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Introduction by the Organisers

The workshop Analysis, Geometry and Topology of Positive Scalar Curvature Met-
rics, organised by Bernd Ammann (Regensburg), Bernhard Hanke (Augsburg),
and André Neves (Chicago) was attended by more than 50 participants from Eu-
rope, the US, and Japan, including a number of young scientists on a doctoral or
postdoctoral level. Rather than representing a single mathematical discipline the
workshop aimed at bringing together researchers from different areas, but work-
ing on similar questions. The conference created a stimulating environment for
exchange of ideas and methods from topology, from Riemannian and Lorentzian
geometry, and from general relativity.

The workshop started with three extended 80 minutes talks by Claude LeBrun,
Greg Galloway, and Thomas Schick, introducing to major themes related to the
positive scalar curvature problem and appearing again in later talks of the work-
shop: The notion of mass in Kähler geometry, the role of scalar curvature in
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General Relativity, and the application of index theory and differential topology
to the classification of positive scalar curvature metrics.

Aspects of General Relativity appeared in research talks dealing with the equal-
ity case of the spacetime positive mass theorem, topological investigations and new
constructions related to horizon geometry, boundary value problems for the static
vacuum equations, and investigations of Lorentzian manifolds in terms of Cauchy
problems and boundary value problems for the Dirac operator.

Recent major results in the subject deal with the topology of spaces and mod-
uli spaces of positive scalar curvature metrics, in particular in connection with
our now improved understanding of the diffeomorphism groups of smooth mani-
folds by the use of cobordism categories. In addition, classical methods, such as
the Gromoll filtration combined with the use of Toda brackets, remain vital to
obtain interesting new results in this direction. Secondary coarse index theory al-
lows a distinction of concordance classes of uniformly positively curved metrics on
non-compact manifolds. Further refinements of index theory were shown to be suc-
cessful to study the positive scalar curvature problem on Thom-Mather stratified
and on non-compact smooth manifolds with controlled geometry at infinity.

The positive scalar curvature problem is closely tied to the computation of
Yamabe invariants. Some of the talks dealt with the non-uniqueness of solutions
to the Yamabe problem on compact and non-compact manifolds, the study of
Yamabe invariants on stratified spaces, and the computation of Yamabe invariants
by the use of edge-cone Einstein metrics.

An important topic of interest related to positive scalar curvature is the geom-
etry of minimal hypersurfaces, which was the subject of talks concerning minimal
hypersurfaces with bounded Morse index and the existence of infinitely many
geodesics on asymptotically conical surfaces of non-negative scalar curvature.

The positive scalar problem also has strong connections to various other parts of
Riemannian geometry and global analysis. Stability under Ricci flow of Ricci-flat
asymptotically locally Euclidean manifolds ties links between Kähler geometry,
scalar curvature geometry, geometric partial differential equations and general
relativity. Conformal geometry enters the picture when classifying positive scalar
curvature metrics on the seven sphere that cannot be the conformal infinity of
Poincaré-Einstein metrics on the eight dimensional ball.

A talk about the role of holomorphic sectional curvature in Kähler geometry
pointed out an instance when strong curvature assumptions lead to very restrictive
classification results. However, the common expectation that the use of stronger
curvature notions such as Ricci or sectional curvature always go hand in hand
with more restrictive classification results was questioned in three more talks.
They dealt with rigidity results in scalar curvature geometry on the one hand, and
the application of differential topological methods for a study of moduli spaces
of positive Ricci curvature metrics on spheres, and for the construction of multi-
parameter families of highly connected seven dimensional manifolds admitting
metrics of non-negative sectional curvature, on the other.
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Most research talks had a length of 60 minutes with some additional 40 minutes
talks contributed by younger participants. It was interesting to see how researchers
originating from distinct mathematical communities dealt with similar problems,
but referred to different techniques and sometimes arrived at varying views of the
same mathematical structures. Once more the positive scalar curvature problem
featured itself as an ideal point of reference to take advantage of an exchange of
ideas, tools and perspectives for a productive scientific discussion.

Due to the interdisciplinary character of the meeting speakers were asked to keep
their lectures at a level accessible to a broad audience with different mathematical
backgrounds.

A perfect organization and management by the staff of the Oberwolfach institute
created an optimal working environment.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Dan Lee and Nathan Perlmutter in the “Simons Visiting
Professors” program at the MFO.
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Secondary large-scale index theory and positive scalar curvature . . . . . . . 2259

Paolo Piazza (joint with Pierre Albin, Boris Vertman, Vito Felice Zenobi)
Stratified spaces, Dirac operators and Positive Scalar Curvature . . . . . . . 2262

Kazuo Akutagawa (joint with Ilaria Mondello)
Edge-cone Einstein metrics and the Yamabe invariant . . . . . . . . . . . . . . . . 2265

Alessandro Carlotto (joint with Camillo De Lellis)
From scalar curvature rigidity phenomena to min-max geodesics . . . . . . . 2268

Sumio Yamada (joint with Marcus Khuri, Gilbert Weinstein)
Construction of stationary blackhole solution to the 4 + 1 vacuum
Einstein equation with non-spherical horizons . . . . . . . . . . . . . . . . . . . . . . . 2272

Karsten Bohlen (joint with Elmar Schrohe)
Positive scalar curvature metrics on manifolds with controlled geometry
at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2275

Thomas Leistner (joint with Helga Baum, Andree Lischewski)
Cauchy problems for Lorentzian special holonomy and generalised
imaginary Killing spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2278

Wilderich Tuschmann (joint with Michael Wiemeler)
Sphere Theorems, Space Forms, and positive scalar curvature . . . . . . . . . 2281

David J. Wraith (joint with Boris Botvinnik, Mark Walsh)
Ricci positive metrics on spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2283

Christian Bär (joint with W. Ballmann, S. Hannes, A. Strohmaier)
Boundary value problems for the Dirac operator on Riemannian and
Lorentzian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2286

Ilaria Mondello
The Yamabe problem on stratified spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 2288

Sebastian Goette (joint with Martin Kerin, Krishnan Shankar)
Highly connected 7-manifolds and non-negative curvature . . . . . . . . . . . . . 2291



Analysis, Geometry and Topology of Positive Scalar Curvature Metrics 2229

Abstracts

Mass, Scalar Curvature, Kähler Geometry, and All That

Claude LeBrun

If n ≥ 3, a complete connected non-compact Riemannian n-manifold (M, g) is said
to be asymptotically Euclidean (or AE ) if there is a compact subset K ⊂ M such
that M −K consists of finitely many components, each of which is diffeomorphic
to the complement of a closed ball Dn ⊂ Rn in such a manner that g becomes
the standard Euclidean metric plus terms that fall off (sufficiently rapidly) at
infinity. The mild fall-off hypotheses we impose are specifically that, in the given
asymptotic coordinates,

(1) gjk = δjk + O(|x|−
n
2
+1−ε), gjk,ℓ = O(|x|−

n
2
−ε)

for some ε > 0, and that

(2)

ˆ

M

|s|dµ < ∞,

where s and dµ are respectively the scalar curvature of g and volume form of g.
More generally, a Riemannian n-manifold (M, g) is said to be asymptotically locally
Euclidean (or ALE ) if the complement of a compact set K consists of finitely many
components, each of which is diffeomorphic to a quotient (Rn −Dn)/Γj by some
finite subgroup Γj ⊂ O(n) which acts freely on the unit sphere, in such a way that
g again satisfies (1) and (2). The components of M −K are called the ends of M ,
and, because we have assumed that n ≥ 3, the Γj are just the fundamental groups
of the corresponding ends.

The mass of an ALE Riemannian n-manifold is an invariant that assigns a real
number to each end. This quantity is defined to be

(3) m(M, g) := lim
̺→∞

Γ(n2 )

4(n− 1)πn/2

ˆ

S̺/Γ

[gij,i − gii,j ] ν
jαE

where Γ is the fundamental group of the given end, commas represent derivatives
in the given asymptotic coordinates, summation over repeated indices is implicit,
S̺ is the Euclidean coordinate sphere of radius ̺, αE is the (n − 1)-dimensional
volume form induced on this sphere by the Euclidean metric, and ν is the outward-
pointing Euclidean unit normal vector. With n = 3, this concept originated as the
so-called ADM mass [1] in general relativity, which reads off the apparent mass of
an isolated gravitational source from the asymptotics of its gravitational field. In
this picture, the AE (or ALE) m-manifold (M, g) is then imagined to represent
a space-like hypersurface in an (n + 1)-dimensional space-time. Notice that we
take the integral to be over S̺/Γ rather than over S̺, so that the mass, by our
conventions, is 1/|Γ| times the value one might otherwise expect; the normalizing
coefficient used above is also of course a matter of convention. Our definition (3)
of the mass superficially seems to depend on the choice of asymptotic coordinates.
However, Bartnik [2] and Chruściel [5] proved that the mass defined by (3) is finite
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and independent of the choice of asymptotic coordinates provided we assume the
metric g satisfies (1) and (2).

The positive mass conjecture states that an AE manifold (M, g) with scalar cur-
vature s ≥ 0 must have mass m ≥ 0. The physical motivation for this conjecture
originally stemmed from viewing (M, g) as initial data for a time-symmetric space-
time solving Einstein’s equations for gravitation coupled to physically reasonable
matter fields. The s ≥ 0 hypothesis then means that the local mass density is non-
negative, while the m ≥ 0 conclusion then means that the resulting gravitational
system should exert an attractive rather than a repulsive force on distant test
particles. This conjecture is now a theorem if mild extra hypotheses are added; if
M has dimension n ≤ 7, a minimal hypersurface argument [12] shows1 that the
conjecture must hold, while a harmonic-spinor argument [10,13] gives an entirely
different proof for any n, but assuming that M is spin. On the other hand, a pro-
posed extension [6] of the conjecture to ALE manifolds turned out to be incorrect.
In fact, there are many ALE Kähler manifolds with s ≥ 0 that have negative mass;
the original counter-examples [9] were all scalar-flat Kähler manifolds of complex
dimension 2, and many of these counter-examples are spin.

While the coordinate definition of the mass may seem opaque, my recent joint
paper with Hajo Hein [7] shows that it is actually given by a simple, transparent
formula (Theorem C below) when the ALE space in question is a Kähler manifold.
One simplifying feature of the the Kähler case is that such manifolds can only
have one end, so the mass becomes an invariant of the manifold rather than of a
particular end. Here is an immediate consequence of our formula:

Theorem A. The mass of an ALE scalar-flat Kähler manifold (M, g, J) is a
topological invariant, determined entirely by the smooth manifold M , together
with the first Chern class c1 = c1(M,J) ∈ H2(M) of the complex structure and
the Kähler class [ω] ∈ H2(M) of the metric.

Our mass formula also puts the examples of [9] in a more general context:

Theorem B. Let (M4, g, J) be an ALE scalar-flat Kähler surface, and suppose
that (M,J) is the minimal resolution of a surface singularity. Then m(M, g) ≤ 0,
with equality iff g is Ricci-flat.

We now state our mass formula. If M is a smooth manifold, recall that one can
define the compactly supported de Rham cohomologyHk

c (M), as well as the usual
de Rham cohomology. There is then a natural map H2

c (M) → H2(M) induced by
the inclusion of compactly supported forms into all differential forms, and in the
ALE setting, this map is actually an isomorphism. This allows us to define

♣ : H2(M) → H2
c (M)

to be its inverse.

1A recent e-print by Schoen and Yau, arXiv:1704.05490, gives a modified minimal hypersur-
face argument that appears to overcome the previous dimensional restrictions.

https://arxiv.org/abs/1704.05490
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Theorem C. Any ALE Kähler manifold (M, g, J) of complex dimension m has
mass given by

m(M, g) = −
〈♣(c1), [ω]

m−1〉

(2m− 1)πm−1
+

(m− 1)!

4(2m− 1)πm

ˆ

M

sgdµg

where sg and dµg are respectively the scalar curvature and volume form of g, while
c1 is the first Chern class, [ω] is the Kähler class, and 〈 , 〉 is the duality pairing
between H2

c (M) and H2m−2(M).

Another interesting consequence is the following:

Theorem D (Positive Mass Theorem for Kähler Manifolds). Any AE Kähler
manifold with s ≥ 0 has m(M, g) ≥ 0, with equality iff (M, g) is Euclidean space.

In fact, our proof actually shows that the mass can be bounded from below by
the (2m− 2)-volume of a subvariety. This is reminiscent of the Penrose inequality
[3,8,11], which gives a sharp lower bound for the mass of an AE 3-manifold in
terms of the area of a minimal surface. Here is our Kähler analog:

Theorem E (Penrose Inequality for Kähler Manifolds). Let (M2m, g, J) be an
AE Kähler manifold with scalar curvature s ≥ 0. Then (M,J) carries a canonical
divisor K =

∑
njDj, where the Dj are compact complex hypersurfaces, the nj

are positive integers, and
⋃

j Dj 6= ∅ iff (M,J) 6= Cm. Consequently,

m(M, g) ≥
(m− 1)!

(2m− 1)πm−1

∑

j

njVol (Dj)

with equality iff (M, g, J) is scalar-flat Kähler.
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On the geometry and topology of initial data sets in General Relativity

Gregory J. Galloway

Positive scalar curvature metrics have played an important role in General Rel-
ativity ever since the landmark proofs of the positive mass theorem by Schoen
and Yau, and by Witten. In this talk we present some further results in General
Relativity where scalar curvature plays an important role.

An initial data set in a spacetime (time oriented Lorentzian manifold) consists
of a spacelike hypersurface V, together with its induced (Riemannian) metric h
and second fundamental form K. After a brief introduction to spacetime geometry
and general relativity, we present some topics of recent interest related to the
geometry and topology of initial data sets with horizons. Horizons are modeled
by marginally outer trapped surfaces (MOTSs), which are defined in terms of the
initial data.

After reviewing Hawking’s theorem on black hole topology, we consider the
topology of black holes in higher dimensional gravity inspired by certain devel-
opments in string theory and issues related to black hole uniqueness. Natural
physical conditions are given to show that black hole horizons must admit metrics
of positive scalar curvature, which implies various restrictions on their topology;
cf. [3].

We also discuss more recent work on the geometry and topology of the region
of space exterior to all black holes, which is closely connected to the notion of
topological censorship. Topological censorship has to do with the idea that the
topology of the region outside of all black holes should be simple, that, somehow,
nontrivial topology should end up behind the event horizon. Without going into
the rationale for this, there are a number of results supporting this point of view.
But these are spacetime results - they involve assumptions global in time. The
aim of more recent work with M. Eichmair and D. Pollack [2] was to establish a
result supportive of this principle at the pure initial data level. The main result
shows that for a 3-dimensional asymptotically flat initial data set (V, h,K) with
MOTS boundary §, and having no immersed MOTSs in the exterior region V \ §,
the topology is as simple as possible: V ≈ R3 minus an open ball.

An entirely different approach to the topology of the exterior region, valid in
dimension up to 7, is taken in work with Andersson, Dahl and Pollack [1]. As-
suming the dominant energy condition, and the absence of (ordinary) MOTS in
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the exterior (along with some additional technical condition), it is shown that
the one-point compactification of the asymptotically flat exterior admits a metric
of positive scalar curvature, which is a product near the MOTS boundary §. In
this situation one can then apply certain index theory obstructions, and minimal
surface theory obstructions to obtain restrictions on the topology of V . The con-
clusion also implies that Σ admits a metric of positive scalar curvature. Thus, this
result “recovers” the result with Schoen on the topology of black holes discussed
above (albeit under stronger assumptions), in addition to giving information about
the geometry and topology of the exterior.

All of these results rely on the recently developed theory of marginally outer
trapped surfaces, which are natural spacetime analogues of minimal surfaces in
Riemannian geometry. Important aspects of this theory (existence, stability) are
discussed in the talk.

Slides of this talk, which provide much more detail, are available at the MFO
website.
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Spaces and moduli spaces of metrics of positive scalar curvature

Thomas Schick

We surveyed old and recent results on the space of metrics of positive scalar cur-
vature on a given closed smooth manifold M , in particular information on the
homotopy groups of these spaces. We focus on the two very different aspects of
the task:

• construction: tools to construct metrics of positive scalar curvature, or
more generally interesting families of such metrics: if they are parametrized
by Sn they provide potential candidates for non-trivial elements in homo-
topy group πn

• obstruction/detection: tools to distinguish non-triviality, or equivalently
tools to obstruct the existence, either of a metric of positive scalar curva-
ture or of a homotopy to a constant family (detection of non-triviality is
obstruction to triviality).

There are essentially three construction tools, which are all somewhat classical:

• explicit and very specific constructions of metrics like the round metric on
the sphere, or homogeneous metrics of positive scalar curvature, which are
the starting point for further constructions; including products where one
of the factors has positive scalar curvature

https://arxiv.org/abs/1508.01896
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• for the construction of families of metrics: pullback by the action of a
family of diffeomorphisms

• surgery constructions: if N is obtained from M by suitable surgeries and
M has a metric of positive scalar curvature, one constructs one on N (and
on the whole trace of the surgery). This goes back to Gromov and Lawson
[5] and independently Schoen and Yau [9]; versions for families have been
established by Chernysh [2] and Walsh [11] (in increasing generality)

For detection/obstruction there are two basic sets of tools:

• The first is based on minimal hypersurfaces, established by Schoen and
Yau. If M has positive scalar curvature and N is a codimension 1 minimal
hypersurface, then also N admits a metric of positive scalar curvature.
Geometric measure theory in suitable situations guarantees the existence
of such minimal hypersurfaces and puts restrictions on them which allow
by an iteration to rule out positive scalar curvature e.g. on T n. This is
classical for n ≤ 7 but due to lack of the required regularity results has
only very recently been extended to general dimensions by Schoen and
Yau [9,10].

• The second uses index theory and higher index theory and the relative
index of the Dirac operator. This is in a certain sense the much more
powerful tool, but it requires the existence of a spin structure. Therefore,
so far this method has not been used successfully on a manifold whose
universal covering does not admit a spin structure.

For spin manifolds, however, it lead to spectacular results. In particular,
Botvinnik, Ebert, and Randall-Williams [1] and independently Perlmutter
[8] could show that for any closed spin manifold M of dimension n ≥ 6
which admits a metric of positive scalar curvature a relative index map
πk(Pos(M)) → KOk+n+1 is a non-trivial homomorphism. Recall that
KOj

∼= Z for j ≡ 0 (mod 4) and KOj
∼= Z/2 for j ≡ 1, 2 (mod 8).

