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Abstract. Cell migration is crucial for the development and functioning
of multicellular organisms; it plays an essential role in, e.g., morphogenesis,
immune system dynamics, wound healing, angiogenesis, bacterial motion and
biofilm formation, tumor growth and metastasis. Cell motility is a highly
complex phenomenon involving a plethora of biophysical and biochemical
events occuring on several time and space scales. The associated dynamics
range from the subcellular level over individual cell behavior and up to the
macroscopic level of cell populations; all these scales are tightly interrelated.

For decades, partial differential equations have been used to model the
motility of single cells as well as the collective motion of cell assemblies like
tumors. Mathematical models for both individual motile cells and invading
tumors have major features in common. The active nature of cells leads to
very similar nonlinear systems of coupled equations, the solutions of which

often determine the position and shape of the objects of interest. Recently,
several types of models attracted particular attention in the description of
these systems: free boundary problems, phase field models, reaction-diffusion-
taxis and kinetic transport equations. Both tumor growth/invasion and cell
motility can be described by parabolic, hyperbolic, or elliptic equations; in
case of free boundary problems, the boundary conditions are very similar.
Thereby, the involved free boundaries can describe cell membranes, tumor
margins, or interfaces between different tissues.

In this mini-workshop applied mathematicians and biophysicists using
these model classes to describe different but related biological systems came
together, presented their recent work and identified commonalities and differ-
ences in their approaches. Moreover, they discussed possible model extensions
and their application to different, but related problems, along with the inno-
vative utilization of certain mathematical tools to the analysis of the resulting
systems.
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Introduction by the Organisers

Understanding the behavior of mobile cellular assemblies such as microbial
colonies, embryos, or tumors requires knowledge about both the motility of in-
dividual cells and how this motion together with mutual interactions gives rise to
collective motion and tissue growth. Thus, on the one hand, the size and shape of
a given tissue is determined by the movement of the single cells comprising it, and
on the other hand, the resulting stress in the tissue strongly affects the motility of
each single cell. Coupling the scales of individual cells and cell assemblies is there-
fore of utmost importance for the mathematical description of tumors and other
biologically relevant systems. Remarkably, the models for cell motility and tissue
development are not only coupled by these interactions between scales but more-
over share significant mathematical similarities. Looking closely at the respective
models which have independently been proposed for the cytoskeleton of a single
cell and e.g., for the growth of tumors, it is observed that not only do the bulk
equations have very similar structure but also the boundary conditions are closely
related. Single cell motility and tissue development are biologically dependent on
one another, but they also share these striking similarities in their mathematical
description, thus it is obvious that collaboration between the communities work-
ing on either problem should be fostered. This was one of the main goals of our
mini-workshop.

More than 30 years ago, the actin cytoskeleton has first been described as an active
viscoelastic gel (e.g., [6]) which allowed for a whole class of continuum models for
individual cell motility. In this context, two main approaches have been considered:

(1) In phase field models the equations are to be solved on the whole space
(or a domain much larger than the cell). Together with the equations
describing the cytoskeleton an additional scalar phase field is introduced
which takes the value 1 inside the cell and 0 outside the cell. The cell
membrane is located in the narrow region where the phase field changes
from 1 to 0. The evolution of the phase field therefore describes the motion
of the cell. Since the solution of the equations is typically trivial in the
region where the phase field takes the value zero (that is, outside the cell),
the introduction of the additional phase field variable can be understood
as a computational trick to avoid free boundaries.

(2) Free boundary problems explicitly model the region occupied by the cell as
a domain which is variable in time according to prescribed boundary veloc-
ity conditions. The equations are solved inside this time-varying domain,
which affects the boundary values of the solution. On the other hand, the
solution of the bulk equations determines the shape of the moving domain.

Although free boundary problems have been used to model cell motility for a long
time (e.g., [1]), new models have recently been proposed in two space dimensions
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to allow a more accurate modeling of cells on a flat substrate (e.g., [2]), and in
addition, analytical investigation of effectively one dimensional models has been
advanced (e.g., [22], [26], [10]) to supplement earlier, purely numerical results.

The use of phase field models as a computational tool to describe cell motility is
also well established (e.g., [15]) and has seen a recent upsurge (e.g., [37], [16]).
However, analytical results have only been obtained for a small number of models
(e.g., [21]), and their derivation requires subtle applications of asymptotic analysis.

A particular focus of recent work has been the analytical derivation and numerical
observation of traveling wave solutions to both types of models. These solutions
correspond to persistent motion of cells which is a salient feature of keratocytes
on homogeneous substrates. These specific skin cells are of practical interest as
key players in wound healing and are well suited for experimental investigation:
they comfortably crawl on flat substrates (allowing for 2D modeling, observation
by most microscope techniques, and measurement of traction forces), can move at
high velocity, and once in motion tend to maintain direction, speed, and shape for
a long time. These convenient features enabled the development of a particularly
well studied model system (see e.g., [14]).

Since in the typical free boundary problems the motion of the boundary is part
of the traveling wave solution, the study of the latter is much more intricate for
these problems than for systems defined on the whole space. Moreover, the shape
of a moving cell is evolving and has to be taken into account as well. Plane waves
as solutions are therefore out of question, and new solution techniques have to
be developed. For a phase field equation the difficulty in finding traveling wave
solutions is augmented by the nonlinear gradient coupling between the phase field
and the physical variables describing the cytoskeleton. Therefore, sharp interface
limits are derived where the diffuse interface between the phases shrinks to a curve
satisfying a nonlinear evolution equation featuring geometric and physical terms.
Traveling wave solutions to this equation (with stationary shape of the curve) then
correspond to a cell moving at constant velocity in the original phase field model.

Our mini-workshop brought together expertise for phase field and free boundary
problems and encouraged lively discussions about commonalities and differences in
the modeling approaches, different analytical tractability as well as (quantitative)
numerical results and comparability with experiments. The latter issue benefited
from the attendance by leading experimentalists who strongly collaborate with
theoreticians to allow for modeling work taking into account the essential bio-
logical aspects. To calibrate models and provide predictions of use to biological
and medical practitioners, advanced numerical methods are indispensable as well.
Therefore, the mini-workshop was also attended by experts in simulation of non-
linear free boundary problems.

