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Introduction by the Organisers

This mini-workshop was organized by David Damanik (Rice), Fritz Gesztesy (Bay-
lor), and Peter Yuditskii (Linz). The program consisted of 15 lectures on a broad
variety of problems related to the Deift and Simon conjectures, including pertur-
bation theory, integrable systems, random matrix theory, character-automorphic
Hardy spaces, and orthogonal polynomials. This workshop intended to provide
a cutting-edge survey of new results for reflectionless operators, especially those
results directed towards addressing Deift’s conjecture regarding the almost pe-
riodicity of solutions to the KdV equation with almost-periodic initial data and
Simon’s conjecture regarding gems of spectral theory establishing a one-to-one cor-
respondence between suitable classes of coefficient data and spectral data. This
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forum provided a great background for discussions of some of the extant open
problems in the field.

Sixteen mathematicians took part in this mini-workshop, most of whom traveled
from abroad to attend. The organizers and participants would like to extend
their sincere gratitude towards the MFO for their hospitality and for providing a
beautiful location to discuss and do mathematics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Chebyshev polynomials and Totik-Widom bounds

Jacob Stordal Christiansen

(joint work with Barry Simon, Peter Yuditskii, and Maxim Zinchenko)

Let E ⊂ R (or C) be a compact set of positive logarithmic capacity. The nth
Chebyshev polynomial for E, denoted Tn, is the unique monic degree n polynomial
of least deviation from zero on E. We write

tn := ‖Tn‖E = inf
{

‖P‖E : deg(P ) = n and P is monic
}

for the approximation error (‖ · ‖E denotes the sup-norm on E) and note that Tn
is real whenever E ⊂ R.

The aim of this talk is to discuss the asymptotic behaviour of Tn(z) and tn as
n→ ∞. In particular, we seek to understand precisely when the ratio tn/Cap(E)

n

is bounded. This scaling is natural since already Szegő proved that for E ⊂ C, one
has that tn ≥ Cap(E)n and

lim
n→∞

t1/nn = Cap(E).

In order to get more refined results for the asymptotics, we need further assump-
tions on E (as described below).

For the asymptotics of Tn(z), it is natural to consider

Φn(z) :=
Tn(z)B(z)n

Cap(E)n
,

where B is a certain function (to be specified shortly). In fact, when E is a
smooth Jordan curve, B is the Riemann map from the outer component onto D

and Φn(z) → 1 (uniformly on the outer component). In the multiply connected
setting, the function B becomes multivalued. It is determined by

|B(z)| = exp{−g(z)},
where g is the Green’s function for C\E with pole at ∞, and the requirement that

B(z) = Cap(E)/z +O(1/z2) near ∞.

Going around a closed curve will change B by a phase factor and hence B is char-
acter automorphic with character, say χ

E
. Note that Φn(z) cannot have a limit —

for its character (= χn
E
) is n dependent. Widom realized that the natural candidate

for the asymptotics is the function, Fn, which among all character automorphic
functions G on C \ E with character χn

E
and with G(∞) = 1 minimizes

‖G‖∞ := sup{|G(z)| : z ∈ C \ E}.
In his landmark paper [4], he proved that for E a finite union of smooth Jordan
curves, one has that Φn(z) ∼ Fn(z) uniformly on compact subsets of the universal
cover of C \ E.
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For more complicated sets, it is not clear whether the so-called Widom mini-
mizer, Fn, exists and is unique. The main result to be presented here shows that
for a large class of infinite gap sets E ⊂ R, this is indeed so and the expected
asymptotic formula holds true. We shall always assume that E is regular (for
potential theory).

Theorem 1 ([2]). Suppose that E ⊂ R obeys the PW and DCT conditions. Then

lim
n→∞

[

Tn(z)B(z)n

Cap(E)n
− Fn(z)

]

= 0

uniformly on compact subsets of the universal cover of C \ E. Moreover, Fn is
almost periodic (as a function of n) and

lim
n→∞

tn
Cap(E)n ‖Fn‖∞

= 2.

Widom [4] conjectured this asymptotic behaviour of Tn(z) for finite gap sets.
After beeing open for more than 45 years, the issue was finally settled in [1]. The
above result goes way beyond and [2] even has a simpler and more direct proof.

Let us briefly comment on the Parreau–Widom (PW) condition and the direct
Cauchy theorem (DCT). Set Ω := C \ E and let π1(Ω) denote the fundamental
group of Ω. By definition, E is a PW set if

PW (E) :=
∑

j
g(cj) <∞,

where {cj} are the critical points of g (i.e., points where ∆g vanishes). Widom
proved that E is PW if and only if H∞(Ω, χ) contains a non-zero function for every
character χ ∈ π1(Ω)

∗. This fact leads to the existence of Widom minimizers, Fχ,
and a separate argument shows the uniqueness. The function Qχ := Fχ/‖Fχ‖∞
solves the dual maximization problem, that is,

Qχ(∞) = sup
{

g(∞) : g ∈ H∞(Ω, χ), ‖g‖∞ = 1
}

.

A result of Hasumi and Hayashi states that E obeys DCT if and only if the function
χ 7→ Qχ(∞) is continuous on π1(Ω)

∗. Interestingly, these dual Widom maximizers
turn out to be Blaschke products with at most one zero per gap of E.

As will be outlined, the key to the proof is to study the sets

En := T−1
n ([−tn, tn]).

Clearly, En ⊃ E and the inclusion is strict precisely when Tn has a zero in one of
the gaps of E. By the alternation theorem, Tn has at most one such zero per gap.
The proof also relies on the fact that

tn ≤ D · Cap(E)n for some constant D.

Such a bound was established by Totik [3] for finite gap sets and this also follows
implicitly from the results of Widom [4]. One of the central issues of [1] was to
prove that every PW set obeys a Totik–Widom bound:



Reflectionless Operators: The Deift and Simon Conjectures 2949

Theorem 2 ([1]). For any PW set E ⊂ R, one has that

tn ≤ 2 exp{PW (E)} · Cap(E)n.
It would be interesting to know if a bound of this type also applies to other

infinite gap sets, for instance the middle 3rd Cantor set. The following question
will be raised: Does there exist a set E ⊂ R which is not PW, but for which a
Totik–Widom bound holds true? Moreover, can a set of Lebesgue measure zero
obey a Totik–Widom bound?

There are several examples in the literature of Cantor-type sets for which
tn/Cap(E)

n is unbounded and even examples of very thin sets for which the ratio
grows subexponentially. But is PW the borderline?

We conclude by presenting a weak converse of the above theorem. A set E ⊂ C

is said to have a canonical generator if the orbit {χn
E
}n∈Z is dense in π1(Ω)

∗. This
property is generic (in various senses) but does not apply to, e.g., the middle 3rd
Cantor set.

Theorem 3 ([2]). Suppose that E has a canonical generator. If

tn ≤ D · Cap(E)n for some constant D,

then E is a PW set.

References

[1] J. S. Christiansen, B. Simon, and M. Zinchenko, Asymptotics of Chebyshev Polynomials, I.
Subsets of R, Invent. Math. 208 (2017), 217–245.

[2] J. S. Christiansen, B. Simon, P. Yuditskii, and M. Zinchenko, Asymptotics of Chebyshev
Polynomials, II. DCT subsets of R, Submitted preprint (2017).

[3] V. Totik, Chebyshev constants and the inheritance problem, J. Approx. Theory 160 (2009),
187–201.

[4] H. Widom, Extremal polynomials associated with a system of curves in the complex plane,
Adv. in Math. 3 (1969), 127–232.

Universality for numerical calculations with random data.

Percy Deift

(joint work with Govind Menon, Sheehan Olver, and Thomas Trogdon)

In [5], the authors considered the computation of the eigenvalues of a random n×n
matrix M using various standard algorithms. Let Σn denote the set of real n× n
symmetric matrices. Associated with each algorithm A there is, in the discrete
case, a map φ = φA : Σn → Σn with the properties

• (isospectral) spec(φA(H)) = spec(H)
• (convergence) the iterates Xk+1 = φA(Xk), k ≥ 0, X0 =M , converge to a
diagonal matrix X∞, Xk → X∞ as k → ∞.

and in the continuous case, there is a flow t→ X(t) ∈ Σn with the properties

• (isospectral) spec(X(t) = spec(X(0)
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• (convergence) the flow X(t), t ≥ 0, X(0) = M , converges to a diagonal
matrix X∞, X(t) → X∞ as t → ∞.

In both cases, necessarily the diagonal entries of X∞ are the eigenvalues of the
given matrix M . The QR algorithm is a prime example of such a discrete algo-
rithm, while the Toda algorithm is an example of the continuous case.

In the discrete case, the authors in [5] recorded the number of steps (i.e. the
stopping time)

T (M) = Tǫ,n,A,E(M)

for the algorithm A applied to a matrix M ∈ Σn chosen from an ensemble E , to
compute the eigenvalues of M to an accuracy ǫ. They then plotted the histogram
for the normalized stopping time

τ(M) = τǫ,nA,E(M) = (T (M)− 〈T 〉)/σ
where 〈T 〉 and σ2 = 〈(T − 〈T 〉)2〉 denote the sample average and sample variance
of the T (M)′s taken over a large number (approx.15,000) of matrices M chosen
from E . What they found was that, for ǫ and n in a suitable scaling range (ǫ
small, n large), the histogram for τ was universal, independent of the ensemble E .
The histogram does, however, depend on the algorithm. Similar phenomena were
observed in the continuous case.