Earlier work of Crowley, Schick, and Steimle [3,4] showed this whenever
the target is Z/2, following work of Hitchin for k = 0, 1 [7], and of Hanke,
Schick, and Steimle [6] when the target is Z but only if j is much smaller
than n. Perlmutter even handles the case n = 5.
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The equality case of the spacetime positive mass theorem

Dan A. Lee

(joint work with Lan-Hsuan Huang)

The Riemannian positive mass theorem (PMT) states that any complete asymp-
totically flat manifold with nonnegative scalar curvature must have nonnegative
ADM mass. This was proved by R. Schoen and S.-T. Yau in dimensions less than
eight [8,9] and by E. Witten for spin manifolds [12]. A recent preprint of Schoen
and Yau extends their argument to all dimensions [11]. If, in addition to the hy-
potheses of the Riemannian PMT, we also know that the ADM mass is zero, then
the space must be isometric to Euclidean space. This latter fact is often called the
“equality case” of the Riemannian PMT, and a separate argument of Schoen and
Yau showed that it is a direct consequence of the Riemannian PMT. We would
like to discuss an analog of this result for initial data sets.

Theorem 1 (Spacetime positive mass theorem). Assume n < 8 or M is spin. If
(Mn, g, k) is a complete asymptotically flat initial data set satisfying the dominant
energy condition, then the ADM energy-momentum (E,P ) satisfies E ≥ |P |.

Recall that the dominant energy condition (or DEC) is the statement that
µ ≥ |J |g, where µ and J are the mass and current densities of (g, k). This theorem
generalizes the Riemannian PMT and was proved for spin manifolds by Witten [12]
and in dimensions less than eight by M. Eichmair, L.-H. Huang, the author, and
Schoen [5]. When n = 3, Schoen and Yau had proved that E ≥ 0 in [10], and that
result was later generalized by Eichmair to dimensions less than eight [4]. Our
main result, proved in joint work with Lan-Hsuan Huang [6] is the following.

Theorem 2 (Equality case of the spacetime positive mass theorem). Assume
n < 8. If (Mn, g, k) is a complete asymptotically flat initial data set satisfying the
dominant energy condition, and if the ADM energy-momentum (E,P ) satisfies
E = |P |, then E = |P | = 0 and (M, g) isometrically embeds into Minkowski
spacetime with second fundamental form k.

The result was already proved by R. Beig and P. Chruściel for 3-manifolds [1]
and by Chruściel and D. Maerten for general spin manifolds [2]. As both of
those results used spinors, our goal was to find an argument that relied directly on

https://arxiv.org/abs/1705.02754
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Theorem 1 rather than any use of spinors. Technically, we prove that E = |P | = 0,
and then the second part of the conclusion then follows from work of Eichmair [4].

Let Φ(g, k) = (µ, J) be the constraint operator, and consider the linearized
constraint operator DΦ|(g,k) at (g, k) as well as its formal adjoint DΦ|∗(g,k), which

takes a function and a vector field as inputs. We will refer to such a pair (f,X)
as a lapse-shift pair. V. Moncrief [7] observed that if DΦ|∗(g,k)(f,X) = (0, 0), then

(f,X) can be used to construct a spacetime Killing vector field on the vacuum
spacetime development of (g, k), and vice versa. For this reason, if (g, k) is vacuum,
then we refer to an element of the kernel of DΦ|∗(g,k) as vacuum Killing initial data.

We return to the general situation where we do not know whether (g, k) is
vacuum. The basic idea behind the spinor proofs in [1,2] is that if E = |P |,
then Witten’s spinors can be used to construct a lapse-shift pair (f,X) which is
asymptotically vacuum Killing initial data in the sense that DΦ|∗(g,k)(f,X) decays

appropriately at infinity, such that (f,X) is asymptotic to (E,−P ). From there
they use the following fact.

Theorem 3 (Beig-Chruściel [1]). If (g, k) is asymptotically flat initial data with
asymptotically vacuum Killing initial data (f,X) such that (f,X) is asymptotic to
(E,−P ), then E = |P | = 0.

Once they know E = |P | = 0, they then complete the argument using Witten’s
spinors again. However, Theorem 3 itself follows from purely asymptotic calcula-
tions and has nothing to do with spinors or the DEC. A proof of Theorem 3 also
appears in our paper [6], where we make some small improvements to the original
argument.

For the proof of Theorem 2, our strategy is to replace the spinor argument
with some other way to find the desired asymptotically vacuum Killing initial
data (f,X) so that we can apply Theorem 3. Specifically, we want to use a
variational argument in conjunction with Theorem 1. We would like to consider
deformations that preserve the DEC. It is well-known that a deformation that
keeps the constraints (µ, J) fixed need not preserve the DEC µ ≥ |J |g because the
metric g used to compute |J |g is changing. The basic idea for how to overcome this
problem first appeared in [5] and was later formalized by J. Corvino and Huang [3],
who introduced the modified constraint operator at (g, k), defined by

Φ̄(γ, τ) = Φ(γ, τ) + (0, 1
2 (γ · J)♯),

where the ♯ is the index-raising operator from 1-forms to vector fields. Define a
modified constraint manifold

C(g,k) = {(γ, τ) | Φ̄(γ, τ) = Φ̄(g, k)}.

The important point is that the DEC holds on a small neighborhood of (g, k) in
C̄(g,k), and therefore we can apply Theorem 1 to see that E(γ, τ) ≥ |P (γ, τ)| for

each (γ, τ) in that neighborhood.1

1Technically, since these arguments take place in weighted Sobolev spaces, we must prove a
version of Theorem 1 for Sobolev regularity [6].
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Given a fixed (g, k) with ADM energy-momentum (E,P ), choose a lapse-shift
pair (f0, X0) with the property that (f0, X0) identically equals (E,−P ) in the
asymptotically flat end. We define the modified Regge-Teitelboim Hamiltonian at
(g, k) to be

H(γ, τ) = E ·E(γ, τ) − P · P (γ, τ)− 1
(n−1)ωn−1

ˆ

M

Φ̄(γ, τ) · (f0, X0) dVg ,

where dVg is the volume measure induced by g, and ωn−1 is the volume of the
standard unit sphere Sn−1.

Since the integral term of H is constant on C(g,k), it is not hard to conclude that
(g, k) minimizes H over a neighborhood of (g, k) in the constraint manifold C(g,k).

Indeed, it is fair to think of it as a manifold since one can show that DΦ̄|(g,k) is
surjective as in [5].

Given the constrained minimization and the surjectivity of DΦ̄|(g,k), we can
now apply Lagrange multipliers, which states that there exists some functional λ
such that

DH|(g,k)(h,w) = λ[DΦ̄|(g,k)(h,w)],

for all (h,w). Or equivalently, there exists (f1, X1) such that

DH|(g,k)(h,w) =

ˆ

M

(f1, X1) ·DΦ̄|(g,k)(h,w) dVg

=

ˆ

M

(h,w) ·DΦ̄|∗(g,k)(f1, X1) dVg.

On the other hand, it is possible to directly compute

DH|(g,k)(h,w) =

ˆ

M

(h,w) ·DΦ̄|∗(g,k)(f0, X0) dVg,

from the definition of H. This formula is to be somewhat expected because of
the natural way that (E,P ) arises from the “divergence part” of the constraints.
Putting these two computations together, we see that (f,X) := (f0− f1, X0−X1)
lies in the kernel ofDΦ̄|∗(g,k) and is asymptotic to (E,−P ) at infinity. Finally, being

in the kernel ofDΦ̄|∗(g,k) implies that (f,X) is asymptotically vacuum Killing initial

data, and we can now apply Theorem 3 to complete our proof of Theorem 2.
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[1] R. Beig, P. T. Chruściel, Killing vectors in asymptotically flat space-times. I. Asymptotically
translational Killing vectors and the rigid positive energy theorem, J. Math. Phys. 37 (1996),
no. 4, 1939–1961.
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Harmonic spinors and metrics of positive scalar curvature, via the
Gromoll filtration and Toda brackets

Wolfgang Steimle

(joint work with Diarmuid Crowley, Thomas Schick)

Let Mm be a smooth closed spin manifold of dimension m ≥ 6, and R(M) the
space of Riemannian metrics on M , equipped with the C∞-topology. Denote by
R+(M) ⊂ R(M) any Diff(M)-invariant subspace such that for each g ∈ R+(M),
the Dirac operator is invertible. Standard examples are the space of metrics of
positive scalar curvature, of positive Ricci curvature, or of positive sectional cur-
vature. We prove that for all g ∈ R+(M) and all n−m ≥ 0 and n ≡ 0, 1 modulo
8, there exist elements

0 6= x ∈ πn−m(R+(M), g)

of order two.
Following a proof scheme due to Hitchin [4], the elements are constructed

through the action of the diffeomorphism group on the space R+(M). The main
step in the proof is to construct specific elements

0 6= y ∈ πn−m Diff(Dm, ∂)

of order two, by considering Toda brackets in the space PLm/Om and applying
smoothing theory. Through the canonical homomorphism

πn−m Diff(Dm, ∂) → π0 Diff(Dn, ∂)

and the clutching construction, any of our elements y gives rise to a homotopy
(n+ 1)-sphere Σy, for which we prove that

α(Σy) 6= 0 ∈ KOn+1
∼= Z/2.

The non-triviality of x and y follows from this, as was already pointed out by
Hitchin.

https://arxiv.org/abs/1706.03732
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Remarks. (1) It follows that any closed spin manifold M of dimension at least 6
admits a Riemannian metric with a non-trivial harmonic spinor.

(2) The exotic spheres obtained in this way lie extremely deep in the Gromoll
filtration [3] of the group of exotic spheres.

(3) Our proof shows that the elements y survive in the homotopy group
πn−m Diff(M) for any manifold as above, provided n−m > 0.

(4) In the case where R+(M) is the space of metrics of positive scalar curva-
ture, the above result has been proven independently (with a different method)
by Botvinnik-Ebert-Randal-Williams [1] and improved to the case m = 5 by Perl-
mutter [5]. We do not know how their classes relate to ours. Classes of infinite
order (in the case n ≡ 3 modulo 4) have been constructed in [1,5,6].
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Parametrized Morse theory, cobordism categories, and positive scalar
curvature

Nathan Perlmutter

Motivated by the recent work of Botvinnik, Ebert, and Randal-Williams [1], we use
a cobordism category, together with a parametrized version of the Gromov-Lawson
construction, to construct a map from the infinite loopspace of a certain Thom
spectrum into the space of positive scalar curvature metrics on a closed, Spin-
manifold of dimension ≥ 5. Our results yield an alternative proof and extension of
the theorem of Botvinnik, Ebert, and Randal-Williams. In particular, we obtain
an extension of their main theorem [1, Theorem A] to cover manifolds of dimension
five.

Our main construction is a topological category Cobmf,k
θ,d+1. We give the defini-

tion below.

Definition 1. Fix an integer d ∈ Z≥0, a fibration θ : B −→ BO(d + 1), and an

integer k < d/2. Objects of the topological category Cobmf,k
θ,d+1 are given by pairs

(M, ℓ̂) where:

• M ⊂ R∞ is a closed d-dimensional submanifold, and

https://arxiv.org/abs/1612.04660v2
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• ℓ̂ : TM ⊕ ǫ1 −→ θ∗γd+1 is a bundle map with the property that its
underlying map ℓ : M −→ B is k-connected.

For M,N ∈ ObCobmf,k
θ,d+1, a morphism M  N is a pair (t,W ), where:

• t ∈ (0,∞);

• W ⊂ [0, t]×R∞ is an embedded θ-cobordism betweenM×{0} andN×{t};

• The height function, W →֒ [0, t]× R∞ proj
−→ [0, t], is a Morse function with

the following property: all critical points λ ∈ W satisfy the inequality,

k < index(λ) < d− k + 1.

The category Cobmf,k
θ,d+1 is topologized in the standard way following the meth-

ods of [3]. The following theorem can be viewed as an analogue of the theorem of
Galatius, Madsen, Tillmann, and Weiss but for cobordisms equipped with extra
geometric structure, namely the choice of an admissible Morse function.

Theorem 2 (N.P 2017, [6]). Let k < d/2 and suppose that the tangential structure
θ : B −→ BO is chosen so that the space B satisfies Wall’s finiteness condition
F (k) (see [9]). Then there is a weak homotopy equivalence,

BCobmf,k
θ,d+1 ≃ Ω∞−1hWk

θ,d+1.

In the theorem above, hWk
θ,d+1 is a certain Thom spectrum associated to the

space of admissible Morse jets on Rd+1. Since hWk
θ,d+1 is a Thom spectrum, its

homotopy type can be analyzed using the classical methods of stable homotopy
theory. In particular, for certain standard choices of θ, i.e. SO, Spin, String, etc...
the rational homotopy groups of hWk

θ,d+1 can be computed completely.

Our next objective is to use the cobordism category Cobmf,k
θ,d+1, together with

a parametrized version of the parametrized Gromov-Lawson construction [4], to

define a map from the infinite loopspace Ω∞hWk
θ,d+1 into the space of positive

scalar curvature metrics, R+(M), of a closed manifold M with dim(M) ≥ 5. Since

the homotopy type of hWk
θ,d+1 is well understood, such a map will enable us to

detect many non-trivial homotopy groups in the space of psc metrics R+(M).

Below we give an outline of how to construct the map, Ω∞hWk
θ,d+1 −→ R+(M).

Construction 3. Let W : M  N be a cobordism between two closed d-
dimensional manifolds M and N , and let h : W −→ [0, 1] be a proper Morse
function with the property that, k < index(λ) < d − k + 1, for all critical points
λ ∈ W of h. By the work of Chernysh [2] the Morse function h can be used to
define a (weak) map,

(1) GL(W,h) : R+(M) −→ R+(N),

which by the main theorem from [2] is always a weak homotopy equivalence. Fur-
thermore, by the work of Walsh [8] these maps can be shown to vary continuously
over parametrized families of Morse functions h and bundles of cobordisms W .
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Now, fix 2 ≤ k < d/2. We now use the maps (1) to construct a continuous
functor,

R+ : Cobmf,k
θ,d+1 −→ Top .

On objects, the functor is defined by sending M ∈ ObCobmf,k
θ,d+1 to the space of

psc metrics R+(M). On morphisms it is defined by sending W : M  N to the
map GL(W,hW ) : R+(M) −→ R+(N) where hW is the height function associated
to the embedded cobordism W ⊂ [0, 1] × R∞. Consider the transport category,

R+ ≀Cobmf,k
θ,d+1. Since the maps (1) are all homotopy equivalences, it follows that

the projection,

B(R+ ≀Cobmf,k
θ,d+1) −→ BCobmf,k

θ,d+1,

is a fibration, and that the fibre over M ∈ ObCobmf,k
θ,d+1 is given by the space,

R+(M). We define

(2) ρM : ΩMBCobmf,k
θ,d+1 −→ R+(M)

to be a fibre-transport map associated to the above mentioned fibre-sequence.
Let us now restrict our attention to the case, θ = Spin(d + 1). For any closed,
d-dimensional Spin-manifold M with R+(M) 6= ∅, the index-difference map of
Hitchin [5] is defined, ind-diff : R+(M) −→ Ω∞+d+1KO .

Theorem 4 (N.P. 2017 [7]). Fix d ≥ 5 and 2 ≤ k < d/2. For any closed,
d-dimensional, Spin-manifold M , the composite map,

Ω∞hWk
Spin,d+1 ≃ ΩBCobmf,k

Spin,d+1

ρM
// R+(M)

ind-diff
// Ω∞+d+1KO,

induces a non-trivial homomorphism on homotopy groups πl(−) for all l ∈ Z≥0.
In particular, the map is surjective on all rational homotopy groups πl(−)⊗Q.

The above theorem recovers the main theorem of Botvinnik, Ebert, and Randal-
Williams. Furthermore it provides an extension of their theorem: our Theorem B
above holds in the case that M is five-dimensional, while the (d = 5)-case falls out
of the range of the techniques of [1].
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Non-Existence and Local Existence of Poincaré-Einstein Metrics

Matthew J. Gursky

(joint work with Qing Han)

In this talk I presented a non-existence result for Poincaré-Einstein metrics. This
is joint work with Qing Han (Notre Dame). The motivating example of a Poincaré-
Einstein manifold is the unit ball Bn endowed with the hyperbolic metric

gH =
4

(1− |x|2)2
ds2.

Two key properties of this manifold are: (1) it is Einstein (with negative Einstein
constant) and (2) it is conformally compact. This latter condition means that
there is a defining function ρ : Bn → R+ with ρ = 0 on ∂Bn = Sn−1, and dρ 6= 0
on ∂Bn.

More generally, we say that (X, g+) is a Poincaré-Einstein manifold if X is the
interior of a compact manifold X with boundary ∂X = M ; g+ is an Einstein
metric; and there is a defining function ρ ∈ C∞(X) with ρ > 0 and dρ 6= 0 on ∂X ,
and ρ2g+ extends to a metric g on the compact manifold with boundary (X, ∂X).
It is easy to check that the Einstein constant of g+ must be negative, which we
normalize so that

Ricg+ = −(n− 1)g+.(1)

Regularity of the compactified metric up to the boundary can be a delicate issue,
but in the setting of our main result it is well understood (and will be assumed to
be smooth).

A compactification of a Poincaré-Einstein manifold defines a conformal class of
metrics on the boundary: If γ = g

∣∣
M

is the induced metric, then the conformal

class [γ] is called the conformal infinity of (X, g+). For the basic example of the
Poincaré model for hyperbolic space on the unit ball Bn ⊂ Rn, the conformal
infinity is the standard conformal structure on the round sphere Sn−1.

Conversely, given a conformal class of metrics on the boundary M = ∂X one
can ask whether the interior admits a Poincaré-Einstein metric whose conformal
infinity is the given conformal class. Although there is no general existence theory
for this problem, a seminal result was proved by Graham-Lee [2]: Given a metric
γ sufficiently close to the round metric γ0 on the sphere Sn−1, there is a Poincaré-
Einstein metric g+ on the ball Bn whose conformal infinity is [γ].

In [6], Witten remarks that “...one might ask what is the significance of the
fact that the Graham-Lee theorem presumably fails for conformal structures that
are sufficiently far from the round one” (see page 263). Our main result is the
existence of infinitely many conformal classes on the seven-dimensional sphere S7

which cannot be the conformal infinity of a Poincaré-Einsteinmetric on the ballB8,
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thus confirming Witten’s intuition in this dimension. We rely on the construction
of Gromov-Lawson [2], which they used to prove that the space R+(S7) of positive
scalar curvature metrics on S7 has infinitely many connected components. The
precise statement is:

Theorem 1 ([3]). There are infinitely many connected components of R+(S7)
containing metrics whose conformal class cannot be the conformal infinity of a
Poincaré-Einstein metric on the eight-dimensional ball B8.

The idea behind the proof is to show that the induced metrics from the Gromov-
Lawson construction cannot be extended to Poincaré-Einstein metrics on the unit
ball B8. More precisely, the construction in [2] produces an 8-dimensional man-
ifold with boundary (Y 8, η) (realized as the disk bundle of the total space of a
4-dimensional vector bundle over S4), with ∂Y 8 ≈ S7. Moreover, the metric η has
positive scalar curvature, and near the boundary is a product metric:

η = dt2 + η0,

where η0 is the induced metric on ∂Y 8 ≈ S7. A crucial aspect of this construction

is that the manifoldN8 = Y 8∪S7B8 is spin with non-trivial Â-genus, and therefore
does not admit a metric of positive scalar curvature. We want to show that the
conformal class of η0 on S7 cannot be the conformal infinity of a Poincaré-Einstein
metric on the ball.

