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Introduction by the Organisers

Overview. The organizers brought together at Oberwolfach two groups of re-
searchers who have worked over the past few years, mostly independently, on
questions strongly linked by the study of algebraic invariants that occur both in
low-dimensional topology and in complex algebraic geometry. One group con-
sisted of topologists who mostly study knots and links and closed 3-manifolds,
while the other group consisted of geometers who mostly study algebraic plane
curves, smooth projective varieties, or singularities. Several participants were re-
cent either Ph.D. students or recent Ph.D.s, many of them on their first visit to
MFO. In all, there were 17 mathematicians attending the mini-workshop (includ-
ing the organizers), coming from the Canada, France, Germany, Hungary, India,
Italy, Korea, Poland, Spain, and the United States.
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The meeting allowed us to compare some closely related constructions and find
some common ground within the scope of rather varied disciplinary perspectives.
The relatively spontaneous format of the meeting made it possible to mix some
informal and semi-expository talks and small group discussions with more formal
announcements of recent developments, indicated in the abstracts that follow. The
fact that we were a small group led to much more interaction during talks and
to much more lively discussions than is usually experienced at bigger meetings.
The very interactive nature of this mini-workshop was extremely beneficial for
everybody since researchers with very different mathematical background came
together.

Research themes. The (single variable) Alexander polynomials were first in-
troduced to study the topology of knot complements in the 3-sphere. They are
easier to handle than the corresponding fundamental groups, which are highly non-
commutative in general. In a series of beautiful papers written in the 1980s and
1990s, Libgober had the idea to use the Alexander polynomials for the study of the
topology of algebraic plane curve complements and, later on, that of complements
of complex affine hypersurfaces with only isolated singularities. He showed that
the Alexander polynomial of a plane curve complement is a fine enough invariant
to detect Zariski pairs (i.e., pairs of plane curves which have homeomorphic regu-
lar neighborhoods, but non-homeomorphic complements), and, moreover, its zeros
are among those of the local Alexander polynomials associated to the link pairs of
singular points (hence they are all roots of unity).

In relation to an old question of Serre, such rigidity-type results for Alexander
polynomials preclude many knot groups from being realized as fundamental groups
of plane curve complements. Libgober’s results were more recently extended to
hypersurfaces with arbitrary singularities by Maxim, Dimca, Liu, and others. This
fact generated a flurry of activities in many exciting directions.

In the past few years, Alexander polynomials of plane curve complements have
found deep applications in algebraic geometry, singularity theory, and number
theory. For example, Cogolludo and Libgober established an intriguing connection
between the rank of the Mordell-Weil group of certain isotrivial elliptic threefolds
with base P2 and the vanishing order of the Alexander polynomial of the reduction
of the discriminant of the elliptic fibration.

The Alexander polynomial also describes the algebraic monodromy Milnor fi-
bration associated to an arrangement of lines in P2. Recent work of Papadima
and Suciu shows that such an Alexander polynomial is determined by the combi-
natorics of the arrangement if the lines intersect only in double and triple points,
but the general case remains open.

The classical Alexander polynomial of knots and links have been generalized by
Ozsváth-Szabó to a whole package of 3-manifold invariants, called the Heegaard–
Floer invariants. These objects are structurally much harder to deal with than
Alexander polynomials, but they also contain significantly more information. The
study of interactions between Heegaard–Floer invariants and algebraic geometry
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has been an increasingly active area of research. Hereby the interaction goes both
ways.

We first outline how Heegaard–Floer homology can inform our understanding of
plane curve singularities. Campillo, Delgado, and Gusein-Zade made a connection
between the Alexander polynomial of the link of a plane curve singularity and the
semigroup of the singular point. On the other hand, the Alexander polynomial
of an algebraic knot determines the Heegaard–Floer chain complex of this knot.
These two ingredients allowed Borodzik and Livingston to draw a connection be-
tween Heegaard–Floer invariants of algebraic links with the relevant semigroups.
As a result, based on the fundamental inequality for the d-invariants of Ozsváth
and Szabó, they were able to prove the conjecture of Fernández de Bobadilla, Lu-
engo, Melle-Hernández, and Némethi on the semigroup distribution property of a
rational cuspidal curve in CP

2.
Conversely, algebraic geometry can further our understanding of Heegaard–

Floer theory. For instance, in 2005 Némethi introduced lattice homology, which
is a combinatorial object associated to a resolution graph of a surface singularity.
Different resolutions of the same singular point yield isomorphic homology groups,
hence the lattice homology is an invariant of a surface singularity. It was proved by
Némethi that the lattice homology is isomorphic to the Heegaard–Floer homology
of the link of the singularity, as long as the resolution graph is almost rational.

Structure of the mini-workshop. The schedule of the meeting comprised 16
lectures of one hour each, including 14 research talks, and a 3-lectures series by
A. Némethi. Speakers presented recent progress on open problems in some of the
above-mentioned research themes.

For instance, recall that a Kähler group is a group that can be realized as the
fundamental group of a connected, compact Kähler manifold. It is still an open
problem (attributed to Serre) to completely classify Kähler groups. In his talk,
M. Mj explained how to use the theory of cuts developed by Delzant–Gromov to
decide completely which 3-manifold groups are Kähler, which one-relator groups
are Kähler, and so on. P. Py discussed his work with T. Delzant on a (virtual)
classification of cubulable Kähler groups, i.e., Kähler groups which admit actions
on CAT(0) cubical complexes.

Several talks were dedicated to the study of homological duality properties of
complex algebraic manifolds and of their fundamental groups, and various applica-
tions. For instance, G. Denham presented his recent work with A. Suciu, in which
they show that complements of linear, toric, and elliptic arrangements are both
duality and abelian duality spaces. Such spaces have good vanishing properties
for their cohomology with rank-one local system coefficients. Other examples of
abelian duality spaces were discussed in the talk of Y. Liu (who presented joint
work with L. Maxim and B. Wang), by making use of the formalism of perverse
sheaves. In a different vein, A. Suciu presented his work with S. Papadima on
homological and geometric finiteness properties of groups, and related work with
T. Koberda on the RFRp property of groups.
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Fundamental groups of quasi-projective manifolds were also the main topic of
talks by J.I. Cogolludo-Agust́ın and E. Artal Bartolo. More precisely, Cogolludo-
Agust́ın presented his joint work with A. Libgober on the asymptotic behavior of
certain invariants (Alexander-type invariants and the number of surjections onto
free groups) of the fundamental groups of complements of divisors on smooth pro-
jective surfaces, whereas Artal Bartolo discussed his joint work with J.I. Cogolludo-
Agust́ın and J. Mart́ın-Morales on arithmetic Zariski tuples.

Several deep connections between low-dimensional topology and complex ge-
ometry were established and emphasized. For instance, M. Borodzik explained his
joint project with J. Hom and A. Schinzel on how to use invariants coming from in-
volutive Heegard Floer theory to restrict possible configurations of singular points
of a planar rational cuspidal curve. Furthermore, A. Némethi presented in his
lecture series a beautiful interplay between algebraic geometry (via the theory of
local complex normal surface singularities), low-dimensional topology (Heegaard
Floer homology and foliations), and group theory (left-orderability property of the
fundamental group).

A number of talks targeted topics in low-dimensional topology. For example,
J.C. Cha gave a brief overview of the use of Cheeger–Gromov’s L2 ρ-invariants
in dimensions three and four. E. Toffoli presented his results on ρ-invariants for
manifolds with boundary, with applications to concordance. Concordance of knots
and links was also the subject of S. Harvey’s talk, who reported on her joint work
with C. Leidy on pure braids, Whitney towers, and 0-solvability.

Other aspects of the interplay between topology and complex geometry were
also present in the talks by T. Koberda and L. Flapan. Specifically, Koberda
discussed the relationship between the algebraic structure of a group G and the
possible degrees of regularity of faithful action of G on a compact, one-dimensional
manifold, with applications to complex geometry. Flapan presented her recent re-
sults on the study of monodromy of Kodaira fibrations, and obtaining new obstruc-
tions on groups which can be realized as monodromy groups of such fibrations.

Concluding remarks. The mini-Workshop was the ideal place to present, dis-
cuss and further develop the ideas and results that are currently emerging in the
different research groups that were brought together at Oberwolfach. Spending
a concentrated and highly intense week in a relatively small group allowed for
in-depth and continuing discussions during lectures and , in particular with new
acquaintances. These opportunities (difficult to find at larger meetings) were en-
hanced by the diversity of backgrounds of the participants. This speaks to the
fact that the usual, more rigid conference climate was superseded by an open and
creative workshop atmosphere.

There was general agreement that the mini-workshop created an effective and
stimulating research atmosphere. The work initiated at Oberwolfach is continuing
now in several research groups. The free flow of ideas and the intense interactions
at the meeting gave rise to new projects, which should start bearing fruit in the
not too distant future.
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Abstracts

Cheeger–Gromov L2 ρ-invariants and low dimensional topology

Jae Choon Cha

In this extended abstract, we give a brief introduction, for non-experts, on some
recent results in dimension three and four which use the Cheeger–Gromov L2 ρ-
invariant as a key ingredient. In what follows, manifolds are compact and oriented.

Cheeger-Gromov ρ-invariants. In [11], for a closed (4k−1)-manifold M and a
group homomorphism φ : π1(M) → G, Cheeger and Gromov defined a real number
ρ(2)(M,φ). Unless specified otherwise, M will always be 3-dimensional in what
follows. Briefly, ρ(2)(M,φ) is the difference of the η-invariant of the signature
operator on M and its L2-analogue on the G-cover of M associated to φ. By index
theoretic arguments, it can be shown that the above definition is equivalent to the
L2-signature defect of a 4-manifold bounded by M over a group containing G.
Indeed, using the L2-induction property, Weinberger observed that the ρ(2)(M,φ)
can always defined in this way. For more details on the definition of ρ(2)(M,φ),
the readers are referred to, for instance, [11, 13, 10, 14, 7, 1, 3].

In dimension 4: Disk embedding and knot concordance. In the landmark
work of Cochran, Orr, and Teichner [13], it was first shown that certain Cheeger–
Gromov invariants give obstructions to topological knot concordance. Since then,
there have been remarkable amount of new results and applications which use
the Cheeger–Gromov invariant in this direction. The state-of-the-art technology
which generalizes Cochran–Orr–Teichner gives obstructions from Cheeger–Gromov
invariants over amenable groups. We recall that a (discrete) group is amenable if
it admits a finitely additive invariant mean. For a prime p, a group is called locally
p-indicable if every finitely generated nontrivial subgroup surjects onto Z/pZ. For
a knot K in S3, let MK be the zero-framed surgery manifold. The following result
appeared in [1] and is proven using the results and ideas in [7].

Theorem 1 (Amenable signature theorem [1]). Suppose K is a slice knot and W
is the exterior of a slicing disk for K in D4. Note that ∂W = MK . Suppose G is
an amenable group which is locally indicable for some p, and φ : π1(MK) → G is
a homomorphism factoring through π1(W ). Then ρ(2)(MK , φ) = 0.

We remark that there are other versions of Theorem 1, for homology cobordism
of closed 3-manifolds [7], and more generally Whitney tower cobordism of bordered
3-manifolds [2].

Among the applications, there are results on the structure of knot concordance
group, homology cobordism, link concordance, double concordance, Whitney tow-
ers and gropes. For instance see [8, 9, 4, 17, 5, 18, 19]. A recent interesting
application is a result on the smooth knot concordance: in [6], a Whitney tower
version of the amenable signature theorem is combined with the Heegaard Floer
d-invariants to show that the bipolar filtration of Cochran, Harvey and Horn [12]
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has rich structures which are invisible to the eyes of modern smooth invariants
including the s, d, τ , ǫ, ν+ and Υ-invariants.

