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Abstract. A real matrix A is called copositive if xTAx ≥ 0 holds for all
x ∈ Rn

+
. A matrix A is called completely positive if it can be factorized as

A = BBT , where B is an entrywise nonnegative matrix. The concept of
copositivity can be traced back to Theodore Motzkin in 1952, and that of
complete positivity to Marshal Hall Jr. in 1958. The two classes are related,
and both have received considerable attention in the linear algebra community
and in the last two decades also in the mathematical optimization commu-
nity. These matrix classes have important applications in various fields, in
which they arise naturally, including mathematical modeling, optimization,
dynamical systems and statistics. More applications constantly arise.

The workshop brought together people working in various disciplines re-
lated to copositivity and complete positivity, in order to discuss these con-
cepts from different viewpoints and to join forces to better understand these
difficult but fascinating classes of matrices.
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Introduction by the Organisers

A real matrix A is called copositive if xTAx ≥ 0 holds for all x ∈ R
n
+. Obviously,

every positive semidefinite matrix is copositive, and so is every entrywise symmet-
ric nonnegative matrix. However, for n ≥ 5 the cone of n×n copositive matrices is
considerably larger and more complex than both the semidefinite and symmetric
nonnegative matrix cones. Its dual cone is the cone of n × n completely positive
matrices, that is, matrices that have a representation A =

∑

bib
T
i with bi ∈ R

n
+.



3072 Oberwolfach Report 52/2017

The cone of completely positive matrices is contained in the cone of doubly non-
negative matrices, i.e., matrices which are both positive semidefinite and entrywise
nonnegative. For n ≤ 4 these two cones are equal [35], but for n ≥ 5, there are
n × n doubly nonnegative matrices which are not completely positive. Both the
copositive and the completely positive matrix cones are closed, convex, full dimen-
sional and pointed [7]. They are, however, not polyhedral, but rather their bound-
aries have both polyhedral parts and “curved parts.” For the copositive cone, a
characterization in terms of its supporting hyperplanes is known, but a complete
characterization of its extremal (generating) rays is an open question. For the
completely positive cone, the converse is true: the extremal rays are known, but
characterizing the supporting hyperplanes is an open problem. Checking member-
ship in each of these cones is (theoretically and algorithmically/computationally)
challenging. These open problems and several others are highlighted in [3].

Both matrix cones possess highly interesting properties, and have attracted
interest in the linear algebra community for many years. For surveys on copositive
matrices see [31, 30] and for one on completely positive matrices see [7].

Several necessary and sufficient conditions for copositivity are known. Schur
complement properties have been proposed [11], special subclasses of copositive
matrices have been characterized (e.g., matrices whose entries are ±1 or 0, cf. [29]),
spectral properties have been studied, and a partial characterization of extremal
copositive matrices has been given. The extremal 5 × 5 copositive matrices have
recently been fully described [28]. A nonnegative vector x is a zero of a copositive
matrix A if xTAx = 0. These vectors play an important role in the study of
extreme copositive matrices [27]. It is known that testing copositivity is a co-NP-
complete problem [37]. Nonetheless, several algorithmic copositivity tests have
been developed [16, 13, 46, 44, 19].

On the dual side, necessary and sufficient conditions for complete positivity
have also been introduced. Often, these involve the zero-nonzero pattern of the
matrix, described by a graph. For example, the necessary condition of being
doubly nonnegative was shown to be also sufficient if and only if the graph of
the matrix has no long odd cycle [5, 4, 33, 1]. A sufficient condition in terms of
the so-called comparison matrix of the given matrix was introduced, and shown
to be also necessary when the graph of the matrix is triangle free [23]. Finding a
representationA =

∑r
i=1 bib

T
i with bi ∈ R

n
+ is an open question even in cases where

the matrix A is known to be completely positive. The minimal number r of rank-
one summands needed in such a representation is called the cp-rank of A, see [7].
Upper bounds for the cp-rank of matrices are known, and it was conjectured [23]

that cp-rank(A) ≤ n2

4 for any n × n completely positive matrix A. This bound
has been shown to hold in some special cases [23, 8, 34, 43, 42, 20]. However
the conjecture in general has been recently refuted, and an asymptotic bound has
been given [15, 14]. Testing a rational matrix for complete positivity was shown
to be NP-hard [22]. Although it is an open question to determine a representation
A =

∑r
i=1 bib

T
i with bi ∈ R

n
+ of a general completely positive matrix A, some

algorithms have been suggested [21, 39, 2, 26, 45, 10]. The computational question
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of determining whether or not a given symmetric nonnegative matrix is completely
positive is studied in [9].

From the above, it is clear that copositivity and complete positivity are highly
interesting concepts from the point of view of linear algebra. They also have
many important applications. One of the early motivations to study complete
positivity was its relevance to block designs. Other applications include a max-
imin efficiency-robust test, a proposed mathematical model of energy demand,
exchangeable probability distributions on finite sample spaces and a Markovian
model of DNA evolution [7]. Some recent applications include hard and probabilis-
tic clustering [47], scheduling of stochastic arrivals [32], and dynamical systems [6].
One of the most important applications is to mathematical optimization, which is
briefly described below.

Many combinatorial and nonconvex quadratic optimization problems have been
shown to possess an equivalent formulation as linear problems over the copositive
or completely positive cone. This was first shown for the so-called standard qua-
dratic programming problem. LettingQ ∈ R

n×n be an arbitrary symmetric matrix
and denoting by e the all-ones vector, it has been shown by Bomze et al. [12] that
any nonconvex quadratic problem over the simplex

(1) min{xTQx : eTx = 1, xi ≥ 0 for all i},
has an equivalent completely positive formulation (with E = eeT )

(2) min{〈Q,X〉 : 〈E,X〉 = 1, X is completely positive}.
This equivalence is remarkable, since it transforms a nonconvex NP-hard opti-
mization problem into a linear problem in matrix variables over a convex cone of
matrices. The local minima of (1) disappear, and there is a one-to-one correspon-
dence between the global minima of (1) and the local (= global) minima of (2).
The difficulty of the problem is thus shifted entirely into the cone constraint, which
makes understanding the cone crucial for tackling the problem.

Generalizing this result, Burer [17] showed that any quadratic problem with
linear and binary constraints

min xTQx+ 2cTx
st. aTi x = bi (i = 1, . . . ,m)

x ≥ 0, xj ∈ {0, 1} (j ∈ B),

with Q not necessarily positive semidefinite and B ⊂ {1, . . . , n}, can equivalently
be written in the form

min 〈Q,X〉+ 2cTx
st. aTi x = bi (i = 1, . . . ,m)

〈aiaTi , X〉 = b2i (i = 1, . . . ,m)
xj = Xjj (j ∈ B)
(

1 x
x X

)

is completely positive,

which is again a linear problem over the cone of completely positive matrices.
Because of the binary constraints, this latter setting includes a broad class of
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combinatorial problems and shows that most of them can be formulated as linear
problems over the completely positive cone.

Combinatorial problems for which copositive formulations have been studied in-
clude the clique number [12], the chromatic number [25], the quadratic assignment
problem [40], and certain graph partitioning problems [41].

Note that the dual problem of a completely positive problem is a problem
over the dual cone, i.e., the copositive cone, and vice versa. Under mild regu-
larity conditions, strong duality holds between the problems, thus any progress
in understanding either of the cones will help solving these difficult optimization
problems.

We mention that copositivity also plays a role in modeling optimization under
uncertainty [38], in complementarity problems [18], and matrix games [36]. For
more details, we refer to the survey papers [24] and [30].

As outlined above, copositivity and complete positivity are highly interesting
and relevant topics that have attracted increasing attention in the last two decades.
These topics are of interest in various specialty areas, both in pure and applied
mathematics. The workshop brought together researchers working in different
areas where copositivity and complete positivity arise, including some who had
not met in person before. The following abstracts give an idea about the different
views onto this key concept and the fruitful discussions that followed.
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Abstracts

An Algorithm to Compute the CP-Factorization of a Completely
Positive Matrix

Kurt Anstreicher

(joint work with Sam Burer and Peter Dickinson)

Let Sn denote the set of n × n real symmetric matrices. The cone of n × n
completely positive (CP) matrices is Cn = {X ∈ Sn | ∃A ≥ 0, X = AAT }. The
dual of Cn is the cone of n×n copositive (CoP) matrices, C∗

n = {X ∈ Sn | yTXy ≥
0 ∀ y ∈ R

n
+}. Recent interest in CP and CoP matrices from the optimization

community stems from fact that a large class of NP-Hard optimization problems
can be written as linear optimization problems over these cones [4].

A fundamental problem for CP matrices is to determine if a given matrix C
is CP, and if so compute a CP-factorization C = AAT where A is a nonnegative
matrix. Virtually all literature on this problem is remarkably recent. Berman and
Rothblum [3] show that the question of whether or not C ∈ Cn can be resolved
by a finite algorithm using quantifier elimination, with an operation complexity

of nO(n5). Several subsequent papers [12, 13, 14, 8] consider more practical ap-
proaches, resulting in algorithms which are implementable but lack a complexity
bound. Our goal is to create an implementable method to determine whether a
given C ∈ Cn, but which also has a complexity bound in terms of n and the ge-
ometry of Cn. If C ∈ Cn then the algorithm should compute a CP-factorization
C = AAT , while if C /∈ Cn the algorithm should produce a “certificate” X ∈ C∗

n

with 〈C,X〉 < 0.
Our approach is based on considering an optimization problem of the form

CPTest : z∗ = min 〈C,X〉

s.t.
1

2
≤ 〈S,X〉 ≤ 3

2
X ∈ C∗

n

where S ∈ Int(Cn). Then C ∈ Cn ⇐⇒ z∗ ≥ 0. We consider a cutting-plane algo-
rithm for CPTest, using the “fat slice” 1

2 ≤ 〈S,X〉 ≤ 3
2 in place of a normalization

such as 〈S,X〉 = 1 so as to have a non-empty interior for the feasible region.
The cutting-plane algorithm requires a separation oracle for X ∈ C∗

n. A partic-
ularly simple oracle can be based on a result of Hadeler [11] on almost copositive
matrices. A matrix X ∈ Sn is called almost copositive if X is not copositive, but
every principal submatrix of X is copositive. Hadeler proved that if X is almost
copositive, then X is nonsingular and X−1e < 0. Note that for such a matrix,
v = −X−1e > 0 and vTXv = −eTv < 0, certifying that X /∈ C∗

n. It is also easy
to see that if X is not copositive, then X has a principle submatrix that is almost
copositive. Enumerating all principle submatrices of X then either obtains v ≥ 0
with vTXv < 0, or proves that X is copositive. The resulting oracle for member-
ship in C∗

n has a complexity of O(2nn3) using standard linear algebra. If X has
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rational components and X /∈ C∗
n, the size of the certificate v ≥ 0 with vTXv < 0

is also polynomially bounded in the size of X [9]. A more complex oracle that has
the possibility of running faster, particularly in the case where X ∈ C∗

n, can be
based on a finite branch-and-bound algorithm for nonconvex QP [5].

