
Mathematisches Forschungsinstitut Oberwolfach

Report No. 38/2017

DOI: 10.4171/OWR/2017/38

Low-dimensional Topology and Number Theory

Organised by
Paul E. Gunnells, Amherst

Walter D. Neumann, New York
Adam S. Sikora, New York

Don B. Zagier, Bonn

20 August – 26 August 2017

Abstract. The workshop brought together topologists and number theorists
with the intent of exploring the many tantalizing connections between these
areas.

Mathematics Subject Classification (2010): 57xx, 11xx.

Introduction by the Organisers

The workshop Low-Dimensional Topology and Number Theory, organised by Paul
E. Gunnels (Amherst), Walter Neumann (New York), Don Zagier (Bonn) and
Adam S. Sikora (New York) was held August 20th – August 26th, 2017. This
meeting was a part of a long-standing tradition of collaboration of researchers in
these areas. The preceding meeting under the same name took place in Oberwol-
fach three years ago. At the moment the topic of most active interaction between
topologists and number theorists are quantum invariants of 3-manifolds and their
asymptotics. This year’s meeting showed significant progress in the field.

The workshop was attended by many researchers from around the world, at
different stages of their careers - from graduate students to some of the most
established scientific leaders in their areas. The participants represented diverse
backgrounds. There were 26 talks ranging from 30 to 60 minutes intertwined with
informal discussions.



2364 Oberwolfach Report 38/2017

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Stavros Garoufalidis in the “Simons Visiting Profes-
sors” program at the MFO.



Low-dimensional Topology and Number Theory 2365

Workshop: Low-dimensional Topology and Number Theory

Table of Contents

BoGwang Jeon
The Pink-Zilber Conjecture and the generalized Cosmetic Surgery
Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2367

Daniel S. Silver (joint with Susan G. Williams)
Graph complexity and Mahler measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2369

Christine Ruey Shan Lee
The colored Jones polynomial and surfaces in 3-manifolds. . . . . . . . . . . . 2371

Gregor Masbaum (joint with P. Gilmer)
An application of TQFT to modular representation theory . . . . . . . . . . . . 2372

Roland van der Veen (joint with Dror Bar-Natan)
One step beyond the Alexander polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . 2374

Fernando Rodriguez-Villegas (joint with Tamás Hausel)
Distribution of Betti numbers of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 2377

Ted Chinburg (joint with F. M. Bleher, R. Greenberg, M. Kakde, G.
Pappas, and M. J. Taylor)
Arithmetic Chern-Simons invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2378

Matilde N. Laĺın
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Abstracts

The Pink-Zilber Conjecture and the generalized Cosmetic Surgery
Conjecture

BoGwang Jeon

Dehn filling is one of the most fundamental topological operations in the field of
low dimensional topology. More than 50 years ago, W. Lickorish and A. Wallace
showed that any closed connected orientable 3-manifold can be obtained by a
Dehn filling on a link complement. In the late 1970’s, W. Thurston, as a part of
his revolutionary work, showed Dehn filling behaves very nicely under hyperbolic
structure by proving that if the original 3-manifold is hyperbolic, then almost
all of its Dehn fillings are also hyperbolic. Since then, understanding hyperbolic
Dehn filling has become a central topic in the study of 3-dimensional geometry
and topology.

However many quantitative questions regarding Dehn filling are still unanswered
even for simple cases. For instance the following conjecture, which was proposed
by C. Gordon in 1990 [1] (see also Kirby’s problem list [5]), is one of the basic
questions in the topic, but the complete answer is unknown:

Conjecture 1 (Cosmetic Surgery Conjecture (Hyperbolic Case)). Let M be a 1-
cusped hyperbolic 3-manifold. Let M(p/q) and M(p′/q′) be the p/q and p′/q′-Dehn
filled manifolds of it (respectively) which are also hyperbolic. If

p/q 6= p′/q′,

then there is no orientation preserving isometry between M(p/q) and M(p′/q′).

The study of unlikely intersections was first initiated by E. Bombieri, D. Masser,
and U. Zannier in the 1990’s and it has grown and become an active research area
in number theory nowadays [8]. Recently it turned out that results in this field
could provide powerful tools to understand algebraic invariants of hyperbolic Dehn
fillings. For example, using P. Habegger’s work, the author proved the following
theorem in [3] and [4]:

Theorem 1. Let M be an k-cusped hyperbolic 3-manifold. Then the height of a
Dehn filling point of any hyperbolic Dehn filling of M is uniformly bounded.

This leads to the following two corollaries:

Corollary 1. Let M be an k-cusped hyperbolic 3-manifold. For D > 0, there are
only a finite number of hyperbolic Dehn fillings of M whose trace field degrees are
bounded by D.

Corollary 2. There are only a finite number of hyperbolic 3 -manifolds of bounded
volume and trace field degree.
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Basically the reason that unlikely intersection theory is applicable to the study
of hyperbolic Dehn filling is we can interpret this geometric and topological phe-
nomenon as an algebro-geometric one. More precisely, we can view a hyperbolic
k-cusped manifold as an k-dimensional algebraic variety, and Dehn filling on it
as the intersection between the corresponding variety and an algebraic subgroup
whose index is given by the Dehn filling coefficient. Thus unlikely intersection the-
ory provides a natural framework to understand algebraic invariants of hyperbolic
Dehn fillings.

In this talk, following along the same lines, we explain another application
of unlikely intersection theory to a problem of hyperbolic Dehn filling. First, we
resolve the Cosmetic Surgery Conjecture for a hyperbolic 1-cusped manifold whose
cusp shape is not quadratic except for finitely many exceptions:

Theorem 2. Let M be a 1-cusped hyperbolic 3-manifold whose cusp shape is
non-quadratic. Then, for sufficiently large |p|+ |q| and |p′|+ |q′|,

M
(
p/q
) ∼= M

(
p′/q′

)

if and only if

p/q = p′/q′

where ∼= repsents an orientation preserving isometry.

An analogous extension of the above theorem to a more cusped manifold is
clearly false. For example, if M is the Whitehead link complement, then, since
it allows the symmetry between two given cusps, M(p1/q1, p2/q2) is equal to
M(p2/q2, p1/q1) for any p1/q1 and p2/q2.

Let τ1 and τ2 be two cusp shapes of a 2-cusped hyperbolic 3-manifold M.
If there is a symmetry between two cusps, then it allows the following relation
between τ1 and τ2:

τ1 =
aτ2 + b

cτ2 + d
where a, b, c, d ∈ Z and ad − bc = ±1. Thus having no symmetry between two
cusps can be rephrased algebraically as follows:

(1) 1, τ1, τ2, τ1τ2 are linearly independent over Q.

When τ1, τ2 satisfies the condition (1), we say M has rationally independent cusp
shapes. Under this hypothesis, we can extend the result of Theorem 2 to 2-cusped
manifolds as the following theorem shows:

Theorem 3. Let M be a 2-cusped hyperbolic 3-manifold having non-quadratic,
rationally independent cusp shapes. Then, for sufficiently large |pi| + |qi| and
|p′i|+ |q′i| (1 ≤ i ≤ 2),

M
(
p1/q1, p2/q2

) ∼= M
(
p′1/q

′
1, p

′
2/q

′
2

)

if and only if (
p1/q1, p2/q2

)
=
(
p′1/q

′
1, p

′
2/q

′
2

)
.

For an n-cusped hyperbolic 3-manifold, we generalise (1) as follows:
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Definition 1. Let M be a n-cusped manifold and τ1, . . . , τn be its cusp shapes.
We say M has rationally independent cusp shapes if the elements of the set
{τi1 · · · τil | 1 ≤ i1 < · · · < il ≤ n} is linearly independent over Q.

Having this definition, we extend Theorem 2 to the general case as follows:

Theorem 4. Let M be a n-cusped (n ≥ 3) hyperbolic 3-manifold having non-
quadratic and pairwise rationally independent cusp shapes. If the Pink-Zilber con-
jecture is true, then, for sufficiently large |pi|+ |qi| and |p′i|+ |q′i| (1 ≤ i ≤ n),

M
(
p1/q1, . . . , pn/qn

) ∼= M
(
p′1/q

′
1, . . . , p

′
n/q

′
n

)

if and only if (
p1/q1, . . . , pn/qn

)
=
(
p′1/q

′
1, . . . , p

′
2/q

′
2

)
.
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Graph complexity and Mahler measure

Daniel S. Silver

(joint work with Susan G. Williams)

In 1933, D.H. Lehmer discovered the remarkable polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

with Mahler measure equal to 1.17628 . . .. This remains the smallest knownMahler
measure greater than 1. Lehmer’s paper implicitly raises the following question.

Lehmer’s Question: Given ǫ > 0, does there exist an integral polynomial f(x)
with 1 < M(f) < 1 + ǫ?

Although Lehmer’s Question remains open, notable partial results have been
obtained. One of them is a theorem of C. Smyth that tells us that when considering
Lehmer’s Question it suffices to consider only polynomials f(x) with the property
that f(x−1) = f(x). We will call such polynomials palindromic.

In previous work [4] the authors reformulated Lehmer’s Question both in terms
of Alexander polynomials of knots in lens spaces as well as pseudo-Anosov surface
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automorphisms. Our present purpose is to reformulate Lehmer’s Question in terms
of graph complexity.

Consider a graph G as above in the punctured plane R2 \ {0}. Lifting G to the

universal cover of the punctured plane produces a graph G̃ with an action by the
infinite cyclic group Z = 〈x〉. We call G̃ a 1-periodic graph, and we denote the
intermediate r-fold covering graph, for r > 0, by Gr.

Although G̃ is not a finite graph, the Z-action enables us to define a Laplacian
matrix LG̃ for G̃. It is of the same size as LG but has entries in Z[x, x−1] rather

than Z. For this, we choose a section of VG; that is, a lift to G̃ of each vertex of
G. All other vertices of G̃ are then described via the action of Z. The matrix LG̃

is described just as LG.
We call the determinant of LG̃ the Laplacian polynomial of G̃. We denote it by

∆G̃. It is well defined, independent of our choice of section. It is easy to see that
it is a palindromic polynomial.

Example 1. If G has a single vertex and edge labeled ǫ = ±1 and wrapping s
times around the origin of the plane, then ∆G̃ = ǫ(−xs + 2− x−s).

Proposition 1. A polynomial f(x) is the Laplacian polynomial of a 1-periodic
graph if and only if it has the form (x − 2 + x−1)g(x), for some palindromic g.

Example 2. Recall that Lehmer’s polynomial x10+x9−x7−x6−x5−x4−x3+x+1
has the smallest known Mahler measure greater than 1. Multiplying by x−5(x−2+
x−1) produces the palindromic polynomial x6−x5−x4+x2+x−2−x−4−x−5+x−6

with the same Mahler measure. We can pair terms of the latter and express it as
−(−x6 + 2 − x6) + (−x5 + 2 − x−5) + (−x4 + 2 − x−4) − (−x2 + 2 − x−2). It is

now easy to construct a 1-periodic graph G̃ with this Laplacian polynomial. The
graph has a single vertex and four edges. Two edges labeled +1 wind four and
five times, respectively, around the origin. Two edges labeled −1 run two and six
times around.

The following theorem follows from a deep result in algebraic dynamics of D.
Lind, K. Schmidt and T. Ward (see [2] or Theorem 21.1 of [3]). However, a direct,
elementary proof is possible.

Theorem 1. For any 1-periodic graph G̃,

M(∆G̃) = lim
r

κ
1/r
Gr

Using Theorem 1 and the observation that the graphs constructed in the proof
of Proposition 1 have nonzero tree complexity, we obtain:

Corollary 1. Lehmer’s Question is equivalent to: Given ǫ > 0, does there exist a
graph G in the punctured plane such that

1 < lim
r

τ
1/r
Gr

< 1 + ǫ?

Remark 1. The graphs G of Corollary 1 need not be embedded. (Indeed the
graph constructed in Example 2 is easily shown to be nonplanar.) We do not
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know whether the corollary remains true if we require that G be embedded. If
true, then Lehmer’s Question would be a question about determinant density of
knots and links. See [1] for possible geometric consequences.
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The colored Jones polynomial and surfaces in 3-manifolds.

Christine Ruey Shan Lee

The Strong Slope Conjecture made by Garoufalidis [1] and extended by Kalfagianni
and Tran [2] predicts an interesting relationship between essential surfaces in the
knot complement and a quantum knot invariant, the colored Jones polynomial.
The conjecture predicts that the asymptotics of the degree of the polynomial
determine the boundary slopes and other topological information such as the Euler
characteristic and number of sheets of essential surfaces, called Jones surfaces,
realizing the conjecture.

In this talk I will give an overview of recent advances on the conjecture, with
specific focus on other potential relationships between the colored Jones polyno-
mial and the geometry of the knot complement observed from those results in my
recent work.

With Efstratia Kalfagianni, we developed a normal surface algorithm to verify
the Strong Slope Conjecture and indicated a possible relationship between the
number of sheets of a Jones surface and the Jones period of the knot [3]. Building
on the work of Futer, Kalfagianni, and Purcell, I have introduced the class of near-
alternating links approximating the class of adequate links [4]. For this class, I
proved the Strong Slope Conjecture and derived two-sided volume bounds from the
stable coefficients of the colored Jones polynomial, extending many of the previous
results known for adequate knots. Lastly, I will discuss my current project with
Roland van der Veen and Stavros Garoufalidis [5] on the Strong Slope Conjecture
for 3-tangle Montesinos knots, which, in contrast to the aforementioned examples,
yields many rational Jones slopes. This indicates a different Jones surface for
which the relationship to the complement of the knot has yet to be clarified.
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An application of TQFT to modular representation theory

Gregor Masbaum

(joint work with P. Gilmer)

Let p be an odd prime, and K be an algebraically closed field of characteristic p.
For g ≥ 1 an integer, we consider the symplectic group Sp(2g,K), thought of as an
algebraic group of rank g. It is well-known that the classification (due to Chevalley)
of rational simple Sp(2g,K)-modules up to isomorphism is independent of the
characteristic. For a dominant weight λ, let Lp(λ) denote the simple Sp(2g,K)-
module with highest weight λ. We recall that λ is dominant iff it is a linear
combination of the fundamental weights ωi (i = 1, . . . , g) with nonnegative integer
coefficients.

In characteristic zero, the dimension and the formal character of a simple
Sp(2g,C)-module can be computed from the Weyl character formula. But ex-
plicit dimension formulae for the modules Lp(λ) for p > 0 are quite rare, except
in rather special situations. In particular, for weights outside the fundamental
alcove, no general dimension formula is known. A conjectural formula by Lusztig
for primes in a certain range was shown to hold for p >> 0 by Andersen-Jantzen-
Soergel [1] but was recently shown not to hold for all p in the hoped-for range by
Williamson [7].

