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Introduction by the Organisers

Automorphic forms are a very interdisciplinary topic in modern mathematics at the
interface of number theory, analysis, representation theory and algebraic geometry.
Among these different view points, the workshop focused in particular on the
analytic theory of automorphic forms and their associated L-functions, and their
interactions with number theory. Fifty-two leading experts and young researchers
came together to exchange ideas, present newly developed methods and start or
continue their collaboration on projects related to the subject of the workshop.
The programme included 25 talks, all of which presented interesting new results.
We highlight a few major topics:

The most important global analytic objects attached to an automorphic form
or representation f are its L-functions, and they play naturally a major role in
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the investigation of automorphic forms as well as in their own interest as a gen-
eralization of the Riemann zeta-function. R. Holowinsky presented a new look on
Munshi’s automorphic circle method, and Munshi presented a new application of
it. D. Koukoulopoulos discussed the use of pretentious methods to prove auto-
morphic prime number theorems. M. Radziwi l l explained his work (with collabo-
rators) concerning the challenging arithmetic and analytic problems of evaluation
of higher-moments of certain families of L-functions, while O. Balkanova discussed
joint work with D. Frolenkov where new analytic techniques are used to evaluate
moments of cusp forms in the fixed weight aspect. K. Soundararajan talked about
an exciting new method (developed with M. Radziwi l l) that produces effective
lower bounds for L-values whenever it is known from an analytic method that
they are non-zero. M. Milinovich discussed new results concerning simple zeros of
L-functions.

In arithmetic situations, special values of L-functions often encode periods of
automorphic forms. One of the most general versions of this principle is the
Gross-Prasad conjecture. An important (proven) special case of this concerns
triple product L-functions, whose central value encodes information on the mass
distribution of an automorphic form. As an analogue of the famous Quantum
Unique Ergodicity Conjecture of Rudnick and Sarnak, one can consider the mass
distribution of a holomorphic cusp of large weight or level (or both) and deduce
in arithmetic situations a weak-star equidistribution result from a subconvexity
bound of the corresponding triple product L-functions. P. Nelson presented an
ingenious new method that is capable of reducing the problem to a subconvexity
bound of degree 3 symmetric square L-functions, which in turn is accessible in a
strong quantitative way (with power saving) by Munshi’s circle method.

Another way of measuring the mass distribution of an automorphic form is
given by the sup-norm, and several talks (by P. Maga, S. Marshall, D. Milićević
and A. Saha) focussed on various aspects of this problem. This features a very
beautiful combination of arithmetic and analysis and fit therefore nicely into the
theme of this conference. The first step in most approaches to the sup-norm
problem is an application of the trace formula or at least the spectral expansion
of an automorphic kernel, often called a pre-trace formula. Trace formulae belong
to the most powerful tools in the theory of automorphic forms. Being a vast
generalization of the Poisson summation formula to a non-commutative setting,
they translate spectral information of symmetric spaces into algebro-geometric
information of the underlying group. Meanwhile the Arthur-Selberg trace formula
has been developed to a point where equidistribution questions can be attacked
by analytic means. This is an exciting new area with considerable potential, and
was the subject of talks by J. Buttcane, J. Matz and M. Young.

A number of talks were devoted to interactions between automorphic meth-
ods and problems and various aspects of number theory. Z. Rudnick and W.
Sawin presented problems concerning function fields, insisting on interesting phe-
nomena. There were also talks on ergodic techniques (D. Kelmer and M. Lee),
transfer operators (A. Pohl), Arakelov theory and invariants (A.-M. von Pippich).
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A particularly remarkable application of modular forms to a problem of Fourier
approximation on the real line was presented by M. Viazovska.

As fruitful as the talks presented at this workshop were informal discussion after
lunch and after dinner that initiated several new projects. This included (on the
very last day of the workshop), and following the talk of M. Risager on modular
symbols and their distribution, the proof of a conjecture of Mazur and Rubin
related to this topic. Wednesday evening was devoted to a lively and interesting
problem session.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Maksym Radziwi l l and William Duke in the “Simons
Visiting Professors” program at the MFO.
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Abstracts

Moments of L-functions and Liouville-Green method

Olga Balkanova

(joint work with Dmitry Frolenkov)

The Liouville-Green method (also called Liouville-Steklov method and WKB ap-
proximation) is a classical technique for finding approximate solutions to linear
differential equations. The method was founded by Liouville and Green in 1837,
and was further developed by physicists Wentzel, Kramers and Brillouin in 1920s.
Nowadays it is a powerful tool to investigate a variety of problems in quantum
physics and applied mathematics.

Our work concerns application of the Liouville-Green method in analytic num-
ber theory and demonstrates strong interaction between moments of L-functions
and asymptotic analysis of special functions. More precisely, we address the fol-
lowing problems.

1. Moments of cusp form L-functions

Motivated by the problem of non-existence of Landau-Siegel zeros for Dirichlet L-
functions of real primitive characters, Iwaniec and Sarnak [6] studied non-vanishing
of central L-values associated to primitive cusp forms H2k(N) of large weight 2k
or large level N . In particular, a non-vanishing result in the weight aspect was
proved in [6] by taking an extra smooth average over k ≤ K.

In the last two decades, several attempts have been made with the purpose of
removing the extra sum over weight. Fomenko [4] and Lau-Tsang [8] established
that at least 1/ log k of central L-values do not vanish as k tends to infinity. Proving
an upper bound for the mollified second moment, Luo [10] showed that there is a
strictly positive proportion of non-vanishing.

With the goal of obtaining a quantitive result, we proved in [1] an asymptotic
formula for the mollified second moment and showed that the harmonic percentage
of primitive forms of level one and weight 4k → ∞, k ∈ N for which the associated
L-function at the central point is no less than (log k)−2 is at least 20%.

Our proof is based on the Kuznetsov convolution formula for the twisted har-
monic second moment of Hecke L-functions

(1)

h∑

f∈H2k(1)

λf (l)L2
f(1/2) = (1 + (−1)k)

(
τ(l)√
l

[
2

Γ′

Γ
(k) − log l− 2 log(2π) + 2γ

]

+
1

2
√
l

l−1∑

n=1

τ(n)τ(l − n)φk

(n
l

)
+

1√
l

∞∑

n=1

τ(n)τ(n + l)Φk

(
l

n+ l

))
,

where γ is the Euler constant, τ(n) =
∑

d|n 1 and φk(x), Φk(x) are certain special

functions defined in terms of the Gauss hypergeometric function. The Liouville-
Green method serves to approximate special functions φk(x), Φk(x), and as a
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consequence, allows us to prove an asymptotic formula for the corresponding mo-
ment.

2. Moments of symmetric square L-functions

Starting from the work of Iwaniec and Michel [5], moments of symmetric square
L-functions received a lot of attention. Nethertheless, not much is known both in
the level and weight aspects.

Our work concerns mainly the weight aspect and examines similarities and
differences between the twisted first moment of symmetric square L-functions and
the twisted second moment of Hecke L-functions. To this end, we prove in [2] the
following exact formula for the harmonic average of symmetric square L-functions

(2)
h∑

f∈H2k(1)

λf (l2)L(sym2 f, 1/2) =
1

2
√
l

(
−2 log l − 3 log 2π +

π

2
+ 3γ+

Γ′

Γ
(k − 1/4) +

Γ′

Γ
(k + 1/4)

)
+

√
2π(−1)k

2
√
l

Γ(k − 1/4)

Γ(k + 1/4)
L−4l2(1/2)+

1√
l

∑

1≤n<2l

Ln2−4l2(1/2)ψk

(
n2

4l2

)
+

1

l
√

2

∑

n>2l

Ln2−4l2(1/2)
√
nΨk

(
4l2

n2

)
,

where for ρq(n) := #{x (mod 2q) : x2 ≡ n (mod 4q)}, the generalized Dirichlet
L-function is given by

(3) Ln(s) =
ζ(2s)

ζ(s)

∞∑

q=1

ρq(n)

qs
, ℜs > 1,

and ψk(x), Ψk(x) are certain special functions defined in terms of the Gauss hy-
pergeometric function.

Comparing with exact formula (1), we note that the first sum over n in (2) is
up to 2l instead of l, and the generalized Dirichlet L-function Ln2−4l2(1/2) in (2)
corresponds to the product of two divisor functions in (1). Similarly to the case
of Hecke L-functions, we apply the Liouville-Green method to study the functions
ψk(x), Ψk(x). Taking l = 1, exact formula (2) allows isolating an extra term of
size square root of the main term. See also [9] for a similar result. For l > 1, we
obtain an improvement upon the result of Ng [11].

3. Moments of generalized Dirichlet L-functions

Exact formula (2) can be applied to analyse the second moment of symmetric
square L-functions. In this setting, the off-off-diagonal main term is encoded by
the sums of Ln2−4l2(1/2) with certain weight functions.

Furthermore, sums of special values of generalized Dirichlet L-functions are
related to the Prime Geodesic Theorem as follows (see [7, 12] for details)

(4) ΨΓ(x) = 2
∑

n≤X

√
n2 − 4Ln2−4(1), X = x1/2 + x−1/2.
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Currently, the best known result

ΨΓ(x) = x+O(x2/3+θ/6+ǫ)

is due to Soundararajan and Young [12], where θ is a subconvexity exponent for
Dirichlet L-functions. A possible approach to remove the dependence on θ in the
error term is to study moments of Ln2−4(1/2) in short or long intervals.

Motivated by these problems, we proved in [3] a convolution formula for

∞∑

n=1

ω(n)Ln2−4l2(s)

in terms of moments of symmetric square L-functions. As a consequence, using the
Liouville-Green method, we derived the following analogue of the binary additive
divisor problem

(5)
∑

2<n<X

Ln2−4(1/2 + ir) = XP1(logX) +O(X2/3+2θ/3+ǫ), |r| < Xǫ.

Moreover, any improvement of the error term in (5) will result in an improvement
of the error term in the Prime Geodesic Theorem.
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Higher weight on GL(3)

Jack Buttcane

Up to isomorphism, the representations of K = SO(3,R) are given by the Wigner-
D matrices D : K → SO(2d + 1,C), d ≥ 0. For the particular groups G =
SL(3,R) and Γ = SL(3,Z), we define the spaces Ad to be the set of functions f :
Γ\G → C2d+1, f(gk) = f(g)D(k) which are smooth, bounded and have bounded
derivatives. The details of the Langlands spectral decomposition are worked out
in [2], and we may consider the space Ad

cusp of cusp forms, whose integrals over
the unipotent subgroups are zero.

For a cusp form ϕ ∈ Ad
cusp which is an eigenfunction of the Casimir operators

∆i, we parameterize its eigenvalues as

∆1ϕ =

(
1 − µ2

1 + µ2
2 + µ2

3

2

)
ϕ, ∆2ϕ = µ1µ2µ3ϕ,

where µ ∈ C3 satisfies µ1 + µ2 + µ3 = 0. The details of the structure of the
representations and (g,K)-modules of these cusp forms and their minimal-weight
Whittaker functions have been worked out in [11, 7, 10, 9, 8] and are collected in
[3].

The cusp forms may be collected into families based on the type of represen-
tation they come from and the minimal-weight form contained therein. These
families are the spherical principal series forms at d = 0, the non-spherical princi-
pal series forms at d = 1, and the generalized principal series forms at each d ≥ 2.
By computing a generalization of Stade’s formula, a type of Kontorovich-Lebedev
inversion can be proven on each of the spaces of spectral parameters

F0 = F1 = {µ ∈ iR3|µ1 + µ2 + µ3 = 0},
Fd = {(d−1

2 + it,− d−1
2 + it,−2it)|t ∈ R}, d ≥ 2.

Then a Kuznetsov-type trace formula may be built for each type of minimal-weight
form by considering Poincaré series defined over an inverse Whittaker transform.
The formulas generally express an arithmetically weighted spectral sum

∑

ϕ∈Sd∗

λϕ(m)λϕ(n)

L(Ad2 ϕ, 1)
F (µϕ) + Eisenstein series

as sums of GL(3) Kloosterman sums

δ|m1|=|n1|
|m2|=|n2|

∫

Fd

F (µ)specd(µ)dµ + intermediate Weyl-element terms

+
∑

ε∈{±1}

∑

c∈N2

Swl
(ψm, ψn, c)

c1c2
Hd
wl

(F ; ( ε2m1n2c2
c21

, ε1m2n1c1
c22

)).

The spectral measure may be computed explicitly and Hd
wl

is given by a kernel
integral transform of F where the kernel function can be expressed as a Mellin-
Barnes integral. This is all done in the papers [4, 5]. Also in those papers, F (µ)
is taken to approximate a sharp cut-off, giving Weyl laws for each family.
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A long-term goal is to apply this analysis to study exponential sums on GL(3),
and a simple application (using a theorem of Wallach [12]) gives the first arithmetic
Kuznetsov formula [6] in the case m1n2,m2n1 > 0:

∑

c∈N2

Swl
(ψm, ψn, c)

c1c2
f(

2
√
m1n2c2
c1

,
2
√
m2n1c1
c2

) =weight 0 spectral sum

+ weight 1 spectral sum,

where the analytic weight function in the spectral sums is given by a Whittaker
transform of the test function f . This in turn can be used to prove good cancel-
lation in smooth sums

∑

c∈N2

Swl
(ψm, ψn, c)

c1c2
f(X1m1n2c2

c21
, X2m2n1c1

c22
) ≪ (X1X2)

5
14+ǫ.

This improves over [1] by isolating a particular choice of sign and dropping two

terms X
1
2+ǫ
i coming from a partial inversion formula used in that paper.

The last part of the talk was on the possibility of generalizing these constructions
to GL(n) and other groups.
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Archimedean Newforms for GLn

Peter Humphries

There is a well-known theory of decomposing spaces of automorphic forms into
subspaces spanned by newforms and oldforms, and associated to a newform is its
conductor. This theory can be reinterpreted as a local statement, and generalised
to GLn, as distinguishing certain vectors in a generic irreducible admissible repre-
sentation π of GLn(F ), where F is a nonarchimedean local field, and associating
to π a conductor (or rather, a conductor exponent). Such a local theory was pre-
viously not well understood for archimedean fields F ; my goal is to introduce and
prove this theory in this hitherto unexplored setting.

1. Classical Theory

1.1. The Newform. Let Sk(Γ1(q)) denote the space of holomorphic Hecke cusp
forms of weight k, level q, and arbitrary nebentypus. This space has the decom-
position ⊕

q1q2=q

⊕

d|q2

ιdS∗
k (Γ1(q1)),

where ιdf(z) = f(dz) and S∗
k (Γ1(q1)) denotes the subspace of Sk(Γ1(q1)) spanned

by newforms. A similar decomposition holds for Hecke–Maaß cusp forms and for
Eisenstein series. Given a newform f ∈ S∗

k (Γ1(q1)) with q1q2 = q and q1 < q, the
space of oldforms in Sk(Γ1(q)) associated to f is

⊕

d|q2

Cιdf,

which has dimension τ(q2) = τ( qq1 ). The Mellin transform of a newform f ∈
S∗
k (Γ1(q)) on the imaginary axis gives the completed L-function:

Λ(s, f) =

∫ ∞

0

f(iy)ys
dy

y
.