Let F denote feasible region of CPTest. We assume that F is contained in
BR(0), a ball of radius R in Frobenius norm centered at the origin, and contains
a ball of radius r. For X ∈ Sn, let svec(X) be the vector in R

N , N = n(n+ 1)/2
obtained by “stacking” the elements in the upper triangle of X . The cutting-plane
algorithm for CPTest is based on maintaining a sequence of ellipsoids Ek, k ≥ 0
each of which must contain the solution x∗ = svec(X∗) of CPTest. The goal is
to obtain an ǫ-optimal solution. We will specify the algorithm to run for a fixed
number of iterations K, and give a complexity result for K in terms of r, R and ǫ.

There are several possibilities for obtaining Ek+1 from Ek. For example, using
the central-cut ellipsoid algorithm [9], an ǫ-optimal solution of CPTest is obtained
in K = ⌈2N2 ln(4R2‖C‖/(ǫr))⌉ iterations. For CPTest with S = I + 1

4n we can

take r = 2
5n and R = (3

√
2)n, and an ǫ-optimal solution is obtained in

K =
⌈

n2(n+1)2

2 ln(45n2.5‖C‖/ǫ)
⌉

iterations. If the algorithm returns vbest = 〈C,Xbest〉 ≥ ǫ, then we have a proof
that C ∈ Cn, while if vbest < 0 then we know that C /∈ Cn (with certificate
Xbest ∈ C∗

n). If the algorithm returns 0 ≤ vbest < ǫ then the status of C is
indeterminate. In the case that vbest ≥ ε we can solve an auxiliary linear program
to obtain an explicit CP-factorization of C from the cuts generated in the course
of running the algorithm. This factorization has the form

C =
∑

1≤i≤I

λiviv
T
i +

∑

1≤i≤j≤n

uij(ei + ej)(ei + ej)
T ,

where vi, i = 1, . . . , I, I ≤ K are the set of cuts returned by the copositive separa-
tion oracle and the vectors (ei+ej) arise from a polyhedral outer approximation of
C∗
n for which intersection with the “fat slice” is contained in BR(0). The variables

λi, 1 ≤ i ≤ I and uij , 1 ≤ i ≤ j ≤ n are all nonnegative and at most N of these
variables are strictly positive.

As C approaches the boundary of Cn, the solution value z∗ → 0, so we need
ε → 0 to demonstrate that C ∈ Cn and produce a CP-factorization. It is easy to
relate the required ε to the interiority of C. Note that if Bδ(C) ∈ Cn, and X is in
the fat slice 1

2 ≤ 〈S,X〉 ≤ 3
2 , then

〈C − δ

‖S‖S,X〉 = 〈C,X〉 − δ

‖S‖〈S,X〉 ≥ 0

〈C,X〉 ≥ δ

‖S‖〈S,X〉 ≥ δ

2‖S‖ ≥ 2δ

5
√
n
,

so if Bδ(C) ∈ Cn it suffices to take ε = 2δ
5
√
n
. Using the ellipsoid algorithm with

rational arithmetic, if C is rational we can polynomially bound the size of all cuts
and intermediate solutions produced by the algorithm. As a corollary, we obtain
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the result that if C ∈ Int(Cn) is rational then C has a rational CP factorization,
as shown independently in [10]. Note that the size of this factorization will also
increase polynomially in δ. This fact is closely related to the question of whether
or not determining that C ∈ Cn is actually in NP [6].

Using the volumetric cutting-plane algorithm [15, 1, 2] in place of the ellipsoid
algorithm reduces the number of oracle calls by a factor of O(N), and also reduces
the potential number of cut matrices viv

T
i needed to obtain a CP-factorization

from O∗(N2) to O(N). Alternatively one could apply the analytic center cutting-
plane method [7], in which case one loses polynomiality in ε but expects good
performance in practice.

References

[1] K. M. Anstreicher. On Vaidya’s volumetric cutting plane method for convex programming.
Math. Oper. Res., 22(1):63–89, 1997.

[2] K. M. Anstreicher. Towards a practical volumetric cutting plane method for convex pro-
gramming. SIAM J. Optim., 9:190–206, 1999.

[3] A. Berman and U. G. Rothblum. A note on the computation of the CP-rank. Linear Algebra
Appl., 419:1–7, 2006.

[4] S. Burer. On the copositive representation of binary and continuous nonconvex quadratic
programs. Math. Prog., 120:479–495, 2009.

[5] S. Burer and D. Vandenbussche. A finite branch-and-bound algorithm for nonconvex qua-
dratic programming via semidefinite relaxations. Math. Prog., 113:259–282, 2008.

[6] P. J. C. Dickinson and L. Gijben. On the computational complexity of membership problems
for the completely positive cone and its dual. Computational Optim. Appl. 57:403-415, 2014.

[7] J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Complexity analysis of an interior cutting plane method
for convex feasibility problems. SIAM J. Optim., 6(3):638–652, 1996.

[8] P. Groetzner and M. Dür. A factorization method for completely positive matrices. Working
paper, University of Trier, 2017.

[9] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer-Verlag (Berlin), 1988.
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Completely Positive Matrices – Real, Rational and Integral

Abraham Berman

A matrix A is completely positive (cp) if it can be decomposed as A = BBT ,
where the entries of B are nonnegative.

Completely positive matrices have important applications as is evident in this
workshop. The talk is a survey of results on cp matrices and two open problems.
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A necessary condition for an n× n matrix A to be completely positive is that
it is doubly nonnegative (dnn), i.e. positive semidefinite and nonnegative. This
condition is also sufficient if n < 5, but for every n > 4 there exists a doubly
nonnegative matrix that is not completely positive.

A graph G has the property that every doubly nonnegative matrix realization
of G is completely positive if and only if G does not contain an odd cycle of length
greater than 4.

A sufficient condition for a nonnegative matrix A to be completely positive
is that its comparison matrix M (mii = aii,mij = −aij if i 6= j) is positive
semidefinite. This condition is, in general, not necessary, but it is also necessary
if G(A), the graph of A, is triangle free.

If A = BBT , where the entries of B are rational and nonnegative, we say that
A has a rational cp factorization.

Question 1. Does every rational completely positive matrix have a rational cp
factorization?

Cases when this is true include:

• G(A) is triangle free,
• G(A) does not contain an odd cycle of length greater than 4,
• M(A) is positive semidefinite,
• A is in the interior of the cone of completely positive matrices.

If A = BBT , where the entries of B are integral and nonnegative, we say that
A has an integral cp factorization.

If G is a graph that has a vertex of degree greater than 1, then there is an
integral completely positive matrix realization of G that does not have an integral
cp factorization.

Question 2. Does every 2× 2 integral completely positive matrix have an integral
cp factorization?

The structure of completely positive matrices according to their
CP-rank and CP-plus-rank

Peter J.C. Dickinson

(joint work with Immanuel M. Bomze and Georg Still)

This talk is a presentation of a joint paper by the speaker, Peter J.C. Dickinson,
together with co-authors, Immanuel M. Bomze and Georg Still [3].

An important property of completely positive matrices is their cp-ranks (see
e.g. [1, Chapter 3]), and here we introduce the closely related cp-plus-rank. The
definitions of these for a nonzero symmetric matrix A ∈ Sn \ {O} are respectively

cp(A) := inf
{

p ∈ N : ∃B ∈ R
p×n
+ s.t. A = BB

T
}

,

cp+(A) := inf
{

p ∈ N : ∃B ∈ R
p×n
++ s.t. A = BB

T
}

,
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where R
p×n
+ denotes the set of entrywise nonnegative p × n matrices and R

p×n
++

denotes the set of entrywise strictly positive p× n matrices.
Due to the subtle similarities and differences between the cp-plus-rank and the

cp-rank, the analysis of the cp-plus-rank is highly useful in the investigation of the
cone of completely postive matrices.

One result that is presented is on how cp-plus-ranks vary in a neighbourhood.
For any matrix A ∈ Sn, there is an open neighbourhood of A in Sn such that the
cp-ranks of matrices in this neighbourhood are greater than or equal to the cp-rank
of A [5]. For the cp-plus-rank the opposite is true: for any matrix A ∈ Sn, not
on the boundary of the completely positive cone, there is an open neighbourhood
of A in Sn such that the cp-plus-ranks of matrices in this neighbourhood are less
than or equal to the cp-plus-rank of A. As a result we have that, in the interior of
the completely positive cone, the set of matrices whose cp-rank and cp-plus-rank
both equal a fixed number is an open set.

Further analysis is provided by considering Perron-Frobenius vectors and semi-
algebraic sets, showing that:

• If A is a complete positive matrix with an entrywise strictly positive eigen-
vector x then for all µ > 0 the cp-plus-rank of A + µxxT is less than or
equal to the cp-rank of A.

• Letting pn be the maximum finite cp-rank of matrices in Sn (bounds on
which are known [1, 2, 4]), we have that the maximum finite cp-plus-rank
of matrices in Sn is between pn and pn + 1.

• Generically the cp-plus-rank of a matrix is equal to its cp-rank.

Two open questions connected to this research are:

(1) What is the maximum finite difference between the cp-plus-rank and the
cp-rank of a matrix?

(2) What is the maximum finite cp-plus-rank of matrices in Sn?

The speaker would like to gratefully acknowledge support from the Netherlands
Organisation for Scientific Research (NWO) through grant no. 613.009.021.
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Global Optimization Techniques for Copositivity Testing

Gabriele Eichfelder

(joint work with Immanuel M. Bomze, Carmo Bras and Joaquim Judice)

This talk intends to give an introduction to the basic techniques used in recent
numerical algorithms [3, 7, 6, 1, 2] for testing a matrix on copositivity. This means
that given a real symmetric matrix Q ∈ Sn these algorithms aim on deciding
whether this matrix is copositive or not. Thereby we write

Q ∈ COP if and only if ∀ x ∈ R
n
+ : x⊤Qx ≥ 0.

Within this talk we are only interested in tests which are implemented, apply to
general symmetric matrices without any structural assumptions or dimensional
restrictions and which are not recursive, i.e., do not rely on information taken
from all principal submatrices.

The relation between copositivity testing and global optimization is obvious in
view of the following quadratic optimization problem:

(QP-Q)
min f(x) := 1

2x
⊤Qx

s.t. e⊤x = 1
x ∈ R

n
+

where e ∈ R
n denotes the all-one vector. If Q is not positive semidefinite then

the optimization problem (QP-Q) has a nonconvex objective function and solv-
ing it numerically requires techniques from global optimization. As the feasible
set is compact, (QP-Q) has always an optimal solution and the optimal value is
nonnegative if and only if Q is copositive.

The algorithms [3, 7, 6, 1] are all based on a branch-and-bound scheme, where
the branching corresponds to a partitioning of the standard simplex

∆s := {x ∈ R
n
+ | e⊤x = 1}.

Assume that one partitions the standard simplex ∆s into two subsimplices B1 and
B2 with B1 ∪B2 = ∆s and with Bi = conv(v1i , . . . , v

n
i ), i = 1, 2 with vji ∈ ∆s for

all i = 1, 2, j = 1, . . . , n. Then one uses that a matrix Q ∈ Sn is copositive if and
only if

x⊤Qx ≥ 0 for all x ∈ B1 and x⊤Qx ≥ 0 for all x ∈ B2,

i.e. if and only if minx∈B1
x⊤Qx ≥ 0 and minx∈B2

x⊤Qx ≥ 0 .
For the bounding within the branch-and-bound scheme efficient sufficient crite-

ria for copositivity are required which can easily be applied also to subsimplices.
To give an example from [3]:

∀ j, k ∈ {1, . . . , n} : (vj1)
⊤Qvk1 ≥ 0 ⇒ min

x∈B1

x⊤Qx ≥ 0.