Understanding the movement of single cells is necessary to assess their behavior
in an environment crowded with other cells and complex extracellular material.
A major area of research of obvious practical interest is the growth, development,
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and metastasis of tumors. The main approaches to modeling tumor growth and
invasion are discrete (single cells evolve on a lattice under the influence of diverse
motion and proliferation rules) [11, 35], semidiscrete/hybrid [27, 20] (combine dis-
crete descriptions with continuum formulations via differential equations for densi-
ties, concentrations or volume fractions controling the innovations of cell positions
and/or velocities), or continuous. The latter describe the space-time evolution of
cell populations under the influence of various biochemical and biomechanical fac-
tors in their surroundings. The most popular ones involve reaction-diffusion-taxis
(RDT) equations in which the type of tactic behavior (e.g., chemo-, hapto-, and/or
pH-taxis) is determined by the mentioned factors acting alone or in a conjugate
manner. While the vast majority of these continuum models are set on the macro-
scopic level, the actual processes dictating the population dynamics are taking
place on several scales (subcellular, cellular, mesoscopic, macroscopic), which calls
for multiscale formulations. So-called micro-macro models connecting subcellular
level information (described by deterministic or random ODEs) with macroscale
behavior (RDT equations) have been recently introduced and analyzed, also by
the organizers [31, 30, 28, 13]. We refer e.g., to [19, 34] for other multiscale mod-
els coupling macroscopic with lower level dynamics. Some macroscopic models of
RDT type have been obtained from cell level dynamics by mean field approxima-
tions, see e.g., [23, 24], however the rigorous deduction of macroscopic equations
from descriptions of cell motions e.g., via SDEs for the velocity process coupled
with subcellular dynamics is still open. From an analytical point of view, most of
the models in the RDT class give rise to quite a few challenges, among others due
to the typically occurring nonlinear cross-diffusive terms, possibly with different
types of taxis [32, 33]. Especially haptotaxis is connected with lack of regularity
and hence with nontrivial problems, often hindering the proof of boundedness and
uniqueness of solutions and limiting the results to global existence [30, 29, 36].

Another class of PDE models features kinetic transport equations of Boltzmann or
Vlasov type for cell density functions depending on time, space, and cell velocities
(directions). Unlike gas theory, the involved integral operators do not model par-
ticle collisions, but characterise innovations (both w.r.t. speed and direction) of
the cell velocities, which are also triggered by cell-tissue and cell-cell interactions
[4, 12, 17]. The issue of multiscality is relevant in this mathematical context, too.
Bellomo et al. (2010) [3] proposed a general framework for such kinetic models on
the mesoscopic level (also allowing for the inclusion of the “cell state” to reflect
dynamics on the microlevel) that they called the kinetic theory of active particles
(KTAP). Open questions in this context relate to the choice of turning kernels
in the integral operators, a realistic modeling of the turning rates, and the well-
posedness in less regular function spaces, under less restrictions on the data [17].
Effective macroscopic equations which are more suitable to numerical handling
can be derived from mesoscopic or multiscale models involving the mesoscale by
means of averaging leading to evolution equations for the moments of the cell dis-
tribution function [7, 12]. Yet other PDE models involve again free boundaries
(e.g., [5, 9, 25], [34]) and some of them exhibit remarkable similarities to the free
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boundary models for individual cell motility. Thereby the major difference is that
cell motility tends to have domains of fixed size which move at a given velocity
whereas tumor models should provide predictions not only on the shape and po-
sition but first and foremost on the size of the domain. Accordingly, the analogue
of the traveling domain solutions from cell motility are growing domain solutions
for tumors (e.g., [25]).

Another major aim of the mini-workshop was to provide an exchange of ideas and
techniques between experts from cell motility and tissue modeling, as the two fields
are tightly connected. In particular, we discussed appropriate ways of connecting
dynamics of single cells with that of a cell population, the latter described via cell
densities in a continuum framework. Mean field approaches and various types of
upscaling can provide a way, but do not need to be the only one and –depending
on the specific biological scenario under investigation– it is often very difficult to
perform them rigorously. Also, the issues of how much modeling detail should be
included (and in which way), and therefore of model selection are still open and
challenging.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Mixed parabolic systems arising in the modeling of cancer invasion

Anna Zhigun

(joint work with Christina Surulescu, Alexander Hunt, and Aydar Uatay)

Cancer cell migration is an essential stage in the development and expansion of
tumours and their metastases. Once a tumour develops in some part of the body,
it can grow and make its way through the surrounding tissue in order to reach
the blood vessels. After transportation across the blood system and subsequent
extravasation, further tumours thus emerge. This process is known as metastasis.
Migrating through the extracellular matrix (ECM), the cells need to adhere to it for
support and information exchange with their surroundings. Mathematical models
of cancer invasion and their subsequent analysis and simulation can contribute to
better understanding the involved biological phenomena and enable predictions
about the development and the extent of a tumour. Therefore, they can suggest
approaches to therapy improvements.
The tissue surrounding a tumor plays a crucial role in its further development
and dispersion. Thereby, diffusion and haptotaxis are among the main vehicles of
cancer cell motility inside the ECM. Biological experiments suggest that:

(i) enhanced interactions with the surrounding tissue favour cell diffusivity;
(ii) in those areas where cells and tissue are tightly packed, the diffusivity is

limited;
(iii) no diffusion occurs in those regions where tissue is absent (no “diffusion

through holes”);
(iv) cells propagate through the tissue with a finite speed.

Until very recently, only semilinear models for haptotaxis were treated analytically.
Such models do not capture properties (i), (iii), and (iv). In [2], we introduced
a new model for the tumor cell density (c) and the density of fibers (v) which
implements all four conditions (i)-(iv):

(1a)

(1b)




∂tc = ∇ ·

(
κcvc

1 + vc
∇c− κvc

(1 + v)2
∇v
)
+ µcc(1− c− ηv),

∂tv = µvv(1 − v)− λvc.
The most important feature of this highly nonlinear PDE-ODE system is the non-
standard diffusion coefficient in the PDE (1a), which is degenerate in both PDE-
and ODE-variables. This kind of twofold degeneracy is new in the context of
haptotaxis models. In [2], we established for (1) the existence of a global weak
solution.
In a subsequent work [1] we extended (1) to a PDE-ODE-ODE coupling which also
accounts for the ’go-or-grow’ hypothesis asserting that cancer cells can either move
or proliferate. The latter implies tumor heterogeneity and is tightly connected to
compromised treatment response.
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The talk covers both the modelling aspects and a discussion of the analytical
challenges for the two systems from [1, 2]. Some numerical simulations are pre-
sented which illustrate a possible model behaviour in a two-dimensional setting.
The numerical results recover qualitatively the infiltrative patterns observed his-
tologically. They further allow to establish a qualitative relationship between the
structure of the tissue and the expansion of the tumor, thus paying heed to its
heterogeneity.
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On a structured nonlocal model for tumor invasion

Christian Stinner

(joint work with Christian Engwer, Christina Surulescu)

Invasion of tumor cells is an important step for metastasis and is governed by
several processes. In [3] we propose a structured model focusing on the influence
of the interaction with tissue fibers and of the peritumoral acidity on tumor cell
migration. More precisely, our model accounts for cell-cell and cell-tissue adhesion
via a nonlocal adhesion term (see e.g. [1, 4, 5]) as well as pH-taxis via a cross-
diffusion term. In addition, the cancer cell density not only depends on time and
spatial position, but also on a structure variable y describing the concentration of
cell surface receptors bound to tissue fibers or protons (see also [2]).
Denoting by c(t, x, y) and v(t, x) the densities of cancer cells and tissue fibers
of the extracellular matrix (ECM), respectively, by h(t, x) the concentration of
extracellular protons, and by ĉ(t, x) :=

