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Introduction by the Organisers

The workshop ’Interplay between number theory and analysis for Dirichlet series’,
organised by Frédéric Bayart (Clermont Université), Kaisa Matomäki (Univer-
sity of Turku), Eero Saksman (University of Helsinki) and Kristian Seip (NTNU,
Trondheim) was held October 29th – November 4th, 2017. This meeting was well
attended with around 25 participants coming from a number of different countries,
including participants form North America. The group formed a nice blend of re-
searchers with somewhat different mathematical backgrounds which resulted in a
fruitful interaction.

About 17 talks, of varying lengths, were delivered during the five days. The talks
were given by both leading experts in the field as well as by rising young re-
searchers. Given lectures dealt with e.g. connections between number theory and
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random matrix theory, operators acting on Dirichlet series, distribution of Beurl-
ing primes, growth of Lp-norms of Dirichlet polynomials, growth and density of
values of the Riemann zeta on boundary of the critical strip, Rado’s criterion for
kth powers, Sarnak’s and Elliot’s conjectures, and Hardy type spaces of general
Dirichlet series. In addition, a problem session was held on Wednesday evening.
Two of the speakers gave wider expositions, each comprising of two talks: Hugh
Montgomery’s beautiful review of the theory of mean values of Dirichlet polyno-
mials was much appreciated by the participants. In turn, Adam Harper exposed
his impressive solution of Helson’s conjecture, which has interesting consequences
both to the analytic theory of Dirichlet series and to the growth of random or
Dirichlet character sums. It also provided a surprising connection to the theory of
multiplicative chaos.

The meeting stimulated many new collaborative research projects. Besides the
high level scientific program, most of the participants took part in the the classi-
cal social activity, i.e the Wednesday afternoon hike to St. Roman for coffee and
Black Forest cake. The weather was nice during the hike and almost all partici-
pants managed to return from the long walk before it got really dark. Overall, the
atmosphere was very relaxed and stimulated discussions and free scientific gath-
erings of the participants – during the last day of the conference a considerable
audience gathered into the seminar room to listen to improvised extra lectures
given around midnight!

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Sums of greatest common divisors and metric number theory

Christoph Aistleitner

In summer 2012 I started a collaboration with Kristian Seip from NTNU Trond-
heim on questions concerning so-called “GCD sums”, that is, sums involving great-
est common divisors of the form

∑

1≤k,l≤N

ckcℓ
(gcd(nk, nl))

2α

(nknl)α
.

Here n1, . . . , nN are distinct positive integers, and (ck) are real coefficients which
are normalized to

∑
c2k ≤ 1. Furthermore, α is a real parameter which in the

interesting cases is from the range [1/2, 1]. The role of such sums in the theory
of Diophantine approximation was recognized since the early 20th century. For
example, the problem of finding upper bounds for such GCD sums in the case
of α = 1 was stated as a prize problem by the Royal Dutch society (following a
proposal of Erdős), and was solved by Gál [5] in 1949. The problem in the case
α = 1/2 is discussed in detail in Harman’s book on Metric number theory [6], to-
gether with many applications, but the full problem was settled only very recently
as a result of the collaboration with Kristian Seip mentioned at the beginning
(see [1], [4] and [7]). The research on this problem took a surprising turn when a
connection to the question concerning large values of the Riemann zeta function in
the critical strip was established; this led to a series of papers, which culminated
in the breakthrough obtain by Bondarenko and Seip [4] concerning large values of
the zeta function on the critical line.

However, after the question asking for the maximal size of such GCD sums was
settled, these estimates were also used very successfully in the field which they were
originally intended for. More precisely, the new strong bounds for GCD sums led
to several remarkable results in analysis and metric number theory, concerning
for example the convergence of series of dilated functions [1], the discrepancy of
parametric sequences [2], and the metric theory of pair correlations [3]. In my talk
at the MFO I explained how GCD sums arise naturally in such questions as the
“variance” of a sum of functions, by using simple methods from Fourier analysis,
and illustrated as a particular case how to obtain the results from [3] which link the
asymptotic distribution of the pair correlations of a parametric sequence (nkα)k≥1

mod 1 with the so-called additive energy of the sequence (nk)k≥1.

References

[1] C. Aistleitner, I. Berkes, and K. Seip. GCD sums from Poisson integrals and systems of
dilated functions. J. Eur. Math. Soc. (JEMS), 17(6):1517–1546, 2015.

[2] C. Aistleitner and G. Larcher. Metric results on the discrepancy of sequences (anα)n≥1
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A remark on Sarnak’s conjecture

Régis de la Bretèche

(joint work with Gérald Tenenbaum)

We investigate Sarnak’s conjecture on the Möbius function in the special case when
the test function is the indicator of the set of integers for which a real additive
function assumes a given value.

According to a general pseudo-randomness principle related to a famous conjecture
of Chowla and recently considered by Sarnak, the Möbius function µ does not
correlate with any function ξ of low complexity. In other words,

∑

n≤x

µ(n)ξ(n) = o
(∑

n≤x

|ξ(n)|
)

(x→∞).

It is known since Halász that

Q(x; f) := sup
m∈R

∑

n≤x
f(n)=m

1≪ x√
1 + E(x)

where we have put

E(x) :=
∑

p≤x
f(p) 6=0

1

p
·

Here and in the sequel, the letter p denotes a prime number.

As a first investigation of the above described problem, we would like to show that

Q(x; f, µ) := sup
m∈R

∣∣∣∣∣
∑

n≤x
f(n)=m

µ(n)

∣∣∣∣∣

is generically smaller than Q(x; f). Of course we have to avoid the case when f(p)
is constant, for then µ(n) does not oscillate on the set of squarefree integers n
with f(n) = m. Therefore we seek an estimate which coincides with those of
Q(x; f) when f(p) is close to a constant and which has smaller order of magnitude
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otherwise. When f(p) is restricted to assume the values 0 or 1 only, we thus expect
a significant improvement when

F (x) :=
∑

p≤x

1− f(p)

p

is large. Indeed, in this simple case we obtain the following estimate.
Let f denote a real additive arithmetic function such that f(p) ∈ {0, 1} for all p.
Then, with the above notation and c = (2π − 4)/(3π − 2) ≈ 0.30751, we have

Q(x; f, µ)≪ x{1 + F (x)}e−cF (x)

√
1 + E(x)

·

Moreover, we obtain an asymptotic relation for

Nm(x; f, µ) :=
∑

n≤x
f(n)=m

µ(n)

providing F (x) is not too large.
Let κ ∈]0, 1[ and let f denote a strongly additive function such that f(p) ∈ {0, 1}
for all primes p. Assume furthermore that

∑

p≤y

{1− f(p)} log p≪ y

(log2 y)
.

Uniformly in the range κE(x) ≤ m ≤ E(x)/κ, we have

Nm(x; f, µ) = (−1)mNm(x; f)

{
λfe

−2F (x) + O

(
1

(log2 x)b

)}
,

with

λf :=
∏

f(p)=0

1− 1/p

1 + 1/p
e2/p, b :=

κ

2(4− κ)
.

The key ingredient of all our proofs comes from the new and powerful results of
Tenenbaum on effective mean value of multiplicative functions [2].

References

[1] R. de la Bretèche, G. Tenenbaum, A remark on Sarnak’s conjecture, arxiv.org
/abs/1709.01194 (2017).

