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Introduction by the Organisers

The workshop Classical and Quantum Mechanical models of Many-Particle Sys-
tems, organized by Anton Arnold (Vienna), Eric Carlen (New Brunswick) and
Laurent Desvillettes (Paris) was well attended by 52 participants with broad ge-
ographic representation, and a significant number of women (11) and young re-
searchers. We remark that most of the participation slots were actually filled in
the first round of invitations. So there were very few replacements or cancel-
lations (due to baby care duties, e.g.). One of the participating post-docs was
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supported be the NSF-grant for “junior Oberwolfach fellows”, three PhD-students
(or young post-docs) were funded as “Oberwolfach Leibniz graduate students”,
and one participant (Franca Hoffmann, Caltech) benefited from a Simons Visiting
Professorship. 26 participants gave a lecture, mostly of 45 minutes.

The organizers took an active step towards gender balance, which was reflected
both in the invitation list and the scheduling of the talks (9 of which were given
by women).

An important innovation in this edition of the meeting was the organization of
a session (which was held after dinner) dedicated to the exposition of open prob-
lems, in which four senior scientists of the field (Yann Brenier, Pierre Degond,
Tai-Ping Liu, Lorenzo Pareschi) presented their own ideas about the current sci-
entific challenges met by the community in the field, and possible new directions of
research. This session seems to have been greatly appreciated by the audience (al-
most everybody attended the session), and especially by the younger researchers.

A significant amount of the talks were dedicated to the perturbative theory
of the Boltzmann equation (and closely related models). This subfield expanded
greatly in the recent years. Very interesting (and important for the applications
to realistic physics) new subtopics emerged. One can quote the talk by Chanwoo
Kim, in which boundary conditions are precisely studied, and the results presented
by Marc Briant, in which mixtures are considered, and the unexpected effect of
the different masses of gas molecules is explained. The presentations by Lingbing
He and Isabelle Tristani, dedicated to the perturbative theory of the non cutoff
Boltzmann and Landau equations, are also a testimony of the vitality of this
subfield.

The links between kinetic equations and macroscopic equations (Euler or Navier-
Stokes equations, diffusive equations) is one of the oldest subjects in the field, and
still attracts a lot of attention. The talk by Alexander Bobylev proposes an ap-
proach in which one goes beyond the first order in the Chapman-Enskog approxi-
mation without encoutering the problems coming out of the study of the Burnett
equation. Christian Schmeiser talked about the limits leading to fractional diffu-
sive equations (starting from kinetic equation). Closely connected to this theme
were the presentations of Shih-Hsien Yu, who explained the latest developments
of the works that he began some years ago on Green’s functions, and the talks
by Jean Dolbeault and Mustapha Mokhtar-Kharroubi, in which the results on the
topic of hypocoercivity were described. The connection between the Boltzmann
equation and fluid dynamics was further illustrated by Tai-Ping Liu in the open
problem session, concerning e.g. regularization and boundary effects.

Several talks were concerned with semiclassical limits and mean field limits (i.e.
the passage fromN particle systems to kinetic models). The talks of Chiara Saffirio
and François Golse dealt with the derivation of the (classical) Vlasov equation in
the joint limit N → ∞ and ~ → 0. While C. Saffirio’s approach is based on
Wigner functions, F. Golse introduced a novel (Wasserstein-like) distance between
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(classical) probability densities and (quantum) density matrices. Alessia Nota
presented the derivation of a linear Boltzmann and Landau equation from the
Newtonian dynamics of a Lorentz Gas, i.e. a classical particle moving in the field
of fixed, but randomly distributed scatterers. The talk of Pierre-Emmanuel Jabin
considered the large system limit of stochastic particles (with interaction satisfying
the Biot-Savart law, e.g.) towards a macroscopic limit, like the vortex dynamics
for the 2d incompressible Navier-Stokes equations.

A group of talks was concerned with quantum particle systems, and in partic-
ular with bosonic systems. Miguel Escobedo and Ricardo Alonso discussed the
formation and dynamics of Bose-Einstein condensates via global-in-time solutions
to isotropic quantum Boltzmann equations. The talk of Anne Nouri dealt with
existence, uniqueness and stability of solutions to an inhomogeneous quantum
Boltzmann equation for (very cold) particles satisfying a fractional quantum sta-
tistics. Benjamin Schlein presented his recent results on the spectrum of Bose
gases in the N → ∞ limit (ground state and Bose-Einstein condensation).

Applications to biology (mainly to the study of collective movement of animals
or microorganisms) of the methods of kinetic theory (especially entropy methods),
fluid mechanics and statistical physics were discussed in the talks by Jose Carrillo,
Franca Hoffmann, Esther Daus and Sara Merino-Aceituno. The presentation of
Pierre Degond in the session on open problems was also devoted to a presentation
of interesting issues in this topic.

In her talk, Claudia Negulescu presented a derivation of a reduced kinetic model
for a strongly confined tokamak plasma in an adiabatic limit in order to facilitate
numerical simulations. In the open problem session, Lorenzo Pareschi first gave
an introduction to uncertainty quantification, with emphasis on examples from
kinetic theory. Apart of modelling issues he discussed numerical difficulties and
solution approaches (based on generalized Polynomial Chaos expansions, e.g.).

Connected methods for PDEs (homogeneisation, coagulation-fragmentation
models, Lagrangian description) were finally presented in the talks by Julien
Fischer, Yann Brenier and Maxime Breden. A presentation of new possible ap-
proaches of optimal transport methods for quantum particles was also provided
by Yann Brenier in the framework of the session on open problems.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Franca Hoffmann in the “Simons Visiting Professors”
program at the MFO.
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Global existence analysis of multi-species cross-diffusion systems in
population dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3398

Alexander V. Bobylev
Hydrodynamics beyond Navier-Stokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3401

Franca Hoffmann (joint with José A. Carrillo, Vincent Calvez)
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Abstracts

Swarming models with local alignment effects: phase transitions &
hydrodynamics

José A. Carrillo

We discussed a collective behavior model in which individuals try to imitate each
others’ velocity and have a preferred asymptotic speed. It is a variant of the well-
known Cucker-Smale model, in which the alignment term is localized, refered below
as LCSM. We showed that a phase change phenomenon takes place as diffusion
decreases, bringing the system from a “disordered” to an “ordered” state. This
effect is related to recently noticed phenomena for the diffusive Vicsek model.
We analysed the expansion of the large friction limit around the limiting Vicsek
model on the sphere leading to the so-called Self-Organized Hydrodynamics (SOH)
introduced in [5]. This talk was based on the papers [1, 2, 3].

In more details, considering that f is the distribution in both space x and
velocity v at time t, the model features a Cucker-Smale type term which aligns
the velocity of individuals nearby in space, a term adding noise in the velocity,
and a friction term which relaxes velocities back to norm one:

∂tf + v∇xf = ∇v ·
(
α(|v|2 − 1)vf + (v − uf )f +D∇vf

)
.(1)

where

uf (t, x) =

∫
vf(t, x, v) dv∫
f(t, x, v) dv

.

Here α and D are respectively the self-propulsion force and noise intensities. The
first part of the talk discussed the transition by noise on the spatially homogeneous
case, where the model reduces to

∂tf = ∇v ·
(
α(|v|2 − 1)vf + (v − uf)f +D∇vf

)
.(2)

where

(3) uf (t) =

∫
vf(t, v) dv∫
f(t, v) dv

,

and where f = f(t, v) is the velocity distribution at time t. Stationary solutions
f(v) > 0 to (2) for uf = ū are of the form

(4) fū(v) =
1

Z
exp

(
− 1

D

[
α |v|4

4 + (1− α) |v|
2

2 − ū · v
])
,

with Z the normalization factor such that f has unit mass. Therefore, the set
of stationary solutions of (2) can be parametrized by the set of mean velocities
ū ∈ RN such that

H(ū, D) :=

∫

RN

(v − ū)fū(v)dv = 0.