∫
Y
c(t, x, ỹ)dỹ the total cancer cell density,

we arrive at the following PDE-ODE system (see [3]):

(1)





∂tc = ∇ · (D(v, h)∇c)−∇ · (χ(c, h)∇h)−∇ · (cA)− ∂y(g(t, x, y, h, v)c)

+
∫
Y
(1− ĉ)β(y, ỹ)c(t, x, ỹ)dỹ + v σ(x, v)

∫
Y
κ(y, ỹ)c(t, x, ỹ)dỹ

−δc(x, y, h)c, (t, x, y) ∈ (0,∞)× Ω× Y,
∂tv = −δvvh+ µvv (1− v − ĉ) , (t, x) ∈ (0,∞)× Ω,

∂th = Dh∆h+ α ĉ
1+ĉ − λh, (t, x) ∈ (0,∞)× Ω,

endowed with homogeneous Neumann boundary conditions, where Ω ⊂ R
n is a

bounded smooth domain and Y := (0, 1) ⊂ R. In the nonlocal adhesion term
−∇ · (cA), the adhesion velocity A is given by

A(t, x, y, c, v) = 1

R

∫

BR(0)

F (|ξ|, ρ, h)G
(
t, y, c(t, x+ ξ, ·), v(t, x + ξ)

) ξ
|ξ|dξ
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with effective cell-cell and cell-tissue interactions

G(t, y, c(t, x+ ξ, ·), v(t, x+ ξ)) =

(∫

Y

Scc(t, y, ỹ)c(t, x+ ξ, ỹ)dỹ

+Scv(t, y)v(t, x+ ξ))
(
1− ĉ(t, x + ξ)− v(t, x + ξ)

)
+
.

We prove the existence of a global weak solution to (1) (see [3]). In the proof
we approximate (1) by a system, where the first equation contains the additional
term +ε∂2yc so that this equation is parabolic with respect to (x, y) ∈ R

n+1 and
we may adapt the method from [6] to prove the global existence. We further
present numerical simulations to illustrate the solution behavior. In particular,
tumor invasion into the tissue is observed in conjunction with an oscillatory spatial
pattern behind the tumor front. The simulations suggest that these patterns are
only present in model (1) and not in the model without y-structure, while in
addition cell-tissue adhesion seems to have a higher impact on the tumor cell
invasion than cell-cell adhesion or pH-taxis (see [3]).
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A short summary of biased random walk models by W. Alt /
Wavenumber selection in coupled transport equations

Angela Stevens

(joint work with Wolfgang Alt and Arndt Scheel)

First, we summarize stochastic models of biased random walks based on [1], which
describe the population dynamics of chemosensitive cells. The turning frequency
and the turn angle distributions are derived from experimental findings. Chemo-
taxis equations are obtained, whose coefficients can be expressed in terms of mi-
croscopic parameters.
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Further, a minimal model for run-and-tumble dynamics is studied, see [4]. Its non-
linear tumbling rates can induce a plethora of wave patterns. A subtle selection
mechanism for the wavenumbers of spatio-temporally periodic waves, as they can
be observed in colonies of myxobacteria, is explained.

Consider cells or bacteria, whose motion is piecewise linear, with a mean speed
c(t, x) of each such run. Let σ(t, x, θ, τ) describe the density of individuals moving
at time t at position x in direction θ and having started their run a time τ ago.
Then their run-and-tumble process can be modeled by

∂tσ(·, θ, τ) + ∂τσ(·, θ, τ) + θ · ∇x(cσ(·, θ, τ)) = −(βσ)(·, θ, τ) ,
where σ(·, η, 0) =

∫
∞

0

∫
S
(βσ)(·, θ, τ)k(·, θ; η)dθdτ for each η ∈ S, with S denoting

the unit sphere in n-dimensions, and dθ being the surface measure on S. Individ-
uals stop their run per unit time with ’stopping’ or ’turning’ frequency β(t, x, θ, τ)
and immediately turn into a new direction η along the turn angle distribution
k(t, x, θ; η). Here σ(t, x, η, 0) is the density of individuals which start a new run in
direction η at (t, x).
If β is independent of the run time τ the dynamics for the time-space-velocity
density σ̄(t, x, θ) :=

∫∞

0 σ(t, x, θ, τ)dτ reads

∂tσ̄(·, θ) + θ · ∇x(cσ̄(·, θ)) = −(βσ̄)(·, θ) +
∫

S

(βσ̄)(·, η)k(·, η; θ)dη .

The probability distribution qt,x,θ(τ) of individuals, starting a run at (t, x) in
direction θ and running at least for time τ can be calculated from the related
backward equation as

qt,x,θ(τ) = exp

(
−
∫ τ

0

β(t+ s, x+ ζt,x,θ(s), θ, s) ds

)
,(1)

where ζt,x,θ(s) denotes the vector which the individual runs from the point x in
the time interval [t, t+ s]. For constant speed c we have ζt,x,θ(s) = csθ.
In an isotropic medium the stopping frequency β is nearly constant and indepen-
dent of θ. In a medium with a given concentration gradient ∇xρ of a chemotactic
signal ρ the value of β is smaller if the sensed gradient θ · ∇xρ is positive, and
larger, if it is negative. Typical dependencies are

β(t, x, θ) = β0 (ρ(t, x), ∂tρ(t, x) + cθ · ∇xρ(t, x)) ,
β(t, x, θ) = β0 (ρ(t, x), ρ(t− T, x− Tcθ)) .

We want to see how changes in the amount of bound ρ-receptors at the cell surface
regulate the respective turning frequency β of its locomotive apparatus. Assume
that the locomotion mechanism of a cell is controlled by an internal chemical ac-
tivator a, and that the cell continues its run as long as the concentration of a is
above (below) a critical level a∗. During locomotion this activator is decreased
(increased) with rate λ. In case some receptor-sensor-mechanism at the cell mem-
brane regulates the additional generation of the activator this can lead to changes
of the run length.
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Assume that the fast binding of an extracellular diffusing chemotactic signal with
concentration ρ induces a momentary portion of bound receptor sites b = b(ρ). An
enzyme system e, related to the receptor, is then instantaneously switched into
an active state e∗, with association constant A = A(b(ρ)), which depends on the
receptor state. The active enzyme e∗ converts the substrate s into the activator
a, or induces an active transport of extracellular s to become intracellular a.
A simple reaction scheme for this is

s+ e∗ →κ1
κ→κ

−2
a+ e

s+ e∗ ←κ
−1
κ←κ2

a+ e

where κ1, κ2, κ−1, κ−2 >> 1/τ̄ with average run time of a cell τ̄ . Then the steady
state kinetics can be written as

a = πs/K , where π = e∗/e = A(b(ρ)) and (a+ s)′ = −λ .
When reaching the critical a-level a∗, the cell stops for a short time, and during
this tumble or reoriention phase the a-level is raised from a∗ to a new value a0
according to a Poisson distribution exp(−(a0−a∗)/µ0)/µ0, where µ0 expresses the
mean locomotive activation of a cell at the beginning of a new run phase.
If the activator level of a cell at the beginning of a run in direction θ at (t0, x0)
has the value a0 > a∗0, it will reach the critical value a∗τ after a time τ iff

a∗τ (1 +K/πτ ) = a0(1 +K/π0)−
∫ τ

0

λτdτ ,

where a∗τ := a∗(ρ(t0 + τ, x0 + ζt0,x0,θ(τ))) and πτ , λτ analogously. This implies

a0 − a∗0 =
π0

K + π0

∫ τ

0

(
λτ +

(
a∗τ
K + πτ
πτ

)′
)
dτ .