Assuming to the contrary that g+ is a P-E metric on B8 with conformal infinity
given by [η0], we first use an observation of J. Qing [5] (based on a result of J. Lee
[4]) that one can conformally compactify g+ to obtain a metric g = ρ2g+ on B8

with positive scalar curvature. Moreover, the boundary S7 is totally geodesic with
respect to g. Therefore, we have metrics η on Y 8 and g on B8, and by definition
their induced metrics on the boundary are conformal.

The next step is extend the metric η0 into B
8 so that it is conformal to g. This is

a straightforward construction: since η0 = e2w0g for some function w0 ∈ C∞(S7),
we just need to extend w0 into B8. If we do this so that the normal derivative
of the extension vanishes along the boundary, then the boundary S7 is totally
geodesic with respect to the extended metric (call it g̃). Consequently, we now
have a globally defined metric on N8 = Y 8 ∪S7 B8 given by

g̃ =

{
η on Y 8,

g̃ on B8,

Although g̃ is only C1, it has positive scalar curvature away from the boundary.
However, near the boundary in Y 8 the metric is a product, while in B8 it is a
product up to errors which are quadratic in the distance to the boundary. Using
this fact we can perturb g̃ to obtain a smooth metric whose Yamabe invariant is
positive. Since this is a contradiction (N8 does not admit a metric of PSC), we
are done.

An interesting question is whether any boundary conformal class can be ex-
tended at least locally (say, in a collar neighborhood of the boundary) to a
Poincaré-Einstein metric. This is ongoing work with G. Szekelyhidi (Notre Dame).
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Outermost apparent horizons with nontrivial topology

Eric Larsson

(joint work with Mattias Dahl)

Outermost apparent horizons are the initial data versions of black hole bound-
aries. When restricting to the important special case of asymptotically Euclidean
“time-symmetric” initial data, they are precisely the outermost (compact) minimal
hypersurfaces in asymptotically Euclidean manifolds. It is known from work by
Galloway and Schoen [3] [4] that if a manifold is given an asymptotically Euclidean
metric of nonnegative scalar curvature, then its outermost apparent horizon ad-
mits a metric of positive scalar curvature. This gives topological restrictions on
the outermost apparent horizon, and it is not known whether these are the only
such restrictions.

In joint work with Mattias Dahl [2] we show that every manifold which is the
unit normal bundle of a submanifold S ⊂ Rn with codimension at least three
actually occurs as the outermost apparent horizon in an asymptotically Euclidean
manifold with zero scalar curvature. This is done by modifying the Euclidean
metric on Rn by a conformal factor which is based on integrating the Green’s
function of the Euclidean Laplacian along S, multiplied by a mass parameter ǫ.
In the limit ǫ → 0 the outermost apparent horizon must collapse to S, since its
limit would otherwise be a compact minimal surface in Euclidean space (apart
from the set S which has sufficiently small dimension for a removable singularity-
type theorem to be applicable). The idea is then the following: By choosing ǫ
very small, we can confine the outermost apparent horizon to a very small tubular
neighborhood of S. In such a neighborhood, the effect of the curvature of S on
the conformal factor is very small because S is well approximated by its tangent
space. We then expect the outermost apparent horizon to be close to what it
would be if S were an affine subspace of Rn. In the affine case, the conformal
factor is explicitly computable and we have complete knowledge of the topology
of the horizon.
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The preceding reasoning can be made rigorous using a convergence argument
in rescaled coordinates: By a mean curvature computation in the limit ǫ → 0 one
can show that there are constants Cinner, Couter, and Router such that the tubular
neighborhood of S of radius Cinnerǫ is foliated by hypersurfaces of negative mean
curvature, while the annular neighborhood of inner radius Couterǫ and outer radius
Router is foliated by hypersurfaces of positive mean curvature. A maximum prin-
ciple then confines the outermost apparent horizon to the annular neighborhood
of inner radius Cinnerǫ and outer radius Couterǫ. The fact that these bounds both
are linear in ǫ then allows us to rescale the coordinates (centered at a point in
S) by 1/ǫ and pass to the limit ǫ → 0. In this limit S converges to its tangent
space, and it is easy to find a foliation of the whole space by cylinders of explicitly
computable mean curvature. Another application of a maximum principle tells
us that the limit of the outermost apparent horizon is a cylinder. Adapting this
argument to make it global in S, we see that the outermost apparent horizon is a
tubular hypersurface around S.

With this construction, we can produce horizons which are disjoint unions of
spheres as in work by Chruściel and Mazzeo [1], and horizons which are products
of spheres as in work by Schwartz [5]. We also obtain many new examples. For
instance, we see that outermost apparent horizons in 7-dimensional manifolds can
have any fundamental group. However, these new examples realize only some of
the topologies which are not excluded by the Galloway–Schoen theorem, and more
work is needed before we can determine if there are additional restrictions, or if
all topologies which have not been ruled out can be realized.
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Compactness of minimal hypersurfaces with bounded Morse index

Ben Sharp

(joint work with Lucas Ambrozio - Alessandro Carlotto and Reto Buzano)

Minimal hypersurfaces are critical points of the volume functional, and the Morse
index tells us how many ways one can decrease their volume locally (up to second
order); formally it is the number of negative eigenvalues of the Jacobi operator L.
We will present a weak compactness and quantisation result for minimal hypersur-
faces, in closed manifolds, for which one of the eigenvalues of L is bounded from
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below. In particular, when we consider minimal surfaces in three-manifolds with
positive scalar curvature, we will show how this leads to a strong compactness
result and therefore full analytic and geometric control. The content here builds
on the results presented in the 2015 Oberwolfach conference “Partial Differential
Equations” [16] and should be read in conjunction with this.

We are primarily interested in closed Riemannian manifolds (Nn+1, g) (for 2 ≤
n ≤ 6) and the set of all closed, smooth and embedded minimal hypersurfaces in
N , denoted M(N). Given M ∈ M(N) we denote its volume by Hn(M), its second
fundamental form by A, and we order the eigenvalues of the Jacobi operator L in
the usual way

λ1 ≤ λ2 ≤ · · · ≤ λi → ∞ . . . .

Given Λ, µ ≥ 0 and p ∈ N we consider the following subspace of M(N):

Mp(Λ, µ) := {M ∈ M(N) | Hn(M) ≤ Λ, λp ≥ −µ}.

Due to the work of Almgren [1], Pitts [11] and Schoen-Simon [13] we know that
M(N) is non empty. Furthermore by results of Marques-Neves [9] we have that
|M(N)| ≥ n+1 and when RicN > 0 then M(N) contains countably many distinct
elements. Therefore it seems reasonable to try to understand/characterise subsets
of M(N) by their increasing complexity. This is precisely the motivation for using
the spaces Mp(Λ, µ).

An important quantity for us is the total curvature of minimal hypersurfaces

A(M) :=

ˆ

M

|A|n dHn,

which is scale-invariant, and when n = 2 (via the Gauss equations) is essentially
the Euler Characteristic of M .

The following theorem can be thought of as a companion to the main results
proved in [15] and [2] (see also [16]).

Theorem 1 ([3]). Let 2 ≤ n ≤ 6 and Nn+1 be a smooth closed Riemannian
manifold. If {Mn

k } ⊂ Mp(Λ, µ) is a sequence, for some fixed constants Λ, µ ∈ R≥0

and p ∈ N, then up to subsequence, there exist M ∈ Mp(Λ, µ) and m ∈ N so that
Mk → mM in the varifold sense. There also exist at most p−1 points Y = {yi} ⊂
M where the convergence to M is smooth and graphical (with multiplicity m) away
from Y.

Associated with each y ∈ Y there are a finite number 0 < Jy ∈ N of properly

embedded minimal hypersurfaces {Σy
ℓ}

Jy

ℓ=1 ⊂ Rn+1 with finite total curvature for
which

lim
k→∞

A(Mk) = mA(M) +
∑

y∈Y

Jy∑

ℓ=1

A(Σy
ℓ ),

where
∑

y Jy = L ≤ p − 1. Furthermore, for k, k′ sufficiently large, Mk is diffeo-
morphic to Mk′ .



Analysis, Geometry and Topology of Positive Scalar Curvature Metrics 2247

Remark. When n = 2, the quantisation of total curvature can be written in
terms of the Gauss curvature. Therefore using the Gauss-Bonnet formula we can
say that, for k sufficiently large,

χ(Mk) = mχ(M) +
1

2π

∑

y∈Y

Jy∑

ℓ=1

ˆ

Σy

ℓ

KΣℓ
.

By a result of Osserman [10] we know that 1
2π

∑
y∈Y

∑Jy

ℓ=1

´

Σy
ℓ

KΣℓ
is a non-positive

even number.

The heuristic picture one should have in mind is that, when the convergence is
not smooth (i.e. of multiplicitym ≥ 2), then the limit must be stable, and therefore
the sequence “loses all of its index” in the process of convergence. Indeed, this
index is being lost precisely at the points of bad convergence Y. This lost index
can be recovered by taking suitable re-scalings of the approaching sequences about
points y ∈ Y, and what we can show is that these re-scalings converge smoothly
and locally to one of the Σℓ ⊂ Rn+1. It is not necessarily the case that all of the
lost index can be accounted for in this way, however we show that all of the total
curvature is quantised by the limit surface M and {Σℓ}Lℓ=1 i.e. there is no loss of
total curvature in the intermediate neck regions.

The proof heavily uses the curvature estimates developed by Schoen-Simon [13],
a beautiful local foliation/maximum principle argument of Brian White [18], and
the description of the ends of minimal hypersurfaces with finite total curvature by
Rick Schoen [12]. We also crucially require a result of Johan Tysk [17] which tells
us that our re-scalings Σℓ have finite total curvature.

We denote
Mp(Λ,µ)

≃ to be equal to the set Mp(Λ, µ) after identifying elements
up to diffeomorphism.

Corollary 2. There exists C = C(N,Λ, µ, p) such that for all M ∈ Mp(Λ, µ) we
have

index(M) +A(M) +

∣∣∣∣
Mp(Λ, µ)

≃

∣∣∣∣ ≤ C.

Thus we see that the elements of Mp(Λ, µ) are geometrically, topologically and
analytically well controlled. In other words the measure of complexity induced by
controlling the spectrum of L in this way seems to be a good one. In the case

µ = 0, the estimate |M̂p(Λ, 0)| ≤ C has been obtained independently and using
different methods, by Chodosh-Ketover-Maximo [5]. The index bound follows from
the upper bound on volume and total curvature and an application of the results
of Ejiri-Micallef [6] for n = 2 and Cheng-Tysk [4] for n ≥ 3.

The below is a special case of a more general result, for simplicity we will restrict
to the case of index = 1 and two-sided surfaces.

Corollary 3. Suppose that (N3, g) has positive scalar curvature Rg > 0 and
consider a sequence of two-sided surfaces {M2

k} ⊂ M(N) such that index(Mk) =
1 and χ(Mk) < 0 for all k. Then there exists M ∈ M(N) such that (up to
subsequence), Mk → M smoothly and graphically with multiplicity one.
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Sketch proof. Since the sequence of surfaces are all two-sided and of index one, by
Proposition A.1 in [8] we get that H2(M) ≤ Λ for some uniform Λ.

Therefore we may apply the Theorem above to obtain the existence of some M
so that Mk → mM . If m = 1 then we are done, so for a contradiction we will
suppose that m ≥ 2.

The usual multiplicity analysis gives us that either M is stable, or its two-sided
double cover is stable (see e.g. [15], [2], [16]), which by an argument of Schoen-Yau
[14, Theorem 5.1] yields that M is a sphere or a projective plane.

Using index(Mk) = 1 we find that L = 1 and index(Σ1) = 1. Applying the
characterisation of embedded, index one minimal surfaces in R3 by Lopez-Ros [7]
we see that Σ1 must be the catenoid, yielding in turn that 1

2π

´

Σ1
KΣ1

= −2.

Using the remark we see that χ(Mk) ≥ 0, which contradicts the assumption
that χ(Mk) < 0 and we are done. �
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A geometric boundary value problem related to the static vacuum
equations in General Relativity

Carla Cederbaum

The Schwarzschild spacetime is one of if not the most important example of a
spacetime in Mathematical General Relativity. It describes the static, vacuum
exterior region of a spherically symmetric, isolated star or black hole. The n+ 1-
dimensional Schwarzschild spacetime of mass m ∈ R is given by

g := −u2
mdt2 +

1

u2
dr2 + r2 dΩ2,(1)

um := um(r) :=

√
1−

2m

rn−2
(2)

on the spacetime manifold R× (rm,∞)× Sn−1, where dΩ2 denotes the canonical

metric on Sn−1 and rm := 0 for m ≤ 0 and rm := (2m)
1

n−2 for m > 0. This
definition applies whenever n ≥ 3.

The Schwarzschild spacetime is known to be rigid in various ways:

• Birkhoff’s theorem [1] asserts that the Schwarzschild spacetime is the only
spherically symmetric Lorentzian spacetime (Ln+1, g) which solves the vac-
uum Einstein equations Ric = 0.

• The static vacuum black hole uniqueness theorem asserts that the Schwarz-
schild spacetime is the only asymptotically flat spacetime (Ln+1, g) with
“black hole inner boundary” which is “static” and solves the vacuum
Einstein equations Ric = 0. Here, being static means that (Ln+1, g) =
(R×Mn, g = −u2dt2 + g), where (Mn, g) is an asymptotically Euclidean
Riemannian manifold and u : Mn → R+ is a function with u → 1 near in-
finity. Static vacuum black hole uniqueness was proved by many authors
under a variety of assumptions, in particular by Bunting and Masood-
ul-Alam [2] for n = 3, using a very elegant method. Gibbons, Ida, and
Shiromizu [6] and Hwang [7] generalized this method to n ≥ 3 for spin
manifolds. In this context, the definition of a black hole inner boundary
is that ∂M consists of finitely many compact components with vanishing
mean curvature, H = 0, such that u = 0 on ∂M , and such that the normal
derivative ν(u) has a sign on ∂M .

• Analogously, the static vacuum photon sphere uniqueness theorem asserts
that the Schwarzschild spacetime is the only asymptotically flat spacetime
(Ln+1, g) with “photon sphere inner boundary” which is static and solves
the vacuum Einstein equations Ric = 0. Here, a photon sphere inner

https://arxiv.org/abs/1503.02190
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boundary is defined as a timelike umbilic hypersurface Pn →֒ (Ln+1, g) on
which u ≡ const, see [4]. Static vacuum photon sphere uniqueness was
proved by the author and Galloway [5] for n = 3, relying on the method
suggested by Bunting and Masood-ul-Alam [2].

The goal of this talk was to show that the Schwarzschild spacetime is indeed
rigid in a much more general way [3]. Before we discuss the main rigidity theorem,
let us briefly recall the symmetry reduced Einstein vacuum equation for static
spacetimes (Rn ×Mn, g = −u2dt2 + g), the so-called static vacuum equations

uRic = ∇2u,(3)

△u = 0(4)

on Mn which follow directly from plugging the special form of g into the vacuum
Einstein equations Ric = 0. Here, Ric denotes the Ricci tensor of g. A straightfor-
ward consequence obtained by tracing (3) is that the scalar curvature of (Mn, g)
vanishes, which we denote as R = 0. These equations are used in [2,4–7].

If not discussing vacuum but matter models with non-negative energy density,
one finds R ≥ 0 — at least in the so-called “Riemannian” case. This condition
is related to the dominant energy condition in General Relativity. The rigidity
theorem we prove does not assume (3) and neither R = 0, only (4) and R ≥ 0.

Theorem 1 (Rigidity of Schwarzschild manifold). Assume n ≥ 3 and let Mn be a
smooth, connected, n-dimensional manifold with non-empty, possibly disconnected,
smooth, compact inner boundary ∂M =

.

∪I
i=1Σ

n−1
i . Let g be a smooth Riemannian

metric on Mn. Assume that (Mn, g) has non-negative scalar curvature R ≥ 0 and
that it is geodesically complete up to its inner boundary ∂M . Assume in addition
that (Mn, g) is asymptotically isotropic with one end of mass m ∈ R.

Furthermore, assume that the inner boundary ∂M is umbilic in (Mn, g), and
that each component Σn−1

i has constant mean curvature Hi with respect to the
outward pointing unit normal νi. Assume that there exists a function u : Mn → R

with u > 0 away from ∂M which is smooth and harmonic on (Mn, g), so that
△u = 0. We ask that u is such that u|Σn−1

i
≡: ui is constant on each Σn−1

i and u

is asymptotically isotropic of the same mass m.
Finally, we assume that for each i = 1, . . . , I, we are either in the semi-static

horizon case

Hi = 0, ui = 0, νi(u) 6= 0,(5)

or we are in the true CMC case with Hi > 0, ui > 0, and such that there exist
constants ci >

n−2
n−1 so that

Rσi
= ciH

2
i ,(6)

2ν(u)i =

(
ci −

n− 2

n− 1

)
Hiui,(7)

where Rσi
denotes the scalar curvature of Σn−1

i with respect to its induced metric
σi and νi(u)|Σn−1

i
≡: ν(u)i denotes the normal derivative of u.
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Then m > 0 and (Mn, g) is isometric to a suitable portion of the spatial
Schwarzschild manifold of mass m ((rm,∞)×Sn−1, gm := 1

u2 dr
2+ r2 dΩ2). More-

over, u coincides with the restriction of um (up to the isometry).

In Theorem 1, the asymptotic isotropy conditions are defined as follows:

Definition 2. We say that (Mn, g) is asymptotically isotropic with one end of
mass m ∈ R, if Mn is diffeomorphic to Rn \ ball outside a compact set, and with
respect to the coordinates (yi) induced by this diffeomorphism, we have

gij =
(
1 +

m

2sn−2

) 4
n−2

δij +O2(
1

sn−1
)(8)

as s :=
√
(y1)2 + · · ·+ (yn)2 → ∞. We say that a function u : Mn → R is

asymptotically isotropic of mass m if, with respect to the same diffeomorphism
and coordinates described above, we have

u = 1−
m

sn−2
+O2(

1

sn−1
)(9)

as s → ∞.

We remark that Theorem 1 recovers the static vacuum black hole uniqueness
theorem in all dimensions (and dropping the spin assumption in [6,7] and recov-
ers and generalizes the static vacuum photon sphere uniqueness theorem to all
dimensions.

Sketch of Proof of Theorem 1. In the talk, we gave a sketch of the proof of
Theorem 1 by pictures. For more details, please see [3].

