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Abstract. Quantum field theory (QFT) may be considered one of the most
fundamental frameworks of theoretical physics. Quantum Electrodynamics
(QED) is the part of QFT that describes the interaction between matter and
light. Although it is one of the experimentally best tested theories, it yet
faces many open mathematical questions and challenges. The mathematical
rigorous framework of QED and the implications deriving from it is the topic
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together mathematicians and theoretical physicists to discuss topics such as
high- and low-energy QED, external field QED, quantum optics, many-boson
and many-fermion systems, transport properties in condensed matter.
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Introduction by the Organisers

MFO Workshop 1737 Mathematical Questions and Challenges in Quantum Elec-
trodynamics and its Applications, organized by Volker Bach (TU Braunschweig),
Miguel Ballesteros (UNAM Mexico City), Dirk-André Deckert (LMU Munich),
and Israel Michael Sigal (U of Toronto) was attended by 51 mathematicians and
theoretical physicists. They represented a broad spectrum of scientific expertise,
including mainstream and off-mainstream directions of research, and also a rather
well-balanced blend of junior and senior scientists. Notably, eight female scientist
participated and six of them presented their research results in a talk.
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The presentations of mathematical results directly related to quantum electro-
dynamics (QED) constituted the core of the workshop program. Several presen-
tations dealt with central objects and questions of QED, such as propagators and
their construction – especially in the presence of external fields, the infrared prob-
lem and the ultraviolet problem and their solution in terms of renormalization
schemes - with formulations ranging from concrete models and suitable resumma-
tions to new variational approaches such as the principle of the fermion projector,
and finally to quantum field theoretic scattering matrices and their convergence as
formal power series. Moreover, effective theories of Hartree-Fock type, the polaron
model or the Euler-Heisenberg action deriving from QED were formulated and an-
alyzed. The work horse of quantum optics, the spin-boson model, was also subject
of several presentations, linking QED to concrete questions of decoherence and
thermalization of systems. Several other presentations dealt with the derivation of
effective descriptions of many-particle systems and especially cold quantum gases
and other topics of statistical mechanics like Lieb-Robinson bounds yielding new
correlation estimates rounded off the programme.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Jan Dereziński (joint with Daniel Siemssen)
The Klein-Gordon equation on curved spacetimes and its propagators . . 2548

Peter Pickl (joint with Detlef Dürr and Johannes Nissen-Meyer)
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Abstracts

Derivation of the (magnetic) Euler-Heisenberg Lagrangian in QED

Mathieu Lewin

In quantum field theory, the vacuum is a fluctuating medium which behaves as
a nonlinear polarizable material. A convenient way of describing this effect is
to use an effective action. In Quantum Electrodynamics (QED), this method
corresponds to integrating out the electronic degrees of freedom in the full QED
functional integral. The effective action is a function of a classical electromagnetic
field treated as an external one. In the case of a constant electromagnetic field,
the effective action has a rather simple explicit expression, which has been first
derived by Euler and Heisenberg in [3]. This functional has been used to make
spectacular predictions, like the birefringence of the vacuum which has only been
confirmed recently, in the neighborhood of some neutron stars [4].

For time-independent fields in the Coulomb gauge, the effective Lagrangian
action takes the form [1]

L(V,A) := −Fvac(eV, eA) + e

∫

R3

(
jext(x) ·A(x) − ρext(x)V (x)

)
dx

+
1

8π

∫

R3

(
|E(x)|2 − |B(x)|2

)
dx

where E = −∇V and B = curlA are the electric and magnetic fields, and
Fvac(eV, eA) is the ground state energy of the Dirac vacuum in the fixed elec-
tromagnetic potential (V,A). This term gives rise to nonlinear and nonlocal cor-
rections to the classical linear Maxwell equations.

In the Local Density Approximation, the complicated energy Fvac(eV, eA) is
replaced by a local functional, that is,

(1) Fvac(eV, eA) ≃
∫

R3

fEH

(
eE(x), eB(x)

)
dx

where fEH

(
eE, eB

)
is by definition the energy per unit volume of the vacuum in

a constant electromagnetic field (E,B). This function has a complicated explicit
expression which was derived in [3, 6, 5]. In particular, for E 6= 0 it has an
exponentially small imaginary part, which is interpreted as the electron-positron
pair production rate. The situation is easier for E ≡ 0, which is the case studied
in [2] and discussed in the talk. Then

(2) fEH(0, eB) =
1

8π2

∫ ∞

0

e−sm
2

s3

(
es|B| coth

(
es|B|

)
− 1− e2s2|B|2

3

)
ds,

where m is the mass of the electron. The reduced Planck constant ~ and the speed
of light c are set equal to 1.

Our main result in [2] is the justification of (1) for E ≡ 0 in the regime where
B varies slowly in space. To be more precise, we assume that the magnetic field
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takes the form B(εx) with a fixed smooth function B and then look at the limit
ε→ 0. This corresponds to the strong magnetic potential Aε(x) = ε−1A(εx).

The ground state vacuum energy has to be regularized, due to well known
ultraviolet divergences. It was properly defined in [1], using the Pauli-Villars
regularization, by

(3) FPV
vac (eV, eA) :=

1

2
tr

2∑

j=0

cj

(∣∣Dmj ,0

∣∣−
∣∣Dmj,eV,eA

∣∣
)
,

where Dm,eV,eA :=
∑3

j=1 αj
(
− i∂xj

−eAj(x)
)
+eV (x)+mβ is the Dirac operator

in the external fields. We have c0 = 1 andm0 = m. The ultraviolet divergences are

removed if the coefficients c1 and c2 satisfy the Pauli-Villars conditions
∑2
j=0 cj =∑2

j=0 cjm
2
j = 0, which are assumed to hold from now on. The masses m1,m2

play the role of a cut-off.

Theorem 1 (Derivation of the magnetic Euler-Heisenberg functional). Let B ∈
C0(R3,R3) be such that divB = 0, B ∈ L1(R3) ∩ L∞(R3) and ∇B ∈ L1(R3) ∩
L6(R3). Let A be the associated magnetic potential in Ḣ1(R3) with divA = 0. Set
finally Aε(x) = ε−1A(εx). Then, we have

(4) ε3FPV
vac (0, eAε) =

∫

R3

fPV
EH

(
0, e|B(x)|

)
dx+O(ε)

where

(5) fPV
EH (b) :=

1

8π2

∫ ∞

0

( 2∑

j=0

cj e
−sm2

j

)(
sb coth

(
sb
)
− 1
)ds
s3

is the Pauli-Villars-regulated Euler-Heisenberg vacuum energy.

The original expression (3) can be recovered from (5) after removing the cut-off
masses m1,m2, through charge renormalization, see the discussion in [2, Sec. 2.3].
After scaling, the result (4) corresponds to a semi-classical limit in a strong mag-
netic field.
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Topological edge states for bosonic systems

Hermann Schulz-Baldes

The aim of the talk was to show how by now well-known techniques for the descrip-
tion of the integer quantum Hall effect can be adapted to deal with the thermal
quantum Hall effect in two-dimensional dirty superconductors and to prove the
existence of topological edge modes in two-dimensional bosonic systems. This is
achieved within the framework of fermionic and bosonic quadratic Hamiltonians
described by the Bogoliubov-de Gennes (BdG) formalism. The structure of the
presentation was:

• A short review of the integer quantum Hall effect with a particular focus
on the bulk-edge correspondence, namely it is recalled that the Chern
numbers of the Fermi projection of a given one-particle Hamiltonian is
equal to the (quantized) current flowing in the edge channels of a half-
space restriction of the Hamiltonian [6, 5].

• The Chern number of the Fermi projection of a general fermionic BdG
Hamiltonian with pairing potential is introduced by the standard formula.
In these superconductor systems, charge is not a conserved quantity and
one is thus lead to study heat transport. While a rigorous derivation of the
Kubo formula for the Hall heat conductance [9] is still an open question,
it is possible to show that the Chern number dictates the low temperature
behavior of the heat current flow in the edge channels of the half-space
restrictions [3], similar as in the integer quantum Hall effect. This is called
the thermal quantum Hall effect.

• The differences in the BdG formalism for bosonic quadratic Hamiltonians
are stressed, notably the BdG Hamiltonian implementing the time evo-
lution is now only a J-hermitian operator on the Krein space given by
the particle-hole Hilbert space. This makes the spectral analysis more in-
volved. Nevertheless, it is possible to define Chern numbers for all bands
of the bosonic BdG Hamiltonian. This was first used in [8] for periodic
systems, and is extended to disordered systems in the work [5]. While the
Chern number is not directly linked to any observable quantity as in the
integer quantum Hall effect (and other fermionic systems like spin quan-
tum Hall systems [3]), it can be shown to be connected to the number of
topological edge state in half-space versions of these models. The proof
of this bosonic bulk-boundary correspondence is the main objective of [5]
and confirms the numerical and heuristic results used in the literature on
systems of magnons, photonic crystals, lattices of microwave resonators
and cold atoms (see the literature in [5]).
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• Another interesting aspect of quadratic bosonic systems is that the J-
hermitian BdG Hamiltonian can have spectrum off the real axis. This
typically appears after a Krein collision of (bands of) eigenvalues with
opposite Krein signature (see e.g. [7]). This complex spectrum then leads
to dynamical instabilities of the system. It is possible to construct two-
dimensional models which are dynamically stable in the bulk (namely, real
spectrum of the bulk BdG Hamiltonian), but for which the edge modes are
dynamically unstable. This idea goes back to Barret [1] in one-dimensional
models, and is also discussed in [5].
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External field QED on Cauchy surfaces

Franz Merkl

(joint work with Dirk-André Deckert)

We consider the evolution of a second-quantized Dirac fermion field between
Cauchy surfaces of Minkowski space-time in an external classical smooth elec-
tromagnetic four-vector potential. According to classical results of Shale, Stine-
spring, and Ruisenaars, the second- quantized Dirac time evolution between all
equal-time hyperplanes can be implemented in the standard Fock space if and
only if the spatial part of the four-vector potential vanishes. However, we show
that an implementation is always possible between varying Fock spaces, associ-
ated to polarization classes that depend on the four-potential restricted to the
tangent bundle of the Cauchy surface. The approach is Lorentz and gauge covari-
ant. However, in general the admissible polarizations lead to inequivalent Fock
space representations. Actually, finding polarization classes in a gauge covariant
way was the leading geometric motivation behind the approach.
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The implementation of second-quantized Dirac evolution between varying Fock
spaces associated to Cauchy surfaces leaves a global phase undetermined. Identi-
fying this phase and its remaining degrees of freedom with respect to appropriate
constraints is the topic of ongoing research.
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The Sine Gordon model in perturbative AQFT

Dorothea Bahns

(joint work with Kasia Rejzner and Klaus Fredenhagen)

Originally given as a formal power series in the coupling constant, the S-matrix of
the Sine Gordon model is shown to be summable in the model’s UV finite regime
on 2-dimensional Minkowski spacetime.

The estimates are achieved in the framework of perturbative algebraic quantum
field theory, which – to put it in a nutshell – is a formalism to study models in
perturbative quantum field theory without Fock space or the annihilation/creation
operator formalism. Its main input are the (uniquely determined) advanced and re-
tarded fundamental solutions of a (hyperbolic) PDE and the choice of a Hadamard
function, i.e. a symmetric bisolution of the same PDE with certain properties,
which is in general not unique, particularly not in curved spacetimes, but whose
existence is guaranteed by abstract arguments for large classes of models. Using
these functions (distributions), certain star products (in the sense of formal defor-
mation quantization) are introduced on certain spaces of functionals, that capture
the notion of e.g. normal ordered products and of the formal Dyson series for the
S-matrix. This input also gives rise to a state (Hadamard state) on the algebra
of observables (constructed from certain spaces of functionals) which in turn via
a GNS construction leads to a representation thereof.

Renormalization in this framework is formulated in the Epstein Glaser setting,
as an extension of distributions problem. In the present work however, i.e. the
UV finite part of the sine Gordon model, no renormalization is necessary.

Beyond the published estimates [1], I discussed some work in progress in my
talk. I addressed in particular the fact that a certain restriction on the testfunc-
tion that cuts off the interaction (infrared cutoff) is not necessary if one considers
not a representation in a generic (massless) Hadamard state but a particular one,
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which leads to a representation of the massless field in 2 dimensions as in [2]. I
also gave hints on how to calculate the local field of von Neuman algebras from
the Bogolubov formula in this framework. Future work should involve a better
understanding of infrared problems and a comparison with the Euclidean frame-
work.

References

[1] D. Bahns, K. Rejzner, Commun. Math. Phys. (2017). https://doi.org/ 10.1007/s00220-017-
2944-4.

[2] J. Dereziński, K.A. Meissner Quantum Massless Field in 1+1 Dimensions (2006). In: Asch
J., Joye A. (eds) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics,
vol 690. Springer, Berlin, Heidelberg.

The Klein-Gordon equation on curved spacetimes and its propagators

Jan Dereziński

(joint work with Daniel Siemssen)

The Klein-Gordon equation (including an electromagnetic potential) has several
natural Green’s functions, often called propagators. The so-called Feynman prop-
agator, used in quantum field theory, has a clear definition on static spacetimes.
I discuss, partly on a heuristic level, its possible generalizations to the non-static
case. I also describe a curious open problem about whether the Klein-Gordon
operator is self-adjoint on the space of square-integrable functions on space-time.
The answer is positive when the space-time is static, otherwise it seems to be a
difficult question.

Acknowledgements: The financial support of the National Science Center, Poland,
under the grant UMO-2014/15/B/ST1/00126, is gratefully acknowledged.
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[1] J. Dereziński, D. Siemssen, Feyman Propagators on Static Spacetimes, arXiv:1608.06441,
to appear in Rev. Math. Phys.
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Adiabatic Pair Creation in Heavy Ion and Laser Fields

Peter Pickl

(joint work with Detlef Dürr and Johannes Nissen-Meyer)

The creation of an electron positron pair in an almost stationary very strong
external electromagnetic field (a potential well) is often referred to as spontaneous
pair creation ([1],[2],[3]).