Thus here one tries to verify for the subsimplex B1 that minx∈B1
x⊤Qx ≥ 0 as

this implies that the set B1 does no longer need to be considered. This requires
to evaluate a finite number of inequalities only. While evaluating this sufficient
condition one might also find a vector v ∈ B1 with v⊤Qv < 0. This implies that the
matrix Q is not copositive and the algorithm can be stopped. Another criterium
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which we present in this talk was proposed in [1] and uses the representation of
the objective function of (QP-Q) as a difference of two convex functions, called
d.c. decomposition. Thereby one uses the spectral decomposition of the matrix Q,

Q = Q+ −Q− with Q+ and Q− positive semidefinite,

which we define as follows: let Q = UΛU⊤ with the matrix U := [u1, . . . , un]
consisting of orthonormal eigenvectors ui ofQ, Λ := diag[(λi)]i the diagonal matrix
with the real eigenvalues of Q,

Λ+ := diag[(λi)+]i with (λi)+ := max{0, λi}, i = 1, . . . , n,

and

Q+ := UΛ+U
⊤ and Q− := Q+ −Q .

Then

Q ∈ COP if and only if inf{x⊤Q+x | x⊤Q−x = 1, x ∈ R
n
+} ≥ 1.

Relaxations of the latter optimization problem which uses this d.c. decomposition
lead to sufficient conditions for copositivity which can also be modified to be
applicable to subsimplices.

Moreover, in this talk convergence results and test sets for the numerical evalua-
tion of these algorithms are shortly discussed. Typical random test matrixes which
are used are of the form P + N for P positive semidefinite and N a nonnegative
matrix. Then all these matrices are copositive. Typically, also for large random
matrices as for n = 200 copositivity can be verified easily by the mentioned algo-
rithms. Random matrices with unit diagonal and with off-diagonal entries in the
interval [−1, 1] are with a high probability non-copositive and the algorithms also
detect that generally within a few iterations.

The smallest matrix which tends to cause numerical difficulties is the famous
Horn-matrix H , see [5], which is copositive but not of the form P +N :

H =













1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1













.

Other hard test instances are a result of the following reformulation of the
maximum clique problem: given a simple (i.e. loopless and undirected) graph a
clique is a subset of the node set such that every pair of nodes in the clique is
connected by an edge of the graph. A clique is said to be a maximum clique if
it contains the most elements among all cliques, and its size ω(G) is called the
(maximum) clique number. It holds that the matrices Q = λ(En −AG)−En with
En the n× n all-ones matrix, AG = [aij ]i,j the adjacency matrix of the graph G,
and λ ≥ 0 are copositive if and only if λ ≥ ω(G). To be more concrete [6]:

λ(En −AG)− En







∈ intCOP if λ > ω(G)
∈ bdCOP if λ = ω(G)
6∈ COP if λ < ω(G).
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where intCOP denotes the interior of the cone of copositive matrices and bdCOP its
boundary. If λ(En −AG)−En 6∈ COP for some λ ∈ N, then we can conclude that
ω(G) ≥ λ+1 and by that one can generate lower bounds for the maximum clique
number. In general, only lower bounds are calculated as verifying copositivity
tends to be more difficult than testing for non-copositivity. For the concrete test
instances see [4].

Finally, we also point out a relation between copositivity testing and the fol-
lowing mathematical program with linear complementarity constraints:

(MPLCC)

min 1
2λ

s.t. w = Qx− λe
x ≥ 0, w ≥ 0

x⊤w = 0, e⊤x = 1
x ∈ R

n, λ ∈ R, w ∈ R
n.

It holds that Q ∈ COP if and only if (MPLCC) has a (globally) minimal solution
(x̄, λ̄, w̄) with λ̄ ≥ 0.

Instead of solving (MPLCC) directly one studies instead the following linear
complementarity problem:

(LCP)

Find x ∈ R
n and w ∈ R

n such that
w = Qx− λe
x ≥ 0, w ≥ 0

x⊤w = 0.

Pairs (x̄, w̄) ∈ R
n ×R

n which satisfy the (LCP) with x̄ 6= 0 deliver feasible points
for the (MPLCC).
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On Continuous Powers of Certain Positive Matrices

Shaun Fallat

(joint work with Charles Johnson and Alan Sokal)

A matrix is called totally positive TP (resp. nonnegative TN) if all of its mi-
nors are positive (resp. nonnegative). It is known that such matrices are closed
under conventional multiplication, but not necessarily closed under entry-wise or
Hadamard multiplication. On the other hand, a real matrix is called positive def-
inite (resp. semidefinite) if it is symmetric and has positive (resp. nonnegative)
principal minors. In this case, such matrices need not be closed under matrix
multiplication, but are closed under Hadamard multiplication. One important
observation to note is that any symmetric TN or TP matrix is both completely
positive and co-positive.

In my talk, I began with a detailed survey of existing work on continuous
Hadamard and conventional powers of both totally positive and entry-wise non-
negative positive definite matrices (along with their closures). Most of the existing
work has been done on the case of doubly nonnegative matrices, whereas the anal-
ogous results in the totally positive case are rather new and still have a number
of distinct differences.

In the doubly nonnegative case, the most celebrated result is due to Horn and
Fitzgerald [2], where it is established that the critical exponent for this class of
matrices under Hadamard (or entry-wise) powers is n − 2, here n is the order of
the matrix. If A = (aij) is a matrix and t > 0 is an integer, the Hadamard power
(or entrywise power) A◦t is defined to be the matrix with elements (A◦t)ij = atij .

For each n ≥ 1, we call m(n) the critical exponent if A◦α is in one of matrix classes
(DN, TP, etc.) for all α ≥ m(n), and m(n) is the smallest such real number with
this property.

In [2], it is shown that the critical exponent for doubly nonnegative matrices is
n− 2. Let n ≥ 2, and let A be a n-by-n doubly nonnegative matrix. Then, for all
real t ≥ n − 2 (t > 0 if n = 2), the Hadamard power A◦t is positive semidefinite
(resp. positive-definite). Conversely, for every α < n − 2, there exists a rank two
doubly nonnegtive matrix A (which must also be completely positive), such that
A◦α is not doubly nonnegative.

One of our main objectives was to find a critical exponent for TP matrices.
We established that for n ≤ 3, the critical exponent for TP matrices is n − 2.
However, for n ≥ 4, we proved that there is no critical exponent for TP matrices
under Hadamard powers. Even if symmetry is imposed as a hypothesis, then we
showed that the critical exponent such matrices with n ≤ 4 is n − 2, but that no
critical exponent exists for n ≥ 5 (for more detailed information, please consult [1]).

In this case of Hankel matrices, we can say a bit more which offers a glimpse
into the connection between the doubly nonnegative case and the TP case. Recall
that an m-by-n matrix A = (aij)1≤i≤m, 1≤j≤n is said to be a Hankel matrix if aij
depends only on i+ j, i.e. aij = ai′j′ whenever i+ j = i′ + j′. Hankel matrices are
characterized combinatorially by the following simple but important fact:
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For an m-by-n matrix A, the following are equivalent:

(a) A is Hankel.
(b) Every contiguous submatrix of A is Hankel.
(c) Every contiguous submatrix of A is symmetric.
(d) Every contiguous 2-by-2 submatrix of A is symmetric.

We proved that the critical exponent for Hankel TP matrices was again n− 2.
I closed my talk by discussing critical exponents under conventional matrix

powers, where much less is known in general. However, when the critical exponent
is well defined, it does seem to be n− 2 as in the Hadamard case. Unfortunately,
the critical exponent need not always exist even when conventional powers are
well-defined, which is not always the case, such as in the co-positive setting.
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A Copositive Approach to Adjustable Robust Optimization with
Uncertain Recourse

Markus Gabl

(joint work with Immanuel M. Bomze)

Robust Optimization deals with optimization problems under uncertainty. Parts
or all of the parameters that describe the instance are affected by a vector valued
uncertainty parameter. The goal is to find the best solution amongst those who
will be feasible in any case, i.e. for all possible realizations of the uncertainty vector
(see [6]).

This approach, however, leads to very conservative strategies as the feasible
set might be very small compared to the case without uncertainty. But if the
application allows for a two-stage design, where for parts of the variables the
decision can be delayed until the uncertainty is removed, we have a significantly
less conservative way of modelling the decision problem at our disposal. This is the
domain of adjustable robust optimization (see [7]). Here the second stage variables
are defined as functions that model the adjustment of the second stage decision
to the first stage decision and the uncertainty parameter. Thus we look for the
best solution amongst those who in any case will allow for a feasible adjustment
of the second stage variables. This increases the feasible space for the first stage
decision variables compared to the setting where all variables are treated as first
stage type as is the case in the robust framework. Of course, the computational
cost rises, also for problems where the constraint-coefficients of the second stage
variables are affected by uncertainty as well (uncertain recourse), or if the data
depends quadratically on the uncertainty vector. In both cases bilinear terms
emerge, such that standard reformulation strategies can not be applied. However,



Copositivity and Complete Positivity 3089

recently a new methodology in quadratic optimization emerged, that seems to
be fit to tackle precisely this issue and to render a broader array of modeling
choices viable. The idea is to reformulate non-convex quadratic problems as linear
problems in lifted variables, where the feasible set is described as the convex hull
of extreme points of the lifted feasible set (some pioneering work in this field has
been achieved by [1, 2, 3, 4, 5]). In many interesting cases, these sets have a
characterization based on convex cones. Thus, a conic-duality argument can be
employed in order to characterize sets of quadratic forms which are nonnegative
over a given domain. As a consequence we can for example generalize the well
known S-Lemma (see [8]) in a way such that we can characterize, by means of
a linear matrix inequality, non-negativity of a quadratic function over a domain
described by an arbitrary number of quadratic functions. This allows us to handle
uncertainty sets which are ellipsoids with holes. Introducing more structure to
the uncertainty set allows for modeling more information into the set of possible
outcomes of the uncertainty, thus reducing the conservativeness of the model.
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Factorizations for completely positive matrices based on projection
approaches

Patrick Groetzner

(joint work with Mirjam Dür)

A matrix A is called completely positive, if there exists an entrywise nonnegative
matrix B such that A = BBT . The set CPn of completely positive matrices can
be described as CPn := conv{xxT | x ∈ R

n
+} = {BBT | B ∈ R

n×r
+ }. Therefore,

CPn is a proper subset of the positive semidefinite cone. Moreover, it is a closed,
pointed, convex and full dimensional matrix cone, see for example [1].
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These matrices play a major role in combinatorial and quadratic optimization.
As shown in [3], even non-convex quadratic problems can be reformulated as convex
problems over the completely positive cone, where the whole complexity is moved
into the cone constraint. Therefore it is not surprising that checking whether a
given matrix is completely positive is NP-hard, as shown in [4]. So far it is still
an open question whether checking A ∈ CPn is also in NP.

For a given matrix A ∈ CPn it is nontrivial to find a cp-factorization A = BBT

with B ∈ R
n×r
+ , since this factorization would provide a certificate for the matrix

to be completely positive. But this factorization is not only important for the
membership to the completely positive cone, it can also be used to recover the
solution of the underlying quadratic or combinatorial problem.