This can be interpreted as the newform being a test vector for the (global) GL2 ×
GL1 Rankin–Selberg integral. This holds also for weight one and even weight
zero Maaß newforms. For odd weight zero Maaß newforms, however, this integral
vanishes; the correct test vector is not f but rather R0f , where R0 is the weight
zero raising operator.

1.2. The Conductor. The conductor of a newform f ∈ S∗
k (Γ1(q)) is q. The

conductor of an Eisenstein series newform is multiplicative: given an Eisenstein
series newform Eχ1,χ2(z, s) of conductor q, χ1, χ2 must be primitive characters of
conductors q1, q2 such that q1q2 = q. Moreover, the conductor of a newform is
inductive: to a Hecke Größencharakter ψ of a quadratic extension E of Q with
conductor q (as an ideal of OE), one can associate via automorphic induction a
(not necessarily cuspidal) newform fψ of conductor NE/Q(q)∆E/Q, where ∆E/Q

is the discriminant of E/Q. Finally, the conductor of a newform appears in the
functional equation in the form q−s/2.
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2. Nonarchimedean Theory

The classical theory of newforms and conductors can be studied purely locally,
and results analogous to those in the classical setting can be proven. Let F be
a nonarchimedean field with ring of integers O and maximal ideal p. The local
analogue of Γ1(q) for GLn is the congruence subgroup K1(pm) of GLn(O) defined
by

K1 (pm) =

{(
a b
c d

)
∈ GLn(O) : a ∈ GLn−1(O), b ∈ Mat(n−1)×1(O),

c ∈ Mat1×(n−1) (pm) , d ∈ 1 + pm
}
.

2.1. The Newform. Jacquet–Piatetski-Shapiro–Shalika [JP-SS81] proved that
for a generic irreducible admissible representation π of GLn(F ), there exists a
minimal nonnegative integer m = c(π), such that π has a nontrivial K1(pm)-fixed
vector. Moreover, the space of K1(pc(π))-fixed vectors is one-dimensional, so there
exists a unique such vector up to scalar multiplication, the (local) newform of π.
Reeder [Ree91] showed that the dimension of the space of K1(pm)-fixed vectors of

π with m ≥ c(π), the space of (local) oldforms of level pm, is
(
m−c(π)+n−1

n−1

)
. The

newform of π in the Whittaker model is a test vector for the local GLn × GLn−1

Rankin–Selberg integral for any unramified representation π′ of GLn−1(F ), in that
this integral is equal to the local L-function L(s, π × π′).

2.2. The Conductor Exponent. The conductor exponent of π is c(π). This is
additive: if π = ⊞

r
j=1 πj with each πj an essentially square-integrable representa-

tion of GLnj (F ) such that n1 + · · · + nr = n, then c(π) =
∑r

j=1 c(πj). It is also

inductive: if E/F is an extension of degree nE/F , and

π = Ind
GLnnE/F

(F )

GLn(E) Π

for some generic irreducible admissible representation Π of GLn(E) with conductor
exponent c(Π), then

c(π) = c

(
Ind

GLnnE/F
(F )

GLn(E) Π

)
= fE/F c(Π) + dE/Fn,

where dE/F denotes the valuation of the discriminant of E/F and fE/F denotes
the residual degree of E/F . Finally, the conductor exponent appears in the epsilon
factor, defined via the local functional equation, namely

ε(s, π, ψ) = ε(1/2, π, ψ)q−c(π)(s−1/2),

where q = #O/p.
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3. Archimedean Theory

Let F ∈ {R,C} be an archimedean local field. I prove that there is an analogous
theory of the newform and the conductor exponent of generic irreducible admissible
representations π of GLn(F ). In this setting, there is no immediate analogue of a
congruence subgroup; instead, the conductor exponent c(π) of π is a measure of
the size of the minimal K-type of π whose restriction to Kn−1 contains the trivial
representation, and the newform is the unique vector up to scalar lying in this
K-type that is Kn−1-invariant.

As in the nonarchimedean setting, there is a theory of oldforms (of essentially
identical dimensions to Reeder’s calculations [Ree91]); these correspond to the non-
minimal K-types of π that contain the trivial representation of Kn−1. However,
so far I cannot yet prove in full generality and can only conjecture and prove in
certain cases that the newform in the Whittaker model is a test vector for the
local GLn × GLn−1 Rankin–Selberg integral.

I show that the conductor exponent is again additive and inductive, just as in
the nonarchimedean setting. Finally, the epsilon factor ε(s, π, ψ) is equal to ic(π);
note that unlike the nonarchimedean setting, this only determines c(π) modulo 4.

3.1. The Classical Picture. We return to the classical setting to interpret these
results. The infinite component π∞ of the automorphic representation contain-
ing the adèlic lift of a holomorphic newform of weight k has conductor exponent
c(π∞) = k; similarly, c(π∞) = 0 for an even weight zero Maaß newform and
c(π∞) = 1 for a weight one Maaß newform. Finally, c(π∞) is equal to 2 for an
odd weight zero Maaß newform f ; this reflects the fact that R0f , the test vector
for the (global) GL2 × GL1 Rankin–Selberg integral, is of weight two.
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Subconvexity without the δ-method

Roman Holowinsky

(joint work with Paul Nelson)

The subconvexity problem for automorphic L-functions of degree > 2 has seen
many recent advances, but a uniform approach to the problem remains elusive.
For instance, consider the problem of bounding L(π ⊗ χ, 12 ), where

• π is a fixed cusp form on PGL3(Z), not necessarily self-dual, and
• χ traverses a sequence of Dirichlet characters χ of (say) prime conductor
M tending off to ∞.



Automorphic Forms and Arithmetic 2489

Munshi has recently established the first subconvex bound in this setting by show-
ing that the estimate

|L(π ⊗ χ, 12 )| ≪M3/4−δ

holds for any fixed δ < 1/1612 provided that π satisfies the Ramanujan–Selberg
conjecture. Furthermore, in a recent preprint, Munshi removes the Ramanujan–
Selberg assumption and extends the estimate to δ < 1/308.

The main tool in his proof is the introduction of a novel “GL2 δ-symbol method,”
whereby one detects an equality of integers m = n by averaging several instances
of the Petersson trace formula, roughly like so:

δ(m,n) =
1

Q⋆

∑

q∼Q

∑

ψ(q)

∑

f∈Sk(q,ψ)

wfλf (m)λf (n)

− 2πi−k
1

Q⋆

∑

q∼Q

∑

ψ(q)

∑

c≡0(q)

Sψ(m,n, c)

c
Jk−1(

4π
√
mn

c
).

This approach differs fundamentally from traditional moment method techniques,
rather than embedding the L-function in a family, one views it as the “diagonal”
contribution to the “auxiliary first moment” induced by the Petersson trace for-
mula above. More specifically, Munshi begins by writing roughly L copies of the
main object of interest in the following way:

(1)
∑

n∼M3/2

A(n)χ(n) =
1

L⋆

∑

ℓ∼L
χ(ℓ)

∑

n∼M3/2

A(n)
∑

r∼M3/2L

χ(r)δ(r, nℓ).

The sum is over primes ℓ of size L which are coprime with M , and L⋆ is the
appropriate normalizing factor. The coefficients A(n) are those that would appear
in the Dirichlet series expansion of L(π, s). Using several copies of Petersson’s
trace formula, Munshi then writes

δ(r, nℓ) = F −O
with the sum of Fourier coefficients given roughly by

(2) F ≈ 1

P 2

∑

p∼P

∑

ψ(p)

∑

f∈Sk(pM,ψ)

ωfλf (r)λf (nℓ)

and the sum of Kloosterman sums given roughly by

(3) O ≈ 1

P 2

∑

p∼P

∑

ψ(p)

∑

c≪
√
ML/P

1

cpM
Sψ(r, nℓ; cpM)Jk−1

(
4π

√
nℓr

cpM

)
.

Munshi inserts this pair of formulas into (1) and bounds the resulting contributions
separately through a sequence of dual summation formulas, spectral formulas, and
local evaluations of various character sums, ultimately resulting in an application
of Cauchy-Schwarz which breaks the original problem structure and allows Munshi
to achieve his stated results.

In this talk, we demonstrate how one may avoid the use of the GL2 δ-method
introduced by Munshi in order to obtain a more direct proof, with a quantitative
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strengthening of the subconvexity exponent, by appealing instead to an applica-
tion of Poisson summation. The main formula that one instead appeals to is the
following: for any integer u and parameter qǫ < R < q1−ǫ (say),

(4) ǫ(χ)2χ(u) =

√
q

R

smooth∑

r≪R

χ(r)Kq(ur) −
smooth∑

06=h≪q/R

∑
a(q) χ(a)Kq(ua)eq(−ah)

√
q

.

Here Kq(a) := q−1/2S(a, 1, q) is the Kloosterman sum and ǫ(χ) denotes the Gauss
sum normalized so that |ǫ(χ)| = 1. The left hand side of (4) is obtained by
degenerating the h 6= 0 terms on the right hand side to h = 0. We interpret this
identity as a formula for χ(u). It may be surprising that it is useful to write χ(u)
in such a manner, however, this formula rests hidden inside Munshi’s argument as
the key crucial identity.

We demonstrate how this key formula (4) is used to achieve subconvexity for
L(π ⊗ χ, 12 ) and how one would discover similar formulas, in other applications,
by first appealing to a sketch of proof that utilizes the GL2 δ-method as a guide
and then proceeding to remove it. This is joint work with Paul Nelson.

Shrinking targets for homogenous flows

Dubi Kelmer

For a dynamical system on a probability space, the shrining target problem studies
the question of how fast can a sequence of targets shrink so that a typical orbit will
keep hitting the targets infinitely often. A natural bound for this rate comes from
the easy half of Borel-Cantelli, stating that for any sequence of sets, {Bm}m∈N,
if
∑∞

m=1 µ(Bm) < ∞ then for almost all starting points, the orbit will eventually
miss the targets. For chaotic dynamical systems, it could be expected that this
bound is sharp, and much work has gone into proving this in various examples of
fast mixing dynamical systems (under some regularity restrictions on the shrinking
sets).

In my talk I will describe joint work with Shucheng Yu, introducing a new
method for attacking the problem by establishing effective mean ergodic theorem
for flows on homogenous spaces. This method works for any monotone family of
shrinking targets in a locally symmetric space and applies also for unipotent flows
with arbitrarily slow polynomial mixing rate. In particular we prove a logarithm
law for the first hitting time of a generic orbit to the shrinking targets.

To describe our result in more detail, let G denote a connected semisimple Lie
group with finite center and no compact factors, let Γ ≤ G be an irreducible lattice,
and let µ denote the G-invariant probability measure on X = Γ\G, coming from
the Haar measure of G. We fix once and for all a maximal compact subgroup
K ≤ G say that a subset B ⊆ X is spherical if it is invariant under the right
action of K (note that spherical sets can be identified with subsets of the locally
symmetric space Γ\G/K). We say that a family {Bt}t>0 is a monotone family of
shrinking targets if Bt ⊆ Bs when t ≥ s and µ(Bt) → 0, and we say it is a family
of spherical shrinking targets if all sets are spherical.
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One-parameter flows on X = Γ\G are given by the right action of one-parameter
subgroups, {ht = exp(tX0) : t ∈ R} ≤ G, and the corresponding discrete time flow
is then given by the action of the discrete subgroup H = {hm}m∈Z. We will always
assume that the subgroup is unbounded in which case the action of any unbounded
subgroup is ergodic and mixing. Our main result is the following.

Theorem. Assume that either G has property (T ), or that G is of real rank one,
Let {Bt}t>0 denote a monotone family of spherical shrinking targets in X = Γ\G.
Let {hm}m∈Z denote an unbounded discrete time flow on X , and let τBn(x) =
min{m ∈ N : xhm ∈ Bn}. Then for a.e. x ∈ X

lim
t→∞

log(τBt(x))

− log(µ(Bt))
= 1.

In many cases we also prove a dynamical Borel-Canteli result, showing that the
condition that

∑∞
m=1 µ(Bm) = ∞ implies that for almost all starting points, the

orbit will eventually hit the targets.

Pretentious methods for L-functions

Dimitris Koukoulopoulos

(joint work with K. Soundararajan)

Let {f(p)}p prime be a sequence that we wish to estimate on average. A typical
strategy is to extend f(p) to a multiplicative function f : N → C and study first the
partial sums of f(n) with n running over all integers. Often, this is accomplished
by studying the corresponding Dirichlet series which, by multiplicativity, has an
Euler product:

L(s, f) :=
∞∑

n=1

f(n)

ns
=
∏

p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)
.

For many important functions f , the Dirichlet series L(s, f) satisfies the following
axioms:

(i) The factors of the Euler product can be written as
∏D
j=1(1−αj(p)/p

s)−1.
The integer D is called the degree of L.

(ii) We have |αj(p)| ≤ 1 for all j and all p. We then say that L(s, f) satisfies
Ramanujan’s conjecture. In particular, this means that L(s, f) converges
absolutely for ℜ(s) > 1.

(iii) Even though a priori L(s, f) is defined only for ℜ(s) > 1, it admits a
meromorphic continuation to C, with its only poles located at s = 0 and
at s = 1.

(iv) L(s, f) satisfies a certain functional equation that relates its value at s
with its value at 1 − s.

As Riemann understood, in this fortuitous circumstance the asymptotic behaviour
of the sum

∑
p≤x f(p) is controlled by the location of the zeroes of L(s, f) in the so-

called critical strip {s ∈ C : 0 ≤ ℜ(s) ≤ 1}. The Generalized Riemann Hypothesis
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is the conjecture that, under Axioms 1-4, all such zeroes lie on the central line
ℜ(s) = 1/2, that is a line of symmetry of L(s, f) and is called the critical line.

A careful examination of the classical proofs of the Prime Number Theorem
reveals that we don’t actually use the full strength of the above axioms, but rather
two simple consequences of them:

(a) |Λf | ≤ DΛ, where Λf (n) are the coefficients of the Dirichlet
series −(L′/L)(s, f);

(b) the partial sums of f satisfy the asymptotic formula

(1)
∑

n≤x
f(n) = xPf (log x) +O(x1−δ) (x ≥ q(f)L),

where δ > 0 and L ≥ 1 are two constants, q(f) denotes the so-called
conductor of L(s, f) that appears in its functional equation, and Pf is a
polynomial whose degree equals k − 1, where k is the order of the pole of
L(s, f) at s = 1.