This adiabatic phenomenon emerges straightforwardly from the Dirac sea inter-
pretation of negative energy states: An adiabatically increasing field (a potential
well of changing deepness) lifts a particle from the sea to the positive energy
subspace (by the adiabatic theorem) where it hopefully scatters and when the po-
tential is switched off one has one free electron and one unoccupied state – a hole
– in the sea [4]-[6]. A better terminology – and the one we shall use here – is thus
adiabatic pair creation (APC).

The planned generation of lasers and heavy ion colliders renews the hope to see
electron-positron pair creation in strong classical fields.

In the talk the theory of adiabatic pair creation will be presented. In particular
I will argue, that an external field approximation always goes hand in hand with
a time-adiabatic situation.

Then adiabatic pair creation in pure electric fields shall be discussed. Using
the adiabatic theorem I will show that APC is impossible if the external field lies
beyond a certain critical threshold. In this case the bridge between the Dirac sea
and the positive spectrum is missing. For an overcritical field, i.e. a field where
such a bridge does exist, I will show that the probability of creating a pair goes to
one in the adiabatic limit. This is done under the assumption that there is a boud
state with energy zero for the critical potential, which is in fact the generic case.

After that it will be shown that pure laser based experiments are highly ques-
tionable. For pure laser field there is always a gap in the spectrum, thus assuming
the validity of the adiabatic theorem for the situation of laser fields, one directly
gets that there is no pair creation in the adiabatic limit for pure laser fields, in
contrast to predictions in the physics literature.
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Thermodynamical Stability and Dynamics of Lattice Fermions with
Mean-Field Interactions

Walter de Siqueira Pedra

(joint work with Jean-Bernard Bru, Sébastien Breteaux, and Rafael Miada)

For lattice fermions we study the thermodynamic limit of the time evolution of
observables when the corresponding finite-volume Hamiltonians contain mean-field
terms (like, e.g., the BCS model). It is well-known that, in general, this limit does
not exist in the sense of the norm of observables, but may exist in the strong
operator topology associated to a well-chosen representation of the algebra of
observables. We show that this is always the case for any cyclic representation
associated to an invariant minimizer of the free energy density, if the Hamiltonians
are invariant under translations. Our proof uses previous results on the structure
of states minimizing the free energy density of mean-field models along with Lieb-
Robinson bounds for the corresponding families of finite-volume time evolutions.
This is a joint work with Jean-Bernard Bru, Sébastien Breteaux and Rafael Miada.
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Irreversible dynamics emerging from quantum resonances

Marco Merkli

(joint work with Martin Könenberg)

We consider the dynamics of quantum systems which possess stationary states as
well as slowly decaying, metastable states arising from the perturbation of bound
states. Our main result is a decomposition of the time evolution propagator into: a
sum of a stationary part, an exponentially (time) decaying part and a polynomially
(time) decaying remainder. The decay rates and decay directions are determined
by the resonance data of the Hamiltonian. Our approach is based on an elementary
application of the Feshbach map to the resolvent representation of the propagator
[1].

We explain the motivation for developing this theory by outlining recent results
on the dynamics of the spin-boson model at large (arbitrary) coupling strength
[2, 1, 4]. This model is being used to describe charge and excitation transport in
quantum chemical processes found in living organisms, such as photosynthesis in
plants and bacteria [3] (“Quantum Biology”). Experimentally found values of the
parameters appearing in the model force us to consider a strong coupling between
the spin and the thermal Bose field. It turns out that in this parameter regime,
conventional mathematical techniques to analyze the spin-boson dynamics break
down (spectral deformation methods). The work presented is mainly the content
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of [1], where we establish a mathematical method to extract decay rates and decay
directions in Hilbert space from Mourre theory, rather than from the technically
much less demanding spectral deformation theory (which is not applicable in the
present situation as mentioned above).
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Renormalization of linearly coupled models

Jacob Schach Møller

(joint work with Andreas Wünsch)

Models of non-relativistic quantum matter linearly coupled to a scalar boson field,
e.g. Fröhlich’s polaron model and the Nelson model, may be ultraviolet renor-
malized, using several different renormalization schemes. If the dynamics of the
quantum particle is not governed by the Laplacian, however, the choices narrow
significantly. In this talk we revisit a resummation scheme on the level of re-
solvent expansions, due to Hepp and Eckmann, which permits the construction
of an ultraviolet renormalized Hamiltonian via norm-resolvent convergence of the
Hamiltonian with its self-energy subtracted.

On the Nature of Energy Full Statistics: fluctuations’ control and
heavy-tailed distributions and ultraviolet regularization

Annalisa Panati

(joint work with Tristan Benoist and Renaud Raquépas)

We present a study of (free) energy statistical fluctuations in a perturbed system
in the context of quantum statistical mechanics.

At the classical level, it is well understood that energy fluctuations are controlled
by the strength of the perturbation. Consider a classical system whose dynamics
is governed by an Hamiltonian Hλ = H0 + λV . Assume the system is intially at
equilibrium with respect to the dynamics associated H0. In other words, we think
of H0 as the free energy and V as a perturbation.
Then, in classical physics, the total (free) energy variation ∆Qt := H0(t) − H0
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statistics1 is equal to the λV − λV (t) statistics since Hλ(t) = Hλ.
If the perturbation V is bounded, the total energy variation statistics ∆Qt is
almost surely absolutely bounded and for t large enough, 1

t∆Qt almost surely
concentrates in 0. Moreover, P∆Qt

is always light-tailed. If V is unbounded,
bounds on |∆Qt| are typically controlled by the strength parameter λ.

We want to consider the quantum regime. In the last two decades, it has become
clear that the nature of work/energy in quantum physics is more subtle than its
classical counterpart. The emerging picture is that in quantum mechanics work
should not be understood as an observable. Instead, the work performed during
a given time period is identified with the energy variation observed in a repeated
measurement protocol, where a measurement is performed initially and at the end
of a given period of length t > 0. This change of perspective opened a new area
of research [4, 2].

The distribution of the measured energy variations, Pt(∆E) is the energy full
(counting) statistics, also called two-time mesurement distribution. The name“full
counting statistics” first appeared in the seminal work of Levitov and Lesovik on
charge transport [7]. When considering energy, probability distributions after
thermodynamic limit are typically continuous and the word “counting” can be
misleading. To avoid confusion, we use the term “full statistics”.

A prominent reason to consider full statistics is the key result by Kuchan [6] and
Tasak and Matsui [9] providing extension of the celebrated fluctuation relations
to quantum systems. The significance of the fluctuation relations relies in their
intimate connection to the second law of thermodynamics and they have been
extensively studied (see [8] and [4] for an overview).

Here we consider free energy full statistics. Its behaviour turns out to be con-
siderably different than in the classical setting. In particular, boundedness of the
perturbation does not guarantee a light- tailed distribution. The key point of
this contribution is to show tails of the energy full statistics are controlled by an
appropriate notion of regularity rather than the strength of the perturbation. If
the regularity condition is not satisfied the heat full statistics can be heavy-tailed.
This phenomenon has no classical counterpart.

A regularity condition was already introduced in our partly co-authored
work [1], where we considered quantum dynamical systems arising as the limit
of a sequence of confined systems. Here we work directly with infinitely extended
systems via algebraic theory.
Let O be the C∗-algebra of observables and R ∋ t → τ t ∈ Aut(O) denote the
unperturbed dynamics over O. Let V ∈ O, V = V ∗ denote the perturbation. We
assume at time 0 the system is in a state ω which is invariant for the free dynamics
τ t. After the first measurement the system evolves thought the perturbed dynam-
ics τ tV = τ t + i[−, V ].

1Given a classical observable A and an initial state ρ, we call A-statistics the probability
measure PA such that

∫
f(s)dPA(s) =

∫
f(A)dρ for all f ∈ Cb(R)
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The following theorems show that conditions on the regularity of the map

t→ τ t(V )

are sufficient to guarantee control over large fluctuations.
Let Et denote expectation with respect to Pt.

Theorem 1. Assume

(1) t→ τ t(V ) is n times norm-differentiable.

Then

(2) sup
t∈R

Et(∆E
2n+2
t ) <∞.

In terms of large fluctuations, it is immediate to show that (2) yields

Pt(△E ≥ tR) ≤ C(tR)−2n+2

for some C > 0.

Theorem 2. Assume

(3)
t→ τ t(V ) admits a bounded analytic extention

to the strip {z ∈ C : |ℑz| < 1
2γ},

then

(4) sup
t∈R

Et(e
γ|∆Et|) <∞.

Condition (4) for some γ > 0 yields boundness of any moment E(|∆Qt|m) is
uniformly bounded in time. Moreover, in terms of large deviations, for any ǫ > 0,

lim sup
t→∞

1

t
logP(|∆Q| > tǫ) ≤ −γǫ

for any γ such that (3) holds.

Our core result is to show condition (1) is essentially optimal by providing ex-
amples. In other words, we provide examples where energy full statistics can be
heavy tailed.

The first model we consider is a quantum dot interacting with a free Fermi gas.
The model can be mapped also to the second quantization of a Wigner-Weisskopf
atom. We can show for this model condition (1) is equivalent to (2).

Moreover, we can show the same mechanism occur in bosonic models where the
perturbation V is unbounded. We consider an harmonic oscillator interacting with
a Bose gas (which can also be mapped to bosonic version of the second Wigner–
Weisskopf atom) and van Hove Hamiltonian.
We show that assumptions similar to (1) and (3) are equivalent (2) and (4) . Note
that conditions (1) and (3) are independent of λ. Once again this shows that the
tails are controlled by the interaction’s regularity rather than by its strength.
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In the explicit model we analyze, conditions (1) and (3) translate immediately
as a fast decay conditions on the ultraviolet regularization function f , appearing
in the perturbation. One can think that in the quantum setting, it is energy
transitions induced by the perturbation that are relevant for the fluctuations.
These energy transition rates and the contribution of high energy frequencies are
controlled by the ultraviolet regularization.
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No-photon QED

Christian Hainzl

Consider electrons in the field of external electric charges. If the electrons are
described by the Dirac operator then one needs to cope with the negative energy
spectrum of the Dirac operator. Since the detection of positrons it these energy
states had to be taken seriously and the free vacuum was interpreted as the neg-
ative spectrum filled with electrons. These electrons redistribute, i.e., polarize
the vacuum. In this way the corresponding potential contributes to an effective
electric field und acts back on the vacuum and real particles. Such a situation
was first treated by Dirac in his wonderful paper “Theory du Positron” [1] from
1934. He uses Hartree-Fock approximation where states are given by infinite rank
projections, P , which include real electrons and virtual electron positron pairs. Its
evolution is described by the Heisenberg equation of motion

iṖ = [H,P ], H = D0 − αV

where D0 = ~α · 1i∇+β the free Dirac operator with mass equal to 1, and V satisfies
the equation

−∆V (x) = ν(x) + ρP (x)
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where ν is the distribution of the external charges and ρP is the density of P
measured relative to the free vacuum P 0 = χ(−∞,0](D

0). I.e., ρP (x) = TrC4(P −
P 0)(x, x). Dirac calculated ρP to leading order and obtained that it is proportional
to α ln Λν(x). He argued that realistic energies are not larger than 137mc2 and
therefore the polarization potential slightly diminishes the external potential. This
was the first appearance of a charge renormalization procedure.

In joint works with M. Lewin and E. Séré [2, 3, 4] we implemented Dirac’s idea
via Hamiltonian formalism under the assumption that without charges present the
free vacuum is given by the projection on the negative energies of the free Dirac
operator. More precisely, our starting Hamiltonian is given by

(1) H =

∫
dx : Ψ∗(x)D0Ψ(x) :P 0 +α

∫
dx : Ψ∗(x)φ(x)Ψ(x) :P 0

+
α

2

∫
dx

∫
dy

: Ψ∗(x)Ψ(x)Ψ∗(y)Ψ(y) :P 0

|x− y| ,

with φ(x) = ν ∗ 1
|x| . For quasi free states ψ we obtained 〈ψ|H|ψ〉 = E(P ′ − P 0),

where
(2)

E(Q) = Tr(D0Q)− α

∫
ρQφ+

α

2

∫∫
ρQ(x)ρQ(y)

|x− y| dx dy − α

2

∫∫ |Q(x, y)|2
|x− y| dx dy

with ρQ(x) = TrC4 Q(x, x), and Q = P ′ − P0. The states Q are in general not
trace-class. For that reason we restrict the momentum space to momenta |p| ≤ Λ,
i.e. we introduce an ultra-violet cut-off Λ. We further have to replace the formal
trace Tr(D0Q) with the P 0-trace trP 0(D0Q), where one only used the diagonal
elements of the 2 × 2 matrix obtained by the decomposition with respect to P 0.
I.e., trP 0(A) = Tr(1 − P 0)A(1 − P 0) + TrP 0AP 0. The state space contains all
Q = P − P 0 with 0 ≤ P ≤ 1 and Q Hilbert- Schmidt with finite P 0-trace.

We show in [3] that for any Λ there exists a minimizer Q̄ of E such that P̄ =
Q̄+ P 0 is a projector satisfying the self-consistent equation

(3) P̄ = χ(−∞,0)

(
D0 − αϕ+ αρQ̄ ∗ 1

| · | − α
Q̄(x, y)

|x − y|
)
.

Additionally, if α and ν satisfy certain constraints then this global minimizer Q̄ is
unique and the associated polarized vacuum is neutral, i.e. TrP 0(Q̄) = 0, meaning
that no effective charge was created out of the vacuum.

