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Alex Küronya, Frankfurt

Brian Lehmann, Chestnut Hill

17 September – 23 September 2017

Abstract. There are several flavors of positivity in Algebraic Geometry.
They range from conditions that determine vanishing of cohomology, to in-
tersection theoretic properties, and to convex geometry. They offer excellent
invariants that have been shown to govern the classification and the param-
eterization programs in Algebraic Geometry, and are finer than the classical
topological ones. This mini-workshop aims to facilitate research collaboration
in the area, strengthening the relationship between various positivity notions,
beyond the now classical case of divisors/line bundles.
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Introduction by the Organisers

The mini-workshop Positivity in Higher-dimensional Geometry brought together
algebraic geometers with various interests circling around the idea of positivity.
The participants invested the majority of their time in group work on open ques-
tions related to positivity of higher-codimensional numerical cycle classes on pro-
jective varieties, or convex geometry in the form of Newton–Okounkov bodies.
There were also seven research talks given by Jian Xiao (Evanston), Victor Lo-
zovanu (Hannover), Chung Ching Lau (Chicago), John Christian Ottem (Oslo),
Catriona Maclean (Grenoble), Stefano Urbinati (Padova), and Nguyen-Bac Dang
(Paris) in this order. The extended abstracts of their presentations appear in the
sequel.

The topic of positivity is an active research subject in Algebraic Geometry:
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• The position of the canonical class KX of a projective variety X relative
to the ample cone Amp(X) ⊂ N1(X) guides the Minimal Model Program.

• In Moduli Space theory, stability is behind boundedness for parameter
spaces for varieties or for sheaves on them with prescribed numerical in-
variants.

Most of the techniques in contemporary research involve classical positivity prop-
erties of divisors/line bundles, or, by duality, curve classes. The primordial notion
is ampleness. It can be characterized cohomologically, intersection theoretically
(cf. [Kle66]), and geometrically. A geometric generalization is bigness. A divisor
D is big if it is the sum D = A+E of an ample divisor A and an effective divisor E.
Its natural cohomological characterization involves an asymptotical construction:

D is big ⇔ vol (D) > 0,

where vol (D) measures the asymptotic growth of the dimension of the linear series
|mD| as m grows. More precisely

vol (D)
def
= (dimX)! · lim sup

m→∞

dimH0(X ;OX(mD))

mdimX
.

Recently, a convex geometric approach (cf. [LM09, KK12]) through the theory of
Newton–Okounkov bodies has provided the ideal package for much of this infor-
mation. To a complete flag of subvarieties

Y• : X = Y0 ) Y1 ) . . . ) YdimX = {x} ∈ X

centered a closed point x that is smooth for all Yi, one associates a rank dimX
valuation-type function on the global sections on OX(mD) for all m and a convex
body ∆Y•

(D) ⊂ RdimX . It encodes many of the positivity properties of D:

• vol (D) is the normalized Euclidean volume of the Newton–Okounkov body
∆Y•

(D) ⊂ RdimX , cf. [LM09].
• The divisorial Zariski decomposition of D can be computed (cf. [Jow10,
KL17, CHPW15]), from the knowledge of ∆Y•

(D) ⊂ RdimX for all flags
Y• on X as above.

• The restricted volumes volX|V (D) can be determined (cf. [LM09]) from

the knowledge of ∆Y•
(D) ⊂ RdimX for all flags Y• on X as above.

• The Seshadri constant ε (D;x) can be found (cf. [KL17]) by working with
infinitesimal flags centered at x.

In higher (co)dimension, historically the outlook has been negative and significant
progress in the way of general results (as opposed to pathological examples) is
of a more recent nature. There are two directions here: [Ott12, Lau16] study
positivity from a cohomological perspective. A smooth subvariety V ⊂ X of
dimension d of a complex projective manifold is said to be ample if the relative
O(1) on BlVX satisfies certain cohomology vanishing conditions (cf. [Ott12]). For
example [Ott12] recovers Lefschetz-hyperplane-type results, while [Lau16] proves
versions of Fujita vanishing in this context.

A numerical intersection theoretic perspective is adopted by Fulger–Lehmann
in [FL17a, FL17b]. The mantra is that the geometry of cycles should be reflected
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in the geometry of convex cones inside the numerical groups Nd(X). Classical
examples of such cones are the pseudo-effective cone Effd(X) ⊂ Nd(X), the closure
of the convex cone generated by d-dimensional subvarieties ofX . Another example

is its dual Nefd(X) ⊂ Nd(X)
def
= Nd(X)∨ of classes β ∈ Nd(X) with β(α) ≥ 0 for

all α ∈ Effd(X).
When d = 1, by [Kle66] the ample cone Amp(X) is the interior of the nef

cone of divisors Nef1(X) ⊂ N1(X). In particular Nef1(X) ⊆ EffdimX−1(X). This
inclusion may fail for arbitrary d (cf. [DELV11]). Thus we may not expect good

geometry from an arbitrary nef class. However [FL17a] prove that Nefd(X) is full-
dimensional in Nd(X) and contains complete intersection classes of ample divisors
in its strict interior. As a corollary they show that Effd(X) ⊂ Nd(X) is a pointed
cone.

The main goal of the workshop was to form diverse groups focused on open
questions relating to cycles and/or convex geometry, facilitating future collabora-
tion on the subject. The participants split into four groups, and their assignments
are described below.

Problem 1.

(1) Is the convex cone generated by classes of ample subvarieties open in Nd(X)?
This is an attempt to understand the relation between cohomological and

numerical positivity in higher codimension, paralleling known results for divi-
sor classes.

(2) Is there a convex geometric approach to higher cohomology functions similar
to the Newton–Okounkov interpretation of vol (D)? If D is a divisor on a
projective variety, is there an object in convex geometry whose Euclidean
volume is naturally equal to

ĥi(D)
def
= (dimX)! · lim sup

m→∞

dimHi(X ;OX(mD))

mdimX
?

Can lim sup be replaced by lim? If this is true, then the following also holds

(DdimX) =
∑dimX

i=0
(−1)iĥi(D).

(3) Let X be a smooth toric variety and let T ⊂ X be the open torus. The
movable d-dimensional subvarieties of X are those that admit deformations
through points of T . Is the closed cone Movd(X) ⊂ Nd(X) generated by
numerical classes of such subvarieties rational polyhedral?

