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Introduction by the Organisers

We have kept the structure of the last workshop in the series and planned 21 talks
each 50 minutes. This provided sufficient time for questions and discussions after
the talks and for new and ongoing collaborations during the breaks and in the
evenings.

Most of the talks concentrated on various topics in singularity theory (Kovacs,
Schwede, Totaro, Yasuda), on families of hyperkähler manifolds (Bayer, O’Grady,
Macr̀ı, Sarti), derived categories (Kuznetsov, Kawamata, Perry) and aspects of
cohomology theories (Bhatt, Moonen). Other talks touched upon recent devel-
opments in a variety of nearby areas: From Lesieutre’s talk on the existence of
varieties with non-finitely generated automorphism group, Lehmann’s talk on the
geometric version of the Manin conjecture to Patakfalvi’s discussion of his con-
struction of the moduli space of surfaces in mixed characteristic. Talks on slightly
more exotic topics for this group of algebraic geometers were delivered by Richard
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Thomas (on higher rank virtual cycles) and Brendan Hassett (on stable rational-
ity in families). In cases where the subject risked to be particularly technical or a
further away from the mainstream, we specifically asked the speaker to start with
a gentle introduction (e.g. Ben Moonen on the Tate conjecture and Mihnea Popa
on Hodge modules). Thematically the workshop was more focused than the last
one but still allowing for cross fertilization between nearby research directions in
algebraic geometry. It certainly does not happen all that often that experts in the
minimal model program and people working on homological algebraic geometry
or on hyperkähler manifolds would enter an intense mathematical exchange.

Recently the theory of MMP and its applications have advanced significantly.
One of the major questions: BAB conjecture concerning boundedness of Fano va-
rieties has been announced by Birkar (who unfortunately cancelled at the very
last minute). People find lots of new connections with other subjects, like Kähler–
Einstein metrics on Fano varieties, deep Hodge theory machineries, and others. In
positive characteristics, the corresponding theory is also moving forward quickly.
In the theory of hyperähler manifolds the interplay between Hodge theory and de-
rived categories has been explored from various angles. Interesting new complete
families of polarized hyperkähler manifolds have been found and exotic isomor-
phisms between different constructions shed new light on the landscape. One can
expect the theory to incorporate more arithmetic features in the near future and
the Kuga-Satake construction linking hyperkähler varieties to abelian varieties is
likely to play a central role in it.

Many participants expressed to the organizers that this edition of the workshop
profited from a particularly friendly and stimulating atmosphere. The hike and
the soccer match (Italy won!) have certainly contributed to it, but the large
number of younger participants and the slightly larger number (compared to our
last meeting) of female participants might have had an effect as well. This was
very visible during the talks, with interesting questions and lively discussions, but
also during the breaks and after dinner. Talks later in the week would refer to
the ones earlier and sometimes even new results obtained in discussions during the
week were mentioned. We are convinced that the workshop has had an impact on
research in the various branches of algebraic geometry covered by it that will be
felt in the next months and years. For example, a preprint of Keiji Oguiso, one of
the participants, has appeared on the arxiv only three weeks after the workshop.
In it he produces new examples of the phenomenon described by Lesieutre in his
talk. We expect other papers will follow where the impact of the workshop can be
felt directly.

The response to the workshop was overwhelmingly positive, before and during
the week. Only a few people declined the original invitation and only two or three
had to cancel at a later date. (With the small drawback that there were very few
slots to fill with PhD students at short notice at the end.) Although the time of the
year was not optimal for US participants, many of them arranged their beginning
for term teaching so that they could attend. The international mix with a strong
group coming from Japan, France, US, Italy and the UK was appreciated by the
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community. Once again the Oberwolfach meeting was a well received occasion to
meet other algebraic geometers with similar interests again or for the first time.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Mihnea Popa in the “Simons Visiting Professors” pro-
gram at the MFO.
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Abstracts

Stability conditions in families and families of Hyperkähler varieties

Arend Bayer

(joint work with Mart́ı Lahoz, Emanuele Macr̀ı, Howard Nuer, Alexander Perry,
Paolo Stellari)

In this talk, I described a new construction of families of Hyperkähler varieties
associated to families of cubic fourfolds, obtained in work in progress with the
co-authors listed above. Our construction is based on crucial technical progress
in the theory of Bridgeland stability conditions on derived categories of algebraic
varieties. More specifically, we develop a notion of a “family of stability conditions”
on a family of varieties, as well as a version of that for families with Kuznetsov
subcategories of the derived categories of the fibers; both come with a notion
of relative moduli spaces of stable objects. Our construction allows us to prove
analogues of the powerful results for moduli spaces of stable sheaves on K3 surfaces,
due to Mukai, Huybrechts, O’Grady, Yoshioka and others, in the setting of cubic
fourfolds.

0.1. Setting: The Kuznetsov category of a cubic fourfold, and stability
conditions. Let X ⊂ P5 be a smooth cubic fourfold. By its Kuznetsov category
we denote the triangulated subcategory

Ku(X) := O⊥
X ∩ OX(1)⊥ ∩ OX(2)⊥ ⊂ Db(X) = Db(CohX)

of its bounded derived category of coherent sheaves. This category shares many
properties with the derived category of K3 surfaces; its foundations were developed
in [Kuz10, AT14, Huy17]:

(1) Ku(X) is a CY 2-category: Hom(E,F ) = Hom(F,E[2])∨.
(2) Topological K-theory of Ku(X), along with the faithful functor Ku(X) →

Db(X) and the Hodge structure on H4(X) equips Ku(X) with an ex-
tended Mukai lattice, which by some abuse of notation we will denote

H̃(Ku(X),Z): as a lattice, it is isomorphic to H∗(K3); it carries a weight
two Hodge structure with h2,0 = 1; and it admits a Mukai vector

v : K(Ku(X)) → H̃(Ku(X),Z)

satisfying (v(E), v(F )) = −χ(E,F ).
Often, Ku(X) is equivalent to the derived category of a K3 surface, see Corollary

4. By H̃Hodge(Ku(X),Z) we will denote the sublattice of integral (1,1)-classes.

The recent preprint [BLMS17] gives a contruction of a component Stab†(Ku(X))
of the space of Bridgeland stability conditions onKu(X). A stability condition con-
sists of the datum of a subcategory P(φ) of semistable objects of phase φ for all

φ ∈ R, and a central charge, i.e. group homomorphism Z : H̃Hodge(Ku(X)) → C,
such that there is a notion of Harder-Narasimhan filtrations for all objects in
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Ku(X), and such that the central charge Z(E) of a semistable object E ∈ P(φ) of
phase φ is a complex number with argument πφ.

0.2. Main results. Let v ∈ H̃Hodge(Ku(X),Z) be a primitive class, and let σ ∈
Stab†(Ku(X)) be a stability condition as constructed in [BLMS17]. The first result
concerns the existence and non-emptiness of the moduli space Mσ(Ku(X),v) of
σ-stable objects in Ku(X) of Mukai vector v.

Theorem 1. If σ is generic with respect to v, then Mσ(Ku(X),v) is non-empty if
and only if v2 ≥ −2. It is a smooth projective irreducible holomorphic symplectic
variety of dimension v2 + 2, deformation-equivalent to a Hilbert scheme of points
on a K3 surface.

Here generic means that σ is not on a wall, so that stability and semistabil-
ity coincide for objects of Mukai vector v. We can also describe H2(Mσ(v)) in

terms of the Hodge structure on H̃(Ku(X)), and thus on H4(X), analogous to the
corresponding result by Yoshioka for moduli of sheaves on K3s

Theorem 1 is proved by deformation to the case where Ku(X) is known to be
equivalent to the derived category of a K3 surface. Such deformation arguments
rely on the existence of relative moduli spaces given by Theorem 2 below.

Consider a family X → S of smooth cubic fourfolds. Let v be a primitive

section of the local system given by the Mukai lattices H̃(Ku(Xs),Z) of the fibers
over s ∈ S, such that v is algebraic on all fibers. Assume that for s ∈ S very
general, there exists a stability condition σs ∈ Stab†(Ku(Xs)) that is generic with
respect to v, and such that the associated central charge Z : H̃Hodge(Ku(X )) → C
is monodromy-invariant. (This is, for example, automatic when S is the moduli
space of all cubic fourfolds.)

Theorem 2. (1) There exists a finite cover S̃ → S, an algebraic space M̃(v),

and a proper morphism M̃ → S̃ that makes M̃ a relative moduli space

over S̃: the fibers over s ∈ S̃ are a moduli space Mσs
(Ku(Xs),v) of stable

objects in the Kuznetsov category of the corresponding cubic.
(2) There exists an open subset S0 ⊂ S, a projective variety M0(v), and a

projective morphism M0(v) → S0 that makes M0(v) a relative moduli
space over S0.

Note that every fiber of the morphism M̃(v) → S̃ is projective, but the mor-
phism itself might not be.

Example 3. Let S be the moduli space of cubic fourfolds. For a very general

cubic fourfold, H̃Hodge(Ku(X),Z) is isomorphic to the A2-lattice, generated by
two roots λ1,λ2 with (λ1,λ2) = −1. If we choose v = λ1 in Theorem 2, then

S0 = S̃ = S, and M(v) is the Fano variety of lines. For v = λ1 + 2λ2, we have

S0 ⊂ S the complement of cubics containing a plane, S̃ = S, and M0(v) is the
family of Hyperkähler eight-folds constructed in recent work [LLSvS15] of Lehn,

Lehn, Sorger and van Straten. In particular, the algebraic space M̃(v) partially
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compactifies their family, at the cost of losing projectivity, over cubics containing
a plane; here our moduli spaces agree with those considered by Ouchi in [Ouc17].
Finally, for v = 2λ1, we get an algebraic construction of a 20-dimensional family
of singular 10-dimensional O’Grady spaces.

0.3. Applications. Recall from Hassett’s work on cubic fourfolds, [Has00], that
there is a countable union of divisors of special cubics for which one can Hodge-
theoretically associate a K3 surface to its primitive cohomology in H4(X). In our
notation, a cubic is contained in one of Hassett’s special divisors if and only if

H̃Hodge(Ku(X),Z) contains a hyperbolic plane.

Corollary 4. Let X be a cubic fourfold. Then X has a Hodge-theoretically as-
sociated K3 if and only if there exists a smooth projective K3 surface S and an
equivalence Ku(X) ∼= Db(S).

This (literally) completes a result by Addington and Thomas, [AT14], who
proved that every divisor described by Hassett contains an open subset of cubics
admitting a derived equivalence as above. A version of the Corollary also holds
for K3s with a Brauer twist; the corresponding Hodge-theoretic condition is the

existence of a square-zero class in H̃Hodge(Ku(X)).
As pointed out to us by Voisin, the non-emptiness of moduli spaces also produces

enough algebraic cohomology classes to reprove her result on the integral Hodge
conjecture for cubic fourfolds:

Corollary 5 ([Voi07, Theorem 18]). The integral Hodge conjecture holds for X.

Our results also provide the full machinery of [BM14], describing the birational
geometry of Mσ(Ku(X),v) in terms of wall-crossing.

0.4. Stability conditions in families. As hinted at in the introductory para-
graph, the notion of relative moduli spaces depends on developing a notion and
construction of stability conditions for a familiy of varieties π : Y → S.

Here we only sketch the underlying definition, in the simplest possible case
where S = C is a smooth curve over C. Both the definitions and the technical
setup borrows results and ideas from the work [AP06, Pol07] by Abramovich and
Polishchuk on sheaves of t-structures over a base.

The first ingredient of a stability condition on Db(Y) over C is again a slicing,
i.e. a list P(φ) of semistable objects of phase φ satisfying Harder-Narasimhan
filtration; we require that each P(φ) is invariant under tensoring with pull-backs
of line bundles from C. Second, our central charge Z : Db(Y )C-tor → C is defined
for C-torsion objects, i.e. objects whose pull-back to the generic fiber over C
vanishes. We require Z is constant in families, in the sense that for any object
F ∈ Db(Y ), the complex number Z(F |π−1(c)) is independent of the closed point
c ∈ C. Finally, we require that stability is an open property in families.

We show the existence of such stability conditions over C in the same gener-
ality that the existence of stability conditions on the fibers can be proved in the
framework of [BMT14]. It comes with proper relative moduli spaces of semistable
objects, generalizing work by Piyaratne and Toda, [PT15]. Finally, it extends to
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the notion of stability on Kuznetsov categories, as for cubic fourfolds in the setup
above.
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Canonical deformations of de Rham cohomology

Bhargav Bhatt

(joint work with Matthew Morrow, Peter Scholze)

The goal of this talk was to explain two instances (one classical, one recent) in
arithmetic geometry where the de Rham cohomology of smooth varieties admits
a canonical deformation. More precisely, we explained the following:
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(1) (Crystalline cohomology) Given a perfect field k of characteristic p and
a smooth k-scheme X , its de Rham cohomology RΓdR(X/k) admits a
canonical deformation RΓcrys(X/W (k)) to the ring W (k) of Witt vectors
of k given by Grothendieck’s theory of crystalline cohomology.

The assignment X 7→ H∗
crys(X/W (k))[ 1p ] gives a Weil cohomology the-

ory on proper varieties, so each Hi
crys(X/W (k))[ 1p ] has the same rank as

the corresponding ℓ-adic cohomology group. In particular, the existence of
this deformation can be used to meaningfully reformulate what it means
to have “pathologies” in the de Rham cohomology of X : it means there
must be p-torsion in crystalline cohomology. For instance, calculations of
Lang and Illusie imply that the de Rham cohomology of Enriques surfaces
in characteristic 2 is “pathological”, and thus there must be non-trivial
2-torsion in their crystalline cohomology.

Just like RΓdR(X/k) is computed as the hypercohomology of an ex-
plicit complex Ω∗

X/k (and not merely an object of the derived category),

the crystalline cohomology RΓcrys(X/W (k)) is also calculated as the hy-
percohomology of an explicit (but rather intricate) complex WΩ∗

X known
as the de Rham-Witt complex.

(2) (Ainf -cohomology) Given a complete and algebraically closed extension
C/Qp with ring of integers OC and a smooth formal OC -scheme X , its de
Rham cohomology RΓdR(X/OC) admits a canonical deformation RΓA(X)
to Fontaine’s ring Ainf := Ainf(OC) (see [1]).

For proper X , the theory RΓA(X)[ 1
q−1 ] (for a specific unit q ∈ Ainf)

is essentially given by the étale cohomology RΓ(XC ,Zp) of the generic
fibre XC of X . In particular, the existence of this deformation implies (by
semicontinuity) that the mod p Betti numbers of XC are a lower bound for
the de Rham Betti numbers of the special fibre X0. For instance, this gives
a topological explanation of the calculations of Lang and Illusie mentioned
in (1): the de Rham cohomology of an Enriques surface in characteristic 2
must be “pathological” (i.e., larger than the corresponding groups in other
characteristics) because the étale (or singular) cohomology of an Enriques
surface in characteristic 0 has non-trivial 2-torsion. (Here we implicitly
use Ekedahl’s result that such surfaces always lift to characteristic 0.)

(3) (AΩ-complexes) The theory mentioned in (2) is constructed locally. More
precisely, in [1], we construct a complex AΩX of Ainf -modules on the
formal scheme X and deduce the relevant comparisons with de Rham and
étale cohomology by local arguments.