Moreover, it is not known a priori how many columns the matrix B in a fac-
torization A = BBT has. The minimum possible number of columns is called the
cp-rank of A and is defined as

cp(A) = inf{r ∈ N | ∃B ∈ R
n×r, B ≥ 0, A = BBT }.

So far it is still an open question how the cp-rank of a given matrix can be com-
puted. But, as shown in [2], we have

rank(A) ≤ cp(A) ≤ cp+n , where cp+n :=

{

n for n ∈ {2, 3, 4}
1
2n(n+ 1)− 4 for n ≥ 5.

In this talk I will propose a factorization algorithm which computes the nonneg-
ative factorization BBT of a given completely positive matrix A. This method is
based on the following lemma, which can be used to transform one factorization
to another.

Lemma 1. Let B,C ∈ R
n×r. Then BBT = CCT if and only if there exists an

orthogonal matrix Q ∈ R
r×r with BQ = C.

The basic idea of the factorization algorithm is to start from an initial factor-
ization A = B̃B̃T with B̃ ∈ R

n×n not necessarily nonnegative, and to extend B̃
to a matrix B ∈ R

n×r, where r ≥ cp(A) and A = BBT . Then Lemma 1 provides
the means to transform this factorization A = BBT into a cp-factorization.

This problem can be formulated as a nonconvex feasibility problem and solved
by a method which is based on alternating projections. In this talk I will show a
local convergence result for the algorithm, which is based on results from [5] for
alternating projection between semialgebraic sets.

For the algorithm it is necessary to solve a second order cone problem in every
projection step, which is very costly. Therefore, I will provide a heuristic extension
which improves the numerical performance of the algorithm. Extensive numerical
tests show that the factorization method is very fast in most instances. In addition,
I will show how to derive a certificate for a matrix to be in the interior of the
completely positive cone.

As a second application, this method can be extended to find a general non-
negative matrix factorization for a given matrix A ∈ R

m×n, see for example [6].
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For the symmetric nonnegative matrix factorization it is necessary to solve the
following problem:

Given A ∈ R
n×n
+ symmetric and k ≪ n, find a solution B ∈ R

n×k
+ of

min
B≥0

‖A−BBT ‖22.

For this, it becomes necessary to add a low-rank constraint to our factorization
algorithm. Here, in contrast to the cp-factorization, the number of columns in
the factorization matrix B is smaller than the order of A. If we consider the
general, non-symmetric case of nonnegative matrix factorization, we are looking
for a solution to the following problem:

Given A ∈ R
n×m
+ and k ≪ min{n,m}, find solutions B ∈ R

n×k
+ and C ∈ R

k×m
+

of

min
B,C≥0

‖A−BC‖22.

Here it is necessary to extend the algorithm to the non-symmetric case. There-
fore I will show an adapted version of Lemma 1 such that the main ideas of the
cp-factorization algorithm can be reused to generate a nonnegative matrix factor-
ization. I will also present numerical results for the nonnegative matrix factoriza-
tion, indicating that the presented algorithm can be extended to other nonnegative
factorization problems.
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Foundation for Scientific Research and Development (GIF) through grant no. G-
18-304.2/2011, and partially by the German Research Foundation (DFG) through
the Research Training Group 2126 “Algorithmic Optimization”.
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Extremal copositive matrices: approach via zero support sets

Roland Hildebrand

Since the early days of research on copositive matrices the zeros of a copositive ma-
trix and their support sets have been an important tool for extracting information
on the facial structure of the copositive cone Cn, in particular, for describing the
extreme rays of this cone. The extreme rays are of use when checking exactness of
inner approximations of the copositive cone. Another application is the study of
the facial structure of the dual cone, the completely positive cone. In this talk we
give a review on existing and new results on extreme rays of the copositive cone
and on the methods which have been developed to investigate these rays.

In particular, we present the concept of reduced copositive matrices, which is
a weaker condition than extremality but easier to handle. A copositive matrix A
is called reduced with respect to a non-zero copositive matrix B if A − εB is not
copositive for all ε > 0. A zero of a copositive matrix A ∈ Cn is a non-zero vector
x ∈ R+ such that xTAx = 0. The support Suppx of a zero x is the index set
of its positive elements. An exceptional copositive matrix is a copositive matrix
which cannot be represented as a sum of a positive semi-definite matrix and an
element-wise nonnegative matrix.

The zeros and their support sets have been used in [1] to establish sufficient
conditions for a copositive matrix to be reduced with respect to all element-wise
nonnegative matrices, which in turn is necessary for the matrix to be extremal
exceptional. These conditions have been weakened to necessary and sufficient
conditions in [2]. In [4] a subclass of zeros has been introduced, the minimal zeros.
A zero of a copositive matrix A is called minimal if its support is minimal with
respect to inclusion among all supports of zeros of A. The necessary and sufficient
conditions for reducedness with respect to element-wise nonnegative matrices have
been reformulated in terms of the minimal zeros of the matrix and extended to
the case of reducedness with respect to positive semi-definite matrices.

A number of necessary combinatorial conditions on the supports of minimal
zeros of an exceptional extremal copositive matrix have been established in [4]
which allowed a coarse classification of the extreme rays of the copositive cone.
Examples are given for the dimensions n = 5 and n = 6. In [3] extremality of a
copositive matrix A and reducedness with respect to an arbitrary copositive matrix
B have been described in terms of a solution set of a linear system of equations
constructed from the elements of A (and B) and from its minimal zeros.

In [6] the extremal exceptional copositive matrices have been classified which
possess only minimal zeros with supports of cardinality two. They are closely liked
to the matrices with elements from {−1, 0,+1} which have been constructed by
Hoffman and Pereira in [7]. Finally, some results are presented on extremal excep-
tional copositive matrices in Cn which possess only minimal zeros with supports
of cardinality n− 2, which is the maximal possible cardinality for an exceptional
extremal matrix. This class can be reduced to the subset of copositive matrices
whose minimal zero support set is circulant, which have been considered in [5].

A number of directions for further research have been proposed.
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The Max-Cut Polytope, the Unit Modulus Lifting, and their
set-completely-positive representations

Florian Jarre

(joint work with Felix Lieder, Ya-Feng Liu, and Cheng Lu)

A generalization of the “max-cut polytope” conv{xxT | |xk| = 1 for 1 ≤ k ≤ n}
in the space of real symmetric n×n-matrices with all-ones-diagonal is considered,
namely a complex “unit modulus lifting”

UMLC := conv{xx∗ | |xk| = 1 for 1 ≤ k ≤ n}
in the space of complex Hermitian n×n-matrices with all-ones-diagonal. (Here, x∗

denotes the transpose of the complex conjugate of x.) The problem of minimizing a
linear objective function over UMLC arises for example in digital communication,
robust optimization and robust control. While it is possible to generalize the
Goemans-Williamson approach [2] to such problems, see [4, 1], these problems are
NP-hard in general, and thus, tight convex relaxations are of interest.

An explicit description of UMLC by inequality constraints is not known. Set-
completely positive representations, however are possible and presented here. The
notion of cp-rank is generalized to set-completely-positive sets. Set-completely-
positive representations of the max-cut polytope and of UMLC are compared,
and a set of matrices at the boundary of max-cut polytopes in dimension n× n is
defined for which the generalized cp-rank is not monotone with n.

For UMLC the generalized cp-rank is used to bound the number of variables
in a nonconvex formulation for the membership problem for UMLC.

For n = 3, it is shown that UMLC coincides with its semidefinite relaxation
and for n = 4 matrices belonging to the semidefinite relaxation are defined that do
not belong to UMLC. A candidate for a separating hyperplane (H,α) is discussed
along with rotations of this hyperplane that also form valid inequalities for UMLC

if (H,α) is valid. While the verification of the validity of (H,α) may be tractable
using global optimization packages (and can then be applied to 4× 4 submatrices
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also in higher dimensions) compact representations of these rotations remain open.
Also the question of whether rotations and permutations of these hyperplanes
describe UMLC for n = 4 remains open for now.

A preprint associated with this talk was posted on [3] after the workshop in
Oberwolfach.
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Quadratic Optimization with Uncertainty in the Objective Function:
Theory and Practice of a Robust Approach

Michael Kahr

(joint work with Immanuel M. Bomze and Markus Leitner)

Numerous practically relevant optimization problems confront decision makers
with uncertain input data, which naturally arises, for instance, if the true data
is revealed in future but decisions need to be made now. In order to tackle that
uncertainty, two strategies asserted themselves during the last decades, i.e., Sto-
chastic Optimization [3] and Robust Optimization [7]. The former is typically
applied if the probability distribution of the data realizations is known, whereas
the latter is usually used if only bounds on the data realizations can be estimated.

In this talk we focus on the framework of Robust Optimization, in which the un-
certain data realizations are assumed to be bounded by uncertainty sets. Thereby,
the objective is to identify optimal solutions that are robust against all data real-
izations therein.

We consider a robust variant of the Standard Quadratic Problem (StQP) which
is, despite of its simplicity, quite versatile and has numerous applications in re-
search areas from different domains in which data uncertainty may arise, e.g.,
Finance (Markowitz portfolio selection), Economics (evolutionary algorithms),
Graph Theory (graph clustering), Machine Learning (image analysis) and Ecology
(replicator dynamics). In particular we discuss the robust counterpart of the StQP
in which uncertainty affects the objective function and its corresponding copositive
reformulation [1]. It turns out that for the StQP, the usual box-, spectrahedron-,
or ball-shaped uncertainty sets do not add complexity to the robust counterpart.

http://www.optimization-online.org/DB_HTML/2017/11/6316.html
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We also discuss the case of polyhedral uncertainty sets, in which case we pro-
pose a copositive relaxation which can be obtained in two ways (a) by applying
Sion’s theorem to the conic formulation or (b) by relaxing the robust counterpart
(resulting in a QCQP) by a copositive formulation as in [2].

The findings are then applied to a robust variant of the Dominant-Set Cluster-
ing Problem (DSCP) introduced by Pavan [5] which aims to identify homogeneous
clusters in a graph. Application areas include, e.g, video analysis, image segmen-
tation, human action recognition, and community detection in social networks.
Pavan showed that the DSCP has an equivalent StQP formulation, i.e., optimizing
the quadratic form of the weighted adjacency matrix of the input graph, general-
izing the famous Motzkin/Straus theorem [4]. For a comprehensive, recent review
on the DSCP see [6].

We show that dominant sets are connected, and derive conditions under which
dominant sets form cliques. Our computational experiments indicate that consid-
ering box- and spectrahedron-shaped uncertainty sets tend to underestimate the
sizes of dominant sets, while the opposite is true for ball-shaped uncertainty sets.
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(0, 1) Matrices and the Analysis of Social Networks

Steve Kirkland

A two–mode network can be represented by a rectangular (0, 1) matrix, where
rows represent agents and columns represent events, with a 1 in the (i, j) position
if agent i participates in event j, and a 0 in that position otherwise. Sociologists
analyse these matrices mathematically in order to understand the relative impor-
tance of, or relationships between, the various agents and/or events. Given an
m × n (0, 1) matrix A representing a two–mode network, one approach to that
analysis is to consider the related (completely positive) matrices AAT and ATA.
Both AAT and ATA represent single–mode networks, and can be easier to work
with mathematically than the original rectangular matrix A. Further, the rows
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and columns of the single–mode networks are of the same type (i.e. they all rep-
resent agents, or they all represent events), so comparisons made between those
entities arise more naturally from AAT and ATA, avoiding the ‘apples by oranges’
properties of two–mode networks.