The cases of divisors and curves are known to be true, but their proofs rely
on deep results that have no clear generalizations to arbitrary (co)dimension.
The movable cone of divisors is rational polyhedreal because toric varieties
are Mori Dream Spaces (cf. [HK10]). The movable cone of curves is dual
to the effective cone of divisors (cf. [BDPP13] in the general case. A more
elementary proof in the toric case appears in [Pay06]), which is easily seen to
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be rational polyhedral.

(4) Work of Lehmann [Leh16] and Lehmann–Xiao [LX16] has produced a good
theory of positivity for curve classes in N1(X) by duality to the case of divisors.
Can this be extended to a Newton–Okounkov-type convex body picture?

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

A notion of positivity of valuations in convex geometry

Nguyen-Bac Dang

(joint work with Jian Xiao)

My talk focuses on some positivity aspects of translation invariant valuations in
convex geometry as described in [DX17]. Let K(E) be the set of convex bodies of
an n-dimensional euclidian vector space E, endowed with the Gromov–Hausdorff
metric. A valuation φ : K(E) → R is a continuous, translation-invariant function
which satisfies the following condition:

φ(K ∪ L) = φ(K) + φ(L)− φ(K ∩ L),

for all K,L ∈ K(E) such that K ∪ L ∈ K(E) (see [AF14]). A valuation φ is
homogeneous of degree k if φ(λK) = λkφ(K) for any λ > 0. The most common
examples of homogeneous valuations of degree n− k are given by the formula:

K → V (L1, . . . , Lk,K[n− k]),

with L1, . . . , Lk,K ∈ K(E) and where V (L1, . . . , Lk,K[n− k]) denotes the mixed
volume of L1, . . . , Lk with K repeated n− k times. We define the norm

||φ|| = sup
K⊂B

|φ(K)|,

where B is the unit ball in E. The set of valuations on E, denoted Val (E),
endowed with the norm || · || is a Banach space.

Recall that if φ ∈ Val (E) is a valuation and g ∈ GL(E), then the func-
tion g · φ = φ ◦ g−1 is also a valuation. A valuation φ is called smooth if
the map g ∈ GL (E) → g · φ ∈ Val (E) is a smooth map from GL (E) into
the Banach space Val (E). For example, if L1, . . . , Lk ∈ K(E) are k convex
bodies with smooth and strictly convex boundary, then the valuation given by
K → V (L1, . . . , Lk,K[n− k]) is smooth. It is a theorem due to Alesker ([Ale01])
that the set of smooth valuations is dense in Val (E). Denote by Val∞n−k(E)
the subspace of smooth homogeneous valuations of degree n− k, Bernig–Fu have
proved that the vector space ⊕n

k=0Val
∞
k (E) ([BF06], [Ale11]) has a structure of

graded algebra where the multiplication is given by the convolution of smooth
valuations. In the case of mixed volumes, the convolution reduces to the following
construction (see [BF06, see Corollary 1.3]). Take k, l such that k+ l 6 n and φ =
V (L1, . . . , Lk,−[n−k]) ∈ Val∞n−k(E) , ψ = V (L′

1, . . . , L
′
n−k,−[n− l]) ∈ Val∞n−l(E)

where L1, . . . , Lk, L
′
1, . . . , L

′
n−l are convex bodies with smooth and strictly convex

boundary, then the convolution φ ∗ ψ ∈ V∞
n−k−l(E) is given by

φ ∗ ψ = V (L1, . . . , Lk, L
′
1, . . . , L

′
l,−[n− k − l]).

A priori the convolution of arbitrary valuations in Val (E) is not well-defined (see
[BF16, Theorem 2]). Our first aim is to exhibit a subspace of Val (E) containing
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the mixed volumes of all convex bodies and for which the convolution is still well-
defined. To that end, we first introduce the cone Pn−k of all valuations

φµ(K) =

∫

K(E)k
V (L1, . . . , Lk,K[n− k])dµ(L1, . . . , Lk),

where K ∈ K(E) and where µ is a positive Radon measure on K(E)k such that:

(1)

∫

K(E)k
V (L1, . . . , Lk, B[n− k])dµ(L1, . . . , Lk) < +∞.

Take a valuation φ in the vector space generated by Pn−k, then the norm ||φ||P is
given by the formula:

||φ||P = inf

{
ǫ > 0

∣∣∣∣
∀K1, . . . ,Kn−k ∈ K(E),

|φ(K1, . . . ,Kn−k)| 6 ǫV (B[k],K1, . . . ,Kn−k)

}
,

where

φ(K1, . . . ,Kn−k) :=
∂n−k

∂t1 . . . ∂tn−k

∣∣∣∣
t1=...=tn−k=0

φ(t1K1 + . . .+ tn−kKn−k)

(n− k)!
.

Let Vn−k be the completion of the vector space generated by Pn−k with respect
to the norm || · ||P . Observe that for k = n, we have that V0 = R and for k = 0,
Vn = R · vol where vol is the volume in E.

Theorem 1. There exists a unique continuous bilinear map ∗ : Vn−k × Vn−l →
Vn−k−l such that for any convex bodies L1, . . . , Lk, L

′
1, . . . , L

′
l,K one has that:

(K → V
(
L1, . . . , Lk,K[n− k])) ∗ (K → V (L′

1, . . . , L
′
l,K[n− l])

)

=

(
K →

k!l!

n!
· V

(
L1, . . . , Lk, L

′
1, . . . , L

′
l,K[n− k − l]

))
.

It follows that the space ⊕n
k=0Vk has a structure of graded algebra with unit and

that the convolution maps Pn−k × Pn−l to Pn−k−l. We now fix a linear map
g ∈ GL (E) and explore the spectral properties of the natural action of g on
the space of valuations, and more specifically on Vn−k where one can exploit the
convolution of valuations.

Theorem 2. Fix an integer 0 6 k 6 n and denote by φ = V (∆[k],−[n − k]) ∈
Pn−k and ψ = V (∆[n − k],−[k]) ∈ Pk where ∆ is the standard n-dimensional
simplex in E. For any linear map g ∈ GL (E), the dynamical degree

λk(g) = lim supp→+∞ ((gp · φ) ∗ ψ)1/p

is well defined and is equal to

λk(g) = ||gk|| =
1

| det(g)|
ρ1 · . . . · ρk,

where ||gk|| denotes the norm of operator on (Vn−k, ||·||P) and where ρ1 > . . . > ρk
are the absolute values of the eigenvalues of g put in decreasing order.
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Our proof gives an alternative approach to [Lin12, Theorem 6.2] and to [FW12,
Corollary B]. Indeed, when g ∈ SL (E) has integer coefficients, then λk(g) can be
interpreted as the dynamical degree of the monomial map on Pn whose matrix
is given by g. The following theorem is a first step in the understanding of the
spectrum of the linear operators gk.