A natural question then becomes what kind of general Prime Number Theorems
we can prove for the extended family of multiplicative defined by Axioms (a) and
(b). Building on the work in [4, 5] that dealt with the case D = 1, we prove a
general theorem that characterizes functions satisfying a variation of the above
axioms:

Theorem 1. Let f be a multiplicative function such that |Λf | ≤ DΛ and

(2)
∑

n≤x
f(n) ≪ x

(log x)A
(x ≥ 2).

If A > D, then there exist real numbers γ1, . . . , γk, 0 ≤ k ≤ D, such that

(3)
∑

p≤x
(f(p) + piγ1 + · · · + piγk) = ox→∞

(
x

log x

)
.

If, in addition, we know that L(1 + it, f) 6= 0 for all t, then k = 0 and

∑

p≤x
f(p) = ox→∞

(
x

log x

)
.

The above theorem is proven by combining the theory of pretentious multiplica-
tive functions with sieve methods. It is best possible, in the sense that if A < D,
then we can find examples of functions f that satisfy its hypotheses, but for which
(3) fails. The error term in right hand side of (3) admits a precise quantitative
form and improves as A→ ∞.

A suitable adaptation of the methods leading to (1) under the stronger hypothe-
ses imposed by Axioms (a) and (b) allows us to give a new proof of the classical
zero-free regions for automorphic L-functions. As applications, we reprove general
Prime Number Theorems with an error term that is as strong as the classical de
la Vallée-Poussin type arguments permit.



Automorphic Forms and Arithmetic 2493

References

[1] J. Friedlander and H. Iwaniec, Opera de cribro. American Mathematical Society Colloquium
Publications, 57. American Mathematical Society, Providence, RI, 2010.

[2] A. Granville and K. Soundararajan, Multiplicative number theory: The pretentious ap-
proach.

[3] H. Iwaniec and E. Kowalski, Analytic number theory. American Mathematical Society Col-
loquium Publications, 53, American Mathematical Society, Providence, RI, 2004.

[4] D. Koukoulopoulos, Pretentious multiplicative functions and the prime number theorem for
arithmetic progressions. Compos. Math. 149 (2013), no. 7, 1129–1149.

[5] , On multiplicative functions which are small on average. Geom. Funct. Anal., 23
(2013), no. 5, 1569–1630.

Analytic continuation of the heat kernel and applications

Jürg Kramer

1. Motivation

Let H := {z = x+iy ∈ C | y > 0} denote the upper half-plane and let Γ ⊂ PSL2(R)
be a Fuchsian subgroup of the first kind acting by fractional linear transformations
on H; to simplify our exposition, we assume that Γ is cocompact and torsionfree.
We let M denote the associated quotient space Γ\H, which has the structure of a
compact Riemann surface.

The upper half-plane H as well as the compact Riemann surface M are equipped
with the hyperbolic metric having constant negative curvature equal to −1. The
Laplacian with respect to this metric acting on smooth functions on H is given as

∆hyp = −y2
(
∂2

∂x2
+

∂2

∂y2

)
;

the corresponding Laplacian induced on M is denoted in the same way.
Introducing the function

KH(t; ρ) :=

√
2 e−t/4

(4πt)3/2

∞∫

ρ

u e−u
2/(4t)

(cosh(u) − cosh(ρ))1/2
du (t ∈ R>0; ρ ∈ R≥0),(1)

the heat kernel on H associated to ∆hyp is given as

KH(t; z, z′) = KH(t; ρz,z′) (t ∈ R>0; z, z′ ∈ H),

where ρz,z′ := disthyp(z, z′) is the hyperbolic distance between z and z′. Now, the
heat kernel on M associated to ∆hyp is obtained by averaging over the group Γ,
i.e., we have

KM (t; z, z′) =
∑

γ∈Γ

KH(t; z, γz′) (t ∈ R>0; z, z′ ∈M).
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By means of the eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ . . . of ∆hyp and the corresponding
eigenfunctions ϕj (j = 0, 1, 2, . . .), we obtain the spectral expansion

KM (t; z, z′) =

∞∑

j=0

ϕj(z)ϕj(z
′)e−λjt.(2)

From the expansion (2), we immediately see that the heat kernel on M can be
analytically continued to the right half-plane H := {ζ = t + is ∈ C | t > 0} by
means of the formula

KM (ζ; z, z′) =

∞∑

j=0

ϕj(z)ϕj(z
′)e−λjζ .

The problem which we address in this talk is the question whether the analytic
continuation KM (ζ; z, z′) just obtained can be further continued beyond the right
half-plane H, in particular to the imaginary axis of the complex ζ-plane.

2. Main results

In the sequel, we will use an alternative formula for the heat kernel on H than the
one given by (1).

Lemma 1 (Gruet’s formula). With the above notation, the function (1) can
alternatively be represented as

KH(t; ρ) = c(t)

∞∫

0

e−u
2/(4t) sinh(u) sin(πu/(2t))

(cosh(u) + cosh(ρ))3/2
du,(3)

with an elementary function c(t). For a proof, we refer to [1].
By means of Gruet’s formula in combination with the Stieltjes integral repre-

sentation of the heat kernel

KM (ζ; z, z′) =

∞∫

0

KH(ζ; ρ) dN(ρ; z, z′)

with the counting function

N(ρ; z, z′) := #{γ ∈ Γ | ρz,γz′ = disthyp(z, γz′) ≤ ρ},
we obtain an alternative way to analytically continue KM (t; z, z′) to the right
half-plane H.

In order to achieve a continuation of KM (ζ; z, z′) beyond the right half-plane
H, we will shift the path of integration in (3) suitably into the complex w-plane
(w = u+ iv), however in doing so, we have to take care of the multivaluedness and
the emerging singularities of the complexified integrand in (3).

Letting D denote the domain in the complex w-plane with vertical cuts from
±ρz,γz′ +kπi to ±ρz,γz′ +(k+2)πi (k = ±1,±5, . . .), we observe that the function

f(w) :=
∑

γ∈Γ

1

(cosh(w) + cosh(ρz,γz′))3/2
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becomes a univalued holomorphic function in the domain D. Then, an application
of Cauchy’s theorem shows

Lemma 2. Choosing a path η in D starting at the origin with positive slope
across the first quadrant and bypassing the cuts which are in the way, we have for
ζ ∈ H that

KM (ζ; z, z′) = c(ζ)

∫

η

f(w) e−w
2/(4ζ) sinh(w) sin(πw/(2ζ)) dw + E(ζ; η, δ),(4)

where

E(ζ; η, δ) = c(ζ)
∑

γ∈Γ

∼ρz,γz′∑

k=1
k≡1 mod 4

∫

η(ρz,γz′ ,k;δ)

e−w
2/(4ζ) sinh(w) sin(πw/(2ζ))

(cosh(w) + cosh(ρz,γz′))3/2
dw;

(5)

here η(ρz,γz′ , k; δ) denotes a rectangular path around the cut from ρz,γz′ + kπi to
ρz,γz′ + (k + 2)πi at distance δ > 0, being small enough.

By construction, the first summand on the right-hand side of (4) can be ana-
lytically continued from H across the imaginary axis (depending on the minimal
positive slope of η). With regard to the second summand on the right-hand side
of (4), we have the following

Theorem. By choosing δ > 0 sufficiently small, the quantity E(ζ; η, δ) is finite
for ζ = is provided that s > 0 is small enough. Consequently, the heat kernel
KM (ζ; z, z′) can be continuously continued from H to a suitable portion of the
positive imaginary axis.

For a proof, one shows first that the quantity

∑

γ∈Γ

∼ρz,γz′∑

k=5
k≡1 mod 4

∫

η(ρz,γz′ ,k;δ)

e−w
2/(4is) sinh(w) sin(πw/(2is))

(cosh(w) + cosh(ρz,γz′))3/2
dw

converges absolutely provided that s > 0 is small enough. Rewriting the remaining
contribution for ζ ∈ H as a Stieltjes integral yields

∞∫

0

∫

η(ρ,1;δ)

e−w
2/(4ζ) sinh(w) sin(πw/(2ζ))

(cosh(w) + cosh(ρ))3/2
dw dN(ρ; z, z′).

Next we integrate by parts and use the asymptotic expansion of N(ρ; z, z′) given
by a lead term Σ(ρ; z, z′) and a remainder term R(ρ; z, z′). The contribution
belonging to the lead term is then easily seen to have an analytic continuation
from H across the imaginary axis. As far as the contribution belonging to the
remainder term is concerned, we use the fine structure of R(ρ; z, z′) established
in the article [2] to construct the desired analytic continuation (up to a rest term
which can be handled separately by absolute convergence).

Remark. By treating more than just the first summand of the sum over k in (5)
in the above manner, the range of the continuation KM (ζ; z, z′) to the imaginary
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axis can be arbitrarily extended. Another approach to achieve this effect is to use
iteratively the semigroup law for the heat kernel.

Applications. As far as applications of our continuation of the heat kernel to
the imaginary axis are concerned, it remains to control the growth of KM (is; z, z′)
in s. Boundedness of our continuation for s → ∞ would yield the best possible
bound for the sup-norm of the ϕj ’s. However, this seems difficult to achieve. A
more promising next step is to show that KM (is; z, z′) = O(sα) for some α > 0 as
s → ∞; for example, α = 1/2 leads to the standard sup-norm bound for Maass
forms.
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Effective equidistribution of rational points on expanding horospheres

Min Lee

(joint work with Jens Marklof)

For d ≥ 2, let G = SLd(R) and Γ = SLd(Z). HereG acts by right multiplication on
the quotient space Γ\G, which carries a unique G-invariant probability measure µ.

Set Φt =
(
et1d−1 0

0 e−(d−1)t

)
for t > 0. Then the expanding horospherical subgroup

H+ of G with respect to {Φt : t > 0} can be explicitly written as

(1) H+ =

{
n+(x) =

(
1d−1 0
tx 1

)
: x ∈ Rd−1

}
.

It is well-known that the translates of patches of expanding horospheres under Φt
becomes uniformly distributed in Γ\G with respect to µ as t → ∞. We have the
following equidistribution theorem :

Theorem 1 (cf.[5]). Let f : Γ\G × Rd−1 → R be bounded continuous and λ a
Borel probability measure on Rd−1 which is absolutely continuous with respect to
the Lebesgue measure. Then

(2) lim
t→∞

∫

Rd−1

f(Γn+(x)Φt,x) dλ(x) =

∫

Γ\G×Rd−1

f(g,x) dµ(g) dλ(x).

For a positive integer q, let

(3) Rq = {r ∈ Zd−1 ∩ (0, q]d−1, gcd(q, r) = 1}.
In this talk, we study the distribution of rational points with denominator q. For
r ∈ Rq, by [4, (3.52)], Γn+(r/q)D(q) ∈ Γ\ΓH , where D(q) = Φ(d−1) log q and the
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subgroup
(4)

H=

{(
A x
t0 1

)
: A ∈ SLd−1(R),x ∈ Rd−1

}
∼= SLd−1(R)⋉Rd−1 =: ASLd−1(R).

Marklof [4] proved the equidistribution of rational points

(5) {Γn+(r/q)D(q) : r ∈ Rq, 1 ≤ q < Q}

as Q→ ∞. This result has important applications to the asymptotic distribution
of Frobenius numbers and the diameters of random circulant graphs. By extending
this result, Einsiedler, Mozes, Shah and Shapira [2] proved the following remark-
able equidistribution theorem.

Theorem 2 ([2]). Let f : Γ\ΓH × (R/Z)d−1 → R be bounded continuous. Then

(6) lim
q→∞

1

♯Rq

∑

r∈Rq

f(Γn+(r/q)D(q), r/q) =

∫

Γ\ΓH×(R/Z)d−1

f(g,x) dµ0(g)dx.

Here µ0 is the unique H-invariant probability measure on Γ\ΓH.

The proof requires deep ergodic-theoretic tools, including Ratner’s measure
classification theorem.

In the present talk, we provide a different proof of Theorem 2 in the case of
d = 3, which uses

• harmonic analysis on ASL2(Z)\ASL2(R) ([6])
• Weil bounds on Kloosterman sums
• distribution of Hecke points ([1]).

Unlike the ergodic-theoretic approach pursued in [2], this provides an explicit
estimate on the rate of convergence.

Let Ckb (Γ\ΓH × (R/Z)2) be the space of k times continuously differentiable
functions with all derivatives bounded. The following is our main result:

Theorem 3 ([3]). Let d = 3, ǫ > 0 and k > 4. Then there is a constant cǫ,k <∞
depending on ǫ and k such that, for all q ∈ Z≥1 and f ∈ Ckb (Γ\ΓH × (R/Z)2),

(7)

∣∣∣∣∣∣
1√
Rq

∑

r∈Rq

f(Γn+(r/q)D(q), r/q) −
∫

Γ\ΓH×(R/Z)2
f(g,x) dµ0(g) dx

∣∣∣∣∣∣

≤ cǫ,k‖f‖Ck
b
q−

1
2+ǫ(qθ + q

5
2(k+1) ).

Here θ is the constant towards the Ramanujan conjecture, which asserts θ = 0 and
‖f‖Ck

b
is the Sobolev norm.
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On the global sup-norm of GL(3) cusp forms

Péter Maga

(joint work with Valentin Blomer, Gergely Harcos)

In the past few years, analytic number theory on higher-rank groups came into
focus. In particular, the sup-norm problem (i.e. give as strong estimates on
the sup-norm of eigenfunctions of the Hecke algebra as possible) has also been
investigated. It turned out (in the work of Brumley-Templier) that automorphic
forms on GL(n), for n ≥ 6, show high peaks near the cusp, that is, Sarnak’s general
bound (referring to compact spaces or compact subsets of noncompact ones) does
not hold. As a complement to Brumley-Templier (which gave lower bound on the
sup-norm), we try to estimate the eigenfunctions from above.

Introduce the notation G = PGL3(R), Γ = PGL3(Z), K = PO3(R), and set
X = Γ\G/K. Assume that φ is a Hecke-Maaß cusp form on X , and denote its
Laplace eigenvalue by λφ. Assume further that φ is arithmetically normalized, i.e.
it has leading Fourier coefficient 1 with respect to Jacquet’s Whittaker function.
We prove then that

(1) sup
z∈X

|φ(z)| ≪ε λ
39/40+ε
φ

holds for all ε > 0. To establish this bound, we consider two approaches.
The first approach is the Fourier-Whittaker expansion of φ. Assuming that

z ∈ X has diagonal Iwasawa factor diag(y1y2, y1, 1) with y1, y2 ≥
√

3/2, after a
careful analysis of Jacquet’s Whittaker function, we arrive at

φ(z) ≪ε min(y1, y2)

(
λ1+εφ

y1y2
+
λ
3/2+ε
φ

(y1y2)2

)
.

This bound is particularly strong when y1y2 is large, reflecting the exponential
decay of the Whittaker function close to the cusp.
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The second approach is via the pre-trace formula, leading us to

φ(z) ≪ λ
3/4
φ + λ

5/8
φ y1y2.

This bound is strong when y1y2 is small, which must not be surprising in the
light of the fact that the pre-trace formula approach is usually used for compact
domains.