In [1], the authors pose the question as to whether knowledge of both AAT

and ATA is sufficient to reconstruct A. In general the answer is in the negative,
as there are examples where A is not specified uniquely by AAT and ATA; such
examples exhibit data loss, since the pair of matrices AAT , ATA does not contain
enough information to specify the (0, 1) matrix A.

In this work, we use tools from combinatorial matrix theory in order to construct
pairs of distinct m × n (0, 1) matrices A,B such that AAT = BBT and ATA =
BTB, and to illuminate the relationship between such pairs of matrices. Our
approach relies on the simple observation that if we have such a pair A,B, then
both matrices have the same vector of row sums and the same vector of column
sums; this is because those vectors are the diagonals of AAT = BBT and ATA =
BTB, respectively. Consequently, the matrix E ≡ B − A is a (0, 1,−1) matrix
with all row and column sums equal to 0.

This last observation informs the following strategy. Start with a given m× n
matrix E that is (0, 1,−1) with all row and column sums equal to 0; now look
for a (0, 1) matrix A such that i) B ≡ A + E is also (0, 1), ii) AAT = BBT ,
and iii) ATA = BTB. The problem of finding such an A (when E is specified
in advance) is equivalent to finding a (0, 1) solution to a linear system having
(

m
2

)

+
(

n
2

)

equations, and unknowns indexed by the positions in E corresponding
to zero entries. It turns out that this linear system (which is, in general, non–
homogeneous) is always consistent, and finding such an A is equivalent to finding a
(−1, 1) solution to the associated homogeneous linear system. Using this strategy,
we can produce a large infinite family of pairs of (0, 1) matrices A,B satisfying
i)–iii).

In order to do so, first recall that a tournament matrix T of order n is a (0, 1)
matrix satisfying T + T T = J − I, where J is the n × n all ones matrix. A
tournament matrix of order n is called regular if its row sums are all equal to
n−1
2 (note that necessarily n has to be odd in that case). The following result of

McKay [3] gives an asymptotic expression for the number of regular tournament
matrices of (odd) order n.

Proposition 1. As n → ∞ through odd values, then for any ǫ > 0, the number
tn of regular tournament matrices of order n is given by

tn =

(

2n+1

πn

)

n−1
2 (n

e

)
1
2
(

1 +O
(

n− 1
2
+ǫ
))

.

We have the following result from [2], which uses regular tournament matrices
in order to construct pairs of (0, 1) matrices satisfying i)–iii).
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Theorem 1. Suppose that n ∈ N and denote the all ones vector in R
n by 1.

Consider the following (n+ 1)× 2n matrix:

E =

[

−I I
1T −1T

]

.

There is an (n + 1) × 2n (0, 1) matrix A such that i) A + E is also (0, 1), ii)
AAT = (A + E)(A + E)T , and iii) ATA = (A + E)T (A + E) if and only if n is
odd.

When n is odd, each (0, 1) A satisfying i)–iii) has the form

(1) A =

[

T + I T T

0T 1T

]

,

where T is a regular tournament matrix of order n. Conversely, for any regular
tournament matrix T of order n, the matrix A of (1) satisfies i)–iii).

In view of Proposition 1, we see that asymptotically, the number of such pairs of
matrices in Theorem 1 is quite large. Observe also that the matrices of Theorem 1
are highly structured. It remains to be seen whether there are are two–mode
networks that arise in empirical settings that give rise to (0, 1) pairs A,B for
which AAT = BBT and ATA = BTB.
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Approximating the cone of copositive kernels to estimate the stability
number of infinite graphs

Olga Kuryatnikova

(joint work with Juan C. Vera)

It has been shown by Dobre, Dür, Frerick and Vallentin [3] that the stable set
problem in certain infinite graphs, and particularly the kissing number problem,
reduces to a minimization problem over the cone of copositive kernels. Optimizing
over this cone is NP-hard, so we propose two converging inner hierarchies approx-
imating the cone and implement their first two levels to compute upper bounds
on the kissing number κn.

Let V ⊂ R
n be a compact set and COP(V ) be the cone of opositive kernels

over V . Our approximations of COP(V ) extend existing inner hierarchies for
copositive matrices, Cn

r by De Klerk and Pasechnik [2] and Qn
r by Peña, Vera

and Zuluaga [5]. To do the extension, we represent these hierarchies via tensors,
similarly to Dong [4]. We denote the new sets by CV

r and QV
r and show that

CV
r ⊆ QV

r ⊆ COP(V ) for every level of the hierarchies r.

https://doi.org/10.1093/comnet/cnx039
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Now let us consider the kissing number problem. Let Sn−1 be the unit sphere
in R

n. The kissing number κn is the optimal value of an LP over COP(Sn−1) .
Denote by γr and νr upper bounds on κn obtained by replacing COP(Sn−1) in this

problem with CSn−1

r and QSn−1

r respectively. Then

Theorem 1. γr ↓ κn, νr ↓ κn.

Further we concentrate on νr as it provides stronger upper bounds. Using in-

vairance of Sn−1 under orthogonal group On, we characterize Q
Sn−1

r uintroducing
a notion of generalized Jacobi polynomials. For r = 1, our formulation is close to
the best existing upper bound formulation by Bachoc and Vallentin [1], but the
bounds we obtain are a little weaker.

The main goal of further research is to implement νr for r = 2. An open question
is the connection between our hierarchies and other existing approximations for
the kissing number problem.

References

[1] C. Bachoc, F. Vallentin, New upper bounds for kissing numbers from semidefinite program-
ming. J. Amer. Math. Soc. 21-3 (2008), 909–924.

[2] E. de Klerk and D. Pasechnik, Approximation of the stability number of a graph via copos-
itive programming. SIAM J. Optim. 12 (2002), 875–892.

[3] C. Dobre, M. Dür, L. Frerick, F. Vallentin, A Copositive Formulation for the Stability
Number of Infinite Graphs. Math. Program. 160-1 (2016), 65–83.

[4] H. Dong, Symmetric Tensor Approximation Hierarchies for the Completely Positive Cone.
SIAM J. Optim. 23(3) (2013), 1850–1866

[5] J. Peña, J.C. Vera, L.F. Zuluaga, Computing the stability number of a graph via linear and
semidefinite programming. SIAM J. Optim. 18-2 (2007), 87–105.

Rank Restrictions in the NIEP

Thomas Laffey

(joint work with Helena Šmigoc)

The nonnegative inverse eigenvalue problem (NIEP) asks: which lists of complex
numbers can be the spectrum of some entry-wise nonnegative matrix. If a list
of complex numbers σ is the spectrum of some entry-wise nonnegative matrix A,
we say that σ is realisable, and that A realises σ. The NIEP is a difficult open
problem, however, several partial results are known. For the source of literature
on the problem we refer the reader to the following works and the citations that
appear in them: [3, 13, 14, 12, 9, 8, 5].

Motivated by applications in ergodic theory, Boyle and Handelman [1] solved
a related question: which lists of complex numbers can be the nonzero spectrum
of a nonnegative matrix. In particular, they proved that if σ = (λ1, λ2, . . . , λn)
is a list of complex numbers such that the power sums sk =

∑n
i=1 λ

k
i > 0 for all

positive integers k, and λ1 > |λi| for i = 2, 3, . . . , n, then there exists a nonnegative
integer N such that the list obtained by appending N zeros to σ is realizable by a
nonnegative (n+N)×(n+N) matrix. It is easy to show that the least N required
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here is in general not bounded as a function of n. Their proof is not constructive
and does not enable one to determine the size of the minimal N required for
the realizability in the general case. A constructive approach to the Boyle and
Handelman result that provides a bound on the minimal such N , was found by
this author in [6].

Several other variants of the NIEP are considered in the literature. The one
that has attracted most attention is the symmetric nonnegative inverse eigenvalue
problem (SNIEP), where we demand that the realising nonnegative matrix is sym-
metric. The corresponding question about the nonzero spectrum of a symmetric
matrix is open. Unlike in the general case, the number of zeros needed to be
added to the nonzero spectrum of a symmetric nonnegative matrix in order to ob-
tain a nonnegative symmetric realisation is bounded by a function of the number
of nonzero elements in the list.

Theorem 1. [4] Let A ∈ Mn(R) be a symmetric nonnegative matrix of rank k.

Then, there exists a symmetric nonnegative matrix Ã ∈ Mk(k+1)/2(R) with the
same nonzero spectrum as A.

This result was used in the first proof that the symmetric nonnegative inverse
eigenvalue problem is different from the real nonnegative inverse eigenvalue prob-
lem, the problem of determining which lists of real numbers are realisable. The
bound provided in the theorem above is believed not to be tight. In fact, examples
of lists where one zero added makes the list symmetrically realisable are known,
for example σ = (103 , 8

3 ,−2,−2,−2) is not symmetrically realizable but σ ∪ {0} is;
however, there are no known examples where three or more zeros are required in
symmetric realisability.

Here, we consider diagonal realisability. We show that if a list is the nonzero
spectrum of a diagonalisable nonnegative matrix with k nonzero eigenvalues, then
it can be realised by a nonnegative diagonalisable matrix of order k + k2.

Our approach depends on the study of a principal sub-matrix A11 of the original
matrix A that has the same rank as A.

Theorem 2. Let

A =

(

A11 A12

A21 A22

)

∈ Mn(R)

be a nonnegative matrix, where A11 ∈ Mm(R) has rank equal to the rank of A and
the rank of A21 is equal to r. Furthermore, we assume n > m+mr.

Then there exists a nonnegative matrix Ã ∈ Mm+mr(R) whose nonzero spectrum
is the same as the nonzero spectrum of A. Moreover, the Jordan canonical forms of
A and Ã, denoted by J(A) and J(Ã) respectively, satisfy: J(A) = J(Ã)⊕0n−m−mr.

Theorem 3. Let A ∈ Mn(R) be a nonnegative matrix with l nonzero eigen-

values and rank k. Then there exists a nonnegative matrix Ã of order ñ =
(2k − l) + (2k − l)2 whose nonzero spectrum is the same as the nonzero spectrum

of A and whose Jordan canonical form J(Ã) satisifes: J(A) = J(Ã)⊕ 0n−ñ.
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These results show, that in the Boyle-Handelman result, the component of the
Jordan canonical form of a realizing matrix corresponding to the eigenvalue zero,
may be required to have large rank.

The Nonnegative Inverse Elementary Divisors Problem

The nonnegative inverse elementary divisors problem (NIEDP) asks: for a given
realisable spectrum σ = (λ1, λ2, . . . , λn), what are the possible Jordan forms of
realising matrices. Of course, if σ has no repeated entries, this problem reduces to
the NIEP for σ. It is conjectured that if σ is realisable, then it is realisable by a
nonnegative nonderogatory matrix, but this appears to be still open.

Minc [11] proved that if σ is diagonalisably realisable by a positive matrix A,
then for every Jordan form J with spectrum σ, σ is realisable by a positive matrix
similar to J . This result is conjectured to hold without requiring the positivity of
A but this also seems to be open at present.

We consider the classic example

σ(t) = (3 + t, 3− t,−2,−2,−2).