Theorem 3. Consider g ∈ GL (E).

(1) For any k, there exists a non-zero invariant valuation φ ∈ Vn−k such that
gk(φ) = λk(g)φ.

(2) Suppose that λk(g)
2 > λk+1(g)λk−1(g), then for any λk(g) invariant val-

uation φ, ψ ∈ Pn−k ⊂ Vn−k, we have that φ ∗ ψ = 0.
(3) Suppose that λ1(g)

2 > λ2(g), then there exists a unique (up to scaling)
valuation φ ∈ Pn−k ⊂ Vn−1 which is λ1(g) invariant and the valuation φ
lies in an extremal ray of Pn−1 ⊂ Vn−1.

Observe that in case (2) of Theorem 3, we also expect the eigenvalue λk(g) to be
simple and the operator gk to exhibit a spectral gap.
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Fujita vanishing theorems for q-ample divisors and applications on
subvarieties with nef normal bundle

Chung Ching Lau

All schemes in this talk are over a field of characteristic 0. It is natural to ask how
the positivity of a subvariety affects the positivity of the underlying cycle. For
example, Hartshorne’s conjecture A states that if Y is a smooth subvariety with
ample normal bundle of a smooth projective variety X , then n[Y ] moves in a large
algebraic family for n large. This was disproved by Fulton and Lazarsfeld [FL82].
On the other hand, Fulton and Lazarsfeld [FL83] showed that if Y is a subvariety
with nef normal bundle in a smooth projective variety X and if Z is an arbitrary



2640 Oberwolfach Report 43/2017

subvariety of X with dimY + dimZ ≥ dimX , then degH(Y · Z) ≥ 0. Here H is
an ample divisor.

Weakening the Serre vanishing condition, a line bundle L is defined to be
q-ample if given any coherent sheaf F , there is an m0 such that

Hi(X,F ⊗ L ⊗m) = 0

for i > q and m > m0. We define L to be q-almost ample if for any given ample
line bundle A , there is M such that L ⊗m ⊗ A is q-ample for m ≥M . After the
work of [AG62, Som78, DPS96] on q-ample divisors, Totaro established the basic,
yet not elementary properties of q-ample divisors [Tot13]. Another approach to
partial ampleness is outlined in [dFKL07, Kür06]. Perhaps the most important
property of q-ampleness divisor is the following

Theorem A ([DPS96, Tot13]). Let X be a projective variety of dimension n.
Then a line bundle L is (n− 1)-ample if and only if L ∨ is not pseudo-effective.

After the extensive work of Hartshorne [Har70], where he studied positivity
properties of higher codimension subvarieties, Ottem discovered what is probably
the right notion of an ample subscheme [Ott12]. He defined a subscheme of Y of
codimension r of a projective scheme to be ample if the exceptional divisor in the
blowup of X along Y is (r − 1)-ample. It is a natural definition that generalizes
many properties of ample divisors [Ott12, Corollary 5.6], which were predicted
in Hartshorne’s work, while at the same time includes the zero locus of a global
section of an ample vector bundle [Ott12, Proposition 4.5].

We now move on to study a weaker positivity condition of a subscheme. Given
an lci subvariety Y ⊂ X with nef normal bundle, we would like to understand its
positivity properties in terms of intersection theory.

Let Y ⊂ X be an arbitrary subscheme of codimension r and let E be the
exceptional divisor in BlYX . We say that Y is nef if E is (r − 1)-almost ample.
This definition is inspired by Ottem’s definition of an ample subscheme [Ott12].
If Y is lci in X , then Y is nef if and only if Y has nef normal bundle.

We discuss two generalized versions of Fujita vanishing theorem from [Lau16]
for q-ample divisors, improving [Kür13, Theorem C].

Theorem B. Let X be a projective scheme of dimension n. Let L1 and L2 be
q1- and q2-ample line bundles on X respectively and let F be a coherent sheaf on
X. Then given any lower bound M2 on the exponent of L2, there is a lower bound
on exponent of L1, M1, such that

Hi(X,F ⊗ L ⊗m1
1 ⊗ L ⊗m2

2 ⊗ P) = 0

for i > q1 + q2, m1 ≥M1, m2 ≥M2 and any nef line bundle P on X.

Our second version of Fujita vanishing theorem focuses on the vanishing of the
top cohomology.

Theorem C. With the same assumption as above, except that we assume L2 to
be only q2-almost ample and that q1 + q2 < n = dimX. Then

Hn(X,F ⊗ L ⊗m1
1 ⊗ L ⊗m2

2 ⊗ P) = 0
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for m1 ≥M1, m2 ≥M2 and any nef line bundle P on X.

Using this theorem, we show in [Lau16] that

Theorem D. Let ι : Y →֒ X be a nef subvariety of codimension r of a projective

variety X. Then the natural map ι∗ : N1(X)R → N1(Y )R induces ι∗ : Eff
1
(X) →

Eff
1
(Y ) and ι∗ : Big(X) → Big(Y ).

Sketch of proof. By Theorem A, it is equivalent to prove that if L is a line bundle
on X such that L |Y is (n − r − 1)-ample, then L is (n − 1)-ample. Let E be
the exceptional divisor on the blowup of X along Y , BlYX . By considering the
following short exact sequence on BlYX ,

0→π∗(L ⊗m⊗OX(−l))⊗OBlY X((k−1)E)→π∗(L ⊗m⊗OX(−l))⊗OBlY XX(kE)

→π∗(L ⊗m ⊗ OX(−l))⊗ OE(kE)→0,

it suffices to prove that there is an M such that Hn−1(E, π∗(L ⊗m ⊗ OX(−l))⊗
OE(kE)) = 0 for m ≥ M and k ≥ 1. But by replacing L by a sufficiently
large multiple, we may assume L ⊗ OE(−E) is (n − r − 1)-ample. Now we may
rewrite the sheaf π∗(L ⊗m⊗OX(−l))⊗OE(kE) = π∗OX(−l)⊗(L ⊗OE(−E))⊗m⊗
OE((k+m)E) and apply Theorem A to obtain the desired vanishing of cohomology
groups. �

When Y is a curve with nef normal sheaf, this is a result of Demailly–Peternell–
Schneider [DPS96, Theorem 4.1]. We also show that nefness and ampleness are
transitive properties without any assumptions on smoothness, thus generalizes
Ottem’s result [Ott12, Proposition 6.4].