The first step is to extend (Mn, g) across each true CMC inner boundary
component Σn−1

i by gluing a suitable, explicitly constructed Riemannian mani-

fold (Mn
i , gi) into (Mn, g) across Σn−1

i in a C1,1 fashion. The glue-in manifolds
(Mn

i , gi) are constructed such that they give rise to new inner boundary com-
ponents which are totally geodesic semi-static horizons, i.e. satisfy (5). Also by
construction, (Mn

i , gi) has vanishing scalar curvature. We will also extend the
harmonic function u by gluing it to a (positive multiple of a) gi-harmonic function
ui : M

n
i → R with C1,1-regularity across the gluing surface Σn−1

i , in a manner
that ui > 0 away from the new horizon boundary. This is possible because of
the constraint conditions (6), (7). The described argument reduces Theorem 1 to
the case where there are only semi-static horizon boundary components, see also
Figure 1.

The glue-in manifolds (Mn
i , gi) are defined as

gi :=
1

ui(r)2
dr2 +

r2

r2i
σi,(10)

ui(r) :=

√
1−

2µi

rn−2
,(11)
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glue in

Figure 1. Gluing in a suitable, explicitly constructed Riemann-
ian manifold (Mn

i , gi) into each inner boundary component Σn−1
i .

The new boundary components are totally geodesic semi-static
horizons.

onMn
i := ((2µi)

1
n−2 , ri)×Σn−1

i , where ri is the scalar curvature radius of (Σ
n−1
i , σi)

given by Rσi
=: (n−2)(n−1)

r2i
and µi > 0 is a suitably chosen mass. This glue-in

strategy generalizes that used in [5] to higher dimensions and possibly non-round
inner boundary (Σn−1

i , σi). See [3] for more properties of the manifolds (Mn
i , gi).

As a second step, we adapt [2,6,7] and double the extended manifold con-
structed above across its umbilic, semi-static horizon boundary (again with C1,1-
regularity across the doubling surfaces) to obtain a new Riemannian manifold

(M̃n, g̃ ) which is geodesically complete and has two asymptotically isotropic ends
of the same ADM-mass m as (Mn, g), see Figure 2. We denote the original part

Mn ⊂ M̃n as M̃+ and the new copy as M̃−. At the same time, we extend the

function u to M̃n by

ũ : M̃n → R : p 7→

{
u(p) if p ∈ M̃+

−u(p) if p ∈ M̃−(12)

and observe that ũ is smooth away from the gluing surfaces and C1,1 across the

gluing surfaces. Also, ũ is harmonic with respect to g̃, ũ(M̃n) = (−1, 1), and

±ũ → 1 as r → ∞ in M̃± is also asymptotically isotropic of mass m. This dou-
bling construction first employed by Bunting and Masood-ul-Alam [2] works even
though we do not assume the static vacuum equations (3), (4).

The third step consists in performing the conformal transformation and one
point insertion method from [2,6,7] and ensuring that it makes no use of (3). More

precisely, we conformally transform (M̃n, g̃ ) to M̂n := M̃n via

ĝ :=

(
1 + ũ

2

)− 4
n−2

g̃.(13)
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double

Figure 2. Doubling the extended manifold to a geodesically
complete one across the totally geodesic boundary.

Exploiting that ũ is harmonic with respect to g̃ and the fact that we chose the

magical Yamabe power, we find that R̂ ≥ 0. Under this conformal transform, the

original asymptotically isotropic end M̃+ then transforms into an asymptotically

isotropic end M̂n of vanishing ADM-mass m̂ = 0, see Figure 3. The asymptotics
of ũ and g̃ of the doubled end allows to insert a point p∞ in a C1,1 fashion so that

we obtain a geodesically complete manifold (M̂n
∞ := M̂n ∪ {p∞}, ĝ∞). This man-

ifold satisfies the assumptions of the rigidity case of the positive mass theorem
[9,10], except the regularity assumptions across the finitely many gluing hyper-
surfaces and the point p∞. To remedy this problem, we appeal to McFeron and

Székelyhidi [8]. This shows that (M̂n
∞, ĝ∞) is globally isometric to Euclidean space.

conformal

C1,1 C1,1

m

m

doubled

insert point

m = 0

Figure 3. Conformal transformation and one-point insertion to a
geodesically complete Riemannian manifold with vanishing ADM-
mass and non-negative scalar curvature.

In order to conclude that (Mn, g) must have been isometric to a portion of

Schwarzschild (M̃n
m, g̃m), we proceed as follows: First, recall that each boundary

component Σn−1
i →֒ (Mn, g) is closed and umbilic. As g is conformally equivalent

to ĝ and ĝ is isometric to δ, we find that the image of Σn−1
i →֒ (Rn, δ) is a closed,

totally umbilic hypersurface and thus necessarily a round sphere and thus in par-

ticular a topological sphere by standard arguments. Second, we know that M̂n
∞
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is diffeomorphic to Rn and thus M̂n diffeomorphic to Rn \ {0}. From topological
considerations, this shows that the boundary ∂M must have been connected.

Now, let us consider the picture in (Rn, δ): A standard computation shows that

the conformal factor ϕ :=
(
1+ũ
2

)−1
is harmonic with respect to ĝ and thus with

respect to δ outside the round sphere image of Σn−1. The boundary value of ϕ
on the round sphere image is a constant by construction, and ϕ tends to 1 near
infinity. Thus by the maximum principle and standard facts on Green’s functions,
we find that ϕ is the conformal factor of Schwarzschild of mass m. Because of the
boundary data assumptions (5), (6), (7), respectively, m > 0.

This finishes the sketch of the proof of Theorem 1.
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Non-uniqueness of solutions to the Yamabe problem on compact and
noncompact manifolds

Renato G. Bettiol

(joint work with Paolo Piccione, Bianca Santoro)

The Yamabe problem on a (possibly noncompact and incomplete) Riemannian
manifold (M, g) is to find a complete metric with constant scalar curvature which
is conformal to g. We exploit the geometry of discrete cocompact groups and
techniques from Bifurcation Theory to construct large classes of compact and
noncompact manifolds on which the Yamabe problem has infinitely many different
solutions [1–4].

Regarding the compact case, it can be shown [2] that given compact Lie groups
H ⊂ K ⊂ G such that scalK/H > 0 and either H⊳K or K⊳G, the 1-parameter family
of homogeneous metrics gt on G/H obtained by rescaling by t > 0 the vertical
direction of the homogeneous bundle

(1) K/H → G/H → G/K

has a sequence of bifurcation instants accumulating at t = 0. In particular, this
implies the existence of at least 3 solutions to the Yamabe problem on (G/H, gt)
for infinitely many t > 0. For instance, the above holds if (1) is a Hopf bundle

(2) S
3 → S

4n+3 → HPn or S
7 → S

15 → S
8(1/2),

see also [1]. This has been recently generalized by Otoba and Petean [5].
Regarding noncompact manifolds, it can be shown [3] that if (M, g) is a closed

manifold with constant positive scalar curvature, and (N, h) is a simply-connected
symmetric space of noncompact or Euclidean type, such that (M ×N, g ⊕ h) has
positive scalar curvature, then there exist infinitely many solutions to the Yamabe
problem on (M × N, g ⊕ h). As an immediate consequence, there exist infinitely
many solutions to the Yamabe problem on Sm × Hd for all 2 ≤ d < m, and on
Sm ×Rd for all m ≥ 2, d ≥ 1. It is easy to see that these infinitely many solutions
on Sm × R translate into infinitely many solutions also on Sm+1 \ {±p} and on
Rm+1 \ {0}, which are conformally equivalent to Sm × R via the stereographic
projection. These can be seen as simple instances of the so-called singular Yamabe
problem, which consists of finding solutions to the Yamabe problem on manifolds
of the form M \ Λ, where M is a closed manifold and Λ ⊂ M a closed subset.
As explained in [3], combining the above result with the conformal equivalence
Sm \ Sk ∼= Sm−k−1 × Hk+1, it follows that there are infinitely many solutions to
the singular Yamabe problem on Sm \ Sk, for all 0 ≤ k < (m− 2)/2. This extends
the main result in [4], which uses bifurcation techniques that work if and only if
k = 1, due to the Mostow Rigidity Theorem. Note that 0 ≤ k < (m− 2)/2 is the
maximal range of dimensions for which multiplicity of solutions is possible, by the
asymptotic maximum principle.
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Stability of ALE Ricci-flat manifolds under Ricci flow

Klaus Kröncke

(joint work with Alix Deruelle)

A complete Riemannian manifold (M, g) is called asymptotically locally Euclidean
(ALE for short) of order τ > 0 if there exists a compact set K ⊂ M , a radius R > 0
and a diffeomorphism ϕ : M \K → (Rn \BR)/Γ such that

(ϕ∗g − geucl)ij = O∞(r−τ ).

Here, Γ ⊂ SO(n) is a discrete subgroup acting freely on Sn−1. If Γ is trivial, one
recovers the notion of an asymptotically Euclidean (AE) manifold.

If (M, g) is ALE and Ricci-flat, it is ALE of order n− 1. If in addition, (M, g)
is Kähler or if n = 4, it is ALE of order n.

ALE Ricci-flat manifolds are important models in quantum gravity and were
extensively studied by Gibbons, Hawking and many other physicists. The first
nontrivial example that was discovered in 1979 is the Eguchi-Hanson metric on
TS2. Later, Kronheimer showed for each discrete subgroup Γ ⊂ SU(2) which
acts freely on S3 the existence of 4-dimensional hyperkähler ALE manifold with
fundamental group Γ at infinity. His work provides a large class of interesting
examples.

The stability problem for Einstein manifolds and Ricci solitons under Ricci flow
was extensively studied in recent years, both in the compact and in the noncompact
case. In the case of ALE Ricci-flat four-manifolds, this problem is related to the
extension problem of Ricci flows with bounded scalar curvature on compact four-
manifolds.

In the context of stability problems, it is more convenient to deal with the Ricci-
DeTurck flow instead of the Ricci flow as it has the advantage of being strongly
elliptic. The main theorem of this talk is as follows:

Theorem 1. Let (Mn, g0) be an ALE Ricci-flat manifold. Assume it is linearly
stable and integrable. Then for every ǫ > 0, there exists a δ > 0 such that the

https://arxiv.org/abs/1603.07788
https://arxiv.org/abs/1611.06709
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following holds: for any metric g ∈ BL2∩L∞(g0, δ), there is a complete Ricci-
DeTurck flow (Mn, g(t))t≥0 starting from g converging to an ALE Ricci-flat metric
g∞ ∈ BL2∩L∞(g0, ǫ). Moreover, the L∞ norm of (g(t)− g0)t≥0 is decaying sharply
at infinity:

‖g(t)− g0‖L∞(M\Bg0
(x0,

√
t)) ≤ C(n, g0, ǫ)

supt≥0 ‖g(t)− g0‖L2(M)

t
n
4

, t > 0.

By linear stability, we mean that the spectrum of the Lichnerowicz operator
Lg0 lies in (−∞, 0]. By integrability, we mean that the set of stationary points F
of the Ricci-DeTurck flow in BL2∩L∞(g0, ǫ) is a manifold with Tg0F = kerL2(Lg0).

A first important step to prove this theorem is to analyse the structure of the
space Floc = F ∩ BL2∩L∞(g0, ǫ) for small enough ǫ > 0. It turns out that any
g ∈ Floc is Ricci flat and satisfies the gauge condition

V (g, g0)
k = gij(Γ(g)kij − Γ(g0)

k
ij) = 0.

In addition, we get fast decay g−g0 = O∞(r−n+1). The set Floc can be embedded
as an analytic subset into a finite-dimensional manifold Z with Tg0Z = kerL2(Lg0).

The following theorem provides an important class of examples to which we can
apply the main theorem.

Theorem 2. Let (M, g0) be an ALE Ricci-flat Kähler manifold. Then it is linearly
stable and integrable.

The linear stability follows exactly as in the compact case by relating the Lich-
nerowicz operator to other operators. To show integrability, one essentially adapts
the strategy of the compact case and uses weighted Sobolev spaces. For an inte-
gration by parts argument, one needs the fast decay that has been stated above.

For the proof of the main theorem, we also need the following property of the
Lichnerowicz operator which follows from work by Devyver [2]:

Theorem 3. Let (M, g0) be a linearly stable ALE Ricci-flat manifold. Then there
exists a constant α > 0 such that

(−Lg0h, h)L2(g0) ≥ α ‖∇h‖2L2(g0)

holds for all h ∈ C∞
cs (S

2T ∗M) ∩ kerL2(Lg0)
⊥.

This property guarantees a nice L2 a priori estimate.
Given a Ricci-DeTurck flow g(t) in BL2∩L∞(g0, ǫ) it is important find a suitably

family g0(t) of reference metrics in Floc to ensure that it does not escape. It turned

out that demanding the property k(t) = g(t) − g0(t) ∈ Lg0(t),g0(C
∞
cs (S

2T ∗M))
yields the best possible choice or reference metrics. Here, Lg0(t),g0 is a slight mod-
ification of the Lichnerowicz operator (which is not longer self-adjoint) admitting
the property that kerL2(Lg0(t),g0) = Tg0(t)Floc.

The nice effect of this decomposition is that it ensures that ∂tg0(t) is quadratic
in k(t) because the linear term Lg0(t),g0k(t) in the expansion of ∂tg(t) drops after
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projecting to Tg0(t)Floc. At the end, we get the estimate
ˆ ∞

1

‖∂tg0(t)‖L2 dt ≤ C

ˆ ∞

1

‖∇k(t)‖2L2 dt ≤ C ‖k(1)‖2L2

which shows that g0(t) must converge to some limit g∞. Elliptic regularity, inter-
polation inequalities and derivative estimates finally ensure that g0(t) → g∞ and
k(t) → 0 in all Ck-norms as t → ∞.
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Classification of almost Kähler four-manifolds of constant holomorphic
sectional curvature

Markus Upmeier

(joint work with Mehdi Lejmi)

The study of how the geometry of a manifold governs the global solution theory
of a differential equation is an old question. An illustration of this idea concerning
the existence of local solutions to the Cauchy–Riemann equations is the following
open conjecture:

Conjecture (Goldberg [4]). Let M be a closed almost Kähler four-manifold. If
M is an Einstein manifold, then the almost complex structure must be integrable.

In the case of non-negative scalar curvature, this conjecture has been verified
by Sekigawa [8]. Results under similar curvature assumptions have been obtained
my many authors. We mention only those immediately related to our work [2],
[3]. The proof of the following theorem was sketched during my talk:

Theorem 1. Let (M, g, J, ω) be a closed almost Kähler four-manifold of globally
constant holomorphic sectional curvature k with respect to the Chern connection.
When k < 0 assume in addition that the Ricci tensor is J-invariant. Then J is
integrable so that M is Kähler, holomorphically isometric to:

(k > 0): CP 2.
(k = 0): a complex torus or a hyperelliptic curve.
(k < 0): a compact quotient of the complex hyperbolic ball B4.

Almost Kähler means that ω is symplectic and J : TM → TM is an almost
complex structure J2 = −1 such that g(X,Y ) = ω(X, JY ) defines a Riemannian
metric. The Chern connection is defined from the Levi-Civita connection Dg by

∇XY = Dg
XY −

1

2
J(Dg

XJ)Y.

https://arxiv.org/abs/1707.09919
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From its curvature R∇(X,Y, Z,W ) = g([∇X ,∇Y ]Z −∇[X,Y ]Z,W ) one obtains
the holomorphic sectional curvature

H(X) = −R∇(X, JX,X, JX), ∀X ∈ TpM, g(X,X) = 1.

Theorem 1 is only formally similar to the Kähler case (see [7, Theorems 7.8, 7.9]
and [5,6]). The main difficulty here is to prove the integrability of J . For this we
use integral formulae from Chern–Weil theory to show Kählerness under further
topological restrictions on the signature and Euler characteristic. When k ≥ 0
these topological restrictions are then shown to hold using results from Seiberg–
Witten theory. The case k < 0 follows by applying in our situation a formula for
the Bach tensor obtained in [1].
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Secondary large-scale index theory and positive scalar curvature

Rudolf Zeidler

(joint work with Noé Bárcenas)

There is a natural mapping from the positive scalar curvature sequence of Stolz to
the analytic surgery sequence of Higson and Roe, which was originally established
by Piazza and Schick:

Theorem ([6,9]). There exists a commutative diagram:

Ωspin
∗+1 (BΓ) Rspin

∗+1 (BΓ) Pspin
∗ (BΓ) Ωspin

∗ (BΓ) Rspin
∗ (BΓ)

KO∗+1(BΓ) KO∗+1(C
∗
rΓ) SΓ∗ (EΓ) KO∗(BΓ) KO∗(C∗

rΓ)

α ρ α
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In particular, for a closed spin manifold Mn with π1M = Γ, for every met-
ric g of positive scalar curvature (psc) on M , there exists a higher ρ-invariant
ρΓ(g) ∈ SΓn(EΓ) in the analytic structure group. Moreover, for any two such met-
rics g0, g1, there is the index difference αΓ

diff(g0, g1) ∈ KOn+1(C
∗
rΓ) which satisfies

∂αΓ
diff(g0, g1) = ρΓ(g0) − ρΓ(g1). Non-vanishing of the index difference is an ob-

struction to concordance of metrics and the ρ-invariant is a psc-bordism invariant.
Results of Botvinnik–Gilkey [3] (together with Higson–Roe [4]) imply that for

a finite group Γ the maps α ⊗ Q : Rspin
n (BΓ) ⊗ Q → KOn(C

∗
rΓ) ⊗ Q and ρ ⊗

Q : Pspin
n−1 (BΓ) ⊗ Q → SΓn−1(EΓ) ⊗ Q are surjective for n ≥ 6. More generally,

results of Weinberger–Yu [7] and Xie–Yu [8] imply a lower bound on the rank of
the image of α ⊗ Q (respectively ρ ⊗ Q) in even (respectively odd) dimensions
based on the number of different orders of torsion elements in Γ.

In the first part of the talk, we have given an overview on the index difference
and the ρ-invariant on non-compact complete manifolds as we have developed it
in [10,11]. This secondary coarse index theory allows to treat complete metrics
which have uniform positive scalar curvature outside a given subset of a non-
compact manifold. Moreover, we have explained how the secondary partitioned
manifold index theorem allows us to construct various examples of such metrics
on non-compact manifolds which can be distinguished up to concordance.

These methods also have consequences on psc metrics on closed manifolds. In
particular, we have the following result:

Theorem 1 ([10, Corollary 5.8]). Let Γ be a group. Let N be a closed aspherical

spin n-manifold such that there exists k and a proper Lipschitz map f : Ñ ×Rk →
Rn+k of degree 1. Then

SΓ∗ (EΓ)
×[N ]
−−−→ S

Γ×π1(N)
∗+n (EΓ× Ñ)

is split injective.

If Ñ satisfies the condition of the theorem we call it stably hypereuclidean. By
a result of Dranishnikov, Ñ is stably hypereuclidean if N is aspherical and π1N
has finite asymptotic dimension.

The examples of metrics with different ρ-invariants due to Botvinnik–Gilkey
and Weinberger–Yu all come from representations of finite subgroups and are of
homological degree 0 with respect to the Chern character. The theorem above
allows us to construct further examples of metrics of positive scalar curvature in
different homological degrees.

