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Abstract. Lattice polytopes arise naturally in many different branches of
pure and applied mathematics such as number theory, commutative algebra,
combinatorics, toric geometry, optimization, and mirror symmetry. The mini-
workshop on “Lattice polytopes: methods, advances, applications” focused
on two current hot topics: the classification of lattice polytopes with few
lattice points and unimodality questions for Ehrhart polynomials. The work-
shop consisted of morning talks on recent breakthroughs and new methods,
and afternoon discussion groups where participants from a variety of differ-
ent backgrounds explored further applications, identified open questions and
future research directions, discussed specific examples and conjectures, and
collaboratively tackled open research problems.
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Introduction by the Organisers

The Mini-Workshop on Lattice Polytopes: Methods, Advances, Applications orga-
nized by Takayuki Hibi (Osaka), Akihiro Higashitani (Kyoto), Katharina Jochemko
(Stockholm) and Benjamin Nill (Magdeburg) was held September 17th–23th, 2017.
The focus of this Mini-Workshop was on learning about the methods that led to
recent advances in lattice polytope theory with a view towards further applica-
tions. It was aimed at experts as well as young researchers in order to learn from
and with each other, to discuss future applications and research trends, and to
discover common goals and build strong research ties. Recently, a couple of break-
throughs were achieved – quite a few of these by members of the Mini-Workshop.
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Among these were a proof of a conjecture going back to Hensley from 1983 on vol-
ume bounds, an extension of White’s classification to lattice tetrahedra with few
lattice points, and a proof of the unimodality conjecture for h∗-polynomials of s-
lecture hall polytopes. New methods have been introduced or successfully adapted
from other areas such as lattice segmental fibrations, interlacing polynomials and
valuations. New results had in turn applications in other fields like optimization,
mirror symmetry and statistics.

During the week of the Mini-Workshop there were two contributed one-hour
talks every morning followed by extensive discussions, setting the theme for the
afternoon working groups concerning the above topics. Monday morning began
with Gennadiy Averkov surveying the known results about maximal hollow lattice
polytopes and Hensley’s conjecture and Monica Blanco providing her tools for the
recent classification of 3-dimensional lattice polytopes. This was followed on Tues-
day morning with an introductory talk by Matthias Beck on various results about
unimodality question of h∗-vectors, and the survey talk of interlacing polynomi-
als by Katharina Jochemko including a beautiful application to the unimodality
question. On Wednesday morning, Raman Sanyal gave a precise explanation about
combinatorial mixed valuations and Fu Liu talked about her detailed investiga-
tion of Ehrhart positivity. On Thursday morning, Mateusz Micha lek supplied
several old and new open problems on normality (IDP) and very ampleness of
lattice polytopes, and Johannes Hofscheier gave a talk about spanning polytopes
which sheds new light on a direction towards unimodality of h∗-vectors of IDP
polytopes. On Friday morning, we organized a seminar talk by Stefano Urbinati
jointly with the parallel Mini-Workshop group Positivity in Higher-dimensional
Geometry: Higher-codimensional Cycles and Newton-Okounkov Bodies on the
connection between lattice polytopes and higher-dimensional algebraic geometry.
Finally, Ivan Soprunov discussed positivity and strict monotonicity of mixed vol-
umes. There were also two more informal 30-minutes talks on Monday and Tuesday
evening. Gabriele Balletti gave a talk about his partial results concerning Hens-
ley’s conjecture, and Liam Solus described an interesting example of a family of
lattice polytopes to which one may apply the methods of interlacing polynomials.

In the afternoons, after a short discussion and brainstorming round, we split-
ted into several working groups which then reported again on their findings in
the large group before dinner. The groups worked on several conjectures which
arose from current hot topics in the theory of lattice polytopes, several of them
were introduced and posed in the morning talks. For instance, we tried to solve
Oda’s conjecture in dimension 3, Hensley’s or Duong’s conjecture in dimension 3,
open problems about 2-level polytopes, alcoved polytopes, the existence of very
ample (or IDP) polytopes with non-unimodal (or non-log concave) h∗-vectors, and
volume bounds on Minkowski sums.

These working groups were very dynamic, stimulating and full of excitement.
The small group of researchers allowed for an open and accepting atmosphere. Also
the diverse range of backgrounds of the participants in combinatorics, commutative
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algebra, algebraic geometry and optimization stimulated an intensive exchange of
ideas.

As a direct outcome of the working groups and collaborations during the work-
shop we would like to explicitly mention:

• a proof of Oda’s conjecture in dimension 3 for centrally symmetric poly-
topes;

• a proof of Duong’s conjecture for the case of aligned interior lattice points;
• to our knowledge the first explicit example of a very ample (but not-

normal) polytope having non-log concave h∗-vectors, which yields the pos-
sibility to construct further counterexamples for the unimodality question.

In what follows we present, in addition to summaries of the talks, brief accounts
on the outcome of brainstorming sessions and working groups. We are confident
that the research initiated and developed at this Mini-Workshop will continue to
be pursued by the participants. As a direct continuation of the Mini-Workshop
and in order to foster further interactions, Gennadiy Averkov has already set up
an online forum for the participants as a place for quick questions and informal
discussions.

The organizers and participants sincerely thank the institute for providing ex-
cellent working conditions and the unique Oberwolfach spirit. We are also grateful
for funding from the NSF grant supporting young US-based participants, which
allowed an extra participant to attend. Let us finish by an example of how effective
the methods of MFO (from shuffling napkins to changing the lecture rooms) indeed
are in increasing the interactions even between different workshops. After one of
the organizers forgot the power cable of his computer in one of the lecture rooms,
he went in to get it and noticed on the board a question of the Mini-Workshop
on Positivity in Higher-dimensional Geometry about 2-Fano n-folds. Talking in
the break to a participant of this workshop, they decided to combine the exper-
tise from both communities and to start a collaborative research project on this
problem.

Akihiro Higashitani
Katharina Jochemko
Benjamin Nill

Acknowledgement: The workshop organizers would like to thank the MFO for
hosting this workshop and the National Science Foundation for supporting the
participation of junior researchers in the workshop by the grantDMS-1641185,
“US Junior Oberwolfach Fellows”.

Unfortunately, the fourth organizer, Takayuki Hibi could not take part at the workshop.
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Abstracts

Classification of hollow lattice polyhedra

Gennadiy Averkov

My talk was about the interplay between the following two properties of convex
sets: having no interior lattice points, on the one hand, and being a polytope
with all vertices lying in a lattice, on the other hand. Both properties attracted
attention of experts from different areas of mathematics, including mixed-integer
optimization and algebraic geometry. The underlying terminology differs from
area to area. A closed d-dimensional closed convex set in Rd without interior
lattice points is called lattice-free in optimization and hollow in algebraic geometry.
A polytope P in Rd with all vertices belonging to the lattice Zd is called an
integral polytope in optimization and a lattice polytope in algebraic geometry. I
will stick to optimization terminology. The notion of integral polytope can be
extended to the unbounded case. A polyhedron P ⊆ Rd is called integral integral
if P = conv(Zd ∩ P ).

Given a set X ⊆ Rd and a lattice-free set L ⊆ Rd, we say that L is X-maximal if
and only if, for every x ∈ X \L, the interior of conv(L∪{x}) contains points of Zd.
Rd-maximal lattice-free sets have been studied since the work of Lovász [Lov89].
In particular, Lovász gave a clear geometric characterization of them. Motivated
by applications in integer optimization, Christian Wagner, Robert Weismantel
and I [AWW11] asked if among all integral lattice-free polyhedra the notions of
Zd-maximality and Rd-maximality coincide. In this same paper we showed that,
in each dimension d, there are only finitely Zd-maximal integral lattice-free poly-
hedra. The same result was also obtained by Benjamin Nill and Günter Ziegler
[NZ11]. Thus, the two family of integral polyhedra involved in this question are
essentially finite.

For d ≤ 2, the question clearly has the positive answer, because [0, 1] is the only
Z1-maximal integral lattice-free polyhedron and [0, 1] × R and conv(o, 2e1, 2e2)
are the only Z2-maximal lattice-free polyhedra and the Rd-maximality of these
polyhedra is easy to check. As for higher dimensions, for each d ≥ 4, Benjamin Nill
and Günter Ziegler [NZ11] constructed a d-dimensional integral polytope which is
Zd-maximal but not Rd-maximal.

The main result of my talk was the following result of Jan Krümpelman, Stefan
Weltge and me [AKW17] that settles the remaining open case of dimension three.

Theorem 1. Among all three-dimensional integral polyhedra, Z3-maximality is
equivalent to R3-maximality.

Another way to phrase the above theorem is this: if an integral lattice-free
polyhedron is a subset of a larger lattice-free set, then it is also a subset of a larger
integral lattice-free polyhedron.

As all inegral R3-maximal polyhedra were characterized by Christian Wagner,
Robert Weismantel and me [AWW11], the above theorem yields a complete clas-
sification of all Z3-maximal integral polyhedra.
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Corollary 2. Up to affine unimodular transformations, the family of all Z3-
maximal integral lattice polyhedra consists of the 12 bounded and 2 unbounded
integral lattice-free polyhedra from [AWW11]. The 12 bounded ones are depicted
in Fig. 1. The two unbounded ones are [0, 1] × R2 and conv(0, 2e1, 2e2) × R.

Figure 1. All Z3-maximal integral lattice-free polytopes. The
polytopes in the first two rows have lattice-width two, while the
last row contains polytopes of lattice-width three.
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Enumerating lattice polytopes by number of lattice points

Monica Blanco

(joint work with Christian Haase, Jan Hofmann, Francisco Santos)

In this talk I will present the enumeration (up to unimodular transformation) of
lattice d-polytopes by their size (total number of lattice points they contain). In
dimension 1, [0, n− 1] is the unique lattice segment of size n, for each n ≥ 2. In
dimension 2, Pick’s formula gives an upper bound on the volume of lattice polygons
of size n, for each n ≥ 3, which in turns implies that there are only finitely many
of them.

For each d ≥ 3 and each n ≥ d+1, there exist infinitely many lattice d-polytopes
of size n. In this talk I review the following two results:

• [BHHS17+] We prove that in every dimension d ≥ 3 there exists a constant
w∞(d) ∈ N, depending solely on d, such that all but finitely many lattice
d-polytopes of size n have width ≤ w∞(d), for each n ≥ d + 1. We call
w∞(d) the finiteness threshold width in dimension d.