In our joint work [5] we show that Topological Quantum Field Theory (TQFT)
can give new information about the dimensions of some of these simple modules.
Specifically, we show that for every prime p ≥ 5 and in every rank g ≥ 3, there
is a family of p − 1 dominant weights λ, lying outside of the fundamental alcove
except for one weight in rank g = 3, for which we can express the dimension of
Lp(λ) by formulae similar to the Verlinde formula in TQFT. We found this family
as a byproduct of Integral SO(3)-TQFT [2], an integral refinement of the Witten-
Reshetikhin-Turaev TQFT associated to SO(3). More precisely, we use Integral
SO(3)-TQFT in what we call the ‘equal characteristic case’ which we studied in [4].
The family of weights λ we found together with our formulae for dimLp(λ) is given
in the following Theorem. We can also compute the weight space decomposition
of Lp(λ) for these weights λ; see [5, Theorem 1.9].
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Theorem. Let p ≥ 5 be prime and put d = (p − 1)/2. For rank g ≥ 3, consider
the following p− 1 dominant weights for the symplectic group Sp(2g,K) :

λ =





(d− 1)ωg (Case I)
(d− c− 1)ωg + c ωg−1 for 1 ≤ c ≤ d− 1 (Case II)
(d− c− 1)ωg + (c− 1)ωg−1 + ωg−2 for 1 ≤ c ≤ d− 1 (Case III)
(d− 2)ωg + ωg−3 (Case IV)

Put ε = 0 in Case I and II and ε = 1 in Case III and IV. Then

(1) dimLp(λ) =
1

2

(
D(2c)

g (p) + (−1)εδ(2c)g (p)
)

where

(2) D(2c)
g (p) =

(p
4

)g−1 d∑

j=1

(
sin

πj(2c+ 1)

p

)(
sin

πj

p

)1−2g

(3) δ(2c)g (p) = (−1)c
41−g

p

d∑

j=1

(
sin

πj(2c+ 1)

p

)(
sin

πj

p

)(
cos

πj

p

)−2g

,

and c is the same c used in the definition of λ, except in Case I and IV, where we
put c = 0. In Case IV in rank g = 3, ωg−3 = ω0 should be interpreted as zero.

Formula (2) is an instance of the famous Verlinde formula in TQFT. Formula
(3) appeared first in [4]. Note that the difference between the two formulae is
that certain sines in (2) have become cosines in (3), and the overall prefactor is

different. For fixed g, both D
(2c)
g (p) and δ

(2c)
g (p) can be expressed as polynomials

in p and c.
When p = 5, the list above produces (in order) the fundamental weights

ωg, ωg−1, ωg−2, ωg−3. These are exactly the weights considered by Gow [6], who
gave an explicit construction of Lp(ωi) for the last p−1 fundamental weights (that
is: ωi where i ≥ g − p + 1). But for p > 5, our weights are different from those
of Gow. It is intriguing that both Gow’s and our family of weights have p − 1
elements.

Question. Can one find similar Verlinde-like dimension formulae for other families
of dominant weights?

In [3], we answered this question affirmatively for the p−1 fundamental weights
considered by Gow. On the other hand, SO(3)-TQFT is just one of the simplest
TQFTs within the family of Witten-Reshetikhin-Turaev TQFTs, and it is conceiv-
able that other Integral TQFTs might produce more families of weights λ where
the methods of the present paper could be applied.

Another interesting question is whether our character formulae coincide with
those given by Lusztig’s conjecture. As already mentioned, Lusztig’s conjecture
is known to be false in general by work of Geordie Williamson. But some experi-
mental evidence seems to indicate that it may hold true for our highest weights.
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One step beyond the Alexander polynomial

Roland van der Veen

(joint work with Dror Bar-Natan)

We present a simple, strong knot invariant that is closely related to the Alexander
polynomial and seems to share many of its good properties. For example, unlike
the commonly used quantum invariants such as the Jones polynomial, our invariant
is computable in polynomial time.

Consider a (long) knot K presented as a proper smooth embedding of [0, 1] into
the closed unit ball such that the projection on the third coordinate is a generic
immersion γ in the plane, see for example Figure 1. More specifically, assume that
there is an n ∈ N such that γ has the following properties. The points γ( k

n+1 )

where k ∈ {1, . . . , n} are the union of all double points and all points where γ′ is
parallel to the positive x-axis. The double points are known as crossings and the
latter as cuaps. Close to any crossing we assume γ′ has positive y-coordinate. The
sign of a crossing is the sign of the x-coordinate of γ′ at the overpass. A crossing
is denoted Xσ

i,j where σ is the sign and i, j are the labels of the over and under

strand. The sign of a cuap is the sign of the y-direction of γ′′. A cuap is denoted
uσ
i where σ is the sign and i is its label.
Let Ei

j be the elementary matrix with a single non-zero entry 1 at the (i, j)-th
place. Define the matrices

Q =
∑

Xσ
i,j

σt
σ
2 (Ej

j − Ei
j) W =

∑

i<j

Ei
j c =

∏

Xσ
i,j ,u

σ
i

t−σ

B = I − (t
1
2 − t−

1
2 )WQ G = Qadj(B) H = adj(B)W

ZG = (t− t−1)

n∑

j=2

∑

a,b<j

Gj
a


1

2
Gj

b +
∑

c>j

Gc
b
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ZH =
∑

Xσ
i,j

σ

2
((1− tσ)Hi

j)
2 − σ

2
((1 + tσ)Hj

j )
2 + σtσ(Hj

i H
i
j +Hi

iH
j
j )

+tσ(1− t)Hj
i ((1 + σ)Hj

j + (1− σ)Hi
i ) + det(B)

∑

uσ
i

σHi
i

Theorem 1. (Bar-Natan, van der Veen, 2017) [BV17]

c
1
2 det(B) is the Alexander polynomial ∆ and Z1 = c(ZG + ZH) is a new knot

invariant. Both are elements of Z[t, t−1] computable in polynomial time.

When normalized as ρ1 = − t
(1−t)2 (Z1 − t∆ d

dt∆) our invariant appears to be

closely related to Rozansky’s expansion of the colored Jones polynomial
[Ro98][Ov13].
Expanding in h = q−1 they Jα(q) =

∑
n≥0 h

n(
∑

0≤m≤n Dm,n(αh)
2m). Now there

exist Laurent polynomials P (n) such that
∑

m≥0Dm,n+2m(αh)2m= P (n)(qα)

∆2n+1(q
α
2 −q−

α
2 )
.

We conjecture ρ1(t
2) = t2

(1−t2)2P
(1)(t).

Figure 1. A diagram for the trefoil knot 31. The double points at
the crossings and the right-pointing cuaps are enumerated in order
of appearance. The matrices W,Q and the number c necessary
for computation of the invariant Z1 are listed next to it.

Example: Trefoil. We illustrate the computation of Z for the trefoil knot 31
shown in Figure 1. Notice this is the mirror image of the one used in the knot
tables.

B =




1 0 0 0 1− t 0 0
0 t 0 0 1− t 0 0
0 t− 1 1 0 1− t 0 1− t
0 t− 1 0 1 1− t 0 1− t
0 t− 1 0 0 1 0 1− t
0 0 0 0 0 1 1− t
0 0 0 0 0 0 1




∆31(t) = c
1
2 det(B) = t− 1 + t−1
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G =




0 t
3
2 − t

1
2 0 0 −t

3
2 0 t

3
2 − t

5
2

0 t
1
2 0 0 t

3
2 − t

1
2 0 t

5
2 − 2t

3
2 + t

1
2

0 0 0 0 0 0 −t
5
2 + t

3
2 − t

1
2

0 0 0 0 0 0 0

0 t
1
2 − t

3
2 0 0 t

3
2 0 t

5
2 − t

3
2

0 −t
1
2 0 0 t

1
2 − t

3
2 0 −t

5
2 + 2t

3
2 − t

1
2

0 0 0 0 0 0 t
5
2 − t

3
2 + t

1
2




ZG = t4 − 3t2

2
+

1

2

H =




0 t2 − t+ 1 t t t t2 t2

0 0 1 1 1 t t
0 0 t− t2 1 1 t t
0 0 t− t2 t− t2 1 t t
0 0 1− t 1− t 1− t 1 1
0 0 0 0 0 0 t2 − t+ 1
0 0 0 0 0 0 0




ZH = t4 − 3t3 +
7t2

2
− t− 1

2

It follows that Z1(31) = c(ZG +ZH) = 2− t−1 − 3t+2t2 and its normalization
is ρ1(t) = −t − t−1. Comparing to the value in the table in the next section we
notice the minus sign caused by taking mirror image.

Table and conjectures. In the table below we list the Alexander polynomial
∆(t) of each knot together with the normalized version of our invariant ρ1 =
− t

(1−t)2 (Z1− t∆ d
dt∆). As both Laurent polynomials appear to be symmetric with

respect to t 7→ t−1 only non-negative coefficients are listed.
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Knot Alexander ρ1 normalization of Z

31 t− 1 t

41 3− t 0

51 t2 − t+ 1 2t3 + 3t

52 2t− 3 5t − 4

61 5− 2t t− 4

62 −t2 + 3t− 3 t3 − 4t2 + 4t − 4

63 t2 − 3t+ 5 0

71 t3 − t2 + t− 1 3t5 + 5t3 + 6t

72 3t− 5 14t− 16

73 2t2 − 3t+ 3 −9t3 + 8t2 − 16t+ 12

74 4t− 7 32− 24t

75 2t2 − 4t+ 5 9t3 − 16t2 + 29t− 28

76 −t2 + 5t− 7 t3 − 8t2 + 19t− 20

77 t2 − 5t+ 9 8− 3t

All prime knots up to 10 crossings are distinguished by the pair (∆, ρ1). This
is better than the pair (Khovanov, HOMFLY) which fails to distinguish the knots
(816, 10156).

A longer table and the computer program that produced it are available at
http://www.rolandvdv.nl/MLA/

We conjecture that ρ1 satisfies ρ1(−K) = −ρ1(K) and the highest power of t is
less than or equal to 2 genus(K)− 1. For example for knot K = 12n313 the genus
is 2 and the highest power of t in ρ1(K) is 2 and ∆K = 1.
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Distribution of Betti numbers of manifolds

Fernando Rodriguez-Villegas

(joint work with Tamás Hausel)

We consider the question of how Betti numbers are distributed for random alge-
braic varieties. For smooth, projective varieties the even/odd Betti numbers are
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symmetric and unimodal by Poincaré duality and the Hard Lefschetz theorem re-
spectively. It is easy to see that for the Grassmanian Gr(r, n + r) as n → ∞ for
fixed r the Betti numbers, appropriately scaled, converge to the B-spline distribu-
tion χ(1) ∗ · · · ∗ χ(1) where χ(1) = δ[− 1

2 ,
1
2 ]
. Hence as r → ∞ too the distribution

tends to a Gaussian.
It is less clear what to expect for say smooth affine varieties. We consider the

case of generic Nakajima quiver varieties. Because these are semiprojective there
is a form of the Hard Lefschetz theorem that holds. In particular the say even
Betti numbers must be increasing in an initial segment. How far?

We expect that even Betti numbers of these Nakajima quiver varieties to tend
to the Airy distribution as the dimension vector tends to infinity (all entries going
to infinity independently). We prove this for a related family corresponding to the
complete graphs. It involves the asymptotic expansion of the series

∑

n≥0

q(
n
2) T

n

n!
.

as q → 1. This in turn relies on the asymptotic growth of the number of connected
graphs on n vertices with fixed Betti number b1.

Arithmetic Chern-Simons invariants

Ted Chinburg

(joint work with F. M. Bleher, R. Greenberg, M. Kakde, G. Pappas, and M. J.
Taylor)

This note is a report on some recent work by several groups of authors concerning
an arithmetic version of Chern Simons theory proposed by M. Kim in [6]. Kim’s
work is based on the approach to 2 + 1 dimensional topological quantum field
theory by Dijkgraaf and Witten [4] and by Freed and Quinn [5].

Kim’s invariants may be defined in the following way in the simplest case.
Suppose F is a number field containing the multiplicative group µ̃n generated by
a primitive nth root of unity. Define OF to be the ring of integers of F , and let
X = Spec(OF ). Let π1(X, η) be the étale fundamental group of X relative to a
fixed base point η. Then π1(X, η) is the Galois group of a maximal everywhere
unramified extension of F . Let f : π1(X, η) → G be a fixed homomorphism
to an abstract finite group G. Let µn be the sheaf of nth roots of unity in the
étale topology on X . We let G act trivially on µ̃n = µn(X). Pick a class c ∈
H3(G, µ̃n). Then f∗c ∈ H3(π1(X, η), µ̃n) defines via Cech cohomology a class
f∗
Xc ∈ H3(X,µn). By the global duality theorem of Artin and Verdier [7, p. 538],
there is a canonical isomorphism invn : H3(X,µn) → Z/nZ. Kim’s invariant [6]
associated to c and f is the class

(1) S(f, c) = invn(f
∗
Xc) ∈ Z/nZ.

The topological counterpart of this case is that of Chern Simons invariants for a
finite gauge group G and a compact three manifold; see [5].
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In [2], H. Chung, D. Kim, M. Kim, J. Park and H. Yoo proved that Kim’s
invariant can be non-trivial even when the finite group in question is cyclic of order
two. Their approach is to compare local and global trivializations of Galois three
cocycles. Using this method they construct infinitely many examples in which the
invariant is non-trivial and the finite group involved is either Z/2, Z/2 × Z/2 or
the symmetric group S4.

In [1], F. Bleher, T. Chinburg, R. Greenberg, M. Kakde, G. Pappas and M.
Taylor used a different approach to prove a formula for Kim’s invariant in (1)
in terms of Artin maps when G = Z/n. One consequence is that for all n > 1,
there are infinitely many number fields F over which there are both trivial and
non-trivial Kim invariants associated to cyclic G of order n. The construction
also shows that Kim’s invariant in the cyclic case is a specialization of a bilinear
pairing in Galois cohomology which resembles, but is different from, one considered
by McCallum and Sharifi in [8]. It was shown in [1] that by replacingH3(G, µ̃n) by
Ext3

Z[G](Z/n, µn), one arrives at an invariant which combines the McCallum-Sharifi
pairing and Kim’s invariant.

In [3], H. Chung, D. Kim, M. Kim, J. Park, G. Pappas and H. Yoo then defined
an arithmetic counterpart of the linking pairing of two curves in a three manifold
to give another way of defining Kim’s invariant when G is a finite cyclic group.
They showed that in this case, the invariant is related to the class invariant ho-
momorphism of Galois module structure theory. They also gave a different proof
of the Artin map formula of [1].

In his original paper [6], Kim also considered the arithmetic counterpart of
Chern Simons invariants for finite gauge groups and three manifolds whose bound-
ary is a union of surfaces. In the above contructions, one replaces X = Spec(OF )
by Spec(OF,S) when S is a finite set of finite places of F . Following the approach
of topological quantum field theory, Kim’s invariant in this case is an element of a
torsor for Z/n which is push out of Z/n torsors for each place in S. More recently,
Bleher, Chinburg, Greenberg, Kakde, and Taylor have generalized this construc-
tion by using Ext3

Z[G](Z/n, µ̃n) rather than H3(G, µ̃n). The resulting invariant is

an element in a torsor for a larger group than Z/n, namely the cokernel of the
natural map from a global Ext2 group to product local Ext2 groups associated to
the places in S.
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Some remarks on Mahler measure for arbitrary tori

Matilde N. Laĺın

Definition 1. The Mahler measure of a non-zero rational function
P ∈ C(x1, . . . , xn) is defined by

m(P ) :=
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|
dx1

x1
· · · dxn

xn
,

where Tn = {(x1, . . . , xn) ∈ Cn : |x1| = · · · = |xn| = 1}.
Mahler measure raises very interesting problems in connection to the distribu-

tion of values, such as Lehmer’s question. Here, we are interested in exact formulas
for multivariable polynomials.