[2] G. Tenenbaum, Moyennes effectives de fonctions multiplicatives complexes, to appear in
Ramanujan Journal, available in arxiv.org abs/1709.01315 (2017).
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Non linear chains in the study of functional equations

Jean-François Burnol

The Dedekind zeta function ζQ(i)(s) verifies the functional equation

(1) π−sζQ(i)(s) =
Γ(1 − s)

Γ(s)
π−(1−s)ζQ(i)(1 − s) .

We study functional equations of the type

(2) f(s) = ±Γ(ν2 + 1− s)

Γ(ν2 + s)
f(1− s) .

The Riemann zeta function ζ(s) can be put into this mold by considering
π−w/2ζ(w) (whose functional equation involves Γ(w2 )), after the change of vari-

able w − 1
2 = 2(s − 1

2 ). This will become (2) with ν = − 1
2 . and similarly for

Dirichlet L-series for even characters. Those for odd characters are related to (2)
with ν = + 1

2 .
For technical reasons, some of the discussion that follows requires ν > −1, but this
can also be lifted to some extent after a while. At first stages we do insist that ν
is real because the ratio of Gamma factors in (2) is then unitary on the 1

2 -line.

Hence it is associated with some unitary operator Hν on L2(0,+∞; dx), from the
formula

(3) Ĥν(φ)(s) =
Γ(ν2 + 1− s)

Γ(ν2 + s)
φ̂(1− s)

where φ̂(s) =
∫∞
0

φ(x)x−sdx. This φ → φ̂ (Mellin transform) identifies unitarily

L2(0,+∞; dx) with L2(ℜ(s) = 1
2 ; |ds|

2π ).

The operator Hν is the operator with kernel Jν(2
√
xy) =

∑∞
n=0(−1)n xn+ ν

2 yn+ ν
2

n!Γ(n+ν+1) .

The study of functional equation (2) ultimately leads to functions verifying the
Riemann Hypothesis when we try to elucidate those f(s) which additionally be-
long to the (conformally invariant) Hardy space H2

ℜ(s)> 1
2

of the right half-plane or

more generally to some a−s+ 1
2H2

ℜ(s)> 1
2

. This fact was known to de Branges as

an incarnation (“Sonine spaces”) of his general theory of Hilbert spaces of entire
functions. I elucidated some structure problem in [1] via the study of integral
equations associated to operators Hν .

I was led myself to such spaces starting from the study of functions such as
ζ(s)/(s − ρ). I found Hilbert spaces of entire functions, then learned there was a
general de Branges theory, and even that the spaces already had a name, but
their structure was basically unknown. Except for ν = 0 and to a lesser extent for
ν ∈ N for which the spaces can be explained in terms of Bessel functions.
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My theory started in [1]. I then found the link with Fredholm determinants and
Dirac type equations in [2]. That paper was dedicated to the cosine and sine
transforms (ν = ± 1

2 ), and I latter gave a detailed exposé of my approach in the
case ν = 0, applicable with very light modifications to general ν > −1, in some
chapters of [3].

These techniques were recently applied and extended by Suzuki ([5], [6]) to a
more direct study of the Riemann ξ-function (and Selberg class.)

My talk focused on results obtained after [3] and which revolve around a connec-
tion with Painlevé transcendants. Aspects of this were published in [4], which is
connected actually not with the operators Hν but with toy-operators HN

ν where
the Gamma factors have been replaced with rational functions with N poles along
an arithmetic progression. Then the theory leads to PVI transcendants, whereas
the Hν -theory is a confluence limit related to PIII and PV transcendants. Al-
though I obtained that part of the theory earlier I have not yet published it.

To state a typical result, I need to make a few definitions. Let a > 0, Pa orthogonal
projection to L2(0, a) and φ±

ν,a the unique solution to the integral equation on

(0, a), (1 ± PaHνPa)f = Jν(2
√
ax). The φ±

ν,a are analytic with a branch cut on

the negative real axis. The functions
√
a
2 Γ(s + ν

2 )(a−s ±
∫∞
a

φ±
ν,a(x)x−sdx) are

the entire functions I mentioned earlier which solve the structure problem of the
Sonine spaces ([1]). They are involved in differential system ([2]) whose coefficients
are expressible with the Fredholm determinants of 1 ± PaHνPa, in particular via
the function

(4) µν(a) = a
d

da
log

det(1 + PaHνPa)

det(1− PaHνPa)

Let τν(a) = (2a)ν
2

ea
2

det
(

1− (PaHνPa)2
)

, then the Toda chain relation holds:

(5)

(
a
d

da

)2

log τν =
τν−1τν+1

τ2ν
.

The quantities µν and µν+1 are related one with the other by a non-linear dif-
ferential first order system, connecting them to PIII and PV, and such systems
exist in relevant Physics literature. But the more involved analogous system where
there is also the parameter N , and which connects the µν,N to PVI ([4]) seems to
possibly not have been known in Painlevé litterature. My theory is autonomous
and uses nothing from Painlevé litterature.

References
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A proof of Helson’s conjecture

Adam J. Harper

Let (f(p))p prime be a sequence of independent Steinhaus random variables, i.e.
independent random variables distributed uniformly on the unit circle {|z| =
1}. We define a Steinhaus random multiplicative function f , by setting f(n) :=∏

pa||n f(p)a for all natural numbers n (where pa||n means that pa is the highest

power of the prime p that divides n, so n =
∏

pa||n p
a). Thus f is a random

function taking values in the complex unit circle, that is totally multiplicative.
I gave two lectures discussing the following result, taken from my preprint [1].

Theorem 1. If f(n) is a Steinhaus random multiplicative function, then uniformly
for all large x and 0 ≤ q ≤ 1 we have

E|
∑

n≤x

f(n)|2q ≍
(

x

1 + (1− q)
√

log log x

)q

.

I also discussed an analogous result for sums of Dirichlet characters χ(n) (for which
the random multiplicative function f(n) is often proposed as a good model).

Theorem 2. Let r be a large prime. Then uniformly for any 1 ≤ x ≤ r and any
0 ≤ q ≤ 1, we have

1

r − 1

∑

χ mod r

|
∑

n≤x

χ(n)|2q ≪
(

x

1 + (1 − q)
√

min{log logL, log log log r}

)q

,

where L := 10 min{x, r
x}.

In the special case where q = 1/2, Theorem 1 implies that E|∑n≤x f(n)| ≍
(

x√
log log x

)1/2
, and in particular that E|∑n≤x f(n)| = o(

√
x) as x → ∞. This

proved a conjecture of Helson [2], as referenced in the title of my talks. Part of the
interest of these results is that, in view of the Bohr correspondence and Theorem
1, we have

lim
T→∞

1

2T

∫ T

−T

|
∑

n≤x

n−it|2qdt = E|
∑

n≤x

f(n)|2q = o(xq) ∀0 < q < 1.



Interplay between Number Theory and Analysis for Dirichlet Series 3045

On the other hand, Riemann–Stieltjes integration implies that
∫ 1

0

|
∑

n≤x

1

n1/2+it
|2qdt =

∫ 1

0

| x
1/2−it

1/2− it
+ O(1)|2qdt ≍ xq ,

so we see that there cannot exist any universal constants C2q such that
∫ 1

0

|P (1/2 + it)|2qdt ≤ C2q lim
T→∞

1

2T

∫ T

−T

|P (it)|2qdt

for all Dirichlet polynomials P (s). This gave a negative answer to the so-called
embedding problem for Dirichlet polynomials (see Question 2 of [3], or Problem 2.1
of [4]) for all exponents 0 < 2q < 2.