Theorem E. Let X be a projective scheme of dimension n. If Y is an ample
(resp. nef) subscheme of X and Z is an ample (resp. nef) subscheme of Y , then
Z is ample (resp. nef) in X.

We then study the cycle classes of nef subvarieties. We use this new notion of
nef subvarieties to introduce the notion of the weakly movable cone, WMovd(X).
We define it as the closure of the convex cone that is generated by pushforward of
cycle classes of nef subvarieties of dimension d via proper surjective morphisms.
We show that the weakly movable cone shares similar properties to that of the
movable cone of d-cycles, Movd(X).

Theorem F. Let X be a projective variety of dimension n. For 1 ≤ d ≤ n− 1,

(1) Movd(X) ⊆ WMovd(X) and Mov1(X) = WMov1(X).

(2) Eff
1
(X) ·WMovd(X) ⊆ Effd−1(X).

(3) Let H be a big Cartier divisor, α ∈ WMovd(X). If H ·α = 0, then α = 0.

(4) Nef1(X) ·WMovd(X) ⊆ WMovd−1(X).

Analogous statements of 2, 3 and 4 hold for the movable cone [FL17, Lemma 3.10].
One can ask whether in general the two cones Movd(X) and WMovd(X) are the
same. This is true if and only if the cycle class of any nef subvariety lies in the
movable cone. This question is closely related to the Hartshorne’s conjecture A.
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Continuity and convexity in algebraic geometry

Victor Lozovanu

(joint work with Alex Küronya)

I will denote by X a smooth complex projective variety of dimension n, by V ⊆ X
a subvariety of dimension d, and by D a big Q( or R)-divisor on X . How do we
determine the geometry of the class of D relative to the subvariety V ?

1.1. Intersection numbers. The classical approach is through intersections

N1(X)R ∋ D  (Dd · V ) ∈ R .

This is a continuous, homogeneous and log-concave function of degree d. Further-
more, for ample D, we have asymptotic descriptions:

(Dd · V ) ≈
dimC(H

0(V,OV (mD)))

md/d!
≈

♯
(
D1 ∩ . . . ∩Dd ∩ V

)

md/d!
for al m≫ 0 ,
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where each Di ∈ |mD| is general. The first equality is asymptotic Riemann–Roch.
This approach is not as successful for non-ample divisors D, where (Dd · V ) may
be negative. For a big divisor D, the stable base locus

B(D)
def
= Bs(|mD|)

form≫ 0 may not be a numerical invariant. To correct this, Nakamaye introduced
two other invariants that are invariants of the numerical class of D. First is the
augmented base locus

B+(D)
def
= B(D − ǫA),

where A is any ample divisor and 0 < ǫ≪ 1. It is also called the non-ample locus,
since for D big, D is ample if and only if B+(D) = ∅. Second is the restricted base
locus (or non-nef locus)

B−(D)
def
=

⋂

m≥1

B(D +
1

m
A) .

They sit in a chain B−(D) ⊆ B(D) ⊆ B+(D).

1.2. Volumes of divisors. In [ELMNP09], the authors provide a more refined
approach. They introduce the restricted volume of D with respect to V :

volX|V (D)
def
= lim sup

m→∞

dim
(
Im

(
H0(X,OX(mD)) → H0(V,OV (mD))

))

md/d!
.

This is also a numerical invariant, homogeneous and log concave function of degree
d. When D is ample, volX|V (D) = (Dd ·V ). Furthermore, in the big case we have
geometric interpretations of the restricted volume similar to the ample case. If
V * B+(D), then

volX|V (D) = lim sup
m→∞

dimC

(
H0

(
V,OV (mD)⊗J(X ; ||mD||)|V

))

md/d!

= lim sup
m→∞

♯
(
D1 ∩ . . . ∩Dd ∩ V \B(D)

)

md/d!
.

HereJ(X, ||mD||) is the asymptotic multiplier ideal of mD, encoding the ”bad”
singularities of this class. The geometric description of the volume is quite pow-
erful. The first equality allows us to compute the volume by knowing the shape
and the ”scheme structure” of B+(mD)∩ V for all m > 0. The second does so by
knowing information only generically, i.e. on V \B+(D).

Theorem 1 (Continuity from [ELMNP09]). Suppose that either V * B+(D) or
V is an irreducible component of B+(D), then for any sequence of big divisors
(Dn)n∈N → D, we have that volX|V (Dn) → volX|V (D).

It is worth pointing out that there are examples where the restricted volume is
not continuous exactly when both conditions are not satisfied. The proof of this
theorem is very technical. Generalizing it is a central problem in Kähler geometry,
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or in characteristic p, or over number fields. One simple reason for its appeal is
that it has many applications. For example, a corollary is a one line proof of a
theorem of Nakamaye, which states that

B+(D) =
⋃

(Dd·V )=0

V whenever D is big and nef.

This statement is a very nice example of the interesting bridge that seem to exists
between how sections vanish and intersection numbers.

1.3. Newton–Okounkov bodies (NObodies). Based on an idea pioneered by
Okounkov, [LM09, KK12] associate to a divisor a convex set. More precisely,
suppose we are given an admissible flag Y•, where

Y• : X = Y0 ⊇ Y1 ⊇ . . . ⊇ Yn = {x}

is a full flag of (irreducible) subvarieties Yi ⊆ X with codimXYi = i and the
property that Yi is smooth at the point x for all 0 ≤ i ≤ n. Now for any D′ ≥ 0
effective Q-divisor we can associate an integral vector

νY•
(D′)

def
= (ν1, ν2, . . . , νn) ∈ ∈ Zn .

This vector is defined inductively. First, ν1
def
= ordY1(D

′) and then the divisor D′

naturally defines a non-trivial divisorD′
1 = (D′−ν1Y1)|Y1 on Y1 and we proceed by

induction from here. The Newton–Okounkov body of a big divisor D with respect
to Y• is defined to be

Rn ⊇ ∆Y•
(D)

def
= closed convex hull {νY•

(D′)|D′ ≡ D effective Q− divisor}.