Moreover, in joint work with Noé Bárcenas [2], we show that we can systemati-
cally obtain everything in homological degree up to two. This has been presented
in the second part of the talk. We use the delocalized Chern character [1]

chΓ : K
Γ
p (E)⊗ C

∼=−→
⊕

k∈Z

Hp+2k(Γ; FΓ),

where FΓ is the C[Γ]-module generated by finite order elements of Γ acted on
by conjugation. Matthey [5] has constructed sections of the Chern character in
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low-degrees:

βp : Hp(Γ; FΓ) → KΓ
p (EΓ)⊗ C (0 ≤ p ≤ 2).

These maps involve complex K-theory. The real case is obtained by decomposing
FΓ = F0Γ ⊕ F1Γ, where FqΓ = {f ∈ FΓ | f(γ−1) = (−1)qf(γ) ∀γ}. Matthey’s
maps then induce maps

βR

p,q : Hp(Γ; F
qΓ) → KOΓ

p+2q(EΓ) (0 ≤ p ≤ 2, q ∈ {0, 1})

Our main result is:

Theorem 2 ([2]). Let k ≥ 1, q ∈ {0, 1}, p ∈ {0, 1, 2}, 4k + 2q ≥ 6. Then there

exists a map βpsc
p,q,k : Hp(Γ; F

qΓ) → Rspin
p+2q+4k (BΓ) such that the following diagram

commutes.

Rspin
p+2q+4k (BΓ)⊗ C Pspin

p+2q+4k−1 (BΓ)⊗ C

Hp(Γ; F
qΓ) KOp+2q(C

∗
rΓ)⊗ C SΓp+2q−1(EΓ)⊗ C

KOΓ
p+2q(EΓ)⊗ C

α⊗C ρ⊗C

βR

p,q

βpsc

p,q,k

µ⊗C

Here µ denotes the real Baum–Connes assembly map.

Corollary 3 ([2]). Let the rational homological dimension of Γ be at most two
and µ⊗Q be an isomorphism. Then for n ≥ 7 the following maps are surjective:

α⊗Q : Rspin
n (BΓ)⊗Q։ KOn(C

∗
rΓ)⊗Q,

ρ⊗Q : Pspin
n−1 (BΓ)⊗Q։ SΓn−1(EΓ)⊗Q.

Corollary 4 ([2]). Let n ≥ 7. If µ⊗Q is injective, then the rank of Rspin
n (BΓ) is

at least the dimension of





H0(Γ; F
0Γ)⊕H2(Γ; F

1Γ) n ≡ 0 mod 4,

H1(Γ; F
0Γ) n ≡ 1 mod 4,

H0(Γ; F
1Γ)⊕H2(Γ; F

0Γ) n ≡ 2 mod 4,

H1(Γ; F
1Γ) n ≡ 3 mod 4.

Corollary 5 ([2]). Let n ≥ 7. If µ⊗Q is injective, then the rank of Pspin
n−1 (BΓ) is

at least the dimension of




H0(Γ; F
0
0Γ)⊕H2(Γ; F

1Γ) n ≡ 0 mod 4,

H1(Γ; F
0
0Γ) n ≡ 1 mod 4,

H0(Γ; F
1Γ)⊕H2(Γ; F

0
0Γ) n ≡ 2 mod 4,

H1(Γ; F
1Γ) n ≡ 3 mod 4,

where F0
0 = {f ∈ F0 | f(1) = 0}.
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In particular, this allows to systematically obtain non-trivial ρ-classes of posi-
tive scalar curvature in all dimensions ≥ 7 depending on low-degree group homol-
ogy. This extends the previous constructions which only yielded even-dimensional
examples.
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Stratified spaces, Dirac operators and Positive Scalar Curvature

Paolo Piazza

(joint work with Pierre Albin, Boris Vertman, Vito Felice Zenobi)

Let SX be a Thom-Mather stratified pseudomanifold and let Xreg be its regular
part. Assume that Xreg is spin. The goal of this talk was to report on recent
results concerning analytic, geometric and topological invariants of the spin Dirac
operator on Xreg. To give a rigorous meaning to this sentence we must

(1) specify which invariants we are interested in
(2) specify which riemannian metrics we allow in Xreg.

Regarding the first item, we recalled first of all the main results in the closed case.
Let (M, g) be a compact spin manifold without boundary and with fundamental
group Γ. We denote by S/ the associated spinor bundle and by D/g the Dirac opera-

tor; we denote by M̃ the universal cover of M and by D̃/g the corresponding Dirac

operator. We can first of all consider numeric invariants associated to D/g: these
are the index in the even dimensional case and the Cheeger-Gromov rho-invariant
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in the odd dimensional case. The first numeric invariant gives an obstruction to
the existence of positive scalar curvature (PSC) metrics while the second gives a
tool for distinguishing metrics of PSC that are not path-connected, even modulo
the action of the diffeomorphism group; results in this direction were first estab-
lished by Botvinnik and Gilkey when Γ is finite [2] and by Piazza and Schick [5]
when Γ is an arbitrary discrete group containing an element of finite order.

These invariants and these results can be sharpened by passing to K-theory.
We therefore explained the Higson-Roe analytic surgery sequence

· · · → K∗+1(D
∗(M̃)Γ)) → K∗+1(D

∗(M̃)Γ/C∗(M̃)Γ))
δ
−→ K∗(C

∗(M̃)Γ)) · · ·

with

∗ = dimM , K∗+1(D
∗(M̃)Γ/C∗(M̃)Γ)) ≃ K∗(M) , K∗(C

∗(M̃)Γ) ≃ K∗(C
∗
rΓ)

and how, using it, it is possible to define:

• a fundamental class [D/g] ∈ K∗+1(D
∗(M̃)Γ/C∗(M̃)Γ) = K∗(M), which is

independent of g

• an index class Ind(D̃/g) = δ[D/g] ∈ K∗(C∗(M̃)Γ) which vanishes if g is of
PSC but that it is also independent of g

• a rho class ρ(D̃/g) ∈ K∗+1(D
∗(M̃)Γ), a lift of [D/g], whenever g is of PSC.

These are the K-theoretic invariants we wanted to define. We briefly explained
how the index class gives a more general obstruction than the numeric index to the
existence of metrics of PSC and how the rho class can be used in order to sharpen
the result of Piazza and Schick (work of Xie and Yu, [8]). We also briefly recalled
how these invariants and a suitable Atiyah-Patodi-Singer index class can be used
in order to map the Stolz surgery sequence to the Higson-Roe analytic surgery
sequence (work of Piazza and Schick, [6]). Crucial to all this is the delocalized
Atiyah-Patodi-Singer index theorem of Piazza and Schick, relating
(i) the Atiyah-Patodi-Singer index class of a spin Dirac operator of a manifold
with boundary with PSC on the boundary
(ii) the rho class of the spin Dirac operator of the boundary.
We ended this long introduction by explaining Zenobi’s approach [9] to these K-
theoretic invariants via the adiabatic groupoid associated to the groupoid G :=

M̃ ×Γ M̃ (with units M and with obvious range and source maps); we stressed
the fact that this approach holds for any Lie groupoid G with Lie algebroid A;
in particular, there is a delocalized Atiyah-Patodi-Singer index theorem in this
generality.

After this long introduction on the closed smooth case we passed to Thom-
Mather stratified spaces and to the possible metrics that we can consider on their
regular part. We concentrated for simplicity on a Thom-Mather stratified pseu-
domanifold SX of depth 1; the singularities can be non-isolated. We introduced
the following four types of metrics: (i) incomplete edge; (ii) complete edge; (iii)
fibered cusp; (iv) fibered boundary, and explained the corresponding pseudodiffer-
ential calculi for the complete edge and the fibered boundary metrics: these are
pseudodifferential calculi (due respectively to Mazzeo and Mazzeo-Melrose) on the
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resolution of SX , denoted X , a manifold with fibered boundary. For incomplete
edge metrics and for the numeric invariants we considered so far, we stated re-
sults of Albin and Gell-Redman [1] regarding the numeric index and of Piazza and
Vertman [7] regarding the Cheeger-Gromov rho invariant. We also stated recent
results of Piazza and Albin regarding the three K-theoretic invariants. All these
results (numeric and K-theoretic) give sufficient conditions for the existence of
these invariants and then provide fundamental properties of them along the usual
lines; in this incomplete case they have been established in the depth 1 case only.

In the last part of this talk, based on joint work with Zenobi, we passed to a
Thom-Mather stratified pseudomanifold SX of arbitrary depth. The resolution X
of SX is a manifold with corners with an iterated boundary fibration structure on
the boundary. We endow Xreg with an iterated fibered boundary metric g. Thanks
to work of Debord-Lescure-Rochon [3], based in turn on work of Mazzeo-Melrose
[4], there is a fibered boundary pseudodifferential calculus on X and the Dirac
operator D/g is an element of it. We show that if the links of SX inherit PSC
metrics, then D/g is fully elliptic. According to work of Debord-Lescure-Rochon
there is then a well defined fundamental class [D/g] ∈ K∗(SX). The class [D/g] is
defined à la Kasparov, using a parametrix for the fully elliptic operator defined by
D/g.

There is a different description of the fundamental class [D/g] ∈ K∗(SX), also
due to Debord-Lescure-Rochon, that employs a specific groupoid and that brings
us back, via Zenobi’s approach, to our main goal of defining the three fundamental
K-theoretic invariants on stratified manifolds. We explained this in the depth 1
case. Let S be the singular locus of SX ; let X be the resolution of SX ; we know

that X is a manifold with boundary ∂X equal to H , a fibration H
π
−→ S with base

S and fiber Z; the interior of X is Xreg.
The groupoid Gπ considered in the work of Debord-Lescure-Rochon is a group-

oid overX ; it is explicitly given by Xreg×Xreg overXreg and H×
S
TS×

S
H×R over

H ; its algebroid is fbTX , the fibered-boundary-tangent bundle, with its natural
anchor map.

There is also a Γ-equivariant version of it, GΓ
π, again a groupoid over X × [0, 1].

Let us denote by (GΓ
π)

0
ad the restriction of the adiabatic deformation of GΓ

π to
X × [0, 1). The C*-algebra of this groupoid fits into the following exact sequence

0 → C∗
r (X̃

reg
Γ ×

Γ
Xreg

Γ × (0, 1)) → C∗
r ((G

Γ
π)

0
ad) → C∗

r (T
NCX) → 0.

with TNCX a groupoid over Xreg×{0}∪H× [0, 1) given explicitly by the disjoint
union fbTX∪(H×

S
TS×

S
H×R)×(0, 1). Using the groupoid pseudodifferential calcu-

lus for Gπ and the hypothesis that the links have PSC one can show that the Dirac
operator D/g defines a class σnc(D/g) ∈ K∗(C∗

r (T
NCX)) and thus a class δ(σnc(D/g))

in K∗(C∗
r (X

reg
Γ ×

Γ
Xreg

Γ )) = K∗(C∗
rΓ). Now, a theorem ultimately due to De-

bord, Lescure and Rochon states that C(SX), the algebra of continuous functions
on the stratified pseudomanifold, is K-dual to the C*-algebra C∗

r (T
NCX): thus

K∗(SX) ∼= K∗(C∗
r (T

NCX)). Moreover, under this isomorphism the class σnc(D/g)
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correspond to [D/g] ∈ K∗(SX). Finally, one can show that δ(σnc(D/g)) is the index
class defined via a parametrix construction by the Γ-equivariant operator associ-
ated to D/g. Summarizing: using Poincaré duality, we have defined two out of the
three K-theoretic invariants we wanted to define, namely the fundamental class and
the index class. Assume now that g has positive scalar curvature everywhere on
X ; then the index class vanishes and we can define a class ρ(gπ) ∈ K∗(C∗

r ((G
Γ
π)

0
ad))

as a specific lift of the class [σnc(D/g)]. This is our rho-class. We ended this talk
by showing that thanks to the delocalized APS index theorem for groupoids, due
to Zenobi, this rho class gives a well-defined map from Concfb(X), the set of
concordance classes of fibered boundary metrics on X , to K∗(C∗

r ((G
Γ
π)

0
ad)).
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Edge-cone Einstein metrics and the Yamabe invariant

Kazuo Akutagawa

(joint work with Ilaria Mondello)

We study edge-cone Einstein metrics on smooth closed manifolds and an applica-
tion to the Yamabe invariant. This is a joint work with Ilaria Mondello (Créteil,
FR) [4].

Definition 1. Let M be a closed n-manifold (n ≥ 3) and Σ = ⊔ℓ
j=1Σj a closed

smooth submanifold of codimension 2. (For simplicity, we assume here that Σ
is connected, that is, ℓ = 1.) For any point x0 ∈ Σ, one can find local coor-
dinates {U, (x1, x2, x3, · · · , xn)} satisfying Σ ∩ U = {x1 = x2 = 0}. We then
introduce an associated transversal polar coordinate system (ρ, θ, x3, · · · , xn) by
setting x1 = ρ cos θ, x2 = ρ sin θ. Now fix a positive constant β > 0. An edge-cone

https://arxiv.org/abs/1604.07420
https://arxiv.org/abs/1609.08015


2266 Oberwolfach Report 36/2017

metric g of cone angle 2πβ on (M,Σ) is a smooth Riemannian metric on M − Σ
which takes the form (cf. [6,12])

g = g + ρ1+κE , g = dρ2 + β2ρ2dθ2 + (Φ∗p)ij (3 ≤ i, j ≤ n),

where κ > 0 is a positive constant, p is a smooth Riemannian metric on Σ, and
Φ : U → Σ is the natural projection. Here, E = (EAB) (1 ≤ A,B ≤ n) is a sym-
metric tensor field on M which is infinite conormal regular along Σ. An edge-cone
Einstein metric h is an edge-cone metric which is also an Einstein metric onM−Σ.

Our first result is the following :

TheoremA. Let h be an edge-cone Einstein metric of cone angle 2πβ (0 <
β < 1) on (M,Σ). Then, there exists a family of C2,α-metrics {gδ}0<δ<δ0 on M
which satisfies the following :

(1) Ricgδ ≥ (1 − C · δ)Rich, (2) |Vgδ − Vh| ≤ C · δ,

where C > 0 is a constant independent of δ > 0, Rich and Vh denote respectively
the Ricci curvature tensor of h and the volume of (M,h).

Remark 1. When h is a Kähler-Einstein metric with cone singularities on a
Fano manifold X along an anti-canonical divisor Σ, Chen-Donaldson-Sun [8] have
proved the existence of smooth Kähler metrics satisfying the above conditions
(1), (2). However, since their method heavily depends on the Kählerness of X , it
cannot apply to the real case. On the proof of TheoremA, our main tools are Don-
aldson’s Schauder type estimates on edge-cone manifolds in [9] and Kobayashi’s
family of sophisticated cutoff functions in [11].

Corollary. Under the same setting as that in TheoremA, we have

Y (M) ≥ lim inf
δց0

Y (M, [gδ]) ≥ Rh · V
2/n
h = Y (M, [h]),

where Y (M), Y (M, [gδ]) and Rh denote respectively the Yamabe invariant of M ,
the Yamabe constant of (M, [gδ]) and the scalar curvature of h.

Remark 2. The first inequality follows from the definition of the Yamabe in-
variant of M . The second inequality follows from the result of Ilias [10]. The third
equality follows from the computation of Yamabe constants of edge-cone Einstein
metrics by Mondello [13]. Corollary implies that the Yamabe invariant Y (M) can
be estimated from below in terms of the Yamabe constants of a sort of singular
Einstein metrics, that is, edge-cone Einstein metrics.

Definition 2. (cf. [6]) The standard round metric gS = gSn of constant curvature
1 on the n-sphere Sn can be written as a doubly warped product

gS = dr2 + sin2 rdθ2 + cos2 r · gSn−2 =: h1
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on Sn − (Sn−2 ⊔ S1) = (0, π2 )× S1 × Sn−2 ∋ (r, θ, x). For each β > 0 (β 6= 1), we

define the standard edge-cone metric hβ of cone angle 2πβ on (Sn, Sn−2) by

hβ := dr2 + β2 sin2 rdθ2 + cos2 r · gSn−2 .

Since each hβ is locally isomorphic to h1 = gS, hβ is of constant curvature 1, and
hence it is an edge-cone Einstein metric.

Our second result is the following :

TheoremB. For any β ≥ 2, there is no (edge-cone) Yamabe metric on (Sn, [hβ]).

Remark 3. (1) Viaclovsky [14] has proved that some compact 4-orbifold do not
admit orbifold Yamabe metrics. His proof depends on an generalization of Obata’s
Theorem for Einstein metrics. Our proof depends on a branched covering version
of Aubin’s Lemma for finite coverings [7], [5]. We also note that the dimension of
the singularities of Viaclovsky’s example is 0. On the other hand, the one of our
example is n− 2.
(2) We conjecture that, for any β (1 < β < 2), the same conclusion as that in
TheoremB still holds.

Outline of Proof of TheoremB. Let P : (Sn, hβ) → (Sn, hβ/2) be the natural

branched double covering along Sn−2. One can check that the Aubin type Lemma
still holds for the branched covering P , that is,

Y (Sn, [hβ ]) > Y (Sn, [hβ/2])

provided that
(1) the existence of an edge-cone Yamabe metric u4/(n−2) ·hβ (u > 0) on (Sn, [hβ]),
(2) the following equality holds :

ˆ

Sn

u∆hβ
u dµhβ

= −

ˆ

Sn

|∇u|2dµhβ
.

Suppose that the assertion (1) holds. Set r(p) := disthβ
(p, Sn−2) for p ∈ Sn. By

the regularity result in [2,3], on each ε-open neighborhood Uε := Uε(S
n−2)

0 < c ≤ u ≤ C, ∂ru(r, θ, x) = O(r
1
β
−1) as r ց 0.

Hence,
ˆ

Sn−Uε

u∆hβ
u dµhβ

+

ˆ

Sn−Uε

|∇u|2dµhβ
=

ˆ

∂Uε

u ∂ru dσhβ
= O(ε

1
β ) ց 0

as ε ց 0. Then, the assertion (2) holds. On the other hand, if β/2 ≥ 1, Mondello’s
result [13] (cf. [1]) implies that

Y (Sn, [hβ ]) = Y (Sn, [gS]) = Y (Sn, [hβ/2]).

This contradicts the previous strict inequality. �
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From scalar curvature rigidity phenomena to min-max geodesics

Alessandro Carlotto

(joint work with Camillo De Lellis)

In recent years we have witnessed significant progress in the study of the large-
scale structure of asymptotically flat Riemannian manifolds, which naturally arise
in general relativity as models for isolated gravitating systems. An important
result, in this direction, is the following:

Rigidity Theorem A ([6]). Let (M3, g) be an asymptotically flat Riemannian
manifold of non-negative scalar curvature and assume it contains a non-compact
area-minimizing boundary. Then (M, g) is isometric to the Euclidean space.