In dimension 3: Universal bound and complexity. In the original work
of Cheeger and Gromov [11], they proved the following result, which played an
important role in their proof of index theoretic results:

Theorem 2 (Cheeger-Gromov [11]). For each smooth closed (4k − 1)-manifold
M , there is a constant CM such that |ρ(2)(M,φ)| ≤ CM for every φ : π1(M) → G.

We remark that the codomain G of φ is allowed to arbitrarily vary.
It was first observed by Cochran and Teichner [13] that the existence of CM ,

which is often called the universal bound, is exetremely useful in 4-dimensional
applications. From this a natural question arises: can we understand CM from
a topological viewpoint? Since the approach of Cheeger and Gromov used deep
analytic arguments, it was difficult to obtain topological information.

Recently, in [3], a topological argument which proves the existence of CM was
first given. For 3-manifolds, furthermore, we have quantitative results.

Theorem 3 (Cha [3]). Suppose M is a closed 3-manifold admitting a triangula-
tion, namely a simplicial complex structure, with n tetrahedra. Then,

|ρ(2)(M,φ)| ≤ 363 090 · n for any φ : π1(M) → G.

In [3], we also present explicit quantitative universal bounds from Heegaard
splittings and from surgery presentations. Our universal bounds are shown to be
asymptotically optimal.

The above results have many applications which promote existence results on
concordance, homology cobordism, Whitney towers and gropes to explicit con-
structions. For this purpose one uses Theorem 3 as an upper bound for the abso-
lute value of the Cheeger–Gromov invariants.

While its proof is fully 4-dimensional, the statement of Theorem 3 is purely
3-dimensional. This gives unexpected 3-dimensional applications, which are ob-
tained by using the inequality as a lower bound of the number of tetrahedra. In the
literature, the complexity c(M) of a 3-manifold M is defined to be the minimum
number of tetrahedra in a pseudo-simplicial triangulation, that is, a collection of
standard tetrahedra together with affine identifications of faces whose quotient
space is M . Finding an efficient lower bound of the complexity has been regarded
as a hard problem. For instance, even for many lens spaces, the determination
of the complexity is left open. The following conjecture, which is stated for the
simplest case, is due to Jaco-Rubinstein [16] (see also Matveev [20]).

Conjecture. For n > 3, c(L(n, 1)) = n− 3.

It is known that the conjecture holds for even n [15], and that c(L(n, 1)) ≤ n−3
holds [16]. The opposite inequality for odd n is open.

By taking the second barycentric subdivision, one easily sees that the complex-
ity is bilipschitz equivalent to the minimal number of tetrahedra in a triangulation.
From this, we obtain an immediate consequence of Theorem 3:
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Theorem 4 (Cha [3]). For every φ : π1(M) → G, c(M)≥
1

209 139 840
·|ρ(2)(M,φ)|.

Using this, and by computing ρ(2)(L(n, 1), id), the following is proven in [3]:

1

627 419 520
· (n− 3) ≤ c(L(n, 1)) ≤ n− 3.

This confirms the conjecture asymptotically.
For the proof of Theorem 3, we develop some new techniques and tools, includ-

ing a quantitative geometric approach to the Atiyah–Hirzebruch bordism spectral
sequence, and an algebraic notion of controlled chain homotopy [3]. They appear
intriguing on their own.
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Links of rational singularities, L-spaces and LO fundamental groups

András Némethi

In this talk we wish to connect three areas of mathematics, algebraic geometry
(especially, the theory of local complex normal surface singularities), low dimen-
sional topology (Heegaard Floer homology and foliations), and group theory (left-
orderable property). There are well-defined interplays between them: links of
such singularities are oriented 3-manifolds, whose fundamental groups (with mi-
nor exceptions) characterize the corresponding 3-manifolds and the topology of
the singularity. We show that certain basic objects (fundamental in classification
procedures in these three rather independent theories) can be identified in a sur-
prising way. In singularity theory we target the rational singularities; by definition
they are those germs with vanishing geometric genus. This vanishing (although
it is analytic in nature) was characterized combinatorially by the plumbing graph
of the link by Artin and Laufer (graphs satisfying the property are called ‘ra-
tional graphs’) [1, 2, 18]. In 3–dimensional topology we consider the family of
L-spaces, introduced by Ozsváth and Szabó, they are characterized by the van-
ishing of the reduced Heegaard Floer homology, and are key fundamental objects
in recent developments in topology [25, 26]. Being a rational singularity link,
or an L-space, will be compared with the left-orderability of the corresponding
fundamental groups.

In fact, the link M of a complex normal surface singularity (X, o) is a spe-
cial plumbed 3-manifold: oriented S1-fibrations over orientable base spaces are
plumbed along a connected, negative definite graph. In this note we will be in-
terested only in rational homology sphere 3-manifolds, hence the corresponding
plumbing graphs are trees of S2’s. The connection between singularity theory
and topology imposed by the link had deep influences in both directions and cre-
ated several bridges. One of them is the introduction of the lattice cohomology
{Hq(M)}q≥0 of such 3-manifolds by the author [23] (see also [22]). Although
H∗(M) is defined combinatorially from the graph, it can be compared with several
analytic invariants, e.g with the geometric genus as well. In particular, in [22, 23]
the author proved:

Theorem 1. (X, o) is a rational singularity if and only if the reduced lattice
cohomology of its link M satisfies H0

red(M) = 0; or, equivalently, H∗
red(M) = 0.

On the other hand, in [23] the author formulated the following conjecture.

http://arxiv.org/abs/1606.06807
http://arxiv.org/abs/1708.05962
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Conjecture 2. The Heegaard Floer homology and the lattice cohomology of M
are isomorphic (up to a shift in degrees):

HF+
red,even/odd(−M,σ) = ⊕q even/odd H

q
red(M,σ)[−d(M,σ)],

where σ ∈ Spinc(M), and d(M,σ) is the d-invariant of HF+(M,σ).

In particular, the above conjecture predicts that HF+
red(M) = 0 (that is, M is

an L-space) if and only if H∗
red(M) = 0, which is equivalent with the rationality

of the graph by Theorem 1.
The goal of the present note is to prove the above prediction:

Theorem 3. A singularity link is an L-space if and only if the singularity is
rational.

In fact, one direction of the statement is already known. The author introduced
the notion of ‘bad vertices’ of a graph [22, 24]. In this way, a graph without bad
vertices is rational; a graph with one bad vertex is a graph that becomes rational
after a ‘(negative) surgery at that vertex’. In particular, the number of bad vertices
measures how far the graph is from being rational. Related to Conjecture 2 in [23]
the author proved:

Theorem 4. If the number of bad vertices of the plumbing graph is ≤ 1 then
Conjecture 2 is true.

This was generalized in [28] by Ozsváth, Stipsicz and Szabó for two bad vertices.
Since the above theorem applies for rational links, Theorems 1 and 4 imply that

the link of a rational singularity is an L-space.
The opposite direction was obstructed by the lack of characterizations of the

L-spaces (at least in some language that can be reformulated inside of singularity
theory). This obstruction was broken recently by several results in this direction,
whose final form is the main result of Hanselman, J. Rasmussen, S. D. Rasmussen
and Watson [15]:

Theorem 5. If M is a closed, connected orientable graph manifold then the fol-
lowing are equivalent:

(i) M is not an L-space;
(ii) M has left-orderable (LO) fundamental group;

(iii) M admits a C0 coorientable taut foliation.

Recall that a group G is left-orderable if there exists a strict total ordering < of
G such that g < h implies fg < fh for all f, g, h ∈ G. (By convention, the trivial
group is not LO.)

The equivalence (ii)⇔(iii) was established by Boyer and Clay [7]. The implica-
tion (iii)⇒(i) was proved independently by Kazez and Roberts in [17, Corollary
1.6], by Bowden in [5], and by Boyer and Clay in [8] (see also [27] for the smooth
case). The equivalence (i)⇔(ii) was conjectured by Boyer, Gordon and Watson
[6]. The above Theorem 5 was the final answer to this conjecture. For the history
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and partial contributions see the introduction and references from [15], and the
references therein.

Theorem 5 allows us to reformulate the remaining implication of Theorem 3 as
follows: if M is the link of a non-rational singularity then π1(M) is LO, hence not
an L-space.

Theorems 3 and 5 combined provide:

Corollary 6. If M is the link of a normal surface singularity (that is, if M is the
plumbed manifold associated with a connected, negative definite graph), then the
following are equivalent:

(i) M is the link of a non-rational singularity (i.e., the graph is not a ‘rational
graph’);

(ii) M is not an L-space;
(iii) M has left-orderable (LO) fundamental group;
(iv) M admits a C0 coorientable taut foliation.

Remark 7. An integral homology sphere M is a rational link if and only if M = S3

or M = Σ(2, 3, 5), the link of the Brieskorn E8-singularity {x2 + y3 + z5 = 0}, see
e.g. [21]. In particular, if M is an integral homology sphere singularity link, not
of type S3 or Σ(2, 3, 5), then by Corollary 6 (ii)-(iii)-(iv) above are automatically
satisfied. (See [11] for left-orderability of π1(M) when M is an integral homology 3-
sphere which is an irreducible and toroidal graph manifold. Also, in [3] Boileau and
Boyer proved that an integral homology sphere graph manifold not homeomorphic
to either S3 or Σ(2, 3, 5) admits a horizontal foliation; this basically implies the
statement of Theorem 5 for this subclass.)

Remark 8. In order to show the flavour of the proof, we list the main ingredients.
(A) The characterization of rational graphs via Laufer’s algorithm (Laufer’s

computation sequence), and also the graph-combinatorics of bad vertices.
(B) A theorem of Boyer, Rolfsen and Wiest [4], which states that for a compact,

irreducible, 3-manifold M , the fundamental group π1(M) is LO if and only if
there exists a non-trivial homomorphism π1(M) → L, where L is an LO group.
In particular, since Zr is LO for any r ∈ Z>0, if H1(M,Q) 6= 0 then using the
abelianization map we obtain that π1(M) is LO.

(C) A theorem of Clay, Lidman and Watson [11] regarding the behavior of LO
property with respect to free products with amalgamation (more precisely, with
respect to the decomposition of M along a torus and closing the pieces along
‘LO-slopes’).

(D) The equivalences (i)⇔(ii) from Theorem 5 above (combined with Theorem
4 at the ‘induction start’.).

Applications. Several results valid from singularity theory can be reinterpreted
via the above correspondence in terms of L-spaces. E.g., since rational graphs
are stable with respect to taking subgraphs, or decreasing the decorations of the
vertices, we obtain:

Corollary 9. Negative definite plumbing graphs of plumbed L-spaces are stable
with respect to taking subgraphs, or decreasing the decorations of the vertices.
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Using stability with respect to finite coverings we obtain the following.

Corollary 10. Assume that we have a finite covering M1 → M2 of graph 3-
manifolds associated with connected negative definite plumbing graphs. The cov-
ering is either unbranched, or it is branched with branch locus B2 ⊂ M2. In the
second case we assume that M2 admits a negative definite plumbing representa-
tion, such that all the connected components of B2 are represented by S1-fibers of
Seifert fibrations on the pieces of the JSJ decomposition.

Then M2 is an L-space whenever M1 is an L-space.

This statement follows also from Corollary 3 of [15], where the authors use a
similar stability condition valid for LO groups. The proof of the above corollary
emphasizes the perfect parallelism of analytic geometry (analytic coverings and
rational singularities) with LO behaviour of fundamental groups along topological
coverings.