Notice that H(ū, D) = 0 is equivalent to ū = ufū given by (3), and that ū = 0 is
always a solution corresponding to radially symmetric stationary states.
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Figure 1. Plot of the one-dimensional H(u,D) against u for
α = 2 and varying values of D.

By choosing the axis, we may assume without loss of generality that ū points
in the direction of the first axis or first vector e1 of the canonical basis, and then
let us denote the magnitude of ū by u ≥ 0. The full set of stationary solutions is
obtained by composing fū with any rotation in R

N , and thus yields an (N − 1)-
dimensional family of stationary solutions for each ū = ue1 satisfyingH(ū, D) = 0.
Noticing that all components of H except for the first one vanish due to fū(v), we
can restrict our attention to the first component of H. The real valued function
whose roots have to be analyzed is the first component of H, given by

H(u,D) =

∫

RN

(v1 − u)fū(v)dv .

In figure 1, we plot H(u,D) in one dimension as a function of u for varying values
of D. It is clear from the figure that for small values of D, H(u,D) has three
roots, the zero root and two roots with identical speed; while for large values of
D the only root is u = 0, and this can be deduced from the sign of ∂H

∂u (0, D). The
main theorem about phase transitions showed is:

Theorem 1. (Phase Transition Driven by Noise [1]) The nonlinear Fokker-
Planck equation (2), corresponding to the spatially homogeneous LCSM with noise,
exhibits a phase transition in the following sense:

(1) For small enough D there is a function u = u(D) with limD→0 u(D) = 1,
such that fū given by (4) with ū = (u(D), 0, . . . , 0) is a stationary solution
of (2).

(2) For large enough D the only stationary solution of (2) is the symmetric
distribution given by (4) with ū = 0.

We then elaborated in how to obtain a hydrodynamic description around the
von Mises-Fisher equilibria obtained in the large friction limit α → ∞ in (1) when
the noise parameter is below the critical noise on the sphere studied in [4]. The
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precise asymptotic limit that we studied rewrites (1) as

∂tf
ε + divx(f

εv) +
1

ε2
divv{f ε(1− |v|2)v} =

1

ǫ
Q(f) ,(5)

for all (t, x, v) ∈ R+×R2N . The behavior of the family (f ε)ε>0, as the parameter ε
becomes small, follows by analyzing the formal expansion f ε = f+εf (1)+ε2f (2)+...
Plugging the above Ansatz into (5), leads to the constraints

(6) divv{f(1− |v|2)v} = 0

(7) divv{f (1)(1− |v|2)v} = divv{f(v − u[f ]) +D∇vf}
and to the time evolution equations

∂tf + divx(fv) + divv{f (2)(1− |v|2)v} = Lf (f
(1))(8)

with

Lf (f
(1)) := divv{f (1)(v − u[f ]) +D∇vf

(1)} − divv

{
f

∫
RN f

(1)(v′ − u[f ]) dv′∫
RN f dv′

}

cutting the development at second order.
The main advantage for considering (5) is that the resolution of (5) for small

ε will provide a solution supported near RN × SN−1, which fits much better the
modelling of the behavior of living organism systems, than a hard constraint on the
sphere in velocity. But the price to pay is to deal with two Lagrange multipliers,
appearing in (8), which have to be eliminated, thanks to the constraints (6) and
(7). The first constraint was analyzed in detail in [2]. It exactly says that f is a
measure supported in Rd × ({0} ∪ SN−1). We denote by M+

b (R
N ) the set of non

negative bounded Radon measure on RN .

Proposition 1. Assume that (1+ |v|2)F ∈ M+
b (R

N ). Then F solves divv{F (1−
|v|2)v} = 0 in D′(RN ) i.e.,

∫

RN

(1− |v|2)v · ∇vϕ dF (v) = 0, for any ϕ ∈ C1
c (R

N )

if and only if supp F ⊂ {0} ∪ SN−1.

We need to define a projection operator on the sphere. In order to do this we
defined the average of a non negative bounded measure cf. [2].

Definition 1. Let f ∈ M+
b (R

N × RN ) be a non negative bounded measure on
RN × RN . We denote by 〈f〉 the measure corresponding to the linear application

ψ →
∫

RN

∫

RN

ψ(x, v)1v=0f(x, v) dvdx+

∫

RN

∫

RN

ψ

(
x,

v

|v|

)
1v 6=0f(x, v) dvdx ,

for all ψ ∈ C0
c (R

N × RN ), i.e.,
∫

RN

∫

RN

ψ(x, v) 〈f〉 (x, v) dvdx=
∫

v=0

ψ(x, v)f(x, v) dvdx +

∫

v 6=0

ψ

(
x,

v

|v|

)
f(x, v) dvdx,

for all ψ ∈ C0
c (R

N × RN ).
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A direct consequence of the definition is that any bounded, non negative mea-
sure, supported in RN × ({0} ∪ SN−1) is left unchanged by the average operator.
Another property of the average operator is that it removes any measure of the
form divv{f(1− |v|2)v}, cf. Proposition 5.2 [2].

Proposition 2. For any f ∈ M+
b (R

N × RN ) such that divv{f(1 − |v|2)v} ∈
Mb(R

N × RN ), we have
〈
divv{f(1− |v|2)v}

〉
= 0.

The above proposition plays a crucial role when eliminating the Lagrange mul-
tiplier f (2) in (8). Indeed, for doing that, it is enough to average both hand sides
in (8). By the constraint (6), we know that f is supported in R

N × ({0} ∪ S
N−1),

and thus is left invariant by the average. We check that 〈∂tf〉 = ∂t 〈f〉 = ∂tf , and
thus, averaging (8) still leads to a evolution problem for f

∂tf + 〈divx(fv)〉 =
〈
Lf (f

(1))
〉
.(9)

Certainly, a much more difficult task is to eliminate the Lagrange multiplier f (1).
We expect that this can be done thanks to the constraint in (7). The solvability
of (7), with respect to f (1), depends on a compatibility condition, to be satisfied
by the right hand side. Indeed, by Proposition 2, we should have

〈divv{f(v − u[f ]) +D∇vf}〉 =
〈
divv{f (1)(1− |v|2)v}

〉
= 0

saying that f is a equilibrium for the average collision kernel 〈Q(f)〉 = 0. The
equilibria of the average collision kernel form a N − 1-dimensional manifold, that
is one dimension less than the equilibria manifold of the Fokker-Planck operator
Q, see also [5]. For any l ∈ R+,Ω ∈ SN−1, we introduce the von Mises-Fisher
distribution

MlΩ(ω) dω =
exp

(
lΩ · ω

r

)
∫
SN−1exp

(
lΩ · ω′

r

)
dω ′ dω, ω ∈ S

N−1.

Proposition 3. Let F ∈ M+
b (R

N ) be a non negative bounded measure on RN ,
supported in SN−1. The following statements are equivalent:
1. 〈Q(F )〉 = 0, that is

∫

v 6=0

{
−(v − u[F ]) · ∇v

[
ψ̃

(
v

|v|

)]
+D∆v

[
ψ̃

(
v

|v|

)]}
F dv = 0,

for all ψ̃ ∈ C2(SN−1).
2. There are ρ ∈ R+,Ω ∈ SN−1 such that F = ρMlΩdω where l ∈ R+ satisfies

(10)

∫ π

0 cos θ el cos θ sinN−2 θ dθ∫ π

0
el cos θ sinN−2 θ dθ

= Dl.

The modulus of the mean velocity is not a coordinate on the equilibria manifold,
but it is determined by the condition |u| = Dl where l satisfies (10). Clearly l = 0
is a solution, which corresponds to the isotropic equilibrium

F = ρM0Ω dω = ρ
dω

ω̄drN−1
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where ω̄N represents the area of the unit sphere in R
N .