We show that w∞(d) equals the maximum width of a lattice (d −
1)-polytope Q such that there exist infinitely many lattice polytopes of
bounded size projecting to Q. We also show that every Q with that
property is hollow and is not a simplex. This allows us to prove that
d − 2 ≤ w∞(d) ≤ O

(

d3/2
)

for every d ≥ 3 and, more particularly, that
w∞(4) = 2 and w∞(5) ≥ 4. That w∞(3) = 1 was already established by
Blanco-Santos.

• [BS17] We develop an algorithm for the exhaustive enumeration of lattice
3-polytopes of width > 1 and size n, of which there are only finitely many
for each n ≥ 4.

For n = 4, White proved that no empty tetrahedron has width > 1.
In previous papers, Blanco-Santos enumerated all lattice 3-polytopes of
width > 1 and sizes 5 and 6. For larger sizes we first prove that if P is a
lattice 3-polytope of width > 1 and size n ≥ 7 then one of the following
happens:

(1) All except three of the lattice points of P lie in a rational paral-
lelepiped of width one with respect to every facet. (We call them
boxed polytopes).

(2) P projects in a very specific manner to one of a list of seven particular
lattice polygons. (Spiked polytopes)
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(3) P has (at least) two vertices u and v such that both conv(P ∩Z3\{u})
and conv(P ∩ Z3 \ {v}) still have width larger than one. (Merged
polytopes).

Boxed polytopes have at most 11 lattice points; in particular they are
finitely many, and we enumerate them completely with computer help.
Spiked polytopes are infinitely many but admit a quite precise description
(and enumeration) for each n ≥ 7. Merged polytopes of size n are com-
puted as a union (merging) of two polytopes of width > 1 and size n− 1,
which are part of the input.

We have implemented the algorithm and run it until obtaining the fol-
lowing: there are 9, 76, 496, 2675, 11698, 45035 and 156464 lattice 3-
polytopes of width larger than one and of sizes 5, 6, 7, 8, 9, 10 and 11,
respectively.

References
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On the maximum dual volume of a canonical Fano polytope

Gabriele Balletti

(joint work with Alexander M. Kasprzyk, Benjamin Nill)

Let P ⊂ NR be a d-dimensional lattice polytope. We say that P is a canonical Fano
polytope if it contains exactly one point in its interior. We can assume that this
interior point is the origin of the lattice. As a consequence of results by Hensley [2]
and Lagarias–Ziegler [5], there are finitely many canonical Fano polytopes (up to
unimodular equivalence) in each dimension d.

Canonical Fano polytopes in dimensions d ≤ 3 have been classified [3], and
we find that vol(P ) ≤ 12. For d ≥ 4 it is conjectured that the volume of a
d-dimensional canonical Fano polytope is bounded by

(1) vol(P ) ≤
1

d!
2(sd − 1)2,

where si denotes the i-th term of the Sylvester sequence:

s1 := 2, si+1 := s1 · · · si + 1 for i ∈ Z≥1.

Moreover, the case of equality in (1) is expected to be attained only by the canon-
ical Fano simplex

R(d) := S(d) −
d

∑

i=1

ei, where S(d) := conv{0, 2(sd − 1)ed, sd−1ed−1, . . . , s1e1}.
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This conjecture is hinted at in [8, 5], explicitly stated in [6, Conjecture 1.7], and
proved by Averkov–Krümpelmann–Nill [1] for the case when P is a canonical Fano
simplex. The conjecture remains open for a general canonical Fano polytope. The
currently best upper bound on the volume of a canonical Fano polytope that
is not a simplex is established in [1, Theorem 2.7] (improving upon a result by
Pikhurko [7]), however this is presumed to be far from sharp:

Instead of bounding vol(P ), it is also natural to consider the volume of the dual
polytope P ∗. In this case we are able to prove the following bound.

Theorem 1. Let P ⊂ NR be a d-dimensional canonical Fano polytope, where
d ≥ 4. Then

vol(P ∗) ≤
1

d!
2(sd − 1)2,

with equality if and only if P = R∗
(d).

In three dimensions, the expected bound vol(P ∗) ≤ 12 is proved in [3, Theo-
rem 4.6]. In this case, however, equality is obtained by the duals of two distinct
simplices:

(2) P1,1,1,3 = conv{e1, e2, e3,−e1 − e2 − 3e3} and P1,1,4,6 = R∗
(3).

The analogue of Theorem 1 is proved in [1, Theorem 2.5(b)] for d-dimensional
canonical Fano simplices.

Probably one of the most studied class of canonical Fano polytopes are the
reflexive polytopes, consisting of those P ⊂ NR such that the dual P ∗ is also a
canonical Fano polytope. Note that R(d) is a reflexive simplex [6]. An immediate
consequence of Theorem 1 is a proof of the conjectured inequality (1) in the case
of reflexive polytopes:

Corollary 2. Let P ⊂ NR be a d-dimensional reflexive polytope, where d ≥ 4.
Then

vol(P ) ≤
1

d!
2(sd − 1)2,

with equality if and only if P = R(d).

Translated into toric geometry, this gives the following sharp upper bound on
the anti-canonical degree (−KX)d of a d-dimensional toric Fano variety X with at
worst canonical singularities.

Corollary 3. Let X be a d-dimensional toric Fano variety with at worst canonical
singularities, where d ≥ 4. Then

(3) (−KX)d ≤ 2(sd − 1)2,

with equality if and only if X is isomorphic to the weighted projective space

P (1, 1, 2(sd − 1)/sd−1, . . . , 2(sd − 1)/s1) .

Our strategy to prove Theorem is as follows. We first reduce the problem to
canonical Fano polytopes satisfying some minimality condition. Such polytopes
have been previously studied [4, 3], and admit a decomposition into canonical Fano
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simplices, for which the statement is already known [1]. We use this decomposition,
together with the monotonicity of the normalised volume, to prove Theorem 1 in
the majority of cases. Finally, the remaining cases are proved using a mixture of
integration techniques and explicit classification.

References
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Unimodality Among Ehrhart h
∗-polynomials

Matthias Beck

In 1962, Eugène Ehrhart established the following fundamental theorem for a
lattice polytope, i.e., the convex hull of finitely many integer points in Rd.

Theorem 1 (Ehrhart [8]). If P ⊂ Rd is a lattice polytope and n ∈ Z>0 then

ehrP(n) := #
(

nP ∩ Zd
)

evaluates to a polynomial in n (the Ehrhart polynomial of P). Equivalently,
the accompanying generating function (the Ehrhart series of P) evaluates to a
rational function:

EhrP(x) := 1 +
∑

n>0

ehrP(n)xn =
h∗
P(x)

(1 − x)dim(P)+1

for some polynomial h∗
P(x) of degree at most dim(P), the Ehrhart h∗-polynomi-

al of P.1

We remark that the step from an Ehrhart polynomial to its rational generating
function is a mere change of variables: the coefficients of h∗

P(x) express ehrP(n)

in the binomial-coefficient basis
(

n
k

)

,
(

n+1
k

)

, . . . ,
(

n+k
k

)

, where k = dim(P). Stan-
ley [12] proved the coefficients of h∗

P(x) are nonnegative integers, and several other
linear constraints on the coefficients of h∗

P(x) are known; see [3] for an overview.

1The h∗-polynomial is also known by the names of Ehrhart h-vector and δ-vector/polynomial.
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It is natural to ask, for any combinatorial nonnegative sequence of integers,
when the given sequence is unimodal, i.e., the sequence increases up to some
point and then decreases. Unimodality is implied by the stronger condition of log-
concavity (c2j ≥ cj−1 cj+1), which in turn is implied by the even stronger condition

of the associated polynomial having only real roots; see [5], which contains all of
the results mentioned in this extended abstract, and [6].

In general, h∗
P(x) is not unimodal, not even when its coefficients are symmet-

ric [9]. However, there are several families of polytopes whose h∗-polynomial do
exhibit unimodality, and there are even more families for which unimodality is
conjectured. A natural starting point is given by unit cubes P = [0, 1]d, for which

EhrP(x) =
∑

n≥0

(n + 1)dxn =
h∗
P(x)

(1 − x)dim(P)+1

and so, essentially by definition, h∗
P(x) is an Eulerian polynomial, which is

well known to be real rooted and thus unimodal. An indication that unimodality
questions are subtle is that the next natural family of polytopes, namely, lattice
parallelepipeds were shown to have unimodal h∗

P(x) only a few years ago [11]. The
recent paper [2] proves the more general statement that h∗

P(x) is real rooted when
P is a lattice zonotope, i.e., the Minkowski sum of line segments.

The following families of lattice polytopes are conjectured to have unimodal,
possibly even real-rooted, h∗-polynomials:

• hypersimplices {x ∈ [0, 1]d : x1 + · · · + xd = k};
• order polytopes {x ∈ [0, 1]P : xj ≤ xk if j � k in P} for a given poset P ;
• alcoved polytopes (whose facet normals are either of the form ej or ej−ek);
• polytopes that admit unimodular triangulations (i.e., into lattice simplices

of minimal volume 1
d!);

• polytopes with the integer decomposition property (every lattice point in
kP is the sum of k lattice points in P).

With the exception of the first two (which are both alcoved polytopes), each family
is contained in the one below it. Any of these families can also be studied with
additional constraints. An example is given by reflexive polytopes that admit
regular unimodular triangulations, which have been proved to come with unimodal
h∗-polynomials [1]; see also [7, 15].

We finish with a potential ansatz to prove polynomiality which we find partic-
ularly intriguing. Fix a triangulation T of the lattice polytope P . Then a theorem
of Betke and McMullen [4] says that

h∗
P(x) =

∑

∆∈T

hlink(∆)(x)B∆(x) .

Here the link of a simplex ∆ ∈ T is

link(∆) := {Ω ∈ T : Ω ∩ ∆ = ∅, Ω ⊆ Φ for some Φ ∈ T with ∆ ⊆ Φ} ,
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with accompanying h-vector (in the face-number sense) hlink(∆)(x), and its box

polynomial is

B∆(x) :=
∑

m∈Π(∆)∩Zd+1

xheight(m)

where

Π(∆) :=

{

∑

v vertex of ∆

λv(v, 1) : 0 < λv < 1

}

and height(m) denotes the last coordinate of m. (Geometrically, Π(∆) is the
open fundamental parallelepiped of the cone over ∆.) For the empty simplex ∅ of
a triangulation, we set B∅(x) = 1.