The proof of Theorem 1 breaks into two (somewhat uneven) parts. Firstly, we
need to establish a connection between E|∑n≤x f(n)|2q and an average involving
the corresponding Euler product

F (s) :=
∏

p≤x

(1− f(p)

ps
)−1 =

∞∑

n=1,
p|n⇒p≤x

f(n)

ns
.

This will be useful for several reasons, notably because in the Euler product the

different factors (1− f(p)
ps )−1 are independent, whereas in the sum

∑
n≤x f(n) the

contributions from the underlying independent f(p) are entangled with one an-
other in a highly non-trivial way.

The standard way to achieve such a connection would be using Perron’s formula:

∑

n≤x

f(n) =
1

2πi

∫ c+i∞

c−i∞
F (s)

xs

s
ds, c > 0, x /∈ N.

However, if we choose c = 1/2 and apply the triangle inequality (the natural way
to proceed since, to first order, we expect

∑
n≤x f(n) to typically be around

√
x

in size), we get

|
∑

n≤x

f(n)| ≤ x1/2

2π

∫ ∞

−∞
|F (1/2 + it)| 1

|1/2 + it|dt.

Here the integral on the right will actually diverge, but we could correct this by in-
troducing a smoother weight on the left, which would replace the factor 1/|1/2+it|
by something like 1/|1/2 + it|2, whose integral converges. However, in any case,
to deduce (the upper bound in) Theorem 1 from this we would need |F (1/2 + it)|
to typically have size o(1), which is not the case. So we need a different approach.

One can actually show, very roughly speaking, that

E|
∑

n≤x

f(n)|2q ≈ xq
E

(
1

log x

∫ 1/2

−1/2

|F (1/2 + it)|2dt
)q

.
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This is done by splitting up
∑

n≤x f(n) into double sums like
∑

√
x<p≤x prime

f(p)
∑

m≤x/p

f(m),

and then conditioning on the inner random sums (which are independent of the
outer random variables (f(p))√x<p≤x) and applying Khintchine’s inequality to re-
late the conditional 2q-th moment to a mean square. Having done this, we can
apply Parseval’s identity to relate an integral square average of

∑
n≤x f(n) to an

integral square average of F (1/2+it). The underlying point here is that, if one tries
to apply Perron’s formula and the triangle inequality, one loses something because
any cancellation from the oscillations of xit in the Perron integral is lost. If one
can first move everything to the level of mean squares, there are no oscillations to
be lost and one can hope to obtain a sharp connection with the Euler product F (s).

The larger second part of the proof is to analyse xqE

(
1

log x

∫ 1/2

−1/2 |F (1/2 + it)|2dt
)q

.

To set the scene we note that, by Hölder’s inequality,

xq
E

(
1

log x

∫ 1/2

−1/2

|F (1/2 + it)|2dt
)q

≤ xq

(
1

log x

∫ 1/2

−1/2

E|F (1/2 + it)|2dt
)q

for all 0 ≤ q ≤ 1. A standard calculation shows E|F (1/2 + it)|2 ≍ log x, and
inserting this yields the trivial upper bound E|∑n≤x f(n)|2q ≪ xq. The major

contribution to this expected size of |F (1/2+ it)|2 comes from the fairly rare event
that | log |F (1/2 + it)| − log log x| ≤ √log log x, but if integrating over [−1/2, 1/2]
roughly corresponded to taking log x independent samples of |F (1/2+it)| (because
F (s) varies with s on a scale of 1/ logx), one might indeed typically find a few
such values of log |F (1/2 + it)| with |t| ≤ 1/2. So the essence of Theorem 1 is

that, when looking at E

(
1

log x

∫ 1/2

−1/2
|F (1/2 + it)|2dt

)q
with q a little smaller than

1, integrating over [−1/2, 1/2] does not correspond to taking log x independent
samples of |F (1/2+it)|, so the above application of Hölder’s inequality is wasteful.

It turns out that 1
log x

∫ 1/2

−1/2
|F (1/2 + it)|2dt is fairly close to (the total mass of a

truncation of) a probabilistic object called critical multiplicative chaos, and one
can analyse it using an iterative argument drawing on ideas from that field. We
refer to the preprint [1] for further details.

We finish with a couple of remarks about Theorem 2. There is a well known du-
ality between the character sum

∑
n≤x χ(n) and the character sum

∑
n≤r/x χ(n),

arising from Poisson summation (alternatively known, in this context, as the ap-
proximate functional equation or the Pólya Fourier expansion). Indeed, roughly
speaking we have |∑n≤x χ(n)| ≈ x√

r
|∑n≤r/x χ(n)|. In view of this and Theo-

rem 1, it is natural to think that the sharp upper bound in Theorem 2 would

be
(

x
1+(1−q)

√
log logL

)q
, i.e. that the minimum in the denominator ought not to

be there. It is work in progress of the author to prove this. To prove Theorem
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2 as stated, one shows that the behaviour of a randomly chosen character χ(n)
on small primes is roughly the same as the behaviour of a random multiplicative
function. Using this and a suitable adaptation of the conditioning argument from
the random case (so one averages out all the large primes), one can then deduce
Theorem 2 from Theorem 1.
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Problems concerning Beurling’s generalized primes

Titus W. Hilberdink

We discuss various problems of generalized prime systems. First we give an
overview of the results connecting the counting functions π(x) and N(x) of gen-
eralized primes and integers respectively; in particular where one of the functions
behaves like its counterpart in the actual system of primes/integers. For example,
Beurling showed that

N(x) = cx + O
( x

(log x)γ

)
=⇒ π(x) ∼ x

log x

whenever γ > 3
2 but fails for γ = 3

2 , showing this is sharp. Another case was
proven by Landau: if α < 1, then

N(x) = cx + O(xα) =⇒ π(x) = li(x) + O(xe−a
√
log x)

for some a > 0. This was proven to be sharp in [1].

In the reverse direction,

π(x) = li(x) + O(xα) =⇒ N(x) = cx + O(xe−a
√
log x log log x)

(as shown in [4]), but here it is not known whether this is best possible. This is
an open problem.

Another open problem concerns the generalized Möbius function, µP(n). Assum-
ing N(x) = x1+o(1), how small can we make the function

M(x) =
∑

n≤x,n∈N
µP(n)?
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For N, on RH, M(x) = O(x
1
2+ε) for all ε > 0 (but no ε < 0 due to the Riemann

zeros). Is it possible to make it O(xα) for some α < 1
2 in some other system?

Further, we discussed Mellin transforms N̂(s) =
∫∞
1− x−sdN(x) for which N(x) −

x is periodic with period 1 in order to investigate ‘flows’ of such functions to
Riemann’s ζ(s) and the possibility of proving the Riemann Hypothesis with such
an approach. In [3] it was shown that, excepting the trivial case where N(x) = x,
the supremum of the real parts of the zeros of any such function is at least 1

2 . We
asked whether it is possible to adapt this method to have better (but non-periodic)
approximations to [x] for which the suprema of the real parts of the zeros would
increase (to 1

2 ).
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Random Matrix Theory and the Maximum of the Riemann Zeta

Function

Christopher Hughes

It is well known that the number of zeros of the Riemann zeta function up to
height T is

N(T ) =
T

2π
log

T

2πe
+ O(log T )

Note that this implies the zeros get more closely spaced together as one goes up
the critical line. Rescaling them by via γ̃ = γ× 1

2π log γ
2π means the mean spacing

of γ̃ is unity.