A representative example if the following: if X is the formal affine line

defined by R = ÔC [t], then the global sections AΩR of AΩX are computed
by “q-deformations of the de Rham complex”, i.e., we have

AΩR ≃
⊕̂

i≥0

(
Ainf · ti

[i]q=
qi−1
q−1−−−−−−→ Ainf · ti−1 · dt

)
.
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When we specialize to OC , we have q = 1, so the above complex reduces
to the usual de Rham complex for R/OC . In general, however, the defor-
mation is quite non-trivial, and not computed by the de Rham complex of
lift. Note that the right hand side of the equation above is extremely sen-
sitive to the choice of the co-ordinate t! Thus, the well-definedness of AΩR
(which is clear from its functorial definition) captures a surprising quasi-
isomorphism invariance property of q-de Rham complexes in this setting.
Precise conjectures for more liberal notions of q-de Rham complexes were
formulated by Scholze.

Unlike the de Rham-Witt complex, the AΩ-complexes are only well-
defined up to quasi-isomorphism: we do not have canonical functorial rep-
resentatives for calculating AΩR. In fact, one can show that such represen-
tatives cannot exist in a fashion compatible with the natural E∞-algebra
structure on AΩR.

(4) (Topological Hochschild homology) Finally, we explained the homotopy-
theoretic motivation for guessing the existence of the complex AΩR from
(3). For this, recall that one defines the topological Hochschild homol-
ogy spectrum THH(R) for a ring R by mimicing the construction of the
Hochschild complex HH(R), but by replacing the base ring Z by the
sphere spectrum S. By construction, this spectrum carries an S1-action,
whose cohomological shadow is Connes’ differential. Decades ago, Wald-
hausen suggested that working over S instead of Z produces better be-
haved and denominator free answers, at least in homotopy theory. Hessel-

holt’s [3] vindicates this philosophy: setting TC−(R) := THH(R)hS
1

to
be the homotopy S1-invariants, he calculated that π0(TC

−(OC)) is simply
Fontaine’s period ring Ainf , thus giving a very conceptual and thoroughly
topological interpretation of the latter. As TC−(R) was known to be
roughly related to the étale cohomology of RC for smooth OC -algebras
R, this suggested the following guess: for such R’s, the graded pieces of
a natural filtration on TC−(R) would form an Ainf -valued cohomology
theory (i.e., would give AΩR). In fact, Hesselholt had himself arrived at a
similar guess in the characteristic p setting. Whilst this is not how AΩR
was defined in [1], this picture has now been realized [2].
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The blow-up of P4 at 8 points and its Fano model, via vector bundles
on a degree 1 del Pezzo surface

Cinzia Casagrande

(joint work with Giulio Codogni, Andrea Fanelli)

The classical notion of association, or Gale duality, gives a bijection between sets
of 8 general points in P2 and sets of 8 general points in P4, up to projective
equivalence. This correspondence has been used by Mukai to establish a beautiful
relation among the blow-up X of P4 at 8 general points, and a degree one del
Pezzo surface S, via moduli of sheaves on S, as follows.

Theorem 1 ([Muk05]). Let {q1, . . . , q8} ⊂ P2 and {p1, . . . , p8} ⊂ P4 be associated
sets of points, and set S = Blq1,...,q8 P

2 and X = Blp1,...,p8 P
4. Then X is isomor-

phic to the moduli space of rank 2 torsion free sheaves F on S, with c1(F ) = −KS

and c2(F ) = 2, Gieseker semistable with respect to −KS + 2h, where h ∈ Pic(S)
is the pull-back of OP2(1) under the blow-up map S → P2.

This result gives a very useful tool to describe the birational geometry of X ; let
us explain how.

Moduli of vector bundles on a degree 1 del Pezzo surface. Let S be a
smooth del Pezzo surface of degree one, and L ∈ Pic(S) ample. Let MS,L be
the moduli space of rank 2 torsion free sheaves F on S, with c1(F ) = −KS and
c2(F ) = 2, Gieseker semistable with respect to L.

To describe the moduli spaces MS,L, we introduce two convex rational polyhe-
dral cones

Π ⊂ E ⊂ Nef(S) ⊂ H2(S,R)

(see [CCF17] for the explicit definitions). Let us first state some general properties
of MS,L.

Proposition 2 ([Muk05, CCF17]). The moduli space MS,L is non-empty if and
only if L ∈ E, and in this case MS,L is a smooth, projective, irreducible, rational
4-fold. Every sheaf parametrized by MS,L is locally free and stable.

Let us consider now the birational geometry of the moduli spaces MS,L. The
relation between variation of polarization via wall-crossings, and birational geom-
etry of moduli spaces of sheaves on surfaces, is classical and has been intensively
studied. In the case ofMS,L, this relation can be made completely explicit. There
are finitely many walls for slope-semistability, that are explicitly described; these
walls determine the stability fan in H2(S,R), supported on the cone E . When the
polarization L varies in the interior of a cone of maximal dimension of the stability
fan, the stability condition determined by L is constant, and so is MS,L. When L
moves to a different cone of the stability fan, the moduli space MS,L undergoes a
simple birational transformation. This study of the birational geometry of MS,L,
via the variation of the stability condition, is due to Mukai [Muk05].
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The determinant map. The moduli spaces MS,L are Mori dream spaces, hence
the stability fan in H2(S,R) has a counterpart in H2(MS,L,R), the fan given by
the Mori chamber decomposition, defined via birational geometry. To relate these
two combinatorial structures, we use the classical construction of determinant line
bundles on the moduli space MS,L. This yields a group homomorphism

ρ : Pic(S) −→ Pic(MS,L),

and we show the following result, which relies on the classical positivity properties
of the determinant line bundle, and on Theorem 1.

Theorem 3. Let L ∈ Pic(S) ample, L ∈ Π. The map ρ : H2(S,R) → H2(MS,L,R)
is an isomorphism, and yields an isomorphism between the stability fan
in H2(S,R), and the Mori chamber decomposition in H2(MS,L,R). In particu-
lar, ρ(E) is the cone of effective divisors, and ρ(Π) is the cone of movable divisors.

Let us describe two applications of this study to the moduli spaces MS,L. We
recall that a pseudo-isomorphism is a birational map which is an isomorphism
in codimension one, and similarly we define a pseudo-automorphism. When the
polarization L varies in the cone Π, we get finitely many pseudo-isomorphic moduli
spaces MS,L, related by sequences of flips. We show that in fact, when L ∈ Π, the
moduli space MS,L determines the surface S.

Theorem 4. Let S1 and S2 be del Pezzo surfaces of degree one, and Li ∈ Pic(Si)
ample line bundles with Li ∈ Πi ⊂ H2(Si,R), for i = 1, 2. Then S1

∼= S2 if and
only if MS1,L1 and MS2,L2 are pseudo-isomorphic.

We also describe the group of pseudo-automorphisms of the moduli spaceMS,L,
when the polarization L is in the cone Π.

Theorem 5. Let L ∈ Pic(S) ample, L ∈ Π. Then the group of pseudo-automor-
phisms of MS,L is isomorphic to the automorphism group Aut(S) of S, where
f ∈ Aut(S) acts on MS,L as [F ] 7→ [(f−1)∗F ].

Geometry of the Fano model Y . The anticanonical class −KS in H2(S,R)
belongs to the cone Π, and lies in the interior of a cone of the stability fan. It
follows again from the classical properties of the determinant line bundle that for
the polarization L = −KS, the moduli space MS,L is Fano. More precisely, we
have the following.

Proposition 6. The moduli space Y :=MS,−KS
is a smooth, rational Fano 4-fold

with b2(Y ) = 9, (−KY )
4 = 13, and h0(Y,−KY ) = 6.

Let us notice that, except products of del Pezzo surfaces, there are very few
known examples of Fano 4-folds with b2 ≥ 7. In particular, to the authors’ knowl-
edge, the family of Fano 4-folds Y is the only known example of Fano 4-fold with
b2 ≥ 9 which is not a product of surfaces. It is a very interesting family, whose
construction and study was one of the motivations for this work.

The following explains the relation among X and Y .
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Proposition 7. Let X be a blow-up of P4 at 8 general points. Then there is a
pseudo-isomorphism ξ : X 99K Y where Y is a smooth Fano 4-fold, and ξ is a
sequence of 36 antiflips. The flipping curves in X are the transforms of the 28
lines through two blown-up points, and of the 8 rational normal quartics through 7
blown-up points.

By Theorem 3, the determinant map gives isomorphisms H2(S,R) → H2(Y,R)
and H2(S,R) → H2(X,R), and these yield a completely explicitly description of
the relevant cones of effective, movable, and nef divisors of Y and X , and more
generally of the Mori chamber decompositions. We refer to [CCF17] for the explicit
results.

Finally, motivated by the low values of h0(Y,−KY ) and (−KY )
4, and also by

the analogy with degree one del Pezzo surfaces, we study the base loci of the
anticanonical and bianticanonical linear system of Y , and prove the following.

Theorem 8. The linear system | − KY | has a base locus of positive dimension,
while the linear system | − 2KY | is base point free.

This result is proved using the birational map X 99K Y and studying the cor-
responding linear systems in X . We show that the base locus of | −KX | contains
the transform R of a smooth rational quintic curve in P4 through the 8 blown-up
points. We have −KX · R = 1, and R is not contained in the stable base locus of
| −KX |; the transform of R in Y is contained in the base locus of | −KY |.
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Relative semi-ampleness in positive characteristic

Paolo Cascini

(joint work with Hiromu Tanaka)

1. Introduction

It is a crucial problem to understand under what condition a line bundle L on a
projective variety X is semi-ample, i.e. there exists a positive integer m such that
the natural map

H0(X,L⊗m)⊗OX → L⊗m

is surjective.
Some classical results in this direction include:
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• (Zariski) If X is normal, L is big and nef then L is semi-ample if and only
if the associated ring of section R(X,L) is finitely generated.

• (Fujita) If X is normal, and Z is the stable base locus of L, i.e.

Z =
⋂

m∈N

Bs|L⊗m|,

then L|Z is not ample.

On the other hand, note that over Fp, it is hard to find line bundles which are
nef and not semi-ample (see [4]) and, in particular, we do not know any line bundle
on a surface X which has positive degree on every curve and it is not ample.

Over any algebraically closed field of positive characteristic, Keel [3] showed that
a line bundle L is semi-ample if and only if the restriction L|E(L) is semi-ample.
Recall that

E(L) =
⋃

L|V is not big

V

is the exceptional locus of L.
The same result does not hold in characteristic zero: if X = C × C where C

is a curve of genus greater than 1 and L = p∗1ωC ⊗ OX(∆). Then L is big and
nef and E(L) = ∆. Moreover L|∆ = O∆, and in particular L|E(L) is semi-ample.
But, over C, L is not semi-ample. Indeed L|2∆ is not torsion [3]. On the other
hand, if we define L′ = ωX(2∆), then L′ is big, nef and semi-ample, and it defines
a morphism f : X → S which contracts ∆. So, in particular, over C we have that
L|F is semi-ample for any fibre F of f , but L ⊗ f∗(A) is not semi-ample for any
line bundle A on S.

The main result in [2] is to show that this cannot happen over a field of positive
characteristic:

Theorem 1 ([2]). Let f : X → S be a projective morphism of noetherian Fp-
schemes. Let L be an invertible sheaf on X. Assume that L|Xs

is semi-ample for
any point s ∈ S, where Xs denotes the fibre of f over s.

Then L is f -semi-ample.

Recall that L is f -semi-ample if there exists a positive integer m such that the
natural map

f∗f∗L
⊗m → L⊗m

is surjective.
Note that we are not assuming that f is birational or that X is normal. Indeed,

X is just a noetherian scheme (possibly of infinite dimension).
On the other hand, we do need to consider all the scheme-theoretical points

of S (it is not enough to consider closed points) as otherwise the result does not
hold: E.g. let E be an elliptic curve over Fp, let X := E × E, S := E and let
f = p1 : X → S be the first projection. Let L := OX(∆ − Z), where ∆ is the
diagonal divisor of X = E × E and Z := E × {Q} for a closed point Q ∈ E.
Then L is f -nef but not f -semi-ample (indeed (L+ f∗A)2 = −2 for any A). Thus,
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L|Xs
is semi-ample for any closed point s ∈ S since our base field is Fp. Thus,

Theorem 1 implies that L|Xξ
is not semi-ample for the generic point ξ of S.

If the field k is uncountable, we have:

Theorem 2 ([2]). Let f : X → S be a projective morphism of schemes of finite
type over an uncountable field of positive characteristic. Let L be an invertible
sheaf on X. Assume that L|Xs

is semi-ample for any closed point s ∈ S, where
Xs denotes the fibre of f over s.

Then L is f -semi-ample.

Note that if L is f -numerically trivial then the result follows also from [1], using
different methods.

2. Idea of the proof

Let X,S, f and L be as in Theorem 1. By base change, we may assume that X has
finite dimension n. Thus, we may proceed by induction on n. Assuming that the
Theorem holds in dimension n− 1 and assuming that X is normal, then the result
is a consequence of Keel’s Theorem mentioned above. On the other hand, even
assuming that X is normal, we do need to assume the Theorem in full generality in
lower dimension. Thus, the main difficulty of the proof is to study what happens
after considering the normalization.

A line bundle L is said to be endowed with a map (EWM) over S if there exists
a morphism g : X → Z onto an algebraic space Z over S such that LdimV · V = 0
if and only if dim g(V ) < dimV .

Kollár and Keel showed that there exists a line bundle L on a variety X and a
finite morphism f : Y → X such that f∗L is EWM but L is not EWM.

On the other hand we prove:

Theorem 3 ([2]). Let S be a noetherian Fp-scheme. Let f : Y → X be a finite
surjective S-morphism of reduced algebraic spaces proper over S. Let L be an
invertible sheaf on X which is nef over S.

Then L is EWM over S if and only if

a) L|Y is EWM over S, and
b) there exists a positive integer m0 such that for any geometric point s ∈ S, the

L|Xs
-equivalence relation on Xs is bounded by m0

Recall that x, y ∈ Xs are L|Xs
-equivalent if there exist curves C1, . . . , Cq such

that x, y ∈ ∪Ci and L ·Ci = 0. The equivance is bounded by m0 if we can always
find C1, . . . , Cq so that q < m0.
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Stable Rationality in Families of Threefolds

Brendan Hassett

(joint work with Yuri Tschinkel)

This is work in progress to exhibit smooth projective stably rational threefolds
that deform to varieties that are not stably rational. Thus stable rationality is not
a deformation invariant in dimension three.

A complex variety V is stably rational if the product V × Pr is rational for
some r. The first stably rational non-rational varieties were found in by Beauville,
Colliot-Thélène, Sansuc, and Swinnerton Dyer [1]. They offered two related classes
of examples. The first is Châtelet surfaces, defined over a field k by

{y2 − az2 = P (x)} ⊂ A3,

where P (x) ∈ k[x] is a cubic polynomial with Galois group S3 and discriminant
a. These are stably rational but non-rational over k. Geometrically, they admit
conic bundle fibrations

ϕ : Ṽ → P1
x,

with four degenerate fibers corresponding to the roots of P (x) and x = ∞. Passing
to k = C(t), we obtain smooth projective threefolds with fibrations

(1) X0
φ0→ S0

ρ→ P1
t .

Here S0 is a smooth projective surface birationally ruled over P1
t , and X0 → S0 is

a conic fibration degenerate over a curve

(2) D0 = C ∪R ⊂ S0,

where C is a trisection and R a section of ρ. (These correspond to P (x) = 0
and x = ∞ respectively.) The variety X0 is stably rational over C(t) and thus
over C. The Clemens-Griffiths theory of intermediate Jacobians shows it is often
non-rational.