Since the distribution of run lenghts exceeding this value is
qt0,x0,θ(τ) = exp(−(a0 − a∗0)/µ0)
we can calculate a formula for the turning frequency β(·, θ, τ) during a run phase
with the help of (1).
Some cells have active protrusions, i.e. pilot pseudopods, on the cell surface,
occuring symmetrically w.r.t. the direction θ of the preceding cell displacement
according to the η-dependent probability distribution h(·, |η − θ|). The testing
protrusions enlarge with mean speed c0 = c0(ρ) in direction η and bear fast binding
ρ-specific receptors.
The portion of bound receptors b = bη(ρ) fulfills b

′
η(p) ≈ p(ρ, |η − θ|). The change

of bound receptor sites during a relatively short protrusion period of mean length
δ0 < τ̄ is proportional to δ0b

′
η(ρ)(∂tρ + c0η · ∇xρ), i.e. the chemotactic gradient

along a testing protrusion in direction η.
The probability k(·, θ; η) for a reorientation from direction θ to η is proportional
to h(·, |η − θ|) · [1 + δ0p(ρ, |η − θ|)(∂tρ + c0η · ∇xρ)]. After normalization and
linearization the turn angle distribution reads

k(·, θ; η) = h(·, |η− θ|)[1+ δ0(p(·, |η− θ|)− p̄)∂tρ+ δ0c0(p(·, |η− θ|)η− p̄ψpθ) ·∇xρ]
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where h, c0, p are evaluated at the momentary concentration level ρ, and with
1 := (1, 0, ..., 0) ∈ S the mean protrusion sensitivity over the whole cell surface
is p̄ :=

∫
S(h · p)(·, |η − 1|)dη. The forward index of this protrusion sensitivity is

ψp := 1
p̄

∫
S(h · p)(·, |η − 1|)η1 dη.

Finally, a scaled chemotaxis equation is derived, under the following conditions:
the speed of cell displacements and of testing protrusions is relatively large,
i.e. c0 > c >> X/T , for typical scales of space and time,
the mean turning frequency is relatively small, i.e. τ̄ ≈ τ0/β0 << T ,
such that the product of mean step length τ̄ c and speed c remains bounded,
i.e. (τ̄ c)c ≤ (1− ψ)X2/T ,
and the quotient of both of them (up to a constant) is the motility

µ = 1
n

(τ̄c)c
(1−ψ)X2/T ,

the ration of mean protrusion length δ0c0 and mean step length τ̄ c remain bounded,
i.e. (1− ψ) δ0c0τ̄ c ≤ 1,

and the chemotaxis coefficient is χ = µ(1 − ψ)
(
χ̃+ p̄ δ0c0τ̄ c ψ̃

)
.

Here ψ :=
∫
S h(·, |η−1|)η1 dη, χ̃ = (β′

0/β0)− (a∗/µ0)
′ provided that λ is indepen-

dent of ρ, β0 = λ
µ0

π
K+π , and ψ̃ = 1 + ψ 1−ψp

1−ψ .

Then the density ū(t, x) =
∫
S σ̄(t, x, θ)dθ fulfills

∂tu = ∇x
(µ
c
∇x(cu)− χu∇xρ

)

up to a small error and for the accordingly rescaled parameters.

Now we are looking at a simple one-dimensional system of run-and-tumble dynam-
ics. Individuals/cells move with the same speed to either right or left, may change
orientation, and start moving in the opposite direction. The probability of this
tumbling events is assumed to be a pointwise function of the densities of left- and
right-moving individuals. Thus the tumbling rates can be thought of as encoding
probabilities of encounters between left- and right-moving individuals, which in
turn induce changes of orientation. This caricature picture is motivated by ob-
servations of rippling patterns in colonies of myxobacteria. The ripple crests are
oriented approximately perpendicular to the movement direction of the bacteria.
The so-called C-signal, bound to their cell surface, is transmitted upon end-to-end
contact of bacteria, and increases the reversal probability of individual bacteria,
see also [2, 3].
We look at the model

ut = ux − r(u, v) + r(v, u) ,

vt = −vx + r(u, v)− r(v, u) ,

where u, v encode the densities of the left- and right-moving bacteria and with
tumbling rates r(u, v) = ug(v), where g(v) = 1 + v2/(1 + γv2).
The results in [4] can be summarized as follows:
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• linear growth favors wavenumbers klin = 0 or klin = 1, that is, linear
instabilities do not select finite wavenumbers from white-noise perturba-
tions;
• localized perturbations of asymmetric states may generate traveling waves
with a selected non zero wavenumber kloc, that is, instabilities do select
finite wavenumbers from short-noise perturbations;
• localized perturbations of symmetric states result in the creation of asym-
metric states and subsequent evolution of traveling and standing waves,
with nonzero wavenumber kloc, that is, localized instabilities eventually
do select finite wavenumbers from shot noise perturbations.

The key insight is that localized perturbations result in a spatio-temporal spread-
ing of perturbations. The resulting invasion process is oscillatory in nature with
a well-defined spreading speed and finite temporal frequency.
In other words, oscillatory invasion selects spatial wavenumbers.
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Live cell motility under the FBLM-FEM prism: from numerical
convergence to cell-cell adhesion

Nikolaos Sfakianakis

(joint work with Christian Schmeiser, Diane Peurichard, and Aaron Brunk)