Example 1. Cassaigne and Maillot [Mai00] proved the following formula. Let
a, b, c be nonzero complex numbers. Then

(1) πm(ax+ by+ c) =





α log |a|+ β log |b|+ γ log |c|+D
(∣∣a

b

∣∣ eiγ
)

△,

π logmax{|a|, |b|, |c|} not △,

where △ stands for the statement that |a|, |b|, and |c| are the lengths of the sides
of a triangle; and α, β, and γ are the angles opposite to the sides of lengths |a|,
|b| and |c| respectively.The function D is the Bloch–Wigner dilogarithm given by

(2) D(x) = Im(Li2(x)) + arg(1− x) log |x|,
where Li2(x) is the classical dilogarithm, and the corresponding term codifies the
volume of an ideal hyperbolic tetrahedron in H3 ∼= C×R≥0 with basis the triangle
whose sides are |a|, |b|, and |c| and fourth vertex infinity.

Notice that the case a = b = c = 1 was proven earlier by Smyth [Smy81].

Example 2. Boyd [Boy98] systematically computed numerical examples for sev-
eral families of polynomials including

Rα(x, y) :=(1 + x)(1 + y)(x+ y)− αxy,

Sk,β(X,Y ) =Y 2 + kXY −X3 − βX,

where α, k, b are integral parameters. He found numerical formulas of the form

m(Rα(x, y))
?
=rαL

′(EN(α), 0),

m(Sk,β(X,Y ))
?
=
1

4
log |β|+ sk,bL

′(EN(k,β), 0),

where rα, sk,β are rational numbers, the L-functions are attached to elliptic curves
that are defined by Rα(x, y) = 0, and Sk,β(X,Y ) = 0 respectively, and the question
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mark stands for a numerical formula that is true for at least 20 decimal places.
N denotes the conductor of the corresponding elliptic curve. In addition, Boyd
noticed that the square-free part of β must divide k for such a formula to hold.

Some of Boyd’s conjectures have been proven but most remain conjectural. The
following table gives a complete list (to our knowledge) of the identities that have
been proven for Rα(x, y) for α integral.

α rα N Proven by

−4 2 36 (CM) Rodriguez-Villegas [RV99]
2 1/2 36 (CM) Rodriguez-Villegas [RV99]

−8 10 14 Mellit [Mel12]
1 1 14 Mellit [Mel12]
7 6 14 Mellit [Mel12]

−2 3 20 Rogers–Zudilin [RZ12]
4 2 20 Rogers–Zudilin [RZ12]

The following table has a few conjectural numerical formulas and information
about the two proven results for the family Sk,β(X,Y ).

β k sk,β N Proven by

1 3 7/2 17 Zudilin [Zud14] + L.–Ramamonjisoa [LR17]
1 4 1/4 192

−1 2 2 20 Touafek [Tou08a, Tou08b]+Bertin [Ber15]
−1 3 2 145
2 4 1/4 256
2 6 1/40 2336

−2 4 1/20 768
−2 6 1/48 2848
3 6 1/16 828

−3 6 1/72 4464

Deninger [Den97] related the Mahler measure to the regulator and used this
connection to predict the appearance of L-functions of elliptic curves. This was
further explored by Rodriguez-Villegas [RV99], who found that the polynomial
must be tempered, which means that the Mahler measures of the sides of its
Newton polygon are zero. (For example, the family Sk,β(X,Y ) yields a tempered
polynomial iff |β| = 1.)

In recent collaboration with Mittal [LM17] we propose the following extension
of Mahler measure.

Definition 2. Let a1, . . . , an ∈ R>0. The (a1, . . . , an)-Mahler measure of a non-
zero rational function P ∈ C(x1, . . . , xn) is defined by

ma1,...,an(P ) :=
1

(2πi)n

∫

Ta1×···×Tan

log |P (x1, . . . , xn)|
dx1

x1
· · · dxn

xn
,

where Ta = {x ∈ C : |x| = a}.
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The idea of considering arbitrary tori in the integration was initially proposed
to us by Rodriguez-Villegas a long time ago. With this definition, Cassaigne and
Maillot’s formula (1) can be interpreted as ma,b,c(x + y + z).

We have proved the following results for generalized tori.

Theorem 1. [Laĺın and Mittal [LM17]]

ma,a(Y
2 + 2XY −X3 +X) =





2 log a+ 2L′(E20, 0)
√
5−1
2 ≤ a≤ 1+

√
5

2 ,

3 log a a ≥ 3+
√
13

2 ,

log a 0 < a ≤ −3+
√
13

2 ,

ma2,a((1 + x)(1 + y)(x+ y) + 2xy) = 3 log a+ 3L′(E20, 0) with A− ≤ a ≤ A+

where A± =

√
1+

√
5±

√
2
√
5+2

2 .

These results rest on the work of Rogers and Zudilin for R−2(x, y) and
of Touafek and Bertin for S2,−1(X,Y ). The main difficulty that arises when try-
ing to extend to the general case of arbitrary a, b ∈ R>0 is the study of certain
integration path resulting from applying Jensen’s formula to the initial integral.
In particular, we do not know how to give a formula when the path is not closed.

Finally, we remark that by applying some basic changes of variables, the for-
mulas above can also be expressed in terms of classical Mahler measures of non-
tempered polynomials, which is interesting in its own right.
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A meromorphic extension of the 3D-index

Rinat Kashaev

(joint work with Stavros Garoufalidis)

1. Introduction

Let X be an ideal triangulation of an oriented 3-manifold M with one cusp and
a fixed peripheral structure, i.e. a fixed basis of the first integral homology of
the torus boundary obtained after cutting out an open neighbourhood of the
cusp. The 3D-index of X introduced by Dimofte–Gaiotto–Gukov in [3] is a map
IX : Z2 → Z[[q]] which is well defined for X admitting a strict angle structure. In
general, the 3D-index is not a well defined quantity in the case of arbitrary ideal
triangulations of M . Nonetheless, it is expected to be a topological invariant,
in particular, the coefficients of the corresponding q-series are expected to have
interesting geometrical interpretation in terms of generalised normal surfaces [4].
The building block in the construction of the 3D-index is the tetrahedral index
I∆ : Z2 → Z[[q]] defined as

I∆(m, e) =
∞∑

n=max(0,−e)

(−1)n
qn(n+1)−(2n+e)m

(q2; q2)n(q2; q2)n+e
.

Theorem 1 ([5]). Let q ∈ R 6=0 be such that |q| < 1, X an ideal triangulation of
an oriented 3-manifold M with 1 cusp and a fixed peripheral structure.Then there
exists a meromorphic function JX : (C 6=0)

2 → C such that

(1) JX = JX′ if X and X ′ are related by a shaped 2 − 3 or 3 − 2 Pachner
move;

(2) if X admits a strict angle structure, then JX admits a convergent Laurent
series expansion of the form

JX(s, t) =
∑

m,e∈Z

smteIX(m, e).

Remark 1. The construction of the function JX can be extended to a generalised
TQFT on shaped triangulations of all oriented pseudo 3-manifolds. In particu-
lar, one obtains invariants of hyperbolic R3 with conical singularities along string
links, namely with the components having conical angles α1, . . . , αn satisfying the
condition

n∑

i=1

αi = (n− 1)2π.



2384 Oberwolfach Report 38/2017

2. Construction of the partition function

In what follows, for two sets A and B, we denote by BA the set of all maps from
A to B. We also denote by Xi the set of i-dimensional cells in a CW-complex
X . A triangulation for us will mean a CW-complex X , where each n-cell is given
by a characteristic map of the form α : ∆n → X, where ∆n is the standard n-
dimensional simplex, and for each face map fi : ∆

n−1 → ∆n, the composition
α ◦ fi is the characteristic map of an (n− 1)-cell.

We say a triangulation X of an oriented pseudo 3-manifold M is shaped if each
tetrahedron of X carries the structure of an ideal hyperbolic tetrahedron. Les us
fix a state of X given by a map x : X1 → T, where T is the complex unit circle.
For each tetrahedron T ∈ X3 with the shape structure given by dihedral angles
α, β, γ arranged according to this picture

α

α

β

β

γ

γ
0

1

23

α+ β + γ = π

we associate the weight function

B(T, x) = c(q)Gq

(
(−q)α/πx3/x2

)
Gq

(
(−q)β/πx1/x3

)
Gq

(
(−q)γ/πx2/x1

)

where xi := x(v0vi)x(vjvk) for {i, j, k} = {1, 2, 3}, vivj denoting the edge of T
connecting the vertices vi and vj , and we use the functions

Gq(z) :=
(−q/z; q)∞
(z; q)∞

, c(q) :=
(q; q)2∞
(q2; q2)∞

.

The partition function of X is defined by the formula

Z(X) :=

∫

TX1

dµ(x)
∏

T∈X3

B(T, x), dµ(x) :=
∏

e∈X1

dx(e)

x(e)2πi
.

An edge of X is called balanced if the sum of dihedral angles around it is equal
to 2π. The partition function Z(X) is invariant under the 2− 3 or 3− 2 Pachner
moves provided the relevant edge is balanced. As Z(X) appears to be a mero-
morphic function in complexified angle variables, the balancing conditions are
achieved by analytic continuation from positive angle variables, by balancing first
all three-valent edges (i.e. the edges shared by exactly three distinct tetrahedra)
and only then balancing all other edges. Additionally, Z(X) is gauge invariant
with respect to the Neumann–Zagier hamiltonian flows generated by total dihe-
dral angles around the edges of X .

When X is an ideal triangulation of a 1-cusped oriented 3-manifold M with a
fixed peripheral structure, the meromorphic index JX(s, t) is obtained from Z(X)
by balancing all edges and relating the remaining degrees of freedom to s and t by
using the peripheral structure, see [5] for details.
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3. Tetrahedral index and a quantum dilogarithm over T× Z

The tetrahedral weight function can be written in the form

B(T, x) = ϕq

(
(−q)β/πx1/x3, (−q)α/πx2/x3

)

where

ϕq(x, y) =
∑

m,e∈Z

Ĩ∆(m, e)
xe

ym
, Ĩ∆(m, e) := (−q)eI∆(m, e),

and the topological invariance is based on the five term integral identity

ϕq(x, y)ϕq(u, v) =

∫

T

ϕq

(
uy,

v

z

)
ϕq

(xyuv
z

, z
)
ϕq

(
xv,

y

z

) dz

z2πi

We can also write

ϕq(x, y) =
∑

m∈Z

φq(1/x,m)y−m,

where

φq(x,m) :=
(−q1−mx; q2)∞
(−q1−m/x; q2)∞

is the quantum dilogarithm over the Pontryagin self-dual locally compact abelian
group T× Z with the gaussian exponential 〈(x,m)〉 = xm, see [2], which was first
found in [6]. This fact puts the 3D-index into the general framework underlying
the Teichmüller TQFT of [1].
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Skein algebras of surfaces and quantum SL2(C)

Thang Le

Let Σ be an oriented compact surface and R be a commutative ring with unit 1
and a distinguished invertible element q1/2 ∈ R. A 1-dimensional submanifold α
of Σ× (0, 1) is framed if it is equipped with a framing, i.e. a continuous choice of
a vector transverse to α at each point of α. The Kauffman bracket skein algebra
S(Σ), introduced by Przytycki and Turaev, is defined as the R-module spanned by
isotopy classes of framed unoriented links in Σ× (0, 1) modulo the skein relation
and the trivial loop relation of Figure 1

Figure 1. The skein relation (left) and the trivial loop relation (right).

As usual, links are presented by diagrams on Σ and framing is vertical, i.e. the
framing at a point is parallel to the (0, 1) factor and points in the direction of 1.

The skein algebra is closely related to classical objects such as the SL2(C)-
character variety, the Teichmüller spaces, and quantum objects such as the Jones
polynomial; it plays an important role as it can serve as a bridge between quantum
topology and classical topology.

The Teichmüller spaces can be studied through an ideal triangulation of the
surface, by work of Thurston, Bonahon, Penner. We want also to study the skein
algebra through triangulations of the surface. For this we need to extend the
definition of S(Σ) to involve the boundary ∂Σ of Σ.

A surface Σ is called a punctured bordered surface if Σ = Σ \ P , where Σ is a
compact oriented surface and P is a finite set such that every boundary component
of Σ has at least one point in P . A connected component of ∂Σ := ∂Σ\P is called
a boundary edge of Σ. Note that any boundary edge is diffeomorphic to the open
interval (0, 1).

A ∂Σ-tangle is an unoriented, framed, compact, properly embedded 1-dimensio-
nal submanifold α ⊂ Σ× (0, 1) such that:

• at every point of ∂α = α ∩ (∂Σ× (0, 1)) the framing is vertical, and
• for any boundary edge b, the points of ∂b(α) := ∂α ∩ (b × (0, 1)) have
distinct heights.

Two ∂Σ-tangles are isotopic if they are isotopic in the class of ∂Σ-tangles. The
emptyset, by convention, is a ∂Σ-tangle which is isotopic only to itself.

For a ∂Σ-tangle α define a partial order on ∂(α) by: x > y if x and y are in
the same boundary edge and x has greater height. If x > y and there is no z such
that x > z > y, then we say x and y are consecutive.
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A stated ∂Σ-tangle α is a ∂Σ-tangle α equipped with a state, which is a function
s : ∂α → {+,−}.

The (Kauffman bracket) stated skein module Ss(Σ) is the R-module freely
spanned by isotopy classes of stated ∂Σ-tangles modulo the above skein relation
and the trivial loop relation (see Figure 1), and the boundary relations in Figure 2.

Figure 2. The boundary relations.

Here in these identities, each shaded part is a part of Σ, with a stated ∂Σ-tangle
diagram on it. Each arrowed line is part of a boundary edge, and the order on
that part is indicated by the arrow and the points on that part are consecutive
in the height order. The order of other end points away from the picture can be
arbitrary and are not determined by the arrows of the picture. On the right hand
side of the first identity of Figure 2, the arrow does not play any role; it is there
only because the left hand side has an arrow.

Suppose a and b are distinct boundary edges of Σ. Let Σ′ = Σ/(a = b), which is
obtained from Σ by gluing a and b together. The canonical projection pr : Σ → Σ′

induces a projection p̃r : Σ× (0, 1) → Σ′ × (0, 1). Let c = pr(a) = pr(b).
A ∂Σ′-tangle α ⊂ (Σ′ × (0, 1)), is said to be vertically transverse to c if

• α is transverse to c× (0, 1),
• the points in ∂c α := α∩(c×(0, 1)) have distinct heights, and have vertical
framing.

Suppose α is a ∂Σ′-tangle vertically transverse to c. Then α̃ := p̃r−1(α) is a
∂Σ-tangle. Suppose in addition α is stated, with state s : ∂α → {±}. For any
ε : α ∩ (c × (0, 1)) → {±} define α̃(ε) to be α̃ equipped with state s̃ defined by
s̃(x) = s(pr(x)) if pr(x) ∈ ∂α and s̃(x) = ε(pr(x)) if pr(x) ∈ c. We call α̃(ε) a lift
of α. If |α ∩ (c× (0, 1))| = k, then α has 2k lifts.