Voisin’s technique of decomposition of the diagonal [7], refined by Colliot-
Thélène, Pirutka [2] and others, is a powerful tool for proving that varieties are
not stably rational. It is the key to showing that stable rationality is not a defor-
mation invariant of smooth projective complex varieties of dimension at least four
[4]. The case of dimension three was left open, although Nicaise and Shinder have
shown that stable rationality is closed under specialization in families of smooth
projective varieties of arbitrary dimension [6].

Here are the elements of the construction of a degeneration of smooth projective
threefolds X  X0 with X0 stably rational but X not stably rational.
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First, we use an extension of the class of Châtelet surfaces analyzed in [5]. We
consider all degree four del Pezzo surfaces with conic fibrations

W̃ → P1

over k, admitting the same Galois structure as above. Precisely, the Galois actions

on the Picard groups of Ṽ and W̃ are equivalent. These depend on two parameters
rather than the one parameter governing Châtelet surfaces. Nevertheless, the new
surfaces remain birational over k to Châtelet surfaces and thus are stably rational.

From now on, take k = C(t) and seek towers (1) associated with the general-
izations of Châtelet surfaces discussed above.

We analyze in general terms the possible branching data (2) for our surfaces.
We take f : C → P1 to be an arbitrary simply branched triple cover of genus g,
and p1, . . . , p2g+4 ∈ C the points residual to ramification points. Consider

D0 = C ∪pi=f(pi) R, R ≃ P1,

where we glue the residual points and their images in P1. Note the induced degree
four morphism g0 : D0 → P1. The discriminant double cover induces an admissible
cover

D̃0 → D0

which we will use to encode the degeneracy data of conic bundles.
The third step is to construct embeddings

D0 →֒ S0 → P1

of D0 into a birationally ruled surface that induces g0. We take g = 1 and S0 to be
the blow up of P2 at four points, three of whom are collinear. Here D0 ∈ |−2KS0|,
i.e., is bi-anticanonical.

The next step is to construct conic bundles X0 → S0 with the degeneracy

(ramification) data (g0 : D0 → P1, D̃0 → D0). The main technical challenge is to
do this in such a way that everything deforms in families.

Indeed, consider pairs (S, D) where S is a quintic del Pezzo surface and D ∈
| − 2KS | is a general bi-anticanoncial divisor. We can clearly specialize

(S, D) (S0, D0)

but we’d also like a conic bundle X → S degenerate over D such that

X  X0.

The final step is to prove that X is not stably rational. The decomposition
of the diagonal technique has been implemented for conic bundles over rational
surface [3]. For our application, we specialize

D  D1 ∪D2, D1, D2 ∈ | −KS |
to a union of two smooth elliptic curves. It follows that X fails to admit a decom-
position of the diagonal and thus is not stably rational.
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NC deformations of simple collections

Yujiro Kawamata

The usual deformation theory of modules over commutative Artin rings ([5]) is
generalized to that over NC associative Artin rings in a parallel way ([4]), where
NC means “not necessarily commutative”:

Definition 1 ([4]). (1) Fix a field k and a positive integer r. (Artr) is the category
of associative k-algebras R with k-algebra homomorphisms

kr
f−−−−→ R

g−−−−→ kr

such that gf = id, where kr is the product ring, and such that the two-sided ideal
M = Ker(g) is nilpotent. Denote Mi = Ker(pig) for the i-th projection pi, so that
M = ∩ri=1Mi.

(2) Let F = ⊕ri=1Fi be a sum of coherent sheaves on a k-scheme X . An r-
pointed NC deformation of F over R ∈ (Artr) is a pair (FR, φ), where FR is a left
R ⊗k OX -module which is R-flat, and φ : R/M ⊗R FR → F is an isomorphism.
An r-pointed NC deformation functor DefF : (Artr) → (Set) assigns an algebra R
to the set of isomorphism classes of NC deformations over R.

The paper [3] was inspired by a recent work by Donovan and Wemyss on the NC
deformations of the exceptional curves of the 3-fold small birational contractions
[2].

We consider deformation of simple collections:

Definition 2 ([3]). A sum of sheaves F = ⊕ri=1Fi is said to be a simple collection
if

Hom(Fi, Fj) ∼=
{
k if i = j

0 otherwise.
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Theorem 3 ([3]). A versal NC deformation of a simple collection F = ⊕ri=1Fi
coincides with the projective system of sheaves F (n) obtained by a sequence of
universal extensions

0 →
r⊕

i=1

Ext1(F (n), Fi) → F (n+1) → F (n) → 0

where the base ring of the NC deformations coincides with NC algebras R(n) =
End(F (n)).

If the sequence of universal extensions terminates after finitely many steps, then
we obtain a deformation FR such that Ext1(F (n), F ) = 0:

Definition 4 ([3]). Let FR be a versal r-pointed NC deformation of F over R ∈
(Artr).

(1) FR is said to be a relative exceptional object over R if Extp(F (n), F ) = 0 for
all p > 0.

(2) Let d be a positive integer. Assume in addition that Db(coh(X)) has a Serre
functor S. FR is said to be a relative d-spherical object over R if

Extp(F (n), Fi) ∼=





R/Mi if p = 0

R/Mσ(i) if p = d

0 otherwise

for a permutation σ ∈ Sr and if S(Fi) ∼= Fi[d].

Theorem 5 ([3]). Let FR be a relative exceptional object over R. Assume in
addition that X is quasi-projective, the support of FR is projective and that FR
is a perfect complex. Then the triangulated subcategory 〈FR〉 ⊂ Db(coh(X)) is
equivalent to Db(mod-R) and there is a semi-orthogonal decomposition

Db(coh(X)) = 〈〈FR〉⊥, 〈FR〉〉.
Theorem 6 ([3]). Let FR be a relative d-spherical object over R. Assume in
addition that X is smooth and quasi-projective and the support of FR is projective.
Then the following hold:

(1) R is reflexive, i.e., Homk(R, k) is a free right R-module of rank 1.
(2) The functor Φ : Db(mod-R) → Db(coh(X)) given by Φ(•) = • ⊗R FR is a

spherical functor in the sense of [1].
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Rational singularities

Sándor J. Kovács

The importance of rational singularities has been demonstrated for decades
through various applications, although most of these applications are in char-
acteristic zero. A major problem standing in the way of effective use of rational
singularities in positive characteristic is that their definition depends on the exis-
tence of a resolution of singularities.

The main goal of this talk is to propose a new definition of rational singulari-
ties that does not even mention resolutions, but which is equivalent to the usual
definition when resolutions exist.
Definition [Kov17b] A scheme Y is said to have rational singularities, if

(1) Y is an excellent normal Cohen-Macaulay scheme that admits a dualizing
complex, and

(2) for every excellent Cohen-Macaulay scheme X , and every f : X → Y
locally projective birational morphism, the induced natural morphism

OY
≃−→ Rf∗OX is an isomorphism.

Note that a priori it is not evident that this is satisfied by even smooth complex
varieties. This definition is reminiscent of Lipman-Tessier’s definition of pseudo-
rational singularities [LT81], but the relationship between the two definitions are
not obvious.

The following is the main result concerning this proposed new definition.
Theorem [Kov17b] Let X and Y be excellent Cohen-Macaulay schemes and f :
X → Y a locally projective birational morphism. If Y has pseudo-rational singu-
larities, then

OY ≃ f∗OX , f∗ωX ≃ ωY , and R
if∗OX = 0 and Rif∗ωX = 0 for i > 0.

This result has several applications. In particular, it implies the equivalence of
rational and pseudo-rational singularities as well as the equivalence of this new
definition with the “traditional” definition, which we will call resolution-rational
here. More precisely, we have the following implications (cf. [Kov17b, (1.4.1)]):

regular =⇒ rational
regular =⇒ resolution-rational =⇒ pseudo-rational

rational ⇐⇒ pseudo-rational

and if there exists a resolution of singularities, then also

rational ⇐⇒ resolution-rational

An important application of rational singularities in the minimal model pro-
gram stemming from the fact that klt singularities (cf. [Kol13]) are rational in
characteristic zero [Elk81]. Unfortunately, this fails in positive characteristic
[Yas14, CT16a, CT16b, Kov17a, Ber17, Tot17, Yas17], but using the above theo-
rem one can prove that Cohen-Macaulay klt singularities are rational in arbitrary
characteristic:
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Theorem [Kov17b] LetW be a Cohen-Macaulay klt scheme. Then W has rational
singularities and hence if W admits a resolution of singularities, then it also has
resolution-rational singularities.

Note that Hacon and Witaszek [HW17] recently proved that for large charac-
teristics and assuming that dimW = 3 this already holds without the Cohen-
Macaulay assumption. However, assuming some lower bound on the characteristic
is necessary by [Kov17a, Ber17, Tot17, Yas17].
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D-equivalence and L-equivalence

Alexander Kuznetsov

Let X and Y be smooth projective varieties over a field k of characteriztic 0.

Definition 1. We say that X and Y are D-equivalent if the bounded derived cat-
egories of coherent sheaves on X and Y are equivalent as triangulated categories,
i.e., D(X) ∼= D(Y ).

Let K0(Var /k) be the Grothendieck ring of k-varieties; it is generated by the
classes [X ] of all (not necessarily smooth or projective) k-varieties subject to rela-
tion [X ] = [Z] + [X \ Z] for Z ⊂ X a closed subset. Multiplication in K0(Var /k)
is defined by [X ] · [Y ] = [X ×k Y ]. We denote by

L = [A1
k],

the class of an affine line.
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Definition 2. We say that X and Y are L-equivalent if

([X ]− [Y ])Lr = 0

in K0(Var /k) for some r ≥ 0. We say that X and Y are trivially L-equivalent if
[X ] = [Y ] in K0(Var /k).

It was known for a long time that the ring K0(Var /k) is not a domain, but it
was not known whether L is a zero-divisor. In particular, if there are L-equivalent
varieties that are not trivially L-equivalent. A recent paper [GS14] of Galkin and
Shinder gave an additional motivation for this question (it was shown that if L is
not a zero divisor then a very general cubic fourfold in P5 is irrational), and soon
afterwards Lev Borisov found the first non-trivial example of L-equivalence.

Example 3. Let X = Gr(2, 7)∩P13 ⊂ P20 and Y = Pf(7)∩P6 ⊂ P̌20 be a pair of
mutually orthogonal smooth linear sections of the Grassmannian Gr(2, 7) ⊂ P20 in
its Plücker embedding, and of its projectively dual variety Pf(7) = Gr(2, 7)∨ ⊂ P̌20

in the dual projective space.

Theorem 4 ([Bor14, Mar16]). The varieties X and Y are L-equivalent Calabi–
Yau 3-folds:

([X ]− [Y ])L6 = 0.

Moreover, they are not trivially L-equivalent.

The reason why Borisov looked at this particular pair of varieties is the fact
that they are known to be D-equivalent [BC09, Kuz06] and not birational. The
L-equivalence relation came out as a byproduct of some computations with this
example. The Calabi–Yau property and non-birationality in this example are
important for proving that the L-equivalence is not trivial (the proof is based on
a wonderful result of Larsen and Lunts [LL03] about the structure of the quotient
ring K0(Var /k)/(L)).

This example suggests the following:

Conjecture 5 ([KS16]). Let X and Y be a pair of smooth projective and simply
connected D-equivalent varieties. Then X is L-equivalent to Y .

By now there is a number of examples supporting this conjecture (for more
examples see [KS16]):

(1) Let X and Y be a pair of Calabi–Yau 3-folds obtained from G2-geometry
[IMOU16a]. Then D(X) ∼= D(Y ) by [Kuz16b] and ([X ] − [Y ])L = 0
by [IMOU16a]. In fact, pairs (X,Y ) of this example are specializations of
pairs from the Grassmannian–Pfaffian example of Borisov, but the relation
they satisfy is more sharp.

(2) Let X = Gr(2, 5) ∩ g(Gr(2, 5)) ⊂ P9 and Y = Gr(2, 5)∨ ∩ gT (Gr(2, 5)∨) ⊂
P̌9 for a general automorphism g ∈ PGL10(k). Then D(X) ∼= D(Y )
by [KP17] and ([X ]− [Y ])L4 = 0 by [BCP17].

(3) Let X = OGr+(5, 10) ∩ g(OGr+(5, 10)) ⊂ P15 and Y = OGr−(5, 10) ∩
gT (OGr−(5, 10)) ⊂ P̌15 for general g ∈ PGL16(k). Then D(X) ∼= D(Y )
by [KP17] and ([X ]− [Y ])L7 = 0 by [M17].
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All the above examples are Calabi–Yau varieties. There is also a number of exam-
ples with K3 surfaces.

(4) Let X = Q1 ∩ Q2 ∩ Q3 ⊂ P5 be a smooth complete intersection of
three quadrics and let Y → P2 be the associated smooth double cover-
ing branched over the discriminant sextic curve. Then X and Y are K3
surfaces of degrees 8 and 2 respectively. There is a natural Brauer class
α ∈ Br(Y ) such that D(X) ∼= D(Y, α). On the other hand, if X(k) 6= ∅
and α is trivial, one has ([X ]− [Y ])L = 0 by [KS16]. In general this is not
a trivial L-equivalence.

(5) Let X = OGr+(5, 10)∩P7 and Y = OGr−(5, 10)∩P7 be mutually orthog-
onal linear sections. Then both X and Y are K3 surfaces of degree 14 such
that D(X) ∼= D(Y ) and by [IMOU16b] one has ([X ]− [Y ])L3 = 0, while
by [HL16] one has ([X ]− [Y ])L = 0.

The simple connectedness assumption in the conjecture is necessary because
otherwise there are counterexamples among abelian varieties, see [IMOU16a, E17]1.
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Geometric Manin’s Conjecture and rational curves

Brian Lehmann

(joint work with Sho Tanimoto)

Let X be a smooth projective Fano variety over the complex numbers. The cel-
ebrated bend-and-break theorem by Mori tells us that the negative curvature of
the canonical divisor KX leads to the existence of rational curves on X . This
relationship is quantified by Manin’s Conjecture: the amount of curvature of KX

should govern the number of rational curves on X . The goal of the talk is to
explain recent partial progress toward this conjecture. In the three sections below,
we will discuss (1) how to quantify curvature, (2) explicit results on families of
rational curves, and (3) a precise formulation of Manin’s Conjecture.

1. Quantifying curvature

Let X be a smooth projective variety and let L be a big and nef Q-divisor on X .
In a loose sense, the following quantities compare the curvature of KX against the
curvature of L. Set

a(X,L) = min{t ∈ R | t[L] + [KX ] ∈ Eff
1
(X)}

and

b(X,L) = the codimension of the minimal supported face of

Eff
1
(X) containing the numerical class a(X,L)[L] + [KX ].

When X is singular, we define these invariants by pulling back L to a resolution
of X .

The a and b invariants are the primary inputs into Manin’s Conjecture (over any
field). Thus, it is crucial to understand their geometric and structural properties.
This is a topic of active ongoing research; we will mainly need one such result.

Theorem 1.1 ([HJ17] Theorem 1.1). Let X be a smooth uniruled projective variety
and let L be a big and nef Q-divisor on X. Then there is a proper closed subset
V ( X such that any subvariety Y with a(Y, L|Y ) > a(X,L) is contained in V .

