
Mathematisches Forschungsinstitut Oberwolfach

Report No. 39/2017

DOI: 10.4171/OWR/2017/39

Komplexe Analysis

Organised by
Philippe Eyssidieux, Saint Martin d’Hères

Jun-Muk Hwang, Seoul
Stefan Kebekus, Freiburg

Mihai Paun, Seoul

27 August – 2 September 2017

Abstract. Complex Analysis is a very active branch of mathematics. The
aim of this workshop was to discuss recent developments in several complex
variables and complex geometry. Topics included singular Kähler–Einstein
metrics, positivity of higher direct images, cycle spaces and extension theo-
rems.

Mathematics Subject Classification (2010): 32xx, 14xx.

Introduction by the Organisers

The workshop Komplexe Analysis, organized by Philippe Eyssidieux (Grenoble),
Jun-Muk Hwang (Seoul), Stefan Kebekus (Freiburg) and Mihai Păun (Seoul &
Chicago), was held the week starting from the 28th of August 2017. It was attended
by over 50 participants from around the world, ranging from young post-doctoral
researchers to senior leaders of the field.

The program featured twenty lectures, and allowed ample time for discussion
and interaction; the discussion rooms were in fact constantly occupied. Among
the “visible” results of these interactions the organizers are particularly glad to
mention the article “Algebraically hyperbolic manifolds have finite automorphism
groups” (arXiv 1709.09774) by Bogomolov, Kamenova and Verbitsky, whose final
ideas were perceived during the workshop.

A large number of very interesting subjects were proposed for talks, which made
it a rather difficult (though pleasant) task to choose the speakers. The organizers
aimed for a balanced meeting, reflecting the current generation change in the
subject: the program included many talks by younger colleagues, as well as talks
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by seniors, whose lectures were often full of interesting ideas and promising paths
to follow.

The following list of talks and subjects is not exhaustive, but illustrates the
diversity and the importance of recent contributions to the field.

Holonomy of singular foliations and Kähler–Einstein metrics. The main
results of the lecture presented by Jorge Pereira were pointing towards a conjecture
due to Dominique Cerveau and Alcides Lins-Neto concerning holomorphic folia-
tions of codimension one. Given a projective manifold X , a holomorphic foliation
F is a coherent subsheaf of the tangent bundle TX which is invariant under the
Lie bracket, and such that the quotient TX/F is torsion-free. Now the problem
is to show that any foliation of codimension one is either the pullback of a one-
dimensional foliation on a surface or it is transversely projective (i.e. given by a
flat meromorphic connection of a vector bundle). Pereira explained a few results
extracted from his joint work with Benôıt Claudon, Frank Loray and Frédéric
Touzet providing a strong evidence in this direction.

Daniel Greb reported on joint work with Henri Guenancia and Stefan Kebekus
on the structure of projective varieties with klt singularities and trivial first Chern
class. In many respects, their main result can be seen as a singular analogue of the
famous Beauville–Bogomolov decomposition theorem. The proof combines subtle
techniques from algebraic and differential geometry, Monge–Ampère operators and
others, adapted to the singular setting.

Nessim Sibony explained one of his recent contributions (joint with Tien-Cuong
Dinh) to a very classical subject: the dynamics of foliations in the projective plane
P2. One of the important tools in the proof of their surprising rigidity results is
the theory of densities for currents. This can be seen as the wide generalization of
Fulton’s deformation to the normal cone in algebraic geometry, and it has become
an indispensable technique in modern dynamics.

Higher direct images and positivity. This theme was very present in our work-
shop, as witnessed by the lectures by Yohan Brunebarbe, Ariyan Javanpeykar,
Christophe Mourougane, Mark de Cataldo, Sai-Kee Yeung. Philipp Naumann,
who only recently graduated, gave a very interesting lecture in which he presented
his approach for no less than the famous and notoriously difficult Griffiths con-
jecture. His ideas have their origin in the positivity properties of direct images of
twisted relative canonical bundles, combined with recent developments by Datar–
Székelyhidi concerning the Kähler–Ricci flow. We are eagerly waiting for his article
to appear!

Effective divisors and cycle spaces. Daniel Barlet, a long-time leader of the
field, started his presentation with his view on generation change.

My first participation at this meeting was in 1972, and looking
in the audience now I am very surprised to see that many young
people now turned 60 . . .
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Barlet explained ideas for the proof of an old folklore conjecture which roughly
states that the limit of a family of projective varieties is Moishezon. Important
results concerning the cycle spaces which he has developed over many years are
playing a crucial role.

The properties of the central fiber of families of hypersurfaces of smooth projec-
tive manifolds over the pointed unit disk were at the heart of Fabrizio Catanese’s
talk. He explained some of the main results obtained in collaboration with Yong-
nam Lee by sketching the proof and providing many instructive examples.

Martin Möller presented his joint work with Jan Bruinier, in which they are
studying the structure of the cone of effective divisors on the moduli space of K3
surfaces. Their work has important connections with the theory of automorphic
forms.

In the first part of his talk, Lawrence Ein explained some of the classical re-
sults concerning the Hilbert scheme parametrizing length d zero-dimensional sub-
schemes of a fixed scheme X . In this way he set the stage for the new results he
obtained recently in a joint work with Xudong Zheng. Finally, he shared gener-
ously his ideas about the future important questions in this field by proposing a
few problems.

Extension theorems and classification results. A conjectural decomposition
theorem for compact Kähler manifolds X with nef anticanonical bundle emerged
from the fundamental work of Jean-Pierre Demailly, Thomas Peternell and Michael
Schneider on this topic. Junyan Cao presented his recent progress in this direction.
Together with Andreas Höring, he obtained a strong evidence for the conjecture
by completely solving the case where X is projective. As always, the proof looks
very natural, though technically demanding.

Our workshop ended with the impressive lecture by Jean-Pierre Demailly. He
explained a version of the Ohsawa–Takegoshi extension theorem in singular setting,
meaning that the section to be extended is defined over a possibly non-reduced
scheme. Many participants felt that this was a “classical” Demailly talk, with
crystal clear motivation and arguments of the –technically very demanding– proof.
It is very safe to predict that his results will have important applications, given
that they incorporate virtually all the known extension and injectivity theorems
that we are aware of.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Mark A. De Cataldo in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Hilbert schemes of points of singular varieties

Lawrence Ein

(joint work with Xudong Zheng)

Grothendieck introduced Hilbert schemes to parametrize the closed subschemes
of a given scheme X . In the following we will report on some recent progress
in studying Hilbd(X), which is the Hilbert scheme parametrizing length d zero-
dimensional closed subschemes of X . In the following we will assume the base field
is the complex numbers.

If X is a smooth irreducible curve, then Hilbd(X) is just the d-th symmetric
product of X . A famous theorem of Fogarty [6] says that if X is a smooth ir-

reducible surface, then Hilbd(X) is a smooth irreducible variety of dimension 2d.

Briançon [3] showed that if p ∈ X , then the punctual Hilbert scheme Hilbdp(X),
which parametrizes closed subschemes of length d supported at p, is irreducible of
dimension d − 1. Moreover, Haigman [8] showed that Hilbdp(X) is reduced. If X

is a smooth variety of dimension n ≥ 3, then Iarrobino [9] showed that Hilbd(X)
is reducible for d ≫ 0. For an irreducible reduced singular curve X , the classical
theorem of Altman–Iarrobino–Kleiman [1] and Rego [10] says that Hilbd(X) is
irreducible for every d if and only if X has locally planar singularities. One sees
that the inequality on the dimension of the tangent space at a singular point is
obviously necessary. Otherwise Hilb2

p(X), the punctual Hilbert scheme supported
at a singular point p, would have dimension greater or equal to two, which implies
that Hilb2(X) is already reducible. From that one sees that Hilbd(X) is reducible
for all d ≥ 2. Conversely if X is a curve in a smooth surface S, then Hilbd(X)

is defined as the zero scheme of rank d tautological vector bundles on Hilbd(S).

It follows that each irreducible component of Hilbd(X) has dimension greater or
equal to d. Using the fact that for a singular point p of X , Hilbap(X) ⊂ Hilbp(S),
so the dimension of Hilbap(X) is less than or equal to a− 1 by Briançon’s theorem.

One sees that the subvariety in Hilbd(X) corresponding to those subschemes with
nonempty intersection with the singular set of X has dimension at most d−1. We
conclude that Hilbd(X) is irreducible.

We see the only remaining case where the irreducibility of Hilbd(X) for all d is
undecided is the case when X is a singular surface. We can start with the following
easy observations.

Theorem 1. Let X be an irreducible reduced surface.
(1) If there is a point p ∈ X such that the dimension of the tangent space of X at

p is ≥ 5, then Hilbd(X) is reducible for all d ≥ 2.

(2) If there is a point q ∈ X such that Multq(X) ≥ 5, then Hilbd(X) is reducible
for d≫ 0.
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The following nice theorem was proved by my student Xudong Zheng last year
under my supervision.

Theorem 2. [12] Let X be an irreducible surface with at worst rational double

point singularities. Then Hilbd(X) is irreducible for all d.

The following are some of the key ingredients to the proof of the above theorem.
Let Z be a zero-dimensional closed subscheme of X supported at a rational double
point p in X . Let R be the local ring of X at p. Consider a resolution of the ideal
IZ of the following form:

0 → F → R⊕r → Iz → 0.

Observe that F is a direct sum of irreducible reflexive modules. There are only
a finite number of irreducible modules on a rational double point and they are
completely classified [2], [7]. Now we consider the morphism ϕ : F → R⊕r. Using
the various extensions between the reflexive modules, one shows that one can
deform the module F and the morphism ϕ to a morphism ϕ′ : R⊕r−1 → R⊕r.
This will show that the closed subscheme Z is smoothable in X and it would
follow that Hilbd(X) is irreducible.

Cartwright and his coworkers [4] found the following very surprising behavior of
Hilb8(C4). Their theorem says that Hilb8(C4) has exactly two irreducible compo-
nents. The general point of the first component corresponds to eight distinct points
and this component is of dimension 32. The second component is of dimension
25. Each closed subscheme Z corresponding to a point in the second component
is supported at only one point p in C4. Let m be the maximal ideal of p. Then
IZ is generated by m

3 plus a seven-dimensional subspace in m
2/m3. Note that a

closed subscheme Z corresponding to a point in the second component but not in
the first is not smoothable in C4. Furthermore they show that at a general point
q of the second component the tangent space at q of Hilb8(C4) is of dimension 25.