The same can be done in charge-sectors [4], i.e., under the constraint trP0 Q =
N, with an additional Lagrange-Parameter µ

(4) P̄ = χ(−∞,µ]

(
D0 − αϕ+ αρQ̄ ∗ 1

| · | − α
Q̄(x, y)

|x− y|
)
= P + γ,

where Tr γ = N . One can interprete that γ represents the real electrons, and P
the polarized vacuum. The total density ρQ̄ contains a logarithmic divergent term
in Λ. This has to be interpreted away by renormalization.
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To this aim we studied in [3] the reduced BDF-functional without Exchange
term. We denote the total minimizer as Qvac

(5) Qvac = χ(−∞;0](F )− P 0
−, F = D0 + α(ρvac − ν) ∗ 1

|x|
where this equation can be reduced to an equation for the density. This reads

(6) ρvac(x) = − 1

2π

∫ ∞

−∞
dη Tr

[
1

D0 + α(ρvac − ν) ∗ 1
|x| + iη

− 1

D0 + iη

]
(x, x).

potentials In terms of ρ = ρvac − ν this leads to the equation

(7) αρ̂ = − α

1 + αBΛ
ν̂ +

α

1 + αBΛ
CΛ(k)αρ̂+

α

1 + αBΛ
F̂3[αρ].

where BΛ ≃ 2
3π log(Λ) and the function CΛ(k) has a well defined limit C(k), which

was calculated by Serber [8] and Uehling [9]. Defining the physical fine structure
constant

αph =
α

1 + αBΛ

we set αphρph = αρ, which corresponds to charge and wavefunction renormaliza-
tion and obtain

(8) αphρ̂ph = −αphν̂ + α2
phCΛ(k)ρ̂ph + αphF̂3[αphρr].

Calculating the electric potential corresponding to the term α2
phC(k)ρ̂ph leads to

the so called Uehling potential. We notice that the renormalized charge αph → 0
when Λ → ∞, independently of α. Further it was proved in [3] that the unique
polarized vacuum PΛ of the reduced BDF model satisfies

lim
Λ→∞

Tr
(
PΛ − P 0

−
)2

= 0 and lim
Λ→∞

D(ρPΛ−P 0
−
− ν, ρPΛ−P 0

−
− ν) = 0.

In words, when Λ → ∞, the vacuum polarization density totally cancels the
external density ν, for ρPΛ−P 0

−
→ ν. But since PΛ−P 0

− → 0, this means that in the

limit Λ → ∞, PΛ−P 0
− and its associated density become independent. Therefore,

the minimization without cut-off makes no sense both from a mathematical and
physical point of view. Indeed all this easily implies that when no cut-off is imposed
and when ν 6= 0, the infimum of the reduced BDF functional is not attained. This
corresponds to the well known Landau-pole problem.

The time-dependent equation corresponding to Dirac’s original equation for P
was investigated in [6].

In [5], see also [7], we posed the question of the correct free Dirac sea in the
Hartree-Fock approximation including the interaction among the particles filling
the Dirac sea. We studied this by starting from a formal Hamiltonian without any
normal ordering, reducing to a box and letting the box tend to infinity. The result
is a slightly changed projector satisfying the self-consistent equation

(9)

{
P0
− = χ(−∞;0](D0),

D0 = D0 − α
(P0

−−I/2)(x−y)
|x−y| .



Questions and Challenges in Quantum Electrodynamics and Applications 2557

In the presence of external fields we used this vacuum as starting point and
calculated relative to the vacuum energy. This then leaded to a renormalized
Bogolubov-Dirac-Fock-functional.
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4. C. Hainzl, M. Lewin and É. Séré. Existence of Atoms and Molecules in the Mean-Field
Approximation of No-Photon Quantum Electrodynamics. Arch. Ration. Mech. Anal. 192
(2009), no. 3, 453499.

5. C. Hainzl, M. Lewin and J. P. Solovej. The mean-field approximation in Quantum Electro-
dynamics. The no-photon case, Comm. Pure Appl. Math. 60 (2007), no. 4, 546–596.

6. C. Hainzl, M. Lewin and C. Sparber. Existence of global-in-time solutions to a generalized
Dirac-Fock type evolution equation, Lett. Math. Phys. 72 (2005), 99–113.
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Supersymmetry and Ward identities: an alternative approach to
renormalization.

Margherita Disertori

(joint work with Thomas Spencer and Martin Zirnbauer)

A major problem in QFT is to develop tools to implement some kind of mul-
tiscale analysis for theories where standard renormalization group techniques do
not apply. In this context a possible tool may come from Ward identities. These
are families of identities generated by the symmetries of the model and are often
used in perturbative renormalization schemes to show, for example, that certain
subclasses of Feynman diagrams cancel.

In this context, in collaboration with M. Zirnbauer and T. Spencer [2], we
considered the so-called H2|2 supersymmetric nonlinear sigma model, introduced
in [1] as a toymodel for quantum diffusion. It is also a key ingredient in the
construction and study of certain stochastic processes with memory (cf. [4] [5]
[6]). For this model we constructed a multiscale procedure whose key ingredient
is a infinite family of Ward identities generated by supersymmetry. We hope a
similar strategy may extend to other models with and without supersymmetry.

1. A supersymmetric nonlinear sigma model

Informally, one may view the construction below as a statistical mechanical ’Ising
type’ spin model, with spin taking values in a generalization of Minkowski 2 + 1
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dimensional space. Let Λ ⊂ Z
d be a cube. To each lattice point j ∈ Λ we attach

a ’spin’ Si

(1) Sj = (tj, xj , yj, ξj , ηj)

where ξ, η are odd elements and t, x y are even elements of a real Grassmann alge-
bra. The spin inner product is defined by the following generalization of Minkowski
metric:

(2) 〈S, S′〉 = xx′ + yy′ − tt′ + ξη′ − ηξ′ , 〈S, S〉 = x2 + y2 − t2 + 2ξη .

We introduce the finite volume ’Gibbs measure’

dµΛ(S) :=
1

ZΛ
e−HΛ(S)dSΛ

where dSΛ :=
∏
j∈Λ dtjdxjdyjdξjdηj and ZΛ is the normalization constant. Finally

the energy of each spin configuration is defined by

HΛ(S) := β〈S,−∆ΛS〉+ ǫ
∑

j

(tj − 1) = β
∑

|i−j|=1

〈Si − Sj , Si − Sj〉+ ǫ
∑

j

(tj − 1)

where ∆Λ is the discrete Laplacian, with some boundary conditions, β > 0 is the
inverse temperature and ǫ > 0 plays the role of a magnetic field or a mass term.
Since 〈·, ·〉 is not positive definite the measure above is ill defined. To solve the
problem we insert the nonlinear constraint

〈S, S〉 = −1 ≡ t2 − x2 − y2 − 2ξη = +1 ≡ t = ±
√
1 + x2 + y2 + 2ξη

Note that, neglecting for a moment the nilpotent term ξη, this corresponds to
require S to be a time-like vector. Below we select the manifold t > 0. One can
check that with the constraint above it holds tj − 1 ≥ 0 ∀j and 〈S,−∆ΛS〉 ≥ 0
hence the measure is now well defined. The spin S is then parametrized by four
independent variables, encoded in the vector u := (x, y, ξ, η), with the following
generalization of Euclidean metric (u, u′) := xx′ + yy′ + ξη′ − ηξ′. The Gibbs
measure with nonlinear constraint is then parametrized by

(3) dνΛ(u) :=
1

ZΛ
e−FΛ(u)[du]Λ

where [du]Λ =
∏
j duj [tj(u)]

−1 and t(u) =
√
1 + (u, u). Finally

(4) FΛ(u) := β(u,−∆Λu)− β(t(u),−∆t(u)) + ǫ
∑

j

(tj(u)− 1)

Note that the spin S now lives on a hyperbolic plane parametrized by two even
and two odd variables, hence the name H2|2 model.

1.1. Heuristics and results. At finite volume and β ≫ 1 the measure favours
aligned spin configurations: Si = Sj ∀i, j. In dimension d ≥ 3, when the thermody-
namic limit Λ → Zd is taken together with ǫ→ 0 a transition has been established
between a disordered phase at high temperature β ≪ 1 (cf. [3]) and an ordered
phase at low temperature β ≫ 1 (cf. [2]).
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2. Symmetries

For H2|2 standard renormalization group tools are hard to apply. Instead the
analysis is based on a sequence of Ward identities, generated by the symmetries.
Indeed the measure dν(u) is invariant under global linear transformations u →
Au leaving the scalar product (·, ·) invariant. An important role is played by
transformations that mix even and odd elements of the Grassman algebra, the
so called supersymmetric transformations. Their main feature can be informally
stated as follows.

Theorem 1 (Localization effect.). Assume the function f(uΛ) is smooth, decays
fast enough at infinity and is invariant under supersymmetric transformations.
Then

(5)

∫
f(uΛ)

∏

j

duj = f(0).

Since f is arbitrary, we can construct a huge family of highly nontrivial identi-
ties. As a first application one may compute the normalization constant ZΛ. By
the localization theorem above, replacing f(uΛ) = e−F(u)

∏
j [tj(u)]

−1 we get

ZΛ =

∫
e−FΛ(u)[du]Λ = e−FΛ(0)

∏

j

[tj(0)]
−1 = 1

for any choice of the parameters β and ǫ.

2.1. Proof of Theorem 1. For the general case see [2, App.C] and references
therein. Here we will restrict to the following simple example. Assume there is
only one lattice point, hence only one spin u = (x, y, ξ, η). Let g ∈ C∞(R) with
fast decay at infinity and consider f(u) := g((u, u)) = g(x2 + y2 +2ξη). Then this
function is invariant under supersymmetric transformations. We will prove (5) by
two methods.
1) Proof by direct computation: Taylor expansion in ξη yields
f(u) = g(x2 + y2) + g′(x2 + y2)2ξη. Then, passing to polar coordinates we get

I =

∫
f(u)du :=

∫
dxdy

1

2π
∂ξ∂ηf(u) = −2

∫ ∞

0

g′(r2)rdr = g(0) = f(0).

2) Proof by symmetry: Let I(τ) :=
∫
f(u)e−τ(u,u)du, with τ ≥ 0. Then I = I(0)

and limτ→∞ I(τ) = f(0). To conclude we need to prove I ′(τ) = 0. To see this
consider the infinitesimal generator of the symmetry mixing even and odd elements
given by Q := z̄∂ξ − η∂z , where we abbreviated z = x + iy and z̄ = x − iy. One
can check that Q2 = 0, Q(u, u) = 0 and (u, u) = Qh where h := 1

2zξ. Then

I ′(τ) = −
∫
duf(Qh)e−τ(Qh) = −

∫
duQ

[
fhe−τQh

]
= 0.
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3. Multiscale analysis

Let us see how symmetries can be used to infer bounds. Informally, by the local-
ization theorem we get identities of the form

1 =

∫
[|xj − xk|m(1−mgjk(u))] dν(u) ∀m ≥ 0.

For |j − k| = 1 one can see that 0 ≤ gjk(u) ≤ β−1 ∀u configurations, hence
∫

|xj − xk|mdν(u) ≤
(
1− m

β

)−1

≤ 2 ∀ 0 < m ≤ β

2
.

For general j, k the argument above holds by restricting to the subset of ’good’
configurations. To apply the localization theorem this set must be selected by a
supersymmetric version of the corresponding characteristic function.
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related to the vertex-reinforced jump process. ALEA, 14:529–555, 2017.

Lieb–Robinson Bounds for Multi–Commutators and Applications to
Response Theory

Jean-Bernard Bru

(joint work with Walter de Siqueria Pedra)

Lieb-Robinson bounds are upper-bounds on time-dependent commutators. They
have first been derived in 1972 by Lieb and Robinson [1]. Nowadays, they are
widely used in quantum information and condensed matter physics. Phenomeno-
logical consequences of Lieb–Robinson bounds have been experimentally observed
in recent years, see [2].

As explained in [3] in the context of quantum spin systems, Lieb–Robinson
bounds are expected to hold true for systems with short–range interactions. In [4]
we define Banach spaces W of short–range interactions and prove Lieb–Robinson
bounds for the corresponding fermion systems. The spaces W include density–
density interactions resulting from the second quantization of two–body interac-
tions defined via a real–valued and integrable interaction kernel v (r) : [0,∞) →
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R. The method of proof we use in [4] to get Lieb–Robinson bounds for non–
autonomous C∗–dynamical systems related to lattice fermions is, up to simple
adaptations, the one used in [3] for (autonomous) quantum spin systems.

Once the Lieb–Robinson bounds for commutators are established, we combine
them with results of the theory of strongly continuous semigroups to derive prop-
erties of the infinite–volume dynamics. These allow us in [4] to extend Lieb–
Robinson bounds to time–dependent multi–commutators. The new bounds on
multi–commutators make possible rigorous studies of dynamical properties that
are relevant for response theory of interacting fermion systems. In fact, by using
the Lieb–Robinson bounds for multi–commutators, we extend in [6, 7] our results
[5, 8, 9, 10] on free fermions to interacting particles with short–range interactions.
This is an important application of such new bounds: The rigorous microscopic
derivation of Ohm and Joule’s laws for interacting fermions, in the AC–regime.

The new bounds can also be applied to non–autonomous systems. Indeed, the
existence of a fundamental solution for the non–autonomous initial value problem
related to infinite systems of fermions with time–dependent interactions is usually
a non–trivial problem because the corresponding generators are time–dependent
unbounded operators. The Lieb–Robinson bounds on multi–commutators we de-
rive in [4] yield the existence of fundamental solutions as well as other general
results on non–autonomous initial value problems related to fermion systems on
lattices with interactions which are non–vanishing in the whole space and time–
dependent. This is done in a rather constructive way, by considering the large
volume limit of finite–volume dynamics, without using standard sufficient condi-
tions for existence of fundamental solutions of non–autonomous linear evolution
equations. See [4].