2. Families of rational curves

Let X be a smooth projective variety and let Mor(P1, X) denote the parameter
space of morphisms of rational curves to X . We will be interested in understand-
ing the most basic features of Mor(P1, X): what is its dimension? How many
components does it have? Such questions have been intensively studied for special
kinds of varieties (hypersurfaces, toric varieties, and homogeneous spaces), but we
are interested in understanding a picture for arbitrary Fano varieties.

Our first result describes the expected dimension of parameter spaces of rational
curves on Fano varieties.
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Theorem 2.1 ([LT17]). Let X be a smooth projective weak Fano variety and set
L = −KX. Let V ( X be the proper closed subset which is the Zariski closure of all
subvarieties Y such that a(Y, L|Y ) > a(X,L). Then any component of Mor(P1, X)
parametrizing a curve not contained in V will have the expected dimension and will
parametrize a dominant family of curves.

Assuming standard conjectures about rational curves, the converse implication
is also true: a subvariety with higher a-value will contain families of rational
curves with dimension higher than the expected dimension in X . In this way the
a-invariant should completely control the expected dimension of components of
Mor(P1, X).

Theorem 2.1 is significant for two reasons. The first is that V is a proper
closed subset of X (as explained above). The second is that Theorem 2.1 gives an
explicit description of the closed set in terms of the a-invariant. This description
can be effectively used to prove the non-existence of families of rational curves of
larger-than-expected dimension.

Example 2.2. Suppose that X is a smooth cubic hypersurface of dimension ≥ 3,
a smooth quartic hypersurface of dimension ≥ 5, or a smooth del Pezzo variety of
Picard rank 1 and dimension ≥ 3. Then every family of rational curves on X is
dominant and has the expected dimension.

Just as the a-values describe dimension, the b-values should capture the number
of components of Mor(P1, X). [LT17] makes partial progress toward the following
conjecture:

Conjecture 2.3. Fix an ample divisor L. The number of dominant components
of Mor(P1, X) of L-degree at most d is bounded above by a polynomial in d.

We expect the degree of this polynomial to reflect the behavior of the b-invariant
in a precise way.

3. Manin’s Conjecture

Finally, we explain how to formulate Manin’s Conjecture. Over an algebraically
closed field one can not actually “count curves”; instead, we define a counting
function which encapsulates the discrete invariants of Mor(P1, X). For the sake
of simplicity I will completely ignore a lattice issue in this talk. That is, I will
give the correct definitions for varieties X admitting a curve class C such that
KX · C = −1.

Let X be a smooth projective Fano variety and let L be a big and nef Q-divisor
on X . Define

N(X, q, d) =
d∑

i=1

∑

W∈Md

qdimW

where Md is the set of dominant components of Mor(P1, X) parametrizing curves
of anticanonical degree d. Loosely speaking, Manin’s Conjecture predicts an as-
ymptotic formula

N(X, q, d) ∼ Cqddρ(X)−1
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Here there is an implicit a(X,−KX) = 1 in the exponent of q and an implicit
b(X,−KX) = ρ(X) in the exponent of d. However, this statement can’t possibly
be correct due to the presence of “accumulating subvarieties” where there are
families of rational curves of higher than the expected dimension. So we need a
systematic way of discounting the contributions of such varieties.

Definition 3.1. Let f : Y → X be a morphism of projective varieties that is
generically finite onto its image. We say that f is a breaking morphism if

(a(Y, f∗L), b(Y, f∗L)) > (a(X,L), b(X,L))

in the lexicographic order.

Note that for a breaking map f : Y → X the counting function for rational
curves on Y has larger expected growth rate than the counting function for rational
curves on X . In other words, we must remove all contributions of rational curves
from Y to obtain an internally-consistent version of Manin’s Conjecture. First, we
want to know that we have not removed “too many” curves by discounting these
contributions.

Conjecture 3.2. Let X be a smooth uniruled projective variety. There is a finite
set of breaking maps fi : Yi → X such that any breaking map factors rationally
through one of the fi.

This is a geometric version of the well-known “thinness” criterion commonly
used in the number-theoretic setting.

Next we define a new counting function

N(X, q, d) =

d∑

i=1

∑

W∈Md

qdimW

where Md is the set of dominant components of Mor(P1, X) parametrizing curves
of anticanonical degree d such that the family map s : C → X does not rationally
factor through a breaking map f : Y → X .

Conjecture 3.3. Let X be a smooth projective Fano variety. Then as d→ ∞ we
have

N(X, q, d) ∼ Cqddρ(X)−1

for some positive constant C.

We prove a somewhat weaker upper bound on the behavior of the counting
function:

Theorem 3.4 ([LT17]). Let X be a smooth projective Fano variety. Fix ǫ > 0;
then for sufficiently large q

N(X, q, d) = O
(
qB(1+ǫ)

)
.
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A projective variety with discrete, non-finitely generated
automorphism group

John Lesieutre

Suppose that X is a projective variety over a field K. The automorphism group
of X has the structure of a group scheme of locally finite type over K. We
write Aut0(X) for the connected component of the identity in Aut(X), and let
π0(Aut(X)) = (Aut(X)/Aut0(X))K̄ be the group of geometric components.

It is possible that Aut(X) has infinitely many components, so that the group
π0(Aut(X)) is infinite. For a simple example, let E be an elliptic curve over K,
and consider the abelian surface X = E×E. There is a natural action of GL(2,Z)
on X , giving rise to an inclusion GL(2,Z) ⊂ π0(Aut(X)).

Brion [3] has showed that any connected algebraic group can be realized as
Aut0(X) for some X , and it is natural to wonder what can be said about the group
π0(Aut(X)). This is a countable group, but there are a variety of constraints on
its structure. For example, pulling back divisor classes gives rise to an action of
Aut(X) on N1(X), the (finite rank) group of classes of divisors on X modulo
numerical equivalence. Any element of Aut0(X) acts trivially on N1(X), but
according to a result of Lieberman and Fujiki, the kernel of the induced map
π0(Aut(X)) → GL(N1(X)) is finite. In particular, a quotient of π0(Aut(X)) by
a finite subgroup embeds into some GL(n,Z). This is a nontrivial constraint, for
it implies that there is a uniform bound on the orders of the torsion elements
of π0(Aut(X)). In particular, the group

⊕
m≥2(Z/mZ) can not be realized as

π0(Aut(X)) for any projective variety X over a field.
Given that the group π0(Aut(X)) is a countable group, perhaps the most nat-

ural question to ask is whether this group is always finitely generated.

Question 1 (Mazur, [1]). Suppose that X is a projective variety over K. Must
the group π0(Aut(X)) be finitely generated?

The main result of this talk was to show that the answer to this question is
negative.

Theorem 1 ([2]). Let K be a field that is either of characteristic 0, or of char-
acteristic p > 0 but not algebraic over Fp. Then there exists a smooth, projective
variety over K for which the group π0(Aut(X)) is not finitely generated.

The theorem follows not from a highbrow existence proof, but by exhibiting
an explicit six-dimensional variety for which finite generation fails to hold. The
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strategy is to start with a variety X with large but (probably) finitely generated
automorphism group, and then to pass to a suitable blow-up of X .

Suppose that X is a smooth, projective variety, and that V ⊂ X is a smooth
subvariety of X . If φ : X → X is an automorphism of X satisfying φ(V ) = V , then

φ lifts to an automorphism φ̃ : BlV (X) → BlV (X), where BlV (X) is the blow-up
of X along V . Writing Aut(X ;V ) = {φ ∈ Aut(X) : φ(V ) = V }, we obtain a
homomorphism Aut(X ;V ) → Aut(BlV (X)).

In general, this map is not surjective: a simple example is provided by taking
X = P2 and V the union of three non-collinear points: then Aut(BlV (X)) admits
an automorphism not lifted from X , namely the map induced by the standard
Cremona involution centered at the three points.

There are now two steps to construct a variety with non-finitely generated
automorphism group:

(1) Find a variety X and subvariety V for which the group Aut(X ;V ) ⊂
Aut(X) is not finitely generated (recall that a subgroup of a finitely gen-
erated group need not be finitely generated!)

(2) Show that for this X and V , the map Aut(X ;V ) → Aut(BlV (X)) is
surjective, so that Aut(BlV (X)) is not finitely generated.

The second of these is straightforward: roughly speaking, the map is guaran-
teed to be surjective as long as the codimension of V is sufficiently large. The first
is more interesting, and the construction of X is based on the study of the auto-
morphism groups of certain Coble rational surfaces, a classically well-studied class
of blow-ups of the plane. Ultimately, the variety X we obtain is six-dimensional,
formed as product of two rational surfaces and a surface of general type.

The arithmetic impetus towards questions about the automorphism group arises
from the fact that this group determines the forms of a variety over extension fields.
If L/K is a Galois extension, then a K-variety X ′ is called an L/K-form of X if
XL

∼= X ′
L. The set of L/K-forms of X , up to isomorphism over K is classified by

the Galois cohomology set H1(Gal(L/K),Aut(XL)). The second main result of
my talk was that even when L/K is a quadratic extension, the set of L/K forms
can be infinite.

Theorem 2 ( [2]). Let K be a field that is either of characteristic 0, or of charac-
teristic p > 0 but not algebraic over Fp. Suppose that L/K is a separable quadratic
extension. Then there exists a projective K-variety X ′ with infinitely many L/K-
forms.

When L = C and K = R, this provides an example of a variety with infinitely
many real forms.
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Nef cones of hyperkähler fourfolds and applications

Emanuele Macr̀ı

(joint work with Olivier Debarre)

We study smooth projective hyperkähler fourfolds which are deformations of Hil-
bert squares of K3 surfaces and are equipped with a polarization of fixed de-
gree and divisibility. These are parametrized by a quasi-projective irreducible
20-dimensional moduli space and Verbitksy’s Torelli Theorem implies that their
period map is an open embedding. Our main result is that the complement of the
image of the period map is a finite union of explicit Heegner divisors that we de-
scribe. The key technical ingredient is the description of the nef and movable cone
for projective hyperkähler manifolds by Bayer, Hassett, Tschinkel, and Mongardi.

We will sketch two applications. First of all, we present a new short proof
(by Bayer and Mongardi) for the celebrated result by Laza and Looijenga on the
image of the period map for cubic fourfolds. As second application, we show
that infinitely many Heegner divisors in a given period space have the property
that their general points correspond to fourfolds which are isomorphic to Hilbert
squares of a K3 surfaces.

All results are based on joint work with Olivier Debarre.

1. Introduction

LetX be a smooth projective hyperkähler fourfold which is deformation-equivalent

to the Hilbert square of a K3 surface (one says that X is of K3[2]-type). The abelian
group H2(X,Z) is free of rank 23 and it is equipped the Beauville–Bogomolov–
Fujiki form qX , a non-degenerate Z-valued quadratic form of signature (3, 20)
([Be83, Théorème 5]). A polarization H on X is the class of an ample line bundle
on X that is primitive (i.e., non-divisible) in the group H2(X,Z). The square of H
is the positive even integer 2n := qX(H) and its divisibility is the integer γ ∈ {1, 2}
such that H ·H2(X,Z) = γZ (the case γ = 2 only occurs when n ≡ −1 (mod 4)).

Smooth polarized hyperkähler fourfolds (X,H) of K3[2]-type of degree 2n and

divisibility γ admit an irreducible quasi-projective coarse moduli space M(γ)
2n of

dimension 20. The period map

℘
(γ)
2n : M(γ)

2n −→ P(γ)
2n
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is algebraic and it is an open embedding by Verbitsky’s Torelli Theorem ([Ve13],
[GHS13, Theorem 3.14], [Ma11]). Our main result is the following (see Theo-
rem 2.2):

Theorem 1.1 (Bayer; Debarre-Macr̀ı; Amerik-Verbitsky). The image of ℘
(γ)
2n is

the complement of a finite union of explicit Heegner divisors.

The main ingredient in the proof is the explicit determination of the nef and

movable cones of smooth projective hyperkähler fourfolds of K3[2]-type (see The-
orem 2.1). This is a simple consequence of previous results by Markman ([Ma11]),
Bayer–Macr̀ı ([BM14]), Bayer–Hassett–Tschinkel ([BHT15]), and Mongardi
([Mo15]).

Since the nef and movable cones can be described in any dimension, Theorem
1.1 extends with some modifications to smooth projective hyperkähler manifolds of

K3[n]-type, though the description of the image of the period map is less explicit.
We will use this generalization, together with a strange duality statement and a
construction by Lehn-Lehn-Sorger-van Straten ([LLSvS17]) to give a new proof
(by Bayer and Mongardi) of the description of the image of the period map for
cubic fourfolds ([La10, Lo09]).

The Noether–Lefschetz locus is the inverse image by the period map in M(γ)
2n of

the union of all Heegner divisors. As a second application, we can study birational
isomorphisms between some of its irreducible components. In particular, we show
that points corresponding to Hilbert squares of K3 surfaces are dense in the moduli

spaces M(γ)
2n .
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[De17]; I would like to thank him for the very nice collaboration and for many
discussions. I am also indebted with Arend Bayer, for showing me his proof with
Mongardi and for countless discussions, and Brendan Hassett, Sasha Kuznetsov,
Eyal Markman, Kieran O’Grady, Gianluca Pacienza, Alex Perry, Paolo Stellari,
and Misha Verbitsky for very useful comments and discussions on my talk1.

2. Nef cones of hyperkähler fourfolds

Cones of divisors on projective hyperkähler manifolds of K3[n]-type were described
in [BHT15, BM14, Ma11, Mo15]. When n = 2, these results take a very special
form.

Let X be a projective hyperkähler fourfold of K3[2]-type. The positive cone

Pos(X) ⊂ Pic(X)⊗ R

1The author was partially supported by the NSF grants DMS-1523496, DMS-1700751, and
by a Poincaré Chair from the Institut Henri Poincaré and the Clay Mathematics Institute.
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is the connected component of the open subset {x ∈ Pic(X) ⊗ R | x2 > 0}
containing the class of an ample divisor. The movable cone

Mov(X) ⊂ Pic(X)⊗ R

is the (not necessarily open nor closed) convex cone generated by classes of movable
divisors (i.e., those divisors whose base locus has codimension at least 2). We have
inclusions Int(Mov(X)) ⊂ Pos(X) of the interior of the movable cone into the
positive cone, and Amp(X) ⊂ Mov(X) of the ample cone into the movable cone.

We set

DivX := {a ∈ Pic(X) | a2 = −2},
FlopX := {a ∈ Pic(X) | a2 = −10, ÷H2(X,Z)(a) = 2}.

Given a divisor class a ∈ Pic(X)⊗ R, we denote by Ha the hyperplane

Ha := {x ∈ Pic(X)⊗ R | x · a = 0}.
Theorem 2.1 ([DM17, Theorem 5.1]). Let X be a hyperkähler fourfold of K3[2]-
type.
(a) The interior Int(Mov(X)) of the movable cone is the connected component of

Pos(X)r
⋃

a∈DivX

Ha

that contains the class of an ample divisor.
(b) The ample cone Amp(X) is the connected component of

Int(Mov(X))r
⋃

a∈FlopX

Ha

that contains the class of an ample divisor.