We ask the question what is the minimal t for which σ(t) is realisable by a nonneg-
ative matrix with a given Jordan canonical form Ji(t) associated with σ(t), where
J1(t) is a diagonal matrix, J2(t) is the Jordan canonical form with its minimal
polynomial of degree 4, and J3(t) is nonderogatory. We will denote the minimal t
in each case by ti.

It is shown by Cronin and the author in [2] that σ(t) is realisable by a diago-
nalisable nonnegative matrix only for t ≥ 1, i.e. t1 = 1. In this case, the condition
for diagonalisable realisability and symmetric realisability coincide. Also, in the
same paper it is shown that

σ = (3 + t, 3− t,−2.09,−2,−2.1)

is realisable for t ≥ 1
10

√

120
√
3166− 3899 ≈ 0.435, while by the McDonald-

Neumann inequality, given in [10], t ≥ 0.9 is necessary for symmetric realisability.

On the other hand, σ(t) is realisable for t ≥
√

16
√
6− 39 ≈ 0.438. This is shown

in [7], where a nonderogatory matrix with spectrum σ(t3), t3 =
√

16
√
6− 39, is

provided.
Here we present the matrix

A(t) =

















0 2 1
2 0 0

2 0 1
2 0 0

256
t2+7 − 32 256

t2+7 − 32 0 1 0

0 0 t4+78t2−15
2(t2+7) 0 1

2

√
2t2 + 30

0 0
2
√
2(3t4+58t2+3)

(t2+7)
√
t2+15

1
2

√
2t2 + 30 0

















.

A(t) has eigenvalues (3 + t, 3− t,−2,−2,−2), it is nonnegative, and it has Jordan

canonical form J2(t), for
√

16
√
6− 39 ≤ t < 1. This shows that t2 = t3.
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Maximal exponents of polyhedral cones

Raphael Loewy

The purpose of this talk is to generalize the notions of nonnegative (element-
wise), primitive matrices and their exponents. Given an n×n nonnegative matrix
A (denoted A ≥ 0), A is said to be primitive if there exists a positive integer l such
that Al is positive (denoted Al > 0). In that case, the smallest such l is called the
exponent of A, denoted γ(A).

A primitive matrix A can be recognized combinatorially, namely from the di-
rected graph D(A) associated with A. Its vertex set is v = {1, 2, . . . , n}, and given
two vertices i and j there is a directed edge from i to j if and only if aij > 0. The
graph D(A) is called primitive if it is strongly connected and the greatest common
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divisor of the lengths of its cycles is equal to 1. It is known that A is primitive if
and only if D(A) is a primitive graph.

There has been great interest in exponents of primitive matrices, in particular
establishing upper bounds using combinatorial and linear algebraic parameters.
The following result is due to Wielandt [Wi], although a proof appeared later.
In order to state his result we define, for any positive integer n, the graph Wn

as follows: Its vertex set is {1, 2, . . . , n}, and the edge set is {(i, i + 1)for i =
1, 2, . . . , n− 1, (n, 1), (n, 2)}.
Theorem 1. Let A be an n × n nonnegative, primitive matrix. Then γ(A) ≤
(n− 1)2 +1 = n2 − 2n+2, and inequality holds if and only if D(A) is isomorphic
to Wn.

An n × n nonnegative matrix can be considered as a linear operator mapping
the nonnegative orthant Rn

+ = {x = (xi) ∈ R
n : xi ≥ 0, i = 1, 2, . . . , n} into itself.

A natural generalization is the following.
Suppose that K is a proper cone in R

n, that is, a cone which is convex, pointed,
closed, and with non-empty interior. Given an n × n matrix A, we say that it is
K-nonnegative if AK ⊂ K; it is K-positive if Ax ∈ intK for every nonzero x,
x ∈ K; A is K-primitive if A is K-nonnegative and there exists a positive integer
l such that Al is K-positive, and in that case the smallest such l is called the
exponent of A, denoted by γK(A). Following a question by S. Kirkland in 1999 we
are interested to establish upper bounds for exponents of K- primitive matrices.
The results appear in [LT1, LT2, LPT].

Our main results obtain appropriate generalizations of Theorem 1. We restrict
our attention to polyhedral cones, that is proper cones which have finitely many
extreme rays. More precisely, we fix positive integers m,n such that m ≥ n, and
consider cones in R

n with m extreme rays.

Theorem 2. Let K be a proper cone in R
n with m extreme rays, and let A be

K-primitive. Then,

γK(A) ≤ (n− 1)(m− 1) + 1
2 (1 + (−1)(n−1)m).

Note that the case m = n in Theorem 2 reduces to the Wielandt bound.

Theorem 3. The inequality in Theorem 2 is best possible in the sense that there
exist K in R

n with m extreme rays and A which is K-primitive such that equality
holds in this inequality.

A key tool in the proof of Theorem 2 and Theorem 3 is the use of a graph
introduced by Barker and Tam [BP1, BP2], which generalizes the graph D(A) in
the nonnegative case. Now suppose that K is a proper polyhedral cone in R

n

and A is K-nonnegative. We define the graph DK(A) as follows: Its vertices
correspond to the extreme rays of K. Given extreme rays R1 = {αx : α ≥ 0} and
R2 = {αy : α ≥ 0}, for x, y ∈ K, both nonzero, there is a directed edge from R1

to R2 if and only if y belongs to the face of K generated by Ax.
It should be pointed out that a significant problem in our work is when is a

directed graph on m vertices realizable as DK(A) for suitable K and A.
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An exact copositive programming formulation for the Discrete
Ordered Median Problem

Justo Puerto

The discrete ordered median problem (DOMP) represents a generalization of
several well-known discrete location problems, such as p-median, p-center or (k1+
k2)−trimmed mean, among many others. The problem was introduced in [10] and
later studied by [11], [2], and [13], [9] and [1] among many other papers. DOMP
is an NP-hard problem as an extension of the p-median problem.

In 2001, Nickel [10] first presented a quadratic integer programming formulation
for DOMP. However, no further attempt to deal directly with this formulation
was ever considered. Furthermore, that approach was never exploited in trying to
find alternative reformulations or bounds; instead several linearizations in different
spaces of variables have been proposed to solve DOMP some of them being rather
promising, [9] and [8].

Motivated by the recent advances in conic optimization and the new tools that
this branch of mathematical programming has provided for developing bounds and
approximation algorithms for NP-hard problems, as for instance max-cut, QAP,
and other hard combinatorial problems [6], we present in this talk an exact alterna-
tive reformulation of DOMP as a continuous, linear conic problem. Our interest
is mainly theoretical and tries to borrow tools from continuous optimization to be
applied in some discrete problems in the field L.A. To the best of our knowledge
reformulations of that kind have never been studied before for DOMP nor even
in the wider field of L.A.

The goal of our presentation was to prove that the natural binary, quadrat-
ically constrained, quadratic formulation for DOMP admits a compact, exact
reformulation as a continuous, linear problem over the cone of completely positive
matrices.

The talk was organized as follows. The first part formally defined the ordered
median problem and set its elements. The next part was devoted to describe a folk
result that formulates the problem of sorting numbers as a feasibility binary linear
program. This is used later as a building block to present the binary quadratic,
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quadratically constrained formulation of DOMP. The following section contained
the main result: DOMP is equivalent to a continuous, linear conic problem. Ob-
viously, there are no shortcuts and the problem remains NP -hard but it allows
to shed some lights onto the combinatorics of this difficult discrete location prob-
lem. Moreover, it permits to borrow also the tools from continuous optimization
to the area of L.A. Finally, we addressed some conclusions and pointers to future
research.

1. Definition and formulation of the problem

1.1. Problem definition. Let S = {1, ..., n} denote the set of n sites. Let C =
(cjℓ)j,ℓ=1,...,n be a given nonnegative n × n cost matrix, where cjℓ denotes the
cost of satisfying demand point (client) j from a facility located at site ℓ. We also
assume the so called, free self-service situation, namely cjj = 0 for all j = 1, . . . , n.
Let p < n be the desired number of facilities to be located at the candidate sites.
A solution to the facility location problem is given by a set X ⊆ S of p sites.

We assume, that each new facility has unlimited capacity. Therefore, each client
j will be allocated to a facility located at site ℓ of X with lowest cost, i.e.

cj = cj(X ) := min
ℓ∈X

cjℓ.

The costs for supplying clients, c1(X ), ..., cn(X ), are sorted in nondecreasing
order. We define σX to be a permutation on {1, ..., n} for which the inequalities

cσX (1)(X ) ≤ · · · ≤ cσX (n)(X )

hold.
Now, for any nonnegative vector λ ∈ R

n
+, the Discrete Ordered Median Problem

(DOMP) consists of finding X ∗ ⊂ S with |X ∗| = p such that:
n
∑

k=1

λkcσX∗ (k)(X ∗) = min
X⊂S,|X |=p

n
∑

k=1

λkcσX (k)(X ).

2. Main result

In this talk we prove that DOMP admits a reformulation as a mixed-binary
quadratic objective, quadratically constrained problem. This problem can be al-
ways relaxed using the corresponding matrix variables that replace the original
quadratic terms.

Our main result is that this second reformulation, using matrix variables, is
indeed exact and therefore, DOMP is a new hard combinatorial optimization
problems that falls into the class of completely positive conic linear programs.
See [3, 4, 5, 7, 12] and the references therein for a detailed literature review of this
topic.

Theorem 1. DOMP belongs to the class of continuous, convex, conic problems.
Moreover, an explicit formulation of DOMP as a completely positive convex prob-
lem is given as CP-DOMP. Problem CP-DOMP is equivalent to the quadratic
reformulation of DOMP: (i) they share the same objective value, (ii) if Φ∗ is
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an optimal solution for Problem CP-DOMP then a suitable linear transformation
of Φ∗ is in the convex hull of optimal solutions of the quadratic reformulation of
DOMP.

3. Concluding remarks

The result in this talk states, for the first time, the equivalence of a difficult
NP -hard discrete location problem, namely DOMP, with a continuous, convex
problem. This new approach can be used to start new avenues of research by
applying tools in continuous optimization to approximate or numerically solve
some hard discrete location problems.
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[8] M. Labbé, D. Ponce, and J. Puerto. A comparative study of formulations and solution
methods for the discrete ordered p-median problem. Computers & Operations Research,
2016. ISSN 0305-0548.
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SPN graphs: when copositive = SPN

Naomi Shaked-Monderer

A real symmetric matrix A is copositive if xTAx ≥ 0 for every nonnegative vec-
tor x. A matrix is SPN if it is a sum of a real positive semidefinite matrix and
a nonnegative one. Every SPN matrix is copositive, but the converse does not
hold for matrices of order greater than 4. We define a graph G to be an SPN
graph if every copositive matrix with graph G is SPN, and consider the problem
of characterizing such graphs.

We present sufficient conditions for a graph to be SPN (in terms of its possible
blocks) and necessary conditions for a graph to be SPN (in terms of forbidden
subgraphs), and make some conjectures regarding the remaining gap.
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Constrctructive Techniques in the Symmetric Nonnegative Inverse
Eigenvalue Problem

Helena Šmigoc

(joint work with Richard Ellard)

A list of real numbers is symmetrically realisable if it is the spectrum of some
(entrywise) nonnegative symmetric matrix. The Symmetric Nonnegative Inverse
Eigenvalue Problem (SNIEP) is the problem of characterising all symmetrically
realisable lists. If we do not insist that the realising matrix be symmetric, then
the resulting problem is called the Real Nonnegative Inverse Eigenvalue Problem
(RNIEP).