Observe that the evolution equations for lattice fermions are not of parabolic
type, in the precise sense formulated in [11], because the corresponding generators
do not generate analytic semigroups. They seem to be rather related to Kato’s
hyperbolic case [12, 13, 14]. Indeed, by structural reasons – more precisely, the
fact that the generators are derivations on a C∗–algebra – the time–dependent
generator defines a stable family of operators in the sense of Kato. Moreover,
this family always possesses a common core. In some specific situations one can
directly show that the completion of this core with respect to a conveniently chosen
norm defines a so–called admissible Banach space Y of the generator at any time,
which satisfies further technical conditions leading to Kato’s hyperbolic conditions
[12, 13, 14]. See also [15, Sect. 5.3.] and [16, Sect. VII.1]. Nevertheless, the
existence of such a Banach space Y is a priori unclear in the general case treated
here.

For more details on these results, we refer to [4], which is written to be accessible
to a wide audience, in particular to students in Mathematics with little Physics
background. In particular, we introduce in [4] the algebraic setting for fermions,
in particular the CAR C∗–algebra. Other standard objects (like fermions, bosons,
Fock space, CAR, etc.) of quantum theory are also presented in [4], for pedagogical
reasons.
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Complete Bose-Einstein condensation in the Gross-Pitaevskii regime

Serena Cenatiempo

(joint work with Chiara Boccato, Christian Brennecke, and Benjamin Schlein)

Proving the existence of condensation for interacting bosons is a longstanding
problem, tightly related to the occurrence of superfluidity in dilute bose gases, as
expected on the basis of the pioneering work of Bogoliubov [5]. So far, condensation
has been proved only in a very special model [7] and the question of the validity
of Bogoliubov theory is largely open [9, 17]. All attempts to improve Bogoliubov
approximation encountered the difficulty of a singular perturbation theory, and
a full non perturbative construction for the bosonic model is far to be achieved,
in spite of recent contributions to this program [1, 2]. More results are available
if one consider scaling limits. In the mean field regime condensation has been
proved with an N independent bound on the number of particles orthogonal to
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the condensate (excitations) [16, 10, 8, 15]. This was also an important ingredient
to show the validity of Bogoliubov theory for mean-field bosons [16, 10, 11, 8].

A more accurate model for the strong an rare interactions among bosons in
cold atoms experiments is given by the Gross-Pitaevskii interaction VN (x) =
N2V (Nx). Correlations among the particles play a crucial role in the Gross-
Pitaevskii regime, and this makes its study particularly challenging.
In the following we consider systems of N bosons in the three dimensional box
Λ = [−1/2, 1/2]×3 with periodic boundary conditions, in the Gross-Pitaevskii
limit. The Hamilton operator, acting on the space L2

s(Λ
N ) consisting of L2(ΛN )

functions symmetric with respect to permutations of the particles, in second quan-
tized form is

(1) HN =
∑

p∈2πZ3

p2a∗pap +
κ

N

∑

p,q,r∈2πZ3

V̂ (r/N)a∗p+ra
∗
qapaq+r ,

where for every p ∈ 2πZ3, a∗p, ap are the usual Fock space operators, creating and
annihilating a particle with momentum p. A proof of condensation for the ground
state of (1) (actually for the more general situation where particles are trapped
by an external confining potential) was obtained in [12, 14], but with a bound on
the rate of the convergence which is far from optimal. In this talk I report recent
work in collaboration with C. Boccato, C. Brennecke and B. Schlein [3] where we
give a proof of condensation valid for sufficiently small values of κ ≥ 0, with a
presumably optimal bound on the rate of the convergence. We also show that
the ground state energy of (1) is 4πa0N up to an error of order one, improving
previous results obtained in [13, 14]. This is the content of the next theorem.

Theorem 1. Let V ∈ L3(R3) be non-negative, spherically symmetric and com-
pactly supported and assume the coupling constant κ ≥ 0 to be small enough. Let
ψN ∈ L2

s(Λ
N ) be a sequence with ‖ψN‖ = 1 and such that

(2) 〈ψN , HNψN 〉 ≤ 4πa0N +K

for some K > 0. Let γ
(1)
N = tr2,...,N |ψN 〉〈ψN | be the one-particle reduced density

associated with ψN . Then there exists a constant C > 0, depending on V and on
κ but independent of K such that

(3) N(1− 〈ϕ0, γ
(1)
N ϕ0〉) ≤ C(K + 1)

where ϕ0(x) = 1 for all x ∈ Λ. Furthermore, the ground state energy EN of (1) is
such that

|EN − 4ϕa0N | ≤ D

for a D > 0 independent of N (depending only on V and κ). Hence, the one-
particle reduced density associated with the ground state of (1) satisfies (3), with
K replaced by the constant D.

The proof of the theorem is based on the combination of techniques used in
[11] for the analysis of interacting bosons in the mean field regime with ideas
developed in [4, 6] to study the time-evolution in the Gross-Pitaevskii regime.
Following [11] we introduce a unitary map which factors out the Bose-Einstein
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condensate described by ϕ0 and it let us focus on its orthogonal excitations. We
observe that every normalized ψN ∈ L2

s(Λ
N ) can be represented uniquely as

(4) ψN =

N∑

n=0

α
(n)
N ⊗s ϕ⊗(N−n)

0

for a sequence α
(n)
N ∈ L2

⊥(Λ)
⊗sn. Here L2

⊥(Λ)
⊗sn denotes the symmetric tensor

product of n copies of the orthogonal complement L2
⊥(Λ) of ϕ0 in L2(Λ). We set

(5) UN : L2
s(Λ

N ) → F≤N
+ through UNψN = {α(0)

N , α
(1)
N , . . . , α

(N)
N } ,

where F≤N
+ =

⊕N
n=0 L

2
⊥(Λ)

⊗n denote the bosonic Fock space constructed over
L2
⊥(Λ), truncated to sectors with at mostN particles. The guiding idea for proving

Theorem 1 is to show that states in L2
s(Λ

N ) with small energy correspond to states

in F≤N
+ with a small number of excitations, this implying condensation. To this

purpose we define the excitation Hamiltonian

LN = UNHNU
∗
N : F≤N

+ → F≤N
+ .

In the same spirit of Bogoliubov approximation, conjugating HN with UN extracts
from the original interaction term in (1) contributions that are constant, quadratic
and cubic in the creation and annihilation operators. In the mean field regime the
expected value of the cubic and quartic terms in LN vanishes as N → ∞ on

excitation vectors of the form UψN ∈ F≤N
+ associated with low energy states

ψN ∈ L2
s(Λ

N ). On the contrary, in the Gross-Pitaevskii regime the cubic and
quartic terms are crucial to recover the correct ground state energy of the system.
This is due to the fact that states with a small energy in the Gross-Pitaevskii limit
are characterized by a short scale correlation structure. Motivated by [4, 6] we
approximate states with small energy in the Gross-Pitaevskii regime with vectors
of the form ψN = U∗

NTξN with ξN ∈ F≤N
+ and T an operator which implements

correlations among particles. More precisely,

T = exp
{1
2

∑

p∈Λ∗
+

ηp
[
b∗pb

∗
−p − bpb−p

]}

where b∗p = a∗p

√
N−N+

N = Ua∗p
a0√
N
U∗ can be interpreted as an operator exciting a

particle from the condensate to its orthogonal complement, and bp is its conjugate.
The choice ψN = U∗

NTξN for low energy states corresponds to the definition of a
new (renormalized) excitation Hamiltonian

GN = T ∗UNHNU
∗
NT : F≤N

+ → F≤N
+ .

While conjugation with T only create a finite number of excitations, it extracts
additional energy of order N from the quartic term. Choosing ηp related to the
solution of the scattering equation makes sure that the constant term in GN is
exactly 4πa0N and that all the other contributions can be bounded from below
by N+ up to errors of order one. As a consequence states of the form ψN =
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U∗
NTξN with small excitation energy correspond to excitation states ξN with small

expectation for the N+ operator and therefore they exhibits condensation.
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From infrared problems to non- commutative recurrence

Alessandro Pizzo

(joint work with Wojciech Dybalski)

Let HP,σ be the single-electron fiber Hamiltonian of the massless Nelson model of
total momentum P and infrared cut-off σ > 0. We establish detailed regularity
properties of the corresponding n-particle ground state wave functions fnP,σ as
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functions of P and σ. In particular, we show that

|∂Pj
fnP,σ(k1, . . . , kn)|, |∂Pi

∂Pj
fnP,σ(k1, . . . , kn)| ≤

1√
n!

(cλ0)
n

σδλ0

n∏

i=1

χ[σ,κ)(ki)

|ki|
3
2

,(1)

where c is a numerical constant, λ0 → δλ0 is a positive function of the maximal
admissible coupling constant which satisfies limλ0→0 δλ0 = 0 and χ[σ,κ) is the
(appproximate) characteristic function of the energy region between the infrared
cut-off σ and the ultraviolet cut-off κ. While the analysis of the first derivative
is relatively straightforward, the second derivative requires a new strategy. By
showing a non-commutative recurrence relation we derive a novel formula for fnP,σ
with improved infrared properties. In this representation ∂Pi

∂Pj
fnP,σ is amenable

to sharp estimates obtained by iterative analytic perturbation theory in a related
paper. The bounds stated above are instrumental for scattering theory of two
electrons in the Nelson model.

Excitation Spectra of Bose Gases

Benjamin Schlein

(joint work with Chiara Boccato, Serena Cenatiempo, Christian Brennecke)

We consider systems of N bosons moving in the three dimensional box Λ = [0; 1]×3

and interacting through a two-body potential with scattering length of the order
N−1 (Gross-Pitaevskii regime). The Hamilton operator acts on permutation sym-
metric functions in L2

s(Λ
N ). In momentum space, it can be written in second

quantized form as

(1) HN =
∑

p∈Λ∗

p2a∗pap +
κ

N

∑

p,q,r∈Λ∗

V̂ (r/N) a∗p+ra
∗
qaq+rap

where Λ∗ = 2πZ3, κ > 0 is a coupling constant, V̂ is the Fourier transform of a non-
negative, spherically symmetric and compactly supported potential V ∈ L3(R3),
and, for p ∈ Λ∗, a∗p and ap are the usual creation and annihilation operators.

We are interested in the low-energy spectrum of (1). From [7] it is known that
the ground state energy of (1) is such that

EN = 4πa0N + o (N)

in the limit of large N . Here a0 denotes the scattering length of the interaction
V , defined through the formula 8πa0 =

∫
V (x)f(x)dx, where f is the solution of

the zero-energy scattering equation

(2)

[
−∆+

1

2
V

]
f = 0

with the boundary condition f(x) → 1 as |x| → ∞. In [6], it was also shown
that the ground state of (1) exhibits complete Bose-Einstein condensation in the
zero-momentum mode ϕ0, defined by ϕ0(x) = 1 for all x ∈ Λ.
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To study the low-energy spectrum, it is useful to factor out the condensate
and to focus on its excitations. Following [5], we introduce the unitary map U :

L2
s(Λ

N ) → F≤N
+ =

⊕N
j=0 L

2
⊥ϕ0

(Λ)⊗sj requiring that Uψ = {α0, . . . , αN} if ψ ∈
L2
s(Λ

N ) can be written as

(3) ψ = α0ϕ
⊗N
0 + α1 ⊗s ϕ⊗(N−1)

0 + · · ·+ αN

with αj ∈ L2
⊥ϕ0

(Λ)⊗sj (L2
⊥ϕ0

(Λ) is the orthogonal complement of ϕ0).

We can define the excitation Hamiltonian LN = UHNU
∗ : F≤N

+ → F≤N
+ .

In the Gross-Pitaevskii regime, however, low-energy states develop a short scale
correlation structure that is not taken into account by U . For this reason, it is
convenient to conjugate LN with a generalized Bogoliubov transformation having
the form

(4) T = exp


1

2

∑

p∈Λ∗
+

ηp
[
b∗pb

∗
−p + h.c.

]



for appropriate coefficients ηp, related to the solution of (2). In (4), Λ∗
+ = Λ∗\{0}

and, for p ∈ Λ∗
+, we introduced the modified creation and annihilation operators

b∗p = a∗p
√
(N −N+)/N and bp =

√
(N −N+)/Nap. Compared with the stan-

dard creation and annihilation operators, they have the advantage of leaving the
excitation space F≤N

+ invariant.
For the renormalized excitation Hamiltonian GN = T ∗LNT we find

(5) GN = CN +QN + CN + VN + δN

where CN is a constant, QN is quadratic in creation and annihilation operators,

CN =
κ√
N

∑

p,q∈Λ∗
+:q 6=−p

V̂ (p/N)
[
b∗p+qb

∗
−p(bq cosh(ηq) + b∗−q sinh(ηq)) + h.c.

]

VN =
1

2N

∑

p,q,r

V̂ (r/N)a∗p+ra
∗
qaq+rap

and δN is an error term, negligible on low-energy states.
The expression (5) for the renormalized excitation Hamiltonian is not enough

to compute its low-energy spectrum, since cubic and quartic contributions are
still important in the limit of large N . To handle these terms, we conjugate GN
with another unitary map of the form S = exp(A), where now A is cubic in
(modified) creation and annihilation operators. With the appropriate choice of A,
we obtain a new renormalized excitation Hamiltonian MN = S∗GNS which can
be decomposed as

(6) MN = C̃N + Q̃N + VN + δ̃N

where C̃N and Q̃N are new constant and quadratic contributions and δ̃N is, like δN
above, negligible on low-energy states. Using the decomposition (6) it is enough to
diagonalize the quadratic part (with another Bogoliubov transformation) to read
off the low-energy spectrum of (1) (the quartic term VN is positive and, therefore,
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it is not very important for the analysis). The results are summarized in the next
theorem.