Theorem 2.1 easily implies our main result on the images of the period maps.
We first recall the definition of the Heegner divisors. Let us denote

ΛK3[2] := U⊕3 ⊕ E8(−1)⊕2 ⊕ I1(−2)

and let h0 be a class with square 2n and divisibility γ (all classes with the
same square and divisibility are in the same O(ΛK3[2])-orbit, by Eichler’s crite-
rion [GHS10, Lemma 3.5]). Let K be a primitive, rank-2, signature-(1, 1) sublat-
tice of ΛK3[2] containing the class h0. The codimension-2 subspace P(K⊥ ⊗ C)

in P(ΛK3[2] ⊗C) cuts out an irreducible hypersurface in the period domain P(γ)
2n ,

which will be denoted by D(γ)
2n,K and called a Heegner divisor. For each positive

integer d, the union

D(γ)
2n,d :=

⋃

disc(K⊥)=−d

D(γ)
2n,K ⊂ P(γ)

2n

of Heegner divisors is finite, hence it is either empty or of pure codimension 1.
Following Hassett ([Ha00]), we say that the polarized hyperkähler fourfolds whose

period point is in D(γ)
2n,d are special of discriminant d (the lattice K⊥ has signature

(2, 19), hence d is positive). We use the notation C(γ)
2n,d := (℘

(γ)
2n )

−1(D(γ)
2n,d) ⊂ M(γ)

2n .
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Theorem 2.2 ([DM17, Theorem 6.1]). Let n be a positive integer and let γ ∈
{1, 2}. The image of the period map

℘
(γ)
2n : M(γ)

2n −→ P(γ)
2n

is exactly the complement of finitely many Heegner divisors. More precisely, these
Heegner divisors are

• if γ = 1,

– some irreducible components of the hypersurface D(1)
2n,2n (two compo-

nents if n ≡ 0 or 1 (mod 4), one component if n ≡ 2 or 3 (mod 4));

– one irreducible component of the hypersurface D(1)
2n,8n;

– one irreducible component of the hypersurface D(1)
2n,10n;

– and, if n = 52α+1n′′, with α ≥ 0 and n′′ ≡ ±1 (mod 5), some irre-

ducible components of the hypersurface D(1)
2n,2n/5;

• if γ = 2 (and n ≡ −1 (mod 4)), one irreducible component of the hyper-

surface D(2)
2n,2n.

Remark 2.3. When n is square-free (so in particular n 6≡ 0 (mod 4)),

• the hypersurface D(1)
2n,2n has two components if n ≡ 1 (mod 4), one com-

ponent otherwise;

• the hypersurface D(1)
2n,8n has two components if n ≡ −1 (mod 4), one com-

ponent otherwise;

• the hypersurface D(1)
2n,10n has two components if n ≡ 1 (mod 4), one com-

ponent otherwise;

• the hypersurface D(2)
2n,2n is irreducible (when n ≡ −1 (mod 4)).

Idea of the proof of Theorem 2.2. First of all, one uses Huybrechts’ surjectivity of
the period map for compact complex analytic hyperkähler manifolds ([Hu99]), to
find a manifold M ′ with the given period and for which the class h0 is algebraic.
Since h20 = 2n > 0, by Huybrechts’ Projectivity Criterion (still [Hu99]), M ′ is
projective. By using the Zariski decomposition ([Bo04] and [Ma11, Lemma 6.22]),
by acting with a subgroup of the group of Hodge isometries of ΛK3[2] , we can
assume that the class h0 is movable. Then, there exists a projective birational
model M for which h0 is nef. The conclusion follows then by using Theorem 2.1
to explicitly describe when h0 is ample. �

Remark 2.4. Let n ≥ 1 and m ≥ 2 be positive integers. In general we can define
moduli spaces of polarized hyperkähler manifolds of dimension 2m, together with
a polarization of degree 2n and divisibility γ (and with fixed orbit-type, if m ≥ 4;
see [De17] for more details about this). By using a general version of Theorem 2.1
in any dimension, Theorem 2.2 also holds in any dimension, namely, the image
of the period map for polarized hyperkähler manifolds is always the complement
of a finite number of Heegner divisors (notice that the moduli space may not be
connected anymore, though the Torelli Theorem still implies that the restriction
of the period map to each connected component is an open embedding). Actually,
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as a consequence of general results by Amerik and Verbitsy ([AK15]), this holds
for any projective hyperkähler manifold, not necessarily of K3[m]-type.

We will consider only a special case. Assume that either γ = 1 or γ = 2 and

n + m ≡ 1 (mod 4). Then the moduli space mM(γ)
2n and n+1M(γ)

2m−2 are both
irreducible ([GHS10, Ap15]). In such a case, there is a strange duality birational
isomorphism between the two moduli spaces, which is compatible with a natural
isomorphism between the period domains. This duality will be very important
in one of the applications of Theorem 2.2 we will describe in the next section.
When the hyperkähler manifolds are actually moduli spaces of stable objects on a
certain K3 category (e.g., in the case of the manifolds coming from cubic fourfolds,
as in the next section; see [BLMS17]), then this strange duality is an instance of
Le Potier’s Strange Duality, and the birational map described below should also
have (conjecturally) the extra property that the spaces of sections of the two
polarizations should be naturally isomorphic (up to taking the dual vector space).

3. Applications

We will discuss now two applications of Theorem 2.1 and Theorem 2.2.

3.1. The period map for cubic fourfolds. Let Mcub be the moduli space of
smooth projective cubic fourfolds. We can consider the period map, and on the
period domain there are Heegner divisors (generally denoted by Cd). Actually,
in the notation of the previous section, the period of a cubic fourfold W can be
naturally identified with the period of its Fano variety of lines F (W ); the variety
F (W ) is a polarized hyperkähler foufold of K3[2]-type endowed with the Plücker
polarization of degree 6 and divisibility 2. In our previous notation the Heegner
divisors Cd would then correspond to D2

6,d.

Theorem 3.1 (Laza; Looijenga). The image of the period map for cubic fourfolds
is the complement of the divisors C2 and C6.
Proof. Idea of the proof by following Bayer and Mongardi, when W does not con-
tain a plane.
Let W be a cubic fourfold which does not contain a plane. We look at the hy-
perkähler eightfold X(W ) constructed by Lehn-Lehn-Sorger-van Straten
([LLSvS17]). The key property of X(W ) is that it carries a polarization of degree
2 and divisibility 2. There is an associated anti-symplectic involution and the fixed
locus has exactly two (smooth projective fourfolds) connected components, one of
them is the cubic itself. From our viewpoint, the varieties F (W ) and X(W ) are
dual, in the sense of Remark 2.4. We can also compute the periods, and these are
all compatible.

To prove the theorem, by the Torelli Theorem, any element in the moduli space
4M(2)

2 has a regular involution. By varying the hyperkähler eightfold in the moduli
space, the fixed locus gives a smooth family. In particular, since the deformation

of a cubic fourfold is a cubic fourfold as well, it means that for any X ∈ 4M(2)
2 ,

there exists a cubic fourfold WX ⊂ X in the fixed locus of the involution, and
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the periods of WX and X are compatible via duality. An easy computation along

the lines of Theorem 2.2 shows that the period map for 4M(2)
2 via duality exactly

avoids the divisors C2, C6, and C8. Since cubic fourfolds in the divisor C8 are those
containing a plane, this prove the theorem except in this case. �

3.2. Unexpected isomorphisms. As another application, we can understand
when the general member of one of these Heegner divisors is isomorphic to a
Hilbert square of a K3 surface. First of all, we need the following particular case
of Theorem 2.1. Let us briefly review Pell-type equations (see [Na64, Chapter VI]).
Given non-zero integers e and t with e > 0, we denote by Pe(t) the equation

a2 − eb2 = t,

where a and b are integers. A solution (a, b) of this equation is called positive if
a > 0 and b > 0. A positive solution with minimal a is called the minimal solution;
it is also the positive solution (a, b) for which the ratio a/b is minimal when t < 0,
maximal when t > 0.

Example 3.2 ([BM14, Proposition 13.1 and Lemma 13.3]2). Let (S,L) be a polar-
ized K3 surface such that Pic(S) = ZL and L2 =: 2e. Then Pic(S[2]) = ZL2 ⊕Zδ,
where L2 is the class on S[2] induced by L and 2δ is the class of the divisor in
S[2] that parametrizes non-reduced length-2 subschemes of S ([Be83, Remarque,
p. 768]).

Cones of divisors on S[2] can be described as follows.

(a) The extremal rays of the (closed) movable cone Mov(S[2]) are spanned by
L2 and L2 − µeδ, where

• if e is a perfect square, µe =
√
e;

• if e is not a perfect square and (a1, b1) is the minimal solution of the
equation Pe(1), µe = e b1a1 .

(b) The extremal rays of the nef cone Nef(S[2]) are spanned by L2 and L2−νeδ,
where

• if the equation P4e(5) is not solvable, νe = µe;
• if the equation P4e(5) is solvable and (a5, b5) is its minimal solution,

νe = 2e b5a5 .
3

Proposition 3.3 ([DM17, Proposition 7.1]). Let n and e be positive integers.
Assume that the equation Pe(−n) has a positive solution (a, b) that satisfies the
conditions

(1)
a

b
< νe and gcd(a, b) = 1.

If K2e is the moduli space of polarized K3 surfaces of degree 2e, the rational map

̟ : K2e 99K M(γ)
2n

(S,L) 7−→ (S[2], bL2 − aδ),

2Parts of the results of this example were first proved in [HT09, Theorem 22] and the ratio-
nality of the nef cone was also proved, by very different methods, in [Og14, Corollary 5.2].

3There is a typo in [BM14, Lemma 13.3(b)]: one should replace d with 2d.
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where γ = 2 if b is even, and γ = 1 if b is odd, induces a birational isomorphism

onto an irreducible component of C(γ)
2n,2e.

By using a deep result by Clozel and Ullmo ([CU05]), we deduce then the
following.

Proposition 3.4 ([DM17, Proposition 7.9]). Let n be a positive integer. There

are infinitely many distinct hypersurfaces in the moduli spaces M(1)
2n , and M(2)

2n

if n ≡ −1 (mod 4), whose general points correspond to Hilbert squares of K3
surfaces. In both cases, the union of these hypersurfaces is dense in the moduli
space for the euclidean topology.

Similar statements hold for other classes of hyperkähler fourfolds, for example
double EPW sextics ([O’G08]) or Fano varieties of lines on a cubic fourfold (see
[DM17, Section 7]).
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Half-twists and the Tate conjecture

Ben Moonen

Consider a field K that is finitely generated over Q, and a smooth projective
scheme X over K. If ℓ is a prime number, the Galois group ΓK = Gal(K̄/K)
acts continuously on the ℓ-adic cohomology groups Hi(X)(n) = Hi(XK̄ ,Qℓ(n)).
A class ξ ∈ H2i(X)(i) is called a Tate class if its stabilizer is an open subgroup
of ΓK . There are the following two conjectures:

: (S) For every X/K, i and n as above, Hi(X)(n) is semisimple as a repre-
sentation of ΓK .

: (T) For every X/K as above and i ≥ 0, the cycle class map

clℓ : CH
i(XK̄)⊗Qℓ → {Tate classes in H2i(X)(i)}

is surjective.

By the (strong version of the) Tate conjecture one usually means the combi-
nation of (S) and (T). For a discussion of recent progress on the Tate conjecture
we recommend Totaro’s article [7]. We have recently proved the following result;
see [6].

Theorem 1. — Conjecture (T) implies Conjecture (S).

The proof makes essential use of the fact that we have a semisimple Tannakian
category of motives Mot(K) over K. (We work with motives in the sense of
André [1], though one could also use motives for absolute Hodge classes as defined
by Deligne [2].) In the proof there is first a reduction step to the case K = Q
and n = 0. If V ⊂ Hi(X) is a ΓQ-submodule of dimension m then ∧mV is a
1-dimensional Galois representation that occurs in Hmi(Xm). The Galois action
on this line is given by a character ψ : ΓQ → Z×

ℓ . By making use of p-adic Hodge
theory, one shows that there is an open subgroup Γ′ ⊂ ΓQ on which ψ is an integral
power of the ℓ-adic cyclotomic character. Conjecture (T) then gives that, working
over some number field, ∧mV ⊂ ∧mHi(X) is a motivated subspace, i.e., it is stable
under the action of the motivic Galois group. This implies that V ⊂ Hi(X) is a
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motivated subspace, and as Mot(K) is a semisimple category, Hi(X) = V ⊕ V ′ as
motives, and hence also as Galois representations.

A second result that illustrates how the theory of motives can be used to prove
results about the Tate conjecture, uses a technique called “half-twisting” that was
originally introduced by van Geemen [8] in the context of Hodge theory. I have
given a different formulation of this that is better suited for motivic applications.
As a concrete example, we have the following result.

Theorem 2. — Let X ⊂ P3 be a non-singular surface given by an equation of the
form F5(x0, x1, x2)+x53 = 0 (in characteristic 0). Then the Tate conjecture for X
is true.

The proof is based on the idea that there exist abelian varieties A and B with
an action of Q(ζ5) such that

(1) H2
prim(X) ∼= H1(A)⊗Q(ζ5) H

1(B) ,

as Hodge structures. More precisely, B is an abelian surface of CM type, with CM
fieldQ(ζ5); the functor −⊗Q(ζ5)H

1(B) is what we refer to as “half twisting”. (Note
that it preserves the dimension, and increases the weight by 1.) By working in a
family one proves, using results of Deligne [2] and André [1], that the relation (1)
is even true on the level of motives. Hence one gets the corresponding relation
for ℓ-adic cohomology (viewed as Galois representations), and using the results of
Faltings about the Tate conjecture for homomorphisms between abelian varieties
we obtain the theorem. Further details about this example appear in the last
section of [5]. For other applications of half-twisting we refer to [3] and [4].
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Intersections of two Grassmannians in P9

Alexander Perry

(joint work with Lev Borisov and Andrei Căldăraru)

We work over an algebraically closed field k of characteristic 0. Let V be a 5-
dimensional vector space over k, and let W = ∧2V . We consider intersections of
the form

X = g1(Gr(2, V )) ∩ g2(Gr(2, V )) ⊂ P(W ),

where g1, g2 ∈ PGL(W ) and Gr(2, V ) ⊂ P(W ) via the Plücker embedding. When
smooth of expected dimension, X is a Calabi–Yau threefold with Hodge numbers

h1,1(X) = 1, h1,2(X) = 51.

These varieties were previously studied in works of Gross–Popescu [4], G. Ka-
pustka [6], M. Kapustka [7], and Kanazawa [5], after whom we call X a GPK3

threefold.
The elements g1, g2 ∈ PGL(W ) determine another intersection of the same type,

in the dual projective space:

Y = g−T1 (Gr(2, V ∨)) ∩ g−T2 (Gr(2, V ∨)) ⊂ P(W∨),

where g−Ti = (g−1
i )∨ : P(W∨) → P(W∨) is the inverse transpose of gi. The variety

X is a smooth threefold if and only if Y is. In this case, X and Y are smooth
deformation equivalent Calabi–Yau threefolds, which we callGPK3 double mirrors.
This terminology is motivated by the following result, which appears as an example
in forthcoming joint work with Alexander Kuznetsov.

Theorem 1 ([8]). If X and Y are GPK3 double mirrors, then there is an equiv-
alence Db(X) ≃ Db(Y ) of bounded derived categories of coherent sheaves.

Our main result says that, nonetheless, X and Y are typically not birational.

Theorem 2 ([3]). For generic g1, g2 ∈ PGL(W ), the varieties X and Y are not
birational.

Theorem 2 was also independently proved by John Ottem and Jørgen Ren-
nemo [9]. Before explaining the main idea of our proof, we discuss some applica-
tions and auxiliary results.