One can find easily (even non-branched) coverings when M2 is an L-space but
M1 is not.

Example 11. (Coverings) Let K ⊂ S3 be an embedded algebraic link (the link of
an isolated plane curve singularity). The cyclic Zn covering of S3 branched along
K is an L-space if and only if

• n = 2 and K is the link of an A-D-E (simple) plane curve singularity, or
• n > 2 and K is the torus link T2,m with 1

m + 1
n > 1

2 .

Example 12. (The Seifert fibered case) The link of a weighted homogeneous
normal surface singularity is a Seifert 3-manifold. In [29] Pinkham computed the
geometric genus for such singularity in terms of the Seifert invariants in the case
when the link is a rational homology sphere. The vanishing of the corresponding
expression provides a numerical rationality criterion in terms of Seifert invariant.
Hence, the main result provides a new criterion for the topological properties (ii)-
(iii)-(iv) from Corollary 6. Here is this new numerical criterion.

Assume that the star-shaped graph has ν ≥ 3 legs, the central vertex v0 is
decorated by e0, and the i-th leg by −bi1, . . . ,−bisi , where

[bi1, . . . , bisi ] = bi1 −
1

bi2 − · · ·
= αi/ωi

is the (Hirzebruch) continued fraction with bij ≥ 2. The positive integers
{(αi, ωi)}

ν
i=1 are the Seifert invariants with 0 < ωi < αi, gcd(αi, ωi) = 1. (Here

v0 is connected to the vertices decorated by −bi1.) We assume that the graph is
negative definite, that is, e := e0+

∑
i ωi/αi < 0. Then, by [29], M is non-rational

if and only if
∑

i

⌊−lωi/αi⌋ ≤ le0 − 2 for at least one l ∈ Z≥0.

This looks very different than the previous criteria used in topology, e.g., for the
existence of foliations, results of Eisenbud, Hirsch, Jankins, Neumann, Naimi
[12, 16, 20, 19]. Let us recall it for ν = 3.
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Following [16, 19] we say that (x, y, z) ∈ (Q ∩ (0, 1))3 is realizable if there exist
coprime integers m > a > 0 such that up to a permutation of x, y, z one has
x < a/m, y < (m− a)/m, z < 1/m.

Then M(Γ) admits a coorientable transversal foliation if and only if one of the
following holds:

e0 = −1 and {βi/αi}i=1,2,3 is realizable;
e0 = −2 and {(αi − βi)/αi}i=1,2,3 is realizable.

A direct arithmetical proof of the equivalence of these two criteria will be proved
in another note. Arithmetical properties behind this equivalence can also be found
in [9, 13, 10], via ‘ziggurats’and ‘rotation numbers’.
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Local systems on arrangements of hypersurfaces

Graham Denham

(joint work with Alexander I. Suciu)

1. Summary. This talk is based on the preprint [DS17]. We consider smooth,
complex quasi-projective varieties U which admit a compactification with a bound-
ary which is an arrangement of smooth algebraic hypersurfaces. If the hypersur-
faces intersect locally like hyperplanes, and the relative interiors of the hypersur-
faces are Stein manifolds, we prove that the cohomology of certain local systems
on U vanishes. As an application, we show that complements of linear, toric, and
elliptic arrangements are both duality and abelian duality spaces.

2. Abelian duality and local systems. It has long been recognized that com-
plements of complex hyperplane arrangements satisfy certain vanishing properties
for homology with coefficients in local systems. We revisited this subject in our
joint work with Sergey Yuzvinsky, [DSY16, DSY17], in a more general context.

Let X be a connected, finite-type CW complex, with fundamental group G.
Following Bieri and Eckmann [BE73], we say that X is a duality space of dimension
n if Hq(X,ZG) = 0 for q 6= n and Hn(X,ZG) is non-zero and torsion-free. We also
say that X is an abelian duality space of dimension n if the analogous condition,
with the coefficient G-module ZG replaced by ZGab is satisfied. Noteworthily,
these properties impose significant conditions on the cohomology of local systems
on X .

Let k be an algebraically closed field. The group Ĝ = HomGps(G, k∗) of k-valued
multiplicative characters of G is an algebraic group, with identity the trivial repre-

sentation 1. The characteristic varieties Vq(X, k) are the subsets of Ĝ consisting
of those characters ρ for which Hq(X, kρ) 6= 0. We highlight an interesting conse-
quence of the abelian duality space property, which we established in [DSY17]: If
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X is an abelian duality space of dimension n, then the characteristic varieties of
X propagate, that is,

{1} = V0(X, k) ⊆ V1(X, k) ⊆ · · · ⊆ Vn(X, k),

or, equivalently, if Hp(X, kρ) 6= 0 for some ρ ∈ Ĝ, then Hq(X, kρ) 6= 0 for all
p ≤ q ≤ n.

3. Arrangements of smooth hypersurfaces. Davis, Januszkiewicz, Leary, and
Okun showed in [DJLO11] that complements of (linear) hyperplane arrangements
are duality spaces. More generally, we proved in [DSY17] that complements of
both linear and elliptic arrangements are duality and abelian duality spaces.

Our goal here is to further generalize these results to a much wider class of
arrangements of hypersurfaces, by which we mean a collection of smooth, irre-
ducible, codimension 1 subvarieties which are embedded in a smooth, connected,
complex projective algebraic variety, and which intersect locally like hyperplanes.
We isolate a subclass of such arrangements whose complements enjoy the afore-
mentioned duality properties, and therefore have vanishing twisted cohomology in
the appropriate range.

Theorem 1. Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

(1) Components of the boundary D = Y \ U form an arrangement of hyper-
surfaces A;

(2) For each submanifold X in the intersection poset L(A), the complement
of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

An important consequence of this theorem is that the characteristic varieties of
such “recursively Stein” hypersurface complements propagate. As another appli-
cation, we prove the following ‘generic vanishing of cohomology’ result.

Theorem 2. Let U be as above, and let G = π1(U).

(1) If A is a finite-dimensional representation of G over a field k, and if
Aγg = 0 for all g in a building set GX , where X ∈ L(A), then Hi(U,A) = 0
for all i 6= n.

(2) Hi(U, ℓ2G) = 0 for all i 6= n, where ℓ2G denotes the left R[G]-module of
square-summable functions on G.

Consequently, the cohomology groups of U with coefficients in a ‘generic’ local
system vanish in the range below n. Likewise, the ℓ2-Betti numbers of U are all
zero except in dimension n. One application is to Euler characteristic: using ℓ2-
Betti numbers, we see that (−1)nχ(U) ≥ 0, where χ(U) is the (usual) topological
Euler characteristic of U . Related vanishing results can be found in two recent
preprints by Liu, Maxim, and Wang [LMW17a, LMW17b].



Low-dimensional Topology and Complex Algebraic Geometry 3005

4. Linear, elliptic, and toric arrangements. The theory of hyperplane ar-
rangements originates in the study of configuration spaces and braid groups. Here
we consider a broader class of hypersurface arrangements of current interest.

Theorem 3. Suppose that A is one of the following:

(1) An affine-linear arrangement in Cn, or a hyperplane arrangement in CPn;
(2) A non-empty elliptic arrangement in En;
(3) A toric arrangement in (C∗)n.

Then the complement M(A) is both a duality space and an abelian duality space of
dimension n−r, n+r, and n, respectively, where r is the corank of the arrangement.

As mentioned previously, the first two statements already appeared in our pa-
per [DSY17]; at the time, however, we were unable to address the third one.
Since then, De Concini and Gaiffi [DCG16] have constructed a compactification
for toric arrangements which is compatible with our approach. The claim that
the complement of a toric arrangement is a duality space was first reported by
Davis and Settepanella in [DS13, Theorem 5.2]. However, a serious gap appeared
in the proof: see Davis [Dav15]. Part of our motivation here, then, is to provide
an independent alternative, as well as a uniform proof of the three claims above.

As a consequence of Theorem 3, the characteristic varieties propagate for all
linear, elliptic and toric arrangements. The formality of linear and toric arrange-
ment complements implies that their resonance varieties propagate, as well. In
the linear case, a more refined propagation of resonance property was established
by Budur in [Bu11].

If A is an affine complex arrangement, work of Kohno [Koh86], Esnault, Schecht-
man, Varchenko [ESV92], and Schechtman, Terao, Varchenko [STV95] gives suf-
ficient conditions for a local system  L on M(A) to insure the vanishing of the
cohomology groups Hi(M(A),  L) for all i < rank(A). Similar conditions for the
vanishing of cohomology of with coefficients in rank 1 local systems were given
by Levin and Varchenko [LV12] for elliptic arrangements, and by Esterov and
Takeuchi [ET17] for certain toric hypersurface arrangements. In turn, we obtain
a unified set of generic vanishing conditions for cohomology of local systems on
complements of arrangements of smooth, complex algebraic hypersurfaces.

The ℓ2-cohomology of a linear arrangement also vanishes outside of the middle
(real) dimension: this is a result of Davis, Januszkiewicz and Leary [DJL07]. The
same claim for toric arrangements appears in [DS13]; however, the argument given
there has the same gap mentioned above. As part of our approach here, we also
obtain vanishing results for ℓ2-cohomology of hypersurface arrangements.

5. Orbit configuration spaces. As a second application, we obtain an almost
complete characterization of the duality and abelian duality properties of ordered
orbit configuration spaces on Riemann surfaces. We will not define orbit configu-
ration spaces here; however, we remind the reader that the classical configuration
spaces are recovered by taking Γ to be the trivial group.
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Theorem 4. Suppose Γ is a finite group that acts freely on a Riemann surface
Σg,k of genus g with k punctures. Let FΓ(Σg,k, n) be the orbit configuration space
of n ordered, disjoint Γ-orbits.

(1) If k > 0, then FΓ(Σg,k, n) is both a duality space and an abelian duality
space of dimension n.

(2) If k = 0, then FΓ(Σg, n) is a duality space of dimension n + 1, provided
g ≥ 1, and is an abelian duality space of dimension n + 1 if g = 1.

(3) If g = k = 0, then F (Σg, n) is neither a duality space nor an abelian
duality space. It is not an abelian duality space if g ≥ 2 and n ≤ 2.

Hence the characteristic varieties propagate for the orbit configuration spaces
FΓ(Σg,k, n), where either k ≥ 1, or k = 0 and g = 1, for any finite group Γ acting
freely on Σg,k.
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Propagation property and codimension bound for the jump loci of
smooth quasi-projective variety

Yongqiang Liu

(joint work with Laurentiu Maxim, Botong Wang)

One central topic in singularity theory is to understand the topology of smooth
complex algebraic varieties. The smooth complex algebraic varieties exhibit extra
special properties attached to their topological invariants. One essential useful
invariant for us is the cohomology jump loci.

Let X be a smooth complex quasi-projective varieties of complex dimension n.
Consider the moduli space of rank 1 local systems on X : Hom(π1(X),C∗). The
degree i cohomology jump loci of X are defined by

V i(X) := {ρ ∈ Hom(π1(X),C∗) | dimHi(X,Cρ) 6= 0}.

Here Cρ is the corresponding rank 1 C local system on X . These jump loci are
closed sub-varieties of Hom(π1(X),C∗) and homotopy invariants of X .

Let f : X → Y be an algebraic proper map between two complex algebraic vari-
eties (e.g., the Albanese map associated to X , when X is smooth and projective).
Set r(f) = dimX ×Y X − dimX . This number r(f) is known as the defect of
semi-smallness of f [3, page 575]. If r(f) = 0 (e.g., a closed embedding), f is called
semi-small.