The Betke–McMullen Theorem was greatly extended by Stanley in (and served
as some motivation to) his work on local h-vectors of subdivisions [13]; see also [10].
It has a powerful consequence when P has an interior lattice point; this conse-
quence was fully realized only by Stapledon [15] who extended it to general lattice
polytopes. Namely, if a lattice polytope P has an interior lattice point, it admits
a regular triangulation that is a cone (at this point) over a boundary triangula-
tion. This has the charming effect that each hlink(∆)(x) is palindromic (due to the
Dehn–Sommerville equations). Since the box polynomials are palindromic and
both kinds of polynomials have nonnegative coefficients, a little massaging yields
(unique) polynomials a(x) and b(x) with nonnegative coefficients such that

h∗
P(x) = a(x) + x b(x) ,

a(x) = xd a( 1
x ), and b(x) = xd−1 b( 1

x ). The identities for a(x) and b(x) say that
a(x) and b(x) are palindromic polynomials; the degree of a(x) is necessarily d,
while the degree of b(x) is d− 1 or smaller; in fact, b(x) can be zero—this happens
if and only if P is the translate of a reflexive polytope.

Back to unimodality, it is well known that hlink(∆)(x) is unimodal when, as
above, T is the cone over a regular boundary triangulation. Thus it might be
worth studying unimodality-like properties of box polynomials to deduce further
results about unimodality of h∗-polynomials.
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h
∗-polynomials of dilated polytopes

Katharina Jochemko

Dilated lattice polytopes often play the role of a first testing ground for various
conjectures in Ehrhart theory. An important such one is the unimodality conjec-
ture, which states that every polytope having the integer decomposition property
(IDP) has a unimodal h∗-vector. It was formulated by Schepers and Van Lan-
genhoven [11] and can be traced back to a conjecture of Stanley [12] for standard
graded Cohen-Macaulay domains. In [4] Bruns, Gubeladze and Trung proved that
the r-th dilate of a lattice polytope has the IDP property whenever the dilation fac-
tor r is greater or equal to the dimension of the polytope minus one. In the light of
the unimodality conjecture it is therefore natural to investigate the h∗-polynomials
of dilated polytopes for unimodality properties. Brenti and Welker [3] and Dia-
conis and Fulman [6] proved that for every lattice polytope P there is a constant
N such that the h∗-polynomial of rP has only negative, real roots, and therefore
unimodal coefficient vector, whenever r ≥ N . Beck and Stapledon [1] strengthend
this result by proving that there is an absolut constant N that only depends on
the dimension of the polytope. They furthermore conjectured the following.

Conjecture 1 ([1]). For a d-dimensional lattice polytope P the h∗-polynomial of
rP has only real zeros for all integers r ≥ d.

Towards a proof of this conjecture, Higashitani [8] showed that when r ≥
deg h∗(P ) then the coefficient vector is log-concave, a property that implies uni-
modality but is weaker than real-rootedness. In [9], the author of this abstract
proved Conjecture 1 by showing the following.
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Theorem 2. [9] Let {an}n≥0 be a sequence of real numbers such that

∑

n≥0

ant
n =

h(t)

(1 − t)d

for some integer d and some polynomial h 6= 0 of degree s with nonnegative coef-
ficients. Let

∑

n≥0

arnt
n =

Ud
r h(t)

(1 − t)d
.

Then Ud
r h(t) has only real roots for all r ≥ s.

In the talk, the main ideas of the proof were presented. In particular, a short
introduction to a rather elementary, yet very powerful tool was given: interlacing
polynomials. For further reading on this topic a book draft by Fisk [7] and a survey
article by Brändén [2] are recommended.

Definition 3. Let f, g ∈ R[t] be real-rooted polynomials with roots {s1 ≥ · · · ≥ sn},
respectively, {t1 ≥ · · · ≥ tm}. Then f interlaces g and we write f � g, if

· · · ≤ s2 ≤ t2 ≤ s1 ≤ t1

From the intermeditate value theorem it follows easily that if f interlaces g then
f + g is real-rooted. This rather harmless looking observation turns out to be the
building block for a powerful machinery for proving real-rootedness of polynomials.

The richness of that definition comes to light when passing from two polynomials
to sequences of polynomials.

Definition 4. A sequence f1, . . . , fm ∈ R[t] is called interlacing if fi ≺ fj when-
ever i < j.

For interlacing sequences the following can be deduced by the intermediate value
theorem.

Theorem 5 ([7, 5]). Let f1, . . . , fm be an interlacing sequence of polynomials
with positive leading coefficients. Then c1f1 + · · · + cmfm is real-rooted for all
c1, . . . , cm ≥ 0.

To prove that a sequence is interlacing can be very challenging. It is therefore
desirable to investigate operations that allow to build new interlacing sequences
from old ones. The following is an example for such an operation.

Proposition 6 ([7, 10]). Let f1, . . . , fm be a sequence of interlacing polynomials
with only nonnegative coefficients. For 1 ≤ l ≤ m let

gl = tf1 + · · · + tfl−1 + fl + · · · + fm .

Then also g1, . . . , gm is an interlacing sequence.

In this case, the sequence g1, . . . , gm is obtained from f1, . . . , fm in a linear
manner. In [2] Brändén gave a complete characterization of all linear operators
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on interlacing sequences with nonnegative coefficients that preserve the interlacing
property.

To prove Theorem 2 we studied in [9] refinement operators on formal power
series. For every formal power series f ∈ RJtK and every integer r ≥ 1 there are
uniquely determined f0, . . . , fr−1 ∈ RJtK such that

f(t) = f0(tr) + tf1(tr) + · · · + tr−1fr−1(t
r) .

For the components fi we write f 〈r,i〉.

Example 7. Let f(t) = 2 + 3t + 5t3 + 4t4 and r = 2. Then

f0 = 2 + 4t2 , f1 = 3 + 5t

The following can be deduced from Proposition 6.

Proposition 8 ([7]). Let f be a polynomial with only nonnegative coefficients and
such that f 〈r,r−1〉, f 〈r,r−2〉, . . . , f 〈r,0〉 is an interlacing sequence. Let

g(t) := (1 + t + · · · + tr−1)f(t) .

Then also g〈r,r−1〉, g〈r,r−2〉, . . . , g〈r,0〉 is an interlacing sequence.

For 0 ≤ i < r we consider the polynomials

a
〈r,i〉
d (t) :=

(

(

1 + t + · · · + tr−1
)d
)〈r,i〉

.

From Proposition 8 and induction on d it follows that a
〈r,r−1〉
d , . . . , a

〈r,0〉
d is an

interlacing sequence, and therefore also a
〈r,0〉
d , ta

〈r,r−1〉
d , ta

〈r,r−2〉
d , . . . , ta

〈r,0〉
d form

an interlacing sequence. Starting with the observation that

∑

n≥0

arnt
n =





∑

n≥0

arnt
n





〈r,0〉

it can be deduced that Ud
r h(t) is a positive linear combination of the latter poly-

nomials whenever r ≥ deg h, and therefore Ud
r h(t) is real-rooted by Theorem 5.

An even more careful analysis shows that in many cases all roots of Ud
r h(t) are

distinct. This yields a proof of the full conjecture of Beck and Stapledon given in
[1]. We refer the reader to [9] for details.
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Simplices for Numeral Systems: or How I Learned to Stop Worrying

and Stratify Ehrhart Unimodality among Weighted Projective Spaces

Liam Solus

Where there is the Eulerian polynomials there are real-roots and certainly uni-
modal polynomials! This simple declaration of intuition has guided generaliza-
tions of well-studied polytopes to large and combinatorially intriguing families
whose associated h∗-polynomials often (or always!) exhibit unimodal Ehrhart h∗-
polynomials. For instance, the lecture hall simplex generalizes to the family of
s-lecture hall simplices [7], all of whose h∗-polynomials are real-rooted and uni-
modal [8]; or the unit cube [0, 1]n whose is secretly the order polytope of the
antichain on n elements [10]. Our efforts to better understand the phenomenon of
Ehrhart unimodality is guided in part by the mysteriously challenging conjecture
of Hibi and Ohsugi which states that any Gorenstein lattice polytope with the
Integer Decomposition Property (IDP) will have a unimodal h∗-polynomial [5].
Over a decade of efforts aimed at testing, proving, and/or disproving this conjec-
ture has resulted in a zoo of combinatorially exotic polytopes who provably satisfy
the conjectural hypotheses (in part or in full) and/or its elusive conclusion. On
one front, the ongoing saga to discover a Gorenstein and IDP lattice polytope with
a non-unimodal h∗-polynomial (or to prove that no such beast exists) has left us
mining the fields of lattice simplices whose associated toric varieties are weighted
projective spaces. Special amongst these lattice simplices are those of the form

∆(1,q) := conv(e1, . . . , en,−q) ⊂ Rn,

where e1, . . . , en are the standard basis vectors in Rn and q := (q1, . . . , qn) ∈ Rn

is a sequence of weakly increasing positive integers. A decade before Hibi and
Ohsugi presented their challenge, Hibi conjectured a more general statement: any
Gorenstein lattice polytope is Ehrhart unimodal [3]. Thirteen years later, Mustata
and Payne showed us counterexamples to this conjecture across even dimensional
spaces [4], and three years after that Payne gave counterexamples of the form
∆(1,q) in each dimension greater than five [6]. It is then natural, of course, to
search this same space for counterexamples to the refined conjecture of Hibi and
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Ohsugi. In the family of ∆(1,q)’s, the Gorenstein condition reduces to reflexivity,
and Conrads [2] showed that ∆(1,q) is reflexive if and only if

qi | 1 +
∑

j 6=i

qj for all j ∈ [n].

Extending this characterization to a statement refined for the new conjecture,
Braun, Davis, and the author of this abstract provide a characterization of when
∆(1,q) is reflexive and IDP in terms of divisibility conditions on the entries of the
sequence q [1]. A natural goal then is to hope that we could be so lucky (or perhaps
as clever) as Payne to select a ∆(1,q) satisfying this condition that fails to have a
unimodal h∗-polynomial. But what does our intuition say? How likely are we to
avoid Ehrhart unimodality among the ∆(1,q)’s?