Several constructions have been developed that enable us to construct nonneg-
ative matrices with given spectrum. We consider a construction presented in [7]
that joins two smaller matrices to construct a bigger one. Let B be an l× l nonneg-
ative symmetric matrix with Perron eigenvalue c, Perron eigenvector u, (Bu = cu
and uTu = 1) and spectrum (c, ν2, ν3, . . . , νl). Let

A :=

[

A1 a
aT c

]

,

where A1 is an (k − 1)× (k − 1) nonnegative symmetric matrix and a ∈ R
k−1 is

nonnegative, have eigenvalues (µ1, µ2, . . . , µk). Then

C :=

[

A1 avT

vaT B

]

is a nonnegative symmetric matrix with eigenvalues (µ1, µ2, . . . , µk, ν2, ν3, . . . , νl).
If A and B are positive semidefinite, then so is C. However, the question, if
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completely positive matrices A and B produce a completely positive matrix C, is
open.

We denote by Hn the set of all symmetrically realisable lists, that can be ob-
tained recursively, starting with lists of length 2 and repeatedly applying the con-
struction given above. The realisable family obtained in this way has several
interesting properties, [2]:

(1) Let σ = (λ1, λ2, λ3, . . . , λn) ∈ Hn have the Perron eigenvalue λ1, and let
ǫ > 0. Then

(λ1 + ǫ;λ2 − ǫ, λ3, λ4, . . . , λn) ∈ Hn and (λ1 + ǫ;λ2 + ǫ, λ3, λ4, . . . , λn) ∈ Hn.

(2) Let λ1 ≥ λ2 ≥ · · · ≥ λn. Then (λ1;λ2, . . . , λn) ∈ Hn if and only if there
exist 0 ≤ ǫ ≤ 1

2 (λ1 − λ2) and a partition

{3, 4, . . . , n} = {p1, p2, . . . , pl−1} ∪ {q1, q2, . . . , qn−l−1},

such that

(λ1 − ǫ;λp1
, λp2

, . . . , λpl−1
) ∈ Hl and(λ2 + ǫ;λq1 , λq2 , . . . , λqn−l−1

) ∈ Hn−l.

(3) If (λ1;λ2, . . . , λn, 0) ∈ Hn+1, then (λ1;λ2, . . . , λn) ∈ Hn.

These properties allow us to make connections between a number of sufficient
conditions in the SNIEP developed over forty years, starting with the work of
Fiedler [4] in 1974. In particular, they enable us to show that a condition due to
Borobia, Moro and Soto [1] called C-realisability is sufficient for the existence of
a symmetric realising matrix, and that the set of C-realisable lists is the same as
Hn, [2].

Soules’ approach to the SNIEP focuses on constructing the eigenvectors of the
realising matrix A. Starting from a positive vector x ∈ R

n, Soules [6] showed how
to construct a real orthogonal n×n matrix R with first column x such that for all
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, the matrix RΛRT—where Λ := diag(λ1, λ2, . . . , λn)—is
nonnegative. This motivated Elsner, Nabben and Neumann [3] to make the follow-
ing definition: Let R ∈ R

n×n be an orthogonal matrix with columns r1, r2, . . . , rn.
R is called a Soules matrix if r1 is positive and for every diagonal matrix Λ :=
diag(λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, the matrix RΛRT is nonnega-
tive.

Let Sn denote the set of all lists of eigenvalues of symmetric nonnegative ma-
trices of the form RΛRT , where R is a Soules matrix and Λ is a diagonal matrix.
Then Sn = Hn, [2]. This result together with a result by Shaked-Monderer [5] that
states, that nonnegative matrix generated by a Soules matrix is a completely pos-
itive matrix with cp-rank equal to the rank, connects the construction introduced
earlier to cp-matrices.
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Positive polynomials on unbounded domains

Juan C. Vera

(joint work with Luis F. Zuluaga)

Certificates of non-negativity such as Putinar’s Positivstellensatz have been used
to obtain powerful numerical techniques to solve polynomial optimization (PO)
problems. Putinar’s certificate uses sum-of-squares (sos) polynomials to certify
the non-negativity of a given polynomial over a domain defined by polynomial
inequalities. This certificate assumes the Archimedean property of the associated
quadratic module, which in particular implies compactness of the domain.

We present a new certificate of non-negativity for polynomials over the possibly
unbounded set obtained from the intersection of a closed domain S and h−1(0) =
{x ∈ R

n : h(x) = 0}, the zero set of a given polynomial h(x). It is evident that if
p(x) is non-negative on the domain S, then p(x)+h(x)q(x) is non-negative on the
domain S ∩ h−1(0) for any polynomial q(x). In [7] it is shown that (modulo an
appropriate closure) the converse is true when the domain S is compact, thereby
establishing a certificate of non-negativity for polynomials on S ∩ h−1(0) in terms
of non-negative polynomials on S.

We show that under suitable conditions on h(x) and S, the non-negativity of a
polynomial over the set S ∩ h−1(0) can be certified in terms of the non-negative
polynomials on Seven if the set S is unbounded. Moreover, a characterization of
the sets S ∩ h−1(0) for which the certificate of non-negativity exists is provided in
terms of an appropriate condition on S and h.

Unlike previous related results in [2, 5, 6], the proposed certificate of non-
negativity is independent of the polynomial defining the objective of an associated
PO problem. Instead, the certificate is written purely in terms of the set of non-
negative polynomials over a set S and the ideal generated by h(x). Also, unlike
the recent related results in [4], and as a result of the use of the non-negative
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polynomials on a set S, the associated quadratic module and the Archimedean
property are not used to characterize the cases in which the proposed certificate
of non-negativity holds.

The certificate of non-negativity presented here readily allows the use of copos-
itive polynomials to certify the non-negativity of a polynomial (as opposed to the
more common use of sums-of-squares polynomials to certify non-negativity). In
particular it encompasses the important results of Burer [1] and Peña et al., [8].
So a natural question is the role this certificate could play to generalize this type
of result to other contexts.

We are interested in studying the consequences of this new type of certificate.
For instance, the fact that copositive polynomials can be used in the proposed cer-
tificate of non-negativity, together with Polya’s Positivstellensatz (see, e.g., [3]),
means that convergent linear programming (LP) hierarchies can be constructed
to approximate the solution of general PO problems. Also, the new certificate
could be used to provide an interesting bridge between the results on certificates
of non-negativity in algebraic geometry (such as Schmüdgen’s and Putinar’s Pos-
itivstellensatz) and Polya’s Positivstellensatz.
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Mixed Integer Linear Programming Formulations of Standard
Quadratic Programs

E. Alper Yıldırım

Standard quadratic programs have numerous applications and play an important
role in copositivity detection. We consider reformulating a standard quadratic pro-
gram as a mixed integer linear programming problem. We discuss the advantages
and drawbacks of such a reformulation.
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1. Introduction

A standard quadratic program involves minimizing a (nonconvex) quadratic form
(i.e., a homogeneous quadratic function) over the unit simplex. Formally, it can
be stated in the following form:

(StQP) ν(Q) = min{xTQx : x ∈ ∆n},

where ∆n ⊂ R
n denotes the unit simplex given by

∆n = {x ∈ R
n : eTx = 1, x ∈ R

n
+},

and Q ∈ Sn and Sn denotes the space of n× n real symmetric matrices, x ∈ R
n,

e ∈ R
n denotes the vector of all ones, and R

n
+ denotes the nonnegative orthant in

R
n.
Standard quadratic programs have important applications in portfolio opti-

mization, quadratic resource allocation problem, maximum (weighted) stable set
problem, and copositivity detection (see, e.g., [1]).

2. Copositivity and Optimality Conditions

In this talk, we focus on solving (StQP) to global optimality. For (StQP), the
necessary and sufficient global optimality conditions can be stated as follows: Let
x∗ ∈ ∆n. Then, x

∗ is a global optimal solution of (StQP) (i.e., ν(Q) = (x∗)TQx∗)
if and only if the matrix

(

Q−
(

(x∗)TQx∗) eeT
)

is copositive (see, e.g., [1]). Since
checking copositivity is a co-NP-complete problem, we aim to exploit optimality
conditions from a different perspective.

Using the Karush-Kuhn-Tucker optimality conditions, if x ∈ ∆n is an optimal
solution of (StQP), then there exist s ∈ R

n and λ ∈ R such that

Qx− λe− s = 0,(1)

eTx = 1,(2)

x ∈ R
n
+,(3)

s ∈ R
n
+,(4)

xjsj = 0, j = 1, . . . , n.(5)

By (1), (2), and (5), if x ∈ ∆n is an optimal solution of (StQP), then ν(Q) =
xTQx = λ.

3. A Mixed Integer Linear Programming Reformulation

We can linearize the nonconvex complementarity constraints (5) by using binary
variables and big-M constraints. Therefore, (StQP) can be reformulated as the
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following mixed integer linear programming problem:

(MILP) min λ
Qx− λe− s = 0,

eTx = 1,
xj ≤ yj, j = 1, . . . , n,
sj ≤ Mj(1 − yj), j = 1, . . . , n,
x ≥ 0,
s ≥ 0,
yj ∈ {0, 1}, j = 1, . . . , n.

In this formulation, we need to specify the values of Mj, j = 1, . . . , n. By the
first constraint of (MILP), we have Qx− λe − s = 0, which implies,

sj = eTj Qx− λ, j = 1, . . . , n,

where ej ∈ R
n denotes the jth unit vector, j = 1, . . . , n. Since x ∈ ∆n, we have

eTj Qx = xTQej ≤ maxi=1,...,n Qij . Therefore, any lower bound on λ (equivalently,
a lower bound on ν(Q)) can be used to obtain an upper bound on sj , j = 1, . . . , n.

The first simple lower bound on ν(Q) is given by

(LB1) ν(Q) ≥ ℓ0(Q) := min
1≤i≤j≤n

Qij .

A tighter lower bound on ν(Q) can be obtained by

(LB2) ν(Q) ≥ ℓcop(Q) := max{λ : Q− λeeT ∈ Cn},
where Cn is the cone of matrices that can be written as the sum of a componentwise
nonnegative matrix and a positive semidefinite matrix.

Note that ℓ0(Q) can be computed in O(n2) time whereas the computation of
ℓcop(Q) requires solving a semidefinite program. However, ℓcop(Q) can be approx-
imated by using an accelerated proximal gradient method.

Therefore, we can substitute Mj := maxi=1,...,n Qij − ℓ in the constraint sj ≤
Mj(1 − yj), j = 1, . . . , n of (MILP), where ℓ ∈ {ℓ0(Q), ℓcop(Q)}.