Theorem 1. Let X be a smooth projective variety of complex dimension n. As-
sume that X admits an algebraic proper semi-small map f : X → A from X to an
abelian variety A. Then we have the following results:

• Propagation property:

V0(X) ⊆ · · · ⊆ Vn−1(X) ⊆ Vn(X) ⊇ Vn+1(X) ⊇ · · · ⊇ V2n(X).

• Codimension lower bound:

codimVn±i(X) ≥ 2i for any 0 ≤ i ≤ n.

This theorem is an undergoing work by the authors. The proof uses the de-
composition theorem of [1] and the Bhatt–Schnell–Scholze’s result [2] for perverse
sheaves on complex abelian varieties.

Theorem 2. [7, Theorem 1.7, Theorem 1.9] Let X be a smooth quasi-projective va-
riety of complex dimension n. Assume that the mixed Hodge structure on H1(X,Q)
is pure of type (1, 1), or equivalently, there exists a smooth compactification X of

http://arxiv.org/abs/1706.07491v1
http://arxiv.org/abs/1709.02870v2
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X with b1(X) = 0. If X admits a proper semi-small map f : X → T (e.g., a finite
map or a closed embedding), where T = (C∗)N is a complex affine torus, then we
have the following properties:

• Propagation property:

V0(X) ⊆ · · · ⊆ Vn−1(X) ⊆ Vn(X).

• Codimension lower bound:

codimVn−i(X) ≥ i for any 0 ≤ i ≤ n.

The proof of Theorem 2 relies on decomposition theorem [1] and Gabber and
Loeser’s result [6] for perverse sheaves on complex affine torus. Theorem 2 is
inspired by Denham–Suciu–Yuzvinsky’s work [4, 5] about abelian duality spaces.

Theorem 3. [7, Theorem 1.9] Let X be a smooth complex quasi-projective variety
of dimension n. Assume that the mixed Hodge structure on H1(X,Q) is pure
of type (1, 1), or equivalently, there exists a smooth compactification X of X with
b1(X) = 0. If X admits a proper semi-small map f : X → T = (C∗)N (e.g., a finite
map or a closed embedding), then X is an abelian duality space of dimension n.

Example 4. Let T = (C∗)n be the n-dimensional complex affine torus. Take a
finite collection of irreducible hypersurfaces in T , say V1, . . . , Vr. Set X = T −⋃r

i=1 Vi. Then X admits a closed embedding to (C∗)n+r. It is easy to check that
the mixed Hodge structure on H1(X,Q) is pure of type (1, 1). So X is an abelian
duality space of dimension n, and the properties listed in Theorem 2 hold for the
cohomology jump loci of X.

Theorem 5. [7, Theorem 6.1] Let X be a compact Kähler manifold. Then X is
an abelian duality space if and only if X is a compact complex torus. In particular,
abelian varieties are the only complex projective manifolds that are abelian duality
spaces.

Inspired by the above theorem, we ask the following question:

Question 6. Does there exist a closed orientable manifold that is an abelian du-
ality space, but not a real torus?
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Monodromy of Kodaira Fibrations

Laure Flapan

A Kodaira fibration is a non-isotrivial fibration f : S → B from a smooth algebraic
surface S to a smooth algebraic curve B such that for every b ∈ B, the fiber
Fb := f−1(b) is also a smooth algebraic curve. The non-isotriviality of the fibration,
meaning the property that not all fibers Fb are isomorphic as algebraic varieties,
ensures that the fundamental group π1(B) does not act trivially on the fibers.

Such fibrations were originally constructed by Kodaira [5] as a way to show
that, unlike the topological Euler characteristic, the signature σ of a manifold,
meaning the signature of the intersection form on the middle homology of the
manifold, is not multiplicative for fiber bundles. More precisely, for any fiber bun-
dle φ : X → Y with fiber Fy , the topological Euler characteristic χtop satisfies
χtop(X) = χtop(Y )χtop(Fy). Prior to Kodaira’s construction, Chern–Hirzebruch–
Serre [2] had shown that if π1(Y ) acts trivially on the fiber Fy, then the signature
also satisfies σ(X) = σ(Y )σ(F ). Kodaira’s construction proved that this hypoth-
esis about the fundamental group was necessary, since for any Kodaira fibration
f : S → B, the surface S has signature σ(S) > 0, while the algebraic curves Fb

and B have antisymmetric intersection form and thus satisfy σ(Fb) = σ(B) = 0.
Any Kodaira fibration f : S → B induces a short exact sequence of fundamental

groups

(1) 1 → π1(Fb) → π1(S) → π1(B) → 1.

In fact, Kotschick shows in [6, Proposition 1] that any compact complex surface
S whose fundamental group fits into an exact sequence of the form (1) satisfies
χtop(S) = χtop(B)χtop(Fb) if and only if the sequence (1) is induced by a Kodaira
fibration S → B. Is is thus natural to ask:

Question 1. For which extensions

1 → π1(Fb) → G → π1(B) → 1

as in (1), is the group G the fundamental group of a Kodaira surface?

Note that Kodaira in [5] together with Kas in [4] show that a Kodaira fibration
must have base curve B of genus at least 2 and have fibers Fb of genus at least 3.
The short exact sequence (1) induces a homomorphism

ρ : π1(B) → Mod(Fb) ⊂ O(π1(Fb))

into the mapping class group of Fb. Because the genus g of Fb is at least 3,
the center Z(π1(Fb)) is trivial [3]. Hence, since extensions with outer action ρ

http://arxiv.org/abs/1709.02870
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are parametrized by H2(π1(B), Z(π1(Fb))), it follows that the homomorphism ρ
completely determines the extension (1) [1, Corollary 6.8].

Letting V = H1(Fb,Z) ⊗Q, the homomorphism ρ induces a homomorphism

ρ : π1(B) → GL(V ).

Observe that the Kodaira fibration f : S → B determines a map B → Mg to
the moduli space of curves of genus g, sending a point b ∈ B to the curve Fb.
Since, by assumption, the fibration f is non-isotrivial, the map B → Mg has 1-
dimensional image. Then by the Torelli theorem, the induced map B → Ag to the
moduli space of principally polarized abelian varieties that sends b to H1(Fb,Z) has
1-dimensional image. In particular, the variation of Q-Hodge structures R1f∗Q is
not locally constant. If the monodromy representation ρ had finite image, then, by
Schmid’s rigidity theorem [7, Theorem 7.24], the variation of Q-Hodge structures
R1f∗Q would be locally constant. Hence the representation ρ, and consequently
the homomorphism ρ as well, must have infinite image.

To better understand this image, note that any variation of Q-Hodge structures
V over a connected algebraic variety Y will yield a monodromy respresentation
Φ: π1(Y, y) → GL(Vy) for y ∈ Y .

Definition 2. The connected monodromy group T of the variation V is the con-
nected component of the identity of the smallest Q-algebraic subgroup of GL(Vy)
containing the image of π1(Y, y).

Thus one way to approximate Question 1 about which groups can arise as the
fundamental group of a Kodaira surface is to ask:

Question 3. Which groups can arise as the connected monodromy group of a
Kodaira fibration?

The main result of this talk provides an answer to this question in the case of
a Kodaira fibration whose fibers have genus 3. We give precise characterizations
of the possible connected monodromy groups as Q-algebraic groups, which can
beroughly summarized by the following:

Theorem 4. The connected monodromy group of a genus 3 Kodaira fibration must
be isomorphic over C to one of the following groups:

(1) Sp(6)
(2) SL(2) × SL(2) × SL(2)
(3) Sp(4)
(4) SU(3)
(5) SL(2) × SL(2)

Moreover, groups (1), (2), and (3) arise from Kodaira fibrations obtained as gen-
eral complete intersection curves in a subvariety of A3 whose points all have en-
domorphisms by a specified ring. Groups (4) and (5) cannot arise in this way and
thus are not known to actually occur.
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Applications of cuts in low dimensions

Mahan Mj

The theory of cuts developed by Delzant-Gromov has a number of applications
for low dimensional Kaehler groups and may be used to decide completely which
3-manifold groups are Kähler, which one-relator groups are Kähler and so on. We
shall discuss some of these applications.

A standard theme in the theory of Kähler groups has been:

Question 1. Take your favorite class of groups. (Our favorite classes occur nat-
urally in geometric group theory or low-dimensional topology.) Which of them are
Kähler/projective/quasiprojective?

Examples of such “favorite” classes include 3-manifold groups and one-relator
groups. Dimca and Suciu [DS] proved:

Theorem 2. Let G be the fundamental group of a closed 3-manifold. Then G is
Kähler if and only if G is finite.

In earlier work with Biswas and Seshadri [BMS] we generalized Theorem 2 to
the following general set-up:

(1) 1 −→ N
i

−→ G
q

−→ Q −→ 1

is an exact sequence of finitely generated groups, G is a Kähler group and Q is a
3-manifold group.

In subsequent work with Biswas [BM], we proved that infinite one-relator Kähler
groups are precisely fundamental groups of (complex) one dimensional orbifolds
with at most one cone-point:

Theorem 3. Let G be an infinite one-relator group. Then G is Kähler if and only
if it is isomorphic to

〈a1 , b1 , · · · , ag , bg | (

g∏

i=1

[ai , bi])
n〉 ,

where g and n are some positive integers.
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The principal tool from Kähler groups is the theory of stable cuts of Delzant-
Gromov [DG].
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Cubulable Kähler groups

Pierre Py

(joint work with Thomas Delzant)

The purpose of this talk was to explain the main results of the preprint entitled
Cubulable Kähler groups (arXiv:1609.08474), which is a joint work with Thomas
Delzant.

Recall that a Kähler group is a group that can be realized as the fundamental
group of a compact Kähler manifold. We study actions of these groups on CAT(0)
cubical complexes. These polyhedral complexes have recently played a fundamental
role in geometric group theory and 3-dimensional topology. We refer for instance
to [1, 2] for an introduction to these complexes and to these recent developments.
The reason to think that actions of Kähler groups on CAT(0) cubical complexes
can be classified comes from earlier results on relative ends or filtered ends of
Kähler groups, see [3].

In the following, we say that a group is cubulable if it acts properly discontinu-
ously and cocompactly on a CAT(0) cubical complex. Our first main result is the
following, which virtually classifies cubulable Kähler groups.

Theorem 1. If a Kähler group Γ is cubulable it has a finite index subgroup Γ1

which is isomorphic to a direct product of surface groups, possibly with an Abelian
factor.

If now X is a projective manifold with cubulable fundamental group, one
can virtually describe X up to biholomorphisms, asusming that it is aspherical.
Namely, we prove:

Theorem 2. Let X be an aspherical smooth projective manifold. Assume that
the fundamental group of X is cubulable. Then X has a finite cover X1 which is
biholomorphic to a direct product of compact Riemann surfaces, possibly with an
Abelian variety as a factor:

X1 ≃ Σ1 × · · · × Σr ×A.
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Our work contains a slightly weaker statement in the case where X is only
assumed to be compact Kähler, instead of projective.
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Involutive Heegaard Floer homology and rational cuspidal curves

Maciej Borodzik

(joint work with Jen Hom and Andrzej Schinzel)

We use invariants of Hendricks and Manolescu coming from involutive Heegaard
Floer theory to restrict possible configurations of singular points of a planar ra-
tional cuspidal curve. This is a joint project with Jen Hom and Andrzej Schinzel.

Let C ⊂ CP 2 be a rational cuspidal curve of degree d. We denote by K1, . . . ,Kn

the links of its singular points. Set K = K1# · · ·#Kn. The boundary Y of the
tubular neighborhood N of C is easily seen to be the surgery on K with coefficient
d2. On the other hand, the difference W = CP 2 \N is a rational homology sphere
whose boundary is Y . We use the following result of Ozsváth and Szabó.