Proposition 4. Let λ : R+ → R be the function given by

λ(l) =

∫ π

0
cos θel cos θ sinN−2 θ dθ∫ π

0 el cos θ sinN−2 θ dθ
, l ∈ R+, N ≥ 2.

The function λ is strictly increasing, the function l → λ(l)/l is strictly decreasing
and verifies

λ(0) = 0, λ′(0) = lim
lց0

λ(l)

l
=

1

N
, lim

l→+∞
λ(l) = 1.

If D ≥ 1
N , then the only solution of λ(l) = Dl is l = 0. If D ∈]0, 1

N [, then there is
a unique l = l (D) > 0 such that λ(l) = Dl.

In order to find the equations for the evolution of the density ρ and orientation
Ω, we need to find f (1) from (7) in order to feed the terms needed in (9). How-
ever, we will see that this is not possible. We will need to introduce a notion of
generalized collision invariants, quite related intuitively to the one introduced in
[5, 4], in our functional setting of measures supported in S

N−1 to avoid the com-
putation of the full f (1). This is the main technical difficulty due to the measure
functional setting since the precise definition of generalized collision invariant we
need is more involved than in [5, 4]. Our main result established the macroscopic
equations satisfied by the density ρ and orientation Ω, which parameterize the von
Mises-Fisher equilibrium, obtained when passing to the limit for εց 0 in (5).

Theorem 2. For any D such that D ∈]0, 1
N [, we denote by l = l (D) the unique

positive solution of λ(l) = Dl. Let f in ∈ M+
b (R

N ×RN ) be a non negative bounded
measure on RN × RN , N ≥ 2. For any ε > 0 we consider the problem

∂tf
ε + divx(f

εv) +
1

ε2
divv(f

ε(1− |v|2)v) = 1

ε
divv{f ε(v − u[f ε]) +D∇vf

ε}

for all (t, x, v) ∈ R+ × RN × RN with f ε(0) = f in, (x, v) ∈ RN × RN . There-
fore the limit distribution f = limεց0 f

ε, is a von Mises-Fisher equilibrium f =
ρMlΩ(ω) dω on SN−1, where the density ρ(t, x) and the orientation Ω(t, x) satisfy
the macroscopic equations

(11) ∂tρ+ divx (ρDlΩ) = 0, (t, x) ∈ R+ × R
N

(12) ∂tΩ+ kN (Ω · ∇x)Ω +
1

l
(IN − Ω⊗ Ω)

∇xρ

ρ
= 0

with the initial conditions

ρ(0, x) =

∫

RN

f in(x) dv, Ω(0, x) =

∫
RN vf

in(x) dv∣∣∫
RN vf in(x) dv

∣∣ , x ∈ R
N

where

kN =

∫ π

0 el cos θχ(cos θ) cos θ sinN−1 θ dθ∫ π

0
el cos θχ(cos θ) sinN−1 θ dθ
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and χ solves

−D d

dc

{
elcχ ′(c)(1− c2)

1
2

}
= elc, c ∈]− 1, 1[, χ(−1) = χ(1) = 0 if N = 2

and

−D d

dc

{
elcχ ′(c)(1− c2)

N−1
2

}
+ (N − 2)Delcχ(c)(1 − c2)

N−5
2 = elc(1 − c2)

N−2
2

c ∈]− 1, 1[, N ≥ 3.

A nice practical implication of our main result is that this penalization proce-
dure, by imposing asymptotically a cruise speed for particles, could lead to efficient
and stable numerical schemes to compute the hydrodynamic equations (11)-(12).
This is important due to the possible non-hyperbolicity of the system (11)-(12),
see [4].
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Perturbative Cauchy theory for Landau and Boltzmann equations

Isabelle Tristani

(joint work with Kleber Carrapatoso, Frédéric Hérau, Daniela Tonon and
Kung-Chien Wu)

1. Introduction

In this report, we present results about Landau equation and Boltzmann equation
without angular cut-off. We here restrict to the case of the so-called hard potentials
(even if for the Landau equation, we are indeed able to treat softer potentials). The
results concerning the Landau equation are taken from a joint work with Kleber
Carrapatoso and Kung-Chien Wu [1], the ones about the Boltzmann equation
come from joint works with Frédéric Hérau and Daniela Tonon [4], [5].

In what follows, we consider particles described by their space inhomogeneous
distribution density f = f(t, x, v) with t ∈ R+ the time, x ∈ T3 the position
and v ∈ R3 the velocity. We study the spatially inhomogeneous Boltzmann and
Landau equations which take the form:

(1) ∂tf + v · ∇xf = Q(f, f)
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where Q stand for the Boltzmann or the Landau collision operator.
The main results are about the Cauchy theory of the nonlinear equations: we

prove results of existence and uniqueness of solutions in a close-to-equilibrium
regime in weighted Sobolev spaces with a polynomial weight. We also prove an
exponential stability for such solutions, with a rate as close as we want to the
optimal rate given by the semigroup decay of the corresponding linearized equa-
tion. The proof of those results are based on the study of the linearized problems
and in particular, we investigate the regularization properties of the semigroups
associated to the linearized operators.

2. Cauchy theory and exponential stability

Consider X a Sobolev space of type H3
xL

2
v(m) where m(v) = 〈v〉k with k large

enough. We do not enter into details here but in the real definition of X , the
polynomial weight is different according to the order of derivative in x. Also,

we denote µ(v) = (2π)−3/2e−|v|2/2 the normalized Maxwellian equilibrium of our
equations.

Let us mention that being a bit more precise in the previous statement, we can
also get a result of uniqueness.

Our strategy is based on the study of the linearized equations, which is a stan-
dard strategy to develop a Cauchy theory in a close-to-equilibrium regime. How-
ever, we point out that our study of the nonlinear problems is then very tricky.
Indeed, it is hard to see that the gain induced by the linear part of the equation
is enough to directly control the loss due to the nonlinear part of the equation.
It implies that the linear part is dominant and thus dictates the dynamics of the
equation. In order to do that, we have to establish very accurate estimates on the
collision operators. We also have to study very carefully the regularization proper-
ties of the semigroup associated to the linearized operator, the Boltzmann case is
much more difficult and to perform this analysis, we see the linearized Boltzmann
operator as a pseudo-differential one.

3. The linearized equations

3.1. Semigroup decay. The linearized operators around equilibrium are defined
at first order through

Λh := Q(µ, h) +Q(h, µ)− v · ∇xh.

We study the linearized operator Λ in various weighted Sobolev spaces of type
Hn

xH
ℓ
v(〈v〉k) up to L2

x,v(〈v〉k) for k large enough. In this type of space, we prove
that there exist explicit constants λ∗ > 0 and C ≥ 1 such that

∀ t ≥ 0, ∀h ∈ E , ‖SΛ(t)h−Π0h‖E ≤ C e−λ∗t ‖h−Π0h‖E ,
where SΛ(t) is the semigroup associated to Λ and Π0 the projector onto the null
space of Λ.

To prove this type of estimates, our strategy follows the one initiated by Mouhot
in [7] for the homogeneous Boltzmann equation for hard potentials with cut-off.
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This argument has then been developed and extended in an abstract setting by
Gualdani, Mischler and Mouhot [2], and Mischler and Mouhot [6]. Thanks to
that, we are able to get spectral/semigroup estimates on “large spaces” E using
the already known spectral gap estimates for Λ on Hℓ

x,v(µ
−1/2), for ℓ ≥ 1, from the

paper of Mouhot and Neumann [8]. Roughly speaking, to do that, we have to find
a splitting of Λ into two operators Λ = A+ B which satisfy some properties. The
first part A has to be bounded, the second one B has to have some dissipativity
properties, and also the operator (ASB(t)) is required to have some regularization
properties.