Balancing between these two estimates, we arrive at (1).

Amplification and bounds for periods

Simon Marshall

Let M be a compact Riemannian manifold of dimension n, and ψ a function on
M satisfying (∆ + λ2)ψ = 0 and ‖ψ‖2 = 1. A classical theorem of Avacumović [1]
and Levitan [12] states that

(1) ‖ψ‖∞ ≪ λ(n−1)/2,

that is, the pointwise norm of ψ is bounded in terms of its Laplace eigenvalue.
This bound is sharp on the round sphere Sn or a surface of revolution, but is far
from the truth on flat tori. It is an interesting problem in semiclassical analysis to
find conditions on M under which (1) can be strengthened, and such conditions
often take the form of a non-recurrence assumption for the geodesic flow on M .
One result of this kind is due to Bérard [2], who proves that if M has negative
sectional curvature (or has no conjugate points if n = 2) then we have

(2) ‖ψ‖∞ ≪ λ(n−1)/2

√
logλ

.

The problem of strengthening (1) for negatively curved M is an interesting one,
because for generic M we expect that ‖ψ‖∞ ≪ǫ λ

ǫ, whereas the strongest upper
bound that is known in general is (2).

In [11], Iwaniec and Sarnak introduced a different condition on M and ψ which
allows them to deduce quite a strong bound for ‖ψ‖∞. They assume that M is
a congruence hyperbolic manifold, in particular the quotient of H2 by the group
of units in an order in a quaternion division algebra over Q, and that ψ is an
eigenfunction of the Hecke operators on M . They then prove that ‖ψ‖∞ ≪ǫ

λ5/12+ǫ. Moreover, one expects that the assumption on ψ is not necessary because
the spectral multiplicities of negatively curved manifolds are always observed to
be bounded. This bound is the strongest that is known for the supremum norm
of eigenfunctions on a negatively curved surface.

We are interested in extending the methods of Iwaniec and Sarnak to higher
dimensional mainfolds, which requires considering eigenfunctions on general locally
symmetric spaces. We shall only consider spaces of noncompact type, although
the method of proof would apply equally well to spaces of compact type. We
make this restriction partly for convenience, and partly because the multiplicities
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of the Laplace spectrum on such manifolds are expected to be bounded as in the
hyperbolic case. Although these manifolds have zero sectional curvature in certain
directions, their eigenfunctions are expected to exhibit essentially the same chaotic
behaviour that is observed on negatively curved manifolds.

We recall that locally symmetric spaces of noncompact type are constructed by
taking a semisimple real Lie group G, a maximal compact subgroup K ⊂ G, and
a lattice Γ ⊂ G, and defining Y = Γ\G/K. We do not assume that Y is compact.
We let n and r be the dimension and rank of Y . We consider functions ψ ∈ L2(Y )
that are eigenfunctions of the full ring of invariant differential operators, which
is isomorphic to a finitely generated polynomial ring in r variables. This ring
contains ∆, and we continue to define λ by (∆ + λ2)ψ = 0.

If Ω ⊂ Y is compact, Sarnak proves in [17] that ψ satisfies

(3) ‖ψ|Ω‖∞ ≪ λ(n−r)/2.

The analogous problem to the one solved by Iwaniec and Sarnak for H2 is to
improve the exponent in this bound, under the assumptions that Γ is congruence
arithmetic, and that ψ is an eigenfunction of the ring of Hecke operators. (Note
that when r ≥ 2, Γ is automatically arithmetic by a theorem of Margulis.) This
is often referred to as the problem of giving a subconvex, or sub-local, bound for
the sup norm of a Maass form in the eigenvalue aspect. Besides the original work
of Sarnak and Iwaniec, the pairs Γ ⊂ G for which it has previously been solved
are SL2(OF ) ⊂ SL2(F∞) for any number field F by Blomer, Harcos, Maga, and
Milićević [3, 4], Sp4(Z) ⊂ Sp4(R) by Bomer and Pohl [9], SL3(Z) ⊂ SL3(R) by
Holowinsky, Ricotta, and Royer [10], and SLn(Z) ⊂ SLn(R) for any n by Blomer
and Mága [5, 6]. There are also results bounding eigenfunctions on the round
spheres S2 and S3 equipped with Hecke algebras [7, 8].

We note that much work has been done on variants of the sup-norm problem.
One may consider Maass forms of varying level and eigenvalue, or bound the L2

norm of the restriction of ψ to a submanifold of positive dimension [13, 14].

0.1. Statement of results. We first state our result in a simple case.

Theorem 1. Let F be a totally real number field, and let v0 be a real place of F .
Let G/F be connected and semisimple. We make the following assumptions on G.

• Gv is compact for all real v 6= v0
• Gv0 is R-almost simple, quasi-split, and not isogenous to SU(n, n− 1) for
any n.

Let Y be a congruence manifold associated to G, and let Ω ⊂ Y be compact.
Let ψ be a Hecke-Maass form on Y satisfying ‖ψ‖2 = 1 and (∆ + λ2)ψ = 0. We
then have ‖ψ|Ω‖∞ ≪ λ(n−r)/2−δ for some δ > 0.

We deduce Theorem 1 from the following more general result. To state it, it will
be convenient to make two definitions. The first is a condition on a real semisimple
group G:
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(WS): G is quasi-split, and not isogenous to a product of odd special unitary
groups.

The second condition will be applied to the spectral parameters of our Maass
form, to simplify the application of a theorem of Blomer-Pohl [9] and Matz-
Templier [15] in the proof.

Definition 1. Let g be a real Lie algebra with Cartan decomposition g = k+p and
Cartan subalgebra a ⊂ p. Let gi be the R-simple factors of g. We say that λ ∈ a∗C
is (A, σ)-balanced if its projections λi to g∗i,C satisfy ‖λi‖ ≤ C‖λj‖σ.

We may now state the general form of our main theorem.

Theorem 2. Let F be a number field, and let v0 be a real place of F . Let G/F
be connected and semisimple, and assume that Gv0 satisfies (WS).

Let Y be a congruence manifold associated to G, and let ψ be a Hecke-Maass
form on Y satisfying ‖ψ‖2 = 1. Let λ ∈ a∗C be the spectral parameter of ψ. Let λ0
be the component of λ at v0, and assume that λ0 is (A, σ)-balanced in Lie(Gv0).
Let ΩY ⊂ Y be compact. Then there exists δ = δ(G, σ) > 0 and C = C(ΩY , A, σ)
such that

(4) ‖ψ|ΩY ‖∞ ≤ CD(λ)(1 + ‖λ0‖)−δ.

As Theorem 2 is rather general, we now give some examples of what one my
prove by specializing it in various ways. First, Theorem 2 solves the sup norm
problem for split groups over any number field F , subject to the balance condition
on the spectral parameter.

Corollary 1. Let G/F be split. Let ψ, λ, and ΩY be as in Theorem 2. Assume
that λ is (A, σ)-balanced in Lie(G∞). Then there exists δ = δ(G, σ) > 0 and
C = C(ΩY , A, σ) such that

‖ψ|ΩY ‖∞ ≤ C(1 + ‖λ‖)(n−r)/2−δ.

Proof. If F has a real place, the corollary follows directly from Theorem 2. If F
has only complex places, the Q-group ResF/QG satisfies (WS) at infinity so we
may apply Theorem 2 to it.

�

As a second example, we may apply Theorem 1 to groups with G(Fv0) =
SL(2,C) so that the associated symmetric spaces are congruence arithmetic hy-
perbolic 3-manifolds.

Corollary 2. Let Y be a compact congruence arithmetic hyperbolic 3-manifold. If
the invariant trace field F of Y has a subfield of index 2, then any Hecke-Laplace
eigenfunction ψ on Y that satisfies (∆ + λ2)ψ = 0 and ‖ψ‖2 = 1 also satisfies
‖ψ‖∞ ≪ (1 + λ)1−δ for some δ > 0 depending only on Y .

We note that the condition on Y in Corollary 2 also arises in work of Milićević
[16] on the sup norms of Maass forms.
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Effective Plancherel equidistribution

Jasmin Matz

(joint work with Tobias Finis)

Let G be a split semisimple algebraic group defined over Z. We are interested in
the distribution of the local components of cuspidal automorphic representations of
G in the unitary dual of the local groups. To describe this problem more precisely,
we need to introduce some notation: Fix suitable maximal compact subgroups
K∞ ⊆ G(R), Kp ⊆ G(Qp), and set K := K∞ · Kfin := K∞ · ∏p<∞ Kp. Let

Ω ⊆ Ĝ(R)
ur,temp

be a “nice” bounded subset of the tempered part of the spherical

unitary dual of G(R). We can identify Ĝ(R)
ur,temp

with the real vector space

Rr with r the rank of G so that we can consider the sets tΩ ⊆ Ĝ(R)
ur,temp

for
t ≥ 1. Let FΩ(t) denote the multiset (that is, appearing with the same multiplicity
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as in L2
cusp(G(Q)\G(A))) of all cuspidal automorphic representations π of G(A)

which are spherical at the archimedean place and unramified at all p and such
that π∞ ∈ tΩ. Studying the number of elements in FΩ(t) as t → ∞ yields the

distribution of the cuspidal automorphic spectrum in Ĝ(R)
ur

. If Ω is the unit ball,
this is Weyl’s law which is known to hold in many cases [14, 11, 12, 8].

For each prime p every π ∈ F(t) determines a point πp ∈ Ĝ(Qp)
ur

in the
unramified unitary dual of G(Qp). An obvious question is how those πp distribute

in Ĝ(Qp)
ur

as π ∈ FΩ(t), t → ∞. For small rank this question was studied in
[13, 6, 1]. To make this more precise, we consider the Hecke algebra: Let Hp denote
the Hecke algebra of G(Qp) with respect to Kp, that is, the convolution algebra
of all smooth, compactly supported functions τp : G(Qp) −→ C which are left-
and right-invariant under Kp. The characteristic function χKp of Kp, normalized
by the measure of Kp, is the unit element of Hp. Let H denote the convolution
algebra generated by all functions τ : G(Af ) −→ C of the form τ =

∏
p<∞ τp with

τp ∈ Hp for each p and τp = χKp for all but finitely many p.
For our main result, we need to make an assumption on the intertwining oper-

ators on our group, namely that the winding numbers of their normalizing factors
do not grow too fast. More precisely, we assume that G satisfies property (TWN+)
(tempered winding numbers), which was introduced in [4] in the context of the
study of limit multiplicities. It is a natural condition on G, and known to hold for
all classical groups and G2 [4].

We then have:
Theorem. Suppose that G satisfies property (TWN+). Then

• For any ǫ > 0 we have as t→ ∞

(1) #FΩ(t) = vol(G(Q)\G(A))

∫

tΩ

β(λ) dλ +Oǫ

(
td−1/2+ǫ

)

where d = dimRG(R)/K∞. Note that
∫
tΩ β(λ) dλ is asymptotic to a

constant multiple of vol(Ω)td as t→ ∞.
• For any τ ∈ H, and any ǫ > 0 we have

(2)
∑

π∈FΩ(t)

trπK∞(τ)

= vol(G(Q)\G(A))
∑

z∈Z(Q)

τ(z)

∫

tΩ

β(λ) dλ +Oǫ

(
‖τ‖L1(G(Af ))t

d−1/2+ǫ
)

where Z denotes the center of G. The implied constant is independent of
τ and t.

Remark. • (1) is essentially the Weyl law with a bound on the error term.
Previously, for PGL(n) a stronger error term was established in [7], which
is of order O(td−1(log t)max{3,n}).

• For PGL(n) over Q or an imaginary quadratic number field an estimate
as in (2) was established in [9, 10] but with a worse error estimate.
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• The error terms in (1),(2) can probably be improved.
• (2) can be used to prove that on average the family FΩ(t) satisfies the
Sato-Tate law.

The main tool in the proof of the theorem is the Arthur-Selberg trace formula
for G and a good choice of test function. We rely on methods and ideas from
[3, 7, 10, 2, 5]. The test function, or rather family of test functions, is constructed
as in [3] via the Paley-Wiener theorem. More precisely, it depends on a spectral

parameter µ ∈ Ĝ(R)
ur,temp

and the Hecke operator τ ∈ H. It is of the form
Fµ,τ = fµ∞τ .

The trace formula gives an identity∫

tΩ

Jgeom(Fµ,τ ) dµ =

∫

tΩ

Jspec(F
µ,τ ) dµ.

The spectral side can basically be handled as for GL(n) in [7, 9]. The most
work lies in the treatment of the geometric side. The main terms on the right
hand sides of (1) and (2) come from the contribution of the center Z to the
geometric side. Let Jgeom−Z denote the geometric side of the trace formula with
the central contribution removed. We then need to show that

∫
tΩ Jgeom−Z(Fµ,τ ) dµ

only contributes to the error term on the right hand side of (2). This is done by
using results by Arthur and Finis-Lapid to reduce the problem to finding an upper
bound for

(3)

∫

G(Q)\G(A)≤T

∑

γ∈G(Q)\Z(Q)

∣∣Fµ,τ (g−1γg)
∣∣ dg

where G(Q)\G(A)≤T indicates that we truncate the quotient G(Q)\G(A) as in
Arthur’s work. Further, we replace |Fµ,τ |, or more specifically |fµ∞| by a simpler
function. For that we use an upper bound on the zonal spherical function on
G(R), which appears in the construction of the function fµ∞, as obtained in [2, 10].
Consequently, one obtains the upper bound

|fµ∞(g)| ≪suppfµ
∞

(1 + ‖µ‖)d−r min{1, (1 + ‖µ‖)−1/2‖X(g)‖−1/2}

for any g ∈ suppfµ∞ and µ ∈ Ĝ(R)
ur,temp

. Here X(g) ∈ LieT0(R) is such that
g ∈ K∞eX(g)K∞ where T0(R) is a suitable maximal split torus in G(R) such that
the Cartan decomposition G(R) = K∞T (R)K∞ holds. Note that the support of
fµ∞ is independent of µ so that the implied constant is independent of µ as well.
We can therefore replace fµ∞ by a suitable function depending only on the “radial
part” of g for which upper bounds for (3) are easier to establish.
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The sup-norm problem for GL(2) over number fields

Djordje Milićević

(joint work with Valentin Blomer, Gergely Harcos, Péter Maga)

Eigenfunctions of the Laplacian are basic building blocks of harmonic analysis on
Riemannian manifolds. The sup-norm problem asks for nontrivial bounds on the
pointwise values of an L2-normalized eigenfunction in terms of its Laplacian eigen-
value λ, geometric properties of the underlying manifold X , or other increasing
parameters. This question is closely connected to the multiplicity of eigenvalues,
and it is motivated by the correspondence principle of quantum mechanics, where
the high energy limit λ→ ∞ provides a connection between classical and quantum
mechanics. The sup-norm of an eigenform with large eigenvalue gives some infor-
mation on the distribution of its mass on X , which sheds light on the question to
what extent these eigenstates can localize (“scarring”). Exciting progress in arith-
metic cases means that the sup-norm problem now occupies a prominent position
at the interface of automorphic forms, analytic number theory, and analysis.