Denote by π : X ′ → X the blow-up of a smooth point x ∈ X , with E ≃ Pn−1 the
exceptional divisor. Then one can consider an infinitesimal flag Y • on X ′ where
Y 0 = X ′ and Y i is a linear subspace of codimension i− 1 in E. To it we associate
what is now called the infinitesimal NObody ∆Y •

(π∗D).

By [LM09], intersection numbers/restricted volumes appear naturally as eu-
clidean volumes of slices of NObodies.

Theorem 2. Let V ⊆ X a subvariety as in Theorem 1 and denote by 0 ⊆ Rd the
origin. Then

volX|V (D) = d! · volRd

(
∆Y•

(D) ∩ 0× Rn−d
)

for any admissible flag Y• with Yd = V .

The importance of this theorem is two-fold. First, it gives a natural explana-
tion of the continuity and convexity properties of intersection numbers/restricted
volumes. Second, it gives practical meaning to these invariants. One asks: Can
we study algebraic varieties by making use of the convex geometry of NObodies?

NObodies are numerical invariants. Thus, in [KL14, KL15a, KL17b] and sepa-
rately [CHPW15] one gives very interesting interpretations of positivity properties
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of ampleness/nefness for a divisor in terms of NObodies. But before we proceed,
define the inverted standard simplex of size ξ > 0 to be

∆−1
ξ

def
= convex hull of {0, ξe1, ξ(e1 + e2), . . . , ξ(e1 + en)} ⊆ Rn ,

where e1, . . . , en is the standard basis vectors for Rn. Also, ∆ξ will stand for the
standard simplex of length ξ.

Theorem 3. Let D a big R-divisor on X. Then the following are equivalent

(1) D is ample.
(2) For every point x ∈ X there exists an infinitesimal flag Y• over x and

ξ > 0 for which ∆−1
ξ ⊆ ∆̃Y•

(D).

(3) For every point x ∈ X there exists a flag Y• at x and ξ > 0 for which

∆ξ ⊆ ∆̃Y•
(D).

In the ample case, one can also recover the Seshadri constant ε (D;x) from these
convex sets.

Theorem 4. ([KL17b][Theorem C]) Let D be an ample divisor and x ∈ X a
point. Then

ε (D;x) = max{ξ|∆−1
ξ ⊆ ∆Y •

(π∗D)}

for any infinitesimal flag Y • at x.

In another direction, NObodies encode asymptotically how sections vanish along
a flag. One is led to believe that they might play a role in finding singular divisor
with certain singularities. It is worth to point out that many important results
in algebraic geometry lie on this ability to find certain singular divisors. And the
hope is that NObodies offer a visual understanding of the problem, facilitating the
use of geometry of convex sets to understand positivity properties of intersections
numbers. Some parts of this philosophy have first appeared in [KL15b]. For an
exposition of this circle of ideas, the interested reader can consult [KL17a].

References

[CHPW15] Sung Rak Choi, Yoonsuk Hyun, Jinhyung Park, and Joonyeong Won, Asymptotic
base loci via Okounkov bodies, arXiv:1507.00817v1 (2015).

[ELMNP09] Lawrence Ein, Robert Lazarsfeld, Mircea Mutţă, Michael Nakamaye, and Mihnea
Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009),
no. 3, 607–651.

[KK12] Kiumars Kaveh and Askold Khovanskii, Newton–Okounkov bodies, semigroups of
integral points, graded algebras and intersection theory, Annals of Mathematics 176

(2012), 925–978.
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Approximable algebras and a question of Chen’s

Catriona Maclean

The Fujita approximation theorem [Fuj94] is an important result in algebraic ge-
ometry. It states that whilst the section ring associated to a big line bundle L on
an algebraic variety X

R(L)
def
= ⊕mH

0(mL,X)

is typically not a finitely generated algebra, it can be approximated arbitrarily
well by finitely generated algebras. More precisely, we have that

Theorem 1 (Fujita). Let X be an algebraic variety and let L be a big line bundle
on X. For any ǫ > 0 there exists a birational modification

π : X̂ → X

and a decomposition of Q divisors, π∗(L) = A+ E such that

• A is ample and E is effective,
• vol(A) ≥ (1 − ǫ)vol(L).

In [LM09], Lazarsfeld and Mustaţă used the Newton–Okounkov body associated
to A to give a simple proof of Fujita approximation. The Newton–Okounkov
body (NObody), constructed in [KK12] and [LM09], building on previous work of
Okounkov [Oko03], is a convex body ∆Y•

(L,X) in Rd associated to the data of

• a d-dimensional variety X
• an admissible flag Y• on X
• a big line bundle L on X .

This convex body encodes information on the asymptotic behaviour of the spaces
of global sections H0(nL) for large values of L. Lazarsfeld and Mustaţă’s simple
proof of Fujita approximation is based on the equality of volumes of NObodies

(2) vol(L) = d!vol(∆Y•
(L,X))

where we recall that the volume of a big line bundle on a d-dimesional variety is
defined by

vol(L) = lim
n→∞

d!h0(nL)

nd
.

One advantage of their approach to the Fujita theorem is that NObodies are not
only defined for section algebras R(L), but also for any graded sub-algebra of
section algebras. Lazarsfeld and Mustaţă give combinatorical conditions (condi-
tions 2.3-2.5 of [LM09]) under which equation 2 holds for a graded sub-algebra
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B = ⊕mBm ⊂ R(L) and show that these conditions hold if the graded subalgebra
B contains an ample series.1

Di Biagio and Pacenzia in [dBP16] subsequently used NObodies associated to
restricted algebras to prove a Fujita approximation theorem for restricted linear
series, ie. subalgebras of ⊕mH

0(mL|V , V ) obtained as the restriction of the com-
plete algebra ⊕mH

0(mL,X), where V ⊂ X is a subvariety.
In [Che10], Huayi Chen uses Lazarsfeld and Mustaţă’s work on Fujita approx-

imation to prove a Fujita-type approximation theorem in the arithmetic setting.
In the course of this work he defines the notion of approximable graded algebras,
which are exactly those algebras for which a Fujita-type approximation theorem
hold.

Definition 2. An integral graded algebra B = ⊕mBm with B0 = k a field is
approximable if and only if the following conditions are satisfied.

(1) all the graded pieces Bm are finite dimensional over k.
(2) for all sufficiently large m the space Bm is non-empty
(3) for any ǫ there exists an p0 such that for all p ≥ p0 we have that

lim inf
n→∞

dim(Im(SnBp → Bnp))

dim(Bnp)
> (1− ǫ).