Applications. Generic GPK3 double mirrors give the first example of deforma-
tion equivalent, derived equivalent, but non-birational Calabi–Yau threefolds. By
an observation from [1], a derived equivalence of complex Calabi–Yau threefolds in-
duces an isomorphism of integral polarized Hodge structures on third cohomology.
Thus we obtain:

Corollary 3 ([3]). Generic complex GPK3 double mirrors give a counterexample
to the birational Torelli problem for Calabi–Yau threefolds.

Previously, Szendrői [10] showed the usual Torelli problem fails for Calabi–Yau
threefolds, but the birational version was open until our result.

As a second application of Theorem 2, we prove the following.
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Theorem 4 ([3]). If X and Y are GPK3 double mirrors, then:

(1) In the Grothendieck ring K0(Var/k) of k-varieties, we have

([X ]− [Y ])L4 = 0,

where L = [A1] is the class of the affine line.
(2) If the elements g1, g2 ∈ PGL(W ) defining X and Y are generic, then

[X ] 6= [Y ].

This adds to the growing list of examples, begun by [2], of derived equivalent
varieties whose difference in the Grothendieck ring is annihilated by a power of L.
Part (1) is proved by studying a certain incidence correspondence, and part (2) is
an easy consequence of Theorem 2.

Geometry and moduli of GPK3 threefolds. Our proof of Theorem 2 involves
several independently interesting results on the geometry and moduli of GPK3

threefolds. The main result about the geometry of these threefolds is the following.

Proposition 5 ([3]). The two Gr(2, V ) translates containing a GPK3 threefold X
are unique.

This is proved by studying the restriction to X of the normal bundles of the
translates gi(Gr(2, V )) ⊂ P(W ); the key insight is that these are slope stable
vector bundles on X , whose isomorphism class determines gi(Gr(2, V )) ⊂ P(W ).
Using Proposition 5, we obtain an explicit description of the automorphism group
of X .

In terms of moduli, we consider two spaces: the moduli stack N of GPK3 data,
defined as a Z/2×PGL(W )-quotient of the space of pairs of Gr(2, V ) translates in
P(W ) whose intersection is a smooth threefold (where Z/2 swaps the two trans-
lates); and the moduli stack M of GPK3 threefolds, defined as a PGL(W )-quotient
of an open subscheme of the appropriate Hilbert scheme. There is a natural mor-
phism f : N → M given pointwise by intersecting the two Gr(2, V ) translates.

Theorem 6 ([3]). The morphism f : N → M is an open immersion of smooth
separated Deligne–Mumford stacks of finite type over k.

For this, the main step is showing that the derivative of f at any point is an
isomorphism.

Theorem 7 ([3]). The automorphism group of any geometric point s ∈ N acts
faithfully on the tangent space TsN . Moreover, if 1 6= γ ∈ AutN (s) is an involu-
tion, then the trace of the induced element γ∗ ∈ GL(TsN ) satisfies

tr(γ∗) ∈ {3, 1,−3,−5,−13,−15,−35} .
This is proved by a careful analysis of the eigenvalues of the action on TsN ,

which uses our description of the automorphism groups of GPK3 threefolds.
The involution of PGL(W )×PGL(W ) given by (g1, g2) 7→ (g−T1 , g−T2 ) descends

to the double mirror involution τ : N → N . In these terms, our proof of Theorem 2
boils down to the following infinitesimal claim: there exists a fixed point s ∈ N
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of τ such that the derivative dsτ ∈ GL(TsN ) is not contained in the image of the
homomorphism AutN (s) → GL(TsN ). For this, we exhibit an explicit fixed point
s such that tr(dsτ) does not occur in the list of traces from Theorem 7.
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[3] Lev Borisov, Andrei Căldăraru, and Alexander Perry, Intersections of two Grassmannians
in P9, arXiv:1707.00534 (2017).

[4] Mark Gross and Sorin Popescu, Calabi-Yau threefolds and moduli of abelian surfaces. I,
Compositio Math. 127 (2001), no. 2, 169–228.

[5] Atsushi Kanazawa, Pfaffian Calabi-Yau threefolds and mirror symmetry, Commun. Number
Theory Phys. 6 (2012), no. 3, 661–696.

[6] Grzegorz Kapustka, Primitive contractions of Calabi-Yau threefolds. II, J. Lond. Math. Soc.
(2) 79 (2009), no. 1, 259–271.

[7] Micha l Kapustka, Geometric transitions between Calabi-Yau threefolds related to Kustin-
Miller unprojections, J. Geom. Phys. 61 (2011), no. 8, 1309–1318.

[8] Alexander Kuznetsov and Alexander Perry, Categorical joins, in preparation.
[9] John Ottem and Jørgen Rennemo, A counterexample to the birational Torelli problem for

Calabi-Yau threefolds, arXiv:1706.09952 (2017).
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Abelian varieties associated to hyperkähler varieties of Kummer type

Kieran G. O’Grady

LetX be a hyperkähler manifold, deformation equivalent to a generalized Kummer
variety (following established terminology, we say that X is of Kummer type) of
dimension at least 4. Then b3(X) = 8, by well-known formulae of Göttsche, and
of course H3,0(X) = 0. Thus

J3(X) = H3(X)/(H2,1(X) +H3(X ;Z))

is a 4 dimensional compact complex torus. IfX is projective, and L is an ample line
bundle on X , then J3(X) is an abelian 4-fold (all of H3(X) is primitive because
H1(X) = 0), and we let ΘL be the polarization defined by L. Below is our main
result regarding J3(X).

Theorem 1 (With a Caveat, see below.). Let X be a hyperkähler variety of
Kummer type, of dimension 2n, and let L be an ample line bundle on X. Then
(J3(X),ΘL) is of Weil type, with an inclusion

Q
√
−2(n+ 1)qX(L) ⊂ End(J3(X),ΘL)Q,

where qX(L) is the value of the Beauville-Bogomolov-Fujiki (BBF) quadratic form
on c1(L). The abelian varieties (J3(X),ΘL), for variable (X,L), give all abelian
fourfolds of Weil type with fixed numerical characters. Moreover, the Kuga-Satake
variety KS(X,L) is isogenous to J3(X)4.
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The main idea involved in the proof is simple, and goes as follows. Let X be
as above. The BBF bilinear form (, ) defines an isomorphism H2(X) → H2(X)∨,
which is invertible because (, ) is non degenerate. The inverse H2(X)∨ → H2(X)
defines an element in Sym2H2(X), whose image by the cup-product map is a class

in H2,2
Q (X) that we denote by q∨. The class q := 2(n+ 1)q∨ belongs to H2,2

Z (X).

Let φ :
∧2

H3(X) → H2(X)∨ be the composition of the map
∧2

H3(X) −→ H4n−2(X)
α ∧ β 7→ α ∪ β ∪ qn−2

and the isomorphism H4n−2(X) → H2(X)∨ defined by cup product. Then∧2H2,1(X) maps to the one dimensional space which annihilates F 1H2(X). This
is strong condition, since H2,1(X) is 4 dimensional, and in fact one can reconstruct
the Hodge structure on H3(X) from the Hodge structure on H2(X), provided φ is
non zero. For the moment being, we have checked that φ is non zero only if n = 2,
i.e. dimX = 4. Thus, for now Theorem 1 is proved only for dimX = 4.

On the projectivity of the moduli space of stable varieties in
characteristic p > 5

Zsolt Patakfalvi

Stable varieties are the natural higher dimensional generalizations of stable curves
in two aspects:

(1) The (partially conjectural) moduli space Mn,v of stable varieties of di-
mension n > 0 and volume v > 0 contains an open locus M can

n,v classifying
(moduli the Minimal Model Program) birational equivalence classes of
smooth, projective varieties of dimension n and volume v. This latter
open set specializes to the moduli space of smooth curves of genus g in
dimension 1 (by setting v = 2g − 2).

(2) Mn,v provides the “most natural” compactification of the above open lo-
cus, so that the methods of projective algebraic geometry can be applied
to the moduli space itself.

Unlike for stable curves, in dimension at least 2 the state of the construction of
the coarse moduli space Mn,v of stable varieties of dimension n and fixed volume
v > 0 largely depends on what generality one considers:

(1) In characteristic 0, Mn,v (end even its log-versions up to a little issue con-
cerning the nilpotent structure) is known to exist [KSB88, Kol90, Ale94,
Vie95, HK04, Kar00, AH11, Kol08, Kol13a, Kol13b, Fuj12, HMX14, Kol17,
KP17].

(2) In other situations (mixed and positive equicharacteristic), a few steps
of the construction are known in any dimensions ([Kol08]), however the
existence of the coarse moduli space is not known in any sense in arbitrary
dimensions.
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(3) Nevertheless, in equicharacteristic p > 5, the moduli M2,v of stable sur-
faces is known to exist as a separated algebraic space.

In this talk we present different results concerning the construction of M2,v. The
first one concerns the positive equicharacteristic case:

Theorem 1. Let v > 0 be a rational number, let k be an algebraically closed field
with char(k) = p > 5, and let M2,v be the coarse moduli space of the moduli stack
of stable surfaces of volume v (which is known to exist as a separated algebraic
space of finite type over k). Then, every proper closed sub-algebraic space M of
M2,v is a projective scheme over k.

We need a conditional statement for the mixed characteristic implication, as in
that case even the algebraic space structure of the coarse moduli space is unknown.
We state this below:

Theorem 2. Fix a rational number v > 0. Let M2,v denote the moduli stack of

stable surfaces of volume v and let (I) and (L) be the properties of M2,v defined
in Definition 5 (intuitively meaning: existence of (L)imits, and (I)nversion of
adjunction, where the latter is a deformation property of the singularities of stable
varieties).

(1) If M2,v ⊗Z Z[1/30] satisfies (I) and (L), then M2,v ⊗Z Z[1/30] admits a
projective coarse moduli space over Z[1/30].

(2) If k is an algebraically closed field of characteristic p > 5, and M2,v ⊗Z k

satisfies (L), then M2,v ⊗Z k admits a projective coarse moduli space over
k.

The two main ingredients are Theorem 3, and some folklore results about when
M2,v admits a structure of a separated Artin stack of finite type with finite diag-
onal.

Theorem 3. If f : X → T is a family of stable surfaces of maximal variation with
a normal, projective base over an algebraically closed field k of characteristic p > 5,
then for all divisible enough integer r > 0, det f∗OX(rKX/T ) is a big line bundle.
Here maximal variation means that general isomorphism classes of the fibers are
finite. If all isomorphism classes of the fibers are finite, then det f∗OX(rKX/T ) is
ample.

Theorem 3 is deduced using the “ampleness lemma method” from Theorem 4.

Theorem 4. Let f : (X,D) → T be a family of stable log-surfaces over a proper,
normal base scheme of finite type over an algebraically closed field k of character-
istic p > 5 such that the coefficients of D are greater than 5/6. Then for every
divisible enough integer r > 0, f∗OX(r(KX/T +D)) is a nef vector bundle.

We also remark on the appearance of the boundary divisor D in Theorem 4. In
fact, for the application to the previous theorems, one does not need a boundary
divisor. We still include it in the statement of Theorem 4, as we obtain this
generality almost freely during the proof of the boundary free version. However,
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we are not able to use it to prove log-versions of the above theorems, as in the proof
of the logarithmic projectivity in [KP17], arbitrary dimensional semi-positivity
theorems were used in characteristic 0 (notable the last 3 lines of [KP17, page
995]). From this we are unfortunately very far in positive characteristic. We also
remark, that the bound 5

6 on the coefficients of D appear in Theorem 4, as this is
the largest log canonical threshold on surfaces, which is smaller than 1.

Lastly, we state the conditions used in the statement of Theorem 2. The first
one requires that for certain small deformations (that is, for the ones having Q-
Cartier relative canonical), the singularities of stable varieties deform. The second
one requires that at least one stable limit exists.

Definition 5. Let v > 0 be a rational number. Let S be a base-scheme, which
is either an open set of SpecZ or an algebraically closed field k of characteristic
p > 0.

(1) We say that (I) is known for M2,v ⊗Z S, if whenever we are given:
(a) an affine, normal, 1-dimensional scheme T of finite type over S,
(b) a flat, projective morphism of finite type f : X → T with geometri-

cally demi-normal surface fibers, such that KX/T is Q-Cartier, and
(c) a closed point t ∈ T such that Xt is a stable surface of volume v,
then X is semi-log canonical in a neighborhood of Xt.

(2) We say that (L) is known for M2,v ⊗Z S, if whenever we are given:
(a) an affine, normal, 1-dimensional scheme T of finite type over S,
(b) a fixed closed point t ∈ T , for which we set T 0 := T \ {t}, and
(c) f0 : X0 → T 0 a family of stable surfaces of volume v,
then there is a family f : X → T of stable surfaces of volume v extending
f .
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Hodge ideals for Q-divisors

Mihnea Popa

(joint work with Mircea Mustaţă)

This describes a joint project with Mircea Mustaţă, from University of Michigan.
Our work [MP1], [MP2], [MP3] has been devoted to the study of what we callHodge
ideals associated to effective divisors, an extension of the theory of multiplier ideals
in birational geometry. They arise as an application of Morihiko Saito’s theory of
mixed Hodge modules.

The program is completed in the case of reduced divisors. Let X be a smooth
complex variety of dimension n, and D a reduced effective divisor on X . The left
DX -module

OX(∗D) =
⋃

k≥0

OX(kD)

of functions with arbitrary poles along D underlies the mixed Hodge module
j∗QHU [n], where U = X \ D and j : U →֒ X is the inclusion map. It there-
fore comes equipped with a Hodge filtration F•OX(∗D). Saito showed that this
filtration is contained in the pole order filtration, namely

FkOX(∗D) ⊆ OX

(
(k + 1)D

)
for all k ≥ 0,

and the problem of how far these are from being different is of interest both in the
study of the singularities of D and in understanding the Hodge structure on the
cohomology of the complement H•(U,C). The inclusion above leads to defining
for each k ≥ 0 a coherent sheaf of ideals Ik(D) ⊆ OX by the formula

FkOX(∗D) = OX

(
(k + 1)D

)
⊗ Ik(D).

In our work, we study and apply the theory of these ideals using birational geom-
etry methods; this involves redefining them by means of log-resolutions.

One can loosely summarize the main results of [MP1] and [MP2] as follows:

Theorem 1. [MP1] Given a reduced effective divisor D on a smooth complex
variety X, there exists a sequence of ideal sheaves Ik(D) with k ≥ 0, of Hodge
theoretic origin, such that:

(i) I0(D) is the multiplier ideal I
(
(1 − ǫ)D

)
, and there are inclusions

· · · Ik(D) ⊆ · · · ⊆ I1(D) ⊆ I0(D).
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(ii) Ik(D) are all trivial if and only if D is smooth.

(iii) If any Ik(D) is trivial for k ≥ 1, then D has rational singularities. (Note
that by definition I0(D) is trivial if and only if the pair (X,D) has log canonical
singularities.) More precisely, I1(D) ⊆ Adj(D), the adjoint ideal of D.

(iv) There are non-triviality criteria for Ik(D) at a point x ∈ D in terms of the
multiplicity of D at x.

(v) Ik(D) satisfy a vanishing theorem analogous to Nadel Vanishing for multiplier
ideals.

(vi) Ik(D) determine Deligne’s Hodge filtration on the singular cohomology
H•(U,C), where U = X \D, via a Hodge-to-de Rham type spectral sequence.

(vii) The Ik(D) satisfy analogues of the restriction, subadditivity and semiconti-
nuity theorems for multiplier ideals.