Theorem 1. Suppose a and b are two distinct boundary edges of a punctured
bordered surface Σ. Let Σ′ = Σ/(a = b), and c be the image of a (or b) in Σ′.

(a) There is a unique R-algebra homomorphism ρ : Ss(Σ
′) → Ss(Σ) such that if

α is a stated ∂Σ′-tangle vertically transverse to c, then ρ(α) =
∑

β [β], where the

sum is over all lifts β of α, and [β] is the element in Ss(Σ) represented by β.
(b) In addition, ρ is injective.
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(c) For four distinct boundary edges a1, a2, b1, b2 of Σ, the following diagram is
commutative:

(1)

Ss(Σ/(a1 = b1, a2 = b2))
ρ−−−−→ Ss(Σ/(a1 = b1))

ρ

y
yρ

Ss((Σ/(a2 = b2)
ρ−−−−→ Ss(Σ).

Suppose an ideal triangulation of Σ is given. This means there is a finite
collection F̃ of disjoint ideal triangles and a finite collection of disjoint pairs of
elements in Ẽ , the set of all edges of ideal triangles in F̃ , such that Σ is obtained
from

⊔
T∈F̃ T by gluing the two edges in each pair. It may happen that two edges

of one triangle are glued together.
From Theorem 1 we have an injective algebra homomorphism

(2) ρ : Ss(Σ) →
⊗

T∈F̃

Ss(T).

The map ρ is described explicitly by Theorem 1. The algebra Ss(T) has a
simple presentation and is not difficult to investigate using algebraic method. In
particular, by going to a quotient of Ss(T) one can recover from (2) the quantum
trace map of Bonahon and Wong.

When Σ is a bigon, the stated skein algebra Ss(Σ) is naturally isomorphic to
the quantum matrix algebra SL2(q), and many algebraic facts concerning SL2(q)
have nice pictorial descriptions in terms of stated skein algebras (joint work with
F. Costantino).

References
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Automorphic forms for g ≥ 1

Werner Nahm

(joint work with Marianne Leitner)

If (f1, . . . , fk) is a vector valued modular function, then
∑k

i=1 |fi|2 can be conceived
as a map from the moduli space of flat metric tori to R+. The fi can be recovered
by acting with ∂, ∂̄ on this real analytic function. In conformal field theory (CFT)
one extends this map to tori with arbitrary metric g by

(*) δ logZ(g) =
c

48π

∫

torus

δ(log ρ)Rd vol,

where g = ρg0 varies in a Weyl class of metrics with fixed conformal structure
given by g0, Rd vol is a Riemann curvature × volume form for g, c ∈ R a fixed
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constant called the central charge. Z is called the partition function. One has

Z(g) =

k∑

i=1

|fi(τ)|2 (τ given by g) for flat g.

Eq. (*) can be integrated.

log
Z(ρg)

Z(g)
=

c

96π

∫
(log ρ) ((Rd vol)(ρg) + (Rd vol)(g)) .

(The + sign comes from x2 − y2 = (x− y)(x + y).)
A special case is the (2, 5) minimal model with c = − 22

5 and

f1 = q−
1
60

∞∑

n=0

qn
2

(q)n
, f2 = q

11
60

∞∑

n=0

qn
2+n

(q)n

the Rogers-Ramanujan functions ((q)n = (1− q) · · · (1− qn)).
Following Einstein, one introduces the energy-momentum field as a functional

derivative w.r.t. g. In local coordinates x1, x2, g = gµνdx
µdxν (µ, ν = 1, 2)

Tµν(x) =
1

2

δ

δgµν(x)

(e.g. Z(g + εh)− Z(g) = ε

∫
hµν δZ

δgµν
d vol +O(ε2) ).

n-fold derivatives of Z are called n-point functions of T , with the notation

(**)
〈
Tµ1ν1(x1) · · ·Tµnνn(xn)

〉
= 2−n δ

δgµ1ν1(x1)
· · · δ

δgµnνn(xn)
Z.

The xi have to be pairwise different to avoid singularities. Invariance under dif-
feomorphisms yields

DµT
µν = 0 (Dµ: covariant derivative),

where for fields φ one defines φ = 0 ⇔
〈
φ · · ·

〉
= 0,

〈
∂µφ · · ·

〉
= ∂µ

〈
φ · · ·

〉
,〈

(a1φ1 + a2φ2) · · ·
〉
= a1

〈
φ1 · · ·

〉
+ a2

〈
φ2 · · ·

〉
with a1, a2 functions on the torus.

The prescribed behaviour under Weyl transformation yields

gµνT
µν = − c

24π
R. (with

〈
1 · · ·

〉
= 〈· · ·

〉
)

Using complex coordinates z with g = 2ρdzdz̄

Tµνdx
µdxν = Tzzdz

2 + 2Tzz̄dzdz̄ + Tz̄z̄dz̄
2

and defining T (z) by

T (z)

2π
= Tzz +

c

24

(
∂2
z log ρ−

1

2
(∂z log ρ)

2

)

(analogously for T̄ ) one finds

• T (z) is invariant under Weyl rescalings g → ρg
• ∂z̄T = 0
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• Under holomorphic maps u → z(u), T transforms as

T (z)dz2 = T (u)du2 − c

12
S(z, u)du2 where S(z, u) =

∂3
uz

∂uz
− 3

2

(
∂2
uz

∂uz

)2

• Virasoro OPE T (z1)T (z2) = c/2
(z1−z2)4

+ T (z1)+T (z2)
(z1−z2)2

+ R(z1, z2), where

R(z1, z2) is regular. Taylor expansion of R defines new fields Φn:

R(z1, z2) =

∞∑

n=0

(z1 − z2)
nΦn(z2).

(By R(z1, z2) = R(z2, z1) the Φ2n+1 are determined by the Φ2n.)

In general the Φn are not linearly expressible in terms of T . As can be checked by
considering the behaviour of the Virasoro OPE under holomorphic transformation
there is only one case where Φ0 ∼ T ′′ is possible, namely c = −22/5 and

T (z1)T (z2) =
−11/5

(z1 − z2)4
+

T (z1) + T (z2)

(z1 − z2)2
− 1

10
(T ′′(z1) + T ′′(z2)) +O((z1 − z2)

2).

This defines the (2, 5) minimal model. In this case, Z can be determined as follows:

•
〈
T (z)

〉
is a holomorphic doubly periodic function of z. Thus it only de-

pends on τ . Notation:
〈
T (z)

〉
=
〈
T
〉
. In particular,

〈
T ′′(z)

〉
= 0.

• For the torus given by the lattice 〈2πi, 2πiτ〉 and the corresponding Weier-
strass function P
〈
T (z1)T (z2)

〉
= −11

5

(
P ′′(z1 − z2)−

E4

120

)
Z + 2P(z1 − z2)

〈
T
〉
.

Changing the metric of the torus

2πi

2πiτ

along a closed line

2πi

2πiτ

so that τ → τ + dτ , the equations (**) specialize to the ODE

1

2πi

d

dτ
Z =

〈
T
〉

1

2πi

d

dτ

〈
T
〉
=

∮ 〈
T (z1)T (z)

〉
dz1 =

11

3600
E4Z +

1

6
E2

〈
T
〉
,

with solution

Z = f̃1f1 + f̃2f2, ∂τ f̃i = 0 for i = 1, 2.

Complex conjugation yields Z up to conventional normalization.
All of this can be generalized not only to arbitrary CFTs with a finite number

of characters fi but also to surfaces of higher genus g1. The constant curvature
metric is out of reach, thus it is convenient to use flat surfaces, with curvature

1This g is different from g the metric
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concentrated on vertices in multiples of 2π. More precisely one must regularize by
putting flat circles around the vertices. One obtains

Z(g) =
∏

rνii Zreg,

where the ri are the radii of the circles and the νi are integral multiples of c/24.
For hyperelliptic curves it suffices to use curve → P1 with flat metric on the

Gauss plane, sufficiently large radius for the circle(s) around ∞, sufficiently small
radius for the circles around (other) ramification points. We made an explicit
computation of the (2, 5) minimal model and genus 2 along the lines described
above. It suffices to consider eqs. (**) for n = 0, 1, 2. We put one ramification
point at ∞, the others ar X1, . . . , X5. W.r.t. each d

dXi
one obtains a system of

five linear ODEs. Compatibility is implied by the existence of the CFT (or to be
checked by tedium).

The equations w.r.t. d
dXi

involve the functions f, ϑi, ϑ̇i, ϑ̈i, ϕi. Let p(t) =
∏5

i=1(t−Xi), ṗ = dp
dt etc., c = −22/5

Di =
d

dXi
− c

8

∑

j 6=i

1

Xi −Xj
. Then

Dif =
2

ṗ(Xi)
ϑi

Diϑi =

(
9

10

p̈

ṗ
ϑi +

3

10
ϑ̇i +

7c

320

p̈2

ṗ
f − 7c

480

...
p f

)∣∣∣
t=Xi

Diϑ̇i =

(
11

30

...
p

ṗ
ϑi +

7

10

p̈

ṗ
ϑ̇i +

7

10
ϑ̈i +

7c

480

p̈
...
p

ṗ
f − c

480
pIV f

) ∣∣∣
t=Xi

Diϑ̈i =
2

ṗ(Xi)
βi

Diβi =

(
9

10

...
p

ṗ
βi+

1601

6000
pV ϑi+

pIV

20
ϑ̇i+

143

1200

...
p ϑ̈i+

293c

48000
p̈pV f+

c

480

...
p pIV f

) ∣∣∣
t=Xi

(Frobenius indices 7
10 (3 times), 11

10 (twice), no logarithms). The systems are
connected by

ϑj = ϑi + (Xj −Xi)ϑ̇i +
1

2
(Xj −Xi)

2ϑ̈i −
c

160
(Xj −Xi)

3...p (Xi)f,

ϑ̇j = ϑ̇i + (Xj −Xi)ϑ̈i −
3c

160
(Xj −Xi)

2...p (Xi)f,

ϑ̈j = ϑ̈i −
3c

80
(Xj −Xi)

...
p (Xi)f,

βi = B

+

(
101

600
pIV θi−

1

600

...
p ϑ̇i+

37

210
p̈ϑ̈i+

(
49c

72000

...
p 2+

67c

12000
p̈pIV − 13c

960
ṗpV

)
f

)∣∣∣
t=Xi

(B independent of i).
Note that the only denominator is ṗ(Xi) =

∏
j 6=i(Xi −Xj), so that the system

has only regular singularities. When 3 ramification points approach each other, the
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curve splits as

τ1 τ2

and four solutions of the system2 reduce to products

fi(τ1)fj(τ2), i, j = 1, 2 in the guise

f1(τ) =

(
X(1−X)

16

)− 1
30

F21

(
3

10
,− 1

10
,
3

5
, X

)

f2(τ) =

(
X(1−X)

16

) 11
30

F21

(
7

10
,
11

10
,
7

5
, X

)

X =
ϑ4
2(τ)

ϑ4
3(τ)

, F21: Gauss hypergeometric function,

ϑ2(τ) =
∑

n∈Z+ 1
2

qn
2/2, ϑ3(τ) =

∑

n∈Z

qn
2/2.

The order of the corresponding systems for higher genus increases exponentially,

5g/2Fg−2 for g even, 5(g−1)/2(Fg−1 + Fg−3) for g odd,

F0, F1, F2, . . . = 1, 1, 2, . . . the Fibonacci numbers.

For hyperelliptic surfaces one gets smaller systems of order F2g . In the first case
one gets automorphic forms for the mapping class group, in the second case for
the braid group of the ramification points.

Bloch groups, units, modularity and Nahm sums

Don Zagier

(joint work with Stavros Garoufalidis)

The Volume Conjecture (by Kashaev in [1]) and the Arithmeticity Conjecture (by
Garoufalidis in [2], and Dimofte, Gukov, Lenells and myself in [3]) predict that the
N -th Kashaev invariant 〈K〉N of a hyperbolic knot K has an asymptotic expansion

(*) 〈K〉N ∼ N3/2eCNλ0

(
a0 + a1

2πi

N
+ a2

(
2πi

N

)2

+ · · ·
)

as N → ∞, where C is essentially the volume of S3 \ K and λ2
0 and aj (j ≥ 0)

belong to the trace field F of the knot.
A refinement of this is given by the Modularity Conjecture, which in particular

predicts the existence of a similar expansion for JK(q) as q tends to any root
of unity, where JK is a suitable extension of the Kashaev invariant 〈K〉N =
JK(e2πi/N ) to all roots of unity. This conjecture was originally formulated by
me for the case of the Figure 8 knot [4], and has now been proved in that case
and verified numerically for many other knots by Garoufalidis and myself. In all
cases the expansion of JK(q) near a fixed primitive n-th root of unity ζ has the

2The fifth solution is ∼ η−2/5(τ1)η−2/5(τ2) and leads to a new field (the second conformal
block).
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same form as (*) except that the coefficients aj now lie in the cyclotomic extension

Fn = F (ζ) and that λ0 must be replaced by λ0ε
1/n for some unit ε of Fn.

We guessed that this mysterious unit ε should depend on the knot only through
its class [K] ∈ B(F ), the Bloch group of F (whose definition was recalled in the
talk). This suggested the existence of a canonical map

B(F )/nB(F ) → Un/U
n
n (Un = units of Fn).

In joint work with Frank Calegari [5], we proved the existence if such a map for
any number field F and n prime to some number depending only on F , as well
as a corresponding map from K3(F )/nK3(F ) to Un/U

n
n , where K3 is the third

algebraic K-group of F . Both maps are injective, with (the same) known image.
The map is given explicitly by associating to an element

∑
ni[Xi] (ni ∈ Z, Xi ∈ F ,∑

ni(Xi) ∧ (1 −Xi) = 0) the element u =
∏

Dζ(xi)
ni in the Kummer extension

H = F (x1, x2, . . . ) of Fn, where xi =
n
√
Xi and Dζ(x) :=

∏n−1
k=1 (1 − ζkx)k, and

then showing that u ∈ ε {H×}n for a unique element ε of Un/U
n
n .