Subsequently in [2] the authors raised the question of whether the universality
results in [5] were limited to eigenvalue algorithms for real symmetric matrices, or
whether they were present more generally in numerical computations. And indeed,
the authors in [2] found similar universality results for a wide variety of numerical
algorithms, including

(a) other eigenvalue algorithms such as QR with shifts, the Jacobi eigenvalue
algorithm, and also algorithms applied to complex Hermitian ensembles

(b) the conjugate gradient and GMRES iterative algorithms to solve linear
linear n× n systems Hx = b with H and b random

(c) an iterative algorithm to solve the Dirichlet problem ∆u = 0 in a random
star-shaped region Ω ⊂ R2 with random boundary data f on ∂Ω

(d) a genetic algorithm to compute the equilibrium measure for orthogonal
polynomials on the line.

In [2] the authors also discussed similar universality results obtained by Bakhtin
and Correll [1] in a series of experiments with live participants recording

(e) decision making times for a specified task.

All of the above results are numerical and experimental. In more recent work
[3][4] the authors have proved universality rigorously for a number of algorithms:
They showed in particular that the limiting histograms for these algorithms can
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be expressed in terms of the distribution of the inverse of the difference of the two
top (or bottom, depending on the algorithm) eigenvalues of the matrices. The
proofs of these universality results rely on the very latest results in random matrix
theory.

Many problems remain open. In particular proving universality rigorously for
more general algorithms, including those listed above (a) ...(e).
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Asymptotics for the recurrence coefficients of polynomials orthogonal

with respect to a logarithmic weight.

Percy Deift

(joint work with Thomas Conway)

Let dµ(x) be a measure on the line with finite moments
∫

R

|x|mdµ(x) <∞, m ≥ 0,

and let pn(x) = γnx
n + ... , γn > 0, n ≥ 0, be the associated orthonormal polyno-

mials
∫

R

pn(x)pm(x)dµ(x) = δn,m, n,m ≥ 0.

The polynomials automatically satisfy a three term recurrence relation

bnpn+1(x) + (an − x)pn(x) + bn−1pn−1(x) = 0, n ≥ 0

with recurrence coefficients bn > 0, an ∈ R and b−1 ≡ 0. Given dµ(x), it is of
basic interest to determine the asymptotic behavior of the b′ns and a

′
ns as n→ ∞.

In [1] the authors considered logarithmic weights dµ(x) = log(2k/(1 − x)) on
[−1, 1], where k > 1. Such weights arise in various problems in physics and in
mathematics. The main result in [1] is the following: As n→ ∞

(1) an = (2C)/(n logn)2 +O(1/n2 logn3)

(2) bn = 1/2 + 1/(16n2) + C/(n logn)2 +O(1/n2 logn3)
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where C = −3/32.

This result, and more, was conjectured by A.Magnus [2], up to the precise value
for the constant C.

The authors in [1] use Riemann-Hilbert/steepest-descent methods to prove
(1)(2), but not in the standard way, as there is no known parametrix for the
Riemann-Hilbert problem in a neighborhood of the logarithmic singularity at
x = 1. The authors overcame this difficulty by using the operator theory that
underlies Riemann-Hilbert problems, together with a new formula for the differ-
ence of the solutions of two Riemann-Hilbert problems on the same contour.

Many open problems remain. Firstly, to prove the analog of (1)(2) for the
case k = 1 (note that for k = 1, we no longer have log(2/(1 − x)) ≥ c > 0 for
x ∈ [−1, 1]). Secondly, it is of great interest to compute the asymptotic behavior
of the polynomials pn themselves as n→ ∞, particularly in a neighborhood of the
logarithmic singularity at x = 1.
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The Toda shock and rarefaction waves

Iryna Egorova

(joint work with Johanna Michor, Gerald Teschl)

We are concerned with the long-time asymptotics of the Cauchy problem for the
Toda equation

(1)
ḃ(n, t) = 2(a(n, t)2 − a(n− 1, t)2),

ȧ(n, t) = a(n, t)(b(n+ 1, t)− b(n, t)),
(n, t) ∈ Z× R+,

with steplike initial data

a(n, 0) → a > 0, b(n, 0) → b ∈ R, as n→ −∞,

a(n, 0) → 1

2
, b(n, 0) → 0, as n→ +∞.

(2)

The initial value problem (1)–(2) is uniquely solvable for initial data which ap-
proach their limiting constants with a polynomial rate. Moreover, for each t 6= 0
the solution tends as n → ±∞ to the same constants, and with the same rate as
the initial data (cf. [7]). We study the asymptotic behaviour of the solution in the
regime when n → ∞, t → +∞, but the ratio ξ = n

t slowly varying. Qualitatively
(up to a phase shift), the long-time asymptotics are determined by the mutual
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location of the intervals [b− 2a, b+ 2a] and [−1, 1], and by the discrete spectrum
λ1, ..., λN of the underlying Jacobi operator

(3) H(t)y(n) := a(n− 1, t)y(n− 1) + b(n, t)y(n) + a(n, t)y(n+ 1), n ∈ Z.

Our goal is to rigorously justify these asymptotics by means of the nonlinear
steepest descent (NSD) method developed by Deift and Zhou [6]. In fact, our
investigation requires an extension of the original NSD analysis based on a suitably
chosen g-function as first introduced in Deift, Venakides, and Zhou [5]. Here
we restrict our considerations to the case of disjoint background spectra. For
b + 2a < −1 we deal with the Toda shock problem, the case 1 < b − 2a is known
as the Toda rarefaction problem.

The long-time asymptotics of the rarefaction problem were studied rigorously
by Deift, Kamvissis, Kriecherbauer and Zhou [4] in the transitional region where
ξ := n

t ≈ 0 as t → +∞. To this end the authors applied the NSD approach for a
vector Riemann–Hilbert problem. Using a similar approach, in [8] we show that
there are four principal sectors with the following asymptotic behavior:

• In the region n > t, the solution {a(n, t), b(n, t)} is asymptotically close
to the constant right background solution { 1

2 , 0} plus a sum of solitons
corresponding to the eigenvalues λj < −1.

• In the region 0 < n < t, as t→ ∞ we have

(4) a(n, t) =
n

2t
+O

(1

t

)

, b(n, t) = 1 +
1
2 − n

t
+O

(1

t

)

.

• In the region −2at < n < 0, as t→ ∞ we have

(5) a(n, t) = −n+ 1

2t
+O

(1

t

)

, b(n, t) = b− 2a− n+ 3
2

t
+O

(1

t

)

.

• In the region n < −2at, the solution of (1)–(2) is asymptotically close to
the left background solution {a, b} plus a sum of solitons corresponding to
the eigenvalues λj > b+ 2a.

Note that the main terms of the asymptotics (4) and (5) are solutions of the
Toda lattice equation. In turn, the error terms O(t−1) are uniformly bounded
with respect to n for εt ≤ n ≤ (1− ε)t in (4), and for (−2a+ ε)t ≤ n ≤ −εt in (5),
where ε > 0 is an arbitrary small value. In the two middle regions we also derive
a precise formula for these error terms.

The first investigation of shock waves in the Toda lattice was done by Venakides,
Deift, and Oba [10] employing the Lax–Levermore method. As their main result
they showed (for a = 1

2 ) that in a sector |nt | < ξ′cr the solution can be asymptoti-
cally described by a period two solution, while in a sector |nt | > ξcr the particles
are close to the unperturbed lattice. For the remaining region ξ′cr < |nt | < ξcr
the solution was conjectured to be asymptotically close to a modulated single-
phase quasi-periodic solution but this case was not solved there. Investigation of
the Toda shock problem by the NSD analysis was singled out by Deift [3] as an
important open problem in the theory of nonlinear systems.
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We perform this analysis for arbitrary a > 0, assuming that the discrete spec-
trum of the Jacobi operator (3) consists of the single point λ0 ∈ (2a + b,−1). A
short qualitative description of the asymptotics for the Toda shock waves derived
in [9] is the following.

There are five principal regions on the half plane (n, t) divided by rays n/t = ξ̃,

with ξ̃ = ξcr,1, ξ
′
cr,1, ξcr,0, ξ

′
cr, ξcr where ξcr,1 < ξ′cr,1 < ξcr,0 < ξ′cr < ξcr. In

the domain ξ > ξcr, the solution is asymptotically close to the constant right
background solution { 1

2 , 0}, and in the domain ξ < ξcr,1 it is close to the left
background {a, b}. In the domain ξ′cr < ξ < ξcr, there appears a monotonous
smooth function γ(ξ) ∈ R such that γ(ξ′cr) = b + 2a, γ(ξcr) = b − 2a. When the
parameter ξ starts to decay from the point ξcr, the point γ(ξ) “opens” a band
[b− 2a, γ(ξ)] (the Whitham zone, cf. [2]). This interval and [−1, 1] can be treated
as the bands of a (slowly modulated) two band solution of the Toda lattice, which
turns out to give the leading asymptotical term of our solution with respect to
large t. This two band solution is defined uniquely by its initial divisor. We
compute this divisor precisely via the values of the right transmission coefficient
on the interval [b− 2a, γ(ξ)] . Thus, in a vicinity of any ray n

t = ξ the solution of
(1)–(2) is asymptotically finite-gap. This asymptotical term also can be treated
as a function of n, t, and n

t in the whole domain t(ξ′cr + ε) < n < t(ξcr − ε).
Next, in the domains ξcr,0 < ξ < ξ′cr and ξ′cr,1 < ξ < ξcr,0, the asymptotic of the

solution of (1)–(2) is described by two finite-gap solutions. They are connected
with one and the same intervals [b− 2a, b+2a] and [−1, 1] and the initial divisors
(or shifts of the phase) do not depend on the slow variable ξ, but differ due to the
presence of the point of the discrete spectrum λ0 which generates a soliton. In
particular, for a = 1

2 our asymptotics in these domains agree with the asymptotics
obtained in [10].