So Hilb8(C4) is smooth at such a point q.
Suppose X is the cone over a twisted cubic curve. One can show that there is

such a length 8 closed subscheme Z ⊂ X which is only in the second component.
This shows that the closed subscheme Z of length 8 in X will not be smoothable
in X . Hence Hilb8(X) is reducible. From this example, one can wonder whether

the following is true: For a singular irreducible surface X , it holds that Hilbd(X)
is irreducible for every d if and only X has at worst rational double points as
singularities.
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Holonomy representation of quasi-projective leaves

Jorge V. Pereira

(joint work with B. Claudon, F. Loray, F. Touzet)

1. Motivation

Singular holomorphic foliations of dimension one on projective manifolds abound.
Since Frobenius integrability condition is automatically satisfied for rank one sub-
sheaves of the tangent bundle, any rational vector field determines a foliation. It is
known that for sufficiently general rational vector fields the corresponding foliation
is dynamically interesting: according to [9, Theorem 1] every leaf is Zariski dense
and it is not tangent to any other higher dimensional foliation (or web).

Foliations with leaves of higher dimensions are substantially harder to produce.
One can of course start with a one dimensional foliation F on a projective manifold
X , consider a surjective morphism π : Y → X and take the pull-back foliation π∗F .
If the general fiber of π is positive dimensional then we end up with a foliation of
dimension greater than one.

Another natural way to produce higher dimensional foliations is through flat
meromorphic connections. Given a flat meromorphic connection ∇ on a vector
bundle E over a projective manifold X , one has a natural foliation on the total
space of E determined by the flat sections of ∇. Foliations produced in this way
are invariant by the natural action of C∗ on E and therefore determine foliations
on P(E).

We can combine both constructions above to obtain the class of codimension one
transversely projective foliations. A codimension one foliation F on a projective
manifold X is called transversely projective if there exists a rank two vector bundle
E endowed with a flat meromorphic connection ∇, and a rational section σ : X 99K

P(E) such that F = σ∗G, where G is the foliation on P(E) determined by ∇.
Every single known example of codimension one foliation on projective man-

ifolds of dimension at least three fits into one of the descriptions above. The
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conjecture below due to Cerveau and Lins Neto predicts that every codimension
one foliation on a projective manifold fits into this description.

Conjecture 1. Let F be a codimension one holomorphic foliation on a projective
manifold X. Then one of the following assertions holds true.

(1) The foliation F is transversely projective; or
(2) There exists a rational map π : X 99K Y to a projective surface Y and a

foliation G on Y such that F = π∗G.

2. Main Result

The main purpose of the talk is to discuss the result below, which provides some
evidence in favor of the Cerveau–Lins Neto conjecture.

Theorem 2. Let X be a quasi-projective manifold, and let ρ : π1(X, ·) → Diff(C, 0)
be a representation of the fundamental group of X in Diff(C, 0), the group of formal
biholomorphisms of (C, 0). Let also Γ be the image of ρ. If Γ is not virtually
abelian then there exists a morphism f : X → C from X to an orbicurve C, and a
representation ̺ : πorb

1 (C, ·) → Γ/Center(Γ) fitting into the commutative diagram

π1(X, ·) Γ

πorb
1 (C, ·) Γ

Center(Γ)

ρ

f∗

̺

where the unlabeled arrow is the natural quotient morphism.

Representations like the one in the statement of the theorem above appear as the
holonomy representation of quasi-projective leaves of codimension one foliations.

Theorem 2 was first proved for representations of fundamental groups of pro-
jective manifolds [4]. The case of representations of fundamental groups of quasi-
projective manifolds was treated more than one year afterwards in [5].

3. Elements of the proof

The proof of Theorem 2 splits into three cases. In each of them, the proof makes
use of a distinct criterion for the existence of fibrations on quasi-projective mani-
folds. Each of the cases is briefly discussed below under the label identifying the
corresponding criterion.

3.1. Cohomology jumping loci. When the representation has infinite linear
part, no matter if X is projective or quasi-projective, the fibration f : X → C
is produced by applying results on cohomology jumping loci [1] to the first non-
abelian truncation of ρ. The result for the original representation is deduced from
Deligne’s Theorem on the structure of the monodromy quasi-projective fibrations
[6, Corollary 4.2.9].
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3.2. Castelnuovo–De Franchis–Catanese. When the representation is tangent
to the identity and the manifold X is projective, the fibration f : X → C is pro-
duced by means of the Castelnuovo–De Franchis–Catanese criterion for the exis-
tence of fibrations. Looking at the first non-abelian truncation of the image Γ
of the representation, one is able to produce two linearly independent elements
a, b ∈ H1(Γ,C) with a ∧ b = 0. The Castelnuovo–De Franchis–Catanese Theo-
rem [3, Theorem 1.10] implies that the truncated representation factors through
an orbicurve. As in the previous case, the factorization of the original representa-
tion is deduced from Deligne’s Theorem.

3.3. Three disjoint homologous divisors. When the representation is tangent
to the identity, the ambient manifold is quasi-projective, and the representation
does not extend to a representation of a projective compactification, then the proof
uses a result by Totaro [10, Theorem 2.1] which asserts the existence of a fibration
on a give projective manifold whenever it carries three pairwise disjoint divisors
with proportional Chern classes. Of course, such a fibration has (rational multiples
of) the three disjoint divisors among its fibers. For alternative proofs of Totaro’s
result and variations on the statement see [8] and [2].

In order to produce the three disjoint divisors, the proof analyzes the represen-
tation in a neighborhood of infinity and uses the residual finiteness of Γ in order to
produce finite coverings of X which compactify to projective manifolds having the
sought three disjoint divisors with proportional Chern classes. The arguments are
very similar to the ones carried out to investigate representations of fundamental
groups of quasi-projective manifolds in SL(2,C) which are not quasi-unipotent at
infinity, see [7, Theorem A].

References

[1] D. Arapura, Geometry of cohomology support loci for local systems. I. J. Algebraic Geom.
6 (1997), no. 3, 563–597.

[2] F. Bogomolov, A. Pirutka, A. M. Silberstein, Families of Disjoint Divisors on Varieties
Available at arXiv:1504.05534v2 [math.AG].

[3] F. Catanese, Moduli and classification of irregular Kähler manifolds (and algebraic vari-
eties) with Albanese general type fibrations. Invent. Math. 104 (1991), no. 2, 263–289.

[4] B. Claudon, F. Loray, J. V. Pereira, and F. Touzet, Compact leaves of codimension one
holomorphic foliations on projective manifolds. Available at arXiv:1512.06623 [math.CA]

[math.AG]. To appear in Annales Scientifiques de l’École Normale Supérieure.
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Volumes of subvarieties of compactifications of hermitian locally
symmetric spaces

Yohan Brunebarbe

Let D be a bounded symmetric domain. If Γ is a torsion-free arithmetic lattice in
Aut(D), then due to the work of Satake and Baily–Borel the quotient XΓ := Γ\D
is known to admit a unique structure of smooth quasi-projective complex variety
compatible with its complex manifold structure. A complex algebraic variety ob-
tained in this way is called an arithmetic locally symmetric variety. The vari-
ety XΓ has numerous hyperbolicity properties: it is Brody hyperbolic (because
its universal cover is a bounded domain), all its subvarieties are of log general
type [7] and have a big logarithmic cotangent bundle [1]; see also [3]. However, its

Satake–Baily–Borel compactification X
∗

Γ might in general be very far from being
hyperbolic. For example, the moduli space A2(3) of principally polarized abelian
surfaces with a level three structure, which is an arithmetic locally symmetric vari-
ety covered by the Siegel upper half space H2 of degree 2, is known to be birational
to P3.

From the point of view of hyperbolicity, the situation becomes much improved
if one allows oneself to take a finite index subgroup Γ′ ⊂ Γ, or equivalently if one
looks at the corresponding finite étale cover XΓ′ of XΓ. Indeed, Nadel [5] proved
that there exists a finite index subgroup Γ′ ⊂ Γ such that the Satake–Baily–Borel

compactification X
∗

Γ′ of XΓ′ is Brody hyperbolic. Moreover, we proved in [2] that

Γ′ can be chosen such that in addition every subvariety of X
∗

Γ′ is of general type.
In another direction, building on earlier work of Noguchi [6], Hwang and To [4]
proved that for any g ≥ 1 there exists a finite index subgroup Γg ⊂ Γ such that

every smooth projective curve admitting a non-constant map to X
∗

Γg
has genus at

least g. Our main result is a common generalization of the results of [2] and [6, 4]:

Theorem 1. Let D be a bounded symmetric domain and Γ be an arithmetic lattice
in Aut(D). For any v > 0, there exists a finite index subgroup Γv ⊂ Γ such that

every smooth projective variety admitting a generically finite map to X
∗

Γv
satisfies

vol(X) ≥ v.

Recall that the volume vol(X) := vol(ωX) of a smooth proper algebraic variety
X is a non-negative real number which is a measure of the positivity of its canonical
bundle ωX . More generally, for any line bundle L on the n-dimensional variety X
we set

vol(L) := lim sup
k→∞

n!

kn
· h0(X,L⊗k).

Note that two birational smooth proper algebraic varieties have the same volume
because their canonical algebras are canonically isomorphic. Clearly, a smooth
proper algebraic variety X is of general type exactly when vol(X) > 0. If X is a
smooth projective curve of genus g, then vol(X) = 2g2.

The proof of Theorem 1 follows the strategy introduced in [2]. A key new input
is provided by the following new result:
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Theorem 2. Let D be a bounded symmetric domain and Γ be an arithmetic lattice
in Aut(D). For any v > 0, there exists a torsion-free subgroup Γv ⊂ Γ of finite
index such that for any smooth toroidal compactification X of XΓv with boundary
D and any smooth projective variety Y with a generically finite map f : Y → X,
we have vol

(
f∗ωX(D)

)
≥ v.
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Cones of Heegner divisors

Martin Möller

(joint work with Jan H. Bruinier)

The pseudo-effective cone Eff(X) of a projective algebraic variety X is an impor-
tant invariant that is notoriously hard to compute. If X is a moduli space, the
modular interpretation may provide insights to the structure of this cone. E.g. it
was shown recently by Mullane ([5]) that the effective cone Eff(Mg,n) of the mod-
uli space of stable pointed curves is not finitely generated for g ≥ 2 and n ≥ g+1,
contrasting the finite generatedness for g = 0 and small n.

Here we study the pseudo-effective cone on orthogonal Shimura varieties, in
particular the case of the moduli space F2d of polarized K3 surfaces, to which
we restrict in this summary. This moduli space contains a class of natural divi-
sors, the Noether–Lefschetz divisors, that may equivalently be described by lattice
conditions and which are also called Heegner divisors. The question on the finite
generatedness of Eff(F2d) was raised in [6] in connection with computing Kodaira
dimensions of F2d. In [3] we are able to determine the structure of the subcone
generated by the irreducible components of the Heegner divisors.