3.2. Regularization properties. As mentioned above, in order to get our result
of semigroup decay in large spaces, we need to understand the gain of regularity
provided by the linearized operator. It is also important to get regularization
estimates for the study of the nonlinear problem. Indeed, it is going to allow us
to compensate the loss due to the nonlinear part of the equation and thus to close
our estimates.

To summarize, the gain of regularity in velocity consists in an anisotropic gain of
regularity for one derivative in the Landau case and a fraction of derivative for the
Boltzmann case. Then, using the hypoellipticity features of the equations, we are
able to obtain a similar gain of regularity in the space variable. To do that, we use
Lyapunov functionals which were first introduced for the study of Fokker-Planck
equation by Hérau in [3]. This method provides quantitative estimates in time of
the short time regularization properties of the studied equation. In [1], we adapt
the proof in order to get a similar result for the linearized Landau equation. And
in [5], following the same strategy, we get a result of regularization first for the
fractional Kolmogorov equation and then for the linearized Boltzmann one. We are
thus able to substantially enlarge the range of application of this method of proof.
Indeed, we develop it in more complicated contexts thanks to Fourier transform
and/or pseudo-differential tools. Our proof for the fractional Kolmogorov equation
is only based on Fourier transform (no need of pseudo-differential theory). On the
contrary, the same question for the Boltzmann equation requires a very careful
and sharp understanding of the Boltzmann operator itself. This precise analysis
is done thanks to pseudo-differential theory and semi-classical ideas.
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The choice of representative volumes for random materials

Julian Fischer

The most widely employed method for determining the effective large-scale proper-
ties of materials with random heterogeneities on a small scale is the representative
volume element (RVE) method: It basically proceeds by choosing a sample of the
random material – the representative volume element – and computing its prop-
erties. To obtain an accurate approximation for the effective material properties,
the sample should reflect the statistical properties of the material well. As a conse-
quence, it is desirable to choose a large sample of the random material. However,
an increased size of the sample comes with an increased computation cost; for this
reason, there have been attempts in material science [6] and mechanics [5] towards
capturing the statistical properties of the material in a better way in a sample of
a fixed size.

Inspired by these attempts, in the context of diffusion in a random medium
Le Bris, Legoll, and Minvielle [4] have devised a method capable of significantly
increasing the accuracy of the RVE method for a given size of the sample. Their
idea is to select among many samples of the random medium the one that captures
certain statistical properties of the random medium best, i. e. the one that is “most
representative” of the material. For example, for a composite of two constituent
materials, in the simplest setting of their method they propose to select the mate-
rial sample in which the volume fractions of the constituent materials match best
with the volume fractions of the constituents in the overall material; see Figure 1
for an illustration of this approach.

In numerical examples with moderate ellipticity contrast, the method of Le Bris,
Legoll, and Minvielle [4] has provided an increase in accuracy by a factor of about
3 − 10 or equivalently a reduction in computational cost by a factor of about
10 − 50. However, the analysis of the approach has essentially been limited to
the one-dimensional setting, in which an explicit formula for the homogenization
corrector is available, as well as a purely qualitative convergence result in the
multidimensional setting in the limit of infinite size of the RVE.

In the recent work [3], we establish a rigorous mathematical justification of the
approach of Le Bris, Legoll, and Minvielle. In particular, we quantify the gain in
accuracy of the ansatz of Le Bris, Legoll, and Minvielle and prove that the method
does never worse than a random selection of samples. Furthermore, we show that
it fails to increase the accuracy for some (rather artificial) counterexamples of
random media.
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The diffusion in a random medium is described by the stationary or time-
dependent diffusion equation

−∇ · (a∇u) = f or ∂tu = ∇ · (a∇u)
with a random diffusion coefficient field a. Assuming spatial homogeneity, ellip-
ticity, and a finite range of dependence ε ≪ 1 for the probability distribution of
a (i. e. in particular fast decorrelation of the material properties on scales larger
than ε), the theory of stochastic homogenization predicts that the diffusion in the
random medium behaves on large scales like a diffusion with a constant effective
diffusion coefficient ahom: One may approximate the solution u by the solution
uhom of an effective diffusion equation

−∇ · (ahom∇uhom) = f or ∂tuhom = ∇ · (ahom∇uhom)
with a constant diffusion coefficient ahom. In this context of diffusion in a ran-
dom medium, the representative volume element method is employed to obtain
an approximation aRVE for the effective coefficient ahom. Roughly speaking, the
approximation aRVE is computed by choosing a sample a|[0,Lε]d of the random
medium (where ε is the length of correlations in the medium and where L ≫ 1),
solving the equation for the homogenization corrector −∇ · (a(ei +∇φi)) = 0 on
this sample, and averaging the fluxes

aRVEei := −
∫

[0,Lε]d
a(ei +∇φi) dx.

This approximation aRVE is a random quantity, as it depends on the sample
a|[0,Lε]d of the random medium. In contrast, the macroscopic effective diffusion
coefficient ahom is deterministic. In fact, as shown by Gloria and Otto [1, 2] the
leading-order contribution to the error aRVE−ahom consists of random fluctuations:
The order of the fluctuations of aRVE is given by

√
Var aRVE ≤ CL−d/2,

while the systematic error is of higher order in the size L of the sample
∣∣E[aRVE]− ahom

∣∣ ≤ CL−d| logL|d.
As observed numerically by Le Bris, Legoll, and Minvielle [4], their method of
selecting the material sample to obtain a “particularly representative sample” of
the material increases the accuracy of approximations for ahom by reducing the
fluctuations. They also observed numerically that this strategy maintains the
order of the systematic error. In the simplest case of their method, they select the
sample a|[0,Lε]d according to the following criterion on the spatial average of the
coefficient field

∣∣∣∣−
∫

[0,Lε]d
a dx− E

[
−
∫

[0,Lε]d
a dx

]∣∣∣∣ ≤ δL−d/2 ≪
√
Var−
∫

[0,Lε]d
a dx(1)

for some 0 < δ ≪ 1. In a numerical example with moderate ellipticity contrast, this
selection criterion achieves a numerical variance reduction by a factor of ≈ 10. By
additionally considering a second statistical quantity derived from an expansion
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Figure 1. Among the three depicted material samples, the
method of Le Bris, Legoll, and Minvielle would choose the first
sample as the representative volume element and discard the other
two, as the volume fraction of the inclusions in the first sample is
closest to the overall material average. For a better illustration of
the method, exaggeratedly small material samples are depicted.

of ahom in the case of small ellipticity contrast a ≈ Id, in the same setting of
moderate contrast they even achieve a variance reduction by a factor of ≈ 50.

In the recent work [3] we prove that the approach of Le Bris, Legoll, and Min-
vielle [4] indeed leads to a reduction of the fluctuations of the approximations aRVE:
Denoting the approximation obtained by the selection criterion (1) by aSQS, we
derive the estimate

Var aSQS

Var aRVE
≤ 1− (1− δ2)|ρ|2 + C

δ
L−d/2| logL|p

where ρ denotes the Pearson correlation coefficient

ρ :=
Cov

[
aRVE,−

∫
[0,Lε]d

a dx
]

√
Var[aRVE]

√
Var−

∫
[0,Lε]d a dx

.

Note that we also construct a counterexample for which this correlation is zero
[3], in which case the method is shown to fail to give an advantage over random
sampling. We also show in [3] that the method of Le Bris, Legoll, and Minvielle
essentially preserves the order of the systematic error in the sense

∣∣E[aSQS]− ahom
∣∣ ≤ C

δ
L−d| logL|p

and that the tails (more precisely, the moderate deviations) of the probability dis-
tribution are reduced just as suggested by the variance reduction. Similar results
are proven for the enhanced methods proposed by Le Bris, Legoll, and Minvielle.

References

[1] A. Gloria and F. Otto, An optimal variance estimate in stochastic homogenization of dis-
crete elliptic equations, Ann. Probab., 39 (2011), 779–856.