The situation in the domain ξcr,1 < ξ < ξ′cr,1 is similar to the Whitham zone
described above. There appears a monotone smooth function γ1(ξ) ∈ R such that
γ1(ξcr,1) = 1, γ1(ξ

′
cr,1) = −1. The finite-gap asymptotic here is again local along

the ray, and is defined by the intervals [b− 2a, b+ 2a] and [γ1(ξ), 1].
An interesting open problem is to understand asymptotics in transitional re-

gions. In particular, for the Toda shock problem in vicinities of the rays n
t = ξcr

and n
t = ξcr,1 one can expect the appearance of asymptotic solitons (see [1]). An-

other interesting problem is to describe long-time asymptotics of a steplike solution
for (1)–(2) in the case of intersecting background spectra.

Acknowledgment: I.E. was supported in part by the direction of MFO.
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Abelian coverings, discrete Schrödinger operators, and KdV-equation

Benjamin Eichinger

(joint work with Tom VandenBoom and Peter Yuditskii)

Let E ⊂ R be compact and D/Γ be a uniformization of C\E. That is, there exists
a local homeomorphism λ : D → C \ E and Γ is the Fuchsian group of its deck
transformations. If E has positive logarithmic capacity, then Γ is of convergent
type, and hence the Blaschke product

b(z; Γ) = z
∏

γ∈Γ

|γ(0)|
γ(0)

γ(0)− z

1− γ(0)z

converges. Γ (or equivalently E) is called of Widom type, if in addition b′(z; Γ) is
of bounded characteristic in D. Let Γ∗ be the group of characters of Γ, i.e., the set
of homomorphism from Γ to R/Z. A function f is called character automorphic
with character α ∈ Γ∗, if

f ◦ γ = e2πiα(γ)f, for all γ ∈ Γ.

Note that b(z; Γ) is character automorphic with some character µ ∈ Γ∗. By
H2(α; Γ) we denote the Hardy space of character automorphic functions with
character α on D. That is, a function f ∈ H2(α; Γ) is a multi-valued function on
the Riemann surface D/Γ. Widom [5] showed that if Γ is of Widom type, then
H2(α; Γ) is non-empty for all α ∈ Γ∗.

Let J(E) denote the isospectral torus of reflectionless Jacobi matrices whose
spectrum is the set E. If E is of Widom type such that the so-called Direct Cauchy
Theorem holds, then Sodin and Yuditskii [3] showed that J(E) is homeomorphic
to Γ∗. The homeomorphism is called generalized Abel map and associates to
each Jacobi matrix J ∈ J(E) a Hardy space H2(α; Γ). As a corollary of this
construction it follows that all elements in J(E) are almost periodic. Hence, this
model is based on the fact that there exist sufficiently many admissible analytic
functions on the Riemann surface D/Γ.
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Assume now that E consists of three points, say E = {0, 1,∞}. This is the
smallest number of punctures in the Riemann sphere C such that the universal
covering is the unit disk D. Lyons and McKean [2] proved that already in this
case the commutator subgroup Γ′ of Γ is of convergent type. In other words, the
boundary of the Riemann surface D/Γ′ has positive capacity. Moreover, note that
if E has positive analytic capacity, then the Ahlfors function yields a single valued
function on D/Γ′. Hence, we conclude: By passing from the Riemann surface
D/Γ to D/Γ′ the ”quality of the boundary“, in the sense of number of admissible
analytic functions, increases essentially. D/Γ′ is called universal Abelian covering
for D/Γ.

Therefore, in this talk we shall discuss the Riemann surface D/Γ′ in detail. We
will describe it by means of the covering map λ and by means of b(z; Γ), which
becomes a single valued function on D/Γ′. Moreover, we will discuss function
theory on the Riemann surface D/Γ0, where Γ0 = kerµ. In particular, we give a
criterion by means of reproducing kernels of the Hardy space H2(α; Γ0) such that
the Jacobi matrix J(α) is in fact a discrete Schrödinger operator.

Vinnikov and Yuditskii [4] gave an interpretation of the Toda flow an Jacobi
matrices by means of the fact that multiplication by functions on D/Γ′ trivially
commute. We conjecture that the same would also be possible for the KdV hier-
archy. To be more precise.

Conjecture. Let

E = [0,∞) \
∞
⋃

j=1

(aj , bj)

such that E is of Widom type and the DCT holds in C \ E. Assume in addition
that for some k ∈ N we have

∞
∑

j=1

bk+2
j − ak+2

j <∞(1)

Then there exists a function θk, on C+/Γ
′ corresponding to the uniformization

(C+/Γ, λ) such that the kth element of the KdV hierarchy is generated by the
functions θk and λ.

Let uVk denote the solution of the kth element of the KdV hierarchy with initial
potential V . Deift asked the following question:

Question. Does almost periodicity of the initial data V imply almost periodicity
of the solution uV1 in t-direction.

As a consequence, we would get an affirmative answer to this question for initial
data V , which are almost periodic and satisfy σ(LV ) = σac(LV ) = E, where

LV = −∂2x + V (x)

is the corresponding Schrödinger operator. This improves a result of Binder,
Damanik, Goldstein and Lukic [1] in two directions. First, we weaken the as-
sumption on the spectral set E and secondly under the regularity condition (1) we
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obtain the corresponding result for all elements of the KdV hierarchy, where the
aforementioned authors only discuss the case k = 1.
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Limit-Periodic Schrödinger Operators with Zero-Measure Spectrum

Jake Fillman

(joint work with David Damanik, Milivoje Lukic)

We consider continuum Schrödinger operators acting in L2(R) via

LV u = −u′′ + V u,

where the potential V : R → R is limit-periodic, that is, V is a uniform limit of
continuous periodic functions. We denote the class of limit-periodic potentials by
LP and equip it with the topology inherited from the L∞ metric. For an archetypal
example, consider

V (x) =

∞
∑

j=1

2−j cos

(

2πx

j!

)

.

These operators are interesting for spectral theory as they provide a large tractable
class of aperiodic almost-periodic Schrödinger operators which may exhibit rich
and subtle spectral properties. These operators and their discrete analogs may
exhibit absolutely continuous spectrum [3, 8, 13, 15, 16], singularly continuous
spectrum [2, 5, 6], or even pure point spectrum [7, 10, 17]. As the rate of approxi-
mation grows worse, the character of the associated quantum dynamics transitions
from ballistic motion (free propagation of wave packets) [1, 11, 14] to localization
[7, 11, 17].

Moreover, limit-periodic potentials are uniformly almost-periodic and hence also
provide an interesting class of initial data for the Cauchy problem for the KdV
equation:

∂tu− 6u∂xu+ ∂3xu = 0, u(x, 0) ≡ V0(x).

Recent work of Binder–Damanik–Goldstein–Lukic achieved success in solving De-
ift’s conjecture (cf. [12]) for reflectionless almost-periodic initial data as long as
σ(LV0

) is sufficiently thick [4]. It is then natural to ask how badly the hypothe-
ses of the general results may fail, and how often such failures may occur within
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the class of limit-periodic potentials. Broadly speaking, within the class of limit-
periodic potentials, the answers to these questions are “quite badly” and “rather
often.” To wit:

Theorem 1 (Damanik–F.–Lukic, (2015) [5]). There is a dense Gδ subset Z ⊆ LP
with the property that σ(LλV ) is a perfect set of zero Lebesgue measure for every
V ∈ Z and every λ > 0. There is a dense set H ⊆ LP with the property that
σ(LλV ) is a perfect set of zero Hausdorff dimension for all V ∈ H and every
λ > 0.

From the KdV point of view, the examples in this theorem are quite bad, as
it shows that the (topologically) generic behavior of limit-periodic potentials lies
well outside the tractable regime.
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On the Spectrum of Multi-Frequency Quasiperiodic Schrödinger

Operators with Large Coupling

Michael Goldstein

(joint work with Wilhelm Schlag, Mircea Voda)

In this talk I will give a review of recent joint work M.Goldstein,W.Schlag,M.Voda
on the spectrum of multi-frequency quasi-periodic operators at large coupling con-
stant.

In the last 40 years after the groundbreaking paper [9] the theory of quasiperi-
odic Schrödinger operators has been developed extensively, see the monograph [5]
for an overview and [14] for a survey of the more recent results. For shifts on a one-
dimensional torus T most of the results have been established non-perturbatively,
i.e., either in the regime of almost reducibility or in the regime of positive Lya-
punov exponent, and Avila’s global theory, see [3], gives a qualitative spectral
picture, covering both regimes, for generic potentials. One of the main results of
the one-dimensional theory is the fact that the spectrum is a Cantor set. For the
case of the almost Mathieu operator (corresponding to a cosine potential), this
result has been proved for any non-zero coupling and any irrational shift, see [19]
and [1, 2]. For general analytic potentials in the regime of positive Lyapunov ex-
ponent with generic shift the Cantor structure of the spectrum has been obtained
in [12].

On the other hand, shifts on a multidimensional torus Td turned out to be
harder to analyze and the theory is less developed, even in the perturbative setting.
In particular, not much is known about the geometry of the spectrum for multidi-
mensional shifts. In their pioneering paper [7], Chulaevsky and Sinai conjectured
that in contrast to the shift on the one-dimensional torus, for the two-dimensional
shift the spectrum can be an interval for generic large smooth potentials. In this
paper we prove this conjecture for large analytic potentials.

Heuristically, gaps in the spectrum of the one-frequency operators are created by
horizontal “forbidden zones” appearing at the points of intersection of the graphs
of shifted finite scale eigenvalues parametrized by phase, see [20, 12]. In contrast
to this, the heuristic principle underlying [7] is that for multiple frequencies, the
intersection curves of the graphs of shifted finite scale eigenvalues may not be
too flat, thus preventing the appearance of the horizontal “forbidden zones” and
stopping the formation of gaps. It is clear that some genericity assumption on
the potential function is needed for this to be true, since potentials like V (x, y) =
v(x) lead to flat intersection curves and have Cantor spectrum. Furthermore,
the largeness of the potential is also needed. Indeed, it is known that for small
potentials with atypical frequency vector the spectrum has gaps, see [4].