Theorem 1. Let V ∈ L3(R3) be non-negative, spherically symmetric and com-
pactly supported. Assume the coupling constant κ > 0 to be small enough. Then,
the ground state energy of the Hamilton operator (1) is given by

(7) EN = 4π(N−1)aN−1

2

∑

p∈Λ∗
+

[
p2 + 8πa0 −

√
|p|4 + 16πa0p2 −

(8πa0)
2

2p2

]
+o(1)

in the limit N → ∞. Here aN is defined through the convergent Born series

8πaN = κV̂ (0) +

∞∑

k=1

(−1)kκk+1

(2N)k

×
∑

p1,...,pk∈Λ∗
+

V̂ (p1/N)

p21

(
k−1∏

i=1

V̂ ((pi − pi+1)/N)

p2i+1

)
V̂ (pk/N)

(8)

Furthermore, the spectrum of HN − EN below a fixed threshold K > 0 consists of
eigenvalues given, in the limit N → ∞, by finite sums of the form

(9)
∑

p∈Λ∗
+

np
√

|p|4 + 16πa0p2 + o(1)

with np ∈ N for all p ∈ Λ∗
+.

We conclude with some remarks.

1) Comparing (8) with the Born series for the scattering length a0, we find

(10) |4πa0N − 4πaNN | ≤ C

uniformly in N . The emergence of aN instead of a0 in the ground state
energy (7) can be thought of as a finite size effect, due to the restriction
of the interacting particles to a box with volume one; by (10), this effect
generates an order one shift to the energy.

2) Eq. (9) for the excitation energies was already predicted in [2] by Bogoli-
ubov, who used the linearity of the dispersion E(p) = (|p|4 + 16πa0p

2)1/2

for small momenta to explain the emergence of superfluidity.
3) Theorem 1 extends previous results obtained in [9, 4, 5, 3, 8] for Bose

gases in the mean field limit. Also, it extends recent results in [1], where
similar expressions have been derived for intermediate regimes where the
interaction decays in momentum on the scale Nβ , for a 0 < β < 1 (the
mean field regime corresponds to β = 0, (1) to β = 1).

4) The idea of using a cubic phase has already been used in [10] to derive an
upper bound to the ground state energy for an extended Bose gas in the
thermodynamic limit.
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Asymptotic completeness in dissipative scattering theory

Jérémy Faupin

(joint work with Jürg Fröhlich)

In the quantum-mechanical scattering theory for dissipative quantum systems,
a typical example is a neutron interacting with a nucleus. When a neutron is
targeted onto a complex nucleus, it may, after interacting with it, be elastically
scattered off the nucleus or be absorbed by the nucleus, leading to the formation
of a compound nucleus [1].

In [11], Feshbach, Porter and Weisskopf proposed a model describing the in-
teraction of a neutron with a nucleus, allowing for the description of both elastic
scattering and the formation of a compound nucleus. The force exerted by the
nucleus on the neutron is modeled by a phenomenological potential of the form
V − iW , where V , W are real-valued and W ≥ 0. The nucleus is supposed to be
localized in space, which corresponds to the assumption that V and W are com-
pactly supported or decay rapidly at infinity. On L2(R3), the pseudo- Hamiltonian
for the neutron is given by

H = −∆+ V − iW.

Here, a linear operator H is called a pseudo-Hamiltonian if −iH generates a
strongly continuous contractive semigroup {e−itH}t≥0. For any initial state u0,
with ‖u0‖ = 1, the map t 7→ ‖e−itHu0‖ is decreasing on [0,∞), and the quantity

pabs := 1− limt→∞
∥∥e−itHu0

∥∥2 gives the probability of absorption of the neutron
by the nucleus, i.e., the probability of formation of a compound nucleus. The
probability that the neutron, initially in the state u0, eventually escapes from
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the nucleus is given by pscat := limt→∞ ‖e−itHu0‖2, and in the case where this
probability is strictly positive, one expects that there exists an (unnormalized)
scattering state u+ such that ‖u+‖2 = pscat and

lim
t→∞

∥∥e−itHu0 − eit∆u+
∥∥ = 0.

This model is referred to as the nuclear optical model, the term optical being
used in reference to the phenomenon in optics of refraction and absorption of light
waves by a medium. The model is empirical in that the form of the potentials V
and W are determined by optimizing the fit to experimental data. Usually, V and
W are decomposed into a sum of terms corresponding to the form of the expected
interaction potentials in different regions of physical space, and sometimes a spin-
orbit interaction term is included. We refer to e.g. [13] or [10] for a thorough
description. A large range of observed scattering data can then be predicted by
the model to a high precision.

Suppose that V and W belong to L∞
c (R3;R), i.e., that V and W are bounded

and compactly supported. This impies that H is a closed operator with domain
D(H) = H2(R3). Let σ(H) denote the spectrum of H . Since, for all u ∈ D(H),
Im(〈u,Hu〉) ≤ 0, H is a dissipative operator and σ(H) is contained in the lower
half-plane, {z ∈ C, Im(z) ≤ 0} (see, e.g., [7]). Because V and W are relatively
compact perturbations of −∆, the essential spectrum of H is equal to [0,∞).
Moreover, σ(H) \ [0,∞) consists of a finite number of eigenvalues with finite al-
gebraic multiplicities (see, e.g., [12, 18]). The eigenvalues λ of H are associated
to generalized eigenvectors, i.e., vectors u ∈ D(Hk) such that (H − λ)ku = 0 for
some integer k less or equal to the multiplicity of λ.

The adjoint operator H∗ is given by H∗ = −∆+V + iW . Let Hpp(H), respec-
tivelyHpp(H

∗), denote the vector space spanned by all the generalized eigenvectors
of H , respectively of H∗, corresponding to isolated eigenvalues. Let

Hd(H) :=
{
u ∈ H, lim

t→∞
‖e−itHu‖ = 0

}
.

Recall that, since V and W are bounded and compactly supported, resonances
of H can be defined as poles of a meromorphic extension of the map

{z ∈ C, Im(z) > 0} ∋ z 7→ (H − z2)−1 : L2
c(R

3) → L2
loc(R

3),

to the entire C, where L2
c(R

3) = {u ∈ L2(R3), u is compactly supported} and
L2
loc(R

3) = {u : R3 → C, u ∈ L2(K) for all compact set K ⊂ R3} (see, e.g., [6]).

Theorem 1 ([9]). Let H = −∆+V (x)−iW (x) on L2(R3) with W ≥ 0, W (x) > 0
on some non-trivial open set and V,W ∈ L∞

c (R3;R). Suppose that 0 is neither an
eigenvalue nor a resonance of HV = −∆+ V (x). Then

Hpp(H) = Hd(H).

Moreover, the wave operator W−(H,H0) := s-limt→∞ e−itHeitH0 , with H0 = −∆,
is asymptotically complete in the sense that

Ran(W−(H,H0)) = Hpp(H
∗)⊥
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if and only if H does not have real resonances. In this case, the restriction of H
to Hpp(H

∗)⊥ is similar to H0 and there exist m1 > 0 and m2 > 0 such that, for
all u ∈ Hpp(H

∗)⊥,

m1‖u‖ ≤
∥∥e−itHu

∥∥ ≤ m2‖u‖, t ∈ R.

SinceW (x) > 0 on some non-trivial open set, it follows from the unique contin-
uation principle (see, e.g., [18]) that H does not have real eigenvalues. Moreover,
it is likely that, generically, H does not have real resonances, implying that the
wave operator W−(H,H0) is generically asymptotically complete. However, for
any z0 > 0, it is not difficult to construct smooth compactly supported potentials
V and W such that −z0 is a resonance of H = −∆+V (x)− iW (x) (see [21]). The
previous theorem underlines the importance of real resonances in the scattering
theory of dissipative Schrödinger operators.

Our results generalize to abstract dissipative operators under suitable conditions
(see [9]). The notion of resonances is replaced by a notion of spectral singularities
related to that considered in [19] (see also [5]).

Mathematical scattering theory for dissipative operators on Hilbert spaces has
been considered by many authors. Works related to ours included those by Martin
[15], Davies [2, 3] and Neidhardt [17], for general abstract results, Mochizuki [16]
and Simon [20], for Schrödinger operators, and by Kato [14], Wang and Zhu [22],
and [8] for “weak coupling” results. The existence of the wave operators associated
to H and H0 is established under various conditions. But proving their asymptotic
completeness is a much more difficult problem which, to our knowledge, was solved
only in some particular cases; (see [8, 14, 22] for weak coupling results). Our main
results in [9] provide abstract conditions implying asymptotic completeness.

It should also be mentioned that scattering theory for dissipative operators on
Hilbert spaces has important applications in the scattering theory of Lindblad
master equations [4, 8, 9].
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Relation between the Resonance and Scattering Theory in the
massless Spin-Boson Model

Felix Hänle

(joint work with Miguel Ballesteros and Dirk-André Deckert)

Inspired by results in scattering theory of quantum mechanics, such as the one
of B. Simon [1] who derived an explicit formula for the scattering matrix and
showed that the integral kernel of the transition matrix element has a meromorphic
continuation to a certain subset of the complex plane with the only possible poles
at the positions of the resonances, we established a similar connection in a model of
quantum field theory, namely, the massless Spin-Boson model. Our work consists
of two parts: In the first part we construct the resonance and the ground state
of the model and in the second part we derive an explicit formula for the 2-body
transition matrix elements. This provides a precise relation between the resonances
and scattering theory and explains the well-known intensity profiles measured in
scattering experiments in a rigorous manner.
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1. Definition of the model

For sufficiently small coupling constants g > 0 , we define the Spin-Boson Hamil-
tonian as

H =

(
e1 0
0 e0

)
⊗ 1+ 1⊗

∫
d3k ω(k)a(k)∗a(k) + gσ1 ⊗ (a(f) + a(f)∗)

= H0 + gV(1)

where 0 ≤ e0 < e1 < ∞ denote the atomic energy levels, ω(k) = |k| is the dis-
persion relation of the massless scalar field, a, a∗ are the annihilation and creation
operators fulfilling the canonical commutation relations, σ1 is the first Pauli matrix
and the form factor is of the form

f : R3 \ {0} → R, k 7→ e−
k2

Λ2 |k|− 1
2+µ.(2)

The gaussian factor in the definition of f acts as an ultraviolet cut-off where Λ > 0
is the ultraviolet cut-off parameter and the fixed number µ > 0 is a regularization
of the infrared divergence of the Coulomb potential. Notice that H is densely
defined on the Hilbert space

H = C
2 ⊗F [h] ,(3)

where F [h] denotes the usual bosonic Fock space over h := L2(R3, d3k).
Notice that the interaction term of the Hamiltonian V is infinitesimal small with

respect to H0 on the domain D(H0), and hence, it follows by the Kato- Rellich
theorem that also H is self-adjoint on D(H) = D(H0).

2. Ground state and Resonance

In the following, we describe the construction of the resonance (and the ground
state). It is proven in [2] that the only eigenvalue in the spectrum of H is given by
λ0 := inf σ(H) and the rest of the spectrum is absolutely continuous. This implies
that there is no stable excited state in the Spin-Boson model. Heuristically, the
reason for this is that the atomic energy of the excited state e1 turns into a complex
eigenvalue λ1 in a suitable Banach space with strictly negative imaginary part, the
so- called resonance. The theory of resonances in models of quantum field theory
are well-established thanks to many authors (see [3] among many others). We
follow the approach described in [4]. We define a unitary transformation

uθ : h → h, ψ(k) → e−
3θ
2 ψ(e−θk)(4)

for θ ∈ R and its second quantization Uθ : F [h] → F [h]. This yields a family of
unitary equivalent Hamiltonians {Hθ}θ∈R which extends to an analytic family of
type A {Hθ}θ∈S where S is a suitable subset of the complex plane. For θ /∈ R

these Hamiltonians are not self-adjoint.
Usually, one would construct λ0 and λ1 via regular perturbation theory. How-

ever, this requires a spectral gap between e0, e1 and the rest of the spectrum of
Hθ which is not true considering a massless scalar field. This infrared problem
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can be controlled via the multiscale method described in [4]. We again define a
family of Hamiltonians

{
H(n),θ

}
n∈N

where n indicates an infrared cut-off by

H(n),θ =

(
e1 0
0 e0

)
⊗ 1+ 1⊗

∫

|k|≥ρn
d3k ωθ(k)a∗(k)a(k)

+ gσ1 ⊗
(
a(f (n),θ) + a(f (n),θ)∗

)
(5)

where f (n),θ = χ|·|≥ρnf
θ, ωθ(k) = e−θ|k| and ρn := ρ0ρ

n for suitable ρ0 > 0 and

0 < ρ < 1. Note that H(n),θ is densely defined on the Hilbert space

H(n) := K ⊗F [h(n)], h(n) := L2(R3 \ Bρn), Bρn :=
{
x ∈ R

3 : |x| < ρn
}
.(6)

We show in an inductive scheme that for each n ∈ N, H(n),θ has two isolated

eigenvalues λ
(n)
0 and λ

(n)
1 and we provide resolvent estimates in suitable regions

around these eigenvalues. Finally, this allows us to prove the following theorem.

Theorem 1 (Construction of the ground state and the resonance). Let g > 0, ν >

0 be sufficiently small and i ∈ {0, 1}. Then, the (complex) number λi := lim
n→∞

λ
(n)
i

is an eigenvalue of Hθ and its associated projection is given by Pi := lim
n→∞

P
(n)
i

which is rank one. Further, the mappings S ∋ θ 7→ λi ≡ λθi and S ∋ θ 7→ Pi ≡ P θi
are analytic for a certain set S ∈ C

−.