When asked the latter question, we must respond with our valiant cry of com-
binatorial intuition: Where there is the Eulerian polynomials, there are real-roots
and unimodal h∗-polynomials! But how might we find our favorite polynomials
among the ∆(1,q)’s? We begin by searching for a method to capture one of their
fundamental properties: real-rootedness.

In this talk, we discussed the simplices for numeral systems [9], which are
simplices of the form ∆(1,q), and many of which have provably real-rooted (and
thus unimodal) h∗-polynomials. The common approach to proving a polynomial
is a real-rooted is to search for recursions that allow us to study the roots of the
polynomials and how they interact. To relate simplices ∆(1,q) across dimensions
in such a way as to discover recursions relating their h∗-polynomials, we associate
them to place values of numeral systems.

Simply put, a numeral system is a sequence of numbers a = (an)∞n=0 that we
use to encode numbers which satisfies a0 := 1 and an < an+1 for all n ≥ 0. For
example, the sequence a = (2n)∞n=0 is the sequence of place values for the binary
numeral system. To encode a nonnegative integer b uniquely with respect to a
numeral system, we select the largest place value of the sequence that divides b,
say an, and record as the nth entry in a string of digits the number of times an
divides into b. We then record, as the (n − 1)st digit, the analogous quotient for
the resulting remainder with divisor now an−1, and so on until we have reached a0.
For instance, to write the number b = 102 in binary, we consider the expression

102 = 1 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20.

The representation of the number 102 in the binary numeral system a = (2n)∞n=0

is then 1100110. In turns out that if we pick q = (1, 2, 4, . . . , 2n−1) to define an
n-simplex ∆(1,q), then its h∗-polynomial counts the number nonnegative integers
less than 2n by the number of 1’s in their binary representations! From this fact,
we recover quickly that this h∗-polynomial is real-rooted and therefore unimodal.
In this talk, we observed that a similar construction yields ∆(1,q)’s, one in each
dimension, for every numeral system of the form a = (rn)∞n=0 with real-rooted
h∗-polynomials. In fact, we even saw that the unique symmetric polynomials a(z)
and b(z) decomposing the h∗-polynomial as a(z) + zb(z) are also real-rooted for
this family [9]. What an abundance of real-rooted and unimodal h∗-polynomials
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that pepper our fertile testing ground for the Hibi-Ohsugi conjecture! But where
lie our old friends the Eulerian polynomials? In fact they are here! Their numeral
system is the factoradic numeral system a = ((n+1)!)∞n=0 and their corresponding
q ∈ Rn in each dimension n is given by q := (bn+1,1, bn+1,2, . . . , bn+1,n) ∈ Rn,
where bn+1,k is the coefficient of zk in the generating polynomial

B(z) :=
∑

π∈Sn+1

zmaxDes(π),

in which max Des(π) denotes the maximum element of the descent set for the
permutation π ∈ Sn+1 [9]. At last, our old friends the Eulerian polynomials
emerge as h∗-polynomials of these simplices, suggesting a hidden wealth of Ehrhart
unimodal polytopes lying just out of sight...

References

[1] B. Braun, R. Davis, and L. Solus. Detecting the integer decomposition property and Ehrhart
unimodality in reflexive simplices. Preprint available at https://arxiv.org/abs/1608.01614
(2016).

[2] H. Conrads. Weighted projective spaces and reflexive simplices. manuscripta mathematica
107.2 (2002): 215-227.

[3] T. Hibi. Algebraic combinatorics on convex polytopes. Carslaw Publications, Australia

(1992).
[4] M. Mustata and S. Payne. Ehrhart polynomials and stringy Betti numbers. Math. Ann.

333(4):787-795 (2005).
[5] H. Ohsugi, T. Hibi. Special simplices and gorenstein toric rings. Journal of Combinatorial

Theory Series A, 113(4):718-725 (2006).
[6] S. Payne. Ehrhart series and lattice triangulations. Discrete & Computational Geometry.

40(3), 365-376 (2008).
[7] C. D. Savage, M. J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian poly-

nomials for inversion sequences, Journal of Combinatorial Theory, Series A 119 (2012),
850–870.

[8] C. D. Savage, M. Visontai, The s-Eulerian polynomials have only real roots, Trans. Amer.
Math. Soc., 367(2), (2015), 1441–1466.

[9] L. Solus. Simplices for numeral systems. Preprint available at:
https://arxiv.org/abs/1706.00480 (2017).

[10] R. P. Stanley. Two poset polytopes. Discrete & Computational Geometry 1.1 (1986): 9-23.

Combinatorial mixed valuations

Raman Sanyal

(joint work with Katharina Jochemko)

Minkowski showed that for convex polytopes P1, . . . , Pd ⊂ Rd the function

Vol(λ1P1 + λ2P2 + · · · + λdPd)

agrees with a homogeneous polynomial of degree d for all λ1, . . . , λd ≥ 0; see,
for example, Schneider [10]. The coefficients of that polynomial are called the
mixed volumes MV(P1, . . . , Pd). Mixed volumes play an important role in many
areas, most prominently in convex geometry and algebraic geometry. The mixed
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volumes are continuous, symmetric, positively linear (with respect to Minkowski
sums), and with the normalization MV(K,K, . . . ,K) = d!vol(K) they are unique.
Said differently, the mixed volume arise from the polarization of Vol(λ1P1+λ2P2+
· · · + λdPd).

A fundamental but non-trivial property is that mixed volumes are nonnegative
and monotone with respect to inclusion, i.e.,

0 ≤ MV(P1, . . . , Pd) ≤ MV(Q1, . . . , Qd) ,

for polytopes P1 ⊆ Q1, . . . , Pd ⊆ Qd. If P1, . . . , Pd are lattice polytopes, then
the nonnegativity can be seen as a consequence of the Bernstein–Khovanskĭı–
Kushnirenko theorem; see [3].

An equally important invariant in the study of lattice polytopes is the discrete
volume E(P ) := |P ∩ Zd|. Ehrhart [4] showed that for a lattice polytope P of
dimension r, the function EP (n) := E(nP ) agrees with a polynomial in n ∈
Z≥1 of degree r. Bernstein [1] and McMullen [7] independently showed that for
lattice polytopes P1, . . . , Pk ⊂ Rd the function E(n1P1 + · · ·nkPk) agrees with a
polynomial of degree r = dim(P1+· · ·+Pk). It is tempting to ask if the coefficients
of this polynomial are suitable counterparts in a theory of discrete mixed volumes.
This, however, is not true. The coefficients of EP (n) in the usual monomial basis
are in general not nonnegative (as can be seen at the Reeve tetrahedra) and not
monotone (as follows from Pick’s formula for the linear coefficient).

One possible reason that the naive approach to discrete mixed volumes fails is
that in contrast to the volume, the discrete volume is not homogeneous. In this
talk we elaborated on the notion of a combinatorial mixed valuations to over come
this problem. To that end, we adopt the more general perspective of translation-
invariant valuations. For Λ ∈ {Zd,Rd}, we denote by P(Λ) the family of polytopes
with vertices in Λ. A Λ-valuation is a map ϕ : P(Λ) → R (or to any other abelian
group) such that ϕ(∅) = 0 and

ϕ(P ∪Q) = ϕ(P ) + ϕ(Q) − ϕ(P ∩Q)

for any polytopes P,Q ∈ P(Λ) for which P ∪ Q and P ∩ Q are also in P(Λ) and
such that

ϕ(P + t) = ϕ(P )

for all P ∈ P(Λ) and t ∈ Λ. McMullen [7] showed that for a fixed polytope
P , the function n 7→ ϕP (n) := ϕ(nP ) agrees with a polynomial of degree at
most dimP . Since for a fixed Q the map P 7→ ϕ(P + Q) is a Λ-valuation, it
follows that ϕ(n1P1 + · · · + nkPk) agrees with a polynomial of degree at most
dim(P1 + · · · + Pk). Hence, it may be pondered if a mixed theory for general
Λ-valuations can be established.

For Λ-valuation ϕ and r ≥ 0 we define the r-th combinatorial mixed valuation
of ϕ on polytopes P1, . . . , Pr by

CMϕ(P1, . . . , Pr) :=
∑

I⊆[r]

(−1)r−|I|ϕ(PI) ,
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where PI :=
∑

i∈I Pi and P∅ := {0}. The combinatorial mixed valuations can be
algebraically characterized as the coefficients of ϕ(n1P1+· · ·+nkPk). In particular
CMrϕ ≡ 0 whenever r > d. If ϕ = Vol is the volume, then Minkowski showed
that

CMdVol(P1, . . . , Pd) = MV(P1, . . . , Pd) .

If ϕ = E is the discrete volume, then Bernstein [1] showed that again

CMdE(P1, . . . , Pd) = MV(P1, . . . , Pd) .

More recently, Bihan [2] that CMrE(P1, . . . , Pr) ≥ 0 for all r and P1, . . . , Pr ∈
P(Zd). Nonnegativity and, more generally, monotonicity does not hold for all
(nonnegative) Λ-valuations. For a Λ-valuation ϕ, one usually defines

ϕ(relintP ) :=
∑

F

(−1)dimP−dimFϕ(F ) ,

where the sum is over all faces F ⊆ P . In [5], we introduced the notion of weakly
combinatorial monotone valuations as those satisfying

ϕ(relintP ) + ϕ(relintF ) ≥ 0

for any P ∈ P(Λ) and facet F ⊂ P .

Theorem [6]. If ϕ is a weakly combinatorial monotone Λ-valuation, then

0 ≤ CMr(P1, . . . , Pr) ≤ CMr(Q1, . . . , Qr)

for any r ≥ 0 and Pi ⊆ Qi, i = 1, . . . , r.

This recovers the nonnegativity and monotonicity of mixed volumes and streng-
thens Bihan’s result. In particular, this result gives an interesting consequence for
the interpretation of CMrE(P1, . . . , Pr) as a (motivic) arithmetic genus of non-
compact complete intersections given in [9].