Theorem 1. The cone EffPH(F2d) generated by the primitive Heegner divisors is
a finitely generated rational polyhedral cone.

The question whether EffPH(F2d) ⊆ Eff(F2d) is a strict subcone or whether the
two cones coincide remains an interesting open problem.
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By the work of Borcherds [4] and Bruinier [2], together with the recent result
of Bergeron, Li, Millson and Moeglin [1], the rational Picard group of F2d is
isomorphic to the dual space of M0

k,L, the vector space of vector-valued modular
forms of weight k for the Weil representation that are zero at all but one cusp.
The main theorem is thus a refinement (due to considerations of the irreducible
components of Heegner divisors) of the following statement about modular forms.
It contains, for L simply a hyperbolic plane, a statement about usual modular
forms for SL2(Z).

Theorem 2. Let L be a lattice of signature (b+, b−) that splits off a hyperbolic
plane. We suppose that k ≥ 2 and 2k − b+ + b− ≡ 4 (mod 8). Then the cone C
generated by the coefficient functionals cm,µ on the space of weight k almost cusp
forms M0

k,L for the lattice L (where µ ∈ L∨/L and m ∈ (Z + Q(µ)) ∩ Q>0) is a
finitely generated rational polyhedral cone.

The proof is based on the geometric observation that if the generating rays of
a cone converge to an interior ray of the cone, then the cone is in fact finitely
generated. To verify this convergence we use estimates for the Fourier coefficients
of elements in M0

k,L and to show the interior ray property we use pairings with
appropriate weakly holomorphic modular forms of weight 2− k.
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An approach to the Griffiths conjecture

Philipp Naumann

In the talk we present a strategy to prove or to investigate the Griffiths conjecture,
which asserts that any ample vector bundle over a compact complex manifold is
Griffiths positive. We make use of curvature formulas for direct image metrics and
recent results for the Kähler–Ricci flow on Kähler–Einstein Fano manifolds.

Let E → S be a holomorphic vector bundle of rank r over a compact complex
manifold. The projectivized bundle X := P(E∗) carries the tautological line bundle
OE(1). There is an isomorphism

f∗(OE(1)) ∼= E where f : P(E∗) → S.
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We start with a hermitian metric H on E, which induces a metric h on OE(1).
Its curvature form is denoted by

ωX := −
√
−1∂∂̄ log h.

We choose local holomorphic coordinates (sk) on the base S and denote the hori-
zontal lift of a tangent vector ∂k by vk (see [7]). We obtain the Kodaira–Spencer
form

Ak := ∂̄(vk)|Xs

and define the geodesic curvature in the direction of k, ℓ by

ϕkℓ = 〈vk, vℓ〉ωX
.

By using the local expression for the curvature form for the indued metric h on
OE(1), we see that the matrix (ϕkℓ) is positive definite iff the hermitian bundle
(E,H) is Griffiths positive. We have the following results:

Proposition 1. The equation

(�− r)ϕkℓ = Ak · Aℓ − f∗(trREH)kℓ,

holds, where REH is the curvature of (E,H).

Proposition 2. The Kodaira–Spencer forms Ak are harmonic, hence zero.

Together with a curvature formula for L2 metrics on general direct images due
to To and Weng ([8]), we show by a computation that the curvature of the direct
image metric on f∗OE(1) = E gives back the original curvature of (E,H) up to a
constant factor.

Now we forget about the metric H on E and start with a positive hermitian
metric h on OE(1). The forms −

√
−1∂∂̄ log h on the fibers Xs induce a metric on

K−1
X/S which we denote by (−

√
−1∂∂̄ log h)n. Furthermore, the metric h on OE(1)

induces a direct image metric on detE ∼= f∗(KX/S ⊗ OE(r)) (see [1]) and hence

also a hermitian metric on f∗ det(E)−1, which we normalize in an appropriate
way. By a careful analysis of the previous computation, we obtain the following
result:

Theorem 3. If the canonical isomorphism

(1) K−1
X/S

∼= OE(r) ⊗ f∗ det(E)−1

is an isometry, then the direct image metric on f∗(O(1)) = E is Griffiths positive.

The relation stated in the theorem implies that the curvature form of h de-
fines Kähler–Einstein metrics on the fibers, which are projective spaces. But the
Fubini–Study metrics on P(E∗

s ) are in one-to-one correspondence with hermitian
structures on E∗

s , hence the theorem should actually give a characterisation of
those metrics on OE(1) which are induced by metrics on E. Furthermore it gives
a link between the Kähler–Einstein problem on projective spaces and the Griffiths
conjecture. Therefore we propose to study the relative Kähler–Ricci flow on the
bundle OE(r) instead of K−1

X/S (cf. [3]).
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For this purpose we start with a hermitian metric h on OE(1) which is positive
along the fibers. We use the notation hr = e−ϕ by which we mean the pointwise
norm squared of a local trivializing section of OE(r). The associated L2 norm of
a section us ∈ H0(Xs,KXs ⊗OE(r)) ∼= detE can the be written as

||us||2 :=

∫

Xs

|us|2e−ϕ :=

∫

Xs

cn|s|2e−ϕdz ∧ dz,

where dz is a local trivializing section of KXs . Here all (local) sections are chosen
to be compatible with the isomorphism (1). Now e−ψ := ||us||2 is a metric on
f∗ detE. Hence

e−ϕ := e−ϕeψ

is a metric on K−1
X/S which is the pointwise norm squared of the trivializing section

(dz)−1. But more globally this is a volume form on Xs, in other words

µϕ := e−ϕ
/∫

Xs

|us|2e−ϕ

is a volume form on each fiber Xs, which does not depend on the choice of the
local trivializing section u. Moreover we have

Proposition 4. µϕ is a probability measure.

Thus we define the flow of hermitian metrics ϕt on OE(r) which are all positive
along the fibers Xs by

(2) ϕ̇t = log

(
(ddcϕt)

n/n!

µϕ

)
, ϕ0 = ϕ.

For the convergence we would like to argue like in [3], where the fiberwise flow is
formulated for the bundle K−1

X/S for a family of Kähler–Einstein Fano manifolds

with fiberwise discrete automorphism group. But instead we have to invoke the
recent developments concerning the Kähler–Ricci flow on Fano Kähler–Einstein
manifolds ([9, 5, 6, 4]) that study the case of a non discrete automorphism group.
Using these results, the argument is roughly as follows: For the normalized flow
(2) the time derivative ϕ̇t coincides with the normalized Ricci potential for which
we have Perelman’s estimates. The convergence of ϕ̇t to zero with exponential
rate can be integrated to show that the sequence (ϕt) is Cauchy. Thus the flow
converges in C∞ to a hermitian metric ϕ∞ on OE(r) which is positive along the
fibers.

Remark 5. As an observation we remark that the hermitian metric onK−1
X/S given

by the Monge–Ampère measure (ddcϕt)
n/n! splits in the limit into the product

metric

e−ϕ∞ ·
(∫

|us|2e−ϕ∞

)−1

,

which is of course what we expect in the Kähler–Einstein limit.
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Remark 6. The construction works for any holomorphic vector bundle E → S.
In particular if detE is trivial, then the bundle K−1

X/S is canonically isomorphic to

OE(r) and the flow (2) coincides with the normalized flow in [3].

Now we turn back to the Griffiths problem and start with a positive metric h
on OE(1). Then we run the flow (2) for the positive initial metric hr = e−ϕ0 .
In order to apply Theorem 3 to the limit metric, we are left to prove that the
positivity of ϕ is preserved under the flow (2). The obstruction to apply the usual
maximum principles for the heat equation is the term

(∫
|us|2e−ϕ∞

)−1

,

whose curvature is negative if e−ϕ is positive (see [2]). Thus this question remains
open.
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Chern’s conjecture for special affine manifolds

Bruno Klingler

An affine manifold X in the sense of differential geometry is a differentiable mani-
fold admitting an atlas of charts with values in an affine space, with locally constant
affine change of coordinates. Equivalently, it is a manifold whose tangent bundle
admits a flat torsion free connection. Around 1955, Chern conjectured that the
Euler characteristic of any compact affine manifold has to vanish. Kostant and
Sullivan [5] proved this conjecture in the case where X is a compact quotient Γ\Rn
of Rn by a discrete subgroup Γ of the affine group, acting properly discontinuously
on Rn. In this talk we explained our proof [4] of Chern’s conjecture in the case
where X admits a parallel volume form (such a manifold is called special affine):
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Theorem 1. If X is a connected closed special affine manifold then χ(X) = 0.

Let us now describe the strategy of the proof of Theorem 1. We start with the
classical:

Proposition 2. Let X be a connected oriented closed n-manifold and E an ori-
ented real vector bundle on X of rank r > 0, with total space E. The Euler class
eR(E) ∈ Hr(X,R) vanishes if and only if the natural morphism between cohomol-
ogy with compact support and usual cohomology

R ≃ Hr
c (E ,R) −→ Hr(E ,R) ≃ Hr(X,R)

vanishes.

We study differential forms on E using the geometry of E . When E is a mere
bundle, the only natural geometric structure on E is the foliated structure given by
the projection π : E −→ X . If in addition we assume that the bundle E is endowed
with a flat connection ∇, the total space E has a natural local product structure.
For any manifoldM endowed with a local product structure, the de Rham complex
of sheaves of real differential forms (Ω•

M , d) is enriched with a natural bigrading
(Ω•,•

E , d′, d′′), d′ being the differential in the “horizontal” direction and d′′ the one
in the “vertical” direction. This bigrading defines two filtrations d′F

• and d′′F
•, on

H•
c (E ,R) and also on H•(E ,R). As usual the graded pieces of these filtrations are

computed by spectral sequences d′E
•,•
• and d′′E

•,•
• (both in the compact support

case and the usual one). I don’t know how to compute these filtrations for a
general local product structure.

On the other hand, when M is the total space E of a flat bundle E on X , one
can compute these filtrations, with the exception of d′′F

• on H•
c (E ,R).

The morphism H•
c (E ,R) −→ H•(E ,R) we want to study is induced by a mor-

phism of spectral sequences ϕ•,•
• : d′′E

•,•
c,• −→ d′′E

•,•
• and the relation between the

local product structure on E and the vanishing of eR(E) is given by the following
refinement of Proposition 2:

Proposition 3. Let X be a connected oriented closed n-manifold. Let E be an
oriented flat real vector bundle on X of rank r > 0 with total space E and projection
π : E −→ X. The Euler class eR(E) ∈ Hr(X,R) vanishes if and only if the map

ϕ0,r
∞ : Gr0

d′′
F•Hr

c (E ,R) = d′′E
0,r
c,∞ −→ d′′E

0,r
∞ = Gr0

d′′
F•Hr(E ,R) = R

vanishes.