The lamellipodium is a thin, sheet-like structure that is found in the propagating
front of fast moving cells, such as fibroblasts, keratocytes, cancer cells, and more.
It is a dense network of linear biopolymers of the protein actin, termed actin-
filaments. These actin-filaments are highly dynamic structures that constantly
polymerize by addition of new monomers on their one end, and participate in a
plethora of other processes such as nucleation, capping, fragmentation, and many
more.
These processes are important for the structure and functionality of the lamel-
lipodium, and the motility of the cell. They are to a large extent affected by the
extracellular environment; for example, the chemical landscape in which the cell
of resides and the local composition and architecture of the Extracellular Matrix
(ECM), lead to biased motility responses of the cell that are typically termed as
chemotaxis, haptotaxis, and durotaxis.
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We model this phenomenon upon using the Filament Based Lamellipodium Model
(FBLM); an anisotropic, two-phase, two-dimensional, continuum model that de-
scribes the dynamics the lamellipodium at the level of actin-filaments and their
interactions. The model distinguishes between two families (phases) of filaments
and includes the interactions between them, as well as between the network of the
filaments and the extracellular environment. The FBLM was first proposed in [1]
and later extended in [2, 3, 5]. When the FBLM is endowed with a problem spe-
cific Finite Element Method (FEM) that we have previously developed in [4], the
combined FBLM-FEM is able to reproduce realistic, crawling-like moving cells,
[4, 6].
In this talk we present the basic components of the FBLM and the FEM and
focus on a series of numerical simulations that illustrate the motility properties of
the FBLM-FEM combination. In particular, we embed the FBLM in a complex
extracellular environment with multiple chemical sources, and a non-uniform and
adaptive ECM, and subsequently study the response of our cells to variations of
the chemical and haptic environment. We moreover present some of our newest
results in cell-cell collision and cell-cell adhesion. We consider a large number of
cells an make the first steps in the direction of simulation the formation of a tissue.
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Blow-up phenomena in chemotaxis systems

Michael Winkler

(joint work with Nicola Bellomo, Noriko Mizoguchi and Youshan Tao)

In theoretical descriptions of collective behavior in populations of chemotacti-
cally migrating individuals, Keller-Segel-type PDE systems play an outstanding
role. Here in view of numerous corresponding experimental findings, phenomena
of outstanding interest are related to pattern formation and, more drastically, to
the spontaneous emergence of aggregate-like structures in the sense of locally large
population densities.
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An apparently natural approach toward mathematically capturing the latter type
of features aims at detecting solutions which reflect phenomena of singularity for-
mation in that their respective component representing the population density
becomes unbounded either in finite or infinite time. In contrast to frequently con-
sidered situations of PDE systems in which global regular behavior is expected,
and in which thus a large variety of techniques for proving global existence and
boundedness is available, rigorously confirming the occurrence of such explosion
evidently amounts to developing novel analytical methods; accordingly, the corre-
sponding literature is found to be comparatively sparse.

In this presentation, firstly a brief overview over classical results for the classical
Keller-Segel system

{
ut = ∆u−∇ · (u∇v),
vt = ∆v − v + u,

(⋆)

is given. Inter alia, it is brought to mind that when posed under homogeneous
Neumann boundary conditions in smoothly bounded domains Ω ⊂ R

n, n ≥ 1, for
all reasonably regular initial data (u0, v0) a corresponding initial value problem
always possesses globally defined bounded solutions if either n = 1, or n = 2 and
the total mass of cells satisfies

∫
Ω u0 < 4π, or n ≥ 3 and (u0, v0) is suitably small

in L
n
2 (Ω) × W 1,n(Ω) ([7], [3]). In contrast to this, well-known unboundedness

results are recalled which assert the existence of at least one solution, necessarily
corresponding to a suitably large mass level, that blows up in finite time ([5]).
Constituting a further development of the latter, a more recent result is presented
according to which finite-time blow-up can actually be viewed as an essentially
generic phenomenon in the radial version of (⋆) in both cases n = 2 and n ≥ 3,
in particular occurring within sets of initial data that are dense in the respective
sets of all smooth positive radial data within appropriate topologies ([6], [10]).

It is thereafter discussed how far blow-up phenomena can be detected in chemo-
taxis systems more complex than (⋆), and some particular findings obtained
through various approaches during the past few years are reported. Firstly, for
the variant of (⋆) given by

{
ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v),
vt = ∆v − v + u,

it has been found that essentially the asymptotic behavior of the ratio S(u)
D(u) at large

values of the density u decides about whether or not unbounded solutions can be
found, with quite a comprehensive knowledge available concerning the question if
such explosions must occur in finite time, or only arise in the large time limit in
the sense of infinite-time blow-up ([4], [8]).
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As a next example, the flux-limited Keller-Segel system





ut = ∇ ·
( u∇u√

u2 + |∇u|2
)
− χ∇ ·

( u∇v√
1 + |∇v|2

)
,

0 = ∆v − µ+ u (µ := −
∫
Ω
u0),

is considered, which has been introduced inter alia pursuing the ambition to de-
velop an explosion-suppressing variant of the original system (⋆). In somewhat
surprising contrast to this intention, however, it has recently been found that un-
der the – up to equality sharp – assumption that χ > 1 and either n ≥ 2 and
m > 0 is arbitrary, or n = 1 and m > 1√

χ2−1
, finite-time blow-up indeed occurs

for a large set of radial initial data ([1], [2]).

Finally, as a prototypical model for chemotaxis involving indirect signal production
mechanisms, the radial version of the two-dimensional system





ut = ∆u−∇ · (u∇v),
0 = ∆v − µ(t) + w (µ(t) := −

∫
Ωw(·, t)),

τwt = −δw + u,

is addressed. According to a very recent finding, with regard to the occurrence of
unboundedness this system again exhibits a critical mass phenomenon: Although
global smooth solutions always can be seen to exist, it can be shown that these
solutions remain bounded if the corresponding initial data satisfy

∫
Ω u0 < 8πδ,

while for any choice of m > 8πδ one can find initial data u0 such that
∫
Ω u0 = m,

but that the associated solution blows un in infinite time ([9]).
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Living Liquid Crystal with Active Squirmer

Hai Chi

(joint work with Leonid Berlyand and Igor S. Aronson)

Living Liquid Crystal (LLCs) is a general class of active fluids. The suspending
medium is a nontoxic liquid crystal (LC) that supports the activity of self-propelled
particles, like bacteria [1, 2].

• The bacterial activity modifies the orientational order of the system, by
producing well-defined and reproducible patterns with or without topo-
logical defects.
• The orientational order of the suspending medium reveals facets of bac-
terial behavior, allowing one to control trajectories of individual bacteria
and to visualize rotation of flagella through birefringence of the host.