4. Computational Experiments

We compare the performances of the MILP formulations by using the two alter-
native lower bounds ℓ0(Q) and ℓcop(Q) in the computation of the upper bound
Mj, j = 1, . . . , n. We test our formulations on the maximum stable set problem:
Let G = (V,E) be a simple, undirected graph. A set S ⊆ V is a stable set if each
pair of vertices in S is mutually nonadjacent. The maximum stable set problem is
concerned with finding a stable set with the largest cardinality, denoted by α(G).
This problem can be formulated as an instance of (StQP) as follows [2]:

1

α(G)
= min

{

xT (I +AG)x : x ∈ ∆n

}

,

where AG ∈ Sn is the vertex adjacency matrix of G.
We generated random graphs with a specified density d ∈ (0, 1). Each instance

is denoted by (n, d, s), where s is the seed of the random number generator. Our
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implementation uses the Matlab-Cplex interface (Matlab 2017b; Cplex 12.7.1).
Our results are summarized in Tables 1 and 2:

Table 1. n = 100; d = 0.5

ℓ0(Q) ℓcop(Q)
Instance α(G) MILP Time MILP Time Lower Bound Total Time

(100, 0.5, 1) 10 4 5 202 207
(100, 0.5, 2) 9 5 5 188 193
(100, 0.5, 3) 9 5 5 186 191
(100, 0.5, 4) 9 5 6 239 245
(100, 0.5, 5) 9 6 5 118 123
(100, 0.5, 6) 9 7 7 106 113
(100, 0.5, 7) 9 5 4 156 160
(100, 0.5, 8) 9 4 5 178 183
(100, 0.5, 9) 9 6 4 165 169
(100, 0.5, 10) 9 5 5 99 104

Average - 5 5 164 169

Table 2. n = 100; d = 0.25

ℓ0(Q) ℓcop(Q)
Instance α(G) MILP Time MILP Time Lower Bound Total Time

(100, 0.25, 1) 16 1040 426 186 612

(100, 0.25, 2) 16 572 292 170 462

(100, 0.25, 3) 17 467 367 117 484

(100, 0.25, 4) 16 608 373 191 564

(100, 0.25, 5) 17 812 595 199 794

(100, 0.25, 6) 18 1759 307 79 386

(100, 0.25, 7) 17 643 359 214 573

(100, 0.25, 8) 17 913 392 210 602

(100, 0.25, 9) 17 354 300 76 376
(100, 0.25, 10) 16 225 135 224 359

Average - 739 354 167 521

Our preliminary computational results illustrate that, on certain instances, the
MILP formulation using the improved lower bound ℓcop(Q) seems to outperform
that with the simple lower bound ℓ0(Q), even when we include the computation
time for the improved lower bound. Therefore, the MILP formulation can be used
to solve certain instances of (StQP) to global optimality. We intend to incorporate
valid inequalities in the near future.
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CP rank of Graphs

Xiao-Dong Zhang

(joint work with Jiong-Sheng Li)

In this talk, we introduce some properties of CP rank of complete positive graphs
and prove that the set of all factorization indices of a completely positive graph
has no gaps. In other words, we give an affirmative answer to a question raised by
N. Kogan and A. Berman in the case of completely positive graphs.

An n × n symmetric matrix A is doubly non-negative, denoted by A ∈ DNn,
if it is non-negative and positive semidefinite. An n × n symmetric matrix A is
completely positive, denoted by A ∈ CPn, if there exists an n × m non-negative
matrix B such that A = BBT , where BT is the transpose of B. The smallest
number m of columns in any such matrix B is called the factorization index of A
and is denoted by CPrankA. Let G be a simple graph with vertex set V (G) =
{v1, v2, . . . , vn} and edge set E(G). An n×n doubly non-negative (resp. completely
positive) matrix A = (aij) is a doubly non-negative (resp. completely positive)
realization of G if aij > 0 if and only if vi and vj are adjacent for any 1 ≤ i 6= j ≤ n.
A graph G is completely positive, or CP for short, if every doubly non-negative
realization of G is completely positive. The set of all factorization indices of CP
realizations of G is denoted by I(G) and the maximum number in I(G) is denoted
by CPrankG. Kogan and Berman proposed the question as follows:

Question 1. For any graph G, if a, b ∈ T (G), does I(G) contain all integers
between a and b?

In order to study this question, we need the following notation. An n × n
CP matrix A is called critical if A − εEii is not CP for any ε > 0 and for each
i = 1, . . . , n, where Eii is the matrix of order n with (i, i) entry 1, and 0 elsewhere.
Furthermore, a CP graphG is called CP 1 if there exists one critical CP realization
A of G such that CPrankG = CPrankA. A CP graph G is called CP 2 if there
does not exist a singular CP realization A of G such that CPrankG = CPrankA,
and for any h ∈ I(G) \ {CPrankG}, there exists one critical CP realization A of
G such that CPrankA = h. we prove the following results.

Theorem 1. We have:

(1) K2 and K3 are CP 2.
(2) K4 is CP 1.
(3) If G is a connected bipartite graph of order n, then

I(G) =

{

{n− 1, n}, if Gis acyclic,
{|E(G)|}, otherwise,

where |E(G)| is the number of edges of G. Furthermore, G is CP 2 if G is
acyclic, and G is CP 1 if G has a cycle.

(4) If n ≥ 4, then I(Tn−2) = {n − 2, . . . , 2n − 4} and Tn−2 is CP 1, where
where Tn−2 = (V (Tn−2), E(Tn−2)) is a graph of order n consisting of
n− 2 triangles with a common base.
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Theorem 2. If G is a CP graph of order n, then: (1) I(G) has no gaps; (2) G
is either CP 1 or CP 2.

Alternative SDP and SOCP Approximations for Polynomial
Optimization

Luis F. Zuluaga

(joint work with Xiaolong Kuang, Bissan Ghaddar, and Joe Naoum-Sawaya)

Many real-world problems can be modeled as a polynomial optimization prob-
lem (POP); that is, an optimization problem in which both the objective and
constraints are multivariate polynomials on the decision variables. Thus devising
new approaches to globally solve POPs is an active area of research. In his sem-
inal work, Lasserre [11] showed that semidefinite programming (SDP) relaxations
based on sum of square (SOS) polynomials can provide global bounds for POPs.
However, the SDP constraints are computationally expensive and thus even using
low-orders of the hierarchy to approximate large-scale POPs becomes computa-
tionally intractable in practice. To improve the computational performance of the
SDP based hierarchies to approximate the solution of POPs, prior work has fo-
cused on exploiting the problem’s sparsity [10, 9] and symmetry [3, 6], improving
the relaxation by generating and adding appropriate valid inequalities [8], using
bounded SOS polynomials [13] and more recently by devising more computation-
ally efficient hierarchies such as linear programming (LP) and second-order cone
programming (SOCP) hierarchies [7, 14, 1, 4, 5].

Here, we consider alternative ways to use SOCP restrictions of the SOS con-
dition introduced by [1]. In particular, we show that SOCP hierarchies can be
effectively used to strengthen hierarchies of LP relaxations for general POPs. Such
hierarchies of LP relaxations have received little attention in the POP literature
(a few noteworthy exceptions are [2, 12, 15, 4, 5]). However, in this paper we
show that this solution approach is substantially more effective in finding solu-
tions of certain POPs for which the more common hierarchies of SDP relaxations
are known to perform poorly (see, e.g., [7]). Furthermore, when the feasible set
of the POP is compact, these SOCP hierarchies converge to the POP’s optimal
value. Note that for the well-known SDP based hierarchies introduced in [11], the
quadratic module (QM) associated with the feasible set of the POP is required to
be Archimedean, which implies the compactness of the POP’s feasible set.

1. Hierarchies

In particular, we consider for the polynomial optimization problem

(1) min{f(x) : gi(x) ≥ 0, i = 1, . . . ,m}.
In particular we consider the Lasserre hierarchy (QM-SOSr) below applied to

problem (1) in which SOS polynomials are constructed to create the hierarchy.
Also below, we consider the (QM-SDOSr) hierarchy proposed in [1], in which the
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hierarchy (QM-SDOSr) is weakened by considering SDSOS polynomials, instead
of SOS polynomials.
(QM-SOSr (QM-SDOSr))

max
λ,si(x)

λ

st f(x)− λ = s0(x) +

m
∑

i=1

si(x)gi(x),

s0(x) ∈ SOS2r(SDOS2r),

si(x) ∈ SOS2⌊r−deg(gi)/2⌋(SDOS2⌊r−deg(gi)/2⌋), i = 1, . . . ,m,

λ ∈ R.

On the other hand, we consider below two hierarchies that can be derived from
the non-negative coefficient polynomial hierarchies proposed for (1) in [14]. The
Po-SOSr hierarchy in which the non-negative coefficient polynomials are replaced
with SOS polynomials, and the Po-SDOSr in which the non-negative coefficient
polynomials are replaced with SDSOS polynomials. Thus, these two hierarchies
strengthen the one proposed in [14].

(Po-SOSr (Po-SDOSr))
max

λ,pα,β(x)
λ

st (1 +

n
∑

i=1

xi +

m
∑

j=1

gj(x))
r(f(x)− λ) =

∑

(α,β)∈Nn+m

pα,β(x)x
αg(x)β ,

pα,β(x) ∈ SOS2(pα,β(x) ∈ SDOS2), for all (α, β) ∈ N
n+m,

λ ∈ R,

2. Numerical Results

We test a POPs from [8], which are highly non-convex and require a high level of
Lasserre’s hierarchy to converge to their global optimum.

Example 1. Consider the following quadratic POP with 5 variables:

min
x∈R5

2x1 − x2 + x3 − 2x4 − x5

st (x1 − 2)2 − x2
2 − (x3 − 1)2 − (x5 − 1)2 ≥ 0,

x1x3 − x4x5 + x2
1 ≥ 1,

x3 − x2
2 − x2

4 ≥ 1,

x1x5 − x2x3 ≥ 2,

x1 + x2 + x3 + x4 + x5 ≤ 14,

xi ≥ 0, i = 1, . . . , 5.

As shown in Table 3, the (QM-SOSr) hierarchy converges to the global opti-

mum when d̂ = 8 with a computational time of 49.82 seconds, while the hierar-

chy (Po-SOSr) converges to global optimum when d̂ = 6 with only 8.21 seconds
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Figure 1. Bound and Time Comparison of Different Hierarchies
for Example 1.

of computational time. Hierarchy (QM-SDOSr) fails to converge to the global

optimum up to d̂ = 8. However, the hierarchy (Po-SDOSr) also converges to the

global optimum when d̂ = 8 with 13.28 seconds of computational time.

Although the degree d̂ provides an approximate measure of the size (variables
and constraints) involved in the formulations of the hierarchies’ problems, a better
comparison of the hierarchies can be done by illustrating the trade-off between the
solution time and the quality of the bound obtained from each hierarchy. In
Figure 1, the different line plots show the bound and solution time associated
with increasing orders of each of the hierarchies. Clearly, within one second,
the (Po-SDOSr) hierarchy gives the best bound; within ten seconds, the (Po-SOSr)
hierarchy gives the optimal value while there is still a gap between the problem’s
optimal value (illustrated by the dashed horizontal line) and the bounds obtained
by other hierarchies. Clearly, the hierarchies proposed have better performance
over the Lasserre-type hierarchies for this problem.

QM-SOSr QM-SDOSr Po-SOSr Po-SDOSr

d̂ Bound T Bound T Bound T Bound T

2 -25.00 0.35 -25.00 0.12 -6.63 0.74 -7.40 0.03
4 -6.01 1.22 -6.35 0.15 -2.35 1.53 -2.96 0.19
6 -2.40 6.75 -4.46 1.85 ∗-1.57 8.21 -1.72 0.71
8 ∗-1.57 49.82 -2.81 15.00 ∗-1.57 13.28

∗: Optimal value is obtained.

Table 3. Bound and Time Comparison of Different Hierarchies
for Example 1.
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