As an unexpected corollary of this result, we also obtained a proof of Nahm’s
conjecture relating the modularity of certain special q-hypergeometric series
(“Nahm sums”) to the vanishing of a certain class in the Bloch group of Q. The
proof depends on showing that the asymptotics of any Nahm sum as q tends to a
root of unity ζn is given by a formula containing the above unit [6], together with
the observation that the limiting values at cusps of a modular function can only
take on finitely many distinct values.
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Milnor invariants in Ihara theory and triple power residue symbols

Masanori Morishita

1. Based on the analogies between knots and primes ([11]), mod 2 Milnor invari-
ants µ2(j1 · · · jn) of certain rational primes p1, . . . , pr were introduced in [10], as
arithmetic analogues of Milnor invariants of a link ([9]). For example, (−1)µ2(12)

coincides with the Legendre symbol (p1/p2). Assuming µ2(ij) = 0 (1 ≤ i, j ≤ 3),
(−1)µ2(123) is proved to equal the Rédei symbol [p1, p2, p3], which describes the
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decomposition of p3 in a dihedral extension R, determined by p1 and p2, of degree
8 over Q

R = Q(
√
p1,

√
p2,

√
α),

where α = x+ y
√
p1 and x, y are certain integers satisfying x2 − p1y

2 − p2z
2 = 0

with some non-zero integer z (cf. [14]). Recently, mod 3 Milnor invariants µ3(ij)
and µ3(123) were introduced for certain primes pi = (πi) (1 ≤ i ≤ 3) of the

Eisenstein field Q(ζ3), ζ3 := exp(2π
√
−1/3) ([1]). As in the mod 2 case, ζ

µ3(12)
3

coincides with the cubic residue symbol (π1/π2)3 and, assuming µ3(ij) = 0 for

1 ≤ i, j ≤ 3, [p1, p2, p3]3 := ζ
µ3(123)
3 describes the decomposition of p3 in a mod 3

Heisenberg extension K, determined by p1 and p2, of degree 27 over Q(ζ3)

K = Q(ζ3)( 3
√
π1, 3

√
π2,

3
√
θ),

where θ = x + y 3
√
π1 + z( 3

√
π1)

2 and x, y, z are certain algebraic integers in Z[ζ3]
satisfying x3 +π1y

3+π2
1z

3− 3π1xyz−π3
2w

3 = 0 with some w ∈ Z[ζ3] ([ibid]). We
note that a key ingredient to define well these mod l Milnor invariants of primes
is the theory of pro-l extensions of number fields with restricted ramification due
to Koch et al. (cf. [6]).

2. Ihara considered an arithmetic analogue of Artin’s representation of a braid
group ([4], [5]). Let l be a prime number and let k be a finite algebraic number
field. He considered a certain continuous representation of the absolute Galois

group Galk := Gal(k/k) on the free pro-l group F
(l)
r on x1, . . . , xr

Ih : Galk −→ Aut(F (l)
r )

so that for g ∈ Galk and 1 ≤ j ≤ r,

Ih(g)(xj) = yj(g)x
χl(g)
j yj(g)

−1.

Here χl : Galk → Z×
l is the l-cyclotomic character and yj(g) ∈ F

(l)
r is the unique

pro-l word such that yj(g) ≡
∏

i6=j x
ei
i mod [F

(l)
r , F

(l)
r ] for some ei ∈ Zl. In fact,

the representation Ih is obtained from the natural action of Galk on the pro-l étale

fundamental group π
(l)
1 (P1

k
\ {a0, a1, . . . , ar}; v0), where ai’s are k-rational points

with a0 = ∞ and v0 is a k-rational tangential base point at ∞. Following [5] and
[15], the pro-l word yj(g) can be described in the following geometric way: For
1 ≤ i ≤ r, choose a k-rational tangential point vi at each ai and let γi be a path
from v0 to vi. Let x′

i be a small circle starting from vi in the opposite clockwise
direction. We set xi := γ−1

i ·x′
i ·γi, where paths are composed from the right. Then

π
(l)
1 (P1

k
\ {a0, a1, . . . , ar}; v0) is generated by x0, x1, . . . , xr, subject to the relation

xr · · ·x1x0 = 1. By [15], we can show that yj(g) = g(γj)
−1 · γj for 1 ≤ j ≤ r.

LetM (l) : F
(l)
r → Zl〈〈X1, . . . , Xr〉〉 be the pro-lMagnus homomorphism defined

byM (l)(xi) = 1+Xi for 1 ≤ i ≤ r. The l-adic Milnor number µ(l)(g; i1 · · · inj) ∈ Zl

is defined by the coefficient of Xi1 · · ·Xin in the pro-l Magnus expansion of yj(g):

M (l)(yj(g)) = 1 +
∑

1≤i1,...,in≤r µ
(l)(g; i1 · · · inj)Xi1 · · ·Xin . We set µ(l)(g; i) := 0

(1 ≤ i ≤ r). The l-adic Milnor invariant µ(l)(g; I) for a multi-index I with length
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|I| ≥ 2 is defined by taking modulo a certain indeterminacy ∆(l)(g; I) (ideal of
Zl):

µ(l)(g; I) := µ(l)(g; I) mod ∆(l)(g; I).

We note that ∆(l)(g; I) = 0 if µ(l)(g; J) = 0 for any J with |J | < |I| and g ∈
Galk(ζl∞ ), where k(ζl∞) is the field obtained by adjoining all l-powerth roots of
unity. The l-adic Milnor invariants of Galois elements satisfy some properties
similar to the braid case (cf. [8]).

Now, as we mentioned in Section 1, mod l Milnor invariants µl(I) of primes for
l = 2 and for l = 3 and |I| ≤ 3, which may be regarded as arithmetic analogues of
Milnor invariants of links. Since Milnor invariants of a braid b coincide with those
of the link obtained by closing b ([7], [12]), the analogy with topology suggests to
ask the following

Question. Is there any relation between µl(I) and µ(l)(g; I) for l = 2, 3 ?

3. In this section, we give an answer to the above Question for the case that
l = 2, 3 and |I| = 3.

Let p1, p2 be distinct prime numbers satisfying p1 ≡ p2 ≡ 1 mod 4 and
(

p1

p2

)
=

1. Then there are integers x, y and z satisfying x2 − p1y
2 − p2z

2 = 0, (x, y, z) =
1, y ≡ 0 mod 2 and x − y ≡ 1 mod 4. Then Rédei’s field R := Q(

√
p1,

√
p2,

√
α),

α = x+ y
√
p1, is a dihedral extension over Q of degree 8 unramified outside p1, p2

and ∞ ([14]).
In the setting of Section 1, for simplicity, we consider the case that a0 = ∞, a1 =

0, a2 = 1, a3 = p1(y/x)
2 (r = 3). Let S be the finite set of primes which divide

p1y
2 or x2 − p1y

2 = p2z
2 or l, and let Ω be the maximal Galois extension of Q

unramified outside S ∪ {∞}. By [2], Ih factors through Gal(Ω/Q). For a prime
p /∈ S, σp ∈ Gal(Ω/Q) denote a Frobenius automorphism over p. Note that R ⊂ Ω.

Let p3 be a prime number satisfying p3 /∈ S, p3 ≡ 1 mod 4 and
(

pi

p3

)
=
(

x
p3

)
= 1

(i = 1, 2). Recall that the Rédei triple symbol [p1, p2, p3] is given by σp3(
√
α)/

√
α.

Let t be the coordinate on P1. Consider the algebraic function f(t) and the
function field R defined by

f(t) :=

√
1 +

√
t, R := Q(t)(

√
t,
√
1− t, f(t)).

Then R/Q(t) is a dihedral extension of degree 8 unramified outside t = 0, 1,∞.
Note that R coincides with R when t is specialized to p1(y/x)

2. By the condition
on p3 and similar computations as in [13], we have

y3(σp3 ) ≡ [x1, x2]
µ(2)(σp3 ;123) mod (F

(2)
3 )2[F

(2)
3 , [F

(2)
3 , F

(2)
3 ]].

By [16], the monodromy transformations of f(t) along 2 paths σp3(γ3)
−1 · γ3 and

[x1, x2]
µ(2)(σp3 ;123) are f(t) 7→ σp3 (

√
α)/

√
αf(t) and f(t) 7→ (−1)µ

(2)(σp3 ;123)f(t),
respectively. Therefore we obtain the following
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Theorem. We have

[p1, p2, p3] = (−1)µ
(2)(σp3 ;123)

and hence µ2(123) = µ(2)(σp3 ; 123) mod 2.

Similarly, for the case that l = 3 and k = Q(ζ3), we obtain [p1, p2, p3]3 =

ζ
µ(3)(σp3 ;123)
3 and µ3(123) = µ(3)(σp3 ; 123) mod 3 for certain primes pi’s of Q(ζ3).
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Higher depth quantum modular forms

Kathrin Bringmann

(joint work with Antun Milas, Jonas Kaszian)

1. Quantum modular forms

To better understand the functions in the title, let us first recall quantum modular
forms, introduced by Zagier (see [4] for many examples).

Roughly speaking, quantum modular forms are functions f : Q → C (Q ⊆ Q),
for which the error of modularity (M = ( a b

c d ) ∈ SL2(Z))

(1) f(τ)− (cτ + d)−kf(Mτ)

is “nice”. The definition is intentionally vague to include many examples; the
examples of interest for us in particular require (1) to be extendable to open
subsets of R and to be real-analytic. Note that for classical modular forms (which
live on the complex upper half plane instead of Q) (1) is zero.

A famous motivating example comes from Kontsevich’s “strange function” which
was investigated by Zagier [3]. This function is defined as

KZ(q) :=
∑

m≥0

(q; q)m,

where for m ∈ N0 ∪{∞}, (a; q)m :=
∏m−1

j=0 (1−aqj) denotes the usual q-Pochham-
mer symbol. This function does not converge on any open subset of C, but con-
verges for q any root of unity and is actually a finite sum. Zagier’s study of KZ
depends on the identity (q := e2πiτ throughout)

(2)
∑

m≥0

(
η(τ) − q

1
24 (q; q)m

)
= η(τ)D (τ) +

1

2
η̃(τ).

Here η(τ) := q
1
24

∏
n≥1(1 − qn) =

∑
m≥1(

12
m )q

m2

24 is Dedekind’s η-function, ( ·
· )

the Kronecker symbol, D(τ) := − 1
2 +

∑
m≥1

qm

1−qm and η̃(τ) :=
∑

m≥1

(
12
m

)
mq

m2

24

the formal Eichler integral of η. The key observation of Zagier is that in (2), the
functions η(τ) and η(τ)D(τ) vanish of infinite order as τ → h

k ∈ Q. So at a root of
unity ζ, KZ(ζ) is essentially the limiting value of the Eichler integral of η. Zagier
then related this function asymptotically to

(3)

∫ i∞

−τ

η(w)

(−i(w + τ))
3
2

dw.

The error of modularity of this function can easily be determined and is real-
analytic. Note that integrals of the shape (3) also occur in the setting of mock
modular forms. These generalize Ramanujan’s mock theta functions which he
introduced in his last letter to Hardy. Mock modular forms are not quite modular,
but can be “completed” by adding a non-holomorphic piece (see [5] for details).
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Konsevitch’s strange functions occur also in knot theory. It belongs to the Habiro
ring of analytic functions of root of unity.

Returning to quantum modular forms, further examples of quantum modular
forms were investigated in the setup of characters of vertex algebra modules. I do
not want to give background here but just say that they take the particularly nice
shape (s ∈ N, s < p)

Fp−s,p(pτ)

η(τ)
,

where

Fj,p(τ) :=
∑

m∈Z

sgn

(
m+

j

2p

)
q(m+ j

2p )
2

is a false theta function. It is called “false theta” since getting rid of the sgn-

factor yields the theta function
∑

m∈Z
q(m+ j

2p )
2

, a modular form of weight 1
2 .

Quantum modularity of Fj,p is now given by relating it to a non-holomorphic
Eichler integral, as in (3) (see [2] for details). Of course this example is not as
interesting as Kontsevich’s strange function as it exists as q-series.

2. Higher depth quantum modular forms

Our motivating example is a certain q-series appearing in representation theory
of vertex algebras and W -algebras. They are sometimes called “higher rank false
theta functions”. They appear from extracting the constant term of certain mul-
tivariable Jacobi forms. The constant term can be interpreted as the character of
the zero weight space of the corresponding Lie algebra representation. In the case
of the simple Lie algebra sl3, the false theta function takes the following shape
(p ∈ N, p ≥ 2):

F (q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p(m2

1+m2
2+m1m2)−m1−m2+

1
p

× (1− qm1) (1− qm2)
(
1− qm1+m2

)
.

In [1], we decomposed this function as F (q) = F1(q) + F2(q), where

F1(q) :=
∑

α∈S

ε1(α)
∑

n∈α+N2
0

qQ(n) +
1

2

∑

m∈Z

sgn

(
m+

1

p

)
q(m+ 1

p)
2

,

F2(q) :=
∑

α∈S

ε2(α)
∑

n∈α+N2
0

n2q
Q(n) − 1

2

∑

m∈Z

∣∣∣∣m+
1

p

∣∣∣∣ q(
m+ 1

p )
2

,

with quadratic form Q(x, y) := 3x2+3xy+y2, S ⊂ Q2 a finite set, and ε1, ε2 func-
tions on that set. The function F1 and F2 turn out to have generalized quantum
modular properties. This connection goes via an analogue of (3). For instance,
we showed that F1 asymptotically agrees with an integral of the shape

∫ i∞

−τ

∫ i∞

w1

f(w1, w2)√
−i(w1 + τ)

√
−i(w2 + τ)

dw1dw2,
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where f has weight 3
2 in both variables. Modular properties follow from the modu-

larity of f which in turn gives quantum modular properties of F1. That motivates
the following definition: We call the resulting functions higher depth quantum
modular forms. Roughly speaking, depth two quantum modular forms satisfy, in
the simplest case, the modular transformation property M =

(
a b
c d

)
∈ SL2(Z)

f(τ)− (cτ + d)−kf(Mτ) ∈ Qκ(Γ)O(R) +O(R),

where Qκ(Γ) is the space of quantum modular forms of weight κ and O(R) the
space of real analytic functions on R ⊂ R.

Clearly, we can construct examples of depth two simply by multiplying two
(depth one) quantum modular forms. Non-trivial examples arise from F .

Theorem 1. For p ≥ 3, the higher rank false theta function F can be written as
the sum of two depth two quantum modular forms of weight one and two.

3. Open question

The above construction is just the starting point. There are many things left
which one may investigates. Of particular interest to me is the construction of
a “strange function” and building a theory of such functions. It feels to me that
interesting examples could for example come from knot theory.
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Volume & determinant densities, and biperiodic alternating links

Abhijit Champanerkar

(joint work with Ilya Kofman, Jessica Purcell)

For a hyperbolic link K, let vol(K) denote the hyperbolic volume of S3 − K,
det(K) denote its determinant and c(K) denote its crossing number. We define
the volume density of K as Dvol(K) = vol(K)/c(K), and its determinant density
as Ddet(K) = 2π log det(K)/c(K). It is known that Dvol(K) ∈ (0, voct), and
conjectured that Ddet(K) ∈ (0, voct), where voct is the hyperbolic volume of a
regular ideal octahedron. In [3] we proposed the following conjecture relating the
volume and determinant densities of hyperbolic links, and proved that the constant
2π in the conjecture is sharp:
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Conjecture 1 (Vol-Det Conjecture [3]). For any alternating hyperbolic link K,

vol(K) < 2π log det(K).

A biperiodic alternating link L is an alternating link in the plane which can be
isotoped to be invariant under translations by a two-dimensional lattice Λ. Let
L = L/Λ be the alternating quotient link, which can be realized as a link in the
thickened torus T 2 × (−1, 1).

In this paper, we prove the Vol-Det conjecture for infinite families of knots and
links which arise from studying biperiodic alternating links. We briefly explain
our method of constructing such families.

Følner convergence of link diagrams. Given a biperiodic link L, we study
families of links {Kn} which diagrammatically converge to L in a controlled man-
ner. This idea is made precise as follows.