We consider another kind of self-propelled particle which is called squirmer(spheri-
cal non-deformable particle) suspended in liquid crystal. We proposed a model
considering the traditional squirmer model in Stokes flow and surface anchoring
behavior in liquid crystal. The interesting part for us is to understand what is
the stable steady motion for different squirmer(puller, pusher and neutral). We
numerically simulate this model and analytically do some stability analysis for this
model.
This is work in progress.
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Hierarchy of PDE Models of Cell Motility

Leonid Berlyand

(joint work with Jan Fuhrmann, M. Potomkin, and V. Rybalko)

We consider mathematical PDE models of motility of eukaryotic cells on a sub-
strate [1, 2]. Our goal is to capture mathematically the key biological phenomena
such as steady motion with no external stimuli and spontaneous breaking of sym-
metry.
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We first describe the hierarchy of PDE models of cell motility and then focus on
two specific models: the phase-field model and the free boundary problem model.
The phase-field model consists of the Allen-Cahn equation for the scalar phase
field function coupled with a vectorial parabolic equation for the orientation of
the actin filament network. The key mathematical properties of this system are
(i) the presence of gradients in the coupling terms and (ii) the mass (volume)
preservation constraints. These properties lead to mathematical challenges that
are specific to active (out of equilibrium) systems, e.g., the fact that variational
principles do not apply. Therefore, standard techniques based on maximum prin-
ciple and Gamma-convergence cannot be used, and one has to develop alternative
asymptotic techniques.
The free boundary problem model consists of an elliptic equation describing the
flow of the cytoskeleton gel coupled with a convection-diffusion PDE for the density
of myosin motors. This PDE system is of Keller-Segel type but in a free boundary
setting with nonlocal condition that involves boundary curvature. Analysis of this
system allows for a reduction to a Liouville type equation which arises in various
applications ranging from geometry to chemotaxis. This equation contains an
additional term that presents an additional challenge in analysis.
In the analysis of the above models our focus is on establishing the traveling wave
solutions that are the signature of the cell motility. We also study breaking of
symmetry by proving existence of non-radial steady states. Bifurcation of traveling
waves from steady states is established via the Schauder’s fixed point theorem for
the phase field model and the Leray-Schauder degree theory for the free boundary
problem model.
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Traveling waves in a free boundary problem for cell motion

Jan Fuhrmann

(joint work with Leonid Berlyand and V. Rybalko)

Keratocytes are fish skin cells moving on flat substrates by forming a quasi-two-
dimensional fan-shaped structure called the lamellipodium. Once in motion they
maintain their shape and velocity and move persistently. The flatness of both their
environment and shape makes them perfect objects of experiments and mathemat-
ical modeling.
Here, we study a free boundary problem for two partial differential equations in
two space dimensions modeling the cytoskeleton of a keratocyte and search for
radially symmetric steady states (corresponding to a resting cell) and traveling
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wave solutions (persistently moving cell). The cell is described by the unknown
time dependent domain Ωt, its boundary Γt moving with the normal velocity

(1) V⊥ = νT∇σ − 2βκ+ Vp on Γt, Vp =
1

|Γt|

∫

Γt

2βκ− νT∇σds

where κ is the curvature of the boundary and the average velocity Vp results from
actin polymerization and mathematically describes area preservation. The stress
σ (scalar, the true stress is σI) of the actin cytoskeleton is described by the elliptic
equation

(2) 0 = −∆σ + σ − αm in Ωt, σ = 0 on Γt.

It describes the force balance between forces generated by the stress of the net-
work and the friction ∇σ with the substrate (drag coefficient scaled away into the
dimensionless parameter α) and is coupled to an advection diffusion equation for
myosin motors m which create a contractile stress αm in the actin network:

(3) ∂tm = ∆m−∇T (m∇σ) in Ωt, ν
T∇m = (νT∇σ − V⊥)m on Γt.

We should note that this model arises from reducing and non-dimensionalizing
a much more complex computational model devised in [1]. We also remark that
(2), (3) resemble the classical parabolic-elliptic version of the Keller-Segel model.
The distinguishing feature of the present system is the free boundary with nonlocal
evolution equation (1). The combination of a nonlinear system with cross diffusion
and a nonlocal free boundary condition makes the problem particularly interesting.
Being interested in traveling wave solutions we introduce the traveling wave vari-
able ξ = x − V t where we assume without loss of generality V = (v, 0)T , that
is, motion to the right. This yields an elliptic free boundary problem with time
independent but still unknown domain and nonlocal boundary condition. The
equation for myosin can then be explicitly integrated up to a constant of inte-
gration yielding a nonlocal free boundary problem for a single integro-differential
equation.
Radially symmetric steady states are found by fixing the domain to a disk and
solving the resulting singular two-point boundary value problem for an integro-
differential equation in one dimension. We find a continuum (curve) of steady
states which is up to some point uniquely parametrized by the total myosin mass
M =

∫
Ωm. However, for large M , there are two steady state solutions (one of

them strongly concentrated around the center), and for still larger M , none at
all. Mathematically, the concentration of m near the center and the non-existence
of solutions for large M is to be expected since Keller-Segel models in two space
dimensions are knwon to exhibit blow-up of solutions for largeM . Biologically, this
blow-up may be interpreted as large amounts of myosin disrupting the cytoskeleton
and eventually the whole cell.
Traveling waves are shown to emerge via bifurcation from the curve of steady
state solutions via Leray-Schauder degree theory. To this end we use a Lyapunov-
Schmidt type reduction to find a necessary bifurcation condition in the form of
some quantity ℓ (depending on the steady state solution and related to the leading
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eigenvalue of the linearization around the steady state) vanishing. For this quan-
tity, though not being able to precisely calculate it, we show that it does indeed
vanish at some point along the steady state curve and does change sign there. The
degree jump principle then ensures a curve of traveling waves bifurcating from the
steady states.
Simulations supplementing the analytical results allow us to locate the bifurcation
point in terms of the physical parameters and show that the bifurcation indeed
occurs in the physiologically meaningful range. We also specify a curve of bifur-
cation points in the parameter space spanned by drag coefficient and total myosin
mass (all other parameters being considered as fixed).
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Free boundary model explains cell turning

Alex Mogilner

Cell migration is a fundamental cell biological phenomenon that underlies many
physiological processes. To migrate, cells must polarize, sense a direction, and de-
ploy a motile mechanical machinery. Computational modeling of simple motile fish
keratocyte cells was an integral part of understanding general mechanochemical
mechanisms of these three aspects of cell migration. I demonstrate how a combi-
nation of data analysis and detailed mechanistic modeling elucidated mechanics
of self-polarization, steady migration and turning of single keratocytes.
To understand shapes and movements of cells undergoing lamellipodial motility,
we systematically explore minimal free-boundary models of actin-myosin contrac-
tility consisting of the force-balance and myosin transport equations. The models
account for isotropic contraction proportional to myosin density, viscous stresses
in the actin network, and constant-strength viscous-like adhesion. The contrac-
tion generates a spatially graded centripetal actin flow, which in turn reinforces
the contraction via myosin redistribution and causes retraction of the lamellipo-
dial boundary. Actin protrusion at the boundary counters the retraction, and the
balance of the protrusion and retraction shapes the lamellipodium. The model
analysis shows that initiation of motility critically depends on three dimension-
less parameter combinations, which represent myosin-dependent contractility, a
characteristic viscosity-adhesion length, and a rate of actin protrusion. When the
contractility is sufficiently strong, cells break symmetry and move steadily along
either straight or circular trajectories, and the motile behavior is sensitive to con-
ditions at the cell boundary. Scanning of a model parameter space shows that
the contractile mechanism of motility supports robust cell turning in conditions
where short viscosity-adhesion lengths and fast protrusion cause an accumulation
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of myosin in a small region at the cell rear, destabilizing the axial symmetry of a
moving cell.
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Dynamics of topological defects in a living nematic