We are mainly interested in the case n = r. In this case the local product
structure on E is called a para-complex structure on E . The bigrading (Ω•,•

E , d′, d′′)
is formally similar to the bigrading of the complex analytic de Rham complex on a
complex manifold, except that there is no involution of (Ω•

E , d) exchanging d′ and
d′′ (like conjugation in the complex setting).

Suppose now that the vector bundle E is the tangent bundle TX . Any linear
connection ∇ on TX defines a natural almost complex structure I on E . Moreover
Dombrowski [2] proved that I is a complex structure if and only if ∇ is flat and
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torsion-free, i.e. X is an affine manifold. This complex structure was further
studied by Cheng and Yau [1].

The interplay of this complex structure on E and the natural para-complex
structure on E is our main tool for studying the vanishing of eR(TX): the total
space E of the tangent bundle of an affine manifold acquires a very rich para-
hypercomplex structure, a notion analogous to a hypercomplex structure in complex
geometry. In particular the standard para-complex structure on E is the value at
θ = 0 ∈ [0, 2π[ of an S1-family of para-complex structures, induced by a canonical
SO(2)-action on TE . Such an S1-family simply does not exist if ∇ is flat but has
non-trivial torsion. Notice moreover that for θ 6= 0 mod π/2, the para-complex
structure on E corresponding to θ does not come from a flat bundle structure on
TX .

For each θ ∈ S1 the corresponding para-complex structure defines, as above,
a filtration d′′θ

F •, on H•
c (E ,R) and on H•(E ,R). It satisfies d′′θ=0

F • = d′′F
• and

d′′θ=π/2
F • = d′F

•. The main idea in the proof of Theorem 1 is that while the filtra-

tions d′F
• and d′′F

• are unrelated when E is the total space of a mere flat bundle,
the S1-family of para-complex structures on the total space E of the tangent bun-
dle of an affine manifold induces an S1-family of filtrations interpolating between
them. Technically speaking, we construct a spectral sequence in the category of
sheaves over S1, obtaining a morphism

ϕ0,n
∞,S1 : d′′E0,n

c,∞ −→ d′′E0,n
∞

of sheaves over S1. The subtle relation between this spectral sequence of sheaves,
and the spectral sequence we are interested in at the point θ = 0, lies in the
existence of a canonical factorisation of the morphism ϕ0,n

∞ as

(1) ϕ0,n
∞ : d′′E

0,n
c,∞

∼
//
(
d′′E0,n

c,∞

)
θ=0

(
ϕ0,n

∞,S1

)

θ=0
//
(
d′′E0,n

∞

)
θ=0

//
d′′E

0,n
∞ .

A crucial feature of the sheaves d′′E0,n
c,∞ and d′′E0,n

∞ on S1 is their constructibility,
as they are quotients of the constant sheaf RS1 . Suppose now that X is special
affine. We use this constructibility, the fact that d′′θ=π/2

F • = d′F
• and the existence

of an affine volume form on X to show that the sheaf d′′E0,n
∞ is identically zero. It

follows from (1) that the morphism ϕ0,n
∞ vanishes. By Proposition 3, this finishes

the proof of Theorem 1.
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Borel’s theorem for the moduli of canonically polarized varieties

Ariyan Javanpeykar

(joint work with Robert Kucharczyk, Ruiran Sun, Kang Zuo)

In [1] Borel showed that, for a finite type reduced scheme S over C and arithmetic
locally symmetric variety X , every holomorphic map San → Xan is algebraic. The
first thing we do in this talk is formalizing this property: a locally finite type
scheme over C is Borel hyperbolic if, for all finite type reduced schemes S over C,
every holomorphic map San → Xan is algebraic. In this terminology, an arithmetic
locally symmetric variety is Borel hyperbolic (by the aforementioned theorem of
Borel). Moreover, by a theorem of Kobayashi and Kwack, if X is hyperbolically
embedded in a proper scheme Y , then X is Borel hyperbolic.

We show that there are Borel hyperbolic varieties which are not Kobayashi hy-
perbolic (and therefore not hyperbolically embeddable). This motivates studying
Borel hyperbolicity independently from Kobayashi hyperbolicity.

We use algebraic arguments to show that a finite type scheme X over C is Borel
hyperbolic if and only if, for all smooth affine curves C over C, every holomorphic
map Can → Xan is algebraic. In particular, by GAGA, if X is a dense open
subscheme of a proper scheme Y , and every holomorphic map D∗ → Xan extends
to a holomorphic map D → Y an, then X is Borel hyperbolic. Here D is the open
unit disk in C and D∗ = D \ {0}.

Our motivation for establishing such a result is the question of whether the
moduli stack of smooth canonically polarized varieties is Borel hyperbolic.
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Supports for Hitchin fibrations

Mark Andrea de Cataldo

(joint work with Jochen Heinloth, Luca Migliorini)

Let f : X → Y be a proper morphism of complex algebraic varieties, with X
nonsingular. The decomposition theorem of Beilinson–Bernstein–Deligne–Gabber
yields an isomorphism

Rf∗QX ∼=
⊕

q≥0

⊕

(S,L)

ICS(L)[−q],

where, for each q, (S,L) ranges in a finite set of pairs, where S is a closed integral
subvariety of Y , and L is a semisimple local system defined on some Zariski-dense
open subset of Sreg. For each q, the set of such pairs is uniquely determined
(provided we insist that S is not repeated).

One defines the supports of the morphism f to be the set of varieties S ⊆ Y
appearing in the decomposition theorem for Rf∗QX .
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The “problem of supports” is the problem of determining these varieties.
In general, this is a difficult and subtle problem. For example, Ngô’s proof of the

fundamental lemma for a complex reductive group G required him to determine
the supports of the Hitchin fibration associated with G and a compact Riemann
surface G of genus ≥ 2, “with high degree poles” (i.e. the Higgs fields are sections
of the adjoint bundles twisted by the canonical bundle tensor a divisor D with
D ≫ 0) over a rather large open subvariety (elliptic locus) of the target of the
Hitchin fibration.

In the case when G = GL(n) with D > 0, Chaudouard–Laumon proved that the
only support is the target of the Hitchin fibration (no extra supports). In the case
when G = SL(n) with D > 0, I proved that the only supports are the ones already
existing over the elliptic loci, namely the target of the Hitchin fibration together
with a finite collection of subvarieties naturally associated with the endoscopy data
for SL(n) (which can be made explicit).

The case of the Hitchin fibration without poles (D = 0) seems to be much
more subtle and geometrically more appealing. For example the Hitchin fibration
is an algebraically completely integrable system and it appears in the context of
non-abelian Hodge theory.

In joint work in progress with Jochen Heinloth and Luca Migliorini, we deter-
mine the supports for the Hitchin fibration without poles (D = 0) for G = GL(n)
over the open subset Ared of the target of the Hitchin fibration determined by
reduced spectral curves. In this case, Aell is strictly contained in Ared, as it corre-
sponds to integral spectral curves.

In order to state our main result, let me introduce a disjoint union decomposi-
tion Ared =

∐
n∗
Sn∗

, where n∗ = (n1, . . . , ns) ranges over the partitions of n and
Sn∗

is the locally closed subvariety corresponding to those spectral curves that can
be written as a union of s spectral curves, each for GL(ni), i = 1, . . . , s.

Theorem 1 (d.–Heinloth–Migliorini). The supports of the Hitchin fibration that
meet Ared are exactly the Sn∗

.

Holonomy of singular Kähler–Einstein metrics on klt varieties with
trivial canonical divisor

Daniel Greb

(joint work with Henri Guenancia and Stefan Kebekus)

1. Towards a singular version of the Decomposition Theorem

One of the cornerstones of the theory of compact Kähler manifolds with vanishing
first real Chern class is the following Decomposition Theorem: every such manifold
admits a finite, étale cover that splits as a product of a complex torus, a couple of
simply-connected Calabi–Yau (CY) manifolds (that is, compact Kähler manifolds
with trivial canonical bundle and H0

(
X,ΩpX

)
= {0} for all 1 < p < dimX), and
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a couple of irreducible holomorphic-symplectic (IHS) manifolds (that is, simply-
connected compact Kähler manifolds whose algebra of holomorphic differential
forms is generated by an everywhere non-degenerate holomorphic 2-form).

Motivated by the Minimal Model Program as well as by the much higher avail-
ability of meaningful examples, it is natural to investigate singular varieties with
trivial canonical sheaf. For reasons of availability of certain technical results, we
will restrict to the case of projective varieties in the following, where a first step
in the direction of a singular version of the Decomposition Theorem is done by
the following result, which can also be deduced from the more analytic approach
taken by Guenancia in [5].

Theorem 1 (G.–Kebekus–Peternell ’11, [4]). Let X be a normal projective variety
with at worst canonical singularities, defined over the complex numbers. Assume
that the canonical divisor of X is numerically trivial: KX ≡ 0. Then there exists

an Abelian variety A as well as a projective variety X̃ with at worst canonical

singularities, a finite cover f : A × X̃ → X, étale in codimension one, and a
decomposition TX̃

∼=
⊕

Ei such that the following holds.

• The Ei are integrable saturated subsheaves of TX̃ with det Ei
∼= OX̂ .

Further, if g : X̂ → X̃ is any finite cover, étale in codimension one, then the
following properties hold in addition.

• The reflexive pull-back sheaves (g∗Ei)
∨∨ are slope-stable with respect to any

ample polarisation on X̂.

• The irregularity of X̂ is zero; i.e., h1
(
X̂, OX̂

)
= 0.

In the following, we will call reflexive sheaves enjoying the property that they
don’t destabilise in any finite cover that is étale over the smooth locus (such as
the Ei) strongly stable.

Recently, it was shown by Druel [1] that in dimension less than or equal to five,
the foliations Ei can be integrated algebraically and in fact lead to a splitting of a

further cover of X̃. We are thus lead to study varieties with canonical singularities,
trivial canonical bundle and strongly stable tangent sheaf.

2. CY and IHS varieties

By looking at examples such as singular Kummer surfaces, it becomes clear rel-
atively quickly that the condition “simply-connected” is not the right one when
trying to define the building blocks of the singular version of the Decomposition
Theorem. At the same time, Theorem 1 indicates that looking at finite covers

η : X̂ → X , where X̂ is connected, normal and where η is étale over the smooth
locus, but potentially branched in the singularities, is crucial; we will call such
covers quasi-étale in the following discussion.

