding to a
Gröbner basis computation) establishes unsatisfiability. The first size-space trade-
offs for polynomial calculus—which were not true trade-offs in the sense discussed
above, however—were obtained in [16], and these results were further improved
in [3] to true trade-offs essentially matching the results cited above for resolution
except for a small loss in parameters.

Another proof system that is also stronger than resolution and that has been
the focus of much research is cutting planes [9], which formalizes the integer linear
programming algorithm in [7, 13]. In cutting planes the clauses of a CNF formula
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are translated to linear inequalities, which are then manipulated to derive a contra-
diction. Thus, the question of Boolean satisfiability is reduced to the geometry of
polytopes over the real numbers. Cutting planes is much more poorly understood
than resolution and polynomial calculus, however, and size-space trade-offs have
proven elusive. The results in [16] apply not only to resolution and polynomial
calculus but also to cutting planes, and were improved further in [14] to hold for
even stronger proof systems, but unfortunately are not true trade-offs in the sense
discussed above.

The problem is that what is shown in [14, 16] is only that proofs in small space
for certain formulas have to be very large, but it is not established that these
formulas can be refuted space-efficiently. In fact, for resolution it can be shown
using techniques from [5] that such small-space proofs provably do not exist, and
for polynomial calculus there is circumstantial evidence for a similar claim. This
turns out to be an inherent limitation of the technique used.

In a recent surprising paper [12], it was shown that cutting planes can refute
any formula in constant space if we only count the number of lines or formulas.
Plugging this result into [14, 16] yields a trade-off of sorts, since “small-space”
proofs will always exist, but the catch is that such proofs will have exponentially
large coefficients. This means that these trade-offs do not seem very “algorith-
mically relevant” in the sense that such proofs could hardly be found in practice,
and saying that a proof with exponential-size coefficients has “constant space”
somehow does not feel quite right.

We obtain the first true size-space trade-offs for the cutting planes proof system,
where the upper bounds hold for size and total space for derivations with constant-
size coefficients, and the lower bounds apply to length and line space (i.e., number
of inequalities in memory) even for derivations with exponentially large coefficients.
These are also the first trade-offs to hold uniformly for resolution, polynomial
calculus and cutting planes, thus capturing the main methods of reasoning used
in current state-of-the-art SAT solvers.

We prove our results by a reduction to communication lower bounds in a round-
efficient version of the real communication model of Kraj́ıček [17], drawing on
and extending techniques by Raz and McKenzie [19] and Göös et al. [15]. The
communication lower bounds are in turn established by a reduction to trade-offs
between cost and number of rounds in the game of Dymond and Tompa [11] played
on directed acyclic graphs.

As a by-product of the techniques developed to show these proof complexity
trade-off results, we also obtain an exponential separation betweenmonotone-ACi−1

and monotone-ACi, improving exponentially over the superpolynomial separation
in [19]. That is, we give an explicit Boolean function that can be computed by

monotone Boolean circuits of depth logi n and polynomial size, but for which cir-
cuits of depth O(logi−1 n) require exponential size.
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Probabilistic Non-Interactive Proof Systems for Batch Computation,
#SAT, and more

Ryan Williams

Let Multipoint Arithmetic Circuit Evaluation (MACE) be the task of evaluating
an multivariate arithmetic circuit of size s (made of plus and times gates) on s ar-
bitrary inputs. We present a non-interactive probabilistic proof system for MACE
which saves roughly a quadratic factor over the obvious O(s2) time algorithm when
the circuit has low degree. One corollary is that there is such a proof system for
counting SAT assignments to arbitrary Boolean formulas of n variables and 2o(n)

size, where the proofs are of length about 2n/2+o(n) and the proofs can be verified
(using O(n) random bits) in about 2n/2+o(n) time with high confidence. In par-
ticular, UNSAT for arbitrary Boolean formulas can be verified by proofs of this
length and with this running time. This result strongly refutes a “Merlin-Arthur
Strong Exponential Time Hypothesis” which had been informally conjectured in
the theory community. (Previously appeared in the 2016 Computational Com-
plexity Conference [1].)
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