Igor Aronson

(joint work with Mikhail Genkin and Andrey Sokolov)

Living nematic is a realization of an active matter combining a nematic liquid crys-
tal with swimming bacteria. The material exhibits remarkable tendency towards
spatio-temporal self-organization manifested in formation of dynamics textures of
self-propelled half-integer topological defects (disclinations) [1, 2]. Here, by cou-
pling the well-established and validated model of nematic liquid crystals with the
bacterial dynamics, we develop a computational model describing intricate prop-
erties of such a living nematic. The model yielded a testable prediction on the
accumulation of bacteria in the cores of 1/2 topological defects and depletion of
bacteria in the cores of −1/2 defects. We also studied of such living nematic near
normal inclusions, or tactoids, naturally realized in liquid crystals close to the
isotropic-nematic (I-N) phase transition. On the basis of computational analysis,
we have established that tactoid’s I-N interface spontaneously acquire negative
topological charge which is proportional to the tactoid’s size and depends on the
concentration of bacteria. The observed negative charging is attributed to the
drastic difference in the mobilities of 1/2 and −1/2 topological defects in active
systems. The effect is described in the framework of a kinetic theory for point-like
weakly-interacting defects with different mobilities. Our dedicated experiments
fully confirmed both theoretical predictions. The results hint into new strategies
for control of active matter.
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Non equilibrium steady state dynamics of contractile actin networks

Kinneret Keren

The actin cytoskeleton plays a major role during the initial stages of embryonic
development. In particular, the actin cytoskeleton can switch, in a cell-cycle de-
pendent manner, into a contractile state and exhibit large scale flows which are
essential for the organization and the establishment of polarity in early embryos.
For example, myosin-driven contractile flows are required for the initial cortical
polarization in many species, while bulk actin network contraction can drive direc-
tional transport in large oocytes. We developed a reconstituted model system to
study the onset of contraction in cortical or bulk actomyosin networks, and emu-
late these processes in artificial cells [1, 2]. We encapsulate Xenopus cell extracts in
cell-sized water-in-oil emulsions, and introduce various auxiliary proteins includ-
ing actin nucleators, disassembly factors and crosslinkers to modify cytoskeletal
dynamics. Importantly, the presence of dynamic turnover in our system allows
these networks to attain a dynamic steady state characterized by contractile actin
flows which persist for hours. Using this system we are measuring network struc-
ture, contractile flows and turnover, at steady state under different conditions,
mapping the dynamic interplay between myosin-driven network contractility and
actin turnover.
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Phase field models for cell motility

Falko Ziebert

(joint work with Jakob Löber, Benjamin Winkler, and Igor S. Aranson)

I described recent progress made in modeling cellular motion on the continuum,
cell-resolved level using the phase field approach. The latter is used to circumvent
the computational bottleneck of moving and deformable boundaries in nonlinear
PDEs by accounting for a continuous auxiliary field (the phase field) that allows
to treat the boundaries implicitly and on a diffuse level.
Most developed models for cell motility are effectively two-dimensional (2D). This
simplification is partly justified by the fact that lamellipodium-based cellular mo-
tion along a substrate is governed by very thin protrusions (i.e. with layer thickness
much smaller than the length of the actin filaments responsible for the protrusive
motion). I hence also started with an effectively 2D minimal model [1], that takes
into account the biologically motivated interplay of the phase field with a vectorial
order parameter localized inside the domain defined by the cell and describing the
local degree of ordering of the actin filaments. The latter is assumed to be able
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to push the cell’s interface locally forward via ratcheting of the filaments’ poly-
merization kinetics. This simple model correctly displays a subcritical onset of
translational motion of the domain (implying also bistability of non-moving and
moving states), corresponding to steady moving cells like keratocytes, as seen in
experiments [2].
I then reviewed several model generalizations, including the adhesion bond-media-
ted interplay of the previously discussed system with a deformable and/or inho-
mogeneous elastic substrate [3], as well as a generalization towards multiple cells
moving collectively, based on a multiple phase field approach [4]. These and related
works have been recently reviewed also in Ref. [5].
Finally, I presented ongoing work on three-dimensional (3D) phase field modeling
of cellular motility [6]. The motivation lies in the increasing experimental research
on confining cells and trying to guide them by topographical surface features. The
model translation from 2D to 3D is rather direct, and assumes only two additional
features, namely that actin polymerization is predominantly in the tangential plane
defined locally by the substrate the cell is in contact with, and that it decays
rapidly with the distance from the substrate. Using these simple assumptions and
a parallel implementation on graphic cards allowed us to reveal several nontrivial
effects like a confinement-induced shape hysteresis, confinement-stimulated motil-
ity, intricate effects of substrate curvature on cell motion, cell guidance by both
the degree or confinement and by topography, as well as complex dynamical modes
emerging if cells are confined into narrow channels.
Discussions included the relation of this coarse-grained framework to more detailed
and microscopic models [7]. Naturally, as 3D modeling of cellular motility is just
beginning, open problems are diverse and relate to biological questions (what
defines the thickness of the lamellipodial thin sheet? [8]), to modeling aspects (how
can other motility modes, like blebbing and wall-pushing [9], be incorporated in
a more general framework?), to fundamental questions of nonlinear PDEs (can
proofs of existence of solutions, as recently given in the 1D case [10], be transfered
to higher dimensions?) and to computational efficiency [11].
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Traction forces and cell-edge dynamics during cell polarization

Alexander B. Verkhovsky

(joint work with Alicia Bornert, Zeno Messi, Niccolò Piacentini, and Franck
Raynaud)

How cells break symmetry and organize their activity to move directionally is a
fundamental question in cell biology. Models of cell polarization commonly rely on
front-to-back gradients of functional components or regulatory factors to control
cell-edge activity, but it is not clear how the front-back axis is defined in the first
place. We have recently proposed a novel and simple principle of self-organizing
cell activity, in which local cell-edge dynamics depends on the distance from the
cell center, but not on the orientation with respect to the front–back axis [1].
Stochastic modeling demonstrated that distance-sensitivity is sufficient for the
symmetry breaking and the emergence of persistent cell motion and stable shape.
However, physical mechanisms of distance-sensitivity remain unclear.
Here we show that traction forces exerted on the substrate by polarizing and mi-
grating cells increase with the distance from the cell center, and that traction force
dynamics and cell-edge dynamics are correlated both in space and time. However,
traction forces are not correlated with the local edge curvature. Inhibition of cell
contractility results in diminished traction forces, reduced edge activity, and ab-
normal cell polarization. On the other hand, in the absence of endogenous cell
traction, protrusion-retraction switches could be induced by the application of
external force. These results suggest that traction forces could mediate distance-
sensitivity and organize cell activity during symmetry breaking. Other possible
triggers for protrusion-retraction switches such as membrane tension and 3D shape
of the cell edge are also discussed.
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Figure 1. Traction force maps (red) superimposed on bright-
field images of the cell prior to polarization (top) and on cell
contours with protrusion-retraction switches indicated in black
(bottom). Switching sites localize at the edges of maximal force
areas at the cell extremities.
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Partial differential equations in evolving domains: analysis and
computation with applications in cell biology