3. Scattering formula

A rigorous framework for scattering theory has already been established in various
quantum field theoretic models (see e.g. [5, 6, 7, 8]), and in particular, in the
massless in the Spin-Boson model (see [5, 9]). In order to define scattering matrix
elements, we define the asymptotic annihilation/ creation operators

a±(h)
# := s- lim

t→±∞
at(h)

# where at(h)
# := eitHe−itH0a(h)#eitH0e−itH(7)

for h ∈ C∞
0 (R3 \ {0}). The existence of these strong limits are well-known thanks

to the works mentioned above. For h, l ∈ C∞
0 (R3 \ {0}), we define the 2-body

scattering matrix element S(h, l) and the 2-body transition matrix element T (h, l)
as

S(h, l) := 〈a+(h)∗Ψλ0 , a−(l)
∗Ψλ0〉 , T (h, l) := S(h, l)− 〈h, l〉2 .(8)

A long computation using the Laplace formula of the time evolution together
with methods of complex analysis and the estimates obtained from the multiscale
analysis lead to our main theorem:

Theorem 2 (Scattering formula). Let g > 0 be sufficiently small and let 0 < ν <
ν < ν ′ for sufficiently small and fixed ν and ν ′. Then,

T (h, l) =

∫
d3kd3k′ T (k, k′)δ(|k| − |k′|)h(k)l(k′)(9)
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for h, l ∈ C∞
0 (R3 \ {0}) and

T (k, k′) = −2πig2f(k)f(k′)

(〈
σ1Ψ

θ
λ0
,

1

Hθ − λ0 − |k′|σ1Ψ
θ
λ0

〉

−
〈
σ1Ψ

θ
λ0
,

1

Hθ − λ0 − |k′|
σ1Ψ

θ
λ0

〉)
.(10)

Again by using the results from multiscale analysis, we prove the the following
result.

Corollary 3. Let g > 0 be sufficiently small and let 0 < ν < ν < ν ′ for sufficiently
small and fixed ν and ν ′. For sufficiently small β > 0, we define Mβ := (ℜλ1 −
λ0 − β,ℜλ1 − λ0 + β). Further, we set C := −2i

〈
σ1Ψ

θ
λ0
, P θ1 σ1Ψ

θ
λ0

〉
. Then,

T (k, k′) = −2πig2f(k)f(k′)

(
Cℑλ1

|λ1 − λ0 − |k′||2
+ gR(k′)

)
∀|k′| ∈ Mβ.(11)

Moreover, there is a constant C̃ > 0 such that

|R(k′)| ≤ C̃

|λ1 − λ0 − |k′|| ∀|k′| ∈ Mβ.(12)
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Quantum Mean Field Asymptotics and Multiscale Analysis

Sébastien Breteaux

(joint work with Zied Ammari and Francis Nier)

In this work, we study how multiscale analysis and quantum mean field asymp-
totics can be brought together. In particular we study when a sequence of one-
particle density matrices has a limit with two components: one classical and one
quantum. The introduction of “separating quantization for a family” provides a
simple criterion to check when those two types of limit are well separated.

We give examples of explicit computations of such limits, and how to check that
the separating assumption is satisfied.

Let us give some details on our motivations. Over the past three decades, mi-
crolocal and semiclassical analysis provided interesting mathematical techniques
for the study of quantum field theories and quantum many-body theory. In the
present work we follow this fruitful stream of ideas and study the mathematical
problem of defect of compactness for density matrices in the bosonic or fermionic
Fock spaces. Previously, in a series of papers initiated in [1], the authors have intro-
duced Wigner (or semiclassical) measures of density matrices in the bosonic Fock
space and showed that it is a very useful tool to study the mean-field approxima-
tion of Bose gases. Moreover, it was noticed that a certain defect of compactness
of density matrices is one of the difficulties that occurs in this context. So towards
a better understanding of these concentration and defect of compactness phenom-
ena we introduced here a multiscale analysis inspired by second microlocalization.
We believe that this approach will be of interest to the study of the mean-field
theory of Fermi and Bose gases. We indeed provide here some simple applications
to the Bose and Fermi free gases and leave more involved applications to further
investigations.

Let us briefly describe the main question we consider here. As mentioned be-
fore, in the analysis of general bosonic mean-field problems the following defect of
compactness problem arises. In fact, if ̺ε are density matrices in the (fermionic

or bosonic) Fock space and γ
(p)
ε are its p-particles reduced density matrices, one

may have

(1) lim
ε→0

Tr[γ(p)ε b̃] = Tr[γ
(p)
0 b̃]

for any p-particle compact observable b̃ , while it is not true for a general bounded

b̃ , e.g.

lim
ε→0

Tr[γ(p)ε ] > Tr[γ
(p)
0 ] .

This reflects the difference between the weak-∗ convergence of trace-class opera-
tors and convergence with respect to the trace norm. In the fermionic case, it
is even worse, because mean-field asymptotics cannot be described in terms of
finitely many quantum states and the right-hand side of (1) is usually 0 while

limε→0 Tr[γ
(p)
ε ] > 0 . From the analysis of finite dimensional partial differential
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equations, it is known that such defect of compactness can be localized geomet-
rically with accurate quantitative information by introducing scales and small
parameters within semiclassical techniques (e.g. [6, 7]). We are thus led to intro-
duce two small parameters ε > 0 for the mean-field asymptotics and h > 0 for the
semiclassical quantization of finite dimensional p-particles phase space. The small
parameter ε stands for 1/n , where n→ ∞ is the typical number of particles, while
h is the rescaled Planck constant measuring the proximity of quantum mechanics
to classical mechanics. Such scaling appears already in the mathematical physics
literature with a specific relation between h and ε depending in the considered
problem, see e.g. [5, 9, 8]. The combined analysis of this article is concerned with
the general situation when ε = ε(h) with limh→0 ε(h) = 0 . In order to keep track
of the information at the quantum level especially in the bosonic case we also
introduce finite dimensional multiscale observables in spirit of [2, 4, 3, 10].
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[3] C. Fermanian. Analyse à deux échelles d’une suite bornée de L2 sur une sous-variété du
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Stability of quantum many-body systems with point interactions

Robert Seiringer

(joint work with Thomas Moser)

Models of particles with point interactions are ubiquitously used in physics, as an
idealized description whenever the range of the interparticle interactions is much
shorter than other relevant length scales. They were introduced in the early days
of quantum mechanics as models of nuclear interactions, but have proved useful
in many other branches of physics. While the two-particle problem is mathemat-
ically completely understood [1], for more than two particles the existence of a
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self-adjoint Hamiltonian that is bounded from below and models pairwise point
interactions is a challenging open problem. It is known that such a Hamiltonian
can only exist for fermions with at most two components, due do the Thomas
effect [5].

We consider here the simplest many-body system with point interactions, con-
sisting of N (spinless) fermions of mass 1, interacting with another particle of mass
m. The interaction is characterized by a parameter α ∈ R, where −1/α is propor-
tional to the scattering length of the pair interaction. Formally, the Hamiltonian
of the system can be thought of as

(1) H = − 1

2m
∆x0 −

1

2

N∑

i=1

∆xi
+ γ

N∑

i=1

δ(x0 − xi)

where xi ∈ R3, and γ represents an infinitesimal coupling constant. Models of this
kind have been studied extensively in the literature (see, in particular, [3, 2]) and
can be defined via a suitable regularization procedure. More precisely, the formal
expression (1) can be given a meaning in terms of a suitable quadratic form Fα,
defined as follows.

Let D(Fα) be the form domain defined by

(2)
{
ψ = φ+ Gξ | φ ∈ H1(R3)⊗H1

as(R
3N ), ξ ∈ H1/2(R3)⊗H1/2

as (R3(N−1))
}

where G(k0, k1, . . . , kN ) =
(

1
2mk

2
0 +

1
2

∑N
i=1 k

2
i + µ

)−1

for some arbitrary µ > 0,

Gξ is short for the function with Fourier transform

(3) G(k0, k1, . . . , kN )

N∑

i=1

(−1)i+1ξ̂(k0 + ki, k1, . . . , ki−1, ki+1, . . . , kN )

and the subscript “as” stands for antisymmetric functions. Note that since Gξ 6∈
H1(R3(N+1)) for ξ 6= 0, the decomposition of ψ as ψ = φ+Gξ is unique. Moreover,
while φ depends on µ, ξ is independent of the choice of µ.

For ψ ∈ D(Fα), we have

Fα(ψ) =
〈
φ

∣∣∣∣∣−
1

2m
∆x0 −

1

2

N∑

i=1

∆xi
+ µ

∣∣∣∣∣φ
〉

− µ ‖ψ‖2L2(R3(N+1))

+N

(
2m

m+ 1
α ‖ξ‖2L2(R3N ) + Tdiag(ξ) + Toff(ξ)

)
(4)

where

Tdiag(ξ) :=
∫

R3N

|ξ̂(k0, k1, ~k)|2L(k0, k1, ~k) dk0 dk1 d~k

Toff(ξ) := (N − 1)

∫

R3(N+1)

ξ̂∗(k0 + s, t,~k)ξ̂(k0 + t, s,~k)G(k0, s, t,~k) dk0 ds dt d~k
(5)



Questions and Challenges in Quantum Electrodynamics and Applications 2579

and we used ~k = (k2, . . . , kN−1) for short. The function L is given by

(6) L(k0, k1, . . . , kN−1) := 2π2

(
2m

m+ 1

)3/2
(

k20
2(m+ 1)

+
1

2

N−1∑

i=1

k2i + µ

)1/2

We are interested in the question of stability. We shall show that there exists
a critical mass m∗, independent of N , such that stability holds for m > m∗.
The value of m∗ is determined by an optimization problem of a certain analytic
function. A numerical evaluation of the expression yields m∗ ≈ 0.36.

To state our main result, we define, for any m > 0,

Λ(m) = sup
s,K∈R3,Q>0

s2 +Q2

π2(1 +m)
ℓm(s,K,Q)−1/2

∫

R3

1

t2
ℓm(t,K,Q)−1/2

× |(s+AK)·(t+AK)|
[

(s+AK)2+(t+AK)2+
m

1+m (Q2+AK2)
]2

−
[

2
(1+m) (s+AK)·(t+AK)

]2 dt(7)

where A := (2 +m)−1 and

(8) ℓm(s,K,Q) :=

(
m

(m+ 1)2
(s+K)2 +

m

m+ 1
(s2 +Q2)

)1/2

Our main result is the following [4]:

Theorem 1. For any ξ ∈ H1/2(R3)⊗H
1/2
as (R3(N−1)), µ > 0 and N ≥ 2,

(9) Toff(ξ) ≥ −Λ(m)Tdiag(ξ)
In particular, if m is such that Λ(m) < 1, then Fα is closed and bounded from
below by

(10) Fα(ψ) ≥
{

0 for α ≥ 0

−
(

α
2π2(1−Λ(m))

)2
‖ψ‖2

L2(R3(N+1))
for α < 0

for all ψ ∈ D(Fα).
We note that as a closed and bounded from below quadratic form, Fα gives rise

to a unique self-adjoint operator for Λ(m) < 1. It is described in detail in [4].
The lower bound (10) is sharp as m → ∞. For α < 0, −(α/2π2)2 equals the

binding energy of the two-particle problem with point interactions. As m → ∞,
only one of the fermions can be bound, hence the ground state energy becomes
independent of N in that limit.

It turns out that Λ(m) < 1 ifm ≥ 0.36. It is in fact known that Fα is unbounded
from below [2, Thm. 2.2] for any N ≥ 2 for m ≤ 0.0735. In particular, the critical
mass for stability satisfies 0.0735 < m∗ < 0.36.
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Interacting models in perturbative AQFT

Kasia Rejzner

In my talk I gave an overview of perturbative algebraic quantum field theory
(pAQFT) and explained how to construct interacting models in this framework.
This approach is inspired by the axiomatic approach of Haag and Kastler [HK64],
but allows for using perturbative methods to construct models that describe phys-
ically relevant systems, e.g. QED. Recently, these methods were also applied to
integrable models (sine Gordon in 2D), where the perturbative series defining the
formal S-matrix was shown to converge.

For more details about the pAQFT framework, see [FR15] and a recent book
[Rej16].

1. Motivation

The QED Lagrangian L = − 1
4FµνF

µν + ψ̄(iγµDµ−m)ψ is not quadratic in fields,
so in order to quantize the corresponding field theory, practitioners of QFT use
perturbative methods. Concrete computations are performed with the help of
Feynman diagrams (to control the combinatorics) and the resulting quantities are
formal power series in ~ and the coupling constant. The pAQFT approach allows
to put these formal calculations into a mathematically rigorous framework.

2. AQFT

The pAQFT framework is inspired by the Haag-Kastler axioms [HK64]. Here I
present the “lite version” of these axioms, adapted to the context of pAQFT. Let
O ⊂ M be a bounded, causally convex region of Minkowski spacetime. We assign
to it A(O), an involutive topological algebra over C[[~]] (or more restrictively, a
C∗-algebra, as in the original framework). We require:

(1) Isotony: if O1 ⊂ O2, then A(O1) ⊂ A(O2).
(2) Causality: if O1 and O2 are spacelike separated, then [A(O1),A(O2)] =

{0}.
(3) Time-slice axiom: If N contains a Cauchy surface for O, then A(N ) ∼=

A(O).
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(4) Covariance: ∀L ∈ P elements of the connected component of the Poinca-
ré group, there exist αO

L : A(O) → A(LO), satisfying natural compatibility
conditions.

3. Interacting local nets

A convenient method for constructing nets of algebras satisfying axioms from
section 2 was presented in [FR15]. Let Dn = C∞

c (M,Rn) be the space of test
functions. Assume we are given a family {S(f), f ∈ Dn} such that:

• Causal factorisation: S(f + g + h) = S(f + g)S(g)−1S(g + h), if the
past of supph has empty intersection with supp f .

• Translations act by αx(S(f)) = S(fx), where fx(y) = f(y − x).

Given a family {S(f)}f∈Dn as above, we define the free local net A0, by assign-
ing to O the C∗-algebra A0(O) generated by the unitaries S(f) with supp f ⊂ O.
Isotony and Causality hold by construction (causality follows from the causal
factorisation property). In order to get the Time-slice axiom we need to take
the quotient by an appropriate ideal.

The same family {S(f)}f∈Dn can be used to define the interacting local net. To
this end, we define the relative S-matrix:

(1) f 7→ Sg(f) := S(g)−1S(g + f)

for a given g ∈ Dn. Relative S-matrices have following important properties:

(1) Sg satisfies causal factorisation property.
(2) if supp(g − g′) has an empty intersection with the past of supp f , then

Sg(f) = Sg′ (f).
(3) if supp(g − g′) has an empty intersection with the future of supp f , then

Sg(f) = AdU (Sg′ (f)), where U = Sg′(g − g′)−1.