[2] A. Gloria and F. Otto, An optimal error estimate in stochastic homogenization of discrete
elliptic equations, Ann. Appl. Probab., 22 (2012), 1–28.



3364 Oberwolfach Report 56/2017

[3] J. Fischer, The choice of representative volumes in the approximation of effective properties
of random materials, in preparation (2018).

[4] C. Le Bris, F. Legoll, and W. Minvielle, Special quasirandom structures: a selection approach
for stochastic homogenization, Monte Carlo Methods Appl., 22 (2016), 25–54.
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Comparison of strings and point particles: an Eulerian approach

Yann Brenier

In string theory (see [8], for instance), a (classical relativistic closed) string is a
time-dependent loop (t, s) ∈ R × T → (t,X(t, s)) ∈ R1+d (where T = R/Z) of
extremal area in the ambient Minkowski space.
The area (also called “Nambu-Goto Action”) over a time interval I reads

AI = −
∫

I

∫

T

√
∂sX2(1− ∂tX2) + (∂tX · ∂sX)2 dtds.

[In comparison, the action of a (free) relativistic point particle t→ (t,X(t)) ∈ R1+d

is its length, where the length over a time interval I reads

LI = −
∫

I

√
1− |X ′(t)|2dt.]

1. The Eulerian form of string motion

Let us first write, in Eulerian form, the free-motion of a string X that we assume
to be smooth and not self-intersecting, with ∂sX never vanishing. We introduce
the divergence-free vector-valued measure (or ”1-current”) B = |B|b, defined by

B(t, x) =

∫

T

δ(x−X(t, s))∂sX(t, s)ds, |B(t, x)| =
∫

T

δ(x−X(t, s))|∂sX(t, s)|ds,

and assume there is a smooth ”velocity field” v = v(t, x) ∈ Rd so that

∂tX(t, s) = v(t,X(t, s)).

Denoting by Πb the projection along b, the area on a time interval I just reads

LI = −
∫

I×Rd

√
1− ṽ2|B|, ṽ = (I−Πb)v.

Then, introducing the ”momentum” field

P (t, x) = |B(t, x)|p(t, x), p =
ṽ√

1− ṽ2

we find, by standard Calculus of variations, the self-consistent set of equations

(1) ∂tB +∇ ·
(
B ⊗ P − P ⊗B

R

)
= 0, ∇ · B = 0, R =

√
B2 + P 2,
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(2) ∂tP +∇ ·
(
P ⊗ P

R

)
= ∇ ·

(
B ⊗B

R

)
.

This system admits an extra conservation law for the ”energy” R which is a convex
function of (B,P ). This makes the system hyperbolic [5], but in a degenerate sense
(since R is not strictly convex).

2. The Born-Infeld regularization of string motion

There is natural hyperbolic regularization of the string system, at least as d = 3,
which comes from the Born-Infeld non-linear theory of Electromagnetism [1] , as
shown in [2]. We get the system

(3) ∂tB +∇×
(
B × P +D

R

)
= 0, ∇ ·B = 0,

(4) ∂tD +∇×
(
D × P − B

R

)
= 0, ∇ ·D = 0,

(5) ∂tP +∇ ·
(
P ⊗ P

R

)
= ∇ ·

(
B ⊗B

R

)
+∇(

1

R
), R =

√
1 + B2 +D2 + P 2,

which admits an extra conservation law for R which is now a strictly convex
function of (B,D, P ). The string equation is (consistently) obtained, when d = 3,
in the regime where B and P are very large with respect to D and 1.

3. A heat equation for strings?

Following [4, 7], we can get a dissipative version of equation (3,4,5), just by first
performing the quadratic change of time

t→ t∗ =
t2

2
, B → B∗, Pdt → P ∗dt∗, Ddt→ D∗dt∗,

which leads to a non-autonomous system, and next by dropping the higher order
terms in t∗ << 1. We obtain the new system (where all subscript ∗ have been
dropped):

(6) ∂tB +∇×
(
B × P +D

R

)
= 0, ∇ ·B = 0,

(7) P = ∇ ·
(
B ⊗B

R

)
+∇(

1

R
), D = ∇×

(
B

R

)
, R =

√
1 +B2.

For the string equation (which corresponds to the regime |B| >> 1), we find

(8) ∂tB +∇×
(
B × P

R

)
= 0, ∇ · B = 0,

(9) P = ∇ ·
(
B ⊗B

R

)
, R = |B|,
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which is nothing but the mean-curvature flow for ”1-currents” (also called ”curved-
shortening” [3, 6]), and can be considered as a (geometric) heat equation for loops.
Interestingly enough, the Born-Infeld regularization provides a kind of heat equa-
tion for strings that includes some diffusion effect in the whole space, in particular
through the term ∇ × (R−1∇ × (R−1B)), and not only along the loop itself (as
for the mean-curvature flow). Then the energy dissipates according to

d

dt

∫
|B| = −

∫
D2 + P 2

R

(where D,P,R are defined by (7)) which provides, in our opinion, in the right-
hand side, a kind of ”Fisher information” for strings (that could be presumably
used for a tentative Schrödinger -or Dirac- equation for strings, à la Madelung).

4. Comparison with point particules

We can reproduce our discussion in the case of point particles

t ∈ R → (t,X(t)) ∈ R
1+d

with the length −
∫ √

1− |X ′(t)|2dt (substituting for the area of a string) and

ρ(t, x) =

∫

T

δ(x−X(t))dt.

Assuming the existence of a smooth velocity field v such that X ′(t) = v(t,X(t)),
and introducing P = ρv(1 − v2)−1/2, we find the Eulerian formulation of a free
particle

∂tρ+∇ ·
(
P

R

)
= 0, R =

√
ρ2 + P 2, ∂tP +∇ ·

(
P ⊗ P

R

)
= 0.

A regularization à la Born-Infeld is again possible, leading, after a quadratic change
of time, to the non-linear heat equation

∂tρ = ∇
(
ρ∇ log(

ρ√
1 + ρ2

)

)
,

which also reads ∂tρ = △(arctanρ).
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Kinetic description for the Lorentz Gas with long range interactions

Alessia Nota

(joint work with Sergio Simonella, Juan J. L. Velázquez)

The problem of deriving macroscopic evolution equations from the microscopic
laws of motion governed by Newton’s laws of classical mechanics is one of the
most challenging problems in mathematical physics. Here we consider a simpler
model where a classical Newtonian particle moves in the three-dimensional space,
in the field of forces produced by a Poisson distribution of fixed scatterers. This
dynamical system is usually referred to as the Lorentz gas since it was proposed by
H. A. Lorentz in 1905 (cf. [8]) to explain the motion of electrons in metals. In the
classical setting, the scatterers are assumed to be short ranged and are modeled
as elastic hard spheres.

In this talk we present the results obtained in [9] where we suppose that each
scatterer generates a long range potential QiΦ(x−xi) with different chargesQi ∈ R

and we assume that the potential Φ behaves typically as |x|−s for large |x|, with
s > 1/2.

We first construct and study the random force field generated by a Poisson dis-
tribution of sources at finite density x1, x2, · · · in R3 that we denote as “generalized
Holtsmark field” associated to Φ since their analysis was initiated by Holtsmark in
[6] (cf. also [2]). To obtain translation invariant fields, for potentials decreasing for

large |x| as |x|−s
with s ≤ 1, some “electroneutrality” of the system is necessary.

This is achieved either by means of the addition of a background with opposite
charge density or using charges with positive and negative signs.

We then consider the dynamics of one tagged particle in such fields. Let F (x, ε)
be a generalized Holtsmark field associated to potentials of the form {Φ (x, ε)}ε>0

where ε is a small parameter tuning the mean free path ℓε. Let (x(t), v(t)) be the
position and velocity of the tagged particle. For each given scatterer configuration
ω = {(xn, Qjn)}n∈N

, the evolution is given by

(1)
dx

dt
= v ,

dv

dt
= F (x, ε)ω

with initial data

(2) x (0) = x0 ∈ R
3, v (0) = v0 ∈ R

3.