Theorem 1 ([7]). For any spin-c structure s on Y that extends to a spin-c struc-
ture on W we have d(Y, s) = 0.

It is possible to compute the d-invariants of Y from the semigroups of singular
points of C. For a singular point zi of C let Si be the semigroup of the singular
point. For an integer m write Ri(m) = #(Si ∩ [0,m)). This is the semigroup
counting function, used e.g. in [4].

The function R(m) is defined as the infimal convolution R = R1 ⋄R2 ⋄ · · · ⋄Rn,
where

I ⋄ J(m) := min
k+l=m

I(k) + J(l).

In [3] the d-invariants of Y were expressed in terms of the function R. In connection
with Theorem 1 the following result is obtained.

Theorem 2 (see [3]). Let C be a rational cuspidal curve and R as above. Then

for any j = 0, . . . , d− 1 we have R(jd + 1) = (j+1)(j+2)
2 .

The result is very closely related to the conjecture stated in [4].
The main problem with Theorem 2 is that it gives strongest restrictions for

unicuspidal curves, and it becomes substantially weaker if n > 1. We illustrate a
general phenomenon with a simple example, given also in [2].



3014 Oberwolfach Report 50/2017

Example 3. For i ≥ 1 set Ki to be the torus knot T (2, 2i + 1) and let Si be the
semigroups of the plane curve singular point with local equation x2 − y2i+1 = 0
(the link of this singular point is precisely Ki). The following relation is easy to
prove.

(1) R1 ⋄R5 = R2 ⋄R4 = R3 ⋄R3.

However, there exists a rational cuspidal curve of degree 5 with singular points
whose links are T (2, 5) and T (2, 9) (this corresponds to R2 ⋄R4), but there are no
rational cuspidal curves whose singular points have links T (2, 3) and T (2, 11) or
T (2, 7) and T (2, 7) (see [6] and references therein). Theorem 2 does not distinguish
from any of these three cases because of the equality (1).

In [1] there is a general approach for creating connected sums of algebraic knots
having the same R-function.

In [5] Hendricks and Manolescu defined involutive Floer homology. Based on
a very general construction they constructed two invariants d an d for any closed
oriented 3-manifold Y that is a rational homology sphere, equipped with a spin
structure. The following result is obtained in [5].

Theorem 4. Suppose (Y, s) is a rational homology 3-sphere with a choice of a
spin structure. If Y bounds a rational homology ball W and s extends to a spin
structure over W , then d(Y, s) = d(Y, s) = 0.

In the case Y = S3
d2(K) and W = CP 2 \N , there is a canonical spin structure

on Y . It is shown in [2] that this spin structure extends over W if and only if the
degree d is an odd number.

A much harder task is to unfold the condition d(Y, s) = d(Y, s) = 0. In [2] only
the case n = 2 is dealt with and an answer is given in terms of the V0 invariants of
Rasmussen [8]. The following result relies on the connected sum formula for the
involutive invariants by Zemke [9].

Theorem 5 (see [2]). Suppose K1 and K2 are algebraic knots of genera g1 and g2
respectively. Then V0(K1#K2) = V0(K1)+V0(K2) if and only if for q > 2(g1+g2)
we have d(Y, s) = d(Y, s), where Y = S3

q (K) and s is the canonical spin structure
on Y .

We remark that a direct analogue of Theorem 5 for the sum of more than two
algebraic knots does not hold.

The V0-invariant of a connected sum K of algebraic knots is equal to R(g),
where g is the genus of K. Given the definition of the convolution, the condition
V0(K1#K2) = V0(K1) + V0(K2) can be rephrased as

R1(g1) + R2(g2) = min
i+j=g1+g2

R1(i) + R2(j),

where Ri, i = 1, 2, is the semigroup counting function for the knot Ki and gi is
the genus.

Putting together Theorem 4 and Theorem 5 we obtain the following result.
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Theorem 6 (see [2]). Let C be a rational cuspidal curve of odd degree with two
singular points K1 and K2. Then V0(K1#K2) = V0(K1) + V0(K2).

As a corollary we are able to distinguish between the three cases discussed in
Example 3 using the V0 invariants.

Corollary 7. There exists no rational cuspidal curve of degree 5 having two sin-
gular points with links T (2, 3) and T (2, 11) or T (2, 7) and T (2, 7).

We conclude by noticing that Theorem 6 does not have yet a counterpart in
Seiberg–Witten theory (in the spirit of [4]).

References

[1] J. Bodnár, A. Némethi, Lattice homology and rational cuspidal curves, Math. Res. Lett. 23
(2016), no. 2, 339–375.

[2] M. Borodzik, J. Hom, Involutive Heegaard Floer homology and rational cuspidal curves,
with an appendix by A. Schinzel, preprint (2016) arxiv:1609.08303.

[3] M. Borodzik, C. Livingston, Heegaard Floer homologies and rational cuspidal curves, Forum
of Math. Sigma, 2 (2014), e28, 23 pages.

[4] J. Fernández de Bobadilla, I. Luengo, A. Melle Hernández, A. Némethi, On rational cuspidal
projective plane curves, Proc. of London Math. Soc., 92 (2006), 99–138.

[5] K. Hendricks, C. Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017),
no. 7, 1211–1299.

[6] T. K. Moe, Rational cuspidal curves, Master Thesis, University of Oslo 2008, available at
arxiv:1511.02691.
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Triangular curves and cyclotomic Zariski tuples

Enrique Artal Bartolo

(joint work with José Ignacio Cogolludo-Agust́ın, Jorge Mart́ın-Morales)

Let C ⊂ P2 be a projective plane curve over the complex numbers. The combina-
torics of C is the topological type of (T (C), C), where T (C) is a regular neighbor-
hood of C in P2; an alternative definition (and closer to the word combinatorics) is
the following. Let σ : S → P2 be the (minimal) composition of a sequence of blow-
ups such that σ−1(C) is a simple normal crossing divisor (SNC-morphism for C).
We associate to C the dual graph Γ of σ−1(C) where each vertex v is weighted
with its self-intersection ev and its genus [gv]; moreover, the vertices correspond-
ing with the irreducible components of the strict transform of C are marked. The
combinatorics of C is the isomorphism type of the weighted marked graph Γ.

Definition 1. Let C1, . . . , Cr ⊂ P2, r ≥ 2. These curves form a Zariski tuple
if they share the same combinatorics and the pairs (P2, Ci) and (P2, Cj) are not
homemorphic, for 1 ≤ i < j ≤ r.

http://arxiv.org/abs/1609.08303
http://arxiv.org/abs/1511.02691
http://arxiv.org/abs/1705.01117
http://arxiv.org/abs/1705.01117


3016 Oberwolfach Report 50/2017

The first example of Zariski pair corresponds to the combinatorics of an irre-
ducible sextic curve with six ordinary cusps. There are two such curves C1, C2 such
that π1(P2 \C1) ∼= Z/2∗Z/3 (the cusps lie on a conic) and π1(P2 \C2) ∼= Z/2×Z/3
(they do not); they were constructed by Zariski in [3, 4]. In modern words, he
also showed that they did not have the same Alexander polynomial. Since then
many Zariski pairs and tuples have been constructed and the main invariants used
to distinguish their topology are Alexander polynomials, characteristic varieties,
existence of finite covers, etc. While they describe topological properties, most of
these invariants are actually of algebraic nature. Let us consider the following new
definition.

Definition 2. Let C1, . . . , Cr ⊂ P2, r ≥ 2. These curves form an arithmetic Zariski
tuple if they form a Zariski tuple and if there exists a curve C ⊂ P2(K), K a number
field, such that Cj = φj(C), where φj : K →֒ C is a field embedding.

As a consequence the above invariants are useless to distinguish these tuples, as
it is the case for the algebraic fundamental group (the profinite completion of the
topological fundamental group). Other invariants (like fundamental group, braid
monodromy, truncated Alexander Invariant, linking number, arithmetic of lattices)
have served to find arithmetic Zariski pairs by many authors. We complete the
last definition.

Definition 3. A cyclotomic Zariski tuple C1, . . . , Cr ⊂ P2 is an arithmetic Zariski
tuple where K = Q(ζd), the cyclotomic field of primitive roots of order d 6=

1, 2, 3, 4, 6, where r = φ(d)
2 , corresponding to the primitive roots up to complex

conjugation.

Our goal is to construct cyclotomic Zariski tuples for any d; the existence of
such tuples were not known for general d.

Definition 4. Let C be a combinatorics. The realization space of C is the space
ΣC formed by the curves C ⊂ P2 whose combinatorics is C (it is a constructible
subset of the projective space of curves of degree deg C ).

It can be proved that two curves in the same connected component of ΣC

are isotopic (a generalization of Randell’s lattice isotopy for line arrangements).
Hence, in order to look for Zariski pair candidates we need combinatorics with non-
connected realization space. This is where triangular curves apperar. For d ≥ 2,
let us consider the combinatorics Cd of irreducible curves C of degree 2d such that
# Sing(C) = 3 and for each P ∈ Sing(C), the topological type of (C,P ) is the one
of the germ of {ud = vd+1} at the origin of C2 (the irreducibility condition comes
from the fact that all the singularities are locally irreducible). A Newton polygon
computation yields the following result.

Proposition 5. For d ≥ 3 the space ΣCd
has

⌈
d+1
2

⌉
connected components labelled

by the d-roots of unity (up to complex conjugation); for d = 2, there is only one
such component associated to the root −1.
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The curves of ΣCd
associated with a d-root ζ are defined by the following poly-

nomials (up to a change of coordinates):

Fd,ζ := zd(y + ζx)d + yd(x + z)d + xd(y + z)d +
∑

i+j+k=2d
i,j,k<d

ai,j,kx
iyjzk

for generic values of the free coefficients. We define two related combinatorics. We
consider the combinatorics C̃d formed by curves with four irreducible components
C ∪ X ∪ Y ∪ Z, where C ∈ Cd and X ,Y,Z are the lines joining the three singular
points (note that these points cannot be aligned and these lines are not in the
tangent cone of the singular points by Bézout’s Theorem). Finally, let Dd be the
combinatorics formed by a smooth curve D of degree d, and three lines in general
position intersecting each one D at one point.

Remark 6. The curves in C̃d and Dd since they are exchanged by a standard
Cremona transformation on the three lines of the curve. In particular they share
the same complement. Note also that there are natural correspondences between
the connected components of Cd, C̃d and Dd; they will be denoted adding ω as
subindex.

Theorem 7. Let Ad,ω ∈ Dd,ω, Bd,ω ∈ C̃d,ω and Cd,ω ∈ Cd,ω for d ≥ 2, ωd = 1
and (d, ω) 6= (2, 1).

• If (d, ω) = (2,−1), then π1(P2 \ C2,−1) is non-abelian of order 12 (in
particular π1(P2 \ A2,−1) ∼= π1(P2 \ B2,−1) are non-abelian).

• If (d, ω) = (3, 1), then π1(P2 \ C3,1) ∼= Z/2 ∗ Z/3 (in particular π1(P2 \
A3,1) ∼= π1(P2 \ B3,1) are non-abelian).

• For the rest of the cases π1(P2 \ Ad,ω) ∼= π1(P2 \ Bd,ω) is abelian (in
particular π1(P2 \ Cd,ω) ∼= Z/2 × Z/3).

While some of these results were already known [3, 1], these fundamental groups
can be computed using a Kummer cover and computing the fundamental group of
the complement of the line arrangement xyz(x + y + z)(x + y)(x + z)(y + z) = 0.