We shall just mention here that this assertion has significant implications for
the behaviour of large isoperimetric domains on the one hand and for the zero set
of static potentials on the other, see [6] and references therein for further context
and applications. At a purely geometric level, a natural question arising from
the theorem above is whether asymptotically flat manifolds may/should in fact
contain asymptotically planar minimal surfaces with Morse index equal to one. In
this respect, R. Schoen described to the author of the present report a possible
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approach to such problem via min-max techniques for the area functional. The
scope of this lecture is to outline such approach in a simpler case, with the goal
of constructing properly embedded geodesics on asymptotically conical surfaces, a
problem which can in fact be regarded as the lower-dimensional analogue of the one
described above. Before getting there, let us remark that there are ample classes
of highly anisotropic asymptotically flat manifolds where non-compact minimal
surfaces exist in abundance: indeed, as a special case of the general localization
scheme presented in [8] one can in fact construct asymptotically flat, scalar flat,
metrics on R3 of positive mass which are exactly Euclidean on a half-space. As a
result, the problem above is more interesting for the smaller class of asymptotically
Schwarzschildean data, where an even stronger obstruction is known to hold:

Rigidity Theorem B ([5]). Let (M3, g) be an asymptotically Schwarzschildean
Riemannian manifold of non-negative scalar curvature and assume it contains a
non-compact, properly embedded, stable minimal surface. Then (M, g) is isometric
to the Euclidean space.

In fact, to this date we do not know even a single example of single-ended
asymptotically Schwarzschildean manifold containing a non-compact minimal sur-
face that is not totally geodesic. Heuristically, this is rather odd as in the ground

state represented by Euclidean R3 every plane through the origin is (trivially)
minimal and it would be natural to expect persistence of minimal surfaces at least
for sufficiently small perturbations; yet this conclusion seems remarkably delicate
to be established.

The Hopf-Rinow theorem asserts that a Riemannian manifold (Mn, g) is com-
plete if and only if for every basepoint p ∈ M the exponential map expp(·) is
defined on the whole tangent space TpM . So one could assert that through ev-
ery point of a complete Riemannian manifold there pass infinitely many geodesics
defined over the entire real line. Nevertheless, in general any such geodesic will
neither be embedded nor be proper. Based on this remark, S. Cohn-Vossen posed
in 1936 the question whether any complete Riemannian plane (R2, g) does in fact
contain a properly embedded geodesic defined over R. After a series of partial
results, this question was finally settled in the affirmative by V. Bangert in 1981
(see [1] as well as the related works [2,3]). In the same article, he asked whether
it is in fact the case that always infinitely many such geodesics actually exist.
This problem is still completely open for a general complete metric on R2, but
one should mention here remarkable contributions by Shioya [13], Bonk-Lang [4],
Fernandez-Melian [11] and Shioya-Shiohama-Tanaka [12] among others. Even in
relatively simple cases, like for instance that of compactly supported perturba-
tions of radially symmetric complete metrics on R2 we are actually very far from
obtaining a final answer to the question above: in that setting we have learnt from
Bangert himself that always at least two distinct geodesics should exist, but even
such mild assertion is still to be proven. In striking contrast to that situation,
there are broad classes of complete, open, two-dimensional Riemannian manifolds
for which the problem posed by Bangert does have a fully satisfactory answer.
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Theorem. [7] An asymptotically conical surface of non-negative scalar curvature
contains infinitely many, geometrically distinct, properly embedded geodesics de-
fined over R, each of Morse index less or equal than one. If the scalar curvature is
assumed to be positive equality holds.

Asymptotically conical surfaces can be regarded as models for isolated sys-
tems in 2+1 gravity, thus they are the counterpart of asymptotically Euclidean
Riemannian manifolds both from a physical and a geometric viewpoint. Cor-
respondingly, the requirement that the scalar curvature be non-negative descends
from the so-called dominant energy condition at the level of time-symmetric initial
data sets.

We shall further remark that none of the geodesics mentioned in the theorem
can in fact be length-minimizing unless in the trivial case of Euclidean R2. Indeed,
if that were the case the surface in question would split as a result of the Cheeger-
Gromoll theorem. This suggests that any minimizing scheme for the problem
above is inevitably doomed to fail and thus min-max methods come into play.

The proof of this theorem is articulated in three steps, with some ancillary re-
sults of independent interest and potentially broad applicability. The first step,
which may be referred to as finite-scale construction relies on the following asser-
tion:

Proposition. Let (N, g) be a complete Riemannian manifold of dimension two,
without boundary, and for given distinct points p, q assume that there exist two
embedded geodesics γ1, γ2 : [0, 1] → N bounding a disk-type region, and such that
the mountain-pass condition

Λ > max {E(γ1), E(γ2)}

holds. Here

X :=
{
γ ∈ W 1,2([0, 1], N) | γ(0) = p, γ(1) = q

}

Σ := {H ∈ C([0, 1], X) | H(0) = γ1, H(1) = γ2}

and we have set

Λ := min
H∈Σ

max
s∈[0,1]

E(H(s))

where for an element γ ∈ X

E(γ) =

ˆ 1

0

g(γ̇(t), γ̇(t)) dt.

Then there exists a parametrized embedded geodesic γ3 : [0, 1] → N , whose
support does not coincide with that of γ1 or γ2 and whose energy equals the value
Λ. Furthermore, γ3 has Morse index less or equal than one (as a critical point of
the energy functional).

This is essentially a geometric mountain-pass theorem, and the key point here
is that we require the third geodesic to be embedded, which is proven by using
the recently obtained resolution of singularities procedure in order to effectively
convert homotopies into isotopies (see [9]). Then we apply this general proposition
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to prove that any couple of far out antipodal points on an asymptotically conical
surface can be joined by three distinct geodesics, two stable segments and a min-
max one inbetween. Also, by suitably estimating the min-max value Λ both from
above and from below, we can obtain a full asymptotic characterization of the
three geodesic segments above, which shall converge (as we blow-down to unit
scale) to the three geodesics connecting two-antipodal points on a flat wedge under
pointwise identification of the two sides.

That conclusion being gained, one needs to make sure that the sequence of min-
max geodesic segments one obtains does not drift off to infinity together with the
corresponding endpoints. This follows from a suitable application of the Gauss-
Bonnet theorem together with the aforementioned blow-down analysis. Hence,
modulo some extra technical work, one can take a suitable limit of these min-max
geodesic segments, thereby obtaining a properly embedded geodesic γ : R → S
where (S, g) is the asymptotically conical surface in question.

As a third and final step, one has to check that the construction above, when
performed for sequences of antipodal points diverging along rays defined by dif-
ferent angles are indeed distinct, or in other words that one can actually obtain
a bijection between RP1 and the space of properly embedded geodesics that are
produced via this procedure. This step relies on a non-twisting lemma, which in
turn exploits the fact that, in the setting of the theorem, a geodesic ray must
asymptote to a coordinate ray at a certain specific rate. Once again, the patho-
logic twisting behaviour is then ruled out by applying the Gauss-Bonnet theorem
to suitably constructed, possibly multiply-connected, domains in the asymptotic
region.

Apart from the specific application to the construction of inextendible min-max
geodesics, we expect this sort of approach to be useful in various other problems
in Geometry and Analysis.
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Construction of stationary blackhole solution to the 4 + 1 vacuum
Einstein equation with non-spherical horizons

Sumio Yamada

(joint work with Marcus Khuri, Gilbert Weinstein)

Spacetime is a Lorentzian n-manifold (Nn+1,g) satisfying the Einstein equations

Rµν −
1

2
Rg gµν = Tµν

where Rµν is the Ricci curvature of the metric g, Rg the scalar curvature of the
Lorentzian metric g, and Tµν is the energy-momentum-stress tensor of the matter
fields. When vacuum; Tµν = 0, taking the trace of the Einstein vacuum equations
we get Rg = 0, and hence the VEE is equivalent to Rµν = 0..

Let (M, g) and (N, h) be Riemannian manifolds, and let ϕ : M → N be a
continuously differentiable map. The Dirichlet energy density of ϕ is

|dϕ|2 = hij g
µν ∂µϕ

i ∂νϕ
j .

If Ω ⊂⊂ M then the energy of ϕ over Ω is EΩ(ϕ) =
´

Ω
|dϕ|2 dVg.

A map ϕ is harmonic if it is critical with respect to EΩ for every Ω ⊂⊂ M .
The harmonic map equations are the vanishing of the tension field:

τ i = gµν
(
∂µ∂νϕ

i − MΓσ
µν∂σϕ

i + NΓi
jk∂µϕ

j∂νϕ
k
)
= 0.

which is a cross section τ(ϕ) = τ i∂i : M → TN of the pull back bundle ϕ−1TN .
We introduce the so-called Ernst reduction scheme in 3 + 1 dimension. Let

(N 3+1,g) be asymptotically flat, stationary and axially symmetric, and let G be
the symmetry group (∼= R × U(1)). We further define X : the (Lorentzian) norm
(> 0) of the Killing field generator ξ = ∂/∂φ, and Y : the potential of the twist
∗(ξ ∧ dξ). Then the two quantities ϕ = (X,Y ) : M/G → H2 form a (weighted)
harmonic map, i.e. a critical point of the energy

ˆ

(
|∇X |2 + |∇Y |2

X2

)
ρ dµg,

where g is the quotient metric on M/G and ρ is the area element of the orbits of
symmetry. Then there are the following observations.
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Fact 0: ρ is harmonic, and ∇ρ 6= 0. Let z be a conjugate harmonic function.
Fact 1: g = e2ν(dρ2 + dz2) on M/G = the ρz-half plane (ρ > 0)
Fact 2: X ≈ ρ2 near Γ ⊂ {z − axis}, {X = 0} ∼ the physical axis.

The map ϕ is identified with an θ-axisymmetric harmonic map (B. Carter)

ϕ : R3 \ Γ → H2 ∋ (X,Y ).

with ϕ(ρ, θ, z) = (X,Y ). (Note dµR3 = [ρdρdz]dθ with θ is a dummy variable.))
Furthermore, Y is constant on any component of Γ, and the difference between
constants is the angular momentum induced by the existence of the horizon be-
tween the two components. The data consists of Γ together with a constant for
each component of Γ.

Two maps ϕ1, ϕ2 : M → N are asymptotic if distN (ϕ1, ϕ2) is bounded. ϕ0 : R
3\

Γ → H2 is a model map for a given data if τ(ϕ0) is O(r−2−ǫ) at infinity, |τ(ϕ0)| is
bounded and ϕ0 assumes the given constants on Γ. The asymptotics of a harmonic
map uniquely determine the data, and conversely given the data, there exists a
unique harmonic map (Weinstein [9]). When reconstructing the spacetime metric
g, conical singularities can appear on (bounded components of) Γ. (Bach-Weyl
1921, Li-Tian 1991, Weinstein [9])

We now seek stationary solutions in the higher dimension, namely find space-
times (N 4+1,g) of the Einstein vacuum equations with three mutually commuting
Killing fields ∂

∂t ,
∂

∂φ1
, ∂

∂φ2
, the generators of an isometry group R × U(1)2

acting on N .
If (N 4+1,g) has an event horizon, its connected components are diffeomorphic

to 3-manifolds Σ3 of positive Yamabe type, i.e. each component admits a metric of
positive scalar curvature (Galloway-Schoen [2]). Under the additional symmetry
condition above, the list of topological types ( Hollands-Yazadjiev [3]) is further
restricted to S3, S1 × S2, RP 3, L(n,m). Examples of solutions include

• No horizon: Minkowski space: R4,1 with its metric
• S3: Myers-Perry ([6])— 4+1 analog of Kerr solution, vacuum.
• S2 × S1: Emperan-Reall ([1]) Pomeransky-Senkov([7])— Black Ring, vac-
uum.

• L(2, 1): Kunduri-Lucietti ([4]) — Black Lens, minimal supergravity.
• L(n, 1): Nozawa-Tomizawa ([8]) — minimal supergravity.

Following the 3 + 1-dimensional cases, solutions g on (N 4+1 \ {axis}) can be
modeled by the Weyl-Papapetrou Coordinates

(
R× U(1)2

)
× {(ρ, z) : z ∈ R, ρ > 0}

with

g = Gij dx
i dxj + e2ν(dρ2 + dz2) (y1 = φ1, y2 = φ2, y3 = t)

and

ρ =
√
| detGij |, ν = ν(ρ, z), Gij = Gij(ρ, z).

Note: ρ is harmonic, and thus a coordinate function, i.e. ∇ρ 6= 0, and Let z be its
conjugate harmonic function.
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The Einstein vacuum equations now reduce to a harmonic map ([5])

ϕ : R3 \A → SL(3,R)/SO(3):=X, with

Gijdx
idxj = −

ρ2

f
dt2 +

2∑

1≤i,j,≤2

fij(dφ
i + ωidt)(dφj + ωjdt),

where f = det(fij), define a positive definite symmetric matrix with det = 1:

Φ =
1

f




1 −v1 −v2
−v1 f f11 + (v1)

2 f f12 + v1v2
−v2 f f21 + v2v1 f f22 + (v2)

2




representing a point Ψ ∈ SL(3,R)/SO(3) (Φ = ΨTΨ). Here vi is the Ernst
potential for the Killing field ∂

∂φi .

On the z-axis {ρ =
√
| detG| = 0}, we have dim ker(G(0, z)) = 1 except at

isolated values {pi}
N
i=1 on the z-axis (corners).

Let (0, z) be a non-corner point, and let 0 6= V ∈ kerG. There are two cases:

• V null ⇒ the rod pi ≤ z ≤ pi+1 corresponds to a horizon rod.
• V spacelike ⇒ the rod pj ≤ z ≤ pj+1 corresponds to an axis rod.

In the second case, one can scale V so that V = k ∂
∂t +n ∂

∂φ1 +m ∂
∂φ2 and n,m ∈ Z

with gcd(n,m) = 1.
Definition. The rod structure consists of the set of axis rods {Γi}

N
i=1 together

with the integers (ni,mi) for each axis rod, plus the values of Ernst potentials
v1, v2 for each axis rod Γi.

The rod structure encodes the topological types of the horizons, as the three
manifolds on our lists have singular torus foliations whose singular fibers are S1’s,
appearing at one of the axis rods.

We present our main theorem. Denote by Γ the set of axis rods.

Theorem 1 (Khuri-Weinstein-Yamada 2017). Given any rod structure Γ = ∪Γi,
and any set of axis rod constants v1 = ai, v2 = bi for Γi, there exists a unique har-
monic map ϕ : R3 \A → Γ with singularities on Γ whose asymptotic behavior near
Γ and spacetime infinity corresponds to the correct rod structure and to asymptotic
flatness respectively.

When reconstructing the spacetime, there may be conical singularities along
the (bounded) axes.
Open problem: Can these be removed by adjusting the parameters? (Clearly
such adjustments are possible in some cases; Myers-Perry, Emperan-Reall.)
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Positive scalar curvature metrics on manifolds with controlled
geometry at infinity

Karsten Bohlen

(joint work with Elmar Schrohe)

We report on the recent progress concerning the index theory of certain non-
compact manifolds and potential applications to the study of positive scalar cur-
vature (PSC) metrics on such manifolds [2].

1. Lie manifolds

The Lie manifolds were introduced by Ammann, Lauter and Nistor, cf. [1]. The
definition of a Lie manifold entails an axiomatization of compactifications of certain
complete Riemannian manifolds (open manifolds with controlled singular geometry
at infinity). Denote by M a compact manifold with corners, ∂M the boundary
and M0 := M \ ∂M the interior of M . We denote by V ⊂ Γ(TM) a Lie algebra of
vector fields and Vb the Lie algebra of vector fields tangent to the boundary ∂M .
By a Lie manifold we mean a tuple (M,V) such that M is a compact manifold with
corners and V is a projective C∞(M)-module, finitely generated, closed under Lie
bracket, V ⊂ Vb and such that a local basis of vector fields {X1, · · · , Xn} around
x ∈ M0 also gives a local basis of TM0. Given a Lie manifold (M,V) we obtain
further structures. By the Serre-Swan theorem there is a Lie algebroid

A

̺

��

π
// M

TM

p
<<
③
③
③
③
③
③
③
③

with anchor ̺ such thatA|M0
∼= TM0 and Γ(A) ∼= V . By [4] given the Lie algebroid

from above, there is an s-connected Lie groupoid G ⇒M such that A(G) ∼= A and
G|M0

∼= M0×M0. Briefly: Lie algebroids coming from Lie manifolds are integrable.

https://arxiv.org/abs/hep-th/0612005
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2. Index formula

Let (M,V) be a Lie manifold with Lie algebroid A → M and integrating Lie
groupoid G ⇒ M . We fix a compatible metric g = gA, i.e. a positive definite
symmetric bilinear form (a euclidean structure) on A. Denote by Cl(A) → M the
bundle of Clifford algebras

⋃
x∈M Cl(Ax, g(x)) and fix a complex Cl(A)-module

W → M . We also assume that W is Z2-graded, W = W+ ⊕W− and the grading
is compatible with the Clifford action, i.e.

c(Cl(A)+)W± ⊆ W± and c(Cl(A)−)W± ⊆ W∓.

We denote by ∇W a first order operator in the V-differential operators which is a
Clifford A-connection, i.e.

∇W
X (c(Y )ξ) = c(∇XY )ξ + c(Y )∇W

X (ξ), ξ ∈ Γ(W ), X, Y ∈ Γ(A).(1)

The geometric Dirac operatorD is defined as the composition D = c◦(id⊗♯)◦∇W ,
acting on Γ(W ),

Γ(W )
∇W

// Γ(W ⊗A∗)
id⊗♯

// Γ(W ⊗A)
c

// Γ(W ),

where c denotes Clifford multiplication and ♯ is the conjugate-linear isomorphism
A ∼= A∗ induced by the metric g. Note that c is a V-operator of order 0 and ∇W

is a V-operator of order 1, hence D is in Diff1
V(M ;W ). The principal symbol of

D satisfies σ1(D)ξ = ic(ξ) ∈ End(W ), hence it is invertible for ξ 6= 0, and D is
elliptic.

According to the representation theory of Ammann-Lauter-Nistor, cf. [1], the
geometric Dirac operator D = DW has a G-equivariant lifting to a family of Dirac
operators /D = ( /Dx)x∈M on the source-fibers Gx = s−1(x) of the groupoid G.
There is a G-equivariant family of metrics (gx)x∈M such that (Gx, gx) are complete
Riemannian manifolds of bounded geometry for x ∈ M and (gx)x∈M descends to
the restriction of g to M0, by right invariance of the action of G. We assume that
G is Hausdorff and fulfills the Nistor Fredholm conditions, i.e. /D : H1(G) → L2(G)
is Fredholm if and only if the indicial symbol R( /D) = ( /Dx)x∈∂M is pointwise
invertible.