In the 1970’s Hugh Montgomery [1] first investigated correlations between these
scalings, famously proposing the conjecture that roughly says for test functions f ,

1

N(T )

∑

0<γ̃,γ̃′≤T

f(γ̃ − γ̃′) ∼
∫ ∞

−∞
f(x)

(
1−

(
sin(πx)

πx

)2

+ δ(x)

)
dx

for large T where δ denotes the Dirac delta function.

In a conversation between Hugh Montgomery and Freeman Dyson, it was realised
this correlation was the same as one would get for random matrices. Not histor-
ically accurate, but for the purposes of this talk we’ll take a random matrix to
mean a unitary matrix chosen with Haar measure. Haar measure is the unique
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left (and right) invariant measure on the group, that is for any fixed unitary V ,

if U is drawn with Haar measure, V U
law
= U . Since the matrix is unitary, all

its eigenvalues lie on the unit circle, and for a Haar distributed random unitary
matrix these eigenvalues are correlated—large and small gaps are avoided.

Summary 1. The scaled zeros of the Riemann zeta function are believed to be sta-
tistically distributed like the scaled eigenangles of Haar distributed random unitary
matrices.

Keating and Snaith [2] modelled the Riemann zeta function (not just its zeros)
with RMT, using the characteristic polynomial of the random unitary matrix

ZUN (θ) := det(IN − UNe−iθ)

=

N∏

n=1

(1− ei(θn−θ))

where UN is an N×N unitary matrix chosen with Haar measure. The matrix size
N is connected to the height up the critical line T via

N = log
T

2π

and they proved that this was a good model in the sense that its value distribution
was normal, in analogy with the normal distribution of the Riemann zeta function
on the critical line.

Summary 2. The value distribution of the Riemann zeta function can be modelled
by characteristic polynomials of random unitary matrices.

More importantly, they calculated the moments of the characteristic polynomial

Theorem (Keating-Snaith).

E
[
|ZUN (0)|2k

]
∼ G2(k + 1)

G(2k + 1)
Nk2

where G is the Barnes’ G-function

This theorem led to their celebrated conjecture for the moments of the Riemann
zeta function

Conjecture (Keating-Snaith).

1

T

∫ T

0

|ζ(12 + it)|2k dt ∼ a(k)
G2(k + 1)

G(2k + 1)

(
log

T

2π

)k2

where

a(k) =
∏

p
prime

(
1− 1

p

)k2 ∞∑

m=0

(
Γ(m + k)

m! Γ(k)

)2

p−m
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The point that was made in the talk is that a(k) term, which does not appear
in any of the random matrix calculations, was well-known and natural to number
theorists, but, up until that point, number theory had been unable to provide even
a conjecture for the Barnes’ G-function term, which arose in the random matrix
calculation.

Summary 3. The Keating-Snaith conjecture used random matrix theory to predict
the moments of the Riemann zeta function.

One way to understand the interplay between the random matrix contribution
and the arithmetic contribution to the moments comes from the following theorem
which I proved with Steve Gonek and Jon Keating [3] over a decade ago.

Theorem (Gonek, Hughes, Keating). A simplified form of our theorem is:

ζ(12 + it) = PX(t)ZX(t) + errors

where

PX(t) =
∏

p≤X

(
1− 1

p
1
2+it

)−1

and

ZX(t) = exp

(
∑

γn

Ci(|t− γn| logX)

)

We were able to prove that if X = O(log T ) then

1

T

∫ 2T

T

|PX(t)|2k dt ∼ a(k)(eγ logX)k
2

and we made a random matrix calculation that led to a conjecture (proven in the

cases k = 1 and k = 2) that if X,T →∞ such that log T
logX →∞, then we have

1

T

∫ T

0

|ZX(t)|2k dt ∼ G2(k + 1)

G(2k + 1)

(
logT

eγ logX

)k2

and combining these, plus an assumption about independence (also proven in the
case k = 1 and k = 2), we recover the Keating-Snaith conjecture.

Summary 4. We can write ζ = PXZX where PX is a term made of primes, and
ZX is a term made from zeros of zeta, which can be modeled by RMT.

This result also plays a key role in a conjecture on the maximum of the Riemann
zeta function which was made in a joint paper with David Farmer and Steve
Gonek [4]

Conjecture (Farmer, Gonek, Hughes).

(∗) max
t∈[0,T ]

|ζ(12 + it)| = exp

(( 1√
2

+ o(1)
)√

logT log logT

)
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This conjecture is one of the tantalising links with the topic of the Oberwolfach
workshop, as it is of the same shape as appears in the bounds for the Sidon
constants [5]. The known bounds for zeta are (under RH)

max
t∈[0,T ]

|ζ(12 + it)| = O

(
exp

(
C

logT

log logT

))

where the value of C has been steadily decreasing from Littlewood’s existence
result in the 1902’s to Chandee and Soundararajan’s [6] value of 1

2 log 2. In the
other direction, very recent work of Bondarenko and Seip [7] yield

max
t∈[0,T ]

|ζ(12 + it)| > exp

(
(1 + o(1))

√
logT log log logT

log logT

)

To obtain the conjecture of the true growth rate of zeta, note that simply taking
the largest value of a characteristic polynomial doesn’t work. Instead, split the
interval [0, T ] up into M = T log T

N blocks, each containing approximately N zeros.

Model each block with the characteristic polynomial of an N ×N random unitary
matrix, and find the smallest K = K(M,N) such that choosing M independent
characteristic polynomials of size N , almost certainly none of them will be bigger
than K.

Note that

P

{
max

1≤j≤M
max

θ
|Z

U
(j)
N

(θ)| ≤ K

}
= P

{
max

θ
|ZUN (θ)| ≤ K

}M

and we were able to show that for 0 < β < 2, if M = exp(Nβ), and if

K = exp

(√(
1− 1

2β + ε
)

logM logN

)

then

P

{
max

1≤j≤M
max

θ
|Z

U
(j)
N

(θ)| ≤ K

}
→ 1

as N →∞ for all ε > 0, but for no ε < 0.

Recall that ζ(12 + it) ≈ PX(t)ZX(t) and that, in the previous section, we showed

that ZX(t) can be modelled by characteristic polynomials of size N = log T
eγ logX .

Therefore the previous theorem suggests the conjecture that if X = logT , then

max
t∈[0,T ]

|ZX(t)| = exp

(( 1√
2

+ o(1)
)√

logT log logT

)

Since the Prime Number Theorem implies that if X = logT then for any t ∈ [0, T ],

PX(t) = O

(
exp

(
C

√
logT

log logT

))



3052 Oberwolfach Report 51/2017

we see how one is led to the max values conjecture, (∗).

An alternative argument, leading to the same conclusion, can be given in terms of
Steinhaus random variables. First note that

PX(t) = exp


∑

p≤X

1

p1/2+it


×O(logX)

Treat p−it as independent random variables, Up, distributed uniformly on the unit
circle. It follows, from a slight generalisation of the Central Limit Theorem, that
the distribution of

ℜ
∑

p≤X

Up√
p

tends to Gaussian with mean 0 and variance 1
2 log logX as X →∞.