Definition 2 (CY and IHS varieties). Let X be a normal projective variety with
ωX ∼= OX and with at worst canonical singularities. We say that
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• X is a Calabi–Yau variety if for every quasi-étale cover X̂ → X and every

0 < p < dimX , we have H0
(
X̂,Ω

[p]

X̂

)
= {0}.1

• X is an irreducible holomorphic-symplectic variety if for every quasi-étale

cover η : X̂ → X we have that
⊕

pH
0
(
X̂,Ω

[p]

X̂

)
= C[η∗σ], where σ ∈

H0
(
X̂,Ω

[2]

X̂

)
is everywhere non-degenerate on Xreg.

3. Holonomy of varieties with strongly stable tangent sheaf

As in the smooth case, the classification of the irreducible pieces appearing in the
Decomposition Theorem is built upon the availability of special metrics on varieties
with trivial canonical class. In fact, the relevant generalisation of Yau’s solution of
the Calabi conjecture was shown by Eyssidieux–Guedj–Zeriahi in [2]: every ample
class [H ] ∈ H2

(
X,R) can be represented by a singular Kähler–Einstein metric

whose restriction to Xreg is smooth, though non-complete.
This non-completeness makes it impossible to apply classical results regarding

Ricci-flat manifolds such as the Cheeger–Gromoll Theorem or the de Rham De-
composition Theorem. In particular, the fundamental group of the smooth part
Xreg of X could be infinite. Nevertheless, by carefully analysing the differential-
geometric holonomy of the EGZ metric and by relying on some powerful technical
results obtained by Druel in [1] we are able to prove the following result, see [3].

Theorem 3 (G.–Guenancia–Kebekus ’17). Let X be a klt variety with numerically
trivial canonical divisor. Fix a point x ∈ Xreg. Then, the following holds.

• The holonomy group Holx of the EGZ metric on Xreg at x has only finitely
many connected components.

• The tangent sheaf TX is strongly stable if and only if the identity compo-
nent of Holx acts irreducibly on TxX.

• If TX is strongly stable, then either X is Calabi–Yau or there exists a
quasi-étale cover of X that is irreducible holomorphic-symplectic.2

• X is Calabi–Yau if and only if Holx = SU(dimX) and X is irreducible
holomorphic-symplectic if and only if Holx = Sp(dimX/2).
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[p]
X
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Ωp

X

)

∨∨
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2Examples show that in some cases taking a finite cover is indeed necessary.
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Hyperbolicity problems on some family of polarized manifolds

Sai-Kee Yeung

The purpose of the talk is to report on a joint project with Wing-Keung To on
hyperbolicity properties of some families of polarized manifolds.

It is well-known classically that moduli spaces of elliptic curves, Riemann sur-
faces of genus g ≥ 2, and hyperbolic punctured Riemann surfaces all share hyper-
bolicity properties in the sense that there exists a Hermitian metric with holomor-
phic sectional curvature and Ricci curvature bounded from above by a negative
constant. As a result, such moduli spaces are Kobayashi hyperbolic and of log
general type.

There has been a lot of interest in generalizing the above classical results to
families of higher dimensional polarized manifolds. As a result, we consider the
following three families of polarized manifolds: (a) canonically polarized manifolds,
(b) polarized Kähler–Ricci flat manifolds or orbifolds, and (c) log-canonically po-
larized manifolds. We consider the following two problems. The first one is the
existence of a metric with holomorphic curvature bounded from above by a neg-
ative constant, from which Kobayashi hyperbolicity of the base manifold follows.
The second one is the conjecture of Viehweg that the base space of the family is
of general type. Here are the results that we obtained.

Theorem 1. Let π : X → S be an effectively parametrized holomorphic family
of polarized complex manifolds of type (a), (b) or (c) over a complex manifold
S. Then S admits a C∞ Aut(π)-invariant Finsler metric whose holomorphic sec-
tional curvature is bounded above by a negative constant. As a consequence, S is
Kobayashi hyperbolic.

Theorem 2. Let π : X → S be an effectively parametrized family of n-dimensional
manifolds of any one of the types (a), (b) or (c) over an m-dimensional quasi-
projective manifold S. Denote by S a smooth projective compactification of S in
which D := S\S is a simple normal crossing divisor. Then the following statements
hold:

(i) There exist a positive integer 1 ≤ ℓ ≤ m, an Aut(π)-invariant torsion-free
coherent subsheaf V of Sℓ(Ω1

S
(logD)) and an Aut(π)-invariant singular

Hermitian metric h on V of positive curvature in the sense of Griffiths.
(ii) There exists a big invertible subsheaf L of (Ω1

S
(logD))⊗k over S for some

positive integer k.
(iii) The log canonical line bundle KS +D is big on S.
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As a consequence of the above result, we get the following theorem as well.

Theorem 3. Let π : X → S be a holomorphic family of polarized manifolds of type
(a), (b) or (c) over a quasi-projective manifold S. Then the following statements
hold.

(i) Suppose π has maximal variation. Then S is of log general type.
(ii) Suppose S is special. Then π is isotrivial.

Theorem 3(ii) in case (a) originally was a conjecture of Campana.
There are many results in the literature about the above problems. We refer

the reader to our papers [4]–[7] for details. Here we would just like to point out
that the approach here begins with a paper by Siu [2]. Brody hyperbolicity for a
family in case (a) was first proved by Viehweg–Zuo [8]. The sheaf satisfying the
conditions in Theorem 2(ii) is usually called a Viehweg–Zuo sheaf. Existence of a
Viehweg–Zuo sheaf in case (a) was first proved in [9]. The first proof of Theorem
3(i) and Theorem 3(ii) in case (a) was given by Campana–Paun [1] and Taji [3],
respectively.
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Properness of the space of relative divisors and semi-continuity of the
algebraic dimension

Daniel Barlet

We show that in a holomorphic family of compact complex connected manifolds
parametrized by an irreducible complex space S, assuming that on a dense Zariski
open set S∗ in S the fibres satisfy the ∂∂̄-lemma, the algebraic dimension of each
fibre in this family is at least equal to the minimal algebraic dimension of the fibres
in S∗. For instance, if each fibre in S∗ is Moishezon, then all fibres are Moishezon.
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A decomposition theorem for projective manifolds with nef
anticanonical bundle

Junyan Cao

(joint work with Andreas Höring)

Let X be a compact Kähler manifold with nef anticanonical bundle. Initiated by
the fundamental papers [2, 7, 8], we can study the structure of X by looking at
the natural maps attached to X , e.g. the Albanese map or the MRC fibration.
Thanks to [13, 14, 11], we know that the Albanese map is semistable and the
Kodaira dimension of the base of the MRC fibration is 0. Conjecturally, we expect
that these two natural maps are locally isotrivial. More precisely, we have the
following conjecture.

Conjecture 1. Let X be a compact Kähler manifold with nef anticanonical class.

Then the universal cover X̃ of X decomposes as a product

X̃ ≃ Cq ×
∏

Yj ×
∏

Sk × Z,

where Yj are irreducible Calabi-Yau manifolds, Sk are irreducible hyperkähler man-
ifolds, and Z is a rationally connected manifold.

This conjecture has been proven under the stronger assumption that TX is nef
[2, 7], −KX is hermitian semipositive [8, 3], 3-dimensional projective case [12, 1]
or the general fibre of the Albanese map is weak Fano [5].

In this joint work with A. Höring [6], we focus on the case whereX is a projective
manifold. Thanks to [4], for any projective manifold X with nef anticanonical
bundle the Albanese map X → Alb(X) is a locally trivial fibration. By [10], after
a finite étale cover, the generic fiber of the Albanese map is simply connected.
So the next step is to study X when it is simply connected. We show that the
structure of X is as simple as possible:

Theorem 2. [6] Let X be a projective manifold such that −KX is nef and π1(X) =
1. Then X ≃ Y × F such that KY ∼ 0 and F is a rationally connected manifold.

As a consequence, we obtain a precise description of the MRC-fibration:

Theorem 3. [6] Let X be a projective manifold such that −KX is nef. Then there
exists a locally trivial fibration X → B such that the fibre F is rationally connected
and KB ≡ 0. Moreover the following holds:

(i) There exists a finite étale cover X ′ → X such that X ′ ≃ Y × Z where
KY ≃ OY and Z is a locally trivial fibre bundle Z → Alb (Z) with fibre F .

(ii) If H0(F, TF ) = 0, there exists a finite étale cover X ′ → X such that X ′ ≃
B′ × F where KB′ ≃ OB′ and F is rationally connected.

In particular, Conjecture 1 holds if X is projective.

Let us explain briefly the proof of Theorem 2.

Sketch of the proof of Theorem 2. Thanks to the seminal work of Q. Zhang [14],
the base of the MRC fibration p : X 99K Y has Kodaira dimension zero, so the
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situation of Theorem 2 looks similar to the case of the Albanese fibration studied
in [4]. However, as the MRC fibration is only an almost holomorphic map, we
have to proceed in a less direct way.

Let ϕ : Γ → Y be a resolution of the MRC fibration. The first step is to describe
the structure of the fibre space ϕ : Γ → Y . By using the positivity of direct images
as well as the arguments in [14], we construct a ϕ-big line bundle L0 on Γ such
that for all p sufficiently divisible, the direct image sheaves

ϕ⋆(OΓ(pL0))

are trivial vector bundles over a certain open subset Y0 ⊂ Y which is simply
connected and has only constant holomorphic functions. Following an argument
going back to [7] this implies that we have a birational map

ϕ−1(Y0) 99K Y0 × F,

where F is a general fibre of the MRC fibration.
The second step is to see how the product structure of some birational model

yields a product structure on X . Let E be the exceptional locus of the birational
map π : Γ → X . In our case we can prove that the product structure on Y0 × F
induces a splitting of the tangent bundle of ϕ−1(Y0) \ E. Since the complement
of ϕ−1(Y0) \ E ⊂ X has codimension at least two (by the construction of Y0), we
obtain a splitting of the tangent bundle TX defining two algebraically integrable
foliations. Then the standard arguments for manifolds with split tangent bundle
(cf. [9]) yield the theorem. �
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Foliations in P2 with invariant curves

Nessim Sibony

Consider the following polynomial differential equation in C2:

dz

dt
= P (z, w),

dw

dt
= Q(z, w).

The polynomials P and Q are holomorphic, the time is complex. In order to study
the global behavior of the solutions, it is convenient to consider the extension to a
foliation in the projective plane P2. There are however singular points. When the
line at infinity is invariant, Khudai Verenov has shown that generically, except for
the line at infinity, leaves are dense. This follows from the study of the holonomy on
the invariant line. But generically on the vector field, more precisely, generically
on the foliation of geometric degree d, there is no invariant line and even no
invariant algebraic curve as shown by Jouanolou. This example is a special case
of a lamination (with singularities) by Riemann surfaces. In particular, one can
consider similar questions in any number of dimensions.