Theorem 1. Let G ⇒M be a Lie groupoid such that A(G) ∼= A and assume that
G fulfills the Nistor condition. Then if D = DW is a Fredholm geometric Dirac
operator over (M,V), the Fredholm index

ind(D) =
Vˆ

− Â(∇) ∧ expFW/S + Vη(D)(2)

where FW/S is the twisting curvature and Â(∇), for the curvature tensor R ob-
tained from the compatible metric, denotes the form given by the formal power
series

h(R) =

(
−

i

2π

)n
2

det

( 1
2R

sinh(12R)

) 1
2

.
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The function Vη is the renormalized η-invariant which is given by the integrated
trace defect

Vη(D) :=
1

2

ˆ ∞

0

VTrs([D,De−tD2

]) dt.

3. A secondary invariant

The index formula yields obstructions to compatible PSC metrics by an application
of the Lichnerowicz formula for Lie manifolds:

D2 = ∆W + c(FW/S) +
κ

4
,(3)

where κ = κg denotes the scalar curvature associated to the fixed compatible

metric g. The twisting curvature FS/W ∈ Λ2(EndCl(A)W ) is part of the decom-

position of the curvature (∇W )2 = c(R) + FW/S obtained via the isomorphism
End(W ) ∼= Cl(A)⊗ EndCl(A)W . The operator c(FS/W ) ∈ Ψ0

V(M ;W ) is a 0-order

operator contained in the Lie calculus of pseudodifferential operators1. Assuming

that ‖c(FS/W )‖ < minx∈M κ(x)
4 in L(L2

V(M ;W )) operator norm, then if κ > 0 ev-

erywhere, we obtain via (3) that the index of D = DW must vanish. One obtains
the usual obstruction to compatible PSC metrics on Lie manifolds.

The deformation groupoid describing the Fredholm index is studied e.g. in
recent work of Carrillo-Rouse, Lescure and Monthubert [3]. These deformation
groupoids are used by Zenobi [5] to define a secondary ρ-invariant. We consider

the groupoid integrating the Lie algebroid adA = A×[0, 1] with anchor ad̺ : adA →
TM × T [0, 1], adA ∋ (x, v, t) 7→ (x, tv, t, 0) ∈ TM × T [0, 1], the adiabatic groupoid
Gad = A(G) × {0} ∪ G × (0, 1] ⇒ Mad := M × [0, 1] associated to G ⇒ M .
The Fredholm groupoid GF = A(G) × {0} ∪ G|∂M × (0, 1) ∪ M0 × M0 × (0, 1] ⇒

MF := Mad \ (∂M × {1}) is obtained by removing ∂M × ∂M × {1} from Gad.
The non-commutative tangent bundle groupoid T = A(G)×{0}∪G|∂M × (0, 1)⇒
M∂ := MF \ (M0 × (0, 1]) is obtained by removing the saturated sub-groupoid

M0 ×M0 × (0, 1] from GF . Setting G̊F := GF|[0,1), by the Nistor property of the
groupoid, we obtain a short exact sequence with completely positive section:

C∗
r (M0 ×M0)⊗ C0(0, 1) // // C∗

r (G̊F )
e0

// C∗
r (T )

By restricting (via e0) to the sub-groupoid T . Note that C∗
r (M0 × M0) ∼= K,

the compact operators on the interior. The Fredholm index is the connecting
map K0(C

∗
r (T )) → K1(K ⊗ C0(0, 1)) ∼= K0(K) ∼= Z in the corresponding six-term

exact sequence. Given a compatible PSC metric g, the index of the associated
Spin-Dirac operator D vanishes. The ρ-invariant ρ(D, g) ∈ K0(C

∗
r (G̊F )) is the

lifting of the full symbol class of the Spin-Dirac operator D. An ongoing project
concerns the study of the space of compatible PSC metrics on Lie manifolds via
the secondary ρ-invariant, e.g. to relate the concordance classes of metrics to
Spin-bordism classes of metrics. While the notion of bordism can be defined also

1In fact all geometric operators considered here are elements of this calculus, cf. [1]
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in the category of Lie manifolds, it is an open problem to define an appropriate
composition of concordance classes of metrics, relative to a fixed compatible PSC
metric. This step would involve a suitable generalization of the surgery theorem
of Gromov-Lawson and Schoen-Yau to our setting.
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Cauchy problems for Lorentzian special holonomy and generalised
imaginary Killing spinors

Thomas Leistner

(joint work with Helga Baum, Andree Lischewski)

We consider the following problems: for a Riemannian manifold (M, g), find a
Lorentzian manifold (M, g), containing (M, g) as a Cauchy hypersurface, and with

(A) a parallel null vector field V , or,
(B) a parallel null spinor field φ.

Since the Dirac current Vφ associated to a parallel null spinor field φ is a parallel
null vector field, problem (A) is more general. The constraint conditions that
are imposed on (M, g) by the conditions in (A) arise from decomposing V into
V = uT − U , with a unit normal T to M and U tangent to M , as

(1) u2 = g(U,U) 6= 0, ∇gU + uW = 0,

with W = −∇gT the Weingarten operator of M ⊂ M . This condition implies that
U ♭ is a closed one-form. Constraint conditions for (B) are obtained from spinor
calculus for hypersurfaces: the spinor φ induces a spinor ϕ on M with

(2) Uϕ · ϕ = i‖φ‖ϕ, ∇g
Xϕ =

i

2
W (X) · ϕ, for all X ∈ TM.

Spinor fields that satisfy the differential equation in (2) are called generalised
imaginary Killing spinors. In [8] we solve problem (A):

Theorem. Let (M, g, U) be a smooth Riemannian manifold with a smooth vector
field U satisfying the constraints (1), and define the metric g̃ = −dt2+g on R×M .
Then there is a unique Lorentz metric g on an open neighbourhood M of M in

https://doi.org/10.1016/j.matpur.2017.07.016
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R×M such that (M, g) admits a unique parallel null vector field V , contains M
as Cauchy hypersurface, and satisfies the initial conditions V |M = u∂t − U ,

(3) g|M = g̃|M , ∂tg|TM×TM = −uW,

as well as the gauge fixing condition gµνg
αβCν

αβ = 0, where C = ∇g −∇g̃.

For the proof we apply the theory of quasilinear symmetric hyperbolic PDE to

(d+ δg)ω = 0, Ric(g) = Q ◦ pr
ω♯

1

TM , ∇g

ω♯
1

Q = 0,

a system for a differential form ω = ω0 + ω1 + ω2 + . . ., a bilinear form Q and a

metric g, and where the projection onto TM defined by the vector ω♯
1 is used.

By parallel transporting a spinor with conditions (2) with respect to g along
the flow of V , we also solve problem B:

Corollary. Let (M, g, ϕ) be a smooth Riemannian manifold with a smooth spinor
field satisfying conditions (2). Then there is a unique Lorentz metric g on an open
neighbourhood M of M in R×M such that (M, g) has a unique parallel null spinor
field φ, contains M as Cauchy hypersurface, and satisfies the initial conditions (3)
and φ|M = ϕ, as well as the above gauge fixing condition.

This result was obtained in [9] directly by reducing the system

Dgφ = 0, Ric(g) = f (V ♭
φ )

2, df(Vφ) = 0,

for spinor φ, a metric g and a function f , and in which Dg is the Dirac operator
of g, to a quasilinear symmetric hyperbolic PDE system.

In the analytic category these results were already obtained in [2] in a slightly
stronger version: in addition to an analytic Riemannian manifold obeying the
constraints we can prescribe an analytic function λ on R×M and use the Cauchy-
Kowalevski Theorem to obtain a unique family gt of Riemannian metrics such that
g = −λ2dt2 + gt. A similar result about extending generalised real Killing spinors
to parallel spinors on a Riemannian manifold was obtained in [1].

These results are motivated by the construction of globally hyperbolic Lorentz-
ian manifolds with special holonomy. A semi-Riemannian manifold has special
holonomy if the holonomy algebra is reduced from the full orthogonal algebra
so(p, q) but does not admit a non-degenerate invariant subspace. For Riemann-
ian manifolds special holonomy algebras are irreducible in so(m) and they were
classified by Berger [4]. The construction of Riemannian manifolds with special
holonomy lead to several landmark results in differential geometry. In contrast to
the Riemannian case, there are no irreducible subalgebras in so(1,m− 1). Hence,
special Lorentzian holonomy algebras are indecomposable subalgebras in the sta-
biliser of a null line, i.e., in p = (R ⊕ so(n)) ⋉ Rn. The classification of special
Lorentzian holonomy algebras follows from results in [3] and in [7], where it was
shown that the projection of the holonomy algebra to so(n) in p is a Riemann-
ian holonomy algebra. By the general holonomy principle, Lorentzian manifolds
with special holonomy admit a line bundle in the tangent bundle that is invariant
under parallel transport. Local metrics realising all possible holonomy algebras
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were constructed in [5]. A special case of this is when the Lorentzian manifold
admits a parallel null vector field as in problem A. The theorem together with the
following result from [8] allows to construct globally hyperbolic manifolds with
special holonomy that have have a complete Cauchy hypersurface.

Proposition. A Riemannian manifold (M, g) admits a vector field U with u =
g(U,U) 6= 0 and dU ♭ = 0 if and only if it is locally isometric to
(
(a, b)×N, ĝ = 1

u2 ds
2 + hs

)
, with a family hs of Riemannian metrics on N .

If the vector field 1
u2U is complete, then the universal cover of (M, g) is globally

isometric to ĝ on R×N with a simply connected manifold N .
If N is compact and u is bounded, then for any family of Riemannian metrics hs,

the Riemannian manifold (R×N, ĝ) is complete and U = u2 ∂
∂s satisfies dU ♭ = 0.

In [6] it was shown that the projection g to p of an indecomposable Lorentzian
holonomy algebra is also the holonomy of the connection ∇S that is induced on
the screen bundle S = V ⊥/RV from ∇g. For Lorentzian manifolds (M, g) arising
from the above Cauchy problem, S can be identified with the subbundle V ⊥ ∩ T⊥

in TM . In [8] we establish the following one-to-one correspondence between

(i) sections ω̂ of the bundle ⊗a,bS → M with ∇Sω = 0,
(ii) sections ω of the bundle ⊗a,bU⊥ → M with ∇⊥ω = 0, and
(iii) families (ωs)s∈I of sections of ⊗a,bTN → N with ∇gs ωs = 0 and

(4) ∂sωs =
1
2 (∂sg) • ωs,

in which ⊗a,bE denotes the a-fold tensor product of a vector bundle E with the
b-fold tensor product of E∗, ∇⊥ is the connection induced from ∇ on U⊥, and
• denotes the natural action of endomorphisms on tensors. Hence, holonomy
reductions from p to g⋉Rn, where g is the stabiliser of some tensor or spinor, are
reflected in the constrained geometry of (M, g) as follows:

g hs is family of

so(p)⊕ so(q) ⇐⇒ product metrics
u(n/2) ⇐⇒ Kähler metrics with (4),

su(n/2) ⇐⇒ Ricci-flat Kähler metrics with (4) and divhs(ḣs) = 0
sp(n/4) ⇐⇒ hyper-Kähler metrics with (4)

g2 / spin(7) ⇐⇒ of G2 / Spin(7)-metrics with (4).

As a consequence we obtain a local classification of Riemannian manifolds that
admit a generalised imaginary Killing spinor. We leave as an open problem the
status of the flow equation (4) for families of Kähler-forms or, in the case of G2 or
Spin(7) geometries, for families of parallel stable 3-forms or generic 4-forms.
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Sphere Theorems, Space Forms, and positive scalar curvature

Wilderich Tuschmann

(joint work with Michael Wiemeler)

The well-known constructions of torpedo (or also: Pinocchio) metrics show that
there cannot be upper diameter bounds in terms of just a lower positive bound on
the scalar curvature function of a Riemannian manifold. However, already back
in 1963, Leon Green (compare [2]) proved in particular the following remarkable
rigidity result:

A closed Riemannian n-manifold with scalar curvature scalM ≥ n(n − 1) and
injectivity radius equal to π is isometric to the n-dimensional unit sphere Sn(1).

Thus, when replacing diameter by injectivity radius, this result can be viewed as
a scalar curvature analogue to the well-known maximal diameter sphere theorems
obtained by Toponogov and Cheng for manifolds of positive sectional curvature
≥ 1 and, more generally, positive Ricci curvature ≥ n− 1.

It is therefore natural to ask which conditions on the injectivity radius, or, more
generally, conjugate radius, of a closed Riemannian n-manifold M with positive
scalar curvature will guarantee stability of Green’s above-mentioned results in the
sense thatM can still be recognized as being homeomorphic, or even diffeomorphic,
to the standard n-sphere or, respectively, to an n-dimensional spherical space form.

Of course, stability results which actually imply diffeomorphism are of much
more significance in this context than merely topological ones, because exotic
spheres with positive scalar curvature are known to abound.

Our main result and its corollaries provide positive answers to whether Green’s
rigidity results are differentiably stable as follows:

https://arxiv.org/abs/1702.01951
https://arxiv.org/abs/1503.04946
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Theorem 1. For all n ∈ N, C, λ0, λ1, i0 > 0 and 0 ≤ β < 1 there exists ǫ =
ǫ(n,C, λ0, λ1, i0, β) > 0 such that every closed n-dimensional Riemannian manifold
M with

ˆ

M

scalM dvolM ≥ n(n− 1)VolM conjM ≥ π − ǫ

RicM ≥ −λ0 ‖∇RicM ‖ ≤ λ1

VolM ≤
C

(π − conjM)β
injM ≥ i0

is diffeomorphic to a spherical space form.

This result yields various new recognition and stability theorems for closed mani-
folds with positive curvatures and, in particular, new sphere theorems.

First, we have the following new sphere theorem for manifolds with positive
mean scalar curvature:

Corollary 2. For all n ∈ N and λ1, d > 0 there exists ǫ = ǫ(n, λ1, d) > 0 such
that every closed n-dimensional Riemannian manifold M with

ˆ

M

scalM dvolM ≥ n(n− 1)VolM injM ≥ π − ǫ

diamM ≤ d ‖∇RicM ‖ ≤ λ1

is diffeomorphic to the standard n-sphere.

We do believe that the bound on the first covariant derivative of the Ricci tensor
is not necessary for the corollary to remain true. Notice that also the following
question is so far completely open:

Does there exist ǫ = ǫ(n) > 0 such that every closed n-dimensional Riemannian
manifold M with scalM ≥ n(n−1) and injectivity radius ≥ π−ǫ(n) is diffeomorphic
to the standard n-sphere?

Second, the main result above has also applications to Einstein manifolds. Since
Berger’s initial studies in the 1960s much work in Riemannian geometry has also
been devoted to the problem to classify all Einstein manifolds which satisfy fur-
ther curvature conditions or other suitable metric or topological constraints. For
Einstein manifolds with positive Einstein constant and large conjugate radius, we
obtain in particular the following differentiable stability result, which does not
require any further curvature bounds:

Corollary 3. For all n ∈ N there exists ǫ = ǫ(n) > 0 such that every closed simply
connected n-dimensional Einstein manifold M with Einstein constant n − 1 and
conjugate radius conjM ≥ π − ǫ is diffeomorphic to the standard n-sphere.
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Notice in this context that in [1] families of inequivalent Einstein metrics with
positive Einstein constant were constructed on the (4m+1)-dimensional Kervaire
spheres, where m ≥ 2. The Kervaire spheres are known to be exotic in dimensions
n 6= 2k − 3, where k ≥ 3.

Our proofs of the above results rely heavily on Ck,α convergence techniques
and precompactness results by Anderson and Anderson-Cheeger, as well as on the
following important

Lemma 4. Let λ1, i0 > 0 and n ∈ N. Then there is a constant λ0(λ1, i0, n) such
that for every n-dimensional complete Riemannian manifold M with ‖∇RicM ‖ ≤
λ1 and conjM ≥ i0 one has RicM ≤ λ0.

For the details of the proofs as well as more results and open questions we refer
the reader to our work [3]. We thank the organizers for an inspiring conference
and the MFO and its staff for their hospitality and friendliness.
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Ricci positive metrics on spheres

David J. Wraith

(joint work with Boris Botvinnik, Mark Walsh)

Given a manifold M , let R(M) denote the space of all Riemannian metrics on M
with the smooth topology, let RRic>0(M) be the space of Ricci positive metrics
on M , and so on. As the diffeomorphism group of M acts by pull-back on these
spaces, we can form the corresponding moduli spaces M(M) = R(M)/Diff(M),
MRic>0(M) = RRic>0(M)/Diff(M) etc.

The focus of this note will be the so-called observer moduli space. This is
Mx0

(M) := R(M)/Diffx0
(M) where Diffx0

(M) is the observer diffeomorphism
group: the group of diffeomorphisms of M which fix both a basepoint x0 ∈ M
and Tx0

M. It turns out that the observer moduli space offers certain technical
advantages over the full moduli space, and as a consequence it has been the focus
of much recent attention.

Our basic motivating question is to understand what we can say about the
topology ofRRic>0(M) and its moduli spaces. There are currently very few results
in this direction, but we wish to draw attention to the following:

https://arxiv.org/abs/1408.3006v5
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• (Kreck-Stolz [5]) There exist manifolds M7 with Ric > 0 (specifically
certain S1-bundles over CP 2 × CP 1) such that |π0MRic>0(M)| = ∞.

• (Wraith [8]) For all n ≥ 2 there are homotopy spheres Σ4n−1 such that
|π0MRic>0(Σ)| = ∞. (This family includes all S4n−1 and infinitely many
exotic spheres. The result can be extended to large families of highly-
connected manifolds in these dimensions.)

• (Crowley-Schick-Steimle [2]) If Mm is spin with m ≥ 6 and n ≡ 0, 1 mod
8, n ≥ m, then πn−mRRic>0(M) contains order 2 elements.

Our main result is the following:

Theorem 1. Given k ∈ N, there exists N = N(k) ∈ N such that for all n > N, n
odd, π4kMRic>0

x0
(Sn) contains infinite order elements.

It should be noted that the analogous result for positive scalar curvature is
established in [1]. The topological foundations that we use are borrowed from this
paper, however the geometric arguments we propose are very different.

The key advantage of using the observer moduli space is that the observer
diffeomorphism group acts freely on R(M). This leads to a fibration

Diffx0
(M) → R(M) → Mx0

(M).

As R(M) ≃ ∗, the above is a universal Diffx0
(M)-bundle, and we observe that

R(M) = EDiffx0
(M), Mx0

(M) = BDiffx0
(M).

We obtain an associated bundle

M → R(M)×Diffx0
(M) M → Mx0

(M) = BDiffx0
(M), (†)

which is universal among bundles with fibre M and structural group Diffx0
(M).