We let X = exp(
√

logT ) and model the maximum of PX(t) by finding the maxi-

mum of the Gaussian random variable sampled T (logT )1/2 times. This suggests,
for that X ,

max
t∈[0,T ]

|PX(t)| = O

(
exp

(
(

1√
2

+ ε)
√

logT log logT

))

for all ε > 0 and no ε < 0. For such a large X , random matrix theory suggests
that maxt∈[0,T ] |ZX(t)| = O

(
exp

(√
logT

))
and so doesn’t contribute to the main

term in the exponent, and thus this gives another justification of the large values
conjecture, (∗).

Summary 5. We presented two arguments, one coming from considering the zeros
of zeta (through random matrix theory) and one coming from considering primes,
that suggest

max
t∈[0,T ]

|ζ(12 + it)| = exp

(( 1√
2

+ o(1)
)√

logT log logT

)
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Rado’s criterion for k’th powers

Sofia Lindqvist

(joint work with Sam Chow, Sean Prendiville)

We say that an equation is partition regular if any finite colouring of N has a
(nontrivial) monochromatic solution. One of the earliest examples of such a result
is Schur’s Theorem.

Theorem (Schur [1]). Let k ∈ N and let N > k!e. Then any k-colouring of
{1, . . . , N} has x, y, z the same colour such that x + y = z.

For linear equations the property of being partition regular was fully classified by
Rado.

Theorem (Rado [2]). The equation

a1x1 + · · ·+ asxs = 0

is partition regular if and only if there is some nonempty subset I ⊂ {1, · · · , s},
such that

∑
i∈I ai = 0.

Here the coefficients are assumed to be nonzero integers. If there does exist a
subset I such that

∑
i∈I ai = 0 we say that the {ai} satisfy Rado’s criterion.

In the case of nonlinear equations much less is known. It is an open problem to
prove that the pythagorean equation x2 + y2 = z2 is partition regular [3]. We are
not able to deal with this equation, but by adding in two more variables we can
prove the weaker statement that x2

1 + x2
2 + x2

3 + x2
4 = x2

5 is partition regular. In
fact we prove the following more general result.

Theorem 1 (Chow, L., Prendiville). Let k ∈ N and assume that s ≥ k2+1. Then
the equation

a1x
k
1 + a2x

k
2 + · · ·+ asx

k
s = 0

is partition regular if and only if the coefficients {ai} satisfy Rado’s criterion.

For comparison, if the coefficients satisfy
∑s

i=1 ai = 0 instead of just some strict
subset summing to zero, one can prove that any dense subset of N has infinitely
many (nontrivial) solutions. This was done by Browning–Prendiville [4] in the
case of squares and generalised to k’th powers by Chow [5]. Their proofs use
Green’s transference principle. Very broadly speaking, transference allows one to
transfer results about solutions to linear equations in dense sets to solutions in a



3054 Oberwolfach Report 51/2017

sparse set satisfying various “pseudorandomness” conditions. The idea is then to
transfer a result on the linear equation

∑
i aixi = 0 to the sparse set of k-th powers.

In the case of Theorem 1 one can’t blindly follow the same approach, as this
relies on translation invariance of the equation, something one doesn’t have when∑

i ai 6= 0. In order to overcome this obstacle we introduce the following notion.

Definition. A set A ⊂ N is M -homogeneous if for any q ∈ N one has

A ∩ {q, 2q, · · · ,Mq} 6= ∅.
The idea is then to only restrict the translation invariant part of our equation to
a particular set, while allowing the other variables to come from a homogeneous
set, in the following sense.

Proposition. Let A ⊂ {1, · · · , N} satisfy |A| ≥ δN and let B be M -homogeneous.
Then there are ≫δ,M N5/2 tuples (x1, x2, y1, y2, y3) ∈ A2 ×B3 such that

x1 − x2 = y21 + y22 + y23 .

Using the transference principle one can prove the corresponding result with A
being a subset of the squares. Finally, given an r-colouring of {1, . . . , N} one
can consider the largest colour class. If this colour class is homogeneous we are
done by this result, and if not, by definition there is some arithmetic progression
q, 2q, · · · ,Mq which is (r − 1)-coloured. This allows one to finish the proof by an
induction on the number of colours.
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Mean values of Dirichlet polynomials

Hugh L. Montgomery

A Dirichlet polynomial is a sum of the form

D(s) =

N∑

n=1

ann
−s.

For such a sum we have an approximate Parseval identity,

(1)

∫ T

0

|D(it)|2 dt =
(
T + O(N)

) N∑

n=1

|an|2.
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We can prove such an estimate in two different ways (both due to Selberg). In
the first method, we use the Selberg functions S+ and S− which provide one-sided
approximations that are sharp in the L1 norm. The second method involves a
generalized form of the Hilbert inequality. A weighted form of this allows us to
establish a slight refinement of the above, namely that

∫ T

0

|D(it)|2 dt = T

N∑

n=1

|an|2 + O
( N∑

n=1

n|an|2
)
.

Expositions of these items are found in [4] and in Chapter 7 of [5].
For purposes of proving zero density estimates for the Riemann zeta function, we
need to know how often a Dirichlet polynomial can be large. From (1) we see that
if |an| ≤ 1 for all n, then

(2) meas{t ∈ [0, T ] : |D(it)| ≥ V } ≪ (T + N)N

V 2
.

By applying this argument with D replaced by

D(s)2 =

N2∑

n=1

bnn
−s

we find that

(3) meas{t ∈ [0, T ] : |D(it)| ≥ V } ≪
(
T + N2

)
N2+ε

V 4
.

If N2 ≤ T then this is a sharper bound than (2), while (2) is sharper if N > T .
The critical configuration arises when T 1/2 < N < T . If we could take fractional
exponents, we would take κ so that Nκ = T , and then show that

∫ T

0

|D(it)|2κ dt≪ T 2+ε

when |an| ≤ 1 for all n. We conjecture that the above is true. It is not hard to
show that the Density Hypothesis follows from the above. Also, it is not hard
to show that the Majorant Conjecture of Hardy and Littlewood [2] implies the
above. Unfortunately, it is now known that the Majorant Conjecture is false (see
Bachelis [1]), but the known counter-examples do not seem to be very related to
our situation.

Although the Hardy–Littlewood Majorant Conjecture is false, there are neverthe-
less valid majorant principles. We note in particular that if |an| ≤ An for all n,
then ∫ T+C

T−C

∣∣∣
N∑

n=1

ann
−it
∣∣∣
2

dt ≤ 3

∫ C

−C

∣∣∣
N∑

n=1

Ann
−it
∣∣∣
2

dt

for any real T and C > 0. Earlier forms of this inequality are found in the writings
of Wiener and of Halász, but it seems that Wirsing (unpublished) was the first to
obtain the sharp constant 3, which Logan [3] showed is best possible.
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Large values of Dirichlet polynomials

Hugh L. Montgomery

Fifty years ago, Gabor Halász discovered that more can be said about large values
of Dirichlet polynomials than merely the bounds that follow from mean value
theorems. Essesntially, he noted that if 0 ≤ t1 < t2 < · · · < tR ≤ T and tr+1−tr ≥
1 for all r, then it is rewarding to consider the bilinear form inequality

R∑

r=1

∣∣∣
N∑

n=1

ann
−itr

∣∣∣
2

≤ ∆

N∑

n=1

|an|2.