The second part of the talk focused on the proof of the theorem. For that,
we gave an introduction to the algebra of polytopal simple functions as developed
by Khovanskĭı–Pukhlikov [8] and McMullen’s polytope algebra. The polytope
algebra plays the role of an universal object with respect to translation-invariant
valuations. Properties of valuations, such as monotonicity, can be modeled as cones
(or submonoids) in the polytope algebra. Differences of the combinatorial mixed
valuations associated to this universal valuation can be interpreted as nonnegative
linear combinations of half-open products of simplices. For weakly combinatorial
monotone Λ-valuations, this directly translates into the statement of the theorem
above.
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Ehrhart positivity and McMullen’s formula

Fu Liu

Introduction: Ehrhart positivity. For a polytope P ⊂ Rd, and for any non-
negative integer t, let i(P, t) := |tP ∩ Zd| be the function that counts the number
of lattice points in the tth dilation of P. In the 1960’s Eugène Ehrhart [Ehr62]
discovered that as long as P is an integral polytope, that is, a polytope whose ver-
tices are lattice points, the function i(P, t) is a polynomial in t of degree dim(P )
(see [Sta97] for a proof). Thus, we call i(P, t) the Ehrhart polynomial of P . Three
coefficients of i(P, t) are well-understood: the leading coefficient is equal to the
normalized volume of P , the second coefficient is one half of the sum of the nor-
malized volumes of facets, and the constant term is always 1. Although these three
coefficients can be described in terms of volumes (considering 1 to be the volume
of a point), and thus are positive, it is not true that all the remaining coefficients
of i(P, t) are positive. The first counterexample comes up in dimension 3, known
as Reeve’s tetrahedra [BR15, Example 3.22].

We say a polytope has Ehrhart positivity or is Ehrhart positive if it has positive
Ehrhart coefficients. We are interested in the following question:

Question 1. Which families of integral polytopes are Ehrhart positive?

This question turns out to be very difficult. Even though multiple families of
polytopes have been shown to be Ehrhart positive in the literature, the techniques
involved are (almost) all different. In particular, Theorem 1.2 in [Liu09] states that
for any rational polytope P, there exists a polytope P ′ with the same face lattice
such that P ′ is Ehrhart positive. This result indicates that Ehrhart positivity
is not a combinatorial property. Therefore, I am interested in other geometric
methods to prove Ehrhart positivity. McMullen’s formula is such a tool.
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McMullen’s formula and α-positivity. In 1975 Danilov asked, in the context
of toric varieties, if it is possible to assign values Ψ(C) to all pointed cones C such
that

(1) |P ∩ Z
d| =

∑

F : a face of P

α(F, P ) nvol(F ),

where α(F, P ) is set to be Ψ of the “pointed feasible cone” of P at F. (The pointed
feasible cone is a cone that captures local property of P at F.) McMullen [McM93]
was the first to confirm the existence of (1) in a non-constructive way. Hence, we
refer to the above formula as McMullen’s formula. Subsequently, different con-
structions were given by Pommersheim and Thomas [PT04], Berline and Vergne
[BV07], and Schurmann-Ring [SR]. We are mostly interested in Berline-Vergne’s
construction for its nice valuation and symmetry properties. We refer to their
construction of Ψ and α as BV-construction and BV-α-valuation, respectively.

One notices that even the existence of McMullen’s formula has interesting con-
sequences, providing a refinement of Ehrhart positivity. Note that pointed feasible
cones do not change when we dilate a polytope. Thus, applying McMullen’s for-
mula to tP and rearranging coefficients, we obtain a formula for the coefficient of
tk in i(P, t):

[tk]i(P, t) =
∑

F :k-dimensional face of P

α(P, F )nvol(F ).

Hence, Ehrhart positivity follows if all α-values from a certain construction are
positive. This motivate us to say a polytope P has α-positivity or is α-positive if
all α’s associated to P are positive. In particular, we will say BV-α-positivity if
we use Berline-Vergine’s construction. By above discussion, proving α-positivity
is a natural approach of attacking conjectures on Ehrhart positivity.

Positivity of generalized permutohedra. In [DLHK09] De Loera, Haws, and
Koeppe studied matroid base polytopes and conjectured them to be Ehrhart pos-
itive. Note that matroid base polytopes fit into a bigger family: generalized per-
mutohedra considered by Postnikov. In joint work with Castillo [CL15, CL], we
generalized conjecture of De Loera et al. to all integral generalized permutohe-
dra, and made progress on proving our conjecture. Our discussion on McMullen’s
formula implies that our conjecture can be reduced to proving all integral gener-
alized permutohedra are BV-α-positive. However, it follows from the valuation
property of BV-construction, one sees that the problem can be reduced further to
the following conjecture:

Conjecture 2. Every regular permutohedron Πd is BV-α-positive.

By studying this conjecture, we obtained partial results on our initial conjecture
on the Ehrhart positivity of generalized permutohedra. First, we show that our
conjecture is true for dimension up to 6. Next, instead of focusing on all the
coefficients of Ehrhart polynomials, we study certain special coefficients, and are
able to show that the third and fourth coefficients of the Ehrhart polynomial of any
integral generalized permutohedra are positive. (Note that the first and second
Ehrhart coefficients are always positive.) Finally, using the symmetry property
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of the BV-α-valuation, we were able to show the linear coefficient of the Ehrhart
polynomial of any integral generalized permutohedra dimension at most 100 are
positive.

Some negative results. BV-construction (or probably any other construction
for McMullen’s formula) is not only a good geometric method for showing Ehrhart
positivity, but can also be used in producing negative results. In [Bru13, Question
7.1], Bruns asked whether all smooth integral polytopes are Ehrhart positive. In
joint work with Castillo-Nill-Paffenholz [CLNP], we show the answer is false by
presenting counterexamples in dimensions 3 and higher. The main ideas used in
our paper was chiseling cubes and searching for negative BV-α-values. Further-
more, we were able to construct a smooth normal fan for dimension 7 and higher,
such that one of the BV-α-values associated to it is negative whereas any integral
polytope with this fan as its normal fan is Ehrhart positive. This implies that
BV-α-positivity is strictly stronger than Ehrhart-positivity.
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Normal and Very Ample Polytopes - old and new open problems

Mateusz Michalek

Normal and very ample polytopes play a central role in toric geometry. Let us
consider a lattice polytope P ⊂ M ⊗ R = Rn. Assume that the polytope P is
spanning, e.g. for simplicity 0 ∈ P and the integral combinations of lattice points
of P generate the whole M i.e. Z(P ∩M) = M .

We say that a (spanning) polytope P is normal if and only if for every integer

k > 0 for any p ∈ kP ∩M there exist p1, . . . , pk ∈ P ∩M such that p =
∑k

i=1 pi.
The definition of very ample is similar, but instead of the condition holding for
every k we only require it for k large enough.

We note that given P (or in fact any set of points in Zn) we may associate to it a
projective variety XP ⊂ P|P∩M|−1 as the closure of the image of the map (C∗)n →
P|P∩M|−1 defined by the Laurent monomials corresponding to lattice points P∩M .
The variety XP is normal if and only if P is very ample. Equivalently, if and only
if XP is the toric variety represented by the normal fan of P . For more information
about these constructions we refer to [6, 7, 10, 16] and further characterizations
of very ample polytopes to [1, Proposition 2.1].

There are many open problems related to normal and very ample polytopes.
Below we present just a selection of ’our favorite’.

Conjecture 1.

(1) [4, Remark 6.6] Let B be a ball in Rn. Is conv(B∩Zn) a normal polytope?
(2) Does there exist a very ample, nonnormal simple polytope (or even a sim-

plex)?

The second point would be a step towards (finding a counterexample to) the
famous Oda’s conjecture:

Conjecture 2 (Oda). Is every smooth polytope normal?

Let us point out that very ample polytopes can be very far from normal, as
shown e.g. in the following cases [11]:

• For any integer n there exists a lattice polytope P , such that for k < n,
kP is not normal.

• There exists a very ample polytope P such that aP and bP are normal,
but (a + b)P is not.

The constructions are based on [1] and answer several questions from [8, 5].
Another series of very interesting questions concerns unimodality. One of the

motivating questions was asked by Stanley, however not in the realm of toric
geometry.

Conjecture 3. [15, Conjecture 4(a)] Let R = R0 ⊕ R1 ⊕ . . . be a graded (noe-
therian) Cohen-Macaulay (or perhaps Gorenstein) domain over a field K = R0,
which is generated by R1, and has Krull dimension d. Let H(R,m) = dimKRm,
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be the Hilbert function of R, and write

∑

m≥0

H(R,m)xm = (1 − x)−d
s

∑

i=0

hix
i.

Then the sequence h0, h1, . . . , hs is log-concave.

There are known counterexamples to Conjecture 3 in case of Cohen-Macaulay
rings. Let us present them in detail as there seems to be confusion in the literature.
In [3] the counterexamples are not presented, but referred to [12] and [13] (we have
not found the latter preprint, however we believe that its published version is [14]).

Example 4. Let p be the homogenization in R = C[X,Y, Z, T,W ] of the ideal
(X18 − X − 1 − T, Y − X3, Z − XY ) ⊂ C[X,T, Z, T ]. Then R/p is a Cohen-
Macaulay domain with h-vector (1, 3, 5, 4, 4, 1).

The counterexamples indeed are Cohen-Macaulay and do not have a log-concave
h-vector. However, all of them are unimodal. Meanwhile, some authors started
referring to Conjecture 3 as Stanley’s unimodality conjecture, e.g. [2, p. 696]. As
far as we know however the following conjecture is open (we are not sure to who
it should be attributed).

Conjecture 5. For a standard graded Cohen-Macaulay domain the h-vector is
unimodal.

Further the counterexamples we referred to do not define normal projective va-
rieties. This has following consequences. First, in toric world normal projective
toric varieties correspond to very ample polytopes. Thus in case of nonnormal
projective toric varieties the Hilbert polynomial differs from the Ehrhart polyno-
mial - this is in fact one of the characterizations of very ample polytopes. Thus, in
such a case the Hilbert polynomial does not provide information about h∗-vector.
Second, it motivates the following questions that we find interesting:

Conjecture 6. Do normal, standard graded Cohen-Macaulay domains have log-
concave h-vectors? What if we only require their Proj to be normal?

In toric setting we ask for the following:

Conjecture 7. Do very ample polytopes always have unimodal h∗-vectors?

For further conjectures with additional assumptions on normality or Gorenstein
we refer to [9] and the report of L. Solus present in this volume.
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Spanning Lattice Polytopes

Johannes Hofscheier

In this note we explore spanning lattice polytopes with a view toward Ehrhart
theory and their relation to smooth, very ample and IDP polytopes.