In his paper [Che10], Chen asks whether any graded approximable algebra is in
fact a subalgebra of the algebra of sections of a big line bundle. A counter-example
was given to this is [Mac17], where a counter example is constructed in which the
graded approximable algebra is equal to the section ring of an infinite divisor2.
This begs the question : is any approximable algebra a subalgebra of the section
ring of an infinite divisior?

Theorem 3. Let B = ⊕mBm be a graded approximable algebra whose first graded
piece B0 is an algebraically closed field of characteristic zero. There is then a
projective variety X(B) and an infinite divisor D(B) =

∑∞
i=1 aiDi such that ai →

0 and there is a natural inclusion of graded algebras

B →֒ ⊕mH
0(X(B),mD(B)).
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Positivity of the diagonal

John Christian Ottem

(joint work with Brian Lehmann)

In algebraic geometry, projective varieties are studied and classified in terms of the
positivity of their tangent bundle. The paper [LO17] proposes a parallel viewpoint
to this, by studying a projective varietyX in terms of the positivity of the diagonal
∆ (as a higher codimension cycle) on the self-product X ×X . This is motivated
by the fact that the normal bundle of ∆ is the tangent bundle TX of X , and one
expects there to be interplay between the ampleness properties of TX (as a vector
bundle) and the cycle-type positivity of ∆. This perspective is quite vivid already
for curves:

Example 1 (Curves). Let C be a curve and let ∆ ⊂ C ×C be the diagonal. We
have the following table:

g type KX ∆
0 P1 KX < 0 ∆ is ample (it is a (1,1)-divisor on P1 × P1.)
1 elliptic KX = 0 ∆ nef but not big (any effective divisor is nef

on an abelian surface, and ∆2 = 0)
≥ 2 general type KX > 0 ∆ negative, can be contracted by

the subtraction map C × C → C − C ⊂ J(C).

In general, given a varietyX , we have a canonical cycle class [∆] ∈ Nn(X×X), and
there are several ways in which this can be ‘positive’ (nef, big, movable, ample,..).
Our motivating question is:

How do the positivity properties of the cycle [∆] reflect the geometric properties
of X?

Here geometric properties will refer to algebro–geometric properties (e.g., ratio-
nal curves) as well as topological invariants (e.g., π1(X), Hk(X,Z),..). Intuitively,
one can expect varieties with ∆ positive to be more similar to projective spaces.

1.1. Varieties with big diagonal. Most of the notions of positivity for divisors
have analogues for cycles of higher codimension. We define the effective cone
Effk(X) as the cone spanned by effective k-cycles, and let Nefk(X) be its dual cone,
the nef cone. For most of the varieties in this note, numerical and cohomological
equivalence coincide, so we will for simplicity think of these cones in H2k(X,R)
and H2k(X,R) respectively. We say that a class is big if it lies in the interior of

Effk(X), and nef it lies in Nefk(X). So the question becomes: For which varieties
have is [∆] big or nef cycle on X ×X? Here is a sample theorem:
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Theorem 2. The only surfaces with nef and big diagonal are the projective planes,
and the fake projective planes.

It is interesting to compare this result to Mori’s theorem, which states that
the only smooth variety with ample tangent bundle is Pn. In light of this, the
above statement is somewhat surprising, given that these varieties really fall on
the opposite sides of the spectrum in the classification; fake projective planes have
anti-ample tangent bundles and are consequently of general type. So by switching
to the perspective of numerical positivity of ∆, we also include varieties with the
same cohomological behavior as projective space.

Example 3. Let us verify that ∆X is nef and big for a (fake) projective space.
By the Künneth formula we have H2k(X ×X) =

⊕
p+q=k R(π

∗
1h

p · π∗
2h

q) where h
is an ample divisor on X . Then the diagonal can be written as a sum

∆ =
∑

p+q=n

cpq(π
∗
1h

p · π∗
2h

q)

with cpq > 0. This class is obviously nef and big.

Some examples of fake projective planes are: (i) Odd dimensional quadrics; (ii)
the 100 fake projective planes of [CS10]; (iii) the Del Pezzo quintic threefolds V5;
and (iv) the Fano threefolds V22. Our results imply that these are in fact all the
examples in dimension at most 3: that is, every variety of dimension ≤ 3 with nef
and big diagonal is either P2, P3 or one of the varieties (i)–(iv).

So having big diagonal should be a quite restrictive condition. How would one
prove that a given variety does not have big diagonal? This is equivalent to finding
a nef class β having intersection product 0 with ∆; finding explicit classes like this
can be non-trivial, especially given the examples of Debarre–Ein–Lazarsfeld–Voisin
[DELV11]. One way of constructing β is via products of divisors. The following
lemma is elementary, but turns out to be remarkably effective:

Lemma 4. Let X be an n-dimensional smooth projective variety admitting a nef
class D ∈ N1(X,R) such that Dn = 0. Then ∆ is not big.

The proof is straightforward: If D is the above divisor, a suitable product of the
form β = π∗

1D
k ·π∗

2D ·Hn−k−1 (where k > 0 and H is ample), is a nef class which
dots ∆ to zero, and so ∆ is not big. (Using a similar argument, one can show that
the same statement holds also when D ∈ H1,1(X,R) is a (possibly non-algebraic)
nef cohomology class.)

This lemma already puts strong restrictions on the possible varieties with big
diagonal. For instance, varieties with big diagonal admit no maps to lower dimen-
sional varieties. This implies in particular that the only smooth uniruled surface
with big diagonal is P2. The main geometric implication of the diagonal being big
is the following:

Theorem 5. Let X be a smooth projective variety with big diagonal. Then
hk,0(X) = 0 for all k > 0.
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The proof is inspired by a proof of Voisin using the Hodge–Riemann relations
to bound the effective cone. To give some details, we fix a Kahler form ω on X×X
and assume that we have a non-zero closed (k, 0)-form α on X . Now, the class

β = (−1)
k(k−1)

2 ik (π∗
1α− π∗

2α) ∪ (π∗
1ᾱ− π∗

2ᾱ) ∪ ω
n−k

is represented by a non-zero (n, n)-form on X×X , which by construction restricts
to 0 on the diagonal. Moreover, since (k, 0)-classes are automatically primitive,
the Hodge–Riemann relations imply that the class of β is nef, which contradicts
the bigness of ∆.