1. Statement of results. In the presented paper, we prove for the first time
nontrivial bounds for the sup-norm of a spherical Hecke–Maaß cuspidal newform
φ on GL(2) over a general number field F of squarefree level n and trivial central
character, with a power saving over the local geometric bound simultaneously in
the eigenvalue and the level aspect.

If the number field F admits r1 real embeddings and r2 conjugate pairs of
complex embeddings, then the connected components of the underlying manifold
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X are quotients of (H2)r1 ×(H3)r2 by various level n congruence subgroups, where
H2 (resp. H3) is the upper half-plane (resp. half-space). Assuming that ‖φ‖2 = 1
holds with respect to the probability measure coming from invariant measures on
H2 and H3, the local geometric bound reads

‖φ‖∞ ≪ǫ |λ|1/4+ǫ∞ (Nn)1/2+ǫ,

where |λ|∞ is the product of suitably normalized Laplacian eigenvalues at all ar-
chimedean places, and Nn is the norm of n. The first of our two main results is
the following improvement.

Theorem 1. For an L2-normalized Hecke–Maaß cuspidal newform φ on GL2(F )
of square-free level n, trivial central character, and spherical at infinity,

‖φ‖∞ ≪ǫ |λ|5/24+ǫ∞ (Nn)1/3+ǫ + |λ|1/8+ǫR |λ|1/4+ǫC (Nn)1/4+ǫ.

This bound is particularly strong when F is totally real (when it recovers the
best known hybrid result over the rationals) and features a Weyl exponent in the
level-aspect.

For a general number field F with a maximal totally real subfield K 6= F , we
establish as our second principal result the following hybrid bound, which saves
uniformly in all aspects:

Theorem 2. For [F : K] ≥ 2, we have under the same assumptions as in Theo-
rem 1

‖φ‖∞ ≪ǫ

(
|λ|1/2∞ Nn

) 1
2− 1

8[F :K]−4+ǫ.

2. Methods. For the proof, in place of the amplified pre-trace formula, we apply
a pre-trace inequality for a suitable positive operator on L2(X), which substantially
streamlines the argument compared to the exact spectral average. This leads to a
counting problem for 2 × 2 matrices γ over F which lie suitably close to a certain
maximal compact subgroup of GL2(F∞).

We rely heavily on the Atkin–Lehner operators to show that the maximum in
‖φ‖∞ is achieved at a point g = ( y x1 ) ( θ 1 ) (with x ∈ F∞, y ∈ F×

∞, and θ one of

finitely many finite ideles) with |y|∞ ≫ 1/
√
Nn. We also develop the following

uniform Fourier bound valid over an arbitrary number field, which is strong for
large |y|∞:

|φ(g)| ≪ǫ

(
|λ|1/12∞ + |λ|1/4∞ |y|−1/2

∞
)1+ǫ

(Nn)ǫ.

Away from the cuspidal regions, we use geometry of numbers for an efficient
treatment of the counting problem over F , and we build a number of approaches
that are strong in different ranges of parameters.

3. New features over number fields. As is well-known, the passage from Q
to a general number field introduces two abelian groups (the class group and the
group of units), which cause considerable technical difficulties for arguments of
analytic number theory. In this direction, we provide a general adelic counting
scheme for efficient counting in possibly highly unbalanced boxes.
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However, in our case, the difficulties go much deeper than dealing with the
class group and the unit group. As soon as F has a complex place, the counting
problem features conditions involving real and imaginary parts at each complex
place separately. If F is not a CM-field, there is no global complex conjugation, and
the global counting techniques that work over number fields like Q or Q(i) break
down in general. In fact, the maximal compact subgroups of GL2(F∞) cannot
be defined over F unless F is a totally real field or a CM-field. The Diophantine
approximation route previously used over Q and Q(i) also fails since the Dirichlet
approximation of required strength is not available over other number fields.

We therefore introduce a number of new devices to leverage the specific interplay
between the maximal compact subgroups of GL2(F∞) and the arithmetic of F .
One of these is the following realness rigidity statement:

Lemma 3. If K is the maximal totally real subfield of a number field F of degree
n, F = K(ξ), and, for all v | ∞, |ξv| ≤ A and |Im ξv| ≤ A

√
δv, and if l is an ideal

such that l · (ξ) is an integral ideal, then

(
(2A)n(N l)2

)2([F :K]−1)|δ|C ≥ 1.

Combined with a careful choice of the amplifier, in the hardest situation in which
a correspondence γ is very close to the maximal compact subgroup and det γ is a
perfect square, this allows us to show that the rescaled trace ξ = tr(γ)/

√
det(γ)

must in fact be an integer; a very strong conclusion.
On the other hand, by passing to a specific congruence subgroup of Γ0(n) (that

behaves roughly like Γ0(n) ∩ Γ1(q)) and thus artificially extending the spectrum,
we can improve the performance of the pre-trace formula on the geometric side
and achieve further non-archimedean localization (that is, congruence conditions)
on the entries of γ and thus on ξ, finally allowing us to eliminate the possibility of
non-parabolic correspondences in the most stubborn range of tiny distances.

In conclusion, the success of our method rests on three flexible tools introduced
specifically to address the novel features of the sup-norm problem over number
fields: passage to a suitably chosen congruence subgroup, a carefully designed
amplifier equipped with arithmetic features, and realness rigidity for number fields,
all of which appear to be of interest in other situations.

Subconvexity and simple zeros of modular form L-functions

Micah B. Milinovich

(joint work with Andrew R. Booker, Nathan Ng)

Let f ∈ Sk(Γ0(N), ξ)new be a primitive holomorphic cusp form of weight k, level
N , and nebentypus character ξ. Writing the Fourier expansion at the cusp ∞ as

f(z) =
∑

n≥1

λf (n)n(k−1)/2 e2πinz, Im(z) > 0,
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we denote the L-function associated to f as

L(s, f) =
∑

n≥1

λf (n)

ns
, Re(s) > 1,

so that λf (n) = 1, |λf (n)| ≤ d(n) (the divisor function), and the critical line of
L(s, f) is Re(s) = 1/2. We are interested in the following conjecture.

Conjecture: The nonreal zeros of L(s, f) are all simple.

There are examples of L(s, f) that have a multiple zero at the central point s = 1/2,
and conjecturally there many such examples (for instance corresponding to elliptic
curves over Q of rank ≥ 2 via the Birch and Swinnerton-Dyer conjecture).

Recently, Booker [3] proved that infinitely many of the nontrivial zeros of L(s, f)
are simple. Let

Ns
f (T ) = #{0 < |ρ| ≤ T : L(ρ, f) = 0, ρ simple}.

Then, assuming the generalized Riemann hypothesis for L(s, f), Ng and I [6]
proved the quantitative result that

Ns
f (T ) ≫ε T (logT )−ε,

for any ε > 0. The three of us are now working together to try to prove uncondi-
tional quantitative estimates for Ns

f (T ).

Our starting point is a paper of Conrey and Ghosh [2] who proved a result of
the following form for L-functions associated to f on the full modular group.

Theorem 1: Let N = 1 and suppose that: (1) L(s, f) has at least one simple

nontrivial zero and (2) there is a δ > 0 such that |L(12 + it, f)| ≪ε |t| 12−δ+ε for

|t| ≥ 3 and all ε > 0. Then Ns
f (T ) = Ω(T δ−ε) for all ε > 0.

A few years earlier Good [5] established the following subconvexity estimate.

Theorem 2: If N = 1, then |L(12 +it, f)| ≪ |t| 13 (log |t|) 5
6 for |t| ≥ 3.

Combining Theorems 1 and 2 with Booker’s result [3], it follows that Ns
f (T ) =

Ω(T
1
6−ε) for all ε > 0 for any f with level 1. Generalizing this result to f with

arbitrary level is a challenging problem. Booker handled the analogue of condition
(1) of Conrey and Ghosh’s criterion. Concerning the analogue of condition (2),
there are t-aspect subconvexity results which prove the existence of some δ > 0 but
only recently has the analogue of Good’s result been established. In [4], modifying
a method of Jutila, Booker, Ng, and I proved the following theorem.

Theorem 3: For f ∈ Sk(Γ0(N), ξ)new we have |L(12 + it, f)| ≪ |t| 13 log |t| for
|t| ≥ 3 where the implied constant is at most polynomial in the level N .

A key innovation in our proof is a general form of Voronoi summation that
applies to all fractions, even when the level is not squarefree. Using the resolution
of the Sato-Tate conjecture, this inequality can be slightly improved to

|L(12 + it, f)| ≪N,k |t| 13 (log |t|) 8
9+

8
27π , for |t| ≥ 3,

but with an implied constant that may no longer be polynomial in N .
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Even with the analogues of conditions (1) and (2) in Theorem 1 now established,
the proof does not seem to generalize to arbitrary level. It turns out that we
must consider twists of L(s, f) by Dirichlet characters. The situation is in some
ways analogous to trying to generalize Hecke’s converse theorem to higher levels.
Weil proved a version of the converse theorem for arbitrary level with additional
assumptions for twists of L(s, f) by primitive characters χ of conductor coprime
to the level.

Using Theorem 3, we can prove that for any f ∈ Sk(Γ0(N), ξ)new there is
a primitive Dirichlet character χ such that the twisted L-function L(s, f × χ)

satisfies Ns
f×χ(T ) = Ω(T

1
6−ε) for any ε > 0. Under stronger assumptions, we

can say a bit more. If we assume that L(s, f) has a wide enough zero-free of the
Littlewood-type, i.e. no zeros in a region of the form

σ < 1 − c log log t

log t
, s = σ + it,

for a sufficiently large constant c > 0 when t is large, then we can show that
Ns
f (T ) = Ω((log T )α) for some constant α > 0 depending on c. This condition

actually holds for some modular form L-functions as Coleman [1] has proved a
zero-free region of Vinogradov-Korobov-type for Größencharakter L-functions.
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Subconvexity problem for L-functions

Ritabrata Munshi

In [2], [3], [4], [5] and [6] I have proposed a new approach to prove subconvex
bounds for L-functions. In this short note I will use this technique to establish the
Burgess bound -

L
(
1
2 , χ

)
≪M3/16+ε.

for χ a primitive Dirichlet character modulo M (which we assume to be prime for
simplicity). To get a subconvex bound for L(1/2, χ)2 one is led via the approximate
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functional equation to consider sums of the form

S(N) =
∑

n∼N
d(n)χ(n)

where d(n) is the divisor function and N ≪M1+ε. We want to establish a bound

of the form |S(N)|/
√
N ≪ M1/2−θ for some θ > 0. The result follows if we are

able to take θ = 1/8. Our first step is to rewrite the sum S(N) as

L−1
∑

ℓ∈L

∑

n∼NL

∑

r∼N
d(n)χ(r)δ(n, rℓ)

where L is a set of L primes of size L1+ε, and δ(., .) is the Kronecker delta symbol.
Our job is to save N3/2LMθ−1/2 for some θ > 0. To this end we use the harmonics
from the space Sk(pM,ψ) of cusp forms of weight k, level pM and nebentypus ψ,
to detect the equation n = rℓ. Here p is a fixed prime and ψ is a non-primitive
odd character modulo pM of conductor p. From the Petersson trace formula we
have

δ(n, r) =
1

p− 1

∑

ψ mod p

(1 − ψ(−1))
∑

f∈Hk(pM,ψ)

ω−1
f λf (n)λf (r)

− 2πi

p− 1

∞∑

c=1

1

cpM

∑

ψ mod p

(1 − ψ(−1))Sψ(r, n; cpM)Jk−1

(
4π

√
nr

cpM

)
.

When we substitute this formula in the above expression for S(N), we get two
terms - the off-diagonal contribution involving Kloosterman sums and the dual
contribution involving the Fourier coefficients of cusp forms. The off-diagonal
contribution is negligibly small if we pick p ≫ NLM ε/M , as it involves the J-
Bessel function

Jk−1

(
4π

√
nrℓ

cpM

)
,

with c a positive integer. Note that we are taking k to be large, like 1/ε, and one
has the bound Jk−1(x) ≪ xk−1. The dual term is given by

∑

ψ mod p

∑

ℓ∈L

∑

f∈Hk(pM,ψ)

ω−1
f

∑

n∼NL
d(n)λf (n)

∑

r∼N
λf (rℓ)χ(r),

where our job is to save N3/2LMθ−1/2 for some θ > 0. Next we apply summation
formulas on the sum over n and r. These can be derived, for example, from the
functional equations of L(s, f)2 and L(s, f ⊗ χ) respectively. With this the above
sum reduces to

∑

ψ mod p

∑

ℓ∈L

∑

f∈Hk(pM,ψ)

ω−1
f gψ

∑

n∼p2M2/NL

d(n)λf (npℓ)
∑

r∼pM2/N

λf (r) ¯χ(r),

and we make a saving of size (NL/pM)(N/
√
pM). Here gψ stands for the Gauss

sum associated with ψ. It now remains to save p3/2M3/2+θ/
√
N . We now apply
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the Petersson formula. The diagonal is easily seen to be small due to size of the
variables. The off-diagonal is roughly of the form

∑

ψ mod p

gψ
∑

ℓ∈L

∑

n∼p2M2/NL

d(n)
∑

r∼pM2/N

χ(r)
∑

c≪pM/N

Sψ(npℓ, r; cpM).

In the off-diagonal the Petersson formula saves
√
pM/

√
size of c =

√
N , and then

applying the Poisson summation formula on the sum over r we save M/
√
N . The

sum over ψ saves
√
p more, and with this we arrive at the expression

∑

ℓ∈L

∑

n∼p2M2/NL

d(n)
∑

r∼p

∑

c≪pM/N

e

(
c̄nℓ

rM

)
¯χ(c) C

where

C =
∑

a mod M

χ(ā+ r)e

(
ac̄nℓ

M

)
.

Our job now is to save pM1/2+θ/
√
N in the above sum (beyond square root can-

cellation in the character sum C). Applying Cauchy inequality we seek to save
p2M1+2θ/N in

∑

n∼p2M2/NL

∣∣∣
∑

ℓ∈L

∑

r∼p

∑

c≪pM/N

e

(
c̄nℓ

rM

)
¯χ(c) C

∣∣∣
2

.