Here are some examples of concrete applications that come out of this:

• Solution to a conjecture on the multiplicities of points on theta divisors on prin-
cipally polarized abelian varieties in the case of isolated singularities, improving
in this case a result of Kollár.

• An effective bound for how far the Hodge filtration coincides with the pole
order filtration on the cohomology H•(U,C) of the complement, refining results of
Deligne-Dimca.

• Effective bounds for the degrees of hypersurfaces on which isolated singular
points on a hypersurface in Pn of given degree impose independent conditions,
extending a result of Severi for nodal surfaces in P3.

The case of arbitrary Q-divisors requires a somewhat more technical setting,
where the D-modules we consider are only direct summands of D-modules under-
lying mixed Hodge modules. Let D be an effective Q-divisor on X , with support
Z. We denote U = X \ Z and let j : U →֒ X be the inclusion map. Locally we
can assume that D = α · div(h) for some nonzero h ∈ OX(X) and α ∈ Q>0. We
denote β = 1− α. To this data one associates the left DX -module M(hβ), a rank
1 free OX(∗Z)-module with generator the symbol hβ , on which a derivation D of
OX acts via the rule

D(whβ) :=
(
D(w) + w

β ·D(h)

h

)
hβ .

The case β = 0 is the localization OX(∗Z) considered above.
This D-module does not necessarily underlie a Hodge module itself. It is how-

ever a filtered direct summand of one such, via an analogue of cyclic covering con-
structions, and therefore again comes endowed with a Hodge filtration F•M(hβ).
As above, one has an inclusion

FkM(hβ) ⊆ OX

(
(k + 1)Z

)
hβ ,
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and so for each k ≥ 0, the k-th Hodge ideal associated to the Q-divisorD is defined
by

FkM(hβ) = Ik(D)⊗OX
OX

(
(k + 1)Z

)
hβ .

It is standard to check that the definition of these ideals is independent of the
choice of α and h, and therefore makes sense globally on X . The reduced case
corresponds to the value β = 0.

The bulk of the lecture was devoted to explaining that even in the Q-divisor
case, the ideals Ik(D) satisfy many of the properties listed in Theorem 1, or suit-
able replacements. However, in this case, the theory of mixed Hodge modules
comes into play much more prominently; more precise, some of these results are
deduced after establishing a connection between Hodge ideals and the microlocal
V -filtration, which was first noted by M. Saito [Sa] in the case of reduced divisors.

Theorem 2. [Sa], [MP3] For every k ≥ 0 we have

Ik(D) = Ṽ k+αOX mod ID,

where ID is the ideal of D, and Ṽ k+αOX is the microlocal V -filtration on the
structure sheaf of X.

The theorem is proved using the regular and quasi-unipotent property of filtered
D-modules underlying mixed Hodge modules, which describes a close interaction
between the Hodge filtration and the V -filtration alongD. Its usefulness also stems
from the connection between the (microlocal) V -filtration and the Bernstein-Sato
polynomial of D and its roots. Indeed, it allows us to give a lower bound for
the microlocal log canonical threshold of D (the negative of the largest root of
the Bernstein-Sato polynomial that is different from −1) in terms of discrepancies
on any fixed log resolution of the pair (X,D), partially answering a question of
Lichtin.
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Complex ball quotients and moduli spaces of some irreducible
holomorphic symplectic fourfolds

Alessandra Sarti

The aim of the talk was to show a relation between the moduli space of some IHS
fourfolds carrying a non-symplectic automorphism of order three and the moduli
space of smooth cubic 3-folds, that was described by Allcock, Carlson and Toledo
in a famous paper of 2011, [1].
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1. Non–symplectic automorphisms on IHS manifolds

We start by recalling the following:

Definition 1.1. An irreducible holomorphic symplectic (IHS) manifold X is a
compact, complex, Kähler manifold which is simply connected and admits a unique
(up to scalar multiplication) everywhere non-degenerate holomorphic 2-form.

Assume that X is equivalent by deformation to the Hilbert scheme of n points

Hilb[n](S), where S is a K3 surface (we will say for simplicity that X is of type
K3[n]), let σ ∈ Aut(X) be an automorphism, and assume that σ has prime order
p. This induces an action on H2,0(X) = CωX . If σ∗ωX = ζωX , ζ a primitive
p–root of unity, we say that σ acts non–symplectically on X .

Recall that by using the Beauville-Bogomolov-Fujiki (BBF) quadratic form on
the second cohomology with integer coefficients we have an isometry H2(X,Z) =
U⊕3⊕E8(−1)⊕2⊕〈−2(n−1)〉, where U is the hyperbolic plane and E8(−1) is the
even negative definite lattice associated to the root system E8. So H2(X,Z) is a
lattice of signature (3, 20) and an automorphism σ ∈ Aut(X) induces an isometry
of H2(X,Z). We can consider two important sublattices

T = H2(X,Z) = {x ∈ H2(X,Z) |σ∗(x) = x}, S = T⊥ ∩H2(X,Z),

we call T the invariant sublattice and one can easily show that

T ⊂ NS(X), TransX ⊂ S

where NS(X) is the Néron-Severi group of X and TransX the transcendental lattice
of X . We recall that since X is projective (see [2]) then sgn(T ) = (1, ρ − 1) and
sgn(S) = (2, 21− ρ), where ρ = rankT . These two lattices play an important role
if one wants to classify automorphisms, in fact one starts by classifying S and T .
This was done in the case of n = 2 by Boissière, Camere, Sarti and Tari (see [4],
[10]) and for n > 2 it is a work in progress by Camere and Cattaneo (see [6]).

Properties of S. Let X be of type K3[2] (i.e. X is an IHS fourfold) carrying
a non–symplectic automorphism σ of prime order p, then

rankS = m(p− 1), m ∈ Z>0(1)

in fact the action of σ∗ on S⊗C is by primitive roots of unity, and the discriminant
group satisfies

S∨/S ∼= (Z/pZ)⊕a, a ∈ Z≥0(2)

where S∨ = {v ∈ S ⊗Q | (v, z) ∈ Z, ∀z ∈ S}.

2. A key example

Let V ⊂ P5 be a smooth cubic 4-fold, and assume that V has equation

x35 + f3(x0, . . . , x4) = 0

so that V is the triple cover of P4 ramified on a smooth cubic threefold
C : {f3(x0, . . . , x4) = 0}. The covering automorphism is

σ : P5 −→ P5, (x0 : . . . : x4 : x5) 7→ (x0 : . . . : x4 : ζx5)
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with ζ = e
2πi
3 so that σ has order 3. We consider now the Fano variety of lines

F (V ) = {l ∈ Gr(1, 5) | l ⊂ V }
where Gr(1, 5) is the Grassmannian variety of lines of P5. It was shown by
Beauville and Donagi (see [3]) that F (V ) is of K3[2] type and it is 〈6〉-polarized
ample (i.e. there is a primitive embedding of the rank one lattice 〈6〉 in NS(F (V ))
so that the image contains an ample class). The automorphism σ on V induces an
automorphism σ̄ on F (V ) of the same order and one can show that σ̄ acts non–
symplectically. Moreover the fixed locus F (V )σ̄ is the Fano surface of lines F (C)
of the smooth cubic threefold C, this is a surface of general type with Hodge num-
bers: h1,0 = h0,1 = 5, h2,0 = h0,2 = 10, h1,1 = 25. By using the topology of the
fixed locus one computes in the formulas (1), (2) that m = 11 and a = 1, so that
combining with results on lattices by Nikulin (see [8]) and by Rudakov-Shafarevich
(see [9]) one computes that

S = U⊕2 ⊕ E8(−1)⊕2 ⊕A2(−1), T = 〈6〉(3)

where A2(−1) is the negative definite lattice associated to the root system A2.

3. A relation between V , S and C = F (V )σ̄

For V ⊂ P5 a smooth cubic 4-fold, recall that H4(V,Z) is a lattice of signature
(21, 2) which is odd, unimodular (see [7]), i.e. with the usual intersection pairing
it is isometric to 〈1〉⊕21 ⊕ 〈−1〉⊕2. Let h ∈ H2(P5,Z) be the class of a hyperplane
and define θ(V ) := h2|V ∈ H4(V,Z) then one computes θ(V )2 = 3. Take now the

primitive cohomology

H4
0 (V,Z) := θ(V )⊥ ∩H4(V,Z) ∼= S(−1)

where the last isometry is shown by Hassett in [7] and S is the lattice we defined
in (3). Recall that H3,1(V ) is one-dimensional generated by a (3, 1)-form, that we
denote by v. In the case of a cubic 4-fold V as in the example above, one checks

that σ(v) = ζv, with ζ = e
2πi
3 , so that

H3,1(V ) ⊂ H4
0 (V,Z)ζ ∼= S(−1)ζ

where the last two spaces denote the eigenspaces for the eigenvalue ζ of the action
of σ onH4

0 (V,Z)⊗C respectively S(−1)⊗C. Recall that by [1] the one–dimensional
space H3,1(V ) is called the period point of the smooth cubic threefold C.
Let us now go back to IHS fourfolds with non–symplectic automorphism. Consider
H2,0(F (V )) = CωF (V ), since σ̄

∗ωF (V ) = ζωF (V ) then ωF (V ) ∈ H2(F (V ),Z)ζ =

Sζ ⊂ S⊗C where againH2(F (V ),Z)ζ and Sζ denotes the eigenspaces with respect
to ζ for the action of σ̄. More precisely the period point belongs to

ωF (V ) ∈ {[ω] ∈ P(Sζ) | (ω, ω̄) > 0}
which is an open analytic subset in a 10-dimensional complex projective space.
The BBF–quadratic form restricts to an hermitian form on Sζ of signature (1, 10)
so that by an easy computation one can see that in fact ωF (V ) belongs to a 10-
dimensional complex ball, that we denote by B10. On the other hand not any
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point in B10 gives an IHS manifolds X of type K3[2] with a non–symplectic auto-
morphism of order three. So

ωF (V ) ∈
B10\H

Γ
=: Ω10

where H is a hyperplanes arrangment and Γ is an arithmetic subgroup of the group
of the isometries of the lattice S. In fact Ω10 can be identified with the moduli
space Mρ,ζ

〈6〉 of IHS of K3[2] type where:

• we fix the representation ρ : Z/3Z −→ O(Λ), that fixes the action of the
automorphism on the K3[2]-lattice Λ := U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2〉,

• we fix the embedding of the lattice 〈6〉 in Λ so that the orthogonal com-
plement is S,

• we fix the action on the holomorphic two form of the IHS manifold ofK3[2]

type as the multiplication by ζ.

Observe that a priori not all X in this moduli space are of the type F (V ) with the
non–symplectic automorphism σ̄.

We denote now by Csm3 the moduli space of smooth cubic threefolds as de-
scribed in [1] and we have the following result obtained in a work in progress in
collaboration with S. Boissière and C. Camere, [5]:

Theorem 1. (1) We have an isomorphism of moduli spaces: Csm3 ∼= Mρ,ζ
〈6〉.

(2) Let X be of type K3[2] and let 〈6〉 →֒ NS(X) be an ample polarization.
Then X admits a non–symplectic automorphism of order three with in-
variant lattice 〈6〉 if and only if X ∼= F (V ), and V is the triple cover of
P4 ramified on a smooth cubic threefold and the automorphism is induced
by the covering automorphism.

The proof uses the results of [1] and in particular the description of the pe-
riod point of a smooth cubic threefold that we recalled above, the study of the
hyperplane arrangment H and the study of the group Γ.
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F -rational mod p implies rational singularities in mixed characteristic

Karl Schwede

(joint work with Linquan Ma)

Suppose that (R,m) is a local domain essentially of finite type over C. R. Elkik
proved the following.

Theorem 1 ([Elk78]). If 0 6= f ∈ R is such that R/fR has rational singularities,
then R has rational singularities.

We provide a proof here for inspiration.

Proof. Note that since R/fR is normal and Cohen-Macaulay, we can assume that
R is normal and Cohen-Macaulay. Let X = SpecR and let π : Y → X be a
resolution of singularities. Recall that R has rational singularities if and only if R

is Cohen-Macaulay and π∗ωY = ωX . Let H = Spec(R/fR) ⊆ X and let H̃ denote
the strict transform of H under π. Applying the functor RΓm and cohomology

to the short exact sequence 0 → OX
·f−→ OX → OH → 0, as well as to the

corresponding sequence describing H = π∗H we have the following diagram:

Hd−1
m

(OX)

��

// Hd−1
m

(OH)

α

��

φ
// Hd

m
(OX)

β

��

·f
// Hd

m
(OX)

��

//

Hd−1
m

(Rπ∗OY ) // Hd−1
m

(Rπ∗OH)

γ

��

ψ
// Hd

m
(Rπ∗OY )

·f
// Hd

m
(Rπ∗OY ) //

Hd−1
m

(Rπ∗OH̃)

where d = dimR = dimX . It suffices to show that the map labeled β is injective
since Hd

m(OX) → Hdm(Rπ∗OY ) is Matlis/local-dual to π∗ωY → ωX . Note that
Hd−1

m
(Rπ∗OY ) = 0 by the Matlis/local-dual version of Grauert-Riemenschneider

vanishing and hence that ψ injects. Likewise, the Matlis/local dual of the assertion
that π∗ωH̃ = ωH is that γ◦α is an isomorphism, and hence we know that α injects.

The first named author was supported by NSF Grant #1600198 and NSF CAREER Grant
DMS #1252860/1501102.

The second named author was supported in part by the NSF FRG Grant DMS
#1265261/1501115 and NSF CAREER Grant DMS #1252860/1501102.
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Now, choose 0 6= x ∈ Hd
m
(OX) such that fx = 0. It suffices to show that

β(x) 6= 0. However x = φ(y) for some 0 6= y ∈ Hd−1
m

(OH). Thus α(y) 6= 0 since α
is injective. Likewise 0 6= ψ(α(y)) = β(x) as desired. �

In characteristic p > 0, there is an analog of rational singularities. Suppose
that (R,m) is a d-dimensional local ring of characteristic p > 0. Then we say that
R has F -rational singularities if R is Cohen-Macaulay and if N ⊆ Hd

m
(R) is a

submodule such that

F (N) ⊆ N,

where F : Hd
m
(R) → Hd

m
(R) is the Frobenius action, then N = 0 or N = Hd

m
(R).

Note that this implies that if Y → X = SpecR is any map of schemes, then induced

the mapHd
m
(R)

κ−→ Hd
m
(Rπ∗OY ) is either injective or zero, sinceK = kerκ satisfies

F (K) ⊆ K.
K. Smith was the first to make all the observations above and used them to

prove the following Theorem relating F -rational and rational singularities (also
see [MS97, Har98] for the converse):

Theorem 2 ([Smi97]). Suppose (R,m) is a local domain of finite type over Q and
Rp is a family of mod p reductions over Z. Then if the mod-p reductions Rp are
F -rational for a Zariski dense set of primes (p) ∈ SpecZ, then R has rational
singularities in characteristic zero.

Proof. The idea is the reduce a resolution of singularities π : Y → X to character-
istic p ≫ 0 to obtain πp : Yp → Xp. We have that Hd

m
(OXp

) → Hd
m
(R(πp)∗OYp

)
injects since it is dual to π∗ωYp

→ ωXp
and hence nonzero. Thus π∗ωY → ωX

surjects in characteristic zero. �

Note, that one really does not need Rp to be F -rational for a Zariski dense set
of primes, one really needs only check a single prime large enough. Unfortunately,
to find that prime one has to compute (πZ)∗ωYZ

in mixed characteristic, and if you
can do that, you can presumably compute π∗ωY in characteristic zero (and so you
can already check whether or not X has rational singularities).