In order to distinguish the topology of these curves we need another invariant
based on the one introduced in [2]. Let C = C1∪· · ·∪Cr be an irreducible curve with
its decomposition in irreducible components of degrees d1, . . . , dr; in particular
H1(P2 \ C;Z) is generated by meridians µC1

, . . . , µCr
sch that µd1

C1
· . . . · µdr

Cr
= 1.

Let σ : S → P2 be the SNC-morphism for C; for each exceptional component E,
let us denote by µE ∈ H1(P2 \ C;Z) the meridian of E. Fix a non-trivial torsion
character ξ : H1(P2 \ C;Z) → C∗. Let E = {D1, . . . , Ds} be rational irreducible
components of σ−1(C) such that ξ(µD) = 1 if either D ∈ D or D intersects one of
the divisors in D. Assume also that the dual graph of D has a non-trivial cycle γ.
We can suitably push γ to P2 \ C and the value I(C, ξ, γ) is independent of γ and,
moreover, it is a topological invariant of the oriented-ordered topology of (P2, C).

Let us apply this to a curve Ad,ω ∈ Dd,ω, ωd = 1, ℑω ≥ 0. Let us consider
a character ξ : H1(P2 \ Dω;Z) → C∗ defined by ξ(µD) = exp

(
2iπ
d

)
and ξ(µX ) =

ξ(µY) = ξ(µZ) = 1. The strict transforms of X ,Y,Z satisfy the above hypotheses;
let us choose the cycle γ defined by the cyclic order X ,Y,Z.



3018 Oberwolfach Report 50/2017

Proposition 8. With the above notations, I(Ad,ω, ξ, γ) = ω. In particular,
{Ad,ω | ωd = 1,ℑω > 0} form a Zariski tuple. Moreover, for any divisor e of
d, e 6= 1, 2, 3, 4, 6, the curves {Ad,ω | Φe(ω) = 1,ℑω ≥ 0} form a cyclotomic
Zariski tuple (Φe is the e-cyclotomic polynomial).

The idea of the proof is quite simple. One considers a smooth model of the
ramified covering associated to ξ, which turns out to be a smooth projective surface
in P3 of degree d, and to track the preimages of the lines X ,Y,Z, and interpret
their behavior in terms of monodromy of the covering. The same ideas provide
Zariski pairs for C̃d; in both cases, the presence of the connecting lines is essential,
so these ideas cannot directly be used to distinguish the topological properties of
the curves in Cd.

Conjecture 9. Cd,ω ∈ Cd,ω, ω
d = 1, ℑω ≥ 0. Then, {Ad,ω | ωd = 1,ℑω ≥ 0}

form a Zariski tuple and for any divisor e of d, e 6= 1, 2, 3, 4, 6, {Ad,ω | Φe(ω) =
1,ℑω ≥ 0} form a cyclotomic Zariski tuple.
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Rho invariants for manifolds with boundary and low dimensional
topology

Enrico Toffoli

Given a smooth oriented odd-dimensional manifold M2k−1 and a unitary repre-
sentation α : π1(M) → U(n), the Atiyah–Patodi–Singer (APS) rho invariant is a
real number ρ(M,α) extending the concept of signature defect. Namely, when-
ever we can find a manifold W 2k with ∂W = M and such that α extends to a
representation of π1(W ), we have [APS76]

(1) ρ(M,α) = signα(W ) − n sign(W ),

where signα(W ) is the signature of the twisted intersection pairing on Hk(W ;Cn
α).

The rho invariant ρ(M,α) is defined in terms of the spectra of the twisted and
untwisted signature operators on M associated to to some Riemannian metric, but
it turns out to be a diffeomorphism invariant.

In knot theory, APS rho invariants of the closed manifold obtained through a
zero-framed surgery of a knot K or link L, denoted respectively by MK or ML,
were used to give obstructions to concordance [Lev94, Fri04, Fri05]. For knots,
in the easiest case of a one dimensional representations π1(MK) → U(1), the rho
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invariant ρ(MK , α) coincides with the Levine–Tristram signature calculated at the
image through α of a meridian.

Kirk and Lesch introduced a generalization to manifolds with boundary of the
APS rho invariants [KL03, KL04]. Given a smooth oriented odd-dimensional man-
ifold X2k−1 with boundary Σ2k−2, a unitary representation α : π1(X) → U(n), a
Riemannian metric g on Σ and Legrangian subspaces V α ⊆ H∗(Σ;Cn

α), V τ ⊆
H∗(Σ;Cn), their invariant is a real number ρ(X,α, g, V α, V τ ) depending on all
of its variables. Rho invariants for manifolds with boundary relate to APS rho
invariants according to gluing formulas: Kirk and Lesch computed the correction
term between the APS rho invariant of a closed manifold M which is split into a
union X ∪Σ Y along a hypersurface and the sum of the rho invariants of X and Y .

We apply the Kirk–Lesch rho invariants to low dimensional topology in the
context of 3-manifolds with framed toroidal boundary. These are couples (XF),
where X is an oriented 3-manifold X whose boundary Σ is a disjoint union of tori,
and F is an ordered basis for the first homology group of each of these tori. In
this setting, given a representation α : π1(X) → U(n), we define

ρ(X,α,F) := ρ(X,α, gF , V
α
F , V τ

F ),

where the Riemannian metric and the Lagrangians subspaces are obtained from
the framing F in a natural way. The Lagrangians are chosen in order to make the
gluing formulas as easy as possible.

Given a link L ⊆ S3, its exterior XL is a 3-manifold with toroidal boundary that
we can equip with the framing FL given by preferred longitudes and meridians.
Given a representation α : π1(XL) → U(n), we can define the link invariant

ρ(L, α) := ρ(XL,FL, α).

We have then the following result.

Proposition 1. If α : π1(XL) → U(n) factors through π1(ML), then ρ(L, α) =
ρ(ML, α).

This means that ρ(L, α) coincides with ρ(ML, α) whenever the second invariant
is defined, inheriting all of its concordance properties. The advantage of consid-
ering ρ(L, α) instead of ρ(ML, α) lies in the fact that representations of π1(XL)
which do not factor through π1(ML) can also be considered. This might turn
particularly useful for studying concordance of links with non-vanishing linking
numbers.

For 1-dimensional representations, the rho invariant ρ(L, α) can be explicitly
compared to another well-known invariant. We recall that Cimasoni–Florens sig-
natures are a multivariable version of the Levine–Tristram signatures [CF08].
They are integers σL(ω) defined for an r-component link L ⊆ S3 and an r-tuple
ω ∈ (S1 \ {1})r and they are invariant under link concordance and 1-solvable con-
cordance for most values of ω [CNT17]. The following result implies that ρ(L, α)
(for 1-dimensional α’s) has the same concordance properties as the Cimasoni–
Florens signatures.
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Theorem 2. Let α : π1(XL) → U(1) = S1 the representation sending the i-th
meridian of L to ωi for all i. Then ρ(L, α) = σL(ω) up to a correction term that
only depends on ω and the linking numbers of L.
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Pure braids, Whitney towers, and 0-solvability

Shelly Harvey

(joint work with JungHwan Park, Arunima Ray)

Let Cm be the string link concordance group of m-component links and Pm be the
group of isotopy classes of pure braids with m-components. It is well-known that
Pm is a subgroup of Cm and that two pure braids are isotopic if and only if they
have the same Milnor’s invariants. In this report, we investigate the relationship
between the subgroup of pure braids and the n-solvable filtration, {Fn}n, of Cm.

Recall that the n-solvable filtration of Cm is a highly non-trivial, and somewhat
algebraically defined filtration of Cm. For instance, even for knots, it is known
that each of the successive quotients of Cm, Fn/Fn.5, contains of copy of Z∞⊕Z∞

2

[CHL09, CHL11]. Recall that the knot concordance group is an abelian group
(albeit, non finitely generated and far from being understood). However, for links
(when m ≥ 2), the string link concordance group is non-abelian. For a specific
example, the Borromean rings are known to the be the closure of a commutator
of the generators of the pure braid group; this is known not to be slice since it has
Milnor’s triple invariants non-zero. A natural question to ask is the following.

Question 1. Are the successive quotients of the n-solvable filtration of Cm, namely

Fm
n /Fm

n.5

non-abelian for m ≥ 2 and n ≥ 0?

http://arxiv.org/abs/1703.07540
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Note that Martin showed that F−0.5/F0 is abelian and is classified certain by
Milnors invariants of length at most 4 [Ma16]. See also [MO17].

We could also how much of the non-commutativity of the link concordance
group is captured by pure braids. It was shown by Kirk–Livingston–Wang the Pm

is not normal for m ≥ 3 and that Cm/Ncl(Pm) 6= 0 [KLW]. They did using the
Gassner representation. Recently, M. Kuzbary show that for m = 2 that C2/P2 is
non-abelian using the Sato–Levine invariant.

Question 2. Is Cm/Ncl(Pm) non-abelian for m ≥ 3?

To begin to approach these problems, we investigate Pm ∩ Fm
n , starting with

small n. By Martin’s theorem, it follows that (Pm)(2) ⊂ Fm
0 for all m, where

(Pm)(2) is the 2nd term of the derived series of Pm. For any group G, recall that
G(n), the derived series of G, is defined inductively by G(0) = G and G(n+1) =
[G(n), G(n)].

Question 3. Is (Pm)(n+2) ⊂ Fm
n for n ≥ 1?

We show that P
(2)
m lives inside a smaller, more geometrically defined subgroup.

For each m and n, we define the group of m-compomnent (string) links bounded
by symmetric Whitney towers of height n, denoted Wm

n . We show that elements
of P (2) bounds height 2 Whitney towers.

Theorem 4. For each m, P
(2)
m ⊂ Wm

2 .

There is a much smaller and more mysterious subgroup of Fm
0 , the subgroup

of (string) links bounding symmetric gropes of height 2, denoted Gm
2 . It would be

interesting to know if every element in P
(2)
m bounds a symmetric grope of height

2!

Question 5. Is (Pm)(2) ⊂ Gm
2 ?
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Regularity and group actions and applications to complex geometry

Thomas Koberda

(joint work with Sang-hyun Kim)

In this talk, we discuss the relationship between the algebraic structure of a group
G and the possible degrees of regularity of faithful action of G on a compact one–
manifold, with applications to complex geometry. We generally follow the results
of [1] and [4]. There is some overlap in the talk and in the report with the speaker’s
previous talk at MFO in December 2016, workshop 1649.

It is a standard fact that a countable group arises as a subgroup of the orien-
tation preserving homeomorphisms of the interval or of the circle if and only if it
is left orderable or cyclically orderable, respectively. This algebraically character-
izes countable subgroups of these continuous groups. If the level of regularity is
increased, it is much harder to decide if a group admits a faithful of that level of
regularity.

We illustrate this point as follows: it is a classical result of Nielsen that if S
is a surface of genus at least two with one marked point, then the mapping class
group Mod(S) acts faithfully by orientation-preserving homeomorphisms on the
circle. This action has intrinsic non-differentiability, and Farb–Franks [2] (and
independently Ghys) showed that sufficiently complicated mapping class groups
admit no faithful C2 actions on the circle or on the interval (in fact, they show
that all such actions are trivial). Parwani [6] showed that sufficiently complicated
mapping class groups admit no faithful C1 actions on the circle.

The main result of [1] shows that no finite index subgroup of a mapping class
group admits a faithful C2 action on a compact one–manifold, except in certain
sporadic degenerate cases. This completely answers a question of Labourie. It
is important to note that the category of compact one–manifolds is more natural
than just the circle or the interval, since it is easy to produce a finite extension
of a free group which is not cyclically orderable, even though such a group should
naturally act on a compact one–manifold with a high level of regularity.