We denote by T t (x0, v0; ε;ω) the Hamiltonian flow associated to (1)-(2). We will
see that it is possible to obtain a rather detailed description of the dynamics of
the tagged particle in the ‘kinetic limit’.

Suppose that f0 ∈ M+

(
R3 × R3

)
is the initial probability density for the tagged

particle. To describe the evolution, we compute the probability density fε of
finding the particle at a given point x with a given value of the velocity v at time
t ≥ 0. More precisely, our goal is to study the asymptotics of

(3) fε (ℓεt, ℓεx, v) = E[f0(T
−ℓεt (ℓεx, v; ε; ·))]
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as ε tends to zero, in several scaling limits where the mean free path ℓε is much
larger than the typical distance d between the scatterers.

To obtain a “kinetic limit” we require that

(4) lim
ε→0

ℓε
d

= lim
ε→0

ℓε = ∞,

which implies that the forces produced are small at distances of order one from the
scatterers, and a second condition concerning the statistical independence of the
particle deflections experienced over distances of order ℓε. Then, on a macroscopic
scale of space and time fε (ℓεt, ℓεx, v) → f(t, x, v), where f solves one of the
following kinetic equations: 1) a linear Boltzmann equation, i.e.

(5) (∂tf + v∂xf) (t, x, v) =

∫

S2

B (v;ω) [f (t, x, |v|ω)− f (t, x, v)] dω ,

where we denoted by ∂x the three dimensional gradient and B is some nonnegative
collision kernel (depending on Φ);

2) a linear Landau equation, i.e.

(6) (∂tf + v∂xf) (x, v, t) = κ∆v⊥f (x, v, t) ,

where ∆v⊥ is the Laplace Beltrami operator on S2 (sphere of radius |v| = 1) and
the diffusion coefficient κ > 0 depends on Φ.

In the current literature a mathematical derivation of the kinetic equations (5)
and (6) has been provided only in cases of compactly supported potentials, in the
low density and weak coupling limits respectively (cf. [5, 7, 10]). Furthermore, the
linear Landau equation (6) has been derived in [3] in the limit of grazing collisions
and in an intermediate regime between the Boltzmann-Grad and the weak-coupling
regime (see also [1]). In the cases of potentials with diverging support, it is possible
to derive the Boltzmann equation (see [4]), but it is unclear even formally what
kinetic behaviour has to be expected for generic {Φ (x, ε)}ε>0 and in particular for

potentials of the form Φ (x, ε) = εs

|x|s .

To obtain the appropriate kinetic descriptions we estimate the diffusive time-
scale and identify conditions for the vanishing of correlations for different families
of potentials (we refer to [9] where a detailed analysis for several families of long
range potentials can be found).

Our strategy consists in splitting (smoothly) the potential Φ (x, ε) as

Φ (x, ε) = ΦB (x, ε) + ΦL (x, ε)

where ΦB (x, ε) is supported in a ball of radius Mλε and ΦL (x, ε) is supported

at distances larger than Mλε

2 with M of order one but large and λε the Landau
length. At distances of order λε, the particle is deflected an amount of order one by
the interaction ΦB (x, ε) . The time between two consecutive collisions is of order
of the ‘Boltzmann-Grad timescale’

(7) TBG =
1

(λε)
2 .
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We compute the timescale TL (‘Landau timescale’) in which the deflections pro-
duced by ΦL become relevant. Due to (4), we have TBG → ∞ and TL → ∞ as
ε→ 0. Moreover, we can characterize which of the following possibilities holds:

(i) if TBG ≪ TL as ε→ 0, i.e. the fastest process yielding particle deflections
are binary collisions with single scatterers, the evolution of f will be given
by (5);

(ii) if TBG ≫ TL as ε → 0, i.e. the deflections due to the accumulation of a
large number of small interactions yield a relevant change in the direction
of the velocity before a binary collision takes place. Then f will evolve
according to (6);

(iii) if TBG and TL are of the same order of magnitude, f will be driven by a
Boltzmann-Landau equation.

In the case (ii) we can provide examples of potentials for which the deflections
experienced by the particle do not decorrelate over times of order TL. Hence, we
cannot expect to have a single PDE describing the probability distribution in the
particle phase space and the correlations between macroscopic deflections must be
taken into account.

The form of equation derived for a given scaling limit depends on the decay,
determined by the exponent s, as well as on the singularities of the potential.
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Global strong solutions of the Vlasov-Poisson-Boltzmann system in
bounded domains

Chanwoo Kim

(joint work with Yunbai Cao, Donghyun Lee)

Dynamics and collision processes of dilute charged particles can be modeled by
the Vlasov-Poisson-Boltzmann system

(1) ∂tF + v · ∇xF −∇xφ(t, x) · ∇vF = Q(F, F ).

The electrostatic potential is determined by the Poisson equation

(2) −∆xφ(t, x) =

∫

R3

F (t, x, v)dv − ρ0 in Ω,

with the zero Neumann boundary condition ∂φ
∂n = 0 on ∂Ω. Here in (2) a back-

ground density ρ0 is a constant number.
The characteristics (trajectory) is determined by the Hamilton ODEs

(3)
d

ds

[
X(s; t, x, v)
V (s; t, x, v)

]
=

[
V (s; t, x, v)

−∇xφ(s,X(s; t, x, v))

]
for−∞ < s, t <∞,

with (X(t; t, x, v), V (t; t, x, v)) = (x, v). For (t, x, v) ∈ R × Ω × R3, we define the
backward exit time tb(t, x, v) as

(4) tb(t, x, v) := sup{s ≥ 0 : X(τ ; t, x, v) ∈ Ω for all τ ∈ (t− s, t)}.
Furthermore, we define xb(t, x, v) := X(t − tb(t, x, v); t, x, v) and vb(t, x, v) :=
V (t− tb(t, x, v); t, x, v). For ε > 0 we define a kinetic distance αε(t, x, v)

χ
( t− tb(t, x, v) + ε

ε

)
|n(xb(t, x, v)) · vb(t, x, v)| +

[
1− χ

( t− tb(t, x, v) + ε

ε

)]
.

where χ : R → [0, 1] is a monotone smooth function which equals 1 for τ ≥ 1 and

zero when τ ≤ 0. Denote wϑ(v) = eϑ|v|
2

.

Main Theorem. Assume a bounded open smooth domain Ω ⊂ R
3 is convex.

Let 0 < ϑ̃ < ϑ ≪ 1. Assume some ‘natural’ compatibility condition. There exist
small constants 0 < ϑ0, ε ≪ 1 such that for all 0 < ε ≤ ε0 if an initial datum
F0 = µ+

√
µf0 ≥ 0 satisfies

‖wϑf0‖L∞(Ω̄×R3) < ε, ‖wϑ̃∇vf0‖L3(Ω×R3) <∞,

‖wϑ̃α
β
ε∇x,vf0‖Lp(Ω×R3) < ε for 3 < p < 6, 1− 2/p < β < 2/3,

then there exists a unique global-in-time solution F (t) = µ+
√
µf(t) to the Vlasov-

Poisson-Boltzmann system. Moreover there exists λ∞ > 0 such that

sup
t≥0

eλ∞t‖wϑf(t)‖L∞(Ω̄×R3) + sup
t≥0

eλ∞t‖φ(t)‖C2(Ω) <∞,

‖wϑ̃α
β
ε∇x,vf(t)‖Lp(Ω×R3) < CeCt for all t ≥ 0.