Let M ∼= Zd be a lattice and MR := M ⊗Z R the associated vector space. An
M -spanning lattice polytope P ⊆ MR (or just “spanning lattice polytope” if the
ambient lattice is clear from the context) is a lattice polytope whose lattice points
affinely span the ambient lattice M . These polytopes are sometimes also called
primitive (see, for instance, [2]). From now on, let M = Zd.

Every 2-dimensional lattice polytope is spanning whereas the Reeve-simplex
conv(0, e1, e2, e1 + e2 + re3) ⊆ R3 is not spanning for r ≥ 2 where e1, e2, e3 ∈ Z3

denotes the standard basis.
The spanning-assumption is a mild condition for lattice polytopes. Indeed,

one can associate a spanning polytope P̃ to every lattice polytope P : P̃ is the
same polytope as P , but considered as a lattice polytope with respect to the
lattice spanned by the lattice points in P . Moreover, the class of spanning lattice
polytopes seems to be manageable and it has many interesting properties.

The h∗-polynomial of a lattice polytope P is the numerator polynomial of the
generating series of the Ehrhart polynomial which counts lattice points in dilations
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of the polytope. The coefficient-vector h∗(P ) of the h∗-polynomial is called its h∗-
vector. We refer the reader to [1] for a beautiful introduction to this subject and
for further details.

A sequence a0, . . . , an of real numbers has no internal zeros if there do not exist
integers 0 ≤ i < j < k ≤ n satisfying aiak 6= 0 and aj = 0. The sequence is called
unimodal if for some 0 ≤ j ≤ n we have a0 ≤ a1 ≤ . . . ≤ aj ≥ aj+1 ≥ . . . ≥ an.

It is a challenging and fascinating problem to determine what geometric, arith-
metic or combinatorial conditions on lattice polytopes lead to unimodality or no
internal zeros for their h∗-vectors. The following theorem can be seen as a partial
answer to this question.

Theorem 1 ([6]). Let P be a spanning lattice polytope of degree s, i.e., the right-
most nonzero entry of the h∗-vector h∗(P ) = (h∗

0, h
∗
1, . . . , h

∗
s) has index s. Then,

for every i, j ∈ N with i + j < s, we have

(1) h∗
1 + h∗

2 + · · ·h∗
i ≤ h∗

j+1 + h∗
j+2 + · · ·h∗

j+i.

In [9, Proposition 3.4], Stanley showed these inequalities under the stronger
assumption that P is IDP which stands for “integer decomposition property” and
means that for every integer k > 0 and any x ∈ kP ∩ Zd, there exist x1, . . . ,xk ∈
P ∩ Zd such that x =

∑k
i=1 xi. The inequalities of Theorem 1 imply many other

known inequalities, e.g., the special case i = 1 implies that the h∗-vector of a
spanning lattice polytope has no internal zeros (see [7]) and can be considered as
a generalisation of Hibi’s Lower Bound Theorem:

Corollary 2 (Hibi’s Lower Bound Theorem [5]). For a d-dimensional lattice poly-
tope P with an interior lattice point, we have h∗

1(P ) ≤ h∗
j (P ) for 1 ≤ j < d.

Proof. Since P̃ is obtained by coarsening the ambient lattice, its h∗-vector satisfies
h∗
j (P ) ≥ h∗

j (P̃ ). As P and P̃ contain the same number of lattice points, it follows
that

h∗
1(P ) = h∗

1(P̃ ) ≤ h∗
j (P̃ ) ≤ h∗

j (P ). �

The proof of Theorem 1 uses arguments from algebraic geometry applied to the
Ehrhart ring of the polytope. In the spanning-case, in contrast to the IDP-case,
the Ehrhart ring needs not to be generated in degree 1, and thus the geometry
takes place in a weighed projective space where surprisingly not everything goes
the same as for the “straight” projective space (see [3]). We refer the reader to
the upcoming paper [6] for further details of the proof.

Let us complete this note with a comparison of the spanning-property to other
conditions on lattice polytopes. A lattice polytope P is called smooth if its normal
fan is smooth, i.e., every top-dimensional cone is generated by a lattice basis. The
definition of a very ample lattice polytope is similar to the IDP one, but here the
condition needs only to be true for k sufficiently large.

Figure 1 depicts the relations (known and conjectured ones) between the above
mentioned notions. No arrow in Figure 1 can be reversed as can be seen by the
following examples.
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IDP unimodal h∗-vector

smooth very ample spanning no internal zeros in h∗-vector

?

?

Thm. 1

Figure 1. The conjectured implications are known as the Uni-
modality Conjecture in Ehrhart Theory and (a special case of)
Oda’s Conjecture. The rightmost horizontal implication in the
second row follows by Theorem 1 and can be considered as a
modest analogue of the unimodality conjecture.

Example 3. The lattice polytope P =conv (0, e1, . . . , e4, 5 (e1 + . . . + e4) + 8e5) ⊆
R5 is a spanning but not very ample. Indeed, as 2 (e1 + . . . + e4)+3e5 is contained
in P , it is spanning. Using the software polymake (see [4]), one can check that P
is not very ample. Moreover, the h∗-vector of P equals (1, 1, 2, 1, 2, 1), and thus is
not unimodal.

Example 4. In [8], one can find several very ample but not IDP polytopes. These
polytopes are also not smooth.

We have the following question that we find interesting:

Question 5. How can Figure 1 be extended to comprise real-rooted or log-concave
h∗-vectors?

References

[1] M. Beck and S. Robins. Computing the continuous discretely. Integer-point enumeration in
polyhedra. Undergraduate Texts in Mathematics. Springer, New York, 2nd edition edition,
2007.
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Positivity and strict monotonicity of the mixed volume

Ivan Soprunov

(joint work with Frederic Bihan)

One of the fundamental results in the theory of Newton polytopes is Bernstein’s
theorem which gives an upper bound for the number of isolated solutions to a sys-
tem of Laurent polynomials. Recall that the support A(f) of a Laurent polynomial
f ∈ C[t±1

1 , . . . , t±1
d ] is the set of lattice points a ∈ Zd such that the corresponding

Laurent monomial ta = ta1 · · · tad appears in f . The Newton polytope P (f) is the
convex hull of A(f), which is a lattice polytope in Rd. Then Bernstein’s theorem
says that the number of isolated solutions in (C∗)d of a system f1 = · · · = fd = 0
is at most d!V (P1, . . . , Pd) solutions, where Pi = P (fi) for i = 1, . . . , d. The quan-
tity V (P1, . . . , Pd) is the mixed volume, which is the polarization of the Euclidean
volume form. In particular, it is symmetric, Minkowski additive, and V (P, . . . , P )
coincides with vol(P ), the Euclidean volume of P .

The mixed volume is non-negative and monotone with respect to the inclusion,
that is

V (P1, . . . , Pd) ≤ V (Q1, . . . , Qd),

whenever Pi ⊆ Qi for i = 1, . . . , d. In the Einstein workshop on Lattice Polytopes
in December of 2016, Frédéric Bihan asked the following question. Let P1, . . . , Pd

be polytopes in Rd and Q be the convex hull of P1 ∪ · · · ∪Pd. Can we characterize
when

V (P1, . . . , Pd) = vol(Q)

geometrically? He was motivated by the problem of improving Bernstein’s esti-
mate, in the case when the Newton polytopes are equal to one polytope Q, by
applying an invertible linear transformation to the coefficients of the system. This
operation preserves the solution set and the union of the supports of the system,
but may change the individual supports. In other words, in produces an equivalent
system with some Newton polytopes P1, . . . , Pd satisfying Q = conv(P1∪· · ·∪Pn).
Thus, if V (P1, . . . , Pd) < vol(Q) we get a better bound.

Our main result is a geometric criterion for the strict inequality

V (P1, . . . , Pd) < V (Q1, . . . , Qd)

in terms of essential collections of “touched faces”, see [1]. For two polytopes
P ⊆ Q we say P touches a face F of Q if P ∩ F 6= ∅. In particular, we show
that if polytopes P1, . . . , Pd are contained in a d-dimensional polytope Q then
V (P1, . . . , Pd) < vol(Q) if and only if Q has a face F of dimension k < d which
is touched by at most k of the Pi. This criterion has a simple interpretation in
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the theory of Newton polytopes. Let f1 = · · · = fd = 0 be a Laurent polynomial
system with the same Newton polytope Q. Each face F of Q defines a submatrix
CF of the coefficient matrix of the system. Then the system has strictly less than
d! vol(Q) isolated solutions if rankCF < dimF + 1.

The geometric criterion for strict monotonicity holds for arbitrary real poly-
topes. In the case of lattice polytopes one should be able to say more about
the difference V (Q1, . . . , Qd) − V (P1, . . . , Pd), as the normalized mixed volume
d!V (P1, . . . , Pd) is always a non-negative integer. For example, suppose lattice
polytopes P1, . . . , Pd lie in a lattice polytope Q and there is a facet F ⊂ Q not
touched by m of the Pi. Then one can show that d! vol(Q)−d!V (P1, . . . , Pd) ≥ m.
It would be interesting to see if this could be generalized to faces of smaller di-
mension.

Another possible application of our criterion is to the problem of classifying
collections of lattice polytopes P1, . . . , Pd with the fixed value of the mixed volume.
A recent result by Esterov and Gusev [2] provides such a classification in the case of
normalized mixed volume one. For full-dimensional collections their classification
is particularly simple. One can show that there exist only finitely many collections
of d full-dimensional lattice polytopes with fixed mixed volume, up to unimodular
transformations and independent translations. Classifying them for small values
of the mixed volume or in small dimensions seems feasible.
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Discussion session: “Hensley’s and Duong’s conjecture in dimension 3”

Gennadiy Averkov, Gabriele Balletti, Mónica Blanco, Benjamin

Nill, Ivan Soprunov

Conjecture 1 (Duong’s conjecture). Let ∆ ⊆ R3 be a clean tetrahedron with
exactly k > 0 interior lattice points. Then the normalized volume of ∆ is at most
12k + 8.

Moreover, this volume is uniquely achieved by the following clean tetrahedron,
for each k ≥ 1:

Tk := conv {(−1,−1, 1), (1,−1,−2), (1, 0, 2k− 1), (−1, 2, 0)}

Remember that a lattice polytope is clean if the only lattice points in the
boundary are the vertices.