In order to understand their dynamics, we need some analysis on such objects.
We will discuss harmonic currents directed by the lamination, the heat equation
with respect to a harmonic measure and geometric ergodic theorems for lamina-
tions with singularities. They are the analogues in this context of the classical
Birkhoff ergodicity theorem.

There are quite surprising rigidity theorems: Foliations in P2, with no invariant
algebraic curve and with all singularities hyperbolic, are uniquely ergodic.

I will discuss mostly the proof of a recent result with T. C. Dinh which asserts
the following: Consider a foliation in the projective plane admitting an invariant
line, which is the unique invariant algebraic curve. Assume that the foliation is
generic in the sense that its singular points are hyperbolic. Then, there is a unique
positive harmonic (1, 1)-current of mass 1 which is directed by the foliation and
this is the current of integration on the invariant line. In a point of view from
Nevanlinna’s theory, every leaf of the foliation is concentrated near the invariant
line. However every leaf, except the line at infinity, is dense. The result uses an
extension of our theory of densities for currents. One obtains similar results for
foliations on compact Kähler surfaces.

The article is available at DOI 10.1007/s00222-017-0744-2 (Invent. Math.).
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Asymptotics of L2 and Quillen metrics for degenerations of
Calabi–Yau manifolds

Christophe Mourougane

(joint work with Dennis Eriksson, Gerard Freixas i Montplet)

Our first motivation was to generalize Kodaira’s bundle formula for elliptic surfaces
π : S → C (a proper surjective relatively minimal Kähler morphism with connected
fibres between a smooth complex surface S and a smooth complex curve C with
general fibers of genus one) to families of higher dimensional Calabi–Yau manifolds,
using a metric point of view. The original formulation of Kodaira [5], giving the
contributions of the singular fibres in topological terms,

KS/C = π⋆π⋆(KS/C)⊗OS




∑

π−1(p) of
type mIn

m− 1

m
π−1(p)


 ,

(π⋆KS/C)
⊗12 = OS


∑

p∈C

χ
(
π−1(p)red

)
p


 ,

turns out to be related to Quillen-type metrics, whereas the reformulation by
Kawamata in terms of the modular map J : C → P1 for elliptic fibers and the log
canonical threshold lct(S, π−1(p)) of the singular fibres (see [6])

(KS/C)
12 = π⋆J⋆OP1(∞)⊗ π⋆OC


12

∑

p∈C

(
1− lct(S, π−1(p))

)
p




turns out to be related to L2 metrics.
We consider a Calabi–Yau family π : X → C, that is a proper surjective Kähler

morphism with connected fibres between a connected smooth complex manifold
X and a connected smooth complex curve C, whose smooth fibers have trivial
canonical bundle.

By computations of Tian [8] and Todorov [9], the curvature of the L2 metric on
the direct image π⋆(KX/C) of the relative canonical bundle on the smooth part of
the morphism is given by the Weil–Petersson metric through the classifying map
ι to the Kuranishi family

c1
(
π⋆(KX/C), hL2

)
= ι∗ωWP .

This accounts for the non-negativity of the modular part. The asymptotic of this
metric around a singular fibre can be estimated by fibre integrals and displays
as the coefficient of the dominant term (a log-term) one minus the log canonical
threshold of the singular fibre (that vanishes for semi-stable degenerations) and
as the coefficient of the sub-dominant term (a log log-term) an integer computed
from the weighted incidence graph of the singular fibre when arranged with normal
crossings (that reflects the strength of the degeneration). Those two terms can also
be given in terms of the limit Hodge structure [7]. Explicit computations can be
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made for semi-stable degenerations of an elliptic curve : the L2 norm of the form
dz in the model C/(Z ⊕ τZ) is equal to the volume of the elliptic curve and to
the imaginary part Im(τ) of the period τ whereas the parameter q := exp(2πiτ)
behaves like the regular discriminant function when the period τ tends to i∞. This
leads to the asymptotic

− log ‖dz‖L2 ∼ − log | log |t||
for a local regular parameter t on the base C centred at a singular value of π.

Turning to Quillen type metrics, we consider the BCOV bundle, named after
Bershadsky–Cecotti–Ooguri–Vafa [1], together with the BCOV metric defined by
Fang–Lu–Yoshikawa [4]. By results of Bismut–Gillet–Soulé [2], its curvature on
the smooth part is also related to the Weil–Petersson metric

c1
(
λBCOV(Ω

•
X/S), hBCOV

)
=
χ(X∞)

12
ι∗ωWP .

where X∞ is any smooth fibre. Building on works of Yoshikawa [10], we show that
the dominant term in the asymptotic of this metric displays the vanishing cycles
when the relative minimality assumption KX = OX is made: for a local frame σ
of the BCOV bundle and a local frame η of the direct image π⋆(KX/C), we find

− log ‖σ̃‖2
BCOV

∼ 9n2 + 11n+ 2

24

(
χ(X∞)− χ(X0)

)
log |t|2 − χ(X∞)

12
log ‖η‖2L2 .

Details are written in [3].
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Non-hyperbolicity of hyperkähler manifolds

Ljudmila Kamenova

(joint work with Steven Lu, Misha Verbitsky)

The Kobayashi pseudometric dM on a complex manifold M is the maximal pseu-
dometric such that any holomorphic map from the Poincaré disk toM is distance-
decreasing. Kobayashi conjectured that the pseudometric dM vanishes on compact
Calabi–Yau manifolds, and in particular, Calabi–Yau manifolds are Kobayashi
non-hyperbolic and contain entire curves.

Using ergodicity of complex structures, together with S. Lu and M. Verbitsky in
[1] we proved this conjecture for all K3 surfaces and for many classes of hyperkähler
manifolds. The proof relies on a very careful understanding of the Teichmüller
space of hyperkähler complex structures and the action of the mapping class group
Γ. This action is ergodic, as M. Verbitsky proved in [3]. In a recent erratum [4],
M. Verbitsky found an extra orbit type with respect to the action of the mapping
class group Γ. In this talk we discussed that the presence of the extra orbit does
not affect our proof of the Kobayashi conjecture.

In the talk I also gave an algebraic version of hyperbolicity. Together with
M. Verbitsky we proved that projective hyperkähler manifolds with Picard rank
at least two are algebraically non-hyperbolic, [2].
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Deformation of a generically finite map to a hypersurface embedding
and generalized Inoue-type manifolds

Fabrizio Catanese

(joint work with Yongnam Lee)

Motivated by the theory of Inoue-type manifolds (these are the quotients M =
W/G of a hypersurface W in a projective classifying space Z by the free action
of a finite group G), begun in previous joint work with Ingrid Bauer [1], we give
a structure theorem for projective manifolds W0 with the property of admitting
a 1-parameter deformation where Wt is a hypersurface in a projective smooth
manifold Zt.

Their structure is elucidated as being the one of special iterated univariate
coverings which we call of normal type, which essentially means that the line
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bundles where the univariate coverings live are tensor powers of the normal bundle
to the image X of W0. A converse is also shown.

We give applications to the case where Zt is projective space, respectively an
Abelian variety.

The set-up. We consider a 1-parameter deformation to hypersurface em-
bedding, i.e. the following situation:

(1) a one dimensional family of smooth projective varieties of dimension n (i.e., a
smooth projective holomorphic map p : W → T where T is a smooth holomorphic
curve) mapping to another family π : Z → T of smooth projective varieties of
dimension n+1 via a relative map Φ: W → Z such that π ◦Φ = p (hence we have
the following commutative diagram)

W Φ
//

p
��
✼✼

✼✼
✼✼

✼ Z

π
��✟✟
✟✟
✟✟
✟

T,

such that moreover
(2) for t 6= 0 in T , Φt is an embedding,
(3) the restriction of the map Φ on W0 is a generically finite morphism of

degree m, so that the image of Φ|W0
is the cycle Σ0 := mX where X is a reduced

hypersurface in Z0, defined by an equation X = {σ = 0}.
Question 1. What can we say about W0? Can we fully describe such

a situation?

Examples. The typical example that everybody should know is the deformation
of canonical maps of hyperelliptic curves of genus 3 to canonical embeddings of
plane quartic curves (a double cover of a plane conic deforms to a smooth quartic).

This example fits into a series of examples, where the image ofW0 is the smooth
hypersurface {σ = 0} ⊂ Pn+1, σ being a homogeneous polynomial of degree d.
We let then W0 be the complete intersection in the weighted projective space
P(1, 1, . . . , 1, d) defined by the equations

W0 =

{
(z0, z1, . . . , zn+1, w)

∣∣∣∣ σ(z0, z1, . . . , zn+1) = 0,

P (z0, z1, . . . , zn+1, w) := wm +

m∑

i=1

wm−iai(z0, z1, . . . , zn+1) = 0

}
.

We can easily deform the complete intersection by deforming the degree d equation
adding a constant times the variable w, hence obtaining the following complete
intersection:

P (z0, z1, . . . , zn+1, w) = 0, tw − σ(z0, z1, . . . , zn+1) = 0, t ∈ C.

Clearly, for t = 0 we obtain the previous W0, a degree m covering of the
hypersurface {σ = 0}, whereas for t 6= 0 we can eliminate the variable w and
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obtain a hypersurface Wt in Pn+1 with equation (of degree md)

P (z0, z1, . . . , zn+1, σ(z)/t) = 0.

Example 1. (Iterated weighted deformations). One can iterate this process,
and consider, in the weighted projective space

P(1, 1, . . . , 1, d, dm1, . . . , dmk), where m1|m2| . . . |mk|m =: mk+1

a complete intersection W of multidegrees (d, dm1, . . . , dmk, dm).
Then, necessarily, there exist constants t0, t1, . . . , tk such that W is defined

by the following equations, where the Qj ’s are weighted homogeneous of degree
= dmj :

(1)





σ(z) = w0t0

Q1(w0, z) = w1t1

· · · · · ·
Qk(w0, . . . , wk−1, z) = wktk

Qk+1(w0, . . . , wk, z) = 0.

Again, if all the tj ’s are 6= 0, we can eliminate the variables wj , and we obtain a
hypersurface {F (z) = 0} in Pn+1.

The above description generalizes, and the main idea of the following main
theorem is that one can replace weighted projective space

P(1, 1, . . . , 1, d, dm1, . . . , dmk), m1|m2| . . . |mk,

by the total space of a direct sum of line bundles over some projective variety X ,
Z0, or over a family Z of projective varieties.