We note that the convexity of the domain is necessary for the singularity formation
in the case of non-convex domains [5, 4].
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For (3) is determinant
[
∂t + v · ∇x −∇xφ · ∇v

]
αε(t, x, v) = 0. This crucial in-

variant property under the transport operator is the key for our approach. In
[3], a different weight α̃ was used and the extra 〈v〉-multiplier from [∂t + v ·
∇x]α̃ ∼ 〈v〉α̃ causes a super-exponential growth in α̃-weighted W 1,p estimate,
which seems infeasible to prove a stability of µ. In the energy-type estimate of

∇x,vf in αβ
f,ε-weighted L

p-norm, the operator v ·∇x causes a boundary term to be

controlled:
∫ t

0

∫
∂Ω

∫
n·v≤0 |α

β
f,ε∇x,vf |p|n · v|dvdSxds. Due to the boundary singular-

ity and the fact αε(t, x, v) = |n(x) · v| on x ∈ ∂Ω and n(x) · v ≤ 0, this integrand
is integrable if

β > (p− 2)/p so that |n · v|pβ−p+1 ∈ L1
loc.

In the energy-type estimate of ∇x,vf we have two terms to be controlled:

(5)

∫ t

0

∫∫

Ω×R3

∇2
xφ∇vfα

pβ
ε |∇x,vf |p−1,

∫ t

0

∫∫

Ω×R3

K∇x,vfα
pβ
ε |∇x,vf |p−1.

The keystone to handle the first term of (5) is a bound of φ(t) in C2
x. Unfortunately

such estimate is a boarder line case of the well-known Schauder elliptic regularity
theory when

∫
R3 f

√
µdv is merely continuous or bounded. If we have an αβ

ε -
weighted Lp-estimate of ∇x,vf for p > 3 a priori then

(6)

∥∥∥∥
∫

R3

∇xf
√
µdv

∥∥∥∥
Lp

x(Ω)

< C sup
x

∥∥∥∥
√
µ

αβ
ε

∥∥∥∥
Lp∗(R3)

∥∥αβ
ε∇xf

∥∥
Lp(Ω×R3)

,

which leads C2,0+-bound of φ by the Morrey inequality as long as

(7) α−βp∗

ε ∈ L1
loc for some βp∗ > p− 2/p− 1.

We note that φ(t) has an exponential decay in weaker Hölder spaces C1,1− if f
decays exponentially in L∞. If the bound (6) grows at most exponentially,

(8) an exponential decay of φ(t) in C2
x

can be verified through an interpolation in Hölder spaces.
To prove (7), a major difficulty arises due to the non-local feature of αε, which

is determined on the characteristics at t− tb(t, x, v). To exam the integrability of
α−βp∗

ε we employ a change of variables

(9) v 7→ (xb(t, x, v), tb(t, x, v)).

By the direct computation the Jacobian is equivalent to

|tb|3
αε

det

[
Id3×3 +

1

tb

∫ t−tb

t

∫ s

t

∇vX(τ ; t, x, v)∇2
xφf (τ ;X(τ ; t, x, v))dτds

]
.(10)

Importantly we note that, for having a positive lower bound of (10) for all t ≥ 0,
it is indispensable to have the exponential decay of φ(t) in C2 plus

(11) |∇vX(τ ; t, x, v)| < C|t− τ | for all τ ≤ t.

In the presence of a time-dependent potential we have a non-autonomous system
of (∇vX,∇vV ) from (3). We note that without (8) there could be an exponential
growth factor in |∇vX(τ ; t, x, v)| so that the change of variables (9) is only valid
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for a small time interval. To overcome this difficulty we discretize the time interval
and derive an explicit formula of the discretized system, which leads to the linear
growth bound and therefore verify (9).

If the power of weight in (7) is less than 1 then αε(t, x, v)-factor in the Jacobian

(10) cancels out the singularity and leads αε(t, x, v)
1−βp∗

/t3
b
instead. Then we

carefully use a lower bound of tb < C |xb−x|
max |V | and a bound α < C |(x−xb)·n(xb)|

tb
to

have, as long as βp∗ < 1,
(12)∫

|v|<C1

α−βp∗

ε dv < C

∫

boundary

|(x− xb) · n(xb)|1−βp∗

|x− xb|3−βp∗ dxb + good terms <∞.

This estimate is good to control the first term of (5) but has some restric-
tion on p in controlling the second term of (5) due to 1

|v−u| -singularity of K.

They bound K( 1

αβ
ε
αβ
ε∇x,vf) by

∥∥ 1
|v−u|

1

αβ
ε (u)

∥∥
Lp∗

u
×‖αβ

ε∇x,vf‖Lp
u
. Then they view

∥∥ 1
|v−u|

1

αβ
ε (u)

∥∥
Lp∗

u
as
∣∣ 1
|v−·|p∗ ∗ 1

αε(·)βp∗

∣∣1/p∗

. Then by the Hardy-Littlewood-Sobolev

inequality

(13)
∥∥∥ 1

|v − ·|p∗ ∗ 1

αε(·)βp∗

∥∥∥
Lp/p∗

< C
∥∥∥ 1

αβ
ε

∥∥∥
L

3/2
loc

+ good terms.

This causes a restriction β < 2
3 from (12) and then p < 6.

Finally we use L2-L∞ bootstrap argument of [1, 2, 6] to derive an exponential
decay of f in L∞. The key of this process is to derive a positive lower bound of

det

(
−(t− s)Id3×3 −

∫ s

t

∫ τ

t

∂X(τ ′; t, x, v)

∂v
∇2

xφ(τ
′, X(τ ′; t, x, v))dτ ′dτ

)
,

except for a small set of s. Again as (10) we need (8) and (11). Finally they
can prove an exponential growth bound of ‖αβ

ε∇x,vf‖Lp(Ω×R3) by the Gronwall
inequality and an exponential decay of f in L∞ and therefore (8), which deduce
(9) by an interpolation in Hölder spaces.
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From the Hartree dynamics to the Vlasov equation with singular
interaction potentials

Chiara Saffirio

Consider the quantum dynamics of N fermions interacting through a real-valued
two-body potential V : R3 → R in a mean-field regime. It is decribed by the
N -body Schrödinger equation

(1)





i ε ∂tψN,t =

[
N∑
j=1

−ε2∆xj +
1
2N

N∑
i,j=1

V (xi − xj)

]
ψN,t ,

ψN,0 = ψN ,

where the wave function ψN,t ∈ L2
a(R

3N ), the space of square integrable antisym-

metric functions. In Eq.n (1) we assume ε = N−1/3 to ensure the kinetic and
potential energies of typical N -particle configurations to be of the same order of
magnitude, as it is the case in a mean-field situation. We underline that the scale
parameter ε in Eq.n (1) plays the exact same role of the Plank constant ~, showing
that the mean-field approximation in the fermionic setting is naturally linked to a
semiclassical limit.
We are concerned with the asymptotic limits of the dynamics driven by (1) as
N → ∞ and ε → 0 at positive temperature. Relevant low energy states at pos-
itive temperature are mixed quasi-free states, that is the class of initial data we
will restrict our attention to.
As N is sufficiently large, but fixed, the one-particle reduced density matrix asso-
ciated to a solution of (1)

γ
(1)
N = tr2...N |ψN,t〉〈ψN,t|

is expected to be well approximated by the one-particle fermionic operator ωN,t,
tr ωN,t = N , 0 ≤ ωN,t ≤ 1, solution to the Hartree equation

(2) i ε ∂tωN,t =
[
−ε2∆+ V ∗ ρt, ωN,t

]
,

where ρt is a density function defined through the diagonal kernel of the operator
ωN,t by the relation ρt(x) = N−1ωN,t(x;x). For regular potentials, such an ap-
proximation has been shown to hold true under semiclassical assumptions on the
sequence of initial data ωN in [1], whereas nothing is known for singular potentials
in the context of mixed states.
Since Eq.n (2) still depends on N , it is natural to investigate the limit N → ∞,
ε→ 0. A vast literature is available on this subject, leading as ε→ 0 to the Vlasov
equation

(3) ∂tWt(x, v) + v · ∇xWt(x, v)−∇x(V ∗ ̺t) · ∇vWt = 0 ,

where Wt is a density on the phase-space R3 × R3 and ̺t is the spatial density
defined as ̺t(x) =

∫
Wt(x, v) dv.