Implementing such an argument, appears to be very challenging for a number
of reasons. First, the analytical techniques available in finite volume are less
favorable (mainly the large deviation theorems and everything that depends on
them) as compared to the case of one frequency. In particular, it is difficult to
implement an approach based on finite scale localization as in [12]. This is due
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to the fact that it is hard to handle long chains of resonances and to control the
intersections of the resonant curves with the level sets of the eigenvalues. Second,
it is inevitable that the intersection curves of the graphs of shifted finite scale
eigenvalues flatten near the absolute extrema and handling this situation seems to
be a delicate matter.

In [13] we addressed some of the issues regarding the analytical techniques,
including establishing finite scale localization. We will use most of the basic tools
from [13]. However, for the purpose of this paper one would need a refined version
of finite scale localization, beyond what is achieved in that paper. We analyze
the spectrum of the operator HN (x), x ∈ Td, on a finite interval [1, N ] subject
to Dirichlet boundary conditions. To keep this spectrum under control requires
resolving the following problem. Given E let RN (E) be the set of all phases x
such that E is in the spectrum of the operator HN (x). One has to identify phases
x ∈ RN (E) for which x + nω is not too close to RN (E) as n runs in the interval
N ≪ n < NA, A ≫ 1. This issue, commonly referred to as double resonances,
is well-known. Similar strategies, leading to the formation of intervals in the
spectrum, have been implemented for the skew-shift in [15] and for continuous
two-dimensional Schrödinger operators in [16]. The main new device that we
develop in this work, consists of an elimination of double resonances for all shifts
x + h, and not just the “arithmetic ones” x + nω. Of course the shift h cannot
be too small. Although this problem looks less accessible, it turns out to provide
more control on the resonant set RN (E) of the previous scale. The level sets
V (x) = E of the potential in question must satisfy the requirements of this more
general elimination in order to launch the multi-scale analysis.

Furthermore, in order to show that the spectrum is actually an interval, we
develop a Cartan type estimate that controls the intersections of the level sets of
an analytic function near a non-degenerate extremum with their shifts.

The core of our approach is non-perturbative and works in the regime of positive
Lyapunov exponent. More precisely, we develop two non-perturbative inductive
schemes, one leading to the formation of intervals in the bulk of the spectrum and
the other leading to intervals at the edges of the spectrum. We will only use the
largeness of the potential to check that the initial inductive conditions are satisfied.

We introduce some notation and definitions that we need to state our main
result. We work with operators

(1) [Hλ(x)ψ](n) = −ψ(n+ 1)− ψ(n− 1) + λV (x + nω)ψ(n),

with λ > 0 being a real parameter, and with the potential V a real analytic
function on the torus Td, T = R/Z, d ≥ 2. We assume that the frequency vector
ω ∈ Td obeys the standard Diophantine condition. We introduce also the class
of ”generic trigonometric polynomials of a given degree”. The formal definition is
pretty lengthy. Obviously it has to be a Morse function. On top of that the level
sets shifts should be transversal to themselves unless the shift is too small. We
denote the st of such trigonometric polynomials by G.
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Theorem 1. There exists λ0 = λ0(V, a, b, d) such that the following statements
hold for λ ≥ λ0.

(a) Assume that V attains its global minimum at exactly one non-degenerate crit-
ical point x. Then there exists E ∈ R, |λ−1E − V (x)| < λ−1/4, such that

[E,E + λ exp(−(logλ)1/2)] ⊂ Sλ and (−∞, E) ∩ Sλ = ∅.
An analogous statement holds relative to the global maximum of V (using the
notation x,E).

(b) Assume that V ∈ G and let E,E be as in (a). Then Sλ = [E,E].

Remark 1. (a) The constant λ0(V, a, b, d) can be expressed explicitly, see the proof
of Theorem 1.

(b) The genericity of the assumptions on V will be addressed in [21]. More pre-
cisely, the following result will be established. Consider real trigonometric poly-
nomials of the form

V (x) =
∑

m∈Zd:|m|≤n

cme
2πim·x, x ∈ Rd

of a given cumulative degree n ≥ 1, |m| := ∑

1≤j≤d |mj |. Then for almost all

vectors (cm)|m|≤n one has V ∈ G.

(c) For the completeness of our paper we include a particular example of potential
V ∈ G that can be obtained by the methods from [21]. Namely, we show that

V (x, y) = cos(2πx) + s cos(2πy)

belongs to G for all s ∈ R\{−1, 0, 1}. We note that as s approaches {−1, 0, 1} our
explicit value for λ0 diverges to ∞ and the geometry of the spectrum cannot be
decided by continuity. Of course, for s = 0 the spectrum is a Cantor set. However,
for s = ±1, part (a) of Theorem 1 still applies and guarantees the existence of
intervals at the edges of the spectrum.

As mentioned above, the derivation of Theorem 1 is based on two non-perturba-
tive statements in the regime of positive Lyapunov exponent.
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Exponential estimates on the size of spectral gaps for quasi-periodic

Schrödinger operators

Martin Leguil

(joint work with Jiangong You, Zhiyan Zhao, and Qi Zhou)

In the following, we consider one-dimensional discrete Schrödinger operators on
ℓ2(Z):

(HV,α,θu)n = un+1 + un−1 + V (θ + nα)un, ∀ n ∈ Z,

for some phase θ ∈ Td := (R/Z)d, some analytic potential V : Td → R, and
where the (multi-)frequency α = (α1, . . . , αd) ∈ Td is chosen in such a way that
(1, α1, . . . , αd) is rationally independent. In this case, the spectrum of HV,α,θ is a
compact subset of R, independent of θ, denoted by ΣV,α. By the Gap-Labelling

Theorem, it is of the form ΣV,α = [E,E]\ ∪k∈Zd\{0} Gk(V ) for some spectral gaps

Gk(V ) = (E−
k , E

+
k ) labelled by integer vectors. For all k 6= 0, the restriction of
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the integrated density of states (IDS) NV,α : R → [0, 1] of HV,α,θ to the associate
gap satisfies NV,α|Gk(V ) = 〈k, α〉 mod Z.

One particularly important example is given by almost Mathieu operators
(AMO) Hλ,α,θ, in the case where α ∈ R\Q and the potential has the form
V = 2λ cos 2π(·) for some coupling constant λ ∈ R. For simplicity, we denote
by Gk(λ) = (E−

k , E
+
k ) the gap with label k.

Estimates on spectral gaps. In what follows, given d ≥ 1, γ > 0, τ ≥ d − 1,
we let

DCd(γ, τ) :=

{

ϕ ∈ Rd : inf
j∈Z

|〈n, ϕ〉 − j| > γ

|n|τ , ∀ n ∈ Zd\{0}
}

and we set DCd :=
⋃

γ>0, τ>d−1DCd(γ, τ). Our first result is about exponential
asymptotics on the size of spectral gaps for non-critical AMO with a Diophantine
frequency.

Theorem 1 (L.-You-Zhao-Zhou [17]). For α ∈ DC1, and for any 0 < ξ0 < 1,
there exist C0 = C0(λ, α, ξ0) > 0, C1 = C1(λ, α) > 0, and a numerical constant
ξ1 > 1 such that

C1λ
ξ1|k| ≤ |Gk(λ)| ≤ C0λ

ξ0|k|, if 0 < λ < 1,

C1λ
−ξ1|k| ≤ |Gk(λ)| ≤ C0λ

−ξ0|k|, if 1 < λ <∞,

for all k ∈ Z\{0}, where |Gk(λ)| denotes the length of Gk(λ).

The study of lower bounds dates back to the long-standing conjecture of the
“Ten Martini Problem” [20] (finally solved by Avila-Jitomirskaya [4], after partial
results due to Puig [19] etc.) and the so-called “Dry Ten Martini Problem” (see [6]
for recent progress on this question), which is a further elaboration asking whether
for any λ 6= 0 and irrational α, all possible spectral gaps of Hλ,α,θ predicted by
the Gap-Labelling Theorem are non-collapsed.

Regarding the question of upper bounds, the first result is due to Moser-Pöschel.
In [18], given an analytic potential V : Td → R, d ≥ 2, and ̟ ∈ DCd, they consider
the continuous quasi-periodic Schrödinger operator on L2(R):

(LV,̟y)(t) = −y′′(t) + V (̟t)y(t).

Thanks to KAM techniques, Moser-Pöschel proved that if V is small enough, then
|Gk(V )| is exponentially small with respect to |k| provided that |k| is sufficiently
large and 〈k,̟〉 is not too close to the other 〈m,̟〉. Later on, Amor [16] proved
that in the same setting, the spectral gaps have sub-exponential decay for all

k ∈ Zd\{0}. Damanik-Goldstein [9] gave a stronger result: |Gk(V )| ≤ εe−
r0
2
|k| if

V : Td → R has a bounded analytic extension to the strip {z ∈ C/Z : |ℑz| < r0}
and ε := sup|ℑz|<r0 |V (z)| is sufficiently small. We obtain:

Theorem 2 (L.-You-Zhao-Zhou [17]). Let α ∈ DCd and let V : Td → R be an
analytic potential with a bounded analytic extension to the strip {z ∈ C/Z :
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|ℑz| < r0}. For any r ∈ (0, r0), there exists ε0 = ε0(V, α, r0, r) > 0 such that
if sup|ℑz|<r0 |V (z)| < ε0, then

|Gk(V )| ≤ ε
2
3

0 e
−r|k|, ∀ k ∈ Zd\{0}.

Homogeneous spectrum. The exponential upper bounds on the size of spectral
gaps in Theorem 2 can be used to prove homogeneity of the spectrum. Recall that
a closed set S ⊂ R is called homogeneous in the sense of Carleson if there exists
µ > 0 such that

|S ∩ (E − ǫ, E + ǫ)| > µǫ, ∀ E ∈ S, ∀ 0 < ǫ ≤ diamS.
Homogeneity of the spectrum plays an essential role in the inverse spectral

theory of almost periodic potentials (for instance in the fundamental work of Sodin-
Yuditskii [21, 22]).