The main theorem. We need the following definition: i) Given a complex space
(or a scheme) X , a univariate covering of X is a hypersurface Y , contained in
a line bundle L over X , and defined there as the zero set of a monic polynomial

P = wm + a1(x)w
m−1 + a2(x)w

m−2 + · · ·+ am(x) = 0,

where aj ∈ H0(X,Lj).
ii) The univariate covering is said to be smooth if both X and Y are smooth.
iii) An iterated univariate covering W → X is a composition of univariate

coverings
fk+1 : W → Xk, fk : Xk → Xk−1, . . . , f1 : X1 → X,

whose associated line bundles are denoted Lk,Lk−1, . . . ,L1,L0. It is said to be of
normal type if all the line bundles Lj are pull back from X of a line bundle of
the form OX(mjX), m1|m2| . . . |mk, and the degree of fj equals

mj

mj−1
.

Theorem 2. (A) Suppose we have a 1-parameter deformation to hypersurface
embedding and assume that KW0

is ample. Then we have:
(A1) X is smooth,
(A2) There are line bundles L0, . . . ,Lk on Z, such that Lj |Z0

= OZ0
(mjX) for

j = 0, . . . , k, such that 1 = m0|m1|m2 . . . |mk|mk+1 := m and such that W0 is a
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complete intersection in L0 ⊕ · · · ⊕ Lk|Z0
, given by a smooth iterated univariate

covering of normal type.
(A3) W is obtained from Σ by a finite sequence of blow-ups and the smooth

iterated univariate covering W0 → X is normally induced.
(B1) A converse holds, ensuring the existence of deformations to hypersurface

embedding for a smooth iterated univariate covering of normal type

ϕ0 :W0 → X

and a 1-parameter family Z of deformations of Z0, see [4] for details.

The hypothesis of ampleness is needed, and used via a simple adjunction cal-
culation implying the finiteness of a certain intermediate map.
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Restricted volumes of big cohomology classes and degenerations of
Kähler manifolds

David Witt Nyström

Let (X,ω) be a compact Kähler manifold. Let us first recall some definitions
regarding positivity of cohomology classes due to Demailly.

Definition 1. We then say that a class α ∈ H1,1(X,R) is big if there is a closed
positive (1, 1)-current T in α such that T ≥ εω for some ε > 0.

Definition 2. A point x ∈ X is said to lie in the Kähler locus K(α) of α if there
exists a closed positive current T ∈ α which is smooth near x. The complement
EnK(α) := X \K(α) is called the non-Kähler locus of α.

It follows from the deep regularization theorem of Demailly [4] that when α is
big EnK(α) is a proper analytic subset of X .

Definition 3. The volume of a big class α is defined as

vol(α) := sup

{∫

reg(T )

T n : T ∈ α, T ≥ 0

}
,
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where n = dimCX and reg(T ) denotes the smooth locus of T . Similarly, if Y is a
subvariety of dimension m, then the restricted volume of α along Y is defined as

volX|Y (α) := sup

{∫

Y ∩reg(T )

Tm : T ∈ α, T ≥ 0

}
.

Remark 4. When X is projective and α = c1(L) for some holomorphic line
bundle L then it was shown by Demailly [3] that α being big is equivalent to L
being big, i.e. that

vol(L) := lim sup
k→∞

h0(X,Lk)

kn/n!
> 0.

Furthermore Boucksom [1] proved that in this case

vol(α) = vol(L),

while Hisamoto [5] proved that

volX|Y (α) = volX|Y (L) := lim sup
k→∞

h0(X |Y, Lk)
km/m!

,

where h0(X |Y, Lk) denotes the dimension of the image of the restriction map from
H0(X,Lk) to H0(Y, Lk|Y ).

In the talk I presented the following theorem:

Theorem 5. If X is compact Kähler, α ∈ H1,1(X,R) is big and Y is a prime
divisor intersecting K(α), then

d

dt

∣∣∣∣
t=0

vol
(
α+ t · c1(O(Y ))

)
= n · volX|Y (α).

In particular the restricted volume volX|Y (α) only depends on α and c1(O(Y )).

Remark 6. The case of Theorem 5 when X is assumed to be projective and
α = c1(L) for some holomorphic line bundle L was proved by Boucksom–Favre–
Jonsson [2] and independently by Lazarsfeld–Mustata [6].

In my talk I discussed the proof of Theorem 5 and hinted at why this is relevant
to the study of degenerations of Kähler manifolds.

References

[1] S. Boucksom, On the volume of a line bundle, Internat. J. Math. 13 (2002), no. 10, 1043–1063.
[2] S. Boucksom, C. Favre and M. Jonsson, Differentiability of volumes of divisors and a problem

of Teissier, J. Algebraic Geom. 18 (2009), no. 2, 279–308.

[3] J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex Algebraic Va-
rieties (Bayreuth, 1990), Lect. Notes in Math., vol. 1507, 1992, 87–104.

[4] J.-P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic
Geom. 1 (1992), no. 3, 361–409.

[5] T. Hisamoto, On the volume of graded linear series and Monge–Ampère mass, Math. Z. 275
(2013), no. 1-2, 233–243.

[6] R. Lazarsfeld and M. Mustata, Convex bodies associated to linear series, Ann. Sci. Ec. Norm.
Super. (4) 42 (2009), no. 5, 783–835.



2462 Oberwolfach Report 39/2017

K-stability of Fano spherical varieties

Thibaut Delcroix

The proof by Datar and Székelyhidi of an equivariant version of the Yau–Tian–
Donaldson conjecture in the Fano case [2] shows that existence of a Kähler–Einstein
metric is equivalent to K-stability with respect to equivariant special test config-
urations. Though it is very impractical to establish K-stability with respect to
general test configurations of a given example of polarized variey, it becomes pos-
sible for very symmetric varieties as soon as we can restrict to special test config-
urations, equivariant under a big enough group of automorphisms. For example,
generalized flag manifolds do not admit non-trivial special test configurations that
are equivariant under their automorphism group, or a toric manifold X x (C∗)n

admits only product special (C∗)n-equivariant test configurations. Let us recall
the definition of K-stability.

Definition 1.

• A special test configuration for a Fano manifold (or more generally Q-Fano
variety) X is a family π : X → C of Q-Fano varieties Xt = π−1(t), indexed
by C, equipped with a C∗-action on X that makes π equivariant with
respect to the standard action of C∗ on C, and such that X1 is isomorphic
to X .

• Whenever X is equipped with an action of a reductive group G, we may
additionally require that X is equipped with an action of G on the fibers,
such that the isomorphism between X1 and X is G-equivariant. Such a
test configuration is called G-equivariant.

• The Donaldson–Futaki invariant DF(π) of the test configuration may be
defined as the classical Futaki invariant of the central fiber X0 with respect
to the action of C∗ induced by the action on X .

• The variety X is K-stable (with respect to special, G-equivariant test con-
figurations) if and only if DF(π) ≥ 0 for any special, G-equivariant test
configuration, with equality if and only if X0 ≃ X .

We obtained a combinatorial criterion for K-stability (with respect to special,
G-equivariant test configurations) of a Q-Fano spherical variety X x G, which
translates to a combinatorial criterion for existence of Kähler–Einstein metrics on
a Fano spherical manifold, thanks to Datar and Székelyhidi’s theorem.

Definition 2. A normal algebraic G-variety X x G is spherical if any Borel
subgroup B of G acts with an open orbit in X .

The class of spherical varieties has two remarkable properties. The first is that
it is very rich in examples and generalizes the classes of toric varieties, of biequiv-
ariant reductive group compactifications or of homogeneous toric bundles. The
second is that spherical varieties are classified by combinatorial data in a way that
generalizes the case of toric varieties [5], allowing also for example a combinatorial
description of line bundles [1], of morphisms between spherical varieties, etc.
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It should be first remarked that a spherical variety is almost homogeneous under
the action of G, that is, G acts with an open dense orbit G/H ⊂ X . One possible
combinatorial datum classifying Q-Fano spherical varieties with fixed open dense
orbit G/H is their moment polytope. Fix a Borel subgroup B of G and consider
the set of all λ/k where λ is in the group X(B) of characters of B, and is the
eigenvalue of a B-eigenvector in the linear G-representation given by the space of
sections H0(X,K−k

X ) of tensor powers of the anticanonical line bundle of X . Then
the closure ∆+ of this set in X(B) ⊗ R turns out to be a convex polytope with
rational vertices, completely encoding X [4], called the moment polytope of X .

We already record additional data extracted from the moment polytope to use
in the statements. Let Φ+ denote the set of positive roots of G with respect
to B. Denote by Φ+

P the subset of all roots that are not orthogonal to ∆+, set
2ρP =

∑
α∈Φ+

P
α and let barDH(∆+) denote the barycenter of ∆+ with respect to

the measure
∏
α∈Φ+

P
〈α, p〉 dp where dp is a fixed Lebesgue measure on the affine

space generated by ∆+.
Another application of the combinatorial classification of spherical varieties al-

lowed us to prove that specialG-equivariant test configurations for a Q-Fano spher-
ical variety X x G, modulo base change of the form z 7→ zd, are encoded by rays
in the valuation cone V− of X . This valuation cone here is a convex rational
polyhedral cone depending only on the open orbit G/H of G in X . Furthermore,
the central fibers of such test configurations remain Q-Fano varieties, spherical
under the action of G, with the same moment polytope in X(B) ⊗ R, and there
are only a finite number of possibilities. More precisely, the central fiber depends
only on the faces of the valuation cone in which the ray lies, and we can obtain
all combinatorial data associated to it from the data associated to X and the ray.
As a consequence, a G-equivariant special test configuration for X is a product if
and only if the corresponding ray is in the linear part V− ∩ −V− of the valuation
cone.

Another remarkable case is when the ray is in the relative interior of the valua-
tion cone. In this case, the central fiber is the (polarized) horospherical degenera-
tion X0 of X . It is a horospherical variety, which may be defined by the fact that
its open dense G-orbit is a homogeneous fibration over a generalized flag manifold
G/P , with fiber a torus (C∗)r .

In fact the horospherical degeneration of X is also the horospherical degenera-
tion of any of the central fibers of G-equivariant special test configurations for X .
Using this remark, we prove that we may compute any of the Donaldson–Futaki
invariant of such a test configuration as a classical Futaki invariant on the horo-
spherical degeneration X0. Finally, on horospherical varieties, it is possible to deal
with Kähler metrics in a way that is very similar to the case of toric varieties.

Theorem 3. [3] Let X x G be a Q-Fano horospherical variety, denote by ∆+ its
moment polytope, identify the direction of ∆+ with Rr, denote by K a maximal
compact subgroup of G. Then
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• a K-invariant Kähler form ω in c1(X) is encoded by a convex function
u : Rr → R such that ∇u(Rr) = Int(∆+ − 2ρP ),

• and the Futaki invariant for the vector field induced by an element ξ of
Rr on the fibers of the open orbit is given up to a normalizing positive
constant by

FutX(ξ) =
〈
barDH(∆+)− 2ρP , ξ

〉
.