The interacting local net Ag is defined by assigning to O the C∗-algebra Ag(O)
generated by the unitaries Sg(f) with supp f ⊂ O. Properties (2) and (3) guaran-
tee that changing g outside O leads to unitary equivalent nets and one can perform
the algebraic adiabatic limit (see [FR15] for details).

4. Constructing examples

Start with E := Γ(E → M), the space of classical (off-shell) field configurations.
The free classical theory is defined by the equation of motion Pϕ = 0, where ϕ ∈ E
and P is a normally hyperbolic operator. Let V (f)[ϕ] =

∫
Vx[ϕ]f(x)d

4x, where
Vx[ϕ] is a local Lagrangian density, e.g. Vx[ϕ] = ϕ4(x) and f is a test function.
Define

(2) S(f) := e
i
~
λV (f)

T =
∞∑

n=0

(
iλ

~

)n
Tn(V (f)⊗n) ,

where Tns are called time-ordered products. These are multilinear maps on Floc,
the space of local functionals on E . To construct Tns, one uses Epstein-Glaser
renormalization [EG73].
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Take V (f1), . . . , V (fn) such that fi, i = 1, . . . , n have pairwise disjoint supports.
Define

Tn(V (f1)⊗ · · · ⊗ V (fn))(ϕ)

= e
~
∑

1≤i<j≤n

〈

∆F ,
δ2

δϕiδϕj

〉

V (f1)[ϕ1] . . . V (fn)[ϕn]
∣∣
ϕ1=···=ϕn=ϕ

,

where ∆F is the Feynman propagator. Renormalization is formulated as the prob-
lem of extending this definition of time-ordered products to fs with overlapping
supports. The solution for scalar fields has been provided in [EG73] and later gen-
eralized in [Sch95, DF98, Hol08, FR12] to included QED and Yang-Mills theories.
As a result of this construction, one obtains a family of unitaries satisfying the
causal factorisation property, so the results of section 3 apply.

Recently, in [BR17], it was shown that the formal S-matrix (2) in the sine
Gordon model in 2 dimensions converges in the low coupling regime. This opens
up perspectives for non-perturbative results in pAQFT.
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Persistence of Fermionic Exponential Decay and Spectral Gaps

Manfred Salmhofer

(joint work with Wojciech De Roeck)

The existence of a gap between the ground state energy and the energies of excited
states of a quantum Hamiltonian has many important consequences, for instance
the quantization of electric conductance [3, 5, 7]. Our work [4] addresses the
existence of such a gap in interacting many-body systems.

We consider a class of quantum many-body systems of identical fermions on
a space that is a finite set (e.g. a finite lattice) Λ, with a Hamiltonian H =
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H0 + HI , where H0 is quasifree and self-adjoint, and HI is given by a general
multi-body interaction V . We prove that, if H0 has a fermionic covariance that
decays exponentially in time, the truncated expectation values for H also decay
exponentially in time, provided that V is small and falls off fast enough in space
to be summable. We use this to show the persistence of the spectral gap under
the interaction [4], uniformly in |Λ|. A different proof of a gap has recently been
put forward in [6].

Our proof uses methods from constructive quantum field theory, namely a suit-
able Grassmann integral representation for expectation values, tree-determinant
formulas that regroup perturbation expansions for fermionic systems, and deter-
minant bounds. It is based on the results of [8, 9], where convergence of fermionic
perturbation theory was proven in a general setting, and of [10], where ℓ1-clustering
of truncated correlation functions of field operators was proven without multiscale
analysis. The work reported here focuses on showing an exponential decay in
Euclidian time and inferring from it the persistence of the gap. In the following,
we describe the main statement and some essential ingredients of the proof of
exponential decay informally.

Within the operator-algebraic setting of statistical mechanics [1], we consider
the truncated correlation function 〈A(τ);B〉βH = 〈A(τ)B〉βH − 〈A〉βH 〈B〉βH ,
where A and B are observables (linear operators on the fermionic Fock space F),
A(τ) = eτH Ae−τH is the Euclidian-time-evolved version of A, and 〈A〉βH =

1
ZβH

TrF
(
e−βH A

)
is the quantum statistical expectation value for inverse tem-

perature β > 0, with the partition function ZβH defined such that 〈1〉βH = 1.
H0 is the second quantization of a one-particle Hamiltonian H0 on ℓ2(Λ), which

is given by its matrix representation h0(x, x
′). By self- adjointness, h0(x

′, x) =

h0(x, x′). We do not need to assume translation invariance. The fermionic co-
variance is the time-ordered truncated two-point correlation for the system of free
particles governed by H0. It is given explicitly in terms of H0 as C(τ, x; τ ′, x′) =
C(τ − τ ′,H0)x,x′ , where

C(t,H0) = 1t≤0 (1 + eβH0)−1 e−tH0 − 1t>0 (1 + e−βH0)−1 e−tH0

We first prove that, if h0(x, x
′) decays like a sufficiently high power of the distance

between x and x′ on Λ, and if H0 has a gap, there is ρ > 0 such that

αρ = sup
τ,x

∑

x′

∫ β

−β
dτ ′ eρd(τ,τ

′) max{|C(τ, x; τ ′, x′)|, |C(τ ′, x′; τ, x)|}

is bounded uniformly in |Λ|. Here d(τ, τ ′) is |τ − τ ′| modulo β. During discussions
at the workshop in Oberwolfach, Jean-Bernard Bru and Walter de Siqueira Pedra
informed us that a similar decay estimate is also in their recent preprint [11].

An important further step in the convergence proof of fermionic perturbation
theory is to bound determinants of n×n matrices constructed from the fermionic
covariances, for arbitrary n, by δ2n. The constant δ is called the determinant
constant of the fermionic covariance. It was introduced and shown to be finite for
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a general class of translation-invariant H0 in [8]. In [4] we show that a simple gen-
eralization of the argument in [8] extends this bound to the covariance associated
to an arbitrary self-adjoint H0. Another proof of finiteness in this general setting,
which uses noncommutative Hölder inequalities and yields optimal constants in
the bounds, was given in [2].

Let V be an interaction, i.e. a sequence of functions vm̄,m for m̄ ≥ 0 and
m ≥ 0 that are antisymmetric with respect to permutations of their arguments.
The contribution of vm̄,m(x̄1, . . . , x̄m̄;x1, . . . , xm) to HI corresponds to a process
where m particles at positions x1, . . . , xm are removed and m̄ particles at positions
x̄1, . . . , x̄m̄ are created. A two-body potential corresponds to a special case where
m̄ = m = 2. For h > 0, the norm of V is defined as

‖V ‖h =

∞∑

m̄,m=0

|vm̄,m| hm̄+m

where |vm̄,m| is the maximum of

sup
x̄1

∑

x̄2,...,xm

|vm̄,m(x̄1, . . . , x̄m̄;x1, . . . , xm)|

and

sup
xm

∑

x̄1,...,xm−1

|vm̄,m(x̄1, . . . , x̄m̄;x1, . . . , xm)|

Our result about exponential decay is that if the fermionic covariance to H0 has
determinant constant δ, and if αρ < ∞ for some ρ > 0, then for all V with
αρ‖V ‖1+δ < 1,

|〈A(τ);B〉β(H0+HI )| ≤ K(A,B, αρ, ‖V ‖1+δ) e−ρd(τ,0)

where K is given explicitly in [4]. Because the conditions only involve αρ and δ,
this bound holds for a very general class of fermionic models, which do not need
to be translation- invariant, and the exponential decay in time does not require a
hypothesis of exponential falloff of the interaction function in the spatial variables.
It suffices to have spatial summability uniformly in |Λ|, and a spectral gap of H0.
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The causal action principle and fermionic loop diagrams

Felix Finster

The theory of causal fermion systems is an approach to describe fundamental
physics. Giving quantum mechanics, general relativity and quantum field theory
as limiting cases, it is a candidate for a unified physical theory (see [3] or the survey
article [7]). From the mathematical perspective, causal fermion systems provide a
general framework for describing and analyzing non-smooth geometries (see [5, 6]
or the introductions in [4] and [3, Section 1.1.]). The dynamics is determined by
a novel variational principle, called the causal action principle (see [8] and the
references therein). As is worked out in the monograph [3], the causal action
principle gives rise to the interactions of the standard model plus gravity on the
level of second-quantized fermionic fields coupled to classical bosonic fields. The
connection to second-quantized bosonic fields is made in [1, 2].

In the talk, I focus on a special case of the causal action principle where
spinorial wave functions are varied in Minkowski space M. Thus for given func-
tions ψ1, . . . , ψf ∈ C0(M,C4), we introduce

P (x, y) = −
f∑

a=1

ψa(x)ψa(y) kernel of the fermionic projector

Axy = P (x, y)P (y, x) closed chain

λxy1 , . . . , λxy4 ∈ C eigenvalues of the closed chain

L(x, y) = 1

4

4∑

i,j=1

(
|λxyi | − |λxyj |

)2
Lagrangian ,

where ψa := ψ†
aγ

0 is the usual adjoint spinor. Then the causal action principle is
to minimize the

action S =

∫

Λ

d4x

∫

Λ

d4yL(x, y) + κ

∫

Λ

d4x

∫

Λ

d4y

4∑

i=1

|λxyi |2

under variations of the functions ψ1, . . . , ψf ∈ C0(M,C4), respecting the

trace constraint

∫

Λ

TrC4

(
P (x, x)

)
d4x = const .
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Here Λ is a compact subset of Minkowski space, and κ > 0 is the Lagrange multi-
plier of the so-called boundedness constraint. The corresponding Euler-Lagrange
equations are mentioned. The limiting cases Λ → M (removing the infrared regu-
larization) as well as f → ∞, κ ց 0 (removing the ultraviolet regularization) are
discussed.

It is described how to compute the causal action for a regularized Dirac sea
configuration in the vacuum and in the presence of an external potential. The
connection to the light-cone expansion, the Hadamard expansion and the point-
splitting renormalization method is made. It is explained why the usual quadratic
and linear divergences of the vacuum polarization diagrams drop out of the causal
action. I also outline how the remaining logarithmic pole is removed by the mi-
crolocal chiral transformation. An outlook on the coupled Dirac-Maxwell equa-
tions and second-quantized bosonic fields is given.
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The Ground State Energy of Heavy Atoms

Heinz Siedentop

We reviewed results about the ground state of heavy atoms starting from the basic
physical work of Thomas [5] and Fermi [1, 2] and the corresponding proof by Lieb
and Simon [4].

We need some notation to formulate our result. We write Dc,Z := cp ·α+c2β−
c2−Z/|x| for the Coulomb-Dirac operator and set H := [χ(−c2,∞)(Dc,Z)](L

2(R3 :

C4).
We now define the basic object, the relativistic Hamiltonian of an atom of

nuclear charge Z and N electrons in the Furry picture: Assume Z/c < 1 and
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define FN,Z to be the self-adjoint operator associated with the form

E : S(R3N : C4N ) ∩
N∧

n=1

H → R

ψ 7→ (ψ, (

N∑

n=1

Dc,Zn
+

∑

0≤m<n≤N
|xm − xn|−1)ψ).

We write E(Z) for the infimum of the spectrum of FZ,Z and −eTF for the Thomas-
Fermi energy of hydrogen. Furthermore we define the Scott function: For γ ∈ (0, 1)
write

λS,Hn :n-th eigenvalue of
(
p2/2− |x|−1

)
⊗ 1C2

λD,Hn :n-th eigenvalue of α · p+ β − 1− γ/|x|

sD(γ) :=
1

γ2

∞∑

n=1

(
λS,Hn − λD,Hn

)

for γ ∈ (0, 1).
Our first result is on the energy:

Theorem 1 (Handrek and Siedentop [3]). Fix γ : Z/c ∈ (0, 1). Then, as Z → ∞,

(1) E(Z) = −eTFZ
7/3 +

(
1
2 − sD(γ)

)
Z2 + o(Z2).

For the second result we need the Coulomb scalar product

D(f, g) :=
1

2

∫

R3

dx

∫

R3

dy
f(x)g(y)

|x− y| .

Furthermore we write ρTF for the Thomas-Fermi density of hydrogen. Then,
our second result reads:

Theorem 2 (Merz and Siedentop). Assume ψZ a ground state of FZ,Z , ρ̃ψZ the
associated ground state density, and rescale

ρZ(x) := Z−2ρ̃ψz (Z−1/3x)

Then

lim
Z→∞

D[ρ− ρTF] = 0.
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Non-equilibrium almost-stationary states for interacting fermions on a
lattice

Stefan Teufel

Consider a family of Hamiltonians HΛ
0 for systems of interacting fermions on fi-

nite subsets Λ ⊂ Zd of the lattice Zd that has a spectral gap above the ground
state uniformly in the system size |Λ|. We show in [T] that for a large class of
perturbations V there exist non-equilibrium almost-stationary states (NEASS) for
the perturbed Hamiltonian H = H0+Vε, even if the perturbation closes the spec-
tral gap. Almost-stationarity refers to the property that expectations of intensive
quantities in these states are constant over long (super- polynomial in 1

ε ) times up
to small (super-polynomial in ε) errors, uniformly in the size |Λ| of the system.

These NEASS are connected to the ground state of the unperturbed Hamil-
tonian by local unitary transformations. The class of allowed perturbations Vε
includes slowly varying potentials and small local Hamiltonians. Both types of
perturbations need not be small in norm. Slowly varying potentials typically close
the gap of H0, but leave a local gap structure intact.

We also prove an adiabatic-type theorem for time-dependent NEASS associated
with time-dependent perturbations. Based on this theorem, we show that when
starting from the ground state of the unperturbed gapped system and then adia-
batically turning on the perturbation (which might close the gap), then the final
state of the corresponding Schrödinger evolution is given by a NEASS up to errors
that are asymptotically smaller than any power of the adiabatic parameter. The
NEASS that is finally reached is independent of the precise form of the switching
function.