Let us recall some recent results on the homogeneity of the spectrum. Build-
ing on the localization estimates developed in [9], Damanik-Goldstein-Lukic [11]
proved that the spectrum of continuous Schrödinger operators LV,̟ with Diophan-
tine ̟ and sufficiently small analytic potential V is homogeneous. For the discrete
operator HV,α in the positive Lyapunov exponent regime, Damanik-Goldstein-
Schlag-Voda [12] proved that the spectrum is homogeneous for any α ∈ SDC, i.e.,
such that for some γ, τ > 0, infj∈Z |nα − j| ≥ γ

|n|(log |n|)τ , for all n ∈ Z\{0}. We

show the following result:

Theorem 3 (L.-You-Zhao-Zhou [17]). Let α ∈ SDC. For a (measure-theoretically)
typical analytic potential V : T → R, the spectrum ΣV,α is homogeneous.

Given E ∈ R, we set SV
E (·) :=

(

E − V (·) −1
1 0

)

and we let (α, SV
E ) be the asso-

ciate Schrödinger cocycle. The energy E ∈ ΣV,α is called supercritical (resp. sub-
critical) if the Lyapunov exponent is positive, i.e., L(α, SV

E ) > 0 (resp. L(α, SV
E (·+

iǫ)) = 0 for |ǫ| < δ). By Avila’s global theory of one-frequency quasi-periodic
Schrödinger operators [3], for a (measure-theoretically) typical analytic potential
V : T → R, any E ∈ ΣV,α is either subcritical or supercritical. In particular,
he shows that typically, there exists a finite number of intervals (Ii)i such that
the set of all subcritical energies in the spectrum is Σsub

V,α = ∪i(ΣV,α ∩ Ii). Since

the supercritical regime was already handled in [12], we focus on energies E in
the subcritical part of the spectrum. If (pn/qn)n denotes the sequence of best

approximants of α, we let β(α) := lim supn→∞
ln qn+1

qn
. We obtain the following

description of the subcritical spectrum and of the spectral gaps one of whose edge
points is in Σsub

V,α:

Theorem 4 (L.-You-Zhao-Zhou [17]). Let α ∈ R\Q satisfy β(α) = 0. For typical
analytic potentials V : T → R, the following assertions hold.

(1) There exist constants C, ϑ > 0 depending on V, α, such that

|Gk(V )| ≤ Ce−ϑ|k|, ∀ k ∈ Z\{0} with Gk(V ) ∩ Σsub
V,α 6= ∅.
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(2) For any η > 0, there exists D = D(V, α, η) > 0 such that

dist(Gk(V ), Gk′ (V )) ≥ De−η|k′−k|,

if k 6= k′ ∈ Z satisfy Gk(V ) ∩ Ii 6= ∅ and Gk′ (V ) ∩ Ii 6= ∅ for some i.
(3) There exists µ0 ∈ (0, 1) such that

|ΣV,α ∩ (E − ǫ, E + ǫ)| > µ0ǫ, ∀ E ∈ Σsub
V,α, ∀ 0 < ǫ ≤ diamΣV,α.

Deift’s conjecture. Deift’s conjecture (Problem 1 of [13, 14]) asks whether for al-
most periodic initial data, the solutions to the KdV equation are almost periodic in
the time variable. Tsugawa [24] proved local existence and uniqueness of solutions
to the KdV equation when the frequency is Diophantine and the Fourier coefficients
of the potential decay at a sufficiently fast polynomial rate. Damanik-Goldstein
[10] then proved global existence and uniqueness for a Diophantine frequency and
small quasi-periodic analytic initial datum. Recently, Binder-Damanik-Goldstein-
Lukic [7] showed that in the same setting, the solution is in fact almost periodic
in time, thus proving Deift’s conjecture in this case. In our work, we consider
the discrete version of Deift’s conjecture, namely that for almost periodic initial
data, the Toda flow is almost periodic in the time variable. Recall the Toda lattice
equation

(1)

{

a′n(t) = an(t) (bn+1(t)− bn(t)) ,

b′n(t) = 2(a2n(t)− a2n−1(t)),
n ∈ Z.

In view of Theorem 12.6 in [23], given an initial condition (a(0), b(0)) ∈ ℓ∞(Z) ×
ℓ∞(Z), there is a unique solution (a, b) ∈ C∞(R, ℓ∞(Z) × ℓ∞(Z)) to (1). We can
identify (a(t), b(t)) with a doubly infinite Jacobi matrix J(t):

(2) (J(t)u)n := an−1(t)un−1 + bn(t)un + an(t)un+1.

As a consequence of homogeneity (Theorem 4) and purely absolutely continuous
spectrum of subcritical Schrödinger operators [2], we prove a discrete version of
Deift’s conjecture for almost periodic initial data, building on an previous result
of Vinnikov-Yuditskii [25]. We show the following generalization of the result
of Binder-Damanik-Goldstein-Lukic [7] to Avila’s subcritical regime (see also the
recent paper [8] for related advance on this problem).

Theorem 5 (L.-You-Zhao-Zhou [17]). Let α ∈ R\Q with β(α) = 0. Let V : T →
R be a subcritical analytic potential, i.e., such that (α, SV

E ) is subcritical for all
E ∈ ΣV,α. We consider the Toda flow (1) with initial condition (an, bn)(0) =
(1, V (θ + nα)), n ∈ Z. Then

(1) For any θ ∈ T, (1) admits a unique solution (a(t), b(t)) defined for all
t ∈ R.

(2) For every t, the Jacobi matrix J(t) given by (2) is almost periodic and has
constant spectrum ΣV,α.

(3) The solution (a(t), b(t)) is almost periodic in t in the following sense: there
is a continuous map M : TZ → ℓ∞(Z) × ℓ∞(Z), a point ϕ ∈ TZ and a
direction ̟ ∈ RZ, such that (a(t), b(t)) = M(ϕ+̟t).
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In particular, the above conclusion holds for V = 2λ cos 2π(·) with 0 < λ < 1.

Some ideas of the proofs. Our approach is from the perspective of dynamical
systems, and is based on quantitative (strong) almost reducibility. To obtain
bounds on the size of spectral gaps, we analyze the behavior of Schrödinger cocycles
close to the boundary of some spectral gap. At the edge points, the cocycles are
reducible to constant parabolic cocycles. The key points in our proof are the
exponential decay of the off-diagonal coefficient of the parabolic matrix, and the
subexponential growth of the conjugacy (in restriction to T) with respect to the
label k. We first consider the case of small analytic potentials, and we distinguish
between two cases in the proof. If the frequency is Diophantine, we develop a new
KAM scheme to show almost reducibility with nice estimates (this result works
for multifrequencies, and for both continuous and discrete cocycles). Moreover,
in order to get a sharp decay on the size of spectral gaps (Theorem 2), we prove
almost reducibility of the cocycle in a fixed band, arbitrarily close to the initial
band. On the other hand, for a one-dimensional frequency α satisfying β(α) = 0,
we use the almost localization argument (via Aubry duality) given by Avila [1]
(initially developed by Avila-Jitomirskaya [5]); one key ingredient in the proof is
the Corona Theorem. The generalization to the global subcritical regime is based
on Avila’s global theory of analytic SL(2,R)−cocycles [3], especially his proof of
the Almost Reducibility Conjecture [2, 3].

Homogeneity of the spectrum in the subcritical regime is derived from the upper
bounds on the size of spectral gaps, together with Hölder continuity of the IDS.
Thanks to Avila’s global theory of one-frequency Schrödinger operators [3], one
can then prove Theorem 3 by combining our results in the subcritical case with
previous work of Damanik-Goldstein-Schlag-Voda [12] in the supercritical regime.
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KdV Equation with Quasi-Periodic Initial Data

Milivoje Lukic

(joint work with Ilia Binder, David Damanik, Michael Goldstein)

The KdV equation [1]

(1) ∂tu− 6u∂xu+ ∂3xu = 0

was introduced in the 19th century as a model for the propagation of shallow
water waves in one dimension; in the 1960s it was found to have infinitely many
conserved quantities [2] and a Lax pair representation [3], making KdV the first
of many integrable partial differential equations to be discovered.

Integrability of the KdV equation was heavily used for the study of the Cauchy
problem with rapidly decaying and for periodic initial data

(2) u(0) = V.

In particular, for initial data V ∈ Hn(T) for nonnegative integer n, the solution
u(t) is an Hn(T)-almost periodic function of t, which motivated the conjecture of
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Deift [4] whether, for almost periodic initial data V , the solution of the Cauchy
problem is almost periodic as a function of t. The analysis of the KdV Cauchy
problem with almost periodic initial data presents significant new obstacles, and
even short time existence of solutions is not known in general.

Our work has focused on quasiperiodic initial data V of the form

(3) V (x) =
∑

n∈Zν

c(n)e2πinωx

where ω ∈ Rν . In particular, we define for ε > 0 and κ ∈ (0, 1] the space P(ω, ε, κ)
of functions of the form (3) such that |c(n)| ≤ ε exp(−κ|n|) for n ∈ Zν . Our work
proves Deift’s conjecture for the case of small quasiperiodic analytic initial data
with Diophantine frequency.