Definition 1 (Følner convergence of links [2, 3]). For a subgraph H ⊂ G, let ∂H
denote the set of vertices of H that share an edge with a vertex not in H , and
let | · | denote the number of vertices in a graph. For a link K, let G(K) denote
the projection graph of K. We will say that a sequence of alternating links {Kn}
Følner converges almost everywhere to the biperiodic alternating link L, denoted
by Kn

F→ L, if the respective projections graphs {G(Kn)} and G(L) satisfy the
following conditions:

(i) there are subgraphs Gn ⊂ G(Kn) which form an exhaustive nested se-
quence of connected subgraphs i.e. {Gn ⊂ G | Gn ⊂ Gn+1,

⋃
n Gn = G}

such that lim
n→∞

|∂Gn|
|Gn|

= 0,

(ii) Gn ⊂ G(L) ∩ (nΛ), and
(iii) lim

n→∞
|Gn|/c(Kn) = 1.

Determinant density convergence. The determinant of a knot is one of the
oldest knot invariants that can be directly computed from a knot diagram. For
any knot or link K,

det(K) = | det(M +MT )| = |H1(Σ2(K);Z)| = |∆K(−1)| = |VK(−1)|,
where M is any Seifert matrix of K, Σ2(K) is the 2–fold branched cover of K,
∆K(t) is the Alexander polynomial and VK(t) is the Jones polynomial of K (see,
e.g., [7]).

For a biperiodic alternating link L, the two Tait graphs GL and G∗
L are planar

duals and are both biperiodic. We form the overlaid bipartite biperiodic graph
Gb

L = GL ∪G∗
L, whose black vertices are the vertices of GL and of G∗

L, and white
vertices are points of intersection of their edges. We study the toroidal dimer model
on Gb

L and obtain the characteristic polynomial p(z, w) of the toroidal dimer model
[6]. In [2] we prove

Theorem 1 ([2]). Let L be any biperiodic alternating link, with toroidally alternat-
ing Λ–quotient link L and crossing number c(L). Let p(z, w) be the characteristic
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polynomial of the toroidal dimer model on Gb
L. Then

Kn
F→ L =⇒ lim

n→∞
log det(Kn)

c(Kn)
=

m(p(z, w))

c(L)
,

where m(p(z, w)) is the Mahler measure of p(z, w).

Semi-regular biperiodic links. A biperiodic alternating link L is called semi-
regular if the link projection is isomorphic, as plane graphs, to a biperiodic edge-
to-edge Euclidean tiling with convex regular polygons, such that all vertices are
4–valent. Such Euclidean tilings are k–uniform tilings, where k is the number of
orbits of vertices (see [5]). There exist infinitely many such tilings. In [4] we study
the hyperbolic geometry of semi-regular biperiodic alternating links in detail. One
of the consequences of this is the following:

Theorem 2 ([4]). Let L be a semi-regular biperiodic alternating link, with toroidal-
ly alternating Λ–quotient link L and crossing number c(L). Let Kn be any sequence

of alternating links such that Kn
F→ L. Then for almost all n,

vol(Kn)

c(Kn)
≤ vol(T 2 × I − L)

c(L)

Mahler measure and hyperbolic volume. Mahler measure of two-variable
polynomials has been related to hyperbolic volume, most notably in the work of
Smyth [8], and Boyd-Rodriguez-Villegas [1], by finding families of polynomials
whose Mahler measure equals sum of hyperbolic volumes. However for this paper
we conjecture the following inequality:

Conjecture 2. Let L be a semi-regular biperiodic alternating link, with toroidally
alternating Λ–quotient link L and crossing number c(L). Let p(z, w) be the char-
acteristic polynomial of the toroidal dimer model on Gb

L. Then

vol(T 2 × (−1, 1)− L) ≤ 2π m(p(z, w)).

Rhombitrihexagonal link. A simple example which verifies Conjecture 2 is the
Rhombitrihexagonal link as shown in Figure 1. In this case we get a strict inequal-
ity.

Figure 1. Rhombitrihexagonal link and its quotient in T 2 × I.
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Using the strict inequality in Conjecture 2 and the volume bound for semi-
regular links in Theorem 2 lets us prove the Vol-Det conjecture for an infinite
family of links.

Theorem 3. Let L be the Rhombitrihexagonal link and let Kn be any sequence of

alternating links such that Kn
F→ L. Then for almost all n,

vol(Kn) < 2π log det(Kn).
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Simplicial schemes and triangulated spaces

Christian Zickert

We formulate some results of Fock and Goncharov [1], and Garoufalidis, Thurston
and Zickert [2] using the language of simplicial schemes. A simplicial scheme
associates (tautologically) a scheme to each triangulated space. The simplicial
scheme of configurations of points in SL(n)/N associates the Fock–Goncharov A-
space to a triangulated surface, and the Ptolemy variety of Garoufalidis–Thurston–
Zickert to a triangulated 3-manifold. If one instead considers the simplicial scheme
of configurations of points in a fixed vector space, one obtains schemes with very
interesting structures. This scheme has explicit coordinates similar to the Plucker
coordinates on the Grassmannian, and it appears that the schemes associated to
even dimensional spaces have canonical 2-forms (possibly symplectic), and that the
schemes associated to odd dimensional manifolds have polylogarithm invariants,
and invariants in the (higher) Bloch groups. These invariants can be explicitly
expressed in terms of the Plucker coordinates.
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An overlooked problem: What are the Betti numbers of closed
manifolds?

Matthias Kreck

(joint work with Don Zagier)

Question. Given natural numbers (b0 = 1, b1, b2, . . . , bn). Is there a closed smooth
n-manifold M with Betti number bi(M) = bi?

Two cases. Case 1: bn = 0 or M non-orientable. Then we prove

Theorem 1. b0 = 1, b1, . . . , bn−1, bn = 0 can be realized as Betti numbers of a
closed manifold M ⇔∑

(−1)ibi = 0 for n odd.

Case 2: bn = 1 or M orientable.
Necessary condition from Poincaré duality:

bi = bn−i and for n = 4k + 2: b2k+1 even.

Observation. If these conditions are fulfilled and in addition for n = 4k we have
b2k even, then bi can be realized as Betti numbers of connected sum of products
of spheres.

Thus the open problem is, which b0 = 1, b1, . . . , b4k = 1 with b2k odd are
Betti numbers of closed 4k-manifolds?

We will concentrate from now on the case where b1 = · · · = b2k−1 = 0. To
formulate our results we have to formulate the Hirzebruch Signature Theorem for
a manifold M4k with these Betti numbers:

signM = 〈Lk(pi(M)), [M ]〉

=

{
〈s2kp2k(M), [M ]〉 if k is odd

〈s2kp2k(M), [M ]〉+ 〈12 (s2k − s2k)p
2
k(M), [M ]〉 if k is even,

where sk = 22k(22k−1 − 1) |B2k|
(2k)! .

Theorem 2. The only dimensions n ≡ 0 mod 4, for which there is a Mn with
b1 = · · · = bn/2−1 = 0 and bn/2 an odd number are n = 4 and n = 8k with

k = 2a + 2a
′

.

Theorem 3. For k = 2a +2a
′
and a given odd natural number b there is a closed

oriented manifold M8k with b1(M) = · · · = b4k−1(M) = 0 and b4k(M) = b ⇔
there is an odd number s with 1 ≤ s ≤ b and integers u and v such that
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(1) s = s2ku+ 1
2 (s

2
k − s2k)v

(2)
(

(−1)k+1sk
(2k−1)! + 1

2(4k−1)

)
v − u

(4k−1)! ∈ Z[ 12 ]

(3) v
(2k−1)2 ∈ Z[ 12 ],

where v ≥ 0 for s = b; v > 0 and v 6= 7 mod 8 for s = b = 3; v = r2 for s = b = 1.

Remark. The case s = b = 1 was first proved by Kennard and Su.

Theorem 4. There exists an n-dimensional manifold with total Betti number 3
(i.e., with b0 = bn/2 = bn = 1 and no other non-vanishing Betti numbers) for

n = 4, 8, 16, 32, 128 and 256 and for no other n less than 105, with 13 possible
exceptions n = 544, 4160, 8224, 16448, 32776, 32832, 33280, 40960, 49152, 65536,
65600, 65792, and 66560.

The six values of n for which such a “rational projective plane” exists were
found independently by Kennard and Su. The number-theoretical analysis sug-
gests strongly that rational projective planes exist in only finitely many dimen-
sions, and that there are almost certainly at most one or two further examples.

New q-series invariants of 3-manifolds

Sergei Gukov

(joint work with Marcos Marino, Du Pei, Pavel Putrov, Cumrun Vafa)

For knots and links in M3 = R3, the suitably normalized WRT invariants com-
puted by the 3d Chern-Simons TQFT with coupling constant / “level” k turn out
to be polynomial in the variable q = e2πi/k with integer coefficients. This curious
fact, observed in the past century, found a new life in the 21st century: the in-
teger coefficients of knot invariants are Euler characteristics of the Hilbert spaces
H(R3,K) assigned to a knot K by a 4d TQFT with surface operators / foams:

(1) WRT(R3,K) =
∑

i,j

(−1)iqj dimHi,j(R3,K)

The physical interpretation of the space H as a certain Q-cohomology (or, equiv-
alently, as a space of particular BPS states) proposed in [1] quickly led to many
new predictions and connections between various areas, which include knot con-
tact homology [2], gauge theory [3, 4], algebras of interfaces [5, 6], and many more
[7].

A typical example of a simple knot invariant for which the lift (1) to a space H
was not known prior to [1] is the sl(4) quantum invariant of the figure-8 knot:

(2) 1 +
1

q4
− 1

q
− q + q4.
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The physics computation, on the other hand, led to a doubly-graded space (of
BPS states) with the Poincaré polynomial

(3) 1 +
1

q4t2
+

1

qt
+ qt+ q4t2.

which was later verified by purely mathematical techniques, as soon as they became
sufficiently developed. In a similar way, the proposed physical setup led to concrete
predictions for sl(N) homologies of knots and links, including colors (decoration
by representations of sl(N)) and other root systems [8, 9].

Although knots and 3-manifolds often appear on the same footing in Chern-
Simons theory and in low-dimensional topology — e.g. every 3-manifold can be
obtained from a 3-sphere by a sequence of surgeries on some knots — a much de-
sired generalization of (1) to arbitrary 3-manifolds faces an immediate challenge.
No normalization and change of variables can turn the Chern-Simons (WRT) in-
variants of M3 into polynomials or power series with integer powers and coeffi-
cients.

This challenge was recently overcome in [10, 11, 12], where a set of new invari-

ants Ẑa(M3) was proposed, such that

(4) WRT(M3) =
∑

a

eikCS(a)

(
lim

q→ e2πi/k

∑

b

Sab Ẑb(q)

)

Here, the labels a and b run over1 Abelian flat connections on M3, and Sab are
simple numerical coefficients known explicitly (in particular, they do not depend

on q or k). More importantly, the new invariant Ẑa(M3, q) is a power series in q
with integer coefficients and, as in (1), has a lift to a vector space H(M3) which
in the physical framework is the space of BPS states, a.k.a. Q-cohomology of the
fivebrane theory with respect to a topological supercharge Q. This machinery has
been applied to some concrete examples which so far include Lens spaces, circle
bundles over Riemann surfaces, Seifert spaces, and general plumbing 3-manifolds
[12, 10]. The next obvious step is to extend it to calculation of homology groups
for other 3-manifolds and to understand the structural properties of the resulting
spaces of BPS states. Surprisingly, they appear to exhibit much of the same
structure as sl(N) knot homologies, e.g. action of the differentials dN , etc.
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Special subgroups of Bianchi groups

Michelle Chu

Recent progress in 3-manifold theory has determined many virtual properties re-
lating to surfaces. In particular, the resolution of the virtual Haken and the
virtual fibering conjectures for finite volume hyperbolic 3-manifolds relies heavily
on geometric group theory techniques; indeed, these results follow from a stronger
theorem which states that 3-manifolds are virtually special [2, 7]. We say M is
special in the sense of [5] if its fundamental group π1(M) embeds in a right-angled-
Coxeter group (RACG). A special 3-manifold inherits many nice properties from
the embedding in the RACG, in particular, it is Haken and virtually fibered by
RFRS [1]. Prior to Agol’s resolution, virtually special was known for Bianchi
groups [3] and more generally for arithmetic lattices of simplest type [4].

There has been recent interest in determining special finite index subgroups
of the fundamental groups of hyperbolic 3-manifolds. In [6], Spreer and Tillmann
found a special subgroup of index 60 in the fundamental group of the Seifert-Weber
dodecahedral space, which is arithmetic of simplest type. The aim of this talk is to
determine special finite index subgroups of Bianchi groups. Let d be a square-free
positive integer and Od the ring of integers of the quadratic field Q(

√
−d).

Theorem 1. The Bianchi group PSL2(Od) contains a subgroup ∆d which embeds
geometrically in a RACG and has index

[PSL2(Od) : ∆d] =





48 if d ≡ 1, 2 mod 4

120 if d ≡ 3 mod 8

72 if d ≡ 7 mod 8.

Furthermore, ∆d is as congruence subgroup of level 2 whenever d ≡ 1, 2 mod 4
and otherwise a congruence subgroup of level 4.

Arithmetic Kleinian groups associated to rational quadratic form will have have
congruence subgroups which are special (but perhaps of high level). It would be



Low-dimensional Topology and Number Theory 2407

interesting to see whether special subgroups of any arithmetic hyperbolic lattices
can always be achieved by congruence subgroups.
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Analogies connecting asymptotic problems [from number fields to
3-manifolds]

Farshid Hajir

Introduction. Analogies have a long history of driving discovery in mathematics.
The goal in this short expository talk is to use an example from algebraic number
theory to motivate a question about volumes of cusped 3-manifolds refining a
theorem of Adams.

We first give a quick sketch of the formalization of the concept of asymptotically
good families, closely following [2], with the difference that we keep track of “good”
objects as those of “low cost” as opposed to “high quality.” To begin, we require
a context C = (O, T , τ, ω), where O, T are sets and τ, ω are maps τ : O → T
and ω : O → R≥0. Here, O is the set of objects of interest, T is a paramater
space of types of the objects, and ω is the critical invariant measuring the “cost”
of the object (for some contexts not discussed here it is more natural to consider
α = ω−1 as the “quality” of the object). Often ω is expressed as a ratio of two
other invariants and hence measures a “unit cost” for the object at hand. The
parameter space is usually a familiar and countable set; for convenience, we will
assume that τ is surjective. It goes without saying that our normalization is such
that “good” objects are those of low cost.

A family F in O is a sequence F1, F2, · · · of pairwise distinct elements of O.
We say that F = (Fi) is isotypic of type t if every member of F has type t, i.e.
τ(Fi) = t for all i. We extend ω to families by putting ω(F) = lim supi→∞ ω(Fi),
for F = (F1, F2, · · · ) and say that F is asymptotically good if ω(F) < ∞. In the
contexts we have in mind, it is typically difficult to construct asymptotically good
families, or at least to do so explicitly.
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The main object of interest attached to a context C = (O, T , τ, ω), namely the
asymptotic envelope function Ω : T → R≥0 is given by

Ω(t) := inf
F of type t

ω(F),

where the infimum is taken over all isotypic families of type t. Thus, the map Ω
is induces by τ and α as in the following diagram.