For non-interacting systems, the formalism of space-adiabatic perturbation the-
ory allows to prove similar results, cf. [PST]. The results described here could thus
be viewed as a generalisation of space-adiabatic perturbation theory to interacting
systems, although the mathematical techniques are very different.

As mentioned before, we also prove an adiabatic-type theorem for time-depend-
ent Hamiltonians H(t) and arbitrary initial states supported in super-adiabatic
subspaces associated with gapped parts of the spectrum. It was shown in [BdRF]
and elaborated on in [MT] that, as long asH(t) has a gapped part of the spectrum,
the time-evolution of pure states supported initially in the corresponding spectral
subspace follows adiabatically this time-dependent spectral subspace with error
estimates that are uniform in the system size. Here we show much more. With a
gapped part of the spectrum of the unperturbed Hamiltonian H0(t) we associate a
super-adiabatic subspace (a time-dependent generalisation of the NEASS) of the
perturbed Hamiltonian H(t) (which no longer needs to be gapped) and show that
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arbitrary states supported initially in the super-adiabatic subspace remain, under
the adiabatic time-evolution, within the time-dependent super-adiabatic subspace
with error estimates that are uniform in the system size. If the underlying spectral
subspace of H0(t) is more than one-dimensional and if the initial state is not just
the projection onto the total super-adiabatic subspace, then the dynamics within
the super-adiabatic subspace are typically non-trivial and generated by an effective
Hamiltonian.

Our proofs heavily use and partly extend a technical machinery developed rather
recently. This includes Lieb-Robinson bounds for interacting fermions [NSY, BD],
the so called spectral-flow or quasi-adiabatic evolution [HW, BMNS], an adia-
batic theorem for local observables in interacting lattice systems [BdRF], and its
extension to intensive quantities and super-adiabatic tracking in [MT].
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Quantum backflow in scattering situations (Young Researcher Session)

Daniela Cadamuro

In classical (statistical) mechanics, point masses travel in the same direction as
their momentum. For a particle moving without friction in one direction, its initial
state is a probability distribution σ(x, p), where x, p are position and momentum
of the particle, with time evolution σt(x, p) = σ(x−pt, p). The probability density
ρt(x) =

∫
dp σt(x, p) to find the particle at a point x and the corresponding

probability flux jt(x) =
∫
dp p σt(x, p) fulfill the continuity equation, implying

(∗) d

dt

∫ ∞

0

dx ρt(x) = jt(0).
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We note that if σt(x, p) = 0 for p < 0 and all x, then jt ≥ 0, i.e., the right hand
side of (∗) is non-negative. Therefore, the probability of finding the particle on the
right of 0 is increasing in time, while it is decreasing on the left. In other words,
if the particle has positive momentum (with probability 1) then the probability
distribution moves to the right.

For a quantum mechanical particle the situation is different. Suppose that its
state ϕ is chosen so that it still has momentum p > 0 with probability 1. Can
we still expect 〈J(x)〉ϕ ≥ 0 (where 〈J(x)〉ϕ denotes the expectation value of the
probability flux operator J(x) in the state ϕ)? In some examples for ϕ, exactly
this does not happen, which is called “quantum backflow”. The question is how
large this effect is, and whether positivity is retained in some approximate sense.

As a first example, we consider a free particle (without external forces) moving
in one dimension, whose state is a vector in the Hilbert space H = L2(R, dp) with
support in R+ (positive momentum with probability 1). Its time evolution is given

by ϕt(p) = exp(−i p22 t)ϕ(p) (~ = m = 1). The probability density and probability
flux for the position of the particle are

〈ρ(x)〉ϕ =

∫
dp dq ϕ(p)

1

2π
ei(q−p)xϕ(q),

〈J(x)〉ϕ =

∫
dp dq ϕ(q)

p+ q

4π
ei(q−p)xϕ(q)

and the continuity equation still holds. We can find states with positive mo-
mentum such that the expectation value of the flux operator at a given point
x is negative, see [1] for explicit examples. Hence, the probability of finding
the particle is increasing in time to the left of x, and decreasing to the right
(“backflow”). To compute lower bounds on the flux, some care is needed. As the
expression above diverges for large momenta p, q, it makes sense only as a qua-
dratic form. We therefore consider “smooth averages” over a small space interval:
〈Jf 〉ϕ =

∫
dx f(x)〈J(x)〉ϕ with f ∈ S(R), f ≥ 0.

We now ask about the spectrum of Jf restricted to wave functions of positive
momentum ϕ = E+ϕ (where E+ is the projector onto positive momenta). The
following result is due to Eveson, Fewster and Verch [1]:

Theorem 1. For every f ∈ S(R), f ≥ 0, there exists cf ≥ 0 such that 〈Jf 〉ϕ ≥
−cf‖ϕ‖2 whenever ϕ has compact support in R+.

This “quantum inequality” shows that the backflow effect is limited. However,
the result does not take into account any influence from external potentials. Our
goal is to prove that quantum backflow is a general feature of quantum mechanical
particles, even if they are not free. Can one expect such lower bounds in the
presence of a potential? There may be a reflected wave, which behaves (for large
times) like a free particle moving to the left – is this an obstacle to bounds?

We consider a scattering potential V and the Hamiltonian H = 1
2P

2 + V (X).
The time evolution is now more intricate since it is not just a multiplication op-
erator. However, for suitable potentials, the wavefunctions have a well-known
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asymptotics at t → ±∞ (incoming/outgoing waves), which is an essential ingre-
dient of scattering theory. This is of importance since a prima facie problem to
the extension of the result [1] in the interacting situation is to understand what a
particle “moving to the right” is. In fact, since [E+, H ] 6= 0, the space of “positive
momentum wavefunctions” is not preserved under time evolution.

A replacement for this notion is provided in scattering theory by considering
asymptotic (incoming) states with positive momentum. The Møller operator Ωin

maps “interacting” states to “incoming” states. Using this, the question we ask is
whether E+ΩinJfΩ

∗
inE+ is bounded below. Our main result is [2]:

Theorem 2. Suppose that
∫
dx (1 + |x|)|V (x)| < ∞. Then, for any f ∈ S(R),

f ≥ 0, there exists a constant cV,f > 0 such that

E+ΩinJfΩ
∗
inE+ ≥ −cV,f · 111.

This applies to all usual short range potentials; examples are the square well
potential (attractive or repulsive), the Pöschl-Teller type transparent potentials,
and any measurable potential decaying like |x|−α, α > 2. A similar result holds
for a delta potential (attractive or repulsive). This indicates that reflection does
not present a problem to existence of lower bounds.

This result could potentially be generalized to other, physically interesting situa-
tions, including particles with spin or other degrees of freedom, several particles, 2-
or 3-dimensional scattering. One could also investigate possible generalizations of
the current J , for example consider the probability flux of only the “spin up” com-
ponent in the case of a spin-1/2 particle, or identify a suitable J in a 3-dimensional
situation. Another possible direction for generalization is to consider PDEs other
than the Schrödinger equation, or more generally, recasting the theorem in the
framework of abstract scattering theory. Finally, we remark that backflow may
be one of the quantum mechanical effects directly verifiable in experiments, as an
experiment to measure it has been proposed [3]. Moreover, it has relations to other
“quantum inequalities” appearing in quantum field theory in connection with the
energy density, which are relevant for the stability of spacetime; see, e.g., [4, 5].
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nales Henri Poincaré 6(1) (2005), 1–30.

[2] H. Bostelmann, D. Cadamuro and G. Lechner, Quantum backflow and scattering,
Phys. Rev. A 96(1) (2017), 012112.

[3] M. Palmero, E. Torrontegui, M. Modugno and J. G. Muga, Detecting quantum backflow by
the density of a Bose-Einstein Condensate, Phys. Rev. A 87(5) (2013), 053618.

[4] C. J. Fewster, Lectures on quantum energy inequalities, arXiv:1208.5399 (2012).
[5] H. Bostelmann and D. Cadamuro, Negative energy densities in integrable quantum field

theories at one-particle level, Phys. Rev. D 93(6) (2016), 065001.



2592 Oberwolfach Report 41/2017

Non-Locality of the Vacuum and Scattering of Atoms in Relativistic
QED (Young Researcher Session)

Maximilian Duell

The particle spectrum of Quantum Electrodynamics (QED) combines massless
particle excitations (photons) and massive particles (non-charged atoms or charged
electrons). Due to infrared problems, long-range forces and non-localizability of
charges, these cases are understood to be of increasing difficulty and require dis-
tinct methods.1

Our contribution addresses the scattering theory of massive Wigner particles,
such as hydrogen atoms from the point of view of relativistic QED. In QED-like
settings conventional Haag-Ruelle theory does not apply due to its dependence on
isolated mass shells. So far all available results for massive particles are based on
the spectral condition of Herbst [2]: suitable local operators A ∈ A(O) yield a
one-particle vector Ψ1 = E(Hm)AΩ 6= 0 and satisfy

(H) ‖E(Hδ
m)AΩ−Ψ1‖ ≤ Cδǫ

for some C, ǫ > 0 and all sufficiently small δ-neighbourhoods of the mass shell Hm.
Here the local operator A acts on the vacuum vector Ω and E = E(H,P) are
the energy-momentum spectral projections. Condition (H) is commonly justified
heuristically by hinting at stability requirements or absence of long-range forces,
but so far there are no rigorously established links between such physical ideas
and (H).

In [1] we provide technical improvements leading to an alternative Haag-Ruelle
construction for embedded mass shells based on a complementary condition with
uniformly localized operator families Aβ ∈ A(O), where β > 0 parametrizes the
one-particle approximation error

‖AβΩ−Ψ1‖ ≤ β,(RS1)

‖Aβ‖ ≤ β−γ , (for some γ > 0).(RS2)

The Reeh-Schlieder Theorem implies the existence of operator families (Aβ)β>0

satisfying (RS1). As the localization region O is fixed and does not need to be
enlarged as β → 0, this may be regarded as exploiting non-local correlations in
the vacuum state Ω for the construction of scattering states. In combination with
the norm growth assumption (RS2), convergence and Fock structure of scattering
states was established in [1]. In fact (H) implies a weakened version of (RS1),
(RS2), but in general the two sets of conditions seem to be independent, and (RS2)
does not appear to be a consequence of general assumptions. Further technical
progress should allow to weaken conditions (RS1), (RS2), and we expect that
our construction will also give new insights for the scattering-theoretic analysis of
non-relativistic Quantum Electrodynamics. (Joint work with W. Dybalski).

1A recent discussion of scattering of electrical charges and the more severe infrared problems
expected for this case is given in [3].
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Derivation of the Maxwell-Schrödinger equations from the Pauli-Fierz
Hamiltonian (Young Researcher Session)

Nikolai Leopold

(joint work with Peter Pickl)

The corpuscular character of light is in a lot of situations subordinate and the
second-quantized electromagnetic field is described by a classical field satisfying
Maxwell’s equations. In this talk, we justify such an approximation in the mean
field regime and derive the Maxwell-Schrödinger equations from the spinless Pauli-
Fierz Hamiltonian. We consider a system, modeled by a wave function ΨN,t ∈
L2(R3N ) ⊗ F , of N identical charged bosons in interaction with a photon field.
Here, F denotes the bosonic Fock space over L2(R3)⊗ C2. The time evolution of
ΨN,t is governed by the Schrödinger equation

i∂tΨN,t = HNΨN,t,(1)

where

HN =
N∑

j=1

(
−i∇j −

Âκ(xj)√
N

)2

+
1

N

∑

1≤j<k≤N
v(xj − xk) +Hf(2)

is the Pauli-Fierz Hamiltonian. Hf denotes the free Hamiltonian of the photon

field, Âκ the quantized transverse vector potential and v causes a direct interac-
tion between the charged particles. The mean field scaling 1/N in front of the

interaction potential and the scaling 1/
√
N in front of the vector potential ensure

that the kinetic and potential energy of HN are of the same order. It is known
that coherent states of photons behave like a classical field. However, it is unclear
which initial configurations of charges will lead to the creation of a coherent state.
We are interested in systems with many weakly correlated charges and consider
initial conditions of the product form ϕ⊗N

0 ⊗W (
√
Nα0)Ω, where Ω denotes the

vacuum in F and W is the usual Weyl operator creating coherent states of pho-
tons. Due to the interaction correlations take place and the time evolved state
will no longer have an exact product structure. In general, the photon state does
not need to be coherent and behave like a classical field at later times. However,
for large N we are able to show that the time evolved state can be approximated
in trace norm distance of reduced density matrices by a state of product form
ϕ⊗N
t ⊗W (

√
Nαt)Ω, where
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|k|1/2αt(k, λ) =
1√
2
ǫλ(k) · (|k|FT [A](k, t)− iFT [E](k, t))(3)

and

(ϕt,A(t),E(t))(4)

solve the Maxwell-Schrödinger system1





i∂tϕt(x) =
(
(−i∇− (κ ∗A)(x, t))2 + (v ∗ |ϕt|2)(x)

)
ϕt(x),

∇ ·A(x, t) = 0,

∂tA(x, t) = −E(x, t),

∂tE(x, t) = (−∆A) (x, t)−
(
1−∇div∆−1

)
(κ ∗ jt) (x),

jt(x) = 2
(
ℑ(ϕ∗

t∇ϕt)(x) − |ϕt|2(x)(κ ∗A)(x, t)
)
,

(5)

with initial datum



ϕ0,

A(x, 0) = (2π)−3/2
∑

λ=1,2

∫
d3k 1√

2|k|
ǫλ(k)

(
eikxα0(k, λ) + e−ikxα∗

0(k, λ)
)
,

E(x, 0) = (2π)−3/2
∑
λ=1,2

∫
d3k

√
|k|
2 ǫλ(k)i

(
eikxα0(k, λ) − e−ikxα∗

0(k, λ)
)
.

This system of equations models the coupling of a non-relativistic particle to the
classical electromagnetic field. The precise result is given in [Theorem I.1., [1]].
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