Theorem 1. [5] Let ω ∈ Rν obey the Diophantine condition

|nω| ≥ a0|n|−b0 , n ∈ Zν \ {0}
for some 0 < a0 < 1, ν < b0 < ∞. There exists ε0(a0, b0, κ) > 0 such that, if
ε < ε0 and V ∈ P(ω, ε, κ), then there exists a global solution u of (1), (2) with the
following properties:

(1) for every t ∈ R, u(·, t) is quasiperiodic in x and u(·, t) ∈ P(ω,
√
4ε, κ/4)

(2) u is P(ω,
√
4ε, κ/4)-almost periodic in t, i.e., there is a compact (finite or

infinite dimensional) torus Td, a continuous map

M : Td → P(ω,
√
4ε, κ/4),

a base point α ∈ Td, and a direction vector ζ ∈ Rd such that u(t) =
M(α+ ζt)

(3) the solution is unique, in the following sense: if ũ is a solution of (1), (2)
on R× [−T, T ] for some T > 0, and

(4) ũ, ∂xxxũ ∈ L∞(R× [−T, T ]),
then ũ = u.

In the conclusion (2) above, P(ω, ε, κ) can be taken as a metric space with the
metric induced by the L∞(R)-norm, or the W k,∞(R)-norm for any k ∈ N; all such
metrics are mutually equivalent on P(ω, ε, κ). The theorem therefore implies that
besides u, derivatives of u are also almost periodic in t, and so is each Fourier
coefficient c(n, t) of u(x, t).

In fact, Theorem 1 is a corollary of our more general result, which proves ex-
istence, uniqueness, and almost periodicity in t whenever V is almost periodic
and the spectrum of the associated Schrödinger operator −∂2x + V is absolutely
continuous and not too thin, in a sense quantified by Craig-type conditions.

The spectrum S = σ(HV ) is closed and bounded from below but not from
above, so it can be written in the form

S = [E,∞) \
⋃

j∈J

(E−
j , E

+
j ),
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where E = inf S and (E−
j , E

+
j ) are the maximal open intervals in R \ S, called

gaps. We denote

γj = E+
j − E−

j

for j ∈ J and

ηj,l = dist((E−
j , E

+
j ), (E−

l , E
+
l )), ηj,0 = dist((E−

j , E
+
j ), E)

for j, l ∈ J (notationally, we assume here that our abstract index set J does not
contain 0 as an element). We also denote

Cj = (ηj,0 + γj)
1/2
∏

l∈J
l 6=j

(

1 +
γl
ηj,l

)1/2

.

We assume that S satisfies a set of moment conditions and Craig-type conditions:
∑

j∈J

(1 + η2j,0)γj <∞(5)

∑

j∈J

γ
1/2
j <∞, sup

j∈J
γ
1/2
j

1 + ηj,0
ηj,0

Cj <∞(6)

sup
j∈J

∑

l∈J
l 6=j

(

γ
1/2
j γ

1/2
l

ηj,l

)a

(1 + ηj,0)(Cj + 1) <∞ for a ∈
{

1
2 , 1
}

.(7)

Theorem 2. [5] Let the initial data V : R → R be uniformly almost periodic.
Denote S = σ(HV ) and assume that S = σac(HV ) and that S obeys the Craig-type
conditions (5), (6), (7). Then there exists a global solution u of (1), (2) with the
following properties:

(1) for every t ∈ R, the function u(·, t) is uniformly almost periodic with
frequency module equal to the frequency module of V ;

(2) u is almost periodic in t, in the following sense: there is a continuous map

M : TJ →W 4,∞(R),

a base point α ∈ TJ , and a direction vector ζ ∈ RJ such that u(·, t) =
M(α+ ζt);

(3) the solution is unique, in the following sense: if ũ is a solution of (1), (2)
on R× [−T, T ] for some T > 0, which obeys (4), then ũ = u.

The existence and almost periodicity of a solution of the KdV equation un-
der Craig-type conditions were previously studied by Egorova [6] (with the ana-
log for the nonlinear Schrödinger equation studied by Boutet de Monvel–Egorova
[7]). Another paper of Egorova [8] used a different approach to construct almost
periodic solutions for limit periodic initial data with superexponential periodic
approximants.
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Long-time asymptotics for KdV with steplike initial data

Gerald Teschl

(joint work with Kyrylo Andreiev, Iryna Egorova, Till Luc Lange)

In this work we were concerned with the Cauchy problem for the Korteweg–de
Vries (KdV) equation

(1) qt(x, t) = 6q(x, t)qx(x, t) − qxxx(x, t), (x, t) ∈ R× R+,

with steplike initial data q(x, 0) = q0(x) satisfying

(2)

{

q0(x) → 0, as x→ +∞,
q0(x) → c2, as x→ −∞.

This case is known as rarefaction problem. The corresponding long-time asymp-
totics of q(x, t) as t→ ∞ are well understood on a physical level of rigor ([18, 14,
16]) and can be split into three main regions:

• In the region x < −6c2t the solution is asymptotically close to the back-
ground c2.

• In the region −6c2t < x < 0 the solution can asymptotically be described
by − x

6t .
• In the region 0 < x the solution is asymptotically given by a sum of
solitons.
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For the corresponding shock problem we refer to [1, 6, 11, 12, 13, 15, 17].
Our aim was to rigorously justify these results. In addition, we were also able

to compute the second terms in the asymptotic expansion, which was, to the best
of our knowledge, not obtained before. Our approach is based on the nonlinear
steepest descent method for oscillatory Riemann–Hilbert (RH) problems devel-
oped by Deift and Zhou [5] based on earlier work by Its and Manakov (see [10] for
an easy introduction in the case c = 0). In turn, this approach rests on the inverse
scattering transform for steplike initial data originally developed by Buslaev and
Fomin [2] with later contributions by Cohen and Kappeler [3]. For recent devel-
opments and explicit conditions on the initial data q0 ensuring unique solvability
of the Cauchy problem we refer to [9, 8, 7].

As is known, the solution of the initial value problem (1), (2) can be computed
by the inverse scattering transform from the right scattering data of the initial
profile. Here the right scattering data are given by the reflection coefficient R(k),
k ∈ R, a finite number of eigenvalues −κ21, . . . , −κ2N , and positive norming con-
stants γ1, . . . , γN . The difference with the decaying case c = 0 consists of the fact,
that the modulus of the reflection coefficient is equal to 1 on the interval [−c, c].
This implies that the deformation of the initial Riemann–Hilbert problem requires
a new phase function, the so-called g function, as first outlined in [4]. At the point
k = 0 the reflection coefficient takes the values ±1 (cf. [3]). The case R(0) = −1
is known as the nonresonant case (which is generic), whereas the case R(0) = 1 is
called the resonant case. Note, that the right transmission coefficient T (k) can be
reconstructed uniquely from these data (cf. [2]).

Our main results is the following:
Let the initial data q0(x) ∈ C8(R) of the Cauchy problem (1)–(2) satisfy

(3)

∫ +∞

0

eκx(|q0(x)| + |q0(−x)− c2|)dx <∞,

for some small κ > 0. Let q(x, t) be the solution of this problem. Then for
arbitrary small ǫj > 0, j = 1, 2, 3, and for ξ = x

12t , the following asymptotics are
valid as t→ ∞ uniformly with respect to ξ:
A. In the domain (−6c2 + ǫ1)t < x < −ǫ1t:

(4) q(x, t) = −x+Q(ξ)

6t
(1 +O(t−1/3)), as t→ +∞,

where

(5) Q(ξ) =
2

π

∫

√
−2ξ

−
√
−2ξ





d

ds
logR(s)− 4i

N
∑

j=1

κj
s2 + κ2j





ds
√

s2 + 2ξ
∓ 1

2
√−2ξ

,

with ± corresponding to the resonant/nonresonant case, respectively.
B. In the domain x < (−6c2 − ǫ2)t in the nonresonant case:

(6) q(x, t) = c2 +

√

4ντ

3t
sin(16tτ3 − ν log(192tτ3) + δ)(1 + o(1)),
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where τ = τ(ξ) =
√

c2

2 − ξ, ν = ν(ξ) = − 1
2π log

(

1− |R(τ)|2
)

and

δ(ξ) =− 3π

4
+ arg(R(τ)− 2T (τ) + Γ(iν))

− 1

π

∫

R\[−τ,τ ]

log
1− |R(s)|2
1− |R(τ)|2

s ds

s2 − c2 − ( c
2

2 + ξ)1/2(c2 − s2)1/2
.

Here Γ is the Gamma function.
C. In the domain x > ǫ3t:

q(x, t) = −
N
∑

j=1

2κ2j

cosh2
(

κjx− 4κ3jt− 1
2 log

γj

2κj
−∑N

i=j+1 log
κi−κj

κi+κj

) +O(e−ǫ3t/2).
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Reflectionless discrete Schrödinger operators are spectrally atypical

Tom VandenBoom

A discrete Schrödinger operator (DSO) is a self-adjoint linear operator HV on
ℓ2(Z) which acts entrywise via

(HV u)n = un+1 + un−1 + V (n)un, u ∈ ℓ2(Z),(1)

where V is a bounded potential funtion V : Z → R. The Schrödinger operator
and DSO tend to share many spectral characteristics, and as such the question
of identifying the spectral characteristics of a DSO with a fixed almost-periodic
potential V is thoroughly studied and reasonably well-understood.

On the other hand, one can likewise ask which bounded self-adjoint operators on
ℓ2(Z) demonstrate particular spectral characteristics. In this context, the Jacobi
operator

(Ju)n = anun−1 + bnun + an+1un+1, u ∈ ℓ2(Z)(2)

is natural to consider. When a whole-line Jacobi operator is reflectionless – that is,
when the diagonal entries of its resolvent matrix tend to purely imaginary values
almost everywhere on the spectrum – one can reconstruct the sequences a and b
from spectral data. Examples of reflectionless Jacobi operators abound, and are
subtly but intimately related to the presence of absolutely continuous spectrum
[3, 5, 7, 12].