Conjecture 2 (Hensley’s conjecture for dimension 3). Let P ⊆ R3 be a lattice
3-polytope with exactly k > 0 interior lattice points. Then the normalized volume
of P is at most 36(k + 1).
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Moreover, this volume is uniquely achieved by the following polytope, for each
k ≥ 2:

S3
k := conv{(0, 0, 0), (2, 0, 0), (0, 3, 0), (0, 0, 6(k+ 1))}

For k = 1 another polytope, different than S3
1 , also achieves this volume.

In both Tk and S3
k, the k interior points are collinear, so we study whether Duong’s

conjecture is true or not by independently asking the following questions:

(1) Is the conjecture true for the case where the interior lattice points are
collinear?

(2) If the interior lattice points are not collinear, is it true then that the volume
is not maximized?

For question (1) we are confident that we can find a tight upper bound as
follows:

Claim 3. Let ∆ ⊂ R3 be a clean tetrahedron with k > 0 collinear interior points.
Let π : R3 → R2 be the lattice projection that maps the segment of interior lattice
points to the origin. Then if k ≥ 3, π(∆) is a reflexive polygon.

With this, the number of projections (reflexive triangles or quadrilaterals) is
finite, and with the cleanness condition, the enumeration of the possible tetrahedra
that project to each of these polygons is relatively small and easy to derive, and a
tight bound on the volume of them can be achieved.

To determine a volume maximizer within the family of all clean tetrahedra ∆
it thus remains to study the case where the set X of all interior lattice points of
∆ is not collinear (meaning that the set is of dimension at least 2). In this case,
we want to refine the arguments of Pikhurko for deriving volumes bounds of non-
hollow lattice simplices. First of all, X contains a point lying ‘rather centrally’ in
the interior of ∆. This allows Pikhurko to derive a bound on the volume. The
main ingredients of Pikhurko’s approach are: his ‘jump’ method for localizing
the position of the most central points, and a lemma that allows to bound the
volume of a simplex using Van der Corput’s theorem (which bounds the barycentric
coordinates of the interior lattice points). We recall that Van der Corput’s theorem
links the number of interior lattice points and the volume for origin-symmetric
convex bodies. It turns out that if X is at least two-dimensional, we can apply a
modification of Van der Corput’s theorem that has both a strengthened assumption
and a strengthened assertion.

It might be that using a modified Van der Corput’s inequality we can also say
something about the following

Conjecture 4 (Hensley’s conjecture for 3-dimensional simplices). Let ∆ ⊆ R3 be
a lattice tetrahedron with exactly k > 0 interior lattice points. Then the normalized
volume of ∆ is at most 36(k + 1).

It would be nice to at least confirm the bound in the case where X is of dimen-
sion 2.

We notice that Claim 3 is also true for non-clean, non-simplices in dimension
3, which implies that this falls under the conditions of Hensley’s conjecture for
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collinear points. Then maybe both conjectures in dimension 3 can be attacked at
the same time. So we forget about the cleanness condition and consider all lattice
3-polytopes with k > 0 interior lattice points. Then we look at the restrictions
that the shape of these interior points imposes to the lattice points in the boundary
of the polytope.
We consider the case when the interior lattice points in the polytope form a 2-
dimensional polygon Q. We again have arguments to limit the possible positions
of the boundary lattice points. More specifically:

Claim 5. For most possibilities of Q all the boundary lattice points are at lattice
distance ≤ 1 from the plane spanned by Q. That is, in particular the polytope has
width 2.

Now we need to address two different problems:

• Study the exceptional cases that do not allow for these bound on the
distance. We believe that we can prove that they can only happen for small
values of k, using volume bounds on canonical and hollow 3-polytopes.

• The next problem that arises is to try and bound the volume of the whole
polytope, based on the maximum area of its intersection with the plane
that contains Q. But for this we need to know a bound on the area of a
rational polytope that has Q as its set of interior lattice points, knowing
only the number k of lattice points of Q.

Discussion session: “Oda’s conjecture”

Matthias Beck, Christian Haase, Akihiro Higashitani, Johannes

Hofscheier, Katharina Jochemko, Lukas Katthän, Mateusz Michalek

We have investigated Oda’s conjecture which states that smooth polytopes are
normal. It is one of the most intriguing open problems in toric geometry. While
many experts believe there may exist high dimensional counterexamples, still a
proof for three dimensional polytopes is very much sought for. Let P be a smooth
polytope. In dimension 3 it is sufficient to prove that every lattice point in 2P is
a sum of two lattice points of P . Equivalently that for any lattice point z if the
intersection of P and −P + z is nonempty then it contains a lattice point, or also
equivalently every half integer point in P is a mid point of a lattice segment with
endpoints in P . Christian Haase recalled us the following result: for any facet
F of P let F−1 be a polytope obtained as an intersection of P and a hyperplane
parallel to F and of lattice distance 1 to F . Then the convex hull of F and F−1

is a normal lattice polytope. It means that a neighborhood of the boundary is
covered by normal polytopes and (quite counterintuitively) the only ’problematic’
points are ’deep in interior’. We decided that it is worth to try to prove Oda’s
conjecture for centrally symmetric polytopes. The main reason is that in that case
for any lattice point p ∈ P the (rational) polytope 1

2 (P + p) contains 0. Hence,
we can cover a large part of the polytope with a star neighbourhood of 0 that is
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a sum of polytopes of the previous type. An article proving Oda’s conjecture for
three dimensional smooth centrally symmetric polytopes will be written.

Discussion session: “Alcoved polytopes”

Matthias Beck, Christian Haase, Johannes Hofscheier, Katharina

Jochemko, Lukas Katthän, Fu Liu, Raman Sanyal, Akiyoshi Tsuchiya

Our plan was to consider the question whether the h∗-vector of alcoved polytopes
is unimodal. Recall that a polytope is alcoved if is of the form

P = {x ∈ Rd xi − xj ≤ aij , li ≤ xi ≤ ui for 1 ≤ i, j ≤ d}

for some aij , li, ui ∈ Z. These polytopes admit a canonical triangulation which
is balanced, i.e., its vertices can be colored such that no two vertices of the same
color are in the same simplex.

Our approach to showing unimodality was via exhibiting a Lefschetz element.
For this, we guessed that the sums over the color classes should yield a linear
system of parameters. This is true for balanced simplicial complexes, and we hope
that one can use a deformation argument to lift this to our setting. Further, we
tried to find an explicit vector space basis for the Artinian reduction of the Ehrhart
ring in terms of a half-open decomposition of the triangulation. This seems to be
difficult.

Finally, we guessed that the sum over the vertices of a single simplex should be
a Lefschetz element. We verified this in two small examples.

Discussion session: “Multivariate stable h∗-polynomials”

Akihiro Higashitani, Katharina Jochemko, Mateusz Michalek,

Alexander Kasprzyk, Raman Sanyal, Liam Solus

Stable polynomials are multivariate generalizations of real-rooted univariate poly-
nomials. In the light of the unimodality conjecture a current hot topic is to find
and investigate lattice polytopes with real-rooted h∗-polynomials. The aim of this
discussion group was to discuss multivariate stable polynomials in the context
of Ehrhart theory. We discussed two appearances of multivariate polynomials in
Ehrhart theory. The first one was counting lattice points in Minkowski sums of
lattice polytopes. The Bernstein-McMullen Theorem [2, 3] asserts that for lat-
tice polytopes P1, . . . , Pk ∈ Zd, EP1,...,Pk

(n1, . . . , nk) := |n1P1 + . . . + nkPk ∩ Zd|
agrees with a multivariate polynomial for integers n1, . . . , nk ≥ 0 of degrees
di := degni

(EP1,...,Pk
) ≤ dimPi. Therefore, the multivariate generating series

can be written in the form
∑

n1,...,nk≥0

EP1,...,Pk
(n1, . . . , nk)tn1

1 · · · tnk

n =
hP1,...,Pk

(t1, . . . , tk)
∏k

i=1(1 − ti)di+1
,

where hP1,...,Pk
(t1, . . . , tk) is a polynomial of degree at most di in ti. Recently,

Beck, Jochemko and McCullough [1] proved that h∗-polynomials of zonotopes are
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real-rooted. Towards a multivariate analog we proved in the discussion round that
hP1,...,Pk

(t1, . . . , tk) is stable whenever P1, . . . , Pk generate an axes-parallel box.
However, this is not true for general lattice parallelepipeds.

We also discussed multivariate generating functions of the form
∑

n≥0

∑

a∈nP∩Zd

xa =
h(x)

∏

a∈P∩Zd(1 − xa)
.

We observed that already in small dimensions calculating the numerator polyno-
mial gets quickly involved. It might be worthwhile to study families of polytopes
for which the numerator is stable or at least hyperbolic with respect to certain
directions.
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Discussion session: “2-level Polytopes”

Johannes Hofscheier, Fu Liu, Alexander Kasprzyk, Raman Sanyal

and Akiyoshi Tsuchiya

A polytope P ⊆ Rd (not necessarily integral) is called 2-level if for every facet F of
P there is a translation of its supporting hyperplane which contains the vertices not
in F . For instance, hypersimplices are 2-level. These polytopes have a particular
nice combinatorial structure, e.g., up to affine linear isomorphisms (not necessarily
unimodular) they are equivalent to the intersection of a unit hypercube [0, 1]n with
an affine hyperplane which does not intersect any edge of the hypercube.

From the definition it straightforwardly follows that a polytope is centrally
symmetric and 2-level if and only if its dual is centrally symmetric and 2-level.
This motivates the following question:

Question 1. What are the centrally symmetric 2-level reflexive polytopes?

For instance Q = conv(PG ×{1},−PG ×{−1}) is a centrally symmetric 2-level
reflexive polytope where PG denotes the stable set polytope of a perfect graph G.
Indeed, Q is reflexive by [HT17, Theorem 1.1 (b)] and 2-level by a straightforward
argument using the following theorem:

Theorem 2 ([GPT10, Corollary 4.9.]). A polytope is 2-level with a simple vertex
if and only if it is affinely isomorphic to the stable set polytope of a perfect graph.