Combining this last result with the description of test configurations up to base
change by rays in the valuation cone, which encodes at the same time the central
fiber and the induced action of C∗, we obtain the main result.

Theorem 4. [3] A Fano spherical manifold X x G admits a Kähler–Einstein
metric if and only if

barDH(∆+)− 2ρP ∈ Relint(V∨
−).

More generally, a Q-Fano spherical variety X x G is K-stable with respect to G-
equivariant special test configurations if and only if the condition above is satisfied.

The theorem is in particular a generalization of the criterion obtained by Wang
and Zhu for toric manifolds [6].

Example 5. Consider the space of all non-degenerate conics in P2. It is a spher-
ical homogeneous space under the natural action of SL3(C). Embed this space
equivariantly in P5 ×P5 by sending a conic to the pair formed by its equation and
the equation of its dual conic, that is, the conic defined by its set of tangents. The
closure of the image of this embedding turns out to be a normal variety called the
variety of complete conics, which is in addition smooth and Fano. Our criterion
shows that the variety of complete conics admits Kähler–Einstein metrics.

References

[1] M. Brion. Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math.
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Lyapunov exponents of the Brownian motion over a compact Kähler
manifold

Jeremy Daniel

(joint work with Bertrand Deroin)

Let E be a flat bundle of rank r over a compact Kähler manifold X . I define the
Lyapunov spectrum of E: a set of r numbers controlling the growth of flat sec-
tions of E, along Brownian trajectories. I explain how to compute these numbers,
by using harmonic measures on the foliated space P(E). Then, I explain a gen-
eral inequality relating the Lyapunov exponents and the degrees of holomorphic
subbundles of E; I also discuss the equality case.

L
2 extension theorems of Ohsawa–Takegoshi type

Jean-Pierre Demailly

(joint work with Junyan Cao, Shin-ichi Matsumura)

The main goal of our work is to prove general extension theorems with weak semi-
positivity curvature assumptions. This can be useful e.g. for the study of the
Minimal Model Program for algebraic varieties that are not necessarily of general
type; one potential use is to construct sections via induction on dimension. The
technique, however, relies on analytic tools, and also applies to transcendental
varieties (in absolute or relative situations). The main statement is as follows.

Theorem 1 (joint with Junyan Cao and Shin-ichi Matsumura, [CDM17]). Let
(X,ω) be a Kähler manifold, and assume that X is holomorphically convex, i.e.
that X admits a proper morphism X → S onto a Stein base. Let (L, hL), with
hL = e−ϕL, be a hermitian holomorphic line bundle on X, ψ a quasi-psh function
with analytic singularities, I(e−ψ) the associated multiplier ideal sheaf, defined by

I(e−ψ)x0
=

{
f ∈ OX,x0

; ∃U ∋ x0 ,

∫

U

|f |2e−ψdλ < +∞
}
,

Y = V (I(e−ψ)) its zero subscheme, and OY = OX/I(e−ψ) the corresponding
structure sheaf. Assume that there exists a positive continuous function δ > 0 on
X such that

(1) ΘL,hL + (1 + αδ)i∂∂ψ ≥ 0 in the sense of currents, for α = 0, 1.

If ϕL is smooth, the restriction morphism

(2) Hq(X,O(KX ⊗ L)) → Hq(Y,O(KX ⊗ L)|Y )

is surjective for all q ≥ 0, or equivalently,

(3) Hq(X,O(KX ⊗ L)⊗ I(e−ψ)) → Hq(X,O(KX ⊗ L))

is injective. More generally, if ϕL is possibly singular, the morphism induced by
the natural ideal sheaf inclusion I(hLe−ψ) → I(hL), namely

(4) Hq(X,O(KX ⊗ L)⊗ I(hLe−ψ)) → Hq(X,O(KX ⊗ L)⊗ I(hL))
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is injective for every q ≥ 0.

A typical case of application is the situation where

ψ(z) = c log |s|2hE
, c > 0,

where s ∈ H0(X,E) and (E, hE) is a holomorphic hermitian vector bundle overX .
In fact, by using Hironaka’s desingularization theorem and a suitable composi-
tion of blow-ups, the proof can always be reduced to the divisorial case where
O(E) = O(

∑
ajDj) is an invertible sheaf associated with a simple normal cross-

ing divisor D =
∑
ajDj. Then I(ψ) = OX(−∑⌊caj⌋Dj), and if the metrics hL,

hE are smooth, the curvature condition (1) is equivalent to

(1′) ΘL,hL − (1 + αδ)cΘE,hE ≥ 0 for α = 0, 1.

The special case where IY = (IYred
)m was observed by D. Popovici [Pop05]; it

corresponds to the situation where ψ(z) = c log |s|2hE
, where s ∈ H0(X,E) is

transverse to the zero section, Yred = s−1(0) has codimension r and c = m + r.
Here, we allow essentially all possible multiplier ideals I(ψ), so this is considerably
more general, and the hypotheses become also more natural.

Our proof is based on the observation that for a holomorphically convex space
X , the cohomology groups Hq(X,F) = H0(S,Rqπ∗F) are always Hausdorff.
Therefore the coboundary spaces are closed and it is sufficient to solve the rel-
evant ∂ equations only approximately. Specifically, if λ, η are positive functions
on X and

B = Bn,qL,hL,ω,η,λ
= [ηΘL,hL−i ∂∂η−iλ−1∂η∧∂η,Λω] ∈ C∞(X,Herm(Λn,qT ∗

X⊗L)),

the equation ∂uε = v+wε with error term wε can be solved in bidegree (n, q) with
an estimate
∫

X

(η + λ)−1|uε|2 dVX,ω +
1

ε

∫

X

|wε|2 dVX,ω ≤M(ε) :=

∫

X

〈(B + εI)−1v, v〉 dVX,ω ,

assuming that B + εI > 0 and M(ε) is finite. Now, any cohomology class in

Hq(Y,O(KX ⊗ L)⊗ I(hL)/I(hLe−ψ))

can be represented by a holomorphic Čech q-cocycle with respect to a Stein cov-
ering U = (Ui), say

(ci0...iq ), ci0...iq ∈ H0
(
Ui0 ∩ . . . ∩ Uiq ,OX(KX ⊗ L)⊗ I(hL)/I(hLe−ψ)

)
.

By the Dolbeault isomorphism, this class is represented by a smooth (n, q)-form

f =
∑

i0,...,iq

ci0...iqρi0∂ρi1 ∧ . . . ∧ ∂ρiq

by means of a partition of unity (ρi) subordinate to (Ui). This form is to be
interpreted as a form on the (non reduced) analytic subvariety Y associated with
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the ideal sheaf J = I(hLe−ψ) : I(hL) and the structure sheaf OY = OX/J . We
get an extension as a smooth (no longer ∂-closed) (n, q)-form on X by taking

f̃ =
∑

i0,...,iq

c̃i0...iqρi0∂ρi1 ∧ . . . ∧ ∂ρiq

where c̃i0...iq is an extension of ci0...iq from Ui0 ∩ . . . ∩ Uiq ∩ Y to Ui0 ∩ . . . ∩ Uiq .
The strategy of the proof consists in solving approximately a ∂ equation of the
form

∂uε = vε + wε, where vε = ∂(θ(ψ − tε) · f̃),
θ is a cut-off function and tε → −∞. The main point is then to show that in our
situation tε ∈ R−, λ = λε and η = ηε can be chosen so that the error term wε
converges to 0 (while the solution uε need not be under control !).

Getting L2 estimates for the extension in the case q = 0 of holomorphic
sections. When the singularities of ψ are log canonical, namely when I(e−(1−ε)ψ)
= OX for ε > 0, one can introduce an intrinsic residue measure dVY ◦,ω[ψ] on the
set Y ◦ = Yreg of regular points of Y , following Ohsawa [Ohs01]: if g ∈ Cc(Y ◦) is
a compactly supported continuous function on Y ◦ and g̃ a compactly supported
extension of g to X , one sets

(5)

∫

Y ◦

g dVY ◦,ω[ψ] = lim
t→−∞

∫

{x∈X , t<ψ(x)<t+1}

g̃e−ψ dVX,ω .

Then, assuming ψ ≤ 0 and hL smooth for the simplicity of the statement, any
section f ∈ H0(Y,O(KX ⊗ L)|Y ) admits an extension F ∈ H0(X,O(KX ⊗ L))
such that

(6)

∫

X

(1 + δ2ψ2)−1 |F |2ω,hL
e−ψdVX,ω ≤ C

δ

∫

Y ◦

|f |2ω,hdVY ◦,ω[ψ].

In the non-log canonical case, there is a discrete sequence of jumps

0 = m0 < m1 < . . . < mp < . . .

such that I(mψ) = I(mp−1ψ) whenever m ∈ ]mp−1,mp], and
I(mpψ) ( I(mp−1ψ) (this is formally always true if X is compact, and can be true
only locally over X otherwise). Let J = I(mpψ) : I(mp−1ψ) be the conductor
ideal and Y = V (J ) its zero variety. Given a section

f ∈ H0(Y,O(KX ⊗ L)|Y ⊗ I(mp−1ψ)/I(mpψ))

vanishing according to the ideal sheaf I(e−mp−1ψ), one can define a “higher level”
residue measure |f |2 dV mp

Y ◦,ω[ψ] by putting formally

(7)

∫

Y ◦

g|f |2 dV mp

Y ◦,ω[ψ] = lim
t→−∞

∫

{x∈X , t<ψ(x)<t+1}

g̃|f |2 e−mpψ dVX,ω .

Then, as we showed in[Dem15b], one gets an extension

F ∈ H0(X,O(KX ⊗ L)⊗ I(mp−1ψ))
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satisfying the L2 estimate

(8)

∫

X

(1 + δ2m2
pψ

2)−1 |F |2ω,hL
e−mpψdVX,ω ≤ C

mpδ

∫

Y ◦

|f |2ω,hdV
mp

Y ◦,ω[ψ]

under the curvature assumption

(9) ΘL,hL +mp(1 + αδ)i∂∂ψ ≥ 0 for α = 0, 1.

Without assuming that f is a nilpotent section associated with the ideal sheaf of
the previous jump mp−1, the existence of a reasonably intrinsic L2 estimate is an
open problem. The definition of the L2 norm of f on Y is even unclear, as we do
not know how to define a “multistep” residue measure in that case. The difficulty
of getting the estimate arises already when X has complex dimension one and
when Y ⊂ X is a point with some multiplicity attached.
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SWEDEN

Dr. Damian Brotbek

Institut de Mathématiques
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Université Paris Sud (Paris XI)
Batiment 425
91405 Orsay Cedex
FRANCE

Prof. Dr. Martin Möller
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