The tool which allows us to study finite index subgroups of mapping class groups
is their right-angled Artin subgroups, as studied by the author in [5]. Once a right-
angled Artin group occurs in a given group, it persists inside of all finite index
subgroups of that group. In [1], it is proved that the right-angled Artin group on
the graph P4, the path on four vertices, admits no faithful C2 action on a compact
one-manifold. This result can be used to characterize the mapping class groups
which admit finite index subgroups with faithful C2 actions on a compact one-
manifold. Moreover, this result proves that braid groups on four or more strands
and many other natural examples of groups cannot admit faithful C2 actions on
a compact one–manifold, even after passing to a finite index subgroup.

The main result of [4], which generalizes the main result of [1], is that if G is
a group which is not virtually metabelian then the group (G × Z) ∗ Z admits no
faithful C2 action on a compact one–manifold. Since this theorem applies when
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G is a nonabelian free group, it is not difficult to see that the result of [4] in fact
subsumes the main result of [1].

Among the corollaries of the result of [4] which are not implied by the main
result of [1] is the classification of right-angled Artin groups which admit faithful
C2 actions on a compact one–manifold. They are exactly the finite direct products
of finite free products of free abelian groups. Moreover, there are implications
beyond mapping class groups and right-angled Artin groups. Namely, it is a
straightforward consequence of the main result of [4] that if F denotes Thompson’s
group F , then the group F ∗ Z admits no faithful C2 action on a compact one–
manifold, even though F itself is topologically conjugate into the group of C∞

diffeomorphisms of the interval, by a result of Ghys–Sergiescu [3].
If F2 denotes the free group on two generators, then the group (F2 × Z) ∗ Z

is a “poison” subgroup for any group which one wishes to act by C2 diffeomor-
phisms on a compact manifold. This group occurs often in complex geometry: for
instance, pure braid groups on four or more strands contain (F2×Z)∗Z, and they
are fundamental groups of complements of hyperplane arrangements in complex
projective space. Many arrangement groups do act faithfully by even C∞ dif-
feomorphisms on every one–manifold, for example the arrangement groups which
are isomorphic to direct products of free groups, or more generally which can be
realized as subgroups of direct products of free groups. However, any arrangement
group which contains a copy (F2 × Z) ∗ Z is precluded from admitting any such
action.
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Asymptotic properties on fundamental groups of quasiprojective
surfaces

José Ignacio Cogolludo-Agust́ın

(joint work with Anatoly Libgober)

The present talk is concerned with the asymptotic behavior of certain invariants of
the fundamental group of complements of divisors on smooth projective surfaces.

Such invariants are mainly two: Alexander type invariants and the number of
surjections onto free groups. By asymptotic behavior we mean the behavior of
such invariants as the degree of the divisor increases.

The main focus of our interest will be curves in the complex projective plane,
but similar questions can be asked about general smooth projective surfaces.

Alexander type invariants. Let G be a finitely presented group, which in
our setting will be the fundamental group π1(S \ D) of the complement of a
reduced divisor D in a smooth projective surface S. Its variety of characters,
TG = Hom(G,C ∗) has a natural structure of an abelian variety as a finite dis-
joint union of translated complex tori TG =

⊔
t∈Tors(G) ξt · (C ∗)b1(G) of dimension

b1(G) = rankG/G′, where G/G′ ≃ Zb1(G) × Tors(G). Each character ρ ∈ TG

defines a maximal ideal in the ring RG = C [G/G′], that is, MaxSpec(RG) ≃ TG.
On the other hand, the group G/G′ acts on G′/G′′ by conjugation. This turns
AG = C [G′/G′′] into an RG-module called the Alexander invariant of G. The
support of this module defines then a subset V (G) of TG called the characteristic
variety of G.

In case G = π1(S3 \ K) where K ⊂ S3 is a knot in S3, then G/G′ = Z and
RG = C [t±1] is hence a Principal Ideal Domain. In this case, AG = Rr

G ×
RG/(λ1)× · · · ×RG/(λn) and V (G) is given by the set of zeroes of the Alexander
polynomial ∆K(t) =

∏n
i=1 λi.

Note that any surjection G1 ։ G2 induces an injection V (G2) →֒ V (G1) which
should be understood via the inclusion of characters TG2

⊂ TG1
. In the particular

case of G = π1(S \D), note that if D = D1∪D2, then the inclusion S \D →֒S \D2

induces a surjection G ։ G2 = π1(S \D2). An irreducible component V of V (G)
(which will also be denoted as V (D)) is called essential if it is not the image of
any V ′ ⊂ V (D2) →֒ V (D).

For simplicity we will assume from now on that S is simply connected and
consider D = D1 ∪ · · · ∪Dr descomposition of D in irreducible components. The
existence of components V ⊂ V (D), G = π1(S\D) of positive codimension one are
connected with the existence of a pencil φ : S 99K P1 such that and Di = φ−1(pi)
for some p1, . . . , pr ∈ P1. Such a divisor will be called in pencil position.

As a consequence of a remarkable result by Yuzvinsky and Pereira-Yuzvinsky
[13, 19], if S = P2 and D is a union of lines, then V (D) has an essential component
of dimension k > 3 if and only if D is in pencil position, that is, a union of k + 1
concurrent lines.

Question. Is this result specific for union of lines or is it more general?
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Surjections onto free groups. The complexity of a group G can be messured
by the ammount of homomorphisms onto free groups. In the particular case of
G = π1(S \D), a fundamental theorem by Arapura [2], which has been generalized
and strengthened in several directions [4, 6] implies that any positive dimensional
component V ⊂ V (D) of dimension k is a (possibly translated) pull-back of a
component V ′ ⊂ V (P1 \ {p0, . . . , pk}) for a pencil map S 99K P1. The condition
about the possible translation of the component V ′ can be avoided by using the
orbifold structure on P1 \ {p0, . . . , pk} induced by the existence of multiple fibers
in the pencil; see [3, 4].

As a consequence, the number of different homomorphisms of G onto a non-
abelian free group Fk, can be recovered as the number of different pencil maps
φ : S 99K P1 where φ−1({p0, . . . , pk}) ⊂ D. Moreover, φ is called essential if
φ−1({p0, . . . , pk}) = D.

k-reducible divisors. From the previous discussion, it is convenient to distin-
guish a curve in pencil position and a curve with an essential pencil map. In the
former, each fiber φ∗(pi) is an irreducible curve of the same degree, whereas in
the latter this is not necessarily the case. For instance the twelve lines joining the
nine inflexion points of a smooth cubic have an essential pencil map, which is the
corresponding pencil of cubics. These twelve lines are the union of four fibers of
such a pencil. However, this curve of degree twelve is not in a pencil position since
the lines are not convergent.

It is thus convenient to study possible bounds on the number of reducible curves
in linear systems on smooth surfaces. In order to describe them one needs the
concept of k-reducibility. A divisor C =

∑
i=1 niCi in P2 is called a k-reducible

divisor if its irreducible components Ci have degree at most k.
Note that 1-reducible curves are classically known as completely reducible curves

or totally reducible [8, Question 11.6]. As was mentioned above, the maximal
number of completely reducible members of a primitive base-component-free pencil
of curves of degree d > 1 is 4. Recall that a pencil is called primitive if its generic
member is irreducible and base-component free if two generic members do not
share an irreducible component. A systematic study of essential pencil maps of
line arrangements can be found in [11, 10].

Let ϕ : P2
99K P1 denote a primitive base-component-free pencil of curves in

P2 and let ρd,k(ϕ) ∈ Z>0 denote the number of k-reducible divisors in ϕ. Since
ρd,k(ϕ) ≤ d2 − 1 (see [15, Satz C]), the maximum ρd,k(P2) = max{ρd,k(ϕ)} is well
defined, but in principle it depends quadratically on d. However, by the previous
discussion ρd,1(P

2) = 4 gives a universal bound on the number of completely
reducible divisors of a pencil of curves of degree d on P2 for d ≥ 2.

The purpose of this talk is to analyze the extent of this remarkable property
in two directions. On the one hand, one can analyze the existence of a universal
bound for ρd,k(P2) under some conditions for d. On the other hand, one can study
possible analogues of ρd,1 for other surfaces.

Main Theorem A: As for the first question, we will show that ρd,k(P2) has a
universal bound whenever d ≥ 2k – which generalizes d ≥ 2 for k = 1.
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Main Theorem B: As for the second question we will prove that the pencils
for which ρ(3,3),1(P1 × P1) = 4 are not unique (as conjectured for P2) and that

ρd,1(Sd) can be arbitrarily large for general surfaces in P3.
The condition d ≥ 2k is essential. Otherwise at most a linear bound in the

degree of the linear system can be given. Ruppert described in [15] the existence
of a pencil of curves of any degree d with exactly 3(d−1) reducible fibers. Consider
the net N in P2 given by the following curves Cλ of degree d defined by the equation:

Fλ(x0, x1, x2) = λ0x0(xd−1
1 − xd−1

2 ) + λ1x1(xd−1
2 − xd−1

0 ) + λ2x2(xd−1
0 − xd−1

1 )

for any λ = [λ0 : λ1 : λ2] ∈ P2. The curve

S(λ) = (λd−1
0 − λd−1

1 )(λd−1
1 − λd−1

2 )(λd−1
2 − λd−1

0 )

in N defines the intersection with the discriminant. Moreover, any curve Fλ

satisfying S(λ) = 0 is reducible and contains a line. If L(λ) is in general position
with respect to S(λ), then L(λ) defines a pencil with exactly 3(d − 1) reducible
fibers.

As a consequence of the main Theorem A, a linear bound on the number of re-
ducible members of a primitive base-component-free pencil of degree d is obtained
as 3(d − 1) (see [8, Question 11.6]). This improves the original bound given by
Poincaré [14] as (2d− 1)2 + 2d+ 2 and the more recent one by Ruppert [15] given
as d2 − 1. This result has been extended either for arbitrary characteristic [12] or
higher dimensions [16, 18, 17] or for some particular type of pencils coming from
polynomial maps f − λzd such as in [9, 12, 18, 1, 5, 7].
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Norm. Supér. (4) 48 (2015), no. 1, 227–236.
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Geometric and homological finiteness properties

Alexander I. Suciu

1. Finiteness properties of spaces and groups. A recurring theme in topol-
ogy is to determine the geometric and homological finiteness properties of spaces
and groups. For instance, one would like to decide whether a path-connected space
X is homotopy equivalent to a CW-complex with finite k-skeleton. In this spirit,
a group G is said to have property Fk if it admits a classifying space K(G, 1) with
finite k-skeleton; likewise, G is said to have property FPk if the trivial ZG-module
Z admits a projective ZG-resolution which is finitely generated in all dimensions
up to k. If G is of type Fk then it is of type FPk; the converse does not hold in
general, but properties FPk and F2 together imply property Fk.

In [1], Bieri, Neumann, and Strebel associated to every finitely generated group
G a subset Σ1(G) of the unit sphere S(G) in the real vector space Hom(G,R). This
“geometric” invariant of the group G is cut out of the sphere by open cones, and
is independent of a finite generating set for G. Shortly after, Bieri and Renz intro-
duced a nested family of higher-order invariants, {Σi(G,Z)}i≥1, which record the
finiteness properties of normal subgroups of G with abelian quotients. In [8], Far-
ber, Geoghegan and Schütz further extended these definitions: to each connected,
finite-type CW-complex X , they assign a sequence of invariants, {Σi(X,Z)}i≥1,
living in the unit sphere S(X) ⊂ H1(X,R). The sphere S(X) can be thought of as
parametrizing all free abelian covers of X , while the Σ-invariants (which are again
open subsets), keep track of the geometric finiteness properties of those covers.