By duality, the assertion that the above holds for all choices of the an is equivalent
to the assertion that

N∑

n=1

∣∣∣
R∑

r=1

yrn
−itr

∣∣∣
2

≤ ∆

R∑

r=1

|yr|2

for all yr. By expanding the modulus-squared on the left hand side, and taking
the sum over n inside, we see that the left hand side is

=

R∑

r=1

R∑

s=1

yrys

N∑

n=1

ni(ts−tr).

When r = s then inner sum is N , but when r 6= s the sum is smaller, and we have
tools for estimating it (e.g., van der Corput’s method, Vinogradov’s method of ex-
ponential sums). Moreover, if the Lindelöf Hypothesis is true, then this inner sum
is ≪ N1/2T ε + N/|tr − ts| when r 6= s. Thus we find that a Dirichlet polynomial
is large much less frequently than had been realized before.

The classical method for deriving zero density estimates for the zeta function in-
volves ‘Littlewood’s Lemma’, which is a bound for rectangles analogous to Jensen’s
inequality for discs. However, Littlewood’s Lemma relates zeros to a mean value,
not to occasional large values. In order for Halász’s results to have an impact
on zero densities, a new zero-detection method is needed. This was supplied by
Turán. Halász and Turán [1] showed (among other things) that if the Lindelöf
Hypothesis is true, then N(σ, T ) < T ε for any fixed σ > 3/4, and T > T0(ε). Here
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N(σ, T ) denotes the number of zeros ρ = β + iγ of the zeta function such that
β ≥ σ and 0 < γ ≤ T . This is an amazing result, but the fact that it is restricted
to σ > 3/4 rather than to σ > 1/2 reflects what seems to be an imperfection in
Halász’s method. We focus on the problem of removing this blemish.

Since Halász’s initial result there have been two significant advances: Huxley’s
Trick, which involves cutting the interval of length T into intervals of some smaller
length T1 and then multiplying the estimate obtained by T/T1. Secondly, Bourgain
has constructed an example from which we learn that it is better to work from the

hypothesis that |an| ≤ 1 for all n than it is to work with
∑N

n=1 alone. Otherwise,
there has not been much progress, despite the efforts of Bourgain and others. A
q-analogue of Huxley’s Trick has been devised by Iwaniec and his collaborators —
they call it the ‘δ method’.

We propose that to make significant progress, one must make greater use of the
fact that the frequencies logn are logarithms of rational integers. For example,
perhaps by use of the Mellin transform of the Gamma function we could transform
our question concerning a Dirichlet polynomial into one concerning a trigonometric
polynomial.
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Optimal comparison of the p-norms of Dirichlet polynomials

Antonio Pérez

(joint work with Andreas Defant)

In his early works, Bohr [5, 6] studied analiticity and convergence features of
Dirichlet series in terms of abscissas. Among other results, he established that the
maximal width T of the strip on which a Dirichlet series converges uniformly but
not absolutely satisfies T ≤ 1/2, and later Bohnenblust and Hille [4] proved that
actually T = 1/2. More recently, Queffélec [16] purposed a different approach to
this phenomenon in terms of the so-called Sidon constants: for each x ≥ 1, let
S(x) be the best (i.e. smallest) constant satisfying

∑

n≤x

|an| ≤ S(x) sup
t∈R

∣∣∣
∑

n≤x

an
nit

∣∣∣ for every (an)n≤x in C.

The problem of finding asymptotic estimations of S(x) as x → +∞ is closely
related to the search for the value of T . Indeed, an elementary argument ([15])
shows that T can be described as the infimum of all σ > 0 such that S(x) = O(xσ).
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This problem has a long story (see [7, 8, 9, 13]) and the last breakthrough was
reached by Defant, Frerick, Ortega-Cerdà, Ounäıes and Seip in [9], namely

(1) S(x) =
√
x exp

[(
− 1√

2
+ o(1)

) √
log x log log x

]
.

Our aim is to carry out an analogous study but comparing the convergence of
Dirichlet series with respect to the following norms originally considered by Besi-
covitch [3] in the framework of almost periodic functions: for each Dirichlet poly-
nomial D(s) =

∑
n≤x ann

−s

(2) ‖D‖Hp = lim
T→∞

(
1

2T

∫ T

−T

|D(it)|pdt
)1/p

, 1 ≤ p <∞

The limit in (2) in fact exists (this follows from Birkhoff’s ergodic theorem, see
e.g. [1] or [17] for details). The completion of the linear space of all Dirichlet
polynomials together with the p-norm leads to the Hardy space Hp. These Banach
spaces were first considered and investigated in [1, 12], and now form one of the
fundamental objects of the modern analysis of Dirichlet series (see also [17]). Let
us define define the main constant that we aim to estimate asymptotically: for
each 1 ≤ p < q < ∞ and x ≥ 1, let ℧(q, p, x) be the best (i.e. smallest) constant
satisfying

∥∥∥
∑

n≤x

an
ns

∥∥∥
Hq

≤ ℧(q, p, x) ·
∥∥∥
∑

n≤x

an
ns

∥∥∥
Hp

for every (an)n≤x in C.

Our main result [11] states that

(3) ℧(q, p, x) = exp

[
log x

log log x

(
log

√
q

p
+ O

(
log log log x

log log x

))]
.

Despite notorious differences, the proofs of (1) and (3) posses some common points.
A fundamental tool in both cases is the following striking idea glimpsed by Bohr:
Using that every n ∈ N has a unique factorization into primes n = pα = p

α1
1 p

α2
2 . . .

for some α = (α1, α2, . . .), we can identify formal Dirichlet series with formal power
series in infinitely many variables in the form

(4)
∑

n∈N

ann
−s ←→

∑

α∈N
(N)
0

cαz
α where an = cα provided n = p

α .

Remarkably, for a Dirichlet polynomials D(s) the corresponding power series is an
ordinary analytic polynomial Q(z) on the compact group TN satisfying ( [1, 17])

‖D‖Hp = ‖Q‖Lp(TN).

This fact allows to translate our problem in terms of comparing the Lp and Lq norm
of certain classes of trigonometric polynomials on TN. Indeed, a main ingredients
for the proof of (3) is the next inequality due to Bayart [2]: Given 1 ≤ p ≤ q <∞
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and m ∈ N, for every m-homogeneous (analytic) polynomial Q(z) it holds that

(5) ‖Q‖Lq(TN) ≤
(√

q

p

)m

‖Q‖Lp(TN).

To prove the upper estimation of ℧(q, p, x), we first extend Bayart’s inequality
(5) to degree-m polynomials, and combine it with the decomposition method of
Konyagin and Queffélec [13] and some deep number theoretical results. On the
other hand, the lower estimation of ℧(q, p, x) follows an argument based on the
central limit theorem which was used in [14] to give optimal bounds for the con-
stants in the Khintchine-Steinhaus inequality, namely we construct an explicit
family of Dirichlet polynomials Dx(s) =

∑
n≤x ann

−s such that the growth of

‖Dx‖Hq/‖Dx‖Hp as x→ +∞ provides with the desired estimation.

Problems:

(i) Estimate asymptotically ℧(q, p, x) for values 0 < p < q < +∞.