In our work, we show the following linking the results of Elkik and Smith.

Theorem 3 ([MS17]). Suppose (R,m) is a d-dimensional local ring of mixed char-
acteristic (0, p) such that R/pR has F -rational singularities. Then R has pseudo-
rational singularities. This means that R is Cohen-Macaulay and that for any
π : Y → X = SpecR such that π is proper and birational, that Hd

m
(OX) →

Hd
m
(Rπ∗OY ) is injective (or dually that π∗ωY → ωX is surjective).

In fact, we prove a stronger theorem, we show that R has big-Cohen-Macaulay
rational singularities which means that for any big-Cohen-Macaulay R-algebra B,
we have that Hd

m
(R) → Hd

m
(B) is injective, which implies the result for π : Y → X

proper and birational via arguments similar to [Ma15]. Note big Cohen-Macaulay
algebras exist by [And16], also see [HM17]. One then runs an argument similar to
the one in Elkik’s result above, replacing Rπ∗OY with B and Rπ∗OH with B/pB.
Note that Hi

m
(B) = 0 for i < dimR since B is Big-Cohen-Macaulay replacing the
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use of the dual Grauert-Riemenschneider vanishing. On the other hand, the map
Hd−1

m
(R/pR) → Hd−1

m
(B/pB) is injective since R/pR has F -rational singularities,

this replaces the injectivity of the map α.
As an application, by simply localizing, we obtain the following.

Corollary 4 ([MS17]). Suppose that (R,m) is a local ring essentially of finite type
over Q such that it has a family of characteristic p > 0 reductions (Rp,mp) over
Z. If one of the characteristic p > 0 reductions Rp is an F -rational local ring,
then R has rational singularities in characteristic zero.

Note one can check whether a ring is F -rational using the package
TestIdeals.m2 in Macaulay2 [GS]. Related results for log canonical thresholds
are obtained by very different means in [Zhu17, Corollary 4.1].
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Degeneracy loci, virtual cycles and nested Hilbert schemes

Richard Thomas

(joint work with Amin Gholampour)

Moduli spaces in algebraic geometry are often singular of too high a dimension.
In good situations — when they admit a perfect obstruction theory [BF] of the
correct “virtual” dimension — they still admit a fundmental cycle (called the
virtual cycle) of the correct dimension. This has good properties which ensure that
one can integrate against it to define enumerative invariants which are deformation
invariant.

The prototype of a scheme Z with perfect obstruction theory is the zero locus
of a section of a vector bundle E on a smooth ambient variety A. In this case the
virtual dimension is dimA− rkE — the number of unknowns minus the number
of equations. All perfect obstruction theories are locally of this form. When
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a perfect obstruction theory takes this form globally, the natural virtual cycle
pushes forward to what we might expect, namely the Euler class of the bundle.
This facilitates computations, but is unfortunately extremely rare. (Instead one
usually has to use a combination of degeneration and localisation, which makes
computation very difficult.)

In [GT] we give another prototype of a perfect obstruction theory generalising
zero loci, namely degeneracy loci. We show the deepest degeneracy locus (the locus
where the rank drops lowest) of a map of vector bundles over a smooth ambient
scheme carries a natural perfect obstruction theory.

Again, when this can be done globally, it allows us to express integrals over the
virtual cycle in terms of integrals over the ambient space. Here the Euler class is
replaced by a combination of Chern classes known as the Thom-Porteous formula.

Fix a smooth projective surface S. We show that the perfect obstruction theory
relevant to the “reduced DT theory” [GSY1, GSY2] and the Vafa-Witten theory
[TT1] of S takes this form. This allows us to compute Vafa-Witten invariants.

The simplest example is provided by the 2-step nested Hilbert scheme of points
on S,

S[n1,n2] :=
{
I1 ⊆ I2 ⊆ OS : length (OS/Ii) = ni

}
.

This lies in the ambient space S[n1] ×S[n2] as the locus of points (I1, I2) for which
there is a nonzero map HomS(I1, I2) 6= 0. Thus it can be seen as the degeneracy
locus of the complex of vector bundles

(1) RHomπ(I1, I2) over S[n1] × S[n2]

which, when restricted to the point (I1, I2), computes Ext∗S(I1, I2). (For precise
statements and a description of all notation, see [GT].)

When H0,1(S) = 0 = H0,2(S) this complex is 2-term, so our theory endows it
with a virtual cycle whose pushforward is described by the Thom-Porteous formula
via

(2) ι∗
[
S[n1,n2]

]vir
= cn1+n2

(
RHomπ(I1, I2)[1]

)

in the dimension n1+n2 Chow ring (or degree 2n1+2n2 homology) of S[n1]×S[n2].
There are similar results for k-step nested Hilbert schemes, and when we allow
curves as our subschemes.

When either of H0,1(S) or H0,2(S) is nonzero we have to modify the complex
(1) by splitting off H≥1(OS) terms. Since they do not split off on S[n1] ×S[n2] we
use a Jouanolou-type trick, pulling back to an affine bundle over S[n1] × S[n2] on
which they do split. The affine bundle has the same Chow groups as the base, so
this suffices for our purposes. Hence we prove a result like (2) for all surfaces S.

Considering cn1+n2

(
RHomπ(I1, I2)[1]

)
as a map

H∗(S[n1]) → H∗+2n2−2n1(S[ni]),

it is a “Carlsson-Okounkov operator”. Carlsson-Okounkov [CO] calculate it in
terms of Grojnowski-Nakajima operators. So the upshot is that we can calculate
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Vafa-Witten invariants in terms of these operators on punctual Hilbert schemes.
Our methods also allow us to reprove and generalise vanishing results of Carlsson-
Okounkov for the higher Chern classes of (1).
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The failure of Kodaira vanishing for Fano varieties, and terminal
singularities that are not Cohen-Macaulay

Burt Totaro

The Kodaira vanishing theorem says that for a smooth projective variety X over
a field of characteristic zero and an ample line bundle L on X , we have

Hi(X,KX + L) = 0

for all i > 0. (Here KX denotes the canonical line bundle, and we use additive
notation for line bundles.) This result and its generalizations are fundamental
for the classification of algebraic varieties. Unfortunately, Raynaud showed that
Kodaira vanishing fails already for surfaces in every characteristic p > 0 [6].

For the minimal model program (MMP), it has been especially important to
find out whether Kodaira vanishing holds for Fano varieties (varieties with −KX

ample). By taking cones, this is related to the question of whether the singularities
occurring in the MMP (klt, canonical, and so on) have the good properties familiar
from characteristic zero (such as Cohen-Macaulayness and rational singularities).
For example, klt surface singularities in characteristic p > 5 are strongly F -regular
and hence Cohen-Macaulay; this is a key reason why the MMP for 3-folds is known
only in characteristic p > 5 (or zero) [3, Theorem 3.1].

There seems to be only one example in the literature of a smooth Fano variety
for which Kodaira vanishing fails: a 6-dimensional Fano in characteristic 2 found
by Haboush and Lauritzen. (This is [1, section 6, Example 4] or [5, section 2].
Both papers give examples of the failure of Kodaira vanishing in any characteristic,
but the variety they consider is Fano only in characteristic 2.) By taking a cone
over Haboush-Lauritzen’s variety, Kovács gave the first example of a canonical
singularity which is not Cohen-Macaulay; it has dimension 7 and characteristic 2
[4].
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Haboush and Lauritzen’s example is a projective homogeneous variety X =
G/P with non-reduced stabilizer group scheme P . This is a typical class of varieties
that exist only in positive characteristic. In more detail, X is a smooth projective
variety which is the image of a flag variety G/Pred for a reductive group G under
a finite purely inseparable morphism. Most projective homogeneous varieties with
non-reduced stabilizer group (apart from the familiar flag varieties) are not Fano.
However, a point that seems to have been overlooked is that there is an infinite
class of “nontrivial” homogeneous varieties which are Fano. It turns out that
Kodaira vanishing often fails on these varieties. As a result, we show for the first
time that Kodaira vanishing can fail for smooth Fano varieties in any characteristic
p > 0:

Theorem 1. Let p be a prime number. Then there is a smooth Fano variety
X over Fp, of dimension 5 for p = 2, or dimension 2p − 1 for p > 2, such
that Kodaira vanishing fails for some ample line bundle L on X. More precisely,
H1(X,KX + L) 6= 0.

Theorem 2. Let p be a prime number greater than 2. Then there is a smooth
Fano variety X over Fp of dimension 2p+1 such that −KX is divisible by 2 in the
Picard group, −KX = 2L, and Kodaira vanishing fails for the ample line bundle
3L. More precisely, H1(X,L) 6= 0.

Taking a cone yields examples of terminal singularities which are not Cohen-
Macaulay:

Corollary 3. Let p be a prime number greater than 2. Then there is a terminal
singularity of dimension 2p+ 2 over Fp which is not Cohen-Macaulay.

After these results were announced, Takehiko Yasuda used quotient singulari-
ties to exhibit lower-dimensional examples of terminal singularities which are not
Cohen-Macaulay, improving the klt examples in his paper [8]. He presented his
results at the same Oberwolfach meeting. In particular, Yasuda found terminal
singularities of dimension 6 and characteristic 2, dimension 5 and characteristic 3,
and dimension 4 and characteristic 5.

A natural question in this area is: for each positive integer n, is there a number
p0(n) such that every klt singularity over a field of characteristic p ≥ p0(n) is
Cohen-Macaulay? Hacon and Witaszek proved this in dimension 3, but I am not
sure what to expect in higher dimensions. A striking feature of their proof is that
no explicit choice of the number p0(3) is known [2].
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[4] S. Kovács, Non-Cohen-Macaulay canonical singularities. arXiv:1703.02080



2760 Oberwolfach Report 45/2017

[5] N. Lauritzen and A. P. Rao, Elementary counterexamples to Kodaira vanishing in prime
characteristic, Proc. Indian Acad. Sci. Math. Sci. 107 (1997), 21–25.

[6] M. Raynaud, Contre-exemple au “vanishing theorem” en caractéristique p > 0, C. P. Ra-
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Non-CM (log) terminal singularities and moduli of formal torsors

Takehiko Yasuda

The first subject of the talk was about the quotient varietyX associated to a linear
representation V of the cyclic group of order p over a perfect field of characteristic
p > 0. The variety is normal, Q-factorial and 1-Gorenstein, but not necessarily
Cohen-Macaulay. The representation uniquely decomposes into indecomposable
summands of dimensions from 1 to p. We define an invariant DV by

DV :=
∑

i

(di − 1)di
2

,

where di are the dimensions of summands. At the beginning of the talk, I intro-
duced the following result from [12]:

Theorem. Suppose that DV ≥ 2, or equivalently that the fixed point locus V G

has codimension ≥ 2. If DV ≥ p, then X is canonical. (Note that this is equivalent
to that X is log terminal since X is 1-Gorenstein.) Moreover, if X has a log
resolution, then the converse is also true.

On the other hand, it had been known since 1980 when X is Cohen-Macaulay:
Ellingsrud and Skjelbred [3] proved that X is Cohen-Macaulay if and only if
codimV G ≤ 2. Combining the two results, we get the first examples of log terminal
(even canonical) but not Cohen-Macaulay singularities in positive characteristics.
As related results, I mentioned other constructions of such singularities ([4, 2, 9, 1]).
I mentioned also that Hacon and Witaszek [5] proved that in sufficiently large char-
acteristics, three-dimensional log terminal singularities are Cohen-Macaulay.

Prior to my talk, I heard in Sándor Kovács’s talk at this workshop that Burt
Totaro had constructed terminal but not Cohen-Macaualy singularities (afterward
Totaro gave a talk on this construction, right after my talk). Then I realized that
results in [12] easily imply that the quotient variety X as above is often terminal
(but not Cohen-Macaulay again from [3]). I presented the following more precise
result, which I obtained during the workshop:

Theorem ([15]). Suppose that DV ≥ p. Following the notation of [8, 7], we have

discrep(center ⊂ Xsing;X) ≥ 2DV

p
− 2.

In particular, X is terminal if DV > p.
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Honestly, in my talk I wrote discrep(X) instead of discrep(center ⊂ Xsing;X),
which was not precise. From this theorem, for any p > 0, there exists V such that
the associated quotient variety X is terminal but not Cohen-Macaulay.

Then I explained the outline of the proofs of the two theorems. The point is that
we can explicitly compute the stringy motivic invariant of X by using the moduli
space of Artin-Schreier extensions of k((t)), the field of Laurent power series. More
precisely, for G = Z/p, the cyclic group of order p, we let ∆G denote the moduli
space of G-torsors over Spec k((t)). The Artin-Schreier theory says that this space
is an infinite dimensional affine space. We can define a function s : ∆G → Z
depending on the given representation, whose fibers are finite dimensional varieties.
From [12], we have the following formula for the stringy motivic invariant of X :

(1) Mst(X) =

∫

∆G

Ls :=
∑

a∈Z

[s−1(a)]La.

The right hand side can be explicitly computed, thanks to the Artin-Schreier
theory. Since the stringy invariant has information on discrepancies, we can deduce
the above theorems.

The second part of the talk was about the moduli space ∆G for more general
finite groups G, based on the speaker’s joint work with Fabio Tonini. In [13, 14],
the author conjectured that equality (1) holds with s suitably defined. However, to
have this conjecture making sense, we first need to construct the moduli space ∆G

for general G, which has not been done in full generality yet. Roughly speaking,
our moduli space should represent the functor

(Affine schemes/k) → (Sets), B 7→ {G-torsors over SpecB((t))}.

Since torsors have non-trivial automorphisms, the moduli space should actually be
a stack. We may view ∆G as the “Weil restriction” of the stack BG = [Spec k/G]
with respect to the field extension k((t))/k.

An important result in this direction is Harbater’s one [6]. He constructed the
coarse moduli space of pointed G-torsors over Spec k((t)) when G is a p-group
and the base field k is algebraically closed and proved that it is isomorphic to the
infinite-dimensional affine space, more precisely, the limit

lim−→
n

Ank ,

where the transition map Ank → An+1
k is the composition of the standard embed-

ding Ank →֒ An+1
k and the Frobenius map of An+1

k .
To have the fine moduli space in a more general situation, we define ∆G as the

category fibered in groupoids over the category of affine k-schemes such that the
fiber category over SpecB is the category of G-torsors over SpecB((t)). It turns
out that this category is too big. We shrink it by imposing a constraint on torsors
about “local triviality over B”, getting a subcategory denoted by ∆∗

G. When B is a
field, then the constraint becomes trivial and we have ∆G(SpecB) = ∆∗

G(SpecB).
I presented the following result:



2762 Oberwolfach Report 45/2017

Theorem ([10]). Let k be an arbitrary field of characteristic p > 0 and G a finite
group of the form H ⋊C with H a p-group and C a tame cyclic group. Then ∆∗

G

is isomorphic to the direct limit lim−→Xn such that

(1) each Xn is a separated Deligne-Mumford stack of finite type over k,
(2) transition maps Xn → Xn+1 are finite and universally injective,
(3) there is a compatible system of étale atlases Xn → Xn with Xn affine

schemes.

Groups of the above form are important, because the Galois group of any Galois
extension of k((t)) with k algebraically closed is always of this form.
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