This result also motivates our final question:

Question 3. Can the previous statement be generalised for bigger classes of 2-level
polytopes? Is there a similar description for all 2-level polytopes?
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Discussion session: “Very Ampleness, IDP, Log-concavity, and

Unimodality”

Gabriele Balletti, Akihiro Higashitani, Johannes Hofscheier,

Mateusz Michalek, Benjamin Nill, Liam Solus

One of the fundamental projects of this mini-workshop was to study when a d-
dimensional lattice polytope P has a unimodal Ehrhart h∗-polynomial, a polyno-
mial denoted by h∗(P ; z) := h∗

0 + h∗
1z + · · · + h∗

dz
d in this summary. Some of the

most challenging open conjectures on Ehrhart unimodality (i.e. the unimodality
of h∗(P ; z)) arise in the context of more general conjectures pertaining to graded
semigroup algebras. The first such algebraic conjecture that we will consider was
proposed by Stanley in his survey article on log-concave and unimodal sequences
in algebra and combinatorics.

Conjecture 1. [11, Conjecture 4(a)] Let R =
⊕∞

m=0 Rm be a graded (Noetherian)
Cohen-Macaulay (or perhaps Gorenstein) domain over a field R0 := K, which is
standard (i.e. generated by R1) and has Krull dimension d. Let H(R,m) :=
dimK Rm be the Hilbert function of R and write

∑

m≥0

H(R,m)zm = (1 − z)−d
s

∑

i=0

hiz
i.

Then the polynomial
∑s

i=0 hiz
i is log-concave.

This conjecture was disproven in its full generality by Niesi and Robbiano [6].
Using the computer algebra system CoCoA, they showed, for instance, that the
Cohen-Macaulay domain

Q[x, y, z]/〈x18 − x− 1, y − x3, z − xy〉

has
∑s

i=0 hiz
i = 1 + 3z+ 5z2 + 4z3 + 4z4 + z5, which is not log-concave. Less than

a year later, in a new survey article on the same topic, Brenti updated Stanley’s
original conjecture as follows:

Conjecture 2. [2, Conjecture 5.1] Let R be a graded standard Gorenstein domain.
Then the polynomial

∑s
i=0 hiz

i defined in Conjecture 1 is unimodal.

Brenti goes on to note that the statement of Conjecture 2 is also open if we
substitute the word “Gorenstein” with “Cohen-Macaulay” or if we substitute the
word “unimodal” with the word “log-concave.” This story has a place in the
context of this workshop since each of these conjectures yields, as a special case,
a conjecture on the h∗-polynomials of lattice polytopes.
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To uncover the special cases of each of these conjectures that are relevant to this
mini-workshop, we recall that the Ehrhart ring of a d-dimensional lattice polytope
P ⊂ Rn is defined as follows: Let x1, . . . , xn, xn+1 be indeterminants over some
field K, and let mP := {mα : α ∈ P} be the mth dilate of P for m ∈ Z>0. Let
A(P )m denote the vector space over K spanned by the monomials xα1

1 · · ·xαn

n xm
n+1

for all (α1, . . . , αn) ∈ mP ∩ Zn. The graded algebra

A(P ) :=
∞
⊕

m=0

A(P )m

is called the Ehrhart ring of P . The polynomial
∑s

i=0 hiz
i for the ring A(P ) is

the h∗-polynomial of P , and by a theorem of Hochster [4] we know that A(P ) is
a Cohen-Macaulay domain. Moreover, A(P ) is standard if and only if P is IDP
(i.e. for every m ∈ Z>0 each lattice point in mP can be written as the sum of
m lattice points in P ). Additionally, A(P ) is Gorenstein if and only if h∗(P ; z) is
a symmetric polynomial [10]. The collection of conjectures given by Stanley and
Brenti that remain open in the context of the Ehrhart rings A(P ) can be stated
in terms of the lattice polytopes P and their h∗-polynomials as follows:

Conjecture 3.

(1) If P is IDP then h∗(P ; z) is unimodal.
(2) If P is IDP the h∗(P ; z) is log-concave.
(3) If P is Gorenstein and IDP then h∗(P ; z) is unimodal.
(4) If P is Gorenstein and IDP then h∗(P ; z) is log-concave.

These conjectures have also appeared in the discrete geometry setting. Conjec-
ture 3 (1) appeared in [9, Question 1.1] and Conjecture 3 (3) is often attributed to
[8]. Evidence supporting these conjectures is ever growing in abundance, however
it remains less than clear how strong the IDP hypothesis is in regards to Ehrhart
unimodality. Just as unimodality is a weakening of log-concavity, IDP has a weak-
ening of its own. A polytope P is called very ample if for any sufficiently large
m ∈ Z>0 every lattice point in mP can be written as the sum of m lattice points
in P . An IDP polytope P is very ample, but not every very ample polytope is
IDP [3, 5]. To better estimate the strength of the IDP hypothesis in the above
conjectures, we may consider the analogous family of questions:

Question 4.

(1) If P is very ample, is h∗(P ; z) unimodal?
(2) If P is very ample, is h∗(P ; z) log-concave?
(3) If P is Gorenstein and very ample, is h∗(P ; z) unimodal?
(4) If P is Gorenstein and very ample, is h∗(P ; z) log-concave?

Given Conjecture 3, it is natural to search for counterexamples to Questions 4
(1),(2),(3), and (4) arising from the family of very ample but non-normal lattice
polytopes. For starters, using a construction due to Lasoń and Micha lek [5], we
can produce a counterexample to Question 4 (2). In particular, the 9-dimensional
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1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
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0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 100 −1 −1 −1 −1 −1 −1 −1 101























.

Figure 1. The columns of A are the vertices of a very ample
non-normal polytope with a non-log-concave h∗-polynomial.

lattice polytope P with vertices the columns of the matrix A in Figure 1 has h∗-
polynomial h∗(P ; z) = 1 + 8z + 8z2 + 8z3 + 104z4, and this polynomial is not
log-concave. The polytope P is a segmental fibration [1, Definition 2.2] over the
edge polytope PC8

(defined in [7]) of the cycle graph C8 on eight nodes. Lasoń and
Micha lek showed that taking similar segmental fibrations over edge polytopes for
other even length cycles produces non-normal but very ample polytopes. Empiri-
cally, these fibrations can further be chosen to produce numerous counterexamples
to Question 4 (2). However, answers to the remaining questions and open con-
jectures discussed in this summary are still needed. This line of investigation was
motivated in part by the talk given by Mateusz Micha lek during this Oberwolfach
mini-workshop.
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Discussion session: “Mixed volume”

Gennadiy Averkov, Blanco Monica, Fu Liu, Benjamin Nill, Ivan

Soprunov

We were working on the following problem. Let P1, . . . , Pd be d-dimensional lattice
polytopes in Rd. Give a sharp upper bound on the normalized volume of the
Minkowski sum P1 + · · · + Pd when the value of the normalized mixed volume
V (P1, . . . , Pd) is a fixed integer m. We conjectured that the upper bound equals
(m + d− 1)d. Clearly, it is attained at P1 = m∆, P2 = · · · = Pd = ∆, where ∆ is
the standard d-simplex. We confirmed the conjecture in the two-dimensional case.

Discussion session: “Fibonacci and Fibonacci-like Polynomials as

h∗-polynomials of Lattice Polytopes”

Christian Haase, Liam Solus

The nth Fibonacci (or Jacobsthal) polynomial [3] is defined by the recursion

Fn(z) = Fn−1(z) + zFn−2(z),

with the initial conditions F0 = F1 = 1. More generally, a Fibonacci-like polyno-
mial is a polynomial an(z) defined by a recursion of the form

an(z) = an−1(z) + zan−2(z)

with some chosen initial conditions a0, a1 ∈ Z>0. For example, the nth Lucas
polynomial is a well-studied Fibonacci-like polynomial which is given by taking
the initial conditions a0 = 2 and a1 = 1. The Fibonacci-like polynomials, similar
to the Eulerian polynomials [5], are a class of real-rooted and unimodal generating
polynomials that appear throughout enumerative combinatorics and combinato-
rial optimization. For instance, the Fibonacci and Lucas polynomials appear as
independence polynomials for claw-free graphs [4] and as generating polynomials
for Markov equivalence classes of DAG models [6]. They also admit well-studied
multivariate generalizations [1]. However, unlike the Eulerian polynomials, the
Fibonacci-like polynomials rarely appear as the h∗-polynomials of lattice poly-
topes (or more generally as the h-polynomials of Hilbert series of graded algebras).
In fact, the only such occurrence recorded in the literature thus far is for n odd,
the nth Lucas polynomial arises as the h∗-polynomial of an (n − 1)-dimensional
r-stable (n, k)-hypersimplex [2].
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A major goal of this mini-workshop is to study when and why a lattice polytope
P is Ehrhart unimodal ; i.e., when its h∗-polynomial h∗(P ; z) is unimodal. One
increasingly popular method by which to prove Ehrhart unimodality is to show
that h∗(P ; z) is real-rooted; that is, that all roots of h∗(P ; z) are real numbers.
It is therefore natural to ask which families of real-rooted generating polynomials
may arise as h∗-polynomials of lattice polytopes. Despite their suggested rarity in
the field thus far, the following theorem verifies that all Fibonacci-like polynomials
can arise as the h∗-polynomial of a lattice polytope.

Theorem 1. Let P ⊂ Rn be a lattice polytope, Q ≺ P and e ∈ Zn primitive such
that P ⊂ Q + R≥0e. Then

R := conv (P × {0} ∪ {(0, 1), (−e, 1)}) ⊂ Rn+1

has h∗-polynomial h∗(R; z) = h∗(P ; z) + zh∗(Q; z).

Recursively applying Theorem 1 with the primitive en being the nth standard
basis vector in Rn and initializing with Q the one-dimensional line segment

Q := conv((0, 0), (0, 2)),

and P the two-dimensional lattice polytope

P := conv((0, 0), (0, 2), (1, 1), (1, 0)),

will produce a lattice polytope Rn ⊂ Rn for which h∗(Rn; z) = Fn(z) for all n ≥ 2.
Similarly, for the same choice of primitive in each dimension, and initial conditions

Q := conv((0, 0), (0, 3)) ⊂ P := conv((0, 0), (0, 3), (1, 1), (1, 0)),

produces a lattice polytope Rn ⊂ Rn with h∗(Rn; z) the nth Lucas polynomial.
Analogous choices of P and Q in dimensions two and one, respectively, allow us
to realize all Fibonacci-like polynomials as h∗-polynomials of lattice polytopes.
Future work on this problem will aim at generalizing these methods to describe
which real-rooted generating polynomials can be realized as h∗-polynomials.
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