1.2. Nefness of ∆. Also nefness of ∆ is imposes strong restrictions on the geom-
etry of X . The primary examples here are the varieties with nef tangent bundle
(which automatically have nef diagonals). Such varieties are expected to have
very special properties (e.g., Campana–Peternell conjecture that they should be
homogeneous space-fibrations over abelian varieties). As for bigness, to prove that
∆ is not nef, one has to produce subvarieties of X × X that intersect ∆ non-
transversely. Some ways of producing such subvarieties include: (i) products of
divisors; (ii) subvarieties linked to the diagonal via such products; (iii) graphs
of (birational) automorphisms; and (iv) ∆ itself. The latter condition implies in
particular that a variety with nef diagonal must have non-negative Euler charac-
teristic. One particularly useful criterion is the following:

Proposition 6. Let X be a smooth variety. If ∆X is nef, then every pseudoeffec-
tive class on X is nef.

For instance, if S is a smooth surface with ∆ then S is minimal (since (−1)-curves
are not nef). By combining this result with Theorem 5, we obtain:

Corollary 7. The only smooth projective surfaces with big and nef diagonal are
the projective plane and fake projective planes.

Indeed, if ∆ is big and nef, then h1,0(X) = h2,0(X) = 0, and ρ = h1,1(X). If ρ >
1, X either has a non-nef pseudoeffective divisor (which contradicts Proposition
6), or there is a nef divisor with self-intersection 0 (contradicting Lemma 4). Hence
ρ = 1, and X is a (fake) projective plane.

A similar, but more involved analysis shows that also a threefold with nef and
big diagonal has to be a fake projective space. Here one needs the following addi-
tional ingredients: (i) χ(X) ≥ 0; (ii) χ(∅X) = 1

24c1c2 = 1; (iii) X is minimal; (iv)
the Miyaoka inequality; and (v) The classification of Fano 3-folds. This indicates
that a classification of varieties with nef and big diagonal in higher dimension
will be more difficult; we pose the question whether a fourfold with nef and big
diagonal must be a fake projective space.

1.3. Examples. The paper [LO17] studies how varieties with big or nef diagonal
fit into the classification of varieties of low dimension. We conclude with a few
examples illustrating these results:
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Example 8.

(1) Quadrics have big diagonal if and only if the dimension is even.
(2) A Grassmannian has a big diagonal if and only if it is a projective space.
(3) Let X be a toric variety. Then ∆X is nef if and only if X has nef tangent

bundle if and only if X is a product of projective spaces. There are also
toric threefolds other than P3 with big diagonal.

Example 9 (Surfaces). Let us say a few words about how varieties with nef
diagonal fit into the classification of surfaces. First of all, if S is a surface with
nef diagonal, it must be minimal (otherwise there is a (−1)-curve, contradicting
Lemma 6). We next consider the surfaces according to their Kodaira dimension κ.
If κ = −∞, S must either be P2, P1×P1, or the ruled surface over an elliptic curve
defined by a semistable rank 2 bundle. Each of these have nef tangent bundles
and thus nef diagonal.

For κ = 0, abelian surfaces and hyperelliptic surfaces both have nef tangent
bundles, and thus nef diagonal. Any Enriques surface admits an involution i :
S → S exchanging the two sheets of a double cover S → T . Intersecting ∆ with
the graph of the involution gives a negative number, so ∆ is not nef. For K3
surfaces, we prove, using results of Bayer–Macr̀ı [BM14], that the diagonal is not
nef. In fact, we show that the diagonal is negative in a very strong sense: any
effective cycle on S × S with class proporional to ∆, must itself be a multiple of
∆.

For κ = 1, we can consider the canonical map π : S → C. By intersecting the
diagonal with a cycle in from π−1(∆C), one sees right away that the base C of the
canonical map must have genus either 0 or 1. In the latter case, ∆ has negative
intersection with σ × σ, where σ is a section of π. Furthermore, in [LO17] we
give an example showing that it is in fact possible for ∆ to be nef if π admits no
sections.

Example 10 (Hypersurfaces). Let X be a smooth hypersurface of degree ≥ 3
and dimension ≥ 2. An Euler characteristic computation shows that the diagonal
of X is not nef. Bigness of the diagonal turns out to be more subtle. We show:

Theorem 11. For a smooth Fano hypersurface of degree ≥ 3 and dimension ≤ 5,
the diagonal is not big.

The strategy here is to use the rational map Pn+1 × Pn+1 99K Gr(2, n+ 2), which
is resolved by blowing up ∆. Using this map, we can pull back Schubert cycles
from the Grassmannian, and intersect ∆ with these to argue that the diagonal is
not big.
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Newton–Okounkov bodies and Toric Degenerations of Mori dream
spaces via Tropical compactifications

Stefano Urbinati

(joint work with Elisa Postinghel)

In this work we make a connection between the theory of Newton–Okounkov bodies
(NObodies) and tropical geometry, sharing the aim of the recent preprints [KU16,
KM16]. The results of the present paper yield a different point of view on how
tropical geometry can be extremely helpful in birational geometry. Our principal
aim is to study Mori dream spaces (MDS) via tropicalization. Via this connection
we can describe a simple and computable way of reconstructing the movable cone
of such varieties. The results obtained complete the picture introduced in [LS14,
PSU15], where Minkowski bases for NObodies were given respectively for surfaces
and for toric varieties, with respect to certain admissible flags. Let us first recall
the main definitions. ([HK00, KSZ91])

1.1. NObodies and toric degenerations. Let X be a smooth complex pro-
jective variety of dimension n over an algebraically closed field k and let D be a
Cartier divisor on X . Okounkov’s construction associates to D a convex body

∆Y•
(D) ⊆ Rn,

which we call the NObody. It depends on the choice of an admissible flag Y•

Y0 = X ⊃ Y0 ⊃ . . . ⊃ Yn−1 ⊃ Yn,

where Yi is a subvariety of codimension i in X which is smooth at the point Yn.
Using the flag, one defines a rank n valuation ν = νY•

which, in turn, defines a
graded semigroup ΓY•

⊆ N× Nn. The convex body ∆Y•
(D) is the intersection of

{1} × Rn with the closure of the convex hull of ΓY•
in R× Rn.