We will now open the absolute value and apply the Poisson summation formula
on the sum over n. The diagonal contribution is seen to be satisfactory as long as
we have enough terms inside the absolute value, namely p2LM/N > p2M1+2θ/N ,
i.e. L > M2θ. On the other hand the off-diagonal is satisfactory as long as
p2M2/NLM1/2 > p2M1+2θ/N , i.e. L < M1/2−2θ. At this stage we encounter a
complete character sum of the form

∑

x∈FM−{few points}
χ

(
P (x)

Q(x)

)

where P and Q are quadratic polynomials. Exactly the same sum appeared in
Burgess’ method, and like him we appeal to Weil’s results (Riemann hypothesis
for curves over finite fields) to conclude square-root cancellation in the sum. Now
we observe that the optimal choice for L is given by L = M1/4 and θ is taken to
be 1/8. This establishes the bound

1√
N

∣∣∣∣∣
∑

n∼N
d(n)χ(n)

∣∣∣∣∣≪ M1/2−1/8+ε

for all N . From this we are able to conclude the Burgess bound. A careful reader
will observe that the above sketch works even when the divisor function is replaced
by Fourier coefficients of GL(2) forms.
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Subconvex equidistribution of cusp forms

Paul D. Nelson

1. Some context

Let M := SL2(Z)\H denote the modular surface, and let ϕ : M → C traverse a
sequence of Hecke–Maass cusp forms, thus

ϕ ∈ L2(M), ∆ϕ = −λϕ, Tnϕ =
√
nλϕ(n)ϕ

with eigenvalue λ → ∞. We may then define a sequence of probability measures
µϕ on M assigning to Ψ ∈ Cc(M) the values

µϕ(Ψ) :=
〈ϕ,Ψϕ〉
〈ϕ, ϕ〉 .

The AQUE theorem of Lindenstrauss (2006) and Soundararajan (2010), answering
a special case of the QUE conjecture of Rudnick–Sarnak (1994), asserts that for
fixed Ψ, one has

µϕ(Ψ) → µ(Ψ) :=
〈1,Ψ〉
〈1, 1〉 as λ→ ∞.

We consider the rate at which this convergence occurs. For a function ϕ 7→ ε(ϕ),
we say that “µϕ → µ at rate ε(ϕ)” if for each Ψ ∈ C∞

c (M) there exists CΨ ≥ 0 so
that for all ϕ as above, one has

|µϕ(Ψ) − µ(Ψ)| ≤ CΨε(ϕ).

The proof of the AQUE theorem uses ergodic theory and gives “no rate.” On the
other hand, it is expected (the “optimal AQUE conjecture”) that

µϕ → µ at rate λ−1/4+η for any fixed η > 0;

Luo–Sarnak (1994) showed that this holds “on average,” Watson (2002) showed
that it follows from GRH, and Luo–Sarnak (2004) and Peng Zhao (2010) showed
that the exponent 1/4 is best possible. Unfortunately, even the weaker assertion
(the “strong AQUE conjecture”) that

(1) µϕ → µ at rate λ−δ for some δ > 0
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remains an open problem.
Sarnak (2001) and Liu–Ye (2002) showed that (1) holds in the very special

case of dihedral ϕ on congruence covers of the modular surface. Holowinsky–
Soundararajan (2010) proved an effective analogue of the AQUE theorem in the
k → ∞ aspect for holomorphic forms, with rate (log k)−δ. The tools used to prove
all of these results are known to fall short of (1).

2. The level aspect

The aim of the talk was to present a level aspect variant of (1). The problem of
doing so had until recently seemed no more accessible than (1).

To that end, we consider a sequence of primes p→ ∞. We define the congruence
covers Mp := Γ0(p)\H of M , and consider a corresponding sequence ϕ of weight
k = 2 (say) newforms on Γ0(p). To each such ϕ we attach a probability measure µϕ
on M , by the same formula as before. I had shown in 2011, using the Holowinsky–
Soundararajan method, that µϕ → µ at rate (log p)−δ for some δ > 0.

3. Main new result

We show in the above setting that µϕ → µ at rate p−δ for some δ > 0, i.e., for
each Ψ ∈ C∞

c (M) there exists CΨ ≥ 0 so that for all p and ϕ on Γ0(p) as above,

(2)

∣∣∣∣
〈ϕ,Ψϕ〉
〈ϕ, ϕ〉 − 〈1,Ψ〉

〈1, 1〉

∣∣∣∣ ≤
CΨ

pδ
.

The proof combines a result of Munshi [1] from 2015 with my result [2] from earlier
this year. We plan to present it in a joint paper.

4. Division of proof

By the spectral theory for L2(M), the proof of (2) divides into two cases: the
Eisenstein case, in which Ψ is a unitary Eisenstein series, and the cuspidal case, in
which Ψ is a Hecke–Maass cusp form. The triple product formula further reduces
the problem in either case to a subconvex bound for the triple product L-function
L(ϕ× ϕ× Ψ, 12 ), of degree 8. This L-function factors as a product of L-functions
of degrees 8 = 3 + 3 + 1 + 1 in the Eisenstein case and of degrees 8 = 6 + 2 in
the cuspidal case. Munshi’s result [1] from 2015 addresses the Eisenstein case by
establishing a subconvex bound for the degree 3 factors. His technique does not
seem to apply to the degree 6 factor arising in the cuspidal case.

My result [2] from earlier this year establishes the cuspidal case. The proof has
the surprising feature of using the Eisenstein case as an input.

5. Proof that the Eisenstein case implies the cuspidal case

We first reduce to the problem of establishing the bound

(3) 〈ϕθ, h〉 ≪ p−δ

where θ(z) = y1/4
∑
e(n2z) is the Jacobi theta function and h is a certain half-

integral weight theta lift of the fixed cusp form Ψ to Γ0(p). The important feature
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of h is that ‖h‖ ≪ 1. This reduction is achieved by combining a period for-
mula of Qiu with certain local calculations; the proof laid out in full amounts to
substituting into the definition

µϕ(Ψ) =
〈ϕ,Ψϕ〉
〈ϕ, ϕ〉

the Shimizu-type identity

ϕ(z1)ϕ(z2)

〈ϕ, ϕ〉 =

∫

w

ϕ(w)Θ(z1, z2, w),

where Θ(z1, z2, w) is a theta kernel attached to (

(
Z Z
pZ Z

)
, det).

We then appeal to the amplification method of Duke–Friedlander–Iwaniec, im-
plemented in the style of Michel–Venkatesh. This reduces the proof of (3) to that
of the asymptotic formula

(4) ‖ϕθ‖2 = ‖ϕ‖2‖θ‖2 +O(p−δ),

together with its mild Hecke-twisted variants. For this we rewrite ‖ϕθ‖2 as the
inner product 〈|ϕ|2, |θ|2〉, which we then spectrally expand. The contribution
of the constant function yields the required main term, while that of the unitary
Eisenstein series may be adequately estimated using Munshi’s result. The cuspidal
contribution is seen to vanish identically, thanks to the observation [3] that |θ|2 is
orthogonal to cusp forms.
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Dynamical characterization of Maass forms

Anke Pohl

The interdependence of the geometric and the spectral data of Riemannian man-
ifolds is of great interest in various areas, including dynamical systems, spectral
theory, harmonic analysis, representation theory, number theory, and mathemat-
ical physics, in particular, quantum chaos. Over the last few years, this relation
has been studied using an ever increasing number of methods which focus on the
dynamics of the manifolds rather than on their (static) geometry. Among these
dynamical methods are transfer operator techniques.

We discussed the development of transfer operator techniques for Riemannian
surfaces (rather orbifolds) Γ\H, where H denotes the hyperbolic plane and Γ is a
geometrically finite, non-elementary Fuchsian group with at least one cusp.

The discretization for the geodesic flow on Γ\H provided in [11, 8] gives rise to
a discrete dynamical system (DΓ, FΓ), where DΓ is a finite disjoint union of (the
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cuspidal-free and funnel-free part of) intervals in R, and FΓ is piecewise given by
fractional linear transformations by certain elements in Γ.

The associated transfer operator LΓ,s with parameter s ∈ C is given by

LΓ,sf(x) :=
∑

y∈F−1
Γ (x)

∣∣F ′
Γ(y)

∣∣−sf
(
FΓ(y)

)
,

a priori acting on functions f ∈ Fct(DΓ;C). The structure of FΓ yields that LΓ,s

is a finite sum of slash-actions |sg (multiplied with characteristic functions), where
g runs through a finite subset of Γ. From this it follows immediately that LΓ,s also
acts on functions defined on certain domains larger than DΓ. Of major interest to
us are eigenfunctions with eigenvalue 1 of LΓ,s.

For the modular group PSL2(Z) we have D := DPSL2(Z) = (0,∞) \ Q. The
self-map FPSL2(Z) : D → D decomposes into the two branches

(0, 1) \Q → (0,∞) \Q, x 7→
[

1 0
−1 1

]
.x

and

(1,∞) \Q → (0,∞) \Q, x 7→
[
1 −1
0 1

]
.x.

The associated transfer operator Ls := LPSL2(Z),s reads

Lsf(x) = f(x+ 1) + (x+ 1)−2sf

(
x

x+ 1

)
, x > 0,

or, equivalently,

Ls = |s
[
1 1
0 1

]
+ |s

[
1 0
1 1

]
,

acting on Fct(R>0;C). Eigenfunctions f with eigenvalue 1 of Ls satisfy the Lewis
equation

f(x) = f(x+ 1) + (x+ 1)−2sf

(
x

x+ 1

)
, x > 0.

As shown in [6, 2], the space of real-analytic functions f to the Lewis equation for
which

(1) x 7→
{
f(x) if x > 0

−|x|−2sf
(
− 1
x

)
if x < 0

extends C∞ to 0 (‘period functions’) is isomorphic to the space of Maass cusp
forms for PSL2(Z) with spectral parameter s (see also [4]).

This kind of relation generalizes to other Fuchsian groups.

Theorem 1 ([7, 10, 9, 8]). Suppose that Γ is cofinite and s ∈ C, Res ∈ (0, 1).
Then the space of Maass cusp forms for Γ with spectral parameter s is isomorphic
to the space of sufficiently regular eigenfunctions with eigenvalue 1 of the transfer
operator LΓ,s.
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The regularity required in Theorem 1 is similar to the one for the case PSL2(Z).
The isomorphism from Maass cusp forms to Ls-eigenfunctions is given by an in-
tegral transform, making it reasonable to consider the Ls-eigenfunctions as period
functions. The proof of Theorem 1 takes advantage of the characterization of
Maass cusp forms in parabolic 1-cohomology by Bruggeman–Lewis–Zagier [3].

Theorem 1 naturally leads to several conjectures. It is reasonable to expect
that also other Laplace eigenfunctions can be characterized as LΓ,s-eigenfunctions.
Moreover, the construction of the transfer operators applies to non-cofinite Γ. In
view of the results on representing Selberg zeta functions as Fredholm determi-
nants of transfer operators [12, 1], we should expect that residues at (scattering)
resonances are determined by LΓ,s-eigenfunctions.

Furthermore, finite-dimensional representations χ : Γ → GL(V ) can be accom-
modated by a transfer operator as a weight. In regard of the transfer operator
approaches to χ-twisted Selberg zeta functions for χ having non-expanding cusp
monodromy (e. g., if χ is unitary) an analogue of Theorem 1 for (Γ, χ)-automorphic
functions or cusp forms should be expected [13, 1, 5].
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An analytic class number type formula for PSL2(Z)

Anna-Maria von Pippich

(joint work with Gerard Freixas i Montplet)

1. The Selberg zeta function

Let H denote the upper half plane and let Γ ⊂ PSL2(R) be a Fuchsian group of
the first kind. The quotient space Γ\H admits a canonical structure of a Riemann
surface. The points with non-trivial automorphisms are called elliptic fixed points.
By adding a finite number of cusps, the Riemann surface Γ\H can be completed
into a compact Riemann surface, which we denote by X . The hyperbolic metric
on H is given by

ds2hyp =
dx2 + dy2

y2
,

where x+iy is the usual parametrization of H. As a metric onX , it has singularities
at the cusps and the elliptic fixed points.

Let now H(Γ) denote a complete set of representatives of inconjugate, primitive,
hyperbolic elements in Γ. For γ ∈ H(Γ), we denote by ℓhyp(γ) the hyperbolic
length of the closed geodesic determined γ on Γ\H. The Selberg zeta function
Z(s,Γ) associated to Γ was introduced by Atle Selberg. For s ∈ C with Re(s) > 1,
it is defined by the absolutely and locally uniformly convergent Euler product

Z(s,Γ) =
∏

γ∈H(Γ)

∞∏

k=0

(1 − e−(s+k)ℓhyp(γ)).

The Selberg zeta function is known to have a meromorphic continuation to the
whole complex s-plane, and its poles and zeros can be described in terms of the
spectral theory of the hyperbolic Laplacian on Γ\H. In particular, the Selberg
zeta function has a simple zero at s = 1 and Z ′(1,Γ) is a positive real number.

2. The special value Z ′(1,PSL2(Z))

In this section, we give an explicit formula for Z ′(1,PSL2(Z)) using Arakelov
theory. More precisely, we apply an arithmetic Riemann–Roch theorem, namely
Theorem 10.1 of [1], in the case of the coarse moduli scheme P1

Z → Spec(Z) of
the Deligne–Mumford stack M1 → Spec(Z) of generalized elliptic curves. We
interpret P1

Z(C) as the Riemann surface PSL2(Z)\H ∪ {∞}. The cusp at infinity

and the elliptic fixed points i and ρ = e2iπ/3 define integral sections Spec(Z) → P1
Z,

which we denote by σ∞, σi, and σρ, having multiplicities m∞ = ∞, mi = 2, and
mρ = 3. In the notation of [1], we then have D = σ∞ + (1/2)σi + (2/3)σρ.

Let now χi resp. χρ be the quadratic characters of Q(i) and Q(ρ), respectively,
and let L(s, χi) and L(s, χρ) denote the corresponding Dirichlet L-functions. Then,
we have the following theorem.
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Theorem 1. The special value Z ′(1,PSL2(Z)) is given by

logZ ′(1,PSL2(Z)) =
1

4

L′(0, χi)

L(0, χi)
+

13

27

L′(0, χρ)

L(0, χρ)
+

73

72

ζ′(0)

ζ(0)
− 37

36

ζ′(−1)

ζ(−1)

− 5

36
γ +

5

12
log 3 − 167

216
log 2 − 5

6
,

where ζ(s) denotes the Riemann zeta function.

Sketch of proof. We only give a sketch of the proof; we use the notation of [1]
and, for details, we refer the reader to [1]. To prove the statement, we employ
Theorem 10.1 of [1], see also Theorem 2 of [2]. To compute the arithmetic de-

gree d̂eg detH•(P1
Z,OP1

Z

)Q of the determinant of cohomology of the trivial sheaf,

endowed with the Quillen metric, we first observe that H0(P1
Z,OP1

Z

) = Z and

H1(P1
Z,OP1

Z

) = 0. Therefore, we get

12 d̂eg detH•(P1
Z,OP1

Z

)Q = −12 log ‖1‖L2 + 6 log (C(PSL2(Z)) · Z ′(PSL2(Z), 1)) ,

where C(PSL2(Z)) is a real positive constant, which can be explicitly expressed
in terms of the multiplicities 2, 3, and ∞, the number c = 1 of cusps, the number
n = 3 of cusps and elliptic fixed points, the genus g = 0 of X , special values of the
Riemann zeta function ζ(s), and the Euler–Mascheroni constant γ, see formula
(1.2) of [1]. Theorem 10.1 of [1] thus implies the following equality of real numbers

logZ ′(PSL2(Z), 1) =
1

6
(ωP1

Z
/Z(D)hyp, ωP1

Z
/Z(D)hyp)

− 1

6

∑

j,k∈{i,ρ,∞}
j 6=k

(
1 − 1

mj

)(
1 − 1

mk

)
(σj , σk)fin(1)

+ 2 log ‖1‖L2 − logC(PSL2(Z)) − 1

6
d̂egψW .