(ii) For each 1 ≤ p ≤ q < +∞ and m ∈ N, search for the optimal con-
stant Cq,p,m in (5), that is, satisfying ‖Q‖Lq(TN) ≤ Cq,p,m ‖Q‖Lp(TN) for
every m-homogeneous polynomial Q. In this sense, it is proved in [10]

that supm
m
√
Cq,p,m =

√
q/p. On the other hand, simple estimations for

particular values of p and q suggest that likely Cq,p,m ≤ m
1
2q− 1

2p (
√
q/p)m.
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[5] H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der
Dirichletschen Reihen

∑
an
ns , Nachr. Ges. Wiss. Gött. Math. Phys. Kl., 4 (1913) 441–488.
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Approximation numbers of composition operators in dimension two or

more

Hervé Queffélec

Let ϕ be a non degenerate analytic self-map of a domain Ω ⊂ Cd and H a Hilbert
space of analytic functions on Ω, as well as Cϕ, Cϕ(f) = f ◦ ϕ, the associated
composition operator. Motivated by a joint result with K. Seip ([1]) on singular
numbers an(Cϕ) of composition operators Cϕ on the space H2 of Dirichlet series,
for which Ω = {ℜs > 1/2} =: C1/2, ϕ ∈ G, the Gordon-Hedenmalm class, and

behind which the Bohr lift is lurking, we study the situation on the polydisk Dd

in dimension d, with 2 ≤ d <∞.

In that case ([2]), we always have the lower bound

an(Cϕ) ≥ ce−Cn1/d

.

The upper bound an(Cϕ) ≤ Ce−cn1/d

holds when ‖ϕ‖∞ < 1, and if d = 1 fails to
hold as soon as ‖ϕ‖∞ = 1 (as a consequence of a ”spectral radius formula”).
Here, our main result ([5]) is a counterexample for d = 2: we may have ‖ϕ‖∞ = 1

and yet an(Cϕ) ≤ Ce−cn1/2

, which is a significant difference.

This counterexample unexpectedly involves weighted composition operators T =
Mw Cϕ, where w ∈ H∞(D), Mw(f) = wf : H2(D→ H2(D), the singular numbers
of which we recently studied with G. Lechner, D. Li and L. Rodŕıguez-Piazza ([4]).
The Monge-Ampère, or Bedford-Taylor, pluricapacity is also underlying, as well
as related results of Nivoche and Zaharyuta.

Finally ([3]), for d =∞, we show that compact, and even p-Schatten composition
operators still exist on D∞ ∩ ℓ1, even if their singular numbers cannot decay very
fast: ∑

n≥1

1

(log 1/an)p
=∞ for all p <∞.

This corresponds to one joint work with F. Bayart, D. Li, L. Rodŕıguez-Piazza
([2]) and two joint works ([3], [5]) with D. Li, L. Rodŕıguez-Piazza.
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Carlson’s Theorem for Different Measures

Meredith Sargent

We use an observation of Bohr connecting Dirichlet series in the right half plane
C+ to power series on the polydisk to interpret Carlson’s theorem about integrals
in the mean as a special case of the ergodic theorem by considering any vertical
line in the half plane as an ergodic flow on the polytorus. Of particular interest
is the imaginary axis because Carlson’s theorem for Lebesgue measure does not
hold there. In this talk, we construct measures for which Carlson’s theorem does
hold on the imaginary axis for functions in the Dirichlet series analog of the disk
algebra A(C+).

Hardy type spaces of general Dirichlet series

Ingo Schoolmann

(joint work with Andreas Defant)

A general Dirichlet series is a formal series
∑

ane
−λns, where s is a complex

variable, (an) is a complex sequence of coefficients, and (λn) a frequency, i.e., a
strictly increasing non-negative real sequence which tends to +∞. Choosing λn =
logn leads to ordinary Dirichlet series

∑
ann

−s. In analogue to the ordinary case
we define the spaces H∞(λ) as the space of all λ-Dirichlet series which converge on
the right half plane [Re > 0] and define a bounded function there. Endowed with
the sup norm on [Re > 0] this space becomes a normed space. In generalH∞(λ) is
not complete, but there is a manageable sufficient condition on λ for completeness
(and more) introduced by Bohr (see [3]), called Bohr’s condtion (BC):

∃C > 0 :
∞∑

n=1

1

λn+1 − λn
e−Cλn <∞.

It would be interesting to know if the space H∞(log log(n))) is complete. This
seems unknown.
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Due to an ingenious idea of H. Bohr the recent Hp-theory of ordinary Dirichlet
series is intimately linked with Fourier analysis on the infinite dimensional poly-
torus T∞. Inspired by ideas of Bohr and Helson we indicate that in the more
general situation of general Dirichlet series a natural substitute of the polytorus
T∞ is given by the Bohr compactification R of R, which is the group of all group
homomorphism ω : (R,+) → T. If the group (R,+) carries the discrete topolgy,
then R together with the compact open topology forms a compact abelian group
and therefore has a Haar measure. Since the Fourier transform of f ∈ L1(R) is
a function on R (which is the dual group of R), we define for 1 ≤ p ≤ ∞ the

space Hλ
p (R) as the (closed) subspace of all f ∈ Lp(R) such that f̂(x) 6= 0 implies

x ∈ (λn)n for all x ∈ R. To each f ∈ Hλ
p (R) we formally assign the λ-Dirichlet

series
∑

f̂(λn)e−λns. In this way the so called Bohr map

B : Hλ
p (R) →֒ D(λ), f 7→ D

produces new spaces of λ-Dirichlet series, which in the case p = ∞ actually turn
out to be exactly the spaces H∞(λ) provided λ satisfies (BC).

Theorem 1. If (BC) holds for λ, then the Bohr map

B : Hλ
∞(R)→ H∞(λ), f 7→ D(s) :=

∞∑

n=1

f̂(λn)e−λns.

is an isometry onto that preserves the Fourier- and Dirichlet coefficients.

The ordinary case H∞(T∞) = H∞, an important theorem from [4], follows easily.

Moreover, we define Hp(λ) := Im B(Hλ
p (R)). These spaces also have an internal

description in terms of λ-Dirichlet polynomials. With

‖D‖p :=

(
lim

T→∞
1

2T

∫ T

−T

∣∣∣∣∣

N∑

n=1

ane
−λnit

∣∣∣∣∣

p

dt

) 1
p

the space of all λ-Dirichlet polynomials poly(λ) becomes a normed space, and it can
be shown that Hp(λ) is exactly the completion of poly(λ). Since Hp(log(n)) = Hp

holds isometrically, this new definition ofHp(log(n))-Dirichlet series coincides with
the well-established definition of Hp for ordinary Dirichlet series due to Bayart in
[2]. We prove that if D ∈ Hp(λ), 1 < p ≤ ∞, then almost all ’vertical limits’ of D
converges on [Re > 0]. More precisely:

Theorem 2. Let 1 < p ≤ ∞ and D(s) =
∑

ane
−λns ∈ Hp(λ). Assume that

(BC) holds for λ. Then for almost all ω ∈ R the Dirichlet series Dω(s) =∑
anω(λn)e−λns converges on [Re > 0] and coincides on [Re = u] with the con-

volution Pu ∗ fω(t) almost everywhere on R.