One can also define the notion of global NObody of X which is the closed convex
cone in Rn×N1(X)R whose fibers over any big divisor D on X coincides with the
NObody ∆Y•

(D) of such divisor. We refer to [KK12, LM09] for details on this
construction. NObodies are quite difficult to compute in general. They often are
not polyhedral and, when polyhedral, they may be not rational. Even when the
body is polyhedral, the semigroup ΓY•

need not be finitely generated.
For toric varieties NObodies turn out to be nice. In fact [LM09] prove that

if X is a smooth toric variety, D is a T -invariant ample divisor on X and the
Yi’s are T -invariant subvarieties, then ∆Y•

(D) is the lattice polytope associated
with D in the usual toric construction. Moreover the global NObodies are rational
polyhedral.
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It is natural to investigate whether this construction behaves well for special
classes of varieties. A consequence of the work contained in [BCHM10, HK00] is
that divisors on MDS often have toric-like behavior, so it makes sense to pose the
following question.

Question 1 ([LM09, Problem 7.1]). Let X be a smooth MDS. Does there exist
an admissible flag with respect to which the global NObody of X is rational
polyhedral?

In [And13], Anderson extended the connection between NObodies and toric
varieties, by introducing a geometric criterion for ∆Y•

(A) to be a lattice polytope
for A ample and, in this situation, by constructing an embedded toric degeneration
of (X,A).

Theorem 2 ([And13, Theorem 5.8]). Let A to be an ample divisor on X and
assume the value semigroup associated to A with respect to the valuation induced
by a complete flag is finitely generated. Then X admits a flat degeneration to a
toric variety whose normalization is X∆Y•

(A).

Question 3. For which varieties is it possible to find a flag such that the value
semigroup of an ample divisor is finitely generated?

Notice that the latter is a very strong condition, and it is much stronger than the
finite generation of the divisorial ring. In this work we give an affirmative answer
to both Questions 1 and 3 for Mori dream spaces.

1.2. Mori Dream Spaces and tropicalization. MDS are special projective
varieties for which the Minimal Model Program (MMP) is particularly simple,
since they only admit a finte number of small Q-factorial modifications (SQM’s).
The key property of these varieties is that they always admit a particularly nice
embedding into toric varieties, see [HK00]. Given a MDSX and such an embedding
X ⊆ Z into a toric variety, let T ⊆ Z be the maximal torus of the given toric
variety. The main result of this paper can be summarized as follows:

Theorem 4. Let X ⊂ Z be a MDS with the embedding of [HK00] into a toric va-
riety Z. Then the tropicalization of the variety restricted to T , Trop(X |T ), induces
a model h : X → X, embedded in a toric variety j : X ⊂ Z, that dominates all the
SQM’s induced by the MMP. Moreover the fan of Z is supported on Trop(X |T ).

The main ideas are inspired by the work of Tevelev [Tev07]. Note that in this
way we recover a subscheme of the Chow quotient defined in [KSZ91]. Via this
construction we are able to prove several consequences. First of all, the map h
is given as an embedded map into toric varieties and this allows us to obtain a
Minkowski basis for the NObodies on X . In particular we can reconstruct the
movable cone of X . The main result is the following.

Theorem 5. In the notation of Theorem 4, certain admissible flags on Z induce
admissible flags on X, such that if {DZ

i }i∈I is a set of generators of the nef cone
of Z, then {Di := h∗j

∗DZ
i }i∈I is a Minkowski basis for X with respect to induced

flag.
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Another important result of this paper is that the NObodies of the Minkowski
basis elements are rational and polyhedral. Even more, the value semigroup is
finitely generated. This implies the following result:

Theorem 6. If X is a smooth MDS, the global NObody of X with respect to the
flags obtained in Theorem 5 is a rational polyhedron.

Moreover if A is an ample line bundle on X, (X,A) admits a flat embedded
degeneration to a not necessarily normal toric variety whose normalisation is the
toric variety defined the NObody of A.

The first statement of Theorem 6 answers affirmatively a question posed in
[LM09]. The second statement is based on work of [And13].
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Polar transform and local positivity for curves

Jian Xiao

(joint work with Nicholas McCleerey)

Let X be a smooth projective variety of dimension n. Let L be a nef line bundle
on X . One of the most important invariants measuring the local positivity of
L at x is the local Seshadri constant, sx(L), introduced by [Dem92]. Another
important local positivity invariant for divisors is the local Nakayama constant,
nx(L), introduced by (see [Leh13, Definition 5.1], and also [Nak04] for related
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objects). It is clear that these invariants can extend to (1, 1) classes. By the
general theory developed in [LX16], given a proper closed convex cone C ⊂ V of
full dimension in a real vector space V , let HConc1(C ) be the space of real valued
functions defined over C that are upper semicontinuous, homogeneous of degree
one, strictly positive in the interior of C , and 1-concave. Then one can study the
polar transform H : HConc1(C ) → HConc1(C ∗):

Hf : C ∗ → R, w∗ 7→ inf
v∈C◦

w∗ · v

f(v)
,

where f ∈ HConc1(C ), and C ∗ ⊂ V ∗ is the dual of C . This is a Legendre–Fenchel
type transform with a “coupling” function given by the logarithm. It is clear that

sx(·) ∈ HConc1(Nef
1(X)) and nx(·) ∈ HConc1(Eff

1
(X)).

We apply the polar transform to the following two geometric cases:

(1) C = Nef1(X), f = sx,

(2) C = Eff
1
(X), f = nx.

Then we get two functions on the dual cones: Nx(·) ∈ HConc1(Eff1(X)) and
Sx(·) ∈ HConc1(Mov1(X)). We show that these functions measure the local pos-
itivity for (n − 1, n − 1) classes. In fact, we show that the polar of sx behaves
analogously to the function nx, and similarly for the polar of nx. Furthermore,
this enables us to obtain a Seshadri type ampleness criterion for movable curves,
that is, α ∈ Mov1(X)◦ if and only if there is a uniform constant c > 0 such that
Sx(α) ≥ c for every x ∈ X . This also enables us to give a characterization of the
divisorial components of the non-Kähler locus of a big (1, 1) class. More precisely,
assume that α is on the boundary of Mov1(X) and Sp(α) > 0 at some point p, then
Sx(α) = 0 if and only if x lies on the the divisorial components of the non-Kähler
locus of a big (1, 1) class determined by α. In particular, the vanishing locus of
the function x 7→ Sx(α) is a subvariety.

Independently, starting with a more geometric viewpoint which is similar to the
original definition of sx(·), M. Fulger [Ful17] has also studied Seshadri constants
for movable curve classes. It turns out that this geometric definition for Seshadri
constants is equivalent to the above Sx(·) given by polar transforms.
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Avancee
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