It therefore remains to explicitly compute the contributions on the right-hand side
of (1).

From the definition of the arithmetic self-intersection number of ωP1
Z
/Z(D)hyp,

endowed with the hyperbolic metric, we derive using the relation ‖ ·‖hyp = 8
(4π)6 ‖ ·

‖Pet the equality

(ωP1
Z
/Z(D)hyp, ωP1

Z
/Z(D)hyp) =

1

36
(M12(Γ(1))Pet,M12(Γ(1))Pet)

+
1

3
log(2π) +

1

6
log 2.

Hence, employing the identity

(M12(Γ(1))Pet,M12(Γ(1))Pet) = −12

(
ζ′(−1)

ζ(−1)
+

1

2

)
,
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proven by Bost and Kühn, we conclude that

(ωP1
Z
/Z(D)hyp, ωP1

Z
/Z(D)hyp) = −1

3

(
ζ′(−1)

ζ(−1)
+

1

2

)
+

1

3
log(2π) +

1

6
log 2.(2)

In the next step, we prove that one has the following finite intersection numbers

(σ∞, σi)fin = 0,

(σ∞, σρ)fin = 0,(3)

(σi, σρ)fin = log(1728) = 6 log 2 + 3 log 3.

Furthermore, the square-norm of 1 for the L2 metric is given by the volume

‖1‖2L2 =
1

2π

∫

PSL2(Z)\H

dx ∧ dy
y2

=
1

2π

π

3
=

1

6
,

hence, we obtain

2 log ‖1‖L2 = − log 2 − log 3.(4)

It remains to compute the arithmetic degree d̂egψW of the ψ-bundle, endowed
with the Wolpert metric. To this end, let Ei resp. Eρ be the elliptic curves, defined
over Q, having complex multiplication by Q(i) and Q(ρ), respectively. We denote
by hF (Ei) and hF (Eρ) their stable Faltings height. Then, one can prove that

d̂egψW = 3hF (Ei) +
16

3
hF (Eρ) −

43

18
(σi, σρ)fin +

25

6
log(4π).

Consequently, by the Chowla–Selberg formula and (3), we get

d̂egψW = −3

2

L′(0, χi)

L(0, χi)
− 8

3

L′(0, χρ)

L(0, χρ)
+

25

6

ζ′(0)

ζ(0)
− 17

2
log 3 − 15

2
log 2.

Inserting the explicit formula for C(Γ) together with (2), (3), and (4) into (1),
finally yields the claimed formula for Z ′(1,PSL2(Z)). �

Since there is a formal resemblance between the equality in Theorem 10.1 of
[1] to the analytic class number formula of Dedekind zeta functions, we call the
explicit expression for logZ ′(1,PSL2(Z)) the analytic class number formula for
PSL2(Z).

We finally remark that it would be interesting to have a direct “analytic number
theoretic” evaluation of Z ′(PSL2(Z), 1), and differently see how the special values
of Dirichlet L-functions above arise. The advantage of the Arakelov theoretic
strategy is that the result has a geometric interpretation.
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High Moments of Dirichlet L-functions

Maksym Radziwi l l

(joint work with Vorropan Chandee, Xiannan Li, Kaisa Matömaki)

It is a simple consequence of the large sieve that,

(1)
∑

q≤Q

∑

χ (mod q)

|L(12 , χ)|2k ≪ Q2(logQ)k
2

for k = 1, 2, 3, 4 and where the sum over χ is over primitive characters (mod q).
Throughout the sum over χ (mod q) will always refer to a sum over primitive
characters. The upper bound (1) is tight up to a constant factor. In a recent paper
[2] Conrey-Iwaniec-Soundararajan developed a technique known as the asymptotic
large sieve with the aim of refining (1) to an asymptotic. For any fixed smooth
function ψ(t) they obtained an asymptotic estimation of

(2)
∑

q≤Q

∑

χ (mod q)

∫

R

|L(12 + it, χ)|6ψ(t)dt

as Q → ∞. The appearance of the smoothing over t is an unfortunate defect of
their method. The asymptotic large sieve can only handle the so-called “central
ranges” in the above moment problem. The smoothing over t is then introduced
to eliminate the non-central ranges.

In a subsequent paper [1], Chandee-Li obtained an asymptotic for the 8th mo-
ment, assuming the Generalized Riemann Hypothesis. Precisely given a smooth
function ψ(t), they estimated asymptotically under GRH,

∑

q≤Q

∑

χ (mod q)

∫

R

|L(12 + it, χ)|8 · ψ(t)dt.

as Q→ ∞. Currently one fundamental difference between the results for the sixth
moment and the eight moment is that in the first case one obtains a power-saving
where-as in the second case one gets by with a small logarithmic saving.

In this talk I discussed two further refinements of the above results. First of all
in recent joint work we have obtained an asymptotic estimate for

∑

q≤Q

∑

χ (mod q)

|L(12 , χ)|6

with a power saving in Q as Q → ∞, thus eliminating the smoothing over t in
(2). This builds on the method of Conrey, Iwaniec and Soundararajan but also
imports automorphic methods to deal with the non-central ranges.

Secondly, we have also proved unconditionally the result of Chandee-Li on the
8th moment. The new techniques used there rely on sieve-theoretic ideas coming
from the work of Matömaki-Radziwi l l [3] on multiplicative functions in short inter-
vals. However we still save only a small power of the logarithm in the asymptotic
estimate of the 8th moment. During the talk I presented a sketch of the proof of
both results.
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Arithmetic statistics of modular symbols

Morten S. Risager

(joint work with Yiannis N. Petridis)

Mazur, Rubin, and Stein have formulated a series of conjectures about statistical
properties of modular symbols. We report on our recent work in this direction:
Let f =

∑∞
n=1 ann

1/2e(nz) be a holomorphic cusp form of weight 2 for Γ0(q) with
q squarefree. We consider the statistical properties of the modular symbols map

Q/Z → iR

r 7→ 〈r〉 = 2πi

∫ r

i∞
α,

where α(z) = (f(z)dz + f(z)dz)/2.
Let 0 ≤ x ≤ 1. Our first result concerns the asymptotic of

Gc(x) =
1

c

∑

0≤ a
c≤x

〈a
c
〉.

Mazur, Rubin and Stein conjectures, based on heuristics and numerics, that Gc(x)
converges to

g(x) =
1

2πi

∞∑

n=1

ℜ(ann
1/2(e(nx) − 1)))

n2

as c→ ∞. We prove that this conjecture holds on average:

Theorem 1.
1

M

∑

c≤M
Gc(x) → g(x) as M → ∞.

Define now the usual mean and variance by

E(f, c) =
1

φ(c)

∑

a mod c
(a,c)=1

〈a/c〉, Var(f, c) =
1

φ(c)

∑

a mod c
(a,c)=1

(〈a/c〉 − E(f, c))
2
.

We prove that the average asymptotic variance has an asymptotic expansion:
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Theorem 2. Let d|q. There exists δ > 0 (depending on the spectral gap) such
that

1∑

c≤M

(c,q)=d

φ(c)

∑

c≤M
(c,q)=d

φ(c)(Var(f, c) − Cf log c) = Df,d +M−δ, as M → ∞.

Here

Cf = BqL(sym2 f, 1), Df,d = Ad,qL(sym2 f, 1) +BqL
′(sym2 f, 1),

and

Ad,q =
6
(
−2−1 log(q/d) −∑p|q

log p
p+1 + 12

π2 ζ
′(2) + log(2π)

)

π2
∏
p|q (1 + p−1)

,

Bq = − 6

π2
∏
p|q(1 + p−1)

.

This proves a conjecture of Mazur and Rubin on average: They conjecture the
above expansion to hold for individual variances as c → ∞ through (c, q) = d
(without specifying Df,d).

Finally we conclude by finding the asymptotic distribution of the modular sym-
bols:

Theorem 3. Let I ⊆ R/Z be an interval of positive length. be any interval of
positive length, and consider for d|q the set Qd = {a/c ∈ Q, (a, c) = 1, (c, q) = d}.
Then the values of the map

Qd ∩ I → R
a

c
7→ 〈r〉

(Cf log c)1/2

ordered according to c have asymptotically a standard Gaussian distribution.

The special case of I = R/Z was conjectured by Mazur and Rubin.
All of these results are proved through a carefull analysis of the analytic prop-

erties of the following type of Eisenstein series defined originally by Goldfeld: For
ℜ(s) > 1 it is defined by

E(k)(z, s) =
∑

γ∈Γ∞\Γ0(q)

(
2πi

∫ γ(i∞)

i∞
α

)k
ℑ(γz)s.

The relevance of this series to the problem we are studying is that its mth Fourier
coefficients are explicitly related to the generating function

∞∑

c=1
q|c

∑

a∈(Z/c)∗

〈a/c〉ke(ma/c)

c2s
.
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We prove enough properties of this generating series to conclude the above theo-
rems. In fact they are specializations of more general results for general co-finite
Fuchsian group with cusps.
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Angular distribution of Gaussian primes

Zeév Rudnick

In the lecture, we reported on joint work with Ezra Waxman [1] on the small-scale
distribution of angles of Gaussian primes.

Fermat showed that every prime p = 1 mod 4 is a sum of two squares: p =
a2 + b2, in which case a + ib is a prime in the ring Z[i] of Gaussian integers.
The representation is unique if we require a > b > 0, and we associate an angle
θp ∈ (0, π/4) so that a + ib =

√
p exp(iθp). In 1919 Hecke [2] showed that these

angles are uniformly distributed as p varies: If we denote by NK,X(θ) the number
of such angles θp, p ≤ X in an arc of length (π/4)/K around θ, and by N the
number of primes p ≤ X with p = 1 mod 4, then Hecke proved that

(1) NK,X(θ) ∼ N

K
, as X → ∞ .

In the 1950’s Kubilius [3, 4] studied uniform distribution in short arcs, that is
when K = K(X) → ∞ as X → ∞ in (1). Assuming the Generalized Riemann
Hypothesis (GRH), the asymptotic count (1) holds as long as K ≪ X1/2 but can
fail for shorter arcs, e.g. there is a “forbidden region”: There are no primes p < X
satisfying 0 < θp ≪ 1√

X
.

To understand what happens for typical short arcs, we study the variance of
NK,X(θ):

Var(NK,X) :=
1

π/2

∫ π/4

0

|NK,X(θ) − N

K
|2dθ

We give an upper bound on this variance assuming GRH to obtain a new result
on what is a very classical subject: Almost all short arcs of length slightly bigger
than 1/N contain a prime angle. This demonstrates the fundamental importance
of the number variance.

Motivated both by a random matrix model, and by a function field analogue of
this problem, we present a conjecture for the asymptotic behaviour of the number
variance:

(2)
Var(NK,X)

N/K
∼ min(1, 2

logK

logN
), X → ∞
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See Figure 1 for a numerical test of the conjecture. The result displays agreement
with Poisson statistics (N random points) for short arcs (K ≫ X1/2), but a
surprising deviation from it for longer arcs (K ≪ X1/2), see figure 1.

Figure 1. A plot of the ratio Var(NK,x)/(N/K) as a function of
β = logK/ logN , for X ≈ 108. The conjecture (2) is min(1, 2β).
The variance for random points (Poisson) is the horizontal line
β = 1. While we see a qualitative agreement with the conjecture,
the fit for small β is not good.

Our function field model of the problem deals with representing prime polyno-
mials as P (T ) = A(T )2 + TB(T )2, possible if P (0) is a square in Fq. The role of

the Gaussian integers Z[i] is played by the polynomial ring Fq[
√
−T ]. We assign a

direction u(P ) := (A(T ) +
√
−TB(T ))/(A(T ) −√−tB(T )) ∈ Fq[[

√
−T ]] which is

a (formal) power series in
√
−T , and plays the role of e2iθp = (a+ ib)/(a− ib). We

then define a notion of “arcs”, or sectors, and divide the set S1 of possible sectors
into K equal sectors. That allows us to define a counting function NK,X counting
the number of prime polynomials P with of degree n =: logqX which fall into a
given sector. Its expected value is (by definition) E(NK,X) = N/K, where N is
the number of prime polynomials of degree n = logqX with P (0) is a square in

Fq: N ∼ 1
2q
n/n = 1

2X/ logqX . We prove a precise asymptotic for the variance
of NK,X as we average over all sectors, in the large finite field limit q → ∞ while
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holding logqX = n fixed:

Var(NK,X)

N/K
∼





2
logq K

logq N
− 2

logq N
, logqK ≤ 1

2 logqN + 1

1 +
η(logq N)−1

logq N
, 1

2 logqN + 1 ≤ logqK ≤ logq N .

This motivates our conjecture (2) for the Gaussian primes.
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The sup-norm problem beyond newforms: Automorphic forms on
GL(2) of minimal type

Abhishek Saha

(joint work with Yueke Hu, Paul D. Nelson)

Let π be a cuspidal automorphic representation of GL2(AQ). Many problems in the
analytic number theory of π depend upon the choice of a specific L2-normalized
automorphic form φ in the space of π. For example, the sup norm, Lp-norm
and quantum unique ergodicity (QUE) problems have this feature, while the sub-
convexity problem does not. In such problems, it is customary to work with
factorizable vectors φ = ⊗φv for which

φ∞ = lowest nonnegative weight vector in π∞, φp = newvector in πp.

But other reasonable choices are often possible, useful, and more natural.
In this talk, I described a particular choice for the local components φp which

turn out to have several remarkable properties. Briefly, assuming that πp is su-
percuspidal and that its conductor is a fourth power, we consider φp which are
analogues of the lowest weight vectors in holomorphic discrete series representa-
tions of PGL2(R). For lack of better terminology, we refer to these vectors as
minimal vectors or vectors of minimal type.

For automorphic forms φ as above, we prove a sup-norm bound that is sharper
than what is known in the newform case. In particular, if π∞ is a holomorphic
discrete series of lowest weight k, we obtain the optimal bound

C1/8−ǫk1/4−ǫ ≪ǫ |φ|∞ ≪ǫ C
1/8+ǫk1/4+ǫ.
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We prove also that these forms give analytic test vectors for the QUE period,
thereby demonstrating the equivalence between the strong QUE and the subcon-
vexity problems for this class of vectors. This finding contrasts the known failure
of this equivalence for newforms of powerful level.