Another tack was taken by Dwyer and Fried in [7]. Instead of looking at all free
abelian covers of X at once, they fix the rank, say r, of the deck-transformation
group, and view the resulting covers as being parametrized by the rational Grass-
mannian Grr(H1(X,Q)). Inside this Grassmannian, they consider the subsets
Ωi

r(X), consisting of all covers for which the Betti numbers up to degree i are
finite, and show how to determine these sets in terms of the support varieties
of the relevant Alexander invariants of X . Unlike the Σ-invariants, though, the
Ω-invariants need not be open subsets, see [7, 21].
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The Dwyer–Fried sets depend only on the homotopy type of X . Hence, if
G is a finitely generated group, we may define Ωi

r(G) := Ωi
r(K(G, 1)). Let now

ν : G ։ Zr be an epimorphism. As shown in [21], the following holds: If Ωk
r (G) = ∅

and Γ := ker(ν) is of type Fk−1, then bk(Γ) = ∞. To see how this works in
a concrete example, let Y = S1 ∨ S1; then X = Y ×3 is a classifying space for
G = F 3

2 . Let ν : G → Z be the homomorphism taking each standard generator
to 1. Stallings showed in [18] that the group Γ = ker(ν) is finitely presented, and
that H3(Γ,Z) is not finitely generated. Using our machinery, we compute that
Ω3

1(X) = ∅; and so, by the above, a stronger statement holds: b3(Γ) is not finite.

Theorem 1 ([6]). For each k ≥ 3, there is a smooth, complex projective variety
M of complex dimension k − 1 such that π1(M) is of type Fk−1, but not FPk.

This theorem answers in the negative a question of Kollár [12]. Some of the
arguments that go into the proof are streamlined in [21]. Further examples of
projective groups with exotic finiteness properties can be found in recent work of
Llosa Isenrich and Bridson [13, 14, 2].

2. Bounds on the Σ- and Ω-invariants. Let Ĝ = Hom(G,C∗) = H1(X,C∗)
be the algebraic group of complex characters of G = π1(X). The characteristic
varieties of X are the sets

V i(X) = {ρ ∈ Ĝ | Hi(X,Cρ) 6= 0}.

If the CW-complex X has finite k-skeleton, then V i(X) is a Zariski closed subset

of the algebraic group Ĝ, for each i ≤ k. The varieties V i(X) are homotopy-
type invariants of X ; moreover, V1(X) depends only on G = π1(X). If we set
V i(G) := V i(K(G, 1)), then V1(G) = V1(G/G′′).

Let exp: H1(X,C) → H1(X,C∗) be the coefficient homomorphism induced by
the map C → C∗, z 7→ ez. Given a Zariski closed subset W ⊂ H1(X,C∗), let
τ1(W ) be the ‘exponential tangent cone’ to W , i.e., the set of z ∈ H1(X,C) for
which exp(λz) ∈ W , for all λ ∈ C. As shown in [5], this set is a finite union of
rationally defined linear subspaces. Furthermore, put τk1 (W ) = τ1(W ) ∩H1(X, k)
for k = Q or R, and write W i(X) =

⋃
j≤i V

j(X).

Theorem 2 ([16]). Σi(X,Z) ⊆ S(X) \ S(τR1 (W i(X)).

For i = 1, equality holds for all right-angled Artin groups [16], as well as pure
braid groups [9]. In general, though, the above inclusion is strict, even in the case
of complements of hyperplane arrangements [20].

Given a homogeneous variety V ⊂ kn, the locus of r-planes in kn intersecting
V non-trivially, σr(V ), is a Zariski closed subset of the Grassmannian Grr(kn).

Theorem 3 ([19, 21]). Ωi
r(X) ⊆ Grr(H1(X,Q)) \ σr

(
τQ1 (W i(X))

)
.

Furthermore, if the upper bound for the Σi-invariants is attained, then the
upper bound for the Ωi

r-invariants is also attained, for all r, see [20].
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3. Infinitesimal finiteness obstructions. Let A be commutative differential
graded C-algebra (for short, a cdga). We say that A is q-finite if it is connected
(i.e., A0 = C · 1) and

∑
i≤q dimAi < ∞. Two cdgas A and B have the same

q-type (written A ≃q B) if there is a zig-zag of cdga maps connecting A and
B, with each such map inducing isomorphisms in homology up to degree q and
a monomorphism in degree q + 1. Every cdga A with H0(A) = C admits a
q-minimal model, Mq(A), unique up to isomorphism; see [23].

A q-model for a space X is a cdga A with the same q-type as Sullivan’s cdga of
piecewise polynomial, complex-valued forms on X [23]. Examples of spaces having
finite-type models include formal spaces (such as compact Kähler manifolds, hyper-
plane arrangement complements, etc), smooth quasi-projective varieties, compact
solvmanifolds, and Sasakian manifolds.

For each a ∈ Z1(A) ∼= H1(A), we construct a cochain complex, (A•, δa), with
differentials δia : Ai → Ai+1, u 7→ a · u + du. The resonance varieties of A are the
sets

Ri(A) = {a ∈ H1(A) | Hi(A•, δa) 6= 0}.

If A is q-finite, these sets are Zariski closed, for all i ≤ q. Given a connected,
finite-type CW-complex X , we obtain the usual resonance varieties by setting
Ri(X) := Ri(H•(X,C)).

Theorem 4. Let X be a connected CW-complex with finite q-skeleton which ad-
mits a q-finite q-model A. Then, for all i ≤ q:

[4] V i(X)(1) ∼= Ri(A)(0). Hence, if X is q-formal, then V i(X)(1) ∼= Ri(X)(0).

[15] TC0(Ri(A)) ⊆ Ri(X).
[3] All the irreducible components of V i(X) passing through the identity are

algebraic subtori of π1(X)̂.

The just-mentioned result of Budur and Wang [3] yields a powerful obstruction
for the existence of (partially) finite models for spaces and groups. For instance, if
G is a finitely presented group with Gab = Zn and V1(G) = {t ∈ (C∗)n |

∑n
i=1 ti =

n}, then G admits no 1-finite 1-model. In a recent preprint with S. Papadima, we
provide a completely different obstruction.

Theorem 5 ([17]). Suppose X is (q + 1) finite, or X admits a q-finite q-model.
Then bi(Mq(X)) < ∞, for all i ≤ q + 1.

Corollary 6 ([17]). Let G be a finitely generated group. Assume that either G is
finitely presented, or G has a 1-finite 1-model. Then b2(M1(G)) < ∞.

For instance, let G = Fn/F
′′
n be the free metabelian group of rank n ≥ 2.

Then V1(G) = V1(Fn) = (C∗)n, and so G passes the Budur–Wang test. Yet
b2(M1(G)) = ∞, and so, by Corollary 6, this group admits no 1-finite 1-model,
and no finite presentation. More generally, we have the following result.

Theorem 7 ([17]). Let G be a finitely generated group which has a free, non-cyclic
quotient. Then G/G′′ is not finitely presentable, and does not admit a 1-finite 1-
model.



3030 Oberwolfach Report 50/2017

We also reinterpret the condition that a group G admits a 1-finite 1-model in
terms of the Malcev Lie algebra m(G), which is the set of primitive elements in
the completion of the group algebra QG with respect to the filtration by powers
of the augmentation ideal; see for instance [22] and reference therein.

Theorem 8 ([17]). A finitely generated group G admits a 1-finite 1-model if and
only if m(G) is the lower central series completion of a finitely presented Lie alge-
bra.

4. RFRp groups, finiteness, and largeness. In recent work with T. Koberda,
we modify Agol’s celebrated definition of RFRS groups, as follows. Let G be a
finitely generated group and let p be a prime. We say that G is residually finite
rationally p if there exists a descending sequence of subgroups {Gi}i≥0 such that
G0 = G; Gi+1 ⊳ Gi;

⋂
i≥0 Gi = {1}; Gi/Gi+1 is an elementary abelian p-group;

and ker(Gi → H1(Gi,Q)) < Gi+1. The class of RFRp groups is closed under
taking subgroups, finite direct products, and finite free products. Such groups are
residually finite, torsion-free, and residually torsion-free polycyclic.

Theorem 9 ([11]). Let G be a finitely presented, non-abelian group which is RFRp
for infinitely many primes p. Then G is bi-orderable; the maximal k-step solvable
quotients G/G(k) are not finitely presented, for any k ≥ 2; and Σ1(G) 6= S(G).

Surface groups and right-angled Artin groups are RFRp, for all p, but finite
groups and non-abelian nilpotent groups are not RFRp, for any p. We show in [11]
that a large class of groups occurring at the interface between complex algebraic
geometry and low-dimensional topology enjoy the RFRp property. More precisely,
let C be an algebraic curve in C2, with boundary manifold M . Suppose that each
irreducible component of C is smooth and transverse to the line at infinity, and all
singularities of C are of type A. Then π1(M) is RFRp, for all p.

A finitely generated group G is said to be large if there is a finite-index subgroup
H < G which surjects onto a free, non-cyclic group. As shown in [10], a finitely
presented group G is large if and only if there exists a finite-index subgroup K < G
such that V1(K) has infinitely many torsion points.

Theorem 10 ([11]). Let G be a finitely presented group which is non-abelian and
RFRp for infinitely many primes p. Then G is large.

The following result from [17] (based on foundational work of Arapura) gives a
geometric interpretation of largeness within the class of quasi-projective groups.

Proposition 11 ([17]). Let X be a quasi-projective manifold. Then π1(X) is large
if and only if there is a finite cover Y → X and a regular, surjective map from Y
to a smooth curve C with χ(C) < 0, so that the generic fiber is connected.
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[8] M. Farber, R. Geoghegan, D. Schütz, Closed 1-forms in topology and geometric group theory,

Russian Math. Surveys 65 (2010), no. 1, 143–172.
[9] N. Koban, J. McCammond, J. Meier, The BNS-invariant for the pure braid groups, Groups

Geom. Dyn. 9 (2015), no. 3, 665–682.
[10] T. Koberda, Alexander varieties and largeness of finitely presented groups, J. Homotopy

Relat. Struct. 9 (2014), no. 2, 513–531.
[11] T. Koberda, A.I. Suciu, Residually finite rationally p groups, arxiv:1604.02010v2.
[12] J. Kollár, Shafarevich maps and automorphic forms, Princeton Univ. Press, Princeton, NJ,

1995.
[13] C. Llosa Isenrich, Finite presentations for Kähler groups with arbitrary finiteness properties,

J. Algebra 476 (2017), 344–367.
[14] C. Llosa Isenrich, Branched covers of elliptic curves and Kähler groups with exotic finiteness

properties, arxiv:1606.03142v2.
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Universidad de Zaragoza
Facultad de Ciencias
c/Pedro Cerbuna 12
50009 Zaragoza
SPAIN

Prof. Dr. Indranil Biswas

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road, Colaba
Mumbai 400 005
INDIA

Dr. Maciej Borodzik

Instytut Matematyki
Uniwersytet Warszawski
ul. Banacha 2
02-097 Warszawa
POLAND

Prof. Dr. Jae Choon Cha

Department of Mathematics
POSTECH
77 Cheongam-Ro, Nam-Gu
Pohang 37673
KOREA, REPUBLIC OF

Prof. Dr. Jose Ignacio

Cogolludo-Agustin

Departamento de Matemáticas - IUMA
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