Fix a positive-measure compact E ⊂ R, and define the isospectral torus for E
as

J (E) := {J : σ(J) ⊂ E and J reflectionless on E}.
When E has uniformly positive Lebesgue density, J (E) is homeomorphic to a
torus with dimension the number of spectral gaps in E [9]. For such compacts E,
certain potential-theoretic properties are directly related to spectral properties of
elements of J (E). For example, the logarithmic capacity of a finite-gap compact E
can be determined as the limit of the geometric means of the off-diagonal sequences
of Jacobi operators in the isospectral torus [8, 9]:

cap(E) = lim
n→∞

(a1a2 · · ·an)1/n, J(a, b) ∈ J (E).(3)

Note that, by (3), if E = σ(HV ) for some DSO HV , then cap(E) = 1. Conse-
quently, the following question is natural: for a compact E with cap(E) = 1, does
there exist a DSO HV ∈ J (E)? The titular result provides a negative answer:
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Theorem 1. For a full-measure dense Gδ of finite-gap compacts E having
cap(E) = 1, J (E) contains no DSO.

This result is related to a result of Hur [4] regarding the sparsity of DSO m-
functions among those for Jacobi operators; however, our result makes stronger
claims about this atypicality.

In fact, this theorem arises as a straightforward corollary of a dynamical state-
ment. The action S of conjugation by the left-shift S : δn 7→ δn+1 preserves both
the spectrum and the reflectionless condition, and thus (J (E),S) is a discrete-time
dynamical system. This action is minimal if the S orbit of every point J ∈ J (E)
is dense. We prove that

Theorem 2. Fix a positive-measure compact E ⊂ R, and suppose there exists a
DSO HV ∈ J (E). Then either V is a constant potential V = C, or the dynamical
system (J (E),S) is not minimal.

At first glance, this seems paradoxical, because it is not hard to find examples of
reflectionless, finite-gap DSOs; in particular, any DSO having p-periodic potential
function V has at most p − 1 spectral gaps. Another result suggests that further
examples may not exist!

Theorem 3. Suppose E has cap(E) = 1 and 0, 1, or 2 spectral gaps. If there exists
a DSO HV ∈ J (E), then V (and the dynamical system (J (E),S)) is periodic.

That this result holds for 0-gap spectrum is an old and well-known result [1, 8];
similarly, this result has probably been observed for 1-gap spectra by way of trace
formulas. That the theorem holds for 2-gap spectra is quite surprising, but follows
via a certain novel application of the Toda flow, which we now describe.

Consider a bounded linear operator A on ℓ2(Z). Denote by A± the restrictions
of A to ℓ2(Z±) →֒ ℓ2(Z), where the inclusion map is given by assigning zeros to
the left- or right-half line. Fix a polynomial P of degree n+ 1 ≥ 1. The nth Toda
flow (for P ) is the integral curve J(t) of Jacobi operators satisfying the Lax pair

∂tJ = [P (J)+ − P (J)−, J ].(4)

There exist unique solutions to (4) for any bounded Jacobi initial condition J0 [10,
Theorem 12.6]. When there exists a monic polynomial P so that

[P (J)+ − P (J)−, J ] = 0.(5)

we say J is stationary for P . This definition can even be extended to bounded
functions [11]. Stationary solutions to the Toda hierarchy are closely related to
reflectionlessness; in a sense, isospectral tori are the level sets of commutators like
in (5) [2, 10, 11]

For particular choices of polynomial P , the Toda flow induces a system of
differential equations on the parametrizing sequences a, b ∈ ℓ∞. The critical facts
about the Toda flow that we employ are summarized in

Proposition 1. For any non-constant polynomial P :
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(1) [6, Corollary 1.3] Suppose J(t) is the unique solution to (4) with J(0) =
J0 ∈ J (E), where E = σ(J0). Then J(t) ∈ J (E) for all t ∈ R.

(2) [10, Theorem 12.8] The stationary solutions ∂tJ = 0 of (4) are finite-gap
reflectionless Jacobi operators.

(3) [10, Corollary 12.10]

min {deg(P ) : J stationary for P} = # {spectral gaps in σ(J)} + 1,

where we interpret min{∅} = ∞.

We prove our theorems by leveraging these powerful results against the relative
simplicity of the induced differential system under the assumption an = 1 for all
n.
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Solutions to the KdV hierarchy via finite-gap approximation

Tom VandenBoom

(joint work with Benjamin Eichinger and Peter Yuditskii)

Consider the one-dimensional Schrödinger operator

Lq = −∆+ q

where ∆ = d2/dx2 is the Laplacian and q : R → R is a potential function. For
a potential function q of sufficient regularity (namely, q ∈ Cm+3(R,R)), one can
iteratively construct a sequence of differential polynomials depending on L = Lq

by

f0(q) = 1(1)

∂xfm(q) = −1

4
∂3xfm−1 + q∂xfm−1 +

1

2
fm−1∂xq(2)

The kth KdV hierarchy, whose initial member was proposed by Korteweg and de
Vries in the late 19th century [4], is defined by

KdVk(q) := −2∂xfk+1(q).

We study the Cauchy problem for the KdV hierarchy; that is, we study solutions
q ∈ C2k+1,1(R× R,R) to the partial differential equation

∂tkq = KdVk(q),(3)

q(·, 0) = q0(4)

for initial conditions q0 satisfying certain regularity properties.
Consider a closed set E ⊂ R which is bounded from below such that the domain

Ω = C \E is of Widom type. By translation, it is no assumption to let inf E = 0.
We thus can write E as the right half-line with an at-most countable set of maximal
gaps removed; that is, E can be written as

E = [0,∞) \
∞
⋃

j=1

(aj , bj).(5)

Denote byQ(E) the set of potentials q for which Lq is reflectionless on its spectrum
E. Joint with B. Eichinger and P. Yuditskii, we proved the following result:

Theorem 1. Suppose E ⊂ R is closed and bounded below of the form (5) such
that

∞
∑

j=1

bk+2
j − ak+2

j <∞,(6)

and suppose q0 ∈ Q(E). Then there exists a classical solution q = q(x, tk) ∈
C2(k+1),1(R× R,R) to the Cauchy problem (3), (4).
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Furthermore, this solution is almost periodic in both the x and tk coordinates,
in the sense that there exists a continuous map M : T∞ → Q(E) and vectors
α0 ∈ T∞ and δx, δtk ∈ R∞ so that

q(x, tk) = M(α0 + xδx + tkδtk).

Results of this kind are contributed to a conjecture of Deift [2] and have been
explored to a certain extent in a variety of previous results [1, 3].

The condition (6) is optimal for the existence of classical solutions to the Cauchy
problem (3), (4). As an example, consider the case k = 0: if one only assumes finite
total gap length, one can only conclude continuity of the associated potentials,
which cannot in general be classical solutions to the associated KdV equation
∂tq = KdV0(q) = −∂xq. Explicit examples which are not differentiable can be
constructed.

Our methods of proving Theorem 1 can be viewed to a certain extent as a
refinement of those methods developed in [1] for KdV1; specifically, in their paper
they prove an analogous result (with the additional conclusion of uniqueness) to
Theorem 1 via the following approximate scheme:

(1) Find the KdV flow on the Dirichlet data of an initial condition q ∈ Q(E)
(2) Assume Craig-type conditions to achieve existence and uniqueness for the

associated flowon Dirichlet data.
(3) Use previous results for finite-gap spectra to conclude almost-periodicity

for finite-gap approximants.
(4) Pass to the infinite-gap limit under Craig-type conditions and uniform

convergence.

Our methods replace items (1) and (2) above by the character-automorphism
techniques of Sodin and Yuditskii [5]. Specifically, we find the flow associated
to the KdV hierarchy on the characters of the finite-gap approximants, and pass
to the limit using the condition (6). This allows for some simplification of the
assumptions, but at the moment only allows for the weaker conclusion of existence.
We believe that by using the theory of Abelian coverings, one can find the precise
conditions for existence and uniqueness in an approach similar to that developed
for the Toda flow by Vinnikov and Yuditskii [7].
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Killip-Simon problem and Jacobi flow on GMP matrices

Peter Yuditskii

One of the first and therefore most important theorems in perturbation theory
claims that for an arbitrary self-adjoint operator A there exists a perturbation B
of Hilbert-Schmidt class with arbitrary small operator norm, which destroys com-
pletely the absolutely continuous (a.c.) spectrum of the initial operator A (von
Neumann). However, if A is the discrete free 1-D Schrödinger operator and B is
an arbitrary Jacobi matrix (of Hilbert-Schmidt class) the a.c. spectrum remains
perfectly the same (Deift-Killip [3]), that is, the interval [−2, 2]. Moreover, Killip
and Simon [5] described explicitly the spectral properties for such A+B. Jointly
with Damanik [2] they generalized this result to the case of perturbations of pe-
riodic Jacobi matrices in the non-degenerated case. Recall that the spectrum of
a periodic Jacobi matrix is a system of intervals of a very specific nature. Chris-
tiansen, Simon and Zinchenko [1] posed in a review dedicated to F. Gesztesy the
following question: “is there an extension of the Damanik-Killip-Simon theorem
to the general finite system of intervals case?” In [7] this problem was solved com-
pletely. Our method deals with the Jacobi flow on GMP matrices. GMP matrices
are probably a new object in the spectral theory. They form a certain Generaliza-
tion of matrices related to the strong Moment Problem [4], the latter ones are a
very close relative of Jacobi and CMV matrices. The Jacobi flow on them is also a
probably new member of the rich family of integrable systems. Finally, related to
Jacobi matrices of Killip-Simon class, analytic vector bundles and their curvature
play a certain role in our construction and, at least on the level of ideology, this
role is quite essential.

In this talk we concentrate on the functional model for periodic GMP matrices
and prove the so-called “magic formula” for them as an evident consequence of
this model.

For a finite gap set E = [b0, a0]\∪g
j=1(aj ,bj), let D/Γ ≃ C\E be a uniformiza-

tion of the given domain with the covering map function z : D → C \ E and the
Fuchsian group Γ, z ◦ γ = z, ∀γ ∈ Γ. Let Γ∗ be the corresponding group of uni-
tary characters. For α ∈ Γ∗ we define the Hardy space of character automorphic
functions as

H2(α) = {f ∈ H2 : f ◦ γ = e2πiα(γ)f, γ ∈ Γ},
where H2 denotes the standard Hardy class in D.