It is interesting to see what an automorphic form φ of minimal type looks
like classically. We can associate to φ a function f on H defined by f(z) =
j(g∞, i)kφ(g∞) where g∞ ∈ SL2(R) is any matrix such that g∞i = z. Then there
exists an integer D and a character χπ on the “toric” congruence group

ΓT,D(N) :=
{(
a b c d

)
∈ SL2(Z) : a ≡ d (mod N), c ≡ −bD (mod N)

}

such that

f |kγ = χπ(γ)f, γ ∈ ΓT,D(N).

The character χπ turns out to be trivial on the principal congruence subgroup of
level N2 which is contained in ΓT,D(N). Thus, f is a (very special) member of
the space of (holomorphic or Maass) Hecke eigencuspforms of weight k ∈ 2Z with
respect to the principal congruence subgroup of level N2.
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On the Ramanujan conjecture for automorphic forms over function
fields

Will Sawin

(joint work with Nicolas Templier)

Automorphic forms, in the adelic description, may be defined in a uniform way
over arbitrary global fields. They have been studied much more heavily over
number fields than over function fields of curves over finite field. Problems about
automorphic forms in the function field setting are interesting in their own right,
and may introduce techniques which can be applied over number fields, with the
most striking example being Ngo Bau Cho’s use of Hitchin systems from geometric
Langlands to prove the fundamental lemma [4].

Many of the most important problems about automorphic forms were solved
over function fields in theGLn case by Laurent Lafforgue. He proved the Langlands
correspondence in that case, deriving as a corollary the Ramanujan conjecture
and the Riemann hypothesis [2]. Vincent Lafforgue generalized the automorphic-
to-Galois direction of the Langlands correspondence to general groups [3], which
implies the Ramanujan conjecture and the Riemann hypothesis for forms satisfying
a certain mild condition on their Langlands parameter, but it is not yet clear
whether genericity, or any other representation-theoretic condition, implies this
condition on the Langlands parameter side.
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Some of the most important questions whose solution does not follow from
these results are equidistribution questions in families of automorphic forms - The
equidistribution of the local factors or of the L-functions of the set of automorphic
representations with specified local conditions. Over number fields, the distribu-
tion of local factors is understood in great generality (e.g. [5] [6] [7]), but only
partial results are known about the L-function. Over function fields, these can be
studied in the level aspect or the q aspect (i.e. the size of the underlying finite
field). In the level aspect, the situation is expected to be very similar to the num-
ber fields. In the q aspect, it may be possible to calculate the full distribution of
the L-function, including all its moments and all statistics of the zeroes against
arbitrary test functions, as was done by Katz for the family of all GL1-forms with
fixed squarefree conductor in [1].

Surprisingly, in the q aspect, the equidistribution of the local factors is more
difficult. In fact, it is harder than the Ramanujan conjecture, and thus most likely
cannot be established by a direct argument with the trace formula like that used
to prove the equidistribution results over number fields, as we do not know how
to use the trace formula alone to establish the Ramanujan conjecture. This can
be proved by a reduction argument that deduces bounds for the Hecke eigenvalue
from bounds for the average of a Hecke eigenvalue over a family, with error term
going to 0 as q goes to ∞, and certain facts about cyclic base change that can be
verified by local character computations.

Because the equidistribution of the local factors remains simpler than the equi-
distribution of the full L-function, any method to solve these equidistribution
questions should also prove the Ramanujan conjecture. But it does not seem
possible to prove any equidistribution results using the methods of Lafforgue that
prove Ramanujan, as these are well-adapted to handling a single automorphic form
at a time.

Motivated by this, Nicolas Templier and I are working on a new proof of the
Ramanujan conjecture (under some local conditions). The method involves bound-
ing the trace of a Hecke operator over the whole family, than using the previously
mentioned reduction to deduce bounds for the individual Hecke eigenvalues. We
bound the trace geometrically, along the lines of geometric Langlands, and this
opens the possibility of geometrically studying the main term and thus attacking
the equidistribution problems. Additionally, this argument should work for gen-
eral G, and thus give Ramanujan for more groups than GLn, again with local
conditions.
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Value distribution of L-functions

Kannan Soundararajan

(joint work with Maksym Radziwi l l)

A fundamental result of Selberg [4] states that if t is chosen uniformly from [T, 2T ]
then log |ζ(12 + it)| has an approximately Gaussian distribution with mean 0 and

variance ∼ 1
2 log logT . More recently, Keating and Snaith [2] have conjectured that

an analogous result holds for central values of L-functions in families. To give three
representative examples: (1) as χ ranges over primitive characters (mod q), one
expects log |L(12 , χ)| to be Gaussian with mean ∼ 0 and variance ∼ 1

2 log log q; (2)

as d ranges over fundamental discriminants with |d| ≤ X , one expects logL(12 , χd)

to be Gaussian with mean 1
2 log logX and variance ∼ log logX ; (3) if f denotes

a newform, and d runs over fundamental discriminants for which f × χd has root
number 1, then we expect logL(12 , f ×χd) to be Gaussian with mean − 1

2 log logX
and variance ∼ log logX .

These analogues for families of L-functions remain wide open, and one measure
of their depth is that these conjectures imply that almost all of the central L-values
in these families are non-zero. Recently Radziwi l l and I [3] described a method
which (roughly speaking) shows that in any family where one can compute the
first moment of central L-values (with a little extra room), one can also establish
an upper bound for the frequency of large values that matches the Keating-Snaith
conjecture. For example, we showed that given an elliptic curve E, the proportion
of discriminants |d| ≤ X such that the quadratic twist of E by d has root number
1 and satisfying

logL(12 , Ed) + 1
2 log log |d|√

log log |d|
≥ V

is at most
1√
2π

∫ ∞

V

e−t
2/2dt+ o(1).

In this talk, I described recent progress on the complementary problem of ob-
taining lower bounds for such frequencies. Such results are connected to methods
for proving non-vanishing in families of L-functions, and our work bootstraps ana-
lytic methods for attacking the non-vanishing problem in order to extract further
information on the size of the non-zero L-values that are produced. Here are two
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sample results. In [5], I showed that for 7/8 of the fundamental discriminants
|d| ≤ X one has L(12 , χd) 6= 0. Refining this, we now establish that for any interval
(α, β) of R

#
{
|d| ≤ X :

log |L(12 , χd)| − 1
2 log logX√

log logX
∈ (α, β)

}

is

≥
(7

8

1√
2π

∫ β

α

e−t
2/2dt+ o(1)

)
#{|d| ≤ X}.

The next result concerns the family of even quadratic twists of an elliptic curve.
In general it is not known that a positive proportion of L-values for such twists
are non-zero. Assuming the Generalized Riemann Hypothesis, Heath-Brown [1]
showed that at least 1

4 of such quadratic twists do have non-zero central value.
Refining Heath-Brown’s result, we establish (again on GRH) that (with E denoting
the set of fundamental discriminants for which Ed has root number 1)

#
{
|d| ≤ X : d ∈ E , logL(12 , Ed) + 1

2 log logX√
log logX

∈ (α, β)
}

is

≥
(1

4

1√
2π

∫ β

α

e−t
2/2dt+ o(1)

)
#{|d| ≤ X, d ∈ E}.
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Fourier interpolation on the real line

Maryna Viazovska

(joint work with Danylo Radchenko)

In this talk we present an explicit interpolation formula for Schwartz functions
on the real line. The formula expresses the value of a function at any given
point in terms of the values of the function and its Fourier transform on the set
{0,±

√
1,±

√
2,±

√
3, . . . }. The functions in the interpolating basis are constructed

in a closed form as an integral transform of weakly holomorphic modular forms
for the theta subgroup of the modular group.

The main result presented in this talk is the following
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Theorem. There exists a collection of Schwartz functions c0, an : R → R with the
property that for any Schwartz function f : R → R and any x ∈ R we have

f(x) = c0(x)f ′(0) +

∞∑

n=0

an(x)f(
√
n) +

∞∑

n=0

ân(x)f̂ (
√
n),

where the right-hand side converges absolutely.

Eisenstein series and the Bruggeman-Kuznetsov formula for newforms

Matthew Young

1. Introduction

In a recent paper with I. Petrow [PY], the author developed a Petersson formula
for newforms. As an application, we showed a cubic moment bound for twisted
automorphic L-functions associated to holomorphic newforms of general square-
free level (generalizing work of Conrey-Iwaniec [CI]), which in turn gave a new
Weyl-type subconvexity bound for these L-functions. For some arithmetical ap-
plications, such as hybrid equidistribution problems, one wishes to generalize these
results to hold for Maass forms. The first difficulty in doing so is in proving the
Bruggeman-Kuznetsov formula for newforms. The only difficulty is in setting up
the sieving, and showing that the same sieving procedure works equally well in
both the cuspidal spectrum and the Eisenstein spectrum.

Let N be a positive integer, and consider the space of automorphic forms of
level N , weight k ∈ Z, and nebentypus ψ modulo N . There are at least two
natural choices of how to decompose the space spanned by the Eisenstein series.
One is to use Eisenstein series Ea(z, s, ψ) attached to cusps and the other is to use
Eisenstein seriesEχ1,χ2(z, s) attached to pairs of Dirichlet characters. In Theorems
1 and 2 below, we show that change-of-basis formulas relating these two bases. As
a consequence, we may derive formulas for the inner product relations between
Eisenstein series attached to characters; see Lemma 3 below. These formula turn
out to be identical in shape to related formulas holding for cusp forms. This is the
key property in sieving in the Bruggeman-Kuznetsov formula, and lets us derive
a newform Bruggeman-Kuznetsov formula.

2. Definitions

2.1. Eisenstein series attached to cusps. Let a be a cusp for Γ, and let σa be
a scaling matrix for a, which means σa∞ = a, and σ−1

a
Γaσa = Γ∞ = {±( 1 b

1 ) :
b ∈ Z}. Let τa = σa( 1 1

1 )σ−1
a

, so that ±τa generate Γa, the stablizer of a in Γ. We
say that a is singular for ψ if ψ(τa) = 1. The Eisenstein series of nebentypus ψ
and weight k attached to the cusp a is defined by

(1) Ea(z, s, ψ) =
∑

γ∈Γa\Γ
ψ(γ)j(σ−1

a γ, z)−k(Im σ−1
a γz)s,

initially for Re(s) > 1.
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Every singular cusp may be expressed in the form u/f where f |N and (u,N) =
1. Two such cusps u1/f1 and u2/f2 are Γ0(N)-equivalent if and only if f1 = f2
and u1 ≡ u2 (mod (f,N/f)). Moreover, the cusp u/f is singular for ψ if and only
if ψ is periodic modulo N

(f,N/f) .

2.2. Eisenstein series attached to characters. Let χ1, χ2 be Dirichlet char-
acters modulo q1, q2, respectively, with χ1(−1)χ2(−1) = (−1)k. Define

(2) Eχ1,χ2(z, s) =
1

2

∑

(c,d)=1

(q2y)sχ1(c)χ2(d)

|cq2z + d|2s
( |cq2z + d|
cq2z + d

)k
.

3. Change of basis formulas

Theorem 1. We have

(3)

Eu
f

(z, s, ψ) =
(f,N/f)s

Ns

1

ϕ((f,N/f))

∑

q1|Nf

∑

q2|f

∑∗

χ1 (mod q1)
χ2 (mod q2)
χ1χ2∼ψ

χ1(−u)
L(2s, χ1χ2)

L(2s, χ1χ2χ0,N )

∑

a|f
(a,q2)=1

∑

b|Nf
(b,q1)=1

µ(a)µ(b)χ1(b)χ2(a)

(ab)s
Eχ1,χ2

( bf
aq2

z, s
)
,

where the sum is over primitive characters χi modulo qi, and χ1χ2 ∼ ψ means
that both sides are induced by the same primitive character.

The inversion formula for (3) is given by the following:

Theorem 2. Let χi, i = 1, 2, be primitive characters modulo qi with q1q2|N , and
write N = q1q2L. Suppose B|L, and write L = AB. Then

Eχ1,χ2(Bz, s) =
∑

d|A

∑

e|B
(d,e)=1

χ1(d)χ2(e)

(de)s

×
( N

(q2
Bd
e , q1

Ae
d )

)s ∑∗

u (mod (q2
Bd
e ,q1

Ae
d ))

χ1(−u)E u

q2
Bd
e

(z, s, ψ).

(4)

Here the sum is over u is over a set of representatives for (Z/(q2
Bd
e , q1

Ae
d )Z)∗,

chosen coprime to N , and ψ is modulo N , induced by χ1χ2.

4. Orthogonality properties

Let Et,ψ(N) be the finite-dimensional vector space defined by

Et,ψ(N) = span{Ea(z, 1/2 + it, ψ) : a is singular for ψ},
and define a formal inner product 〈, 〉Eis on this space by

(5)
1

4π
〈Ea(·, 1/2 + it, ψ), Eb(·, 1/2 + it, ψ)〉Eis = δab,
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extended bilinearly.
Let M = q1q2, N = ML, and let χi be primitive modulo qi. Define the inner

product

(6) Iχ1,χ2(B1, B2;N) :=
1

4π
〈Eχ1,χ2(B1z, 1/2 + it), Eχ1,χ2(B2z, 1/2 + it)〉N ,

where B1, B2|L, and the inner product is on Eisenstein series of level N . The
corresponding formula for cusp forms was worked out by various authors with
various degrees of generality [AU] [ILS] [BM] [Hum] [S-PY].

Lemma 3. Let notation be as above. Then

(7)
Iχ1,χ2(B1, B2;N)

Iχ1,χ2(1, 1;N)
= Aχ1,χ2

( B2

(B1, B2)

)
Aχ1,χ2

( B1

(B1, B2)

)
,

where Aχ1,χ2(n) is the multiplicative function defined for B ≥ 1 by

(8) Aχ1,χ2(pB) =
λχ1,χ2(pB) − χ1χ2(p)p−1λχ1,χ2(pB−2)

pB/2(1 + χ0(p)p−1)
.

Here λχ1,χ2(n) =
∑

ab=n χ1(a)χ2(b)(a/b)it, and where for B = 1 we define
λχ1,χ2(p−1) = 0. Moreover, χ0 is the principal character modulo q1q2.

The form of (8) is in perfect accord with the cuspidal case of [Hum, Lemma
3.13].
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SWITZERLAND

Prof. Dr. Jürg Kramer

Institut für Mathematik
Humboldt-Universität Berlin
10099 Berlin
GERMANY

Prof. Dr. Erez M. Lapid

Department of Mathematics
The Weizmann Institute of Science
Rehovot 76100
ISRAEL



Automorphic Forms and Arithmetic 2535

Dr. Min Lee

School of Mathematics
University of Bristol
Howard House
Queens Avenue
Bristol BS8 1SN
UNITED KINGDOM

Didier Lesesvre
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SWITZERLAND



2536 Oberwolfach Report 40/2017

Dr. Corentin Perret-Gentil

Centre de Récherches Mathématiques
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