O
τ

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

ω

!!
❈❈

❈❈
❈❈

❈❈

T
Ω

// R≥0

It is clear that the asymptotic envelope function is a measure not of the cost
of individual objects, but rather of the existence of infinite non-repeating strings
of those of a fixed type having bounded cost. In many contexts, one is able
to estimate Ω(t) by upper and lower bounds but of course would like to have
an explicit formula for Ω(t) itself. Typically, the theory provides a natural and
“decent” lower bound, meaning one that is believed to be sharp. Interestingly, the
source of this lower bound is usually a zeta function known or at least suspected
to satisfy an appropriate Riemann hypothesis. Obtaining upper bounds involves
the creation of examples with extremal properties, usually from objects carrying
inordinately many symmetries – it is not surprising that automorphic forms are a
typical source.

Number Fields. For the context of number fields Cnf , the set of objects Onf

consists of fields K of finite degree n(K) over Q. The type of a number field
is defined to be τ(K) = r1(K)/n(K); it is the proportion of the embeddings
of K into C with image contained in R. The space of possible types in this
context is T = [0, 1] ∩Q. As the critical invariant, we choose the logarithmic root
discriminant:

ωnf(K) :=
log | disc(K)|

n(K)
,

where disc(K) is the absolute discriminant ofK and n(K) = [K : Q] is its absolute
degree; for the field Q, we have ω(Q) = 0. The resulting asymptotic envelope
function Ωnf(t) is known as the Martinet function [4]. Under the Generalized
Riemann Hypothesis (GRH), we have a bound due to Stark, Odlyzko and Serre,
namely

Ωnf(t) ≥ log(8π) + γ +
π

2
t.

There is an unconditional lower bound as well. Such lower bounds (but with
worst constants) were first derived by Minkowski using his Geometry of Numbers.
As for upper bounds, the only source of good families in Cnf we currently know
are nested fields K0 ( K1 ( · · · which are ramified at finitely many places and
shallowly ramified (they exist by a theorem of Golod and Shafarevich). As a result
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we do not have an explicit upper bound , though by [3], we have Ωnf(0) ≤ log(83)
and Ωnf(1) ≤ 1/ log(955).

3-manifolds. We now consider the context Ccm where the objects are cusped
hyperbolic 3-manifolds of finite volume. For an n-cusped 3-manifold M with r1
Klein bottle cusps and n− r1 = r2 torus cusps, we define the orientation type and
normalized volume of M to be, respectively

τ(M) :=
r1
n
, ωcm(M) :=

vol(M)

n
.

If we consider the cusps of a 3-manifold to be analogous to the places at infinity
for a number field, we are led to the question: does the volume of an n-cusped
hyperbolic 3-manifold grow linearly with n? The answer is yes. Indeed, we have
the following theorem of Adams [1]: If M is an n-cusped hyperbolic 3-manifold,
then vol(M) ≥ v3n where v3 is the volume of the regular ideal tetrahedron.

We note that Adams’ proof relies on Minkowski’s geometry of numbers. Even
without this fact as a provocation, it is natural for a number-theorist to wonder
whether Adams’ theorem can similarly be refined for contributions from torus
cusps and Klein-bottle cusps. We venture that ωcm(M) is a reasonable analogue
of the logarithmic root discriminant for number fields and therefore ask what can
be said about Ωcm(t) for t ∈ [0, 1] ∩Q beyond what comes from Adams’ theorem,
namely Ωcm(t) ≥ v3. Can one prove an explicit upper bound for Ωcm(t)? It would
be very interesting, for instance, if it can be established that Ωcm(t) is a linear
function of t, or that it meets a fixed linear upper bound for many values of t.
The analogue of such bounds for number fields appear to be beyond reach at the
moment.
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con, 2010.

[3] F. Hajir and C. Maire, Tamely ramified towers and discriminant bounds for number fields
II, J. Symb Computation 33 (2002) no. 4, 415-423.

[4] J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. Math. 44
(1978), no. 1, 65–73.

Knots and their related q-series

Stavros Garoufalidis

(joint work with Don Zagier)

We discuss empirical asymptotic properties of q-series and their relation of the
Kashaev invariant of knots. This is a tale of several independent discoveries, in
many parts, and with a yet unfinished ending.
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In this paper we want to tell a story about q-series and quantum invariants of
knots that seems to us very interesting. We will tell it in detail for the 41 (or
figure 8) knot, the simplest hyperbolic knot, and will discuss a few other cases in
the final section. The story relates

• the colored Jones polynomials and Kashaev invariant of a knot and the
conjectural modularity properties of the latter,

• certain special q-hypergeometric series arising in connection with quantum
spin networks, with the Dimofte-Gaiotto-Gukov index of triangulations,
and certain invariants of knots defined by Dimofte and the first author,
and

• state integrals (integrals of the Faddeev quantum dilogarithm) of the type
studied by Hikami, Kashaev and others.

The statements, most of which are only empirical, mostly concern the asymptotic
properties of these functions and their interrelations.

1. The Kashaev invariant and the function g(q)

To any knot K is associated a sequence of Laurent polynomials JK
n (q) ∈ Z[q, q−1]

called the colored Jones polynomials ofK. We do not repeat the general definition,
which can be found in many places and is not relevant for us, but simply give the
formula for the 41 knot:

J41
n (q) =

∑

m≥0

q−mn
m∏

j=1

(
1− qn−j

)(
1− qn+j

)
(n = 1, 2, 3, . . . ) .

(The sum terminates at m = n − 1.) If we specialize q to be a root of unity,
say qN = 1, then it is clear from this expression that J41

n (q) is periodic in n of
period N , so we can extrapolate backwards and define J41

n (q) also for n ≤ 0. In
particular, this gives us the new function

(1) J41
0 (q) =

∞∑

m=0

m∏

j=1

(
1− q−j

)(
1− qj

)
(q a root of unity) .

It is known by the work of Murakami and Murakami [11] that the (similarly de-
fined) invariant JK

0 (e2πi/N ) for any knot K is equal to the knot invariant 〈K〉N
defined by Kashaev [10]. The famous volume conjecture of Kashaev states that for
any hyperbolic knot K the logarithm of 〈K〉N is asymptotically equal to CN as N
tends to infinity, where C equals the (complexified) hyperbolic volume of the knot
divided by 2π. There are very few cases for which the volume conjecture has been
rigorously proved, but for the 41 knot it is quite easy using the Euler-Maclaurin
formula and standard asymptotic techniques, because all of the terms in (1) are
positive, and one finds the much more precise formula

(2) J41
0 (N) ∼ N3/2 Φ̂(1/N)

with Φ̂(x) defined by

(3) Φ̂(x) = eC/xΦ(x) ,
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where C is the real number

(4) C =
1

2π
Vol
(
S3 r 41

)
=

1

π
Li2(e

πi/3) = 0.3230659 · · ·

and where Φ(x) is the formal power series with real coefficients having the form

(5) Φ(x) =

∞∑

j=0

ajx
j , aj =

1
4
√
3

( π

36
√
3

)j Aj

j!

with Aj ∈ Q, the first values being given by

j 0 1 2 3 4 5 6 7

Aj 1 11 697 724351

5

278392949

5

244284791741

7

1140363907117019

35

212114205337147471

5

A proof of (2) is given in the appendix, and an extension to all roots of unity is
given in [8]. The weaker asymptotic formula with Φ(x) replaced by its constant
term a0 was proved by Andersen and Hansen [1].

The surprising discovery that we made, completely by accident, is that there
is a close connection between the asymptotic expression occurring here and the
radial asymptotics of the function in the unit disk defined by

(6) g(q) = (q)∞

∞∑

n=0

(−1)n
qn(3n+1)/2

(q)3n
= 1− q − 2q2 − 2q3 − 2q4 + q6 + · · · .

(Here (q)n = (1− q)(1− q2) · · · (1− qn) is the usual q-Pochhammer symbol.) The
infinite sum in (6) occurred in the work of the first author on the stability of the
coefficients of the evaluation of the regular quantum spin network [6, Sec.7], and in
the course of a numerical investigation of its asymptotics as q → 1 we discovered
empirically the following:
Conjecture We have

(7) g
(
e2πiz

)
∼ √

z Φ̂(z) +
√
−z Φ̂(−z)

to all orders in z as z tends to 0 in the upper half-plane.
(It was to achieve this simple statement that we included the factor (q)∞ in (6).)

The authors now a proof of this conjecture. We mention two other formulas
for g, noticed by us and verified by Sander Zwegers,

(8) g(q) =
1

(q)∞

∞∑

n,m=0

(−1)n+m q(n+m)(n+m+1)/2

(q)n (q)m
=

∞∑

n=0

(−1)n
qn(n+1)/2

(q) 2n
.

These expressions are of interest because, unlike the original series in (6) whose
origin had no obvious connection with the knot, these series are related to it: the
first one, which was shown to us by Tudor Dimofte, is typical of the series occurring
in his work with Gaiotto and Gukov [2, 3, 5] on the 3D index of a triangulation,
while the second one is typical of those occurring in the work of Dimofte and the
first author on q-series associated to ideal triangulations of cusped 3-manifolds [4].

Equation (7) turns out to be only part of a bigger story. On the one hand, the
power series Φ(x) is only a special case at α = 0 of the more general asymptotic

series Φα(x) (α ∈ Q) occurring in the modularity conjecure for J41
0 (q) made by the
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second author in [12], and these turned out to be were related in exactly the same
way to the asymptotics of g(q) for q = e2πiα−ǫ as ǫ ց 0. On the other hand, the
q-series g(q) and the asymptotic formula (7) are related to the Dimofte-Gaiotto-
Gukov index and to the Hikami-Kashaev state integral [7]. This is explained in
the talk and in the paper under preparation [9].
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Azumaya algebras and hyperbolic knots

Matthew Stover

(joint work with Ted Chinburg and Alan W. Reid)

Broadly, the purpose of this work [1] is to introduce methods from arithmetic
geometry to study the SL2(C) character variety of a (hyperbolic) knot group. Let
K be a knot in the 3-sphere S3 and set Γ = π1(S

3rK). Fix a meridian/longitude
pair µ, λ ∈ Γ. We assume that K is hyperbolic, meaning that there is a discrete
and faithful representation

ρ∞ : Γ → SL2(C)

such that S3rK is homeomorphic to the quotient H3/ρ∞(Γ) of hyperbolic 3-space
H3 by the action of ρ∞(Γ) by isometries.

For a pair of coprime integers α = (p, q), let Mα denote the closed manifold that
results from performing α-Dehn surgery on S3 rK. A famous result of Thurston
says that, for all but finitely many α, Mα is a closed hyperbolic 3-manifold. More
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precisely, there is a representation

Γ π1(Mα) = Γ/〈〈µpλq〉〉 SL2(C)

ρα

with discrete cocompact image and Mα homeomorphic to H3/ρα(Γ).
Recall that the character of an irreducible SL2(C) representation is uniquely de-

termined by the conjugacy class of the representation. In this language, Thurston
proved that the character χ∞ of ρ∞ defines a smooth point of an affine curve
component C(K) of the character variety

X(Γ) = Hom(Γ, SL2(C))// SL2(C),

and the points χα associated with the characters of the representations ρα alge-
braically converge to χ∞ as |p|+ |q| → ∞. The curve C(K) is typically called the
canonical component of the character variety.

One goal of this project is to use the arithmetic geometry of the canonical
component to prove theorems about arithmetic invariants of the hyperbolic 3-
manifolds Mα. The trace field of Mα is the field

kα = Q(χα(γ) : γ ∈ Γ),

and Weil rigidity implies that kα is a number field. There is also the associated
quaternion algebra

Aα =

{
n∑

i=1

xiρα(γi) : γi ∈ Γ , xi ∈ kα , n ∈ N

}
⊆ M2(C).

The field kα is well-known to be closely related to the lengths of closed geodesics
on Mα, and the algebra Aα, which carries information about the eigenvalues of hy-
perbolic elements of π1(Mα), has been of great use in studying geometric problems
like isospectrality. See [7] for more about these important topological invariants.

Associated with Aα are its invariants Inv(Aα), which is a finite set consisting
of (1) real embeddings of kα and (2) prime ideals of the integer ring Oα of kα. To
simplify the discussion, let inv(Aα) denote the (finite) set {pi} of rational primes
such that pi divides piOα for some prime ideal pi ∈ Inv(Aα). In other words, pi is
the characteristic of the finite field Oα/pi.

Consider the set

inv(K) = {p : p ∈ inv(Aα) , Mα a hyperbolic Dehn surgery on S3 rK}.
Using the program Snap [2], one can compute inv(Aα) for small Dehn surgeries
on S3 rK, and an interesting dichotomy appears: for some knots, the set inv(K)
appears quite rigid over all slopes α, whereas for other knots inv(K) seems more
random and possibly infinite. See Table 1 for some data.

Using the theory of quaternion Azumaya algebras, we are able to give a theoret-
ical explanation for this dichotomy. Specifically, the problem ends up intimately
tied to the question as to whether the assignment χα 7→ Aα extends to define
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Knot Primes appearing in various inv(Aα)
Figure-8 knot 2

52 3, 5, 13, 181
(−2, 3, 7) pretzel knot 3, 5, 13, 149, 211

61 ∅
Table 1. Primes appearing for small Dehn surgeries.

an Azumaya algebra over the entire smooth projective model C̃ of the canonical

component C(K). Heuristically, an Azumaya algebra over C̃ is an assignment
of a quaternion algebra to each point; see [8] for a more precise definition. The
reason we care about extending over the smooth projective model is precisely the
following theorem of Harari [4]: An Azumaya algebra defined over a Zariski open

subset U of a geometrically integral projective smooth curve C̃ extends over all of

C̃ if and only if there exists a finite set of rational primes S such that, if Az is the
algebra associated with the point z ∈ U , then inv(Az) ⊆ S. If no such finite set S
exists, then in fact

{p : p ∈ inv(Az) for some z ∈ C̃}
has positive Dirichlet density.

Analogous to the above definition of Aα, one can associate a quaternion algebra

Aρ to the point on C̃ determined by the character of any (absolutely) irreducible
representation ρ, and in [1] we show that this defines an Azumaya algebra over

the Zariski-open subset U ⊂ C̃ associated with the characters of irreducible repre-
sentations. Moreover, analogous to Culler and Shalen’s analysis of ideal points [3]
(in particular, irreducibility of the associated tree action), we show that one can

also include the set of ideal points of C̃ in U . Then C̃ r U consists of the points
associated with characters of reducible representations.

Using the close connection between nonabelian reducible representations of knot
groups and their Alexander polynomials, we completely characterize when the

above defines an Azumaya algebra over C̃. The main result of [1] is the following:

Theorem 1 ([1]). Let K be a hyperbolic knot with Γ = π1(S
3 rK), and suppose

that its Alexander polynomial ∆K(t) satisfies:

(⋆) For any root z of ∆K(t) in an algebraic closure Q of Q and w a square root
of z, we have an equality of fields Q(w) = Q(w + w−1).

Then the above construction extends to give an Azumaya algebra over the entire

smooth projective model C̃ of the canonical component of the SL2(C) character
variety of K.