This extends Helson’s result from [5] for the case p = 2 to the range 1 < p ≤ 2.
For ordinary Dirichlet series the theorem is again due to Bayart [2], and even true
for p = 1. In this case the proof relies on the hypercontractivity of the Poisson
kernel on TN . It seems like an interesting problem to establish such concepts for
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general Dirichlet series.

Let us finally mention an application of this circle of ideas – the ’brother Riesz type
theorem’ for the Bohr compactification R fixing a frequency λ. In the ordinary
case the Hardy space H1(T∞) is isometrically isomorphic to the space M+(T∞) of
all bounded, regular and analytic Borel measures on T∞. This result, which again
follows easily, is due to Helson and Lowdenslager [6], was recently reproved by [1],
and extends the classical brother Riesz theorem to the infinite dimensional torus.

Theorem 3. Let (BC) hold for λ. Then the Bohr map

B : Hλ
1 (R)→Mλ(R), f 7→ f dm

is an isometry onto, where Mλ(R) :=
{
µ ∈M(R) | µ̂(x) 6= 0⇒ x ∈ (λn)n

}
and

M(R) is the space of all bounded and regular Borel measures on R.
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On correlations of multiplicative functions

Joni Teräväinen

(joint work with Terence Tao)

An arithmetic function g is called multiplicative, if it satisfies the functional equa-
tion g(mn) = g(m)g(n) whenever m and n are coprime. Many of the most inter-
esting arithmetic functions in number theory have the multiplicativity property,
including the Möbius function µ(n). The mean values 1

x

∑
n≤x g(n) of multiplica-

tive functions have been studied widely, and are connected for instance to sieve
methods and to probabilistic number theory.

We consider a far-reaching generalization of these mean values, namely the corre-
lation averages

1

x

∑

n≤x

g1(n + h1) · · · gk(n + hk),

where g1, . . . , gk are 1-bounded multiplicative functions and h1, . . . , hk ≥ 0 are
distinct shifts. A well-known conjecture of Elliott [1] states that the correlation
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average above should converge to 0 as x → ∞, whenever one of the functions
gj does not ”pretend to be” a twisted Dirichlet character n 7→ χ(n)nit in the
sense of the pretentious distance for multiplicative functions (see [6] for a precise
statement). Thus Elliott’s conjecture can be interpreted as saying that shifts of
bounded multiplicative functions are asymptotically independent, except in the
case of ”pretentious” functions.

Since 2015, a number of approximations to Elliott’s conjecture have been proved,
but the full conjecture remains out of reach. Importantly, Matomäki, Radziwi l l
and Tao [3] showed that Elliott’s conjecture holds on average over the shifts hi,
and Tao [4] settled the two-point case k = 2 of Elliott’s conjecture when ordinary
averages are replaced with logarithmic ones. These breakthroughs have lead to
numerous new advances and applications, and in particular Tao used in [5] his
two-point result to solve the long-standing Erdős discrepancy problem in combi-
natorics.

In my talk, I discussed a joint work [5] with T. Tao, where we extended the work of
[4] to the higher order case k > 2, under an additional assumption. More precisely,
if the functions gj are as above, we showed that the logarithmic average

1

log x

∑

n≤x

g1(n + h1) · · · gk(n + hk)

n

converges to 0 as x → ∞, provided that the product g1 · · · gk does not ”weakly
pretend” to be any Dirichlet character χ(n). This in particular enabled us to settle
the odd order cases of the logarithmically averaged Chowla conjecture, stating that

1

log x

∑

n≤x

µ(n + h1) · · ·µ(n + hk)

n

converges to 0 as x → ∞ for odd values of k. Recently in [7], we gave another
proof of these odd order logarithmic Chowla conjectures, using combinatorial ideas
instead of the ergodic theory machinery in [6]. The even order cases of the log-
arithmically averaged Chowla conjecture remain open, except for the k = 2 case
that Tao [4] settled. Although our proofs do not directly use Dirichlet polyno-
mials, the earlier mentioned results [3], [4] draw crucial input from the result of
Matomäki and Radziwi l l [2] on multiplicative functions in short intervals, whose
proof is based on a careful analysis of Dirichlet polynomials.
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Open problems session

Håkan Hedenmalm, Michel Balazard, Titus Hilberdink, Frédéric

Bayart, Jean-François Burnol

Problem 1 (H̊akan Hedenmalm)

Let f ∈ S(Rn) be a Schwarz function. Let

r1 < r2 < r3 < . . .

ρ1 < ρ2 < ρ3 < . . .

be two sequences of radii tending to infinity, and suppose that f(x) = 0 for |x| = rj ,

and that the Fourier transform f̂ satisfies f̂(ξ) = 0 for |ξ| = ρj . Does this imply
f ≡ 0?

Problem 2 (Erdös and Ingham, communicated by Michel Balazard)

Let

D(s) = 1 + 2−s + 3−s + 5−s.

Question 1. Is it true that D(s) 6= 0 for all Re(s) = 1?

Question 2. Is it true that if f : R>0 → R>0 is non-decreasing and

f(x) + f
(x

2

)
+ f

(x
3

)
+ f

(x
5

)
=

(
61

30
+ o(1)

)
x

as x→∞, then necessarily f(x) = (1 + o(1))x?
As Erdős and Ingham [1] showed , these two questions are equivalent.
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Problem 3 (Titus Hilberdink)
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Let f : N→ R be a nonngeative multiplicative function. Define

F (x) =
∑

n≤x

f(n), F2(x) =
∑

n≤x
n odd

f(n).

Suppose that F (λx) = (1 + o(1))F (x) for any fixed λ > 0 as x → ∞. Is it true
that then

lim
x→∞

F2(x)

F (x)

exists? This limit should equal to

1
∑∞

k=0
f(2k)
2k

.

We remark that if f is completely multiplicative, then one easily sees that

F2(x)

F (x)
=

F (x)− f(2)F
(
x
2

)

F (x)
= 1− f(2)

2
+ o(1),

which agrees with the above prediction for the value of the limit.

Problem 4 (Frédéric Bayart)

Let

f(s) =

∞∑

n=1

ann
−s ∈ H∞(C0)

be a Dirichlet series with partial sums

SN (f)(s) =
N∑

n=1

ann
−s.

Let

σN (f) = inf
σ>0
{‖SN(f)‖H∞(Cσ) ≤ ‖f‖H∞(Cσ)},

and further let

σN = sup
f∈H∞(C0)

σN (f).

Is it the case that σN → 0 as N →∞?

Problem 5 (Jean-François Burnol)

Consider the Hilbert space

H = L2(R, dµ) with dµ =

∣∣∣∣ζ
(

1

2
+ ix

)∣∣∣∣
2

dx.

Does there exists τ > 0 and f 6≡ 0 an entire function of exponential type τ be-
longing to H such that f is orthogonal to all functions in H of strictly smaller
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exponential type?

Note that for example the function

f(s) =
(
eis − e−1

)
(s− i)−1

is of finite exponential type (of type 1) and belongs to H .

Problem 6 (Michel Balazard)

Construct a Dirichlet series f such that f has exactly one zero in some half-plane
(and converges there).

Observe that the function f(s) = 1
ζ(s) would work if the Riemann hypothesis

held, or even under the weaker assumption that there are no zeros of ζ(s) with
Re(s) ≥ 1− ε for some ε > 0.

Reporter: Joni Teräväinen
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Department of Mathematics and

Statistics

University of Turku

20014 Turku

FINLAND