We define two special functions: the so-called Green function b = b∞ of the
group Γ, which is the Blaschke product with zeros at z−1(∞) = {γ(ζ0)}γ∈Γ, and
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the reproducing kernel kα = kα∞ of the space H2(α), i.e.,

〈f, kα〉 = f(ζ0) ∀f ∈ H2(α).

Using these special functions, one can give a parametric description of the class
of reflectionless Jacobi matrices J(E) with the spectrum E (in a much more general
form the following theorem was proved in [6]).

Theorem 1. The system of functions

eαn(ζ) = bn(ζ)
kα−nµ(ζ)
√

kα−nµ(0)

forms an orthonormal basis in H2(α) for n ∈ N. The multiplication operator by z

with respect to the basis {eαn(ζ)}n∈Z is the Jacobi matrix J(α) with the coefficients
{a(n;α), b(n;α)}n∈Z:

zeαn = a(n;α)eαn−1 + b(n;α)eαn + a(n+ 1;α)eαn+1.

Moreover,

J(E) = {J(α) : α ∈ Γ∗}.

Recall that the set E is the spectrum of a periodic Jacobi matrix if and only
if there exists a polynomial Tn(z) such that E = T−1

n [−2, 2]. In this case the
isospectral set J(E) can be described as a collection of Jacobi matrices J , which
satisfies the following (“magic”) formula

Tn(J) = Sn + S−n,

where S is the standard shift operator.
One of our main ideas in solving the Killip-Simon problem deals with the fact

that for an arbitrary finite gap set E there exists an essentially unique rational
function ∆(z) of the form

∆(z) = λ0z + c0 +

g
∑

j=1

λj
cj − z

, λj > 0, cj ∈ (aj ,bj),

such that E = ∆−1[−2, 2]. Its Zhukovskii transform Ψ(z), ∆(z) = 1
Ψ(z) +Ψ(z), is

a single valued function in the domain C̄ \ E. Moreover, this is a product of the
complex Green functions Ψ(z(ζ)) = b(ζ)

∏g
j=1 bcj (ζ).

We substitute the orthonormal system {eαn(ζ)} by the system

(1) fαn = fαn(ζ; c1, . . . , cg) = Ψmfαj , n = (g + 1)m+ j, j ∈ [0, . . . , g]

where (with a suitable constants φj ∈ R/Z)

fα0 =
e2πφ1ikαζ1
√

kαζ1(ζ1)
, fα1 =

e2πφ2ibc1k
α−µc1

ζ2
√

k
α−µc1

ζ2
(ζ2)

, ..., fαg =

∏g
j=1 bcjk

α+µ

√

kα+µ(0)
.
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Theorem 2. In the above notations the multiplication operator by z with respect
to the basis {fαn}n∈Z is a periodic GMP matrix A(α). Moreover, the isospectral set
A(E) of periodic GMP matrices has the form

A(E) = {A(α) : α ∈ Γ∗},
and can be described as the collection of GMP matrices A, which satisfies the
following (“magic”) formula

∆(A) = Sg+1 + S−(g+1).
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Lieb–Thirring inequalities for finite and infinite gap Jacobi matrices

Maxim Zinchenko

(joint work with Jacob Christiansen)

In 1976, Lieb and Thirring in their work on stability of matter [9, 10] obtained an
upper bound on the moments of discrete eigenvalues of a Schrödinger operator.
For one-dimensional Schrödinger operators the bound takes the form

(1)
∑

λ∈σd(A)

|λ|p−1/2 ≤ Lp

∫

R

|V (x)|pdx, p ≥ 1,

where Lp is a constant independent of V . The bound is false for p < 1. In
the original work the inequality was derived for p > 1 and the endpoint result for
p = 1 was proven only 20 years later by Weidl [11]. Lieb–Thirring inequalities have
found applications in the studies of quantum mechanics, differential equations, and
dynamical systems, see e.g., [7] for a history of the subject.
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An analogous Lieb–Thirring inequality for discrete Schrödinger operators and
more generally for Jacobi operators on ℓ2(Z), represented by the tridiagonal Jacobi
matrices

J =

















. . .
. . .

. . .

a0 b1 a1
a1 b2 a2

a2 b3 a3
. . .

. . .
. . .

















,(2)

was obtained in [8] for perturbations of the discrete Laplacian and in [4] for per-
turbations of periodic Jacobi matrices. In either of these settings denoting the
unperturbed Jacobi matrix by J0, its spectrum by E, and letting the Jacobi ma-
trix J = J0+δJ be a compact self-adjoint perturbation of J0 leads to the following
Lieb–Thirring bound for all p ≥ 1,

(3)
∑

λ∈σd(J)

dist
(

λ,E
)p− 1

2 ≤ Lp, E

∞
∑

n=−∞
|δan|p + |δbn|p,

where the constant Lp, E is independent of both J0 and δJ and may depend only
on p and E. In [5] the case p = 1 of the above Lieb–Thirring bound was proven for
perturbations of Jacobi matrices from arbitrary finite gap isospectral tori TE, hence
extending the bound to perturbations of certain quasi-periodic Jacobi matrices.

In the joint work with J. S. Christiansen [2], we investigate possible extensions
of the Lieb–Thirring bound to more general classes of Jacobi matrices, in partic-
ular, to perturbations of certain almost periodic Jacobi matrices with infinite gap
spectrum. In [2] we obtain the following abstract version of the Lieb–Thirring
bound. Suppose J0 and J = J0 + δJ are two-sided Jacobi matrices and δJ is a
compact self-adjoint perturbation. Let E be the spectrum of J0 and denote the
gaps of E by (αk, βk), k ≥ 0, so that E =

[

β0, α0

]

\⋃j≥1

(

αj , βj
)

. In addition, let

dρn be the spectral measures of (J0, δn), n ∈ Z, and suppose that

sup
n∈Z

∫

E

dρn(t)

|t− x| ≤
Ck

dist(x,E)1/2
, x ∈ (αk, βk), k ≥ 0,(4)

for some summable sequence {Ck}k≥0. Then σess(J) = E and the discrete eigen-
values of J satisfy the Lieb–Thirring bound (3) with p > 1 and the constant Lp,E

that depends only on p and the sequence {Ck}k≥0. We then show that the abstract
result applies (i.e., assumption (4) is satisfied with the constants {Ck}k≥0 depend-
ing only on E) in particular situations of almost periodic J0 from isospectral tori TE
for sets E of three types: (i) arbitrary finite gap sets; (ii) Cantor sets E =

⋂∞
k=0 Ek,

where E0 = [β0, α0] and Ek is obtained from Ek−1 by removing the middle ǫk
portion from each of the 2k−1 bands in Ek−1, with parameters {ǫk}k≥1 ⊂ (0, 1)

satisfying lim supk→∞(ǫk)
1/k < 1/4; (iii) infinite band sets E =

⋂∞
k=0 Ek, where

E0 = [β0, α0] and Ek is obtained from Ek−1 by removing the middle ǫk portion
from the first of the k bands in Ek−1, with parameters {ǫk}k≥1 ⊂ (0, 1) satisfying
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∑∞
k=1

√
ǫk log(1/ǫk) < ∞. The endpoint case p = 1 of the Lieb–Thirring inequal-

ity (3) for perturbations of Jacobi matrices from infinite gap isospectral tori is an
open problem. Another open problem is to find a characterization of infinite gap
sets for which there is a Lieb–Thirring bound.

In recent years, Lieb–Thirring-type bounds have been also obtained for Schrö-
dinger operators with complex potentials. In the setting of tridiagonal Jacobi
matrices with complex coefficients

J =

















. . .
. . .

. . .

a0 b1 c1
a1 b2 c2

a2 b3 c3
. . .

. . .
. . .

















,(5)

a Lieb–Thirring-type bound was derived in [1, 6] for compact non-self-adjoint
perturbations J = J0 + δJ of the discrete Laplacian J0. The bound asserts that
for every 0 < ǫ < 1,

∑

z∈σd(J)

dist
(

z, [−2, 2]
)p+ǫ

|z2 − 4| 12
≤ Lp,ǫ

∞
∑

n=−∞
|δan|p + |δbn|p + |δcn|p, p ≥ 1,(6)

where the eigenvalues are repeated according to their algebraic multiplicity and
the constant Lp,ǫ is independent of δJ . It is currently not known whether or not
the inequality continues to hold for ǫ = 0.

In the joint work with J. S. Christiansen [3], we improve the non-self-adjoint
Lieb–Thirring bound (6) and extend it to perturbations of periodic Jacobi matrices
and more generally to perturbations of quasi-periodic Jacobi matrices from finite
gap isospectral tori TE. Give an arbitrary finite gap set E ⊂ R, let J0 ∈ TE and
suppose that J = J0 + δJ is a compact non-self-adjoint perturbation of J0. In [3]
we show that for every 0 < ǫ < 1,

∑

z∈σd(J)

dist
(

z,E
)p+ǫ

(1 + |z|) 1
2
−2ǫ

dist(z, ∂E)
1
2

≤ Lǫ,p,E

∞
∑

n=−∞
|δan|p + |δbn|p + |δcn|p,(7)

where the eigenvalues are repeated according to their algebraic multiplicity and
the constant Lǫ,p,E is independent of both J0 and δJ and may depend only on ǫ,
p, and E. We note that (7) is new even when J0 is the discrete Laplacian since,
unlike (6), it is nearly optimal not only for small but also for large perturbations.
As with (6), it is an open problem whether (7) remains true for ǫ = 0. Another

open problem is to determine whether it is possible to replace dist(z, ∂E)
1
2 in the

denominator on the left hand-side by dist(z,E)
1
2 .
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