Conversely, assuming that the point on C̃ determined by a nonabelian reducible
representation is smooth (e.g., if the associated root of the Alexander polynomial is
a simple root [5]), then the converse holds: if (⋆) fails, then the Azumaya algebra
cannot extend. One easily checks that (⋆) holds for the figure-8 knot and for
61, but fails for 52 and the (−2, 3, 7) pretzel knot. Moreover, using the theory
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of minimal regular integral models, we prove that when (⋆) holds the set S in
Harari’s theorem is precisely the (finite) set of primes p for which (⋆) fails modulo
p. In particular, we can confirm:

Theorem 2 ([1]). Let Mα be a hyperbolic Dehn surgery on the figure-8 knot. Then
inv(Aα) ⊆ {2}.

In [1] we also study connections with the existence of SU(2) representations of
knot groups. For example, we can prove under certain technical assumptions on
the arithmetic properties of the canonical component that it contains a circle of
characters of irreducible SU(2) representations. Irreducible SU(2) representations
are known to exist by work of Kronheimer–Mrowka [6], though it is not known
that these representations necessarily determine characters on the canonical com-
ponent. Our results indicate that one can also study this problem via arithmetic
geometry of the character variety.
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On the volume conjecture of quantum knot invariants

Jun Murakami

The relation between a quantum invariant and the hyperbolic volume of the com-
plement of a knot was discovered by R. Kahsaev [2], and then his invariant turned
out to be a specialization of the colored Jones invariant [4]. The colored Jones
invariant is a complex valued invariant, and now we have the following conjecture.

Volume Conjecture. For a hyperbolic knot K in S3,

(1) lim
N→∞

2 π log JN (K)

N
= Vol(K) +

√
−1CS(K),

where JN (K) is the colored Jones invariant corresponding to the N dimensional
irreducible representation of sl2 whose parameter q is specialized to the N -th
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primitive root of unity e
2π

√
−1

N , Vol(K) and CS(K) are the hyperbolic volume and
the Chern-Simons invariant of the knot complement S3 \K. The righthand side
of (1) is called the complex volume of S3 \K.

The proof of this conjecture is not difficult for the figure-eight knot and the
Borromean rings, but it is difficult for other cases, and now proved for hyperbolic
knots up to 7 crossings in [5], [7] and [6]. The strategy to prove the conjecture is
the following.

Step 1: Replace quantum factorials in the quantum invariants by quantum
dilogarithm functions. The quantum factorial is defined for integer values,
while quantum dilogarithm function is defined for continuous parameters,
and whose value at an integer coincides with the quantum factorial. More-
over, the main asymptotics of the quantum dialogarithm function is given
by the (classical) dilogarithm function. The function obtained from the
quantum invariant by replacing the quantum factorials by dilogarithm
functions is called the volume potential function.

Step 2: By using Poisson summation formula, replace sums by integrals.
Poissson summation formula:
∑

m∈Z

f(m) =
∑

m∈Z

f̂(m) where f̂(x) =

∫

R

e−2π
√
−1xt f(t) dt.

Step 3: Apply the saddle point method to the integral of the volume poten-
tial function, then the value at certain saddle point of the volume poten-
tial function coincide with the complex volume of the knot complement.
Yokota [9] pointed out that the saddle point equation corresponds to the
glueing equation of the ideal tetrahedral decomposition of the knot com-
plement.

The difficult part is to apply the saddle point method in Step 3. To apply the
saddle point method, we have to check that the integral domain satisfy certain
geometric condition. In general, we need multivariable integral and the condition
for multivariable case is not so easy to check. At this moment, it is done by
case-by-case check for each knot.

Even though the proof is not given, the volume potential function constructed
from the quantum invariant contains various geometric information of knots. For
example, Yokota [8] shows that a good deformation of the volume potential func-
tion coincides with the Neumann-Zagier function of the knot complement.

Almost 20 years after Kashav’s discovery, Chen-Yang [1] found that the volume
conjecture holds not only for knots but also for closed 3 manifolds if the param-

eter q is replaced by the second N -th root of unity e
4π

√
−1

N instead of e
2π

√
−1

N ,
and they generalized the volume conjecture for the Turaev-Viro invariant and the
Witten-Reshetikhin-Turaev invariant of 3-manifolds. The Turaev-Viro invariant
is obtained from a tetrahedral decomposition of a 3-manifold by assigning the
quantum 6j symbol to each tetrahedron. By applying the above 3 steps to the
Turaev-Viro invariant, a solution of saddle point equation gives the edge lengths
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of the geometric tetrahedral decomposition of the 3-manifold, and the quantum
6j symbol corresponds to the volume.

Chen-Yang’s version of the volume conjecture is also valid for the quantum
invariant of knotted graphs in S3 introduced by Kirillov-Reshetikhin [3]. The face
model construction of this invariant also uses the quantum 6j symbols. In this
case, the solution of the saddle point equation consists of complex numbers. If the
parameter is a real or pure-imaginal number, then it corresponds to the length or
angle at the edge, but if tis is a complex number, then it is a problem to understand
the geometric object corresponds to the quantum 6j symbol. Quantum invariants
are often formulated by quantum R-matrices, but the formulation by the quantum
6j symbol is also useful and universal.
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Theta Series for Indefinite Quadratic Forms

Sander Zwegers

(joint work with Don Zagier)

Let Q : Rn −→ R be a non-degenerate quadratic form of signature (r, s). We
denote the associated symmetric matrix by A (so Q(x) = 1

2x
TAx, AT = A) and

assume that A has entries in Z. Further let B : Rn × Rn −→ R be the associated
bilinear form: B(x, y) := xTAy = Q(x+ y)−Q(x)−Q(y).

For the case that A is positive definite (s = 0), it’s a classical result that the
corresponding theta series

ΘA(τ) :=
∑

ℓ∈Zn

qQ(ℓ) (q = e2πiτ , Im τ > 0)
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is a (holomorphic) modular form of weight n/2 (on some subgroup of SL2(Z), with
some character), see [6] for the case that A is even.

If for example we take A = 2I4, then the theta function ΘA is modular of weight
2 on Γ0(4). Writing this ΘA as a linear combination of Eisenstein series we obtain
Jacobi’s four-square theorem, which gives a formula for the number of ways that
a given positive integer m can be represented as the sum of four squares:

|{ℓ ∈ Z4 | ℓ21 + ℓ22 + ℓ23 + ℓ24 = m}| = 8
∑

d |m, 46 |d
d

For s > 0 the situation is a bit more complicated, because the sum
∑

ℓ∈Zn qQ(ℓ)

doesn’t converge. However, we can remedy this by restricting the sum over the
full lattice to the sum over a cone. For s = 1 such a construction can be found in
[3] and [9]: Let

Θc1,c2
m (τ) :=

∑

k∈Zn

{
sgnB(c1, k)− sgnB(c2, k)

}
m(k) qQ(k),

where c1, c2 ∈ Rn are such that Q(c1) = Q(c2) = −1, B(c1, c2) < 0 (c1, c2 belong
to the same component of {c ∈ Rn | Q(c) = −1}) and m is a periodic function
on Zn. This function Θc1,c2

m is holomorphic, but in general not modular. Now

consider the function Θ̂c1,c2
m given by

Θ̂c1,c2
m (τ) :=

∑

k∈Zn

{
E
(
B(c1, k)y

1
2

)
− E

(
B(c2, k)y

1
2

)}
m(k) qQ(k) (y = Im τ),

where

E(z) := 2

∫ z

0

e−πu2

du = sgn(z)− sgn(z)

∫ ∞

z2

u− 1
2 e−πudu

(see [9]). This function Θ̂c1,c2
m is modular (which can easily be shown using a

result of Vignéras [7]), but in general not holomorphic. We can view Θ̂c1,c2
m as the

modular “completion” of Θc1,c2
m . As an application one can use these functions

to study the modular behaviour of Ramanujan’s mock theta functions (see [9]).

Further, in certain special cases one has Θc1,c2
m = Θ̂c1,c2

m , so then the function is
both holomorphic and modular.

Recently, analogous constructions have been found for arbitrary s ≥ 0, see [1],
[4], [8], [5] and [2] (in chronological order). In this talk we discuss the construction
of holomophic theta functions for simplicial cones and we give a very simple and
elegant formula for their modular “completions”.
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Homology of torus knots

Anton Mellit

We begin by asking some motivational questions.

Question 1. For which knots does the HOMFLY-PT polynomial have positive
coefficients in q and −a?

Our results below imply that all torus knots have this property. Probably all
algebraic knots also have this property. Since HOMFLY-PT polynomial is the
equivariant Euler characteristic of the triply graded Kohvanov-Rozansky homol-
ogy HHH, the condition that the triply graded homology is concentrated in even
degrees implies HOMFLY-positivity. So one may also ask

Question 2. For which knots is HHH concentrated only in even degrees?

Furthermore, we expect that the homological invariant can be upgraded to an
invariant whose values are algebraic varieties. In this case, maybe the evenness of
homology can be explained by geometry of the variety.

Then we proceed to formulate our result for torus knots. The connection be-
tween homologies of torus knots and Macdonald polynomials was conjectured by
Aganagic and Shakirov [2]. A more precise combinatorial formulation was given by
Gorsky and Negut [3]. The algebraic combinatorics of Macdonald polynomials is
related to combinatorics of Dyck paths via shuffle conjectures, solved in [4]. Using
the technique of Elias and Hogancamp [5] and our interpretation of Dyck paths as
“1-dimensional movies” we prove the conjecture about homology of torus knots:

Theorem 1. The Poincaré polynomial of HHH of the (m,n) torus knot, up to a
monomial factor, is given by the following sum over (m,n)-Dyck paths

Pm,n ∼
∑

π

tarea(π)qh+(π)
∏

v∈v∗(π)

(1− aq−k(v)),

where for each (m,n)-Dyck path π we use the following notations:

• area(π) is the number of 1 × 1 lattice squares contained between the path
and the diagonal,

• v∗(π) is the set of outer vertices of π without the vertex most distant from
the diagonal,



2420 Oberwolfach Report 38/2017

• k(v) for each v ∈ v∗(π) is the number of vertical steps (=number of hor-
izontal steps) of π intersected by the line parallel to the diagonal passing
through v.

• h+(π) is the number of pairs (s1, s2) where s1 resp. s2 is the horizontal
resp. vertical step of π, s1 is to the left of s2 and there exists a line parallel
to the diagonal intersecting both s1 and s2.

In particular we see, that the coefficients of Pm,n expanded in q, t and −a are
positive, which implies that HHH is concentrated in even degrees. Setting t = q−1

one obtains the HOMFLY polynomial, so it also has positive coefficients.

Example 1. For (m,n) = (3, 4) we have 5 Dyck paths, which are displayed below
together with their contributions:

t3q6 t2q7(1− aq−1) tq7(1 − aq−1)

tq8(1 − aq−1) q9(1− aq−1)(1 − aq−2)

So we obtain

P3,4 ∼ t3 + t2q + tq2 + q3 + qt− a(t2 + qt+ q2 + q + t) + a2.

The HOMFLY polynomial is obtained by setting t = q−1:

HOMFLY3,4 ∼ q−3 + q−1 + 1 + q + q3 − a(q−2 + q−1 + 1 + q + q2) + a2

= z6 + 6z4 + 10z2 + 5− a(z4 + 5z2 + 5) + a2,

where z = q
1
2 − q−

1
2 . The last expression is provided so that one can match our

formula with The Knot Atlas [6].
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Algebraic aspects of hyperbolic volume

Ruth Kellerhals

When considering volumes of hyperbolic orbifolds and manifolds Q = Hn/Γ as
given by the volumes of fundamental polyhedra for the discontinuous action of the
group Γ ⊂ IsomHn, several algebraic aspects (beside the obvious analytical ones)
appear. A rough picture is provided by the following chart.

✬
✫

✩
✪

Hyperbolic

volume

polylogarithms

Bloch group ζF - and L-values

Prasad’s formulaDehn invariants

small volume space formsHilbert’s 3rd Problem

polyhedral volume
Schläfli’s formula

(non-)arithmetic discrete
reflection groups

Euler characteristic

In even dimensions, by the (generalised) Theorem of Gauss-Bonnet, the volume
of Q is proportional to the Euler characteristic χ(Q) which can be computed in
different combinatorial and homological ways. When n = 2, there is a very satis-
factory picture about the area spectrum of hyperbolic orbifolds. For n ≥ 4 and if Q
is an orientable and arithmetically defined n-orbifold, one has Prasad’s important
volume formula. For even n ≥ 4, Belolipetsky in 2004, 2006 exploited this formula
and deduced explicit values for the minimal volume orbifolds (for a survey with
more details, see [4], for example). In particular, Belolipetsky showed that the
quotient of H4 by the rotation subgroup of the arithmetic discrete reflection group
with fundamental Coxeter simplex S given by the Coxeter diagram [5, 3, 3, 3] is
the unique compact oriented arithmetic orbifold of minimal volume. Other opti-
mality results in dimension 4 are known when looking at arbitrary orbifolds and
manifolds with cusps (see [3] and [6]). Furthermore, the identification of minimal
volume cusped orientable arithmetic hyperbolic n-orbifolds of even dimension up
to n = 18 has recently been established in [5]. However, in the compact smooth
case, the smallest known 4-manifold has Euler characteristic equal to 8, only, and
was constructed by Conder and Maclachlan [1]. In fact, by means of the computer
package MAGMA, they found a suitable torsionfree subgroup of the Coxeter sim-
plex group given by [5, 3, 3, 3] above.

In odd dimensions, there is a structural difference in view of the volume spectra
of hyperbolic orbifolds and manifolds for n = 3 and n > 3, respectively, and
much more is known in the low dimensional case n = 3. By results of Jørgensen,
Thurston and Gromov, the volume spectrum for hyperbolic 3-manifolds is non-
discrete (well-ordered of order type ωω and with limits points given by cusped
manifolds) while, by a result of Wang, the volume spectrum for hyperbolic n-
manifolds is discrete if n 6= 3. Furthermore, minimality results are known for the
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small part of all the diverse restricted volume spectra in dimension 3 (see also [4]).
For example, the Gieseking manifold built from the ideal regular tetrahedron is the
unique cusped 3-manifold of minimal volume. However, an analogous optimality
result in the non-compact case for n = 5 is not known.

In [2, Theorem 1.3], Goncharov proved a substantial generalisation to n = 5 of
a result of Dupont, Sah, Neumann and Thurston for n = 3 which can be stated
in terms of the Bloch group B2(F ) of a field F as follows. For each finite volume
hyperbolic 5-manifold M there are finitely many algebraic numbers zi, i ∈ I,
satisfying an algebraic identity of the form

(1)
∑

i∈I

{zi}2 ⊗ zi = 0 in B2(Q)⊗Q
∗
,

in such a way that

vol5(M) =
∑

i∈I

L3(zi) ,

where L3(z) denotes a certain generalised trilogarithm function.
However, for Goncharov’s result, in particular in the compact setting, we do not
dispose of any non-trivial example in view of (1) (meaning z1 6= 1 and |I| > 1).

There is a construction due to Ratcliffe and Tschantz [7], [8] of a cusped hy-
perbolic 5-manifold M1 (in-)directly related to the ideal right-angled polyhedron
P 5 of Vinberg. They computed the volume of the manifold M1 and obtained
7ζ(3)/4 (notice that L3(1) = ζ(3)). In the ongoing work together with Conder, we
constructed a cusped hyperbolic 5-manifold M0 with a (conjectural) big degree of
symmetry whose volume should be comparatively small.
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