Charles M. Elliott

Many physical models give rise to the need to solve partial differential equations
in time dependent regions. Our focus in the talk was on the mathematical and
computational issues associated with the formulation of PDEs in time dependent
domains in both flat and curved space with applications within cell biology to
modelling the complex morphology of biological membranes and cells and their
motility. These moving boundary problems present significant modelling, analyti-
cal and computational challenges. Here in this abstract we mainly point to our own
contributions to this field and refer to other abstracts of talks from this workshop
in this volume for many more models, methods and mathematical results.
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• In R
3 we may think of a cell or vesicle as comprising a bounded domain

Ω(t) with a boundary Γ(t). Of course on Γ(t) there may be interfaces
comprising closed curves γ(t) corresponding to line energies and also point
effects due to filaments or protein complexes attached to the cell surface.
There may be complex processes in the body of the cell and on the cell
surfaces which are coupled and determine the morphology and motion of
the cell. Many models involve parabolic equations of advection, diffusion
and reaction type on evolving domains. The evolution of these domains
may be governed by geometric quantities. From the point of view of anal-
ysis there are advantages in considering separately equations on domains
whose evolution is known and equations for the evolution of the domains.
• In general we may think of PDE problems posed in domains associated
with time dependent d-dimensional hypersurfaces Γ(t) in R

d+1 whose evo-
lution is given. The surface Γ(t) may be the boundary of a bounded
open bulk region Ω(t). In this setting we may also view Ω(t) as (d + 1)-
dimensional sub-manifold in R

d+2. Using this observation we may develop
a theory applicable to both surface and bulk equations. An abstract frame-
work for treating the theory of well- posedness of solutions to parabolic
equations on evolving Hilbert spaces using generalised Bochner spaces was
presented in [1] where the setting is abstract and not restricted to evolving
domains or surfaces.
• The aforementioned abstract theory is applicable to variational formu-
lations of PDEs on evolving spatial domains including moving hyper-
surfaces, [2]. We can show well-posedness to a certain class of parabolic
PDEs under some assumptions on the parabolic operator and the data.
For example we may study a surface heat equation, an equation posed on
a bulk domain, a coupled bulk-surface system and an equation with a dy-
namic boundary condition, [2]. Recently semilinear coupled bulk surface
systems for receptor - ligand dynamics have been studied in [21, 3].
• The development and numerical analysis of evolving surface finite element
spaces (ESFEM) and bulk equations may be found in [9, 12, 14, 30, 19,
28, 20]. See [13] for a survey of various approaches to the formulation and
computation of parabolic equations on hypersurfaces. including unfitted
finite element and implicit surface approaches, [7, 8, 10, 11, 24].
• In applications often the domain has to be computed. See [6] for an ac-
count of numerical methods for computing the solution to geometric evo-
lution equations such as motion by mean curvature. Evolving surface
triangulations by velocity fields which have arbitrary tangential compo-
nents give rise to ALE ESFEM, [26, 27]. Recently methods for computing
parametrisations with non physical tangential components which evolve
triangulations whilst maintaining good mesh properties have been pro-
posed in [16, 15].
• A speculative model for cell motility was considered in [25] . The content of
the model is to couple surface reaction diffusion equations to the motion
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of a geometric evolution law with energetic terms arising from surface
tension and bending energy. Further developments of this model were
considered in [5] where the issue of parameter identification was addressed.
A computational model was developed and then applied to parameter
identification for monopolar growth of fission yeast cells using experimental
imaging data.
• We refer to [31, 4, 29] for results concerning the numerical analysis of evolv-
ing surface finite element approximations of diffusion coupled to surface
evolution.
• Mathematical models for the interaction between biomembranes and (a)
surface gradient energies modelling line energies and (b) smaller objects
such as finite size and point particles and filaments are studied in (a)
[22, 23] and (b) [18, 17] and the references cited therein.
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Discussions

Angela Stevens, Alex Mogilner, Kinneret Keren, Jan Fuhrmann,

Michael Winkler, Christina Surulescu

During the mini-workshop the participants initiated lively discussions about the
issues presented in the talks, but also (in small groups) about related issues leading
to mathematically very interesting problems.

The talks by Angela Stevens addressed models for alignment, patterns, and waves
in populations of myxobacteria, with a focus on pattern formation due to local, i.e.
direct cell interactions. An issue of particular interest in this context is the iden-
tification of minimal models which are still able to provide valuable information
about the relevant dynamics of cell populations. The question arises whether some
models can be ruled out and if so, what should be the adequate (mathematical
and/or biological) criteria?

In his talk Alex Mogilner addressed the (still open) problem of coupling keratocyte
motile behavior in order to study collective motion: What are the proper rules for
intercellular adhesion and how do they change when cells are in contact or even
overlap? Also, the idea of ’inverse problems’ was formulated: Given the biolog-
ical data, what is the most adequate model to be chosen and how is this to be
achieved? Thereby, the search of the data needs itself modeling. One idea would
be to use machine learning classification.

A further talk by Kinneret Keren about hydra regeneration led to a discussion
about interesting aspects for modeling in this framework, e.g. defect generation,
modification of cell organization in response to mechanical and chemical cues, for-
mation of protrusions, evolution of total area during the regeneration process.

Jan Fuhrmann and Michael Winkler payed attention to a problem related to blow-
up in a Keller-Segel type free boundary problem:
For a parabolic-elliptic Keller-Segel system with free boundary in two space di-
mensions arising from a model for cell motion we observed non-uniqueness and
non-existence of radially symmetric steady states for certain parameters (corre-
sponding to a large L1-norm of the cell density in the classical Keller-Segel model).
The problem is equipped with no-flux boundary conditions for one variable and
homogeneous Dirichlet conditions for the other one, and the motion of the free
boundary is described by a non-local (area preservation) kinematic condition in-
volving the curvature of the boundary. From these observations and the known
threshold behavior for the Keller-Segel-system with Neumann-boundary in a fixed
two-dimensional domain, we arrive at the natural question whether the system at
hand exhibits finite time blow-up for certain initial conditions. In more detail, we
ask for a blow-up threshold in the radially symmetric case with fixed boundary
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and further on for blow-up criteria in the problem with free boundary.

In the context of macroscopic equations for the evolution of interacting popula-
tions Christina Surulescu and Michael Winkler discussed the possible extension
of the chemotaxis system with indirect signal production presented by M. Win-
kler to a setting for describing the acid-mediated interaction between moving and
proliferating tumor cells; a highly nonlinear system coupling an ODE with two
PDEs was obtained, which will be further investigated w.r.t. well-posedness and
asymptotic behavior.

Reporter: Christina Surulescu
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