Given a continuous map f : Si → BDiffx0
(M), pulling back (†) gives an M -

bundle over Si with structural group Diffx0
(M). It turns out that there exists

a natural fibrewise metric (determined by f) on this pull-back bundle. For more
details see page 61 of [7], however the basic observation underlying this fact is that
we can view R(M) in two ways: as fibered by copies of Diffx0

(M), or as fibered
by families of metrics (which differ by elements of Diffx0

).
Note that ‘fibrewise’ means on the vertical tangent bundle, that is, on the fibres

only. Asking for a fibrewise Ricci positive metric on a bundle is a much weaker
requirement than asking for a Ricci positive metric on the total space. Given a
metric on the total space of a bundle such that the intrinsic curvature of each of
the fibres is Ricci positive, there is no need for the Ricci curvature of the bundle
as a whole to be positive. As an illustration of this, note that we can scale fibres
using a arbitrary smooth positive function on the base and still retain fibrewise
Ricci positivity, however it is clear that such a rescaling can affect the global Ricci
curvature in complicated ways.

The main theorem follows from:

Theorem 2. Given k ∈ N, there exists N = N(k) ∈ N such that for all n > N, n
odd, the map

ι∗ ⊗Q : π4k(M
Ric>0
x0

(Sn))⊗Q → π4k(Mx0
(Sn))⊗Q
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is a surjection, where ι is inclusion.

This result produces Theorem 1 when combined with the following:

Theorem 3 (Farrell-Hsiang, [3]). Given ℓ ∈ N, there exists N = N(ℓ) such that
for all n > N we have that πℓ(BDiffx0

(Sn)) ⊗ Q is isomorphic to Q if n is odd
and ℓ is a multiple of 4, and zero otherwise.

Our proof strategy is as follows: an element on the right-hand side of ι∗⊗Q can
be represented by an Sn-bundle over S4k equipped with a fibrewise Riemannian
metric, and it suffices to show that this bundle admits a fibrewise Ricci positive
metric. It turns out that there is a generating set for π4k(R(Sn)/Diffx0

(Sn))⊗Q

for which the elements can be represented by ‘Hatcher bundles’, which are Sn-
bundles over S4k which are topologically, but not smoothly trivial.

Hatcher bundles decompose into a union of two identical disc bundles, which
we will call ‘Hatcher disc bundles’. We therefore need to

(1) understand how to equip Hatcher disc bundles with fibrewise Ricci positive
metrics, and

(2) understand how to glue two such disc bundles within fibrewise Ricci pos-
itivity.

In brief, Hatcher disc bundles can be constructed by splitting the base S4k

into hemispheres D4k
± , and taking disc bundles over these together with a suitable

gluing map along the boundaries. The disc bundle over D4k
− is taken to be a

product, whereas the bundle over D4k
+ is non-trivial when viewed as a bundle with

given boundary trivialisation. This latter bundle is constructed as the union of a
disc bundle and an annulus bundle, glued together in a highly non-trivial manner.
We refer the reader to [4] for more details.

We next note that the fibres of the disc bundle over D4k
+ can be equipped with

Ricci positive metrics in a natural way, exhibiting certain rotational symmetries.
The same is trivially true for the bundle over D4k

− . It turns out that the gluing

map which produces the Hatcher disc bundle over S4k is a fibrewise isometry with
respect to these fibrewise metrics, as a consequence of the rotational symmetry.
This produces a fibrewise Ricci positive metric on the Hatcher disc bundle after
gluing, as required.

In order to glue the two Hatcher disc bundles together within fibrewise Ricci
positivity we note the following result:

Theorem 4 (Perelman, [6]). Given manifolds M1,M2 equipped with Ricci positive
metrics, suppose the boundaries are non-empty and isometric. Then if the normal
curvatures at the boundary of M1 are greater than the negatives of the correspond-
ing normal curvatures at the boundary of M2, with all normal curvatures computed
with respect to the outward normal, then the metric on M1 ∪M2 can be smoothed
in a neighbourhood of the join to give a global Ricci positive metric.

As we need to simultaneously glue all corresponding pairs of Hatcher disc bundle
fibres, we prove a family version of the Perelman result, which is a consequence of
an explicit proof argument we provide for the Perelman construction.
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Finally, it remains to argue that the Perelman normal curvature condition is
satisfied in our case for all fibres, but this condition can be controlled by a careful
choice of the disc fibres.
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Boundary value problems for the Dirac operator on Riemannian and
Lorentzian manifolds

Christian Bär

(joint work with W. Ballmann, S. Hannes, A. Strohmaier)

We discuss boundary value problems for the Dirac operator on compact manifolds
with boundary, both in Riemannian and in Lorentzian signature. These two cases
are analytically very different in nature.

1. Riemannian manifolds and elliptic operators

Let M be a compact Riemannian manifold with boundary ∂M . Suppose M carries
a spin structure so that we can form the spinor bundle SM → M . We assume that
the dimension n ofM is even so that the spinor bundle splits into chirality subbun-
dles, SM = SRM ⊕ SLM . Finally, we give ourselves a Hermitian vector bundle
E → M with compatible connection and form the twisted spinor bundles VR/L =
SR/LM ⊗ E. Then the twisted Dirac operator D : C∞(M,VR) → C∞(M,VL) is
defined. It is an elliptic first-order linear differential operator.

Let A0 be the Dirac operator on the boundary ∂M and P+ = χ[0,∞)(A0) the
spectral projector onto the sum of eigenspaces to nonnegative eigenvalues. Then
the Atiyah-Patodi-Singer (APS) boundary conditions for M are given by

P+(f |∂M ) = 0.

https://arxiv.org/abs/1612.04660
https://arxiv.org/abs/math/0111222
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Theorem (Atiyah-Patodi-Singer [1]). Under APS boundary conditions the Dirac
operator is Fredholm and its index is given by

ind(DAPS) =

ˆ

M

Â(M) ∧ ch(E) +

ˆ

∂M

T (Â(M) ∧ ch(E))−
h(A0) + η(A0)

2
.

Here h denotes the dimension of the kernel and η the η-invariant.

Which other boundary conditions besides APS will work?
The first thing one might be tempted to try does not work. Namely, if we

replace P+ by the complementary projector P− = id − P+ then the anti-Atiyah-
Patodi-Singer (aAPS) boundary conditions

P−(f |∂M ) = 0

do not give a Fredholm operator.
In [2,3] we describe a class of ”elliptic“ boundary conditions which do give a

Fredholm operator and also good analytic properties such as elliptic boundary
regularity up to the boundary. These boundary conditions are plenty enough to
contain generalized APS conditions, classical local elliptic conditions in the sense
of Lopatinsky-Shapiro and also transmission conditions which allow for cut-and-
paste arguments for the index. In particular, one obtains a very simple and natural
proof the relative index theorem by Gromov and Lawson [7].

2. Lorentzian manifolds and hyperbolic operators

Now we let M be a globally hyperbolic Lorentzian manifold with boundary which
consists of two smooth spacelike Cauchy hypersurfaces. The Dirac operator on M
is still defined but is now hyperbolic rather than elliptic. Since the boundary is
Riemannian APS conditions still make sense.

Theorem (Bär-Strohmaier [5]). Under APS boundary conditions the Dirac oper-
ator is Fredholm and the kernel consists of smooth spinors. Its index is given by
formally the same formula as in the Riemannian case.

The regularity of the spinors in the kernel is surprising since solutions to the
Dirac equation on a Lorentzian manifold can be very irregular in general. Unlike
elliptic regularity which is a local phenomenon, the regularity is in this case of
global nature and uses the boundary conditions in a crucial manner.

In [3] the Lorentzian index theorem is used to compute the chiral anomaly in
quantum field theory on curved spacetimes.

In contrast to the Riemannian case, aAPS boundary conditions do yield a Fred-
holm operator. On the other hand, the elliptic boundary conditions in [2,3] give
a Fredholm operator only under additional technical assumptions [4]. Examples
show that these assumptions cannot be dropped.
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The Yamabe problem on stratified spaces

Ilaria Mondello

The aim of this talk is to present some recent results about a familiar problem in
geometric analysis, the Yamabe problem, in an unfamiliar singular setting, given
by stratified spaces. There are many different reasons to study the geometry of
singular metric spaces: singularities naturally arise from quotients of smooth man-
ifolds (for example orbifold singularities); also, if we consider a sequence of smooth
Riemannian manifolds, its Gromov-Hausdorff limit, when it exists, is not neces-
sarily smooth. Moreover, when studying “canonical metrics”, which for example
minimize a functional, it can be wiser to keep in account singular metrics as well.
This is an approach that has been proven to be successful, for example in proving
the existence of a Kähler-Einstein metric on a Fano manifold.

One of the interests of stratified spaces is that they can appear as limits or
quotients: the simplest example of a stratified space is the American football,
a surface with two isolated conical singularities obtained as the quotient of the
sphere S2 by the group generated by rotation around an axis. Moreover, stratified
spaces generalize the notion of isolated conical singularities in the following sense: a
stratified space can be decomposed in a regular dense set, which is an open smooth
manifold of dimension n, and in a singular set, that is the union of a finite number
of singular strata Σj . Each Σj is a manifold of dimension j strictly smaller than
(n− 1); for every point in Σj there exists a neighbourhood homeomorphic to the
product of a ball in Rj and a cone C(Zj), where Zj is the link of the stratum, it can
be a stratified space as well, and determines how complicated the local geometry
is next to a singularity. When a stratum has codimension 2, the link is a circle and
the neighbourhood of a singular point is homeomorphic to Bn−2(ε)×C(S1) (see in
the figure, a manifold of dimension 3 with a conical singularity along a curve). We
can then associate an angle to the stratum of codimension 2, which is the angle of
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the two-dimensional cone C(S1). Note that the angle can be smaller or larger than
2π, this corresponding respectively to positive or negative Alexandrov curvature.

Figure 1. An example of a 3-dimensional stratified space.

Stratified spaces have been studied in topology (starting form H. Whitney,
R. Thom...); there exists a wide literature about spectral analysis on manifolds
with isolated conical singularities or simple edges, mainly using the tools of mi-
crolocal analysis (J. Cheeger, R. Melrose, R. Mazzeo...). Our goal is to study
stratified spaces from the point of view of classical Riemannian geometry. In par-
ticular we are interested in a classical question: which is the “best” metric on a
stratified space? There are many ways to choose what “best” means, and one
possible good feature for a metric is to have constant curvature (in some sense). A
first step towards this direction is to look for a metric of constant scalar curvature
in the conformal class [g] of a given metric g. This is known to be the Yamabe
problem, and it has been solved on compact smooth manifolds (Mn, g), n ≥ 3,
thanks to the work of H. Yamabe, N. Trudinger, T. Aubin and R. Schoen: there
always exists a metric conformal to g of constant scalar curvature. The proof is
based on a variational approach and strongly depends on the relationship between
a conformal invariant of the manifold, the Yamabe constant Y (Mn, [g]), and a
reference constant, the Yamabe invariant of the round sphere, Y (Sn, [g0]).

The situation is similar on a compact stratified space. Under an appropriate
assumption on the integrability of the scalar curvature, one can define the Yamabe
constant of (X, g):

Y (X, [g]) = inf
g̃∈[g]

ˆ

X

Scalg̃dvg̃

volg̃(X)
n
2

A metric attaining the Yamabe constant has constant scalar curvature and is called
a Yamabe metric. On a compact smooth manifold, the Yamabe invariant of the
sphere can be roughly seen as the Yamabe constant of a very small ball on the
manifold, when considering conformal factors supported on the ball; in the case
of a stratified space, small balls can be singular and, as a consequence, we need
to introduce a different reference constant to keep in account the local geometry
around singular points. This is the local Yamabe constant :

Yℓ(X) = inf
p∈X

lim
r→0

Y (B(p, r)) = inf
p∈Σj

Y (Rj × C(Zj)).
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An existence result by K. Akutagawa, G. Carron and R. Mazzeo [2] states that
if the Yamabe constant Y (X, [g]) is strictly less then the local Yamabe constant
of the stratified space, then there exists a Yamabe metric. Still, there are some
significant differences with the smooth case. First, in [4] J. Viaclovsky gave an
example of a four-dimensional orbifold with one isolated singularity, for which the
Yamabe constant coincides with the local one and a Yamabe metric does not exist.
Besides, the only case in which the explicit value of the local Yamabe constant
was known consisted of orbifolds with isolated conical singularities, thanks to a
result in [1].

Observe that the local Yamabe invariant depends on the local geometry of the
singularities, and in particular on the links. In [3], we showed that it is possible
to compute the local Yamabe constant whenever the links are endowed with an
Einstein metric:

Theorem. Let (Xn, g) be a stratified space with a singular stratum Σj and as-
sociated link Z. Let k denote the metric of Z. If Rick = (dim(Z) − 1)k on the
regular set of Z, then the local Yamabe constant is given by:

Yℓ(X) =

(
volk(Z)

vol(Sn−j−1)

) 2
n

Y (Sn, [g0]).

In particular, this includes strata of codimension 2 and orbifolds with non-
isolated conical singularities. In these cases the previous result reads as follows:

• When the cone angle α along the stratum Σn−2 is less than 2π, we have

Yℓ(X) =
( α

2π

) 2
n

Y (Sn, [g0]).

• When the cone angle along the stratum Σn−2 is larger than 2π, then

Yℓ(X) = Y (Sn, [g0]).

• In presence of an orbifold singularity with finite group Γ ⊂ O(n), we get

Yℓ(X) =
Y (Sn, [g0])

|Γ|
2
n

.

In order to prove the above theorem, we distinguish two situations: when the
stratum of codimension 2 has angle larger or smaller than 2π. In the second
situation, if the Ricci curvature is positive on the regular set, we proved a lower
bound for the spectrum of the Laplacian and therefore a Sobolev inequality with
explicit constants, only depending on the volume and the dimension of the space.
This leads to a lower bound for the global Yamabe constant, which is attained in
the Einstein case. In particular, when angles are less than 2π, an Einstein metric
is a Yamabe metric, which is not the case for angles larger than 2π. In order to
get the result about the local Yamabe constant, it is not difficult to show that,
when the link Z is endowed with an Einstein metric, the product Rj × C(Z) is
conformally equivalent to a compact Einstein stratified space, for which we can
compute the Yamabe constant. When the angle along the stratum of codimension
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2 is larger than 2π, we compute the Yamabe constant of Rn−2 × C(S1), by using
isoperimetric profiles and proving that it is equal to the one of the round sphere.

Obtaining the value of the local Yamabe constant allows one to further study
the question of existence, and non-existence, of a Yamabe metric on stratified
spaces. In particular, in the case of a codimension 2 singularity with angle larger
than 2π, we can apply a local argument by Aubin, and show that if the dimension
is larger than or equal to 6, and the metric is not locally conformally flat, then the
Yamabe constant is strictly less than the local one. Therefore, a Yamabe metric
exists. Nevertheless, in a joint work with K. Akutagawa, we show that on the
sphere with codimension 2 singularity of angle larger than 4π a Yamabe metric
does not exists; we conjecture the same result for angle larger than 2π.
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Highly connected 7-manifolds and non-negative curvature

Sebastian Goette

(joint work with Martin Kerin, Krishnan Shankar)

We construct a six-parameter family of highly connected 7-manifolds with cyclic π3

that admit metrics of non-negative sectional curvature. Among these manifolds
are all exotic 7-spheres and also some manifolds that are not homotopy equivalent
to S3-bundles over S4.

We start with cohomogeneity-1-manifolds P 10
a,b with group diagram

G = S3 × S3 × S3

ր տ
K− = Pin (2)a Pjn (2)b = K+

տ ր
Q

The positions of the subgroups Pin(2)a ∼= Pin(2) ∼= Pjn(2)b in G are determined
by the numbers a1, a2, a3 and b1, b2, b3 ∈ 4Z+ 1, respectively. We demand that
gcd(a1, a2, a3) = 1 = gcd(b1, b2, b3). Finally, Q = K− ∩K+

∼= {±1,±i,±j,±k} ⊂
S3 ⊂ H. By a classical result by Grove and Ziller [3], the manifolds P 10

a,b admit

metrics with sectional curvature sec ≥ 0.
If in addition gcd(a1, a2 ± a3) = 1 = gcd(b1, b2 ± b3), then the subgroup 1 ×

∆S3 ⊂ G acts freely on P 10
a,b. By the O’Neill-Gray formula, the quotient M7

a,b



2292 Oberwolfach Report 36/2017

also admits a metric with sec ≥ 0. It can be understood as cylinder with cross-
section a biquotient S3 × S3//Q, whose ends are identified with biquotients of the
form S3 × S3//Pin(2).

The manifolds M7
a,b are 2-connected with π3(M

7
a,b)

∼= Z/n ∼= H4(M), where

n =
1

8

(
a21 (b

2
3 − b22)− b21 (a

2
3 − a22)

)
∈ Z .

If n = 1, the manifold is a homotopy sphere, and it suffices to compute its Eells-
Kuiper invariant µ(M) to determine its diffeomorphism type. If n > 1 and the
linking form on H4(M) is non-standard, then M is not homotopy equivalent to
an S3-bundle over S4.

Classically, the Eells-Kuiper invariant is defined using a 0-bordism of M . Here,
we use Donnelly’s formula instead, who expresses µ(M) in terms of η-invariants
and a curvature correction term intrinsically on M . We remark that the quo-
tient B4

a1,b1
of P 10

a,b by the subgroup 1× S3 × S3 ⊂ G is an orbifold. The singular

locus consists of two copies of RP 2. The natural projection M7
a,b → B4

a1,b1
is

a generalised Seifert fibration with generic fibre S3. The fibres over the singu-
lar RP 2s are lens spaces. Using the adiabatic limit formula for η-invariants of
Seifert fibrations [1], we get

µ
(
M7

a,b

)
=

|n| − a21b
2
1m

2

25 · 7 · n
+D(a1; 4, a3 + a2, a3 − a2)

−D(b1; 4, b3 + b2, b3 − b2) ∈ Q/Z ,

where m =
1

8a21b
2
1

(
a21(b

2
2 + b23 + 8)− b21(a

2
2 + a23 + 8)

)

and D(q; p1, p2, p3) =

|q|−1
2∑

ℓ=1

∑

(i,j,k)=
	(1,2,3)

pi
25 · 7 · q2

·
14 cos piπℓ

q + cos
pjπℓ
q cos pkπℓ

q

sin2 piπℓ
q sin

pjπℓ
q sin pkπℓ

q

.

The Milnor spheres carry metrics of sec ≥ 0, again by [3]. We obtain sec ≥ 0-
metrics on the remaining exotic 7-spheres by considering M(−3,−3,1),(1,4r+1,4r+1)

for r = −3, −1, 1, 2, 4, 8, 11, and 15, see [2, Cor D].
Finally, let p be a prime such that p ≡ 5 mod 8. Then we can show that the

linking form lk : H4(M)×H4(M) → Z of M = M(p,1,−3),(p,−3,5) is non-standard.

In other words, there is no generator of the cyclic group H4(M) ∼= Z/nZ such
that lk(k, ℓ) = ±kℓ/n ∈ Q/Z for k, ℓ ∈ Z/nZ. Because all S3-bundles over S4

have standard linking form, this shows that the family M7
a,b contains members

that are not even homotopy equivalent to S3-bundles over S4.
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