In particular, in [3] the semiclassical limit to the Vlasov equation has been investi-
gated for general potentials, including the Coulomb interaction. The convergence
has to be intended in an appropriate weak topology. As a limitation of the result,



3374 Oberwolfach Report 56/2017

no quantitative information on the rate of convergence is provided. This is an
intrinsic restriction of compactness methods used in the proof.
Our result deals with singular potentials and establishes convergence to the Vlasov
dynamics in strong topology (namely the trace norm topology), providing quanti-
tative estimates. The price to pay is a restriction on the class of singular potentials
we are allowed to consider. More precisely, we deal with inverse power law po-
tentials with exponent α ∈ (0, 1/2). In particular, we cannot handle the Coulomb
case.

Notations. Before stating our main Theorem, let us introduce some notations. We
define the Wigner transform of the one-particle reduced density ωN,t

WN,t(x, v) =
( ε

2π

)3 ∫
ωN,t

(
x+ ε

y

2
;x− ε

y

2

)
e−iv·y dy

as a function on the phase-space R3×R3. The inverse Wigner transform is known
as the Weyl quantization of the function WN,t and it is defined as

ωN,t(x; y) = N

∫
WN,t

(
x+ y

2
, v

)
eiv·

x−y
ε dv .

To compare the Hartree and the Vlasov dynamics, we perform a Weyl transforma-
tion of the Vlasov equation (3). Therefore the solutions of (2) and (3) are defined
on the same space and thus comparable. As a result we obtain

(4) i ε ∂tω̃N,t =
[
−ε2∆, ω̃N,t

]
+At ,

where ω̃N,t is the Weyl quantization of the solution to the Vlasov equation and At

is an operator defined through its kernel

At(x; y) = ∇ (V ∗ ̺t)
(
x+ y

2

)
· (x− y) ω̃N,t(x; y).

Main result. Consider the inverse power law interaction potential V (x) = 1/|x|α,
with α ∈ (0, 1/2). Let ωN be a sequence of reduced density matrices on L2(R3),
with tr ωN = N , 0 ≤ ωN ≤ 1 and with Wigner transform WN satisfying the
following assumptions:

i) WN ∈ L1 ∩ L∞(R3 × R3);
ii) let m0 > 6. For m < m0,

∫
|v|m|WN (x, v)| dxdv is bounded uniformly in

N ;
iii) for all R > 0 and T > 0, k = 1, . . . , 5,

sup{|WN (y + vt, w)| : |y − x| ≤ R, |v − w| ≤ R}
∈ L∞((0, T )× R

3
x;L

1(R3
v)) ,

sup{|∇WN |(y + vt, w) : |y − x| ≤ R, |v − w| ≤ R}
∈ L∞((0, T )× R

3
x;L

1 ∩ L2(R3
v)) ,

sup{(1 + x4)|∇kWN |(y + vt, w) : |y − x| ≤ R, |v − w| ≤ R}
∈ L∞((0, T )× R

3
x;L

1 ∩ L2(R3
v)) .
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We denote by ωN,t a solution to the Hartree equation (2) with initial data ωN and

by W̃N,t the solution to the Vlasov equation (3) with initial data W̃N,0 = WN .

Moreover, we denote by ω̃N,t the Weyl quantization of W̃N,t.
Then, there exists a constant C > 0 such that

(5) tr |ωN,t − ω̃N,t| ≤ C N ε+ l.o.t.

Recall that we set tr ωN,t = N . In this sense, estimate (5) shows that ωN,t and
ω̃N,t are close in the large N limit, being their difference smaller than their trace

norms by a factor ε = N−1/3. Further, observe that on the one hand assumptions

i) – iii) ensure existence, uniqueness and regularity of W̃N,t by an adaptation of the
well-posedness result provided in [4]. On the other hand, they are responsible for
restricting the class of initial data to mixed states, preventing us to include the
zero temperature case in our analysis.

The proof relies on a generalized version of Fefferman-de la Llave representation
formula, which allows to write the interaction potential in the following way

(6)
1

|x− y|α =
4

π

∫ ∞

0

dr

r4+α

∫
e−|x−z|2/r2 e−|y−z|2/r2 dz .

By performing the time derivative of tr |ωN,t − ω̃N,t|, using Eq.n (4) and formula
(6), a Grönwall type estimate leads to (5).
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On the Nordheim equation “after condensation”

Miguel Escobedo

(joint work with E. Cortés)

The Nordheim equation (cf.[5]) for an isotropic dilute gas of bosons may be written:

∂tf(t, x1) = I3(f)(t, x1)(1)

I3(f)(t, x1) =

∫∫

D(x1)

W (x1, x3, x4)q(f)(x1, x3, x4)dx3dx4

q(f) = [(1 + f1)(1 + f2) f3f4 − (1 + f3)(1 + f4)f1f2]
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where fk = f (t, xk) , k = 1, 2, 3, 4 and

W (x1, x3, x4) =
min

{√
x1,

√
x2,

√
x3,

√
x4
}

√
x1

, x2 = x3 + x4 − x1

for all x1 ≥ 0 : D(x1) = {x3 ≥ 0, x4 ≥ 0; x3 + x4 ≥ x1} .

If we define the new variable:

G(t, x) =
√
xf(t, x).

the weak formulation of (1) in terms of G reads as follows:

d

dt

∫

[0,∞)

G (t, x)ϕ (t, x) dx = Q3(G,ϕ), ∀ϕ ∈ C2
b ([0,∞))(2)

Q3(G,ϕ) =

∫∫∫

[0,∞)3

G1G2G3√
x1x2x3

Φ [ϕ4 + ϕ3 − ϕ1 − ϕ2] dx1dx2dx3

+C

∫∫∫

[0,∞)3

G1G2√
x1x2

Φ [ϕ4 + ϕ3 − ϕ1 − ϕ2] dx1dx2dx3

Φ = min{x1, x2, x3, x4}, x4 = x1 + x2 − x3.

The global existence of solutions G to such weak formulation was first proved in
[7] for initial data f0 such that

√
xf0 is a non negative bounded measure on [0,∞)

with finite moment of order one. The solutions where also proved to conserve the
moment of order zero and one.

On the other hand, it has been proved in [3] that, given any M > 0, E > 0
there exists initial data f0 ∈ L∞ (R+; (1 + x)

γ
) with γ > 3, satisfying

(3)

∫

R+

f0 (x)
√
xdx = N,

∫

R+

f0 (x) x
3/2dx = E

and such that there exists a global weak solution f and positive times 0 < T∗ < T0
such that:

sup
0<t≤T∗

‖f (t, ·)‖L∞(R+) <∞(4)

sup
T∗<t≤T0

∫

{0}

√
xf (t, x) dx > 0.(5)

In terms of the measure G, the condition (5) shows that a Diracl delta has
formed in finite time. Once the Dirac mass at the origin G(t, {0})δ0 has appeared
we are interested in its behavior and the way it interacts with the solution G(t, x)
for x > 0. That question has been considered by several authors both in the
literature of physics (cf. [2], [4], [9]) and of mathematics (cf. [6], [1]).

Let us then write:

G(t) = n(t)δ0 + g(t), n(t) = G(t, {0}).
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and consider only a simplified problem, keeping only the term of the weak formu-
lation (2) involving the condensate. We then obtain the following system:

d

dt

∫

[0,∞)

ϕ(x)g(t, x)dx = n(t)(Q3(g, ϕ)− T (g)(t)ϕ(0)), ∀ϕ ∈ C1
b ([0,∞))(6)

n′(t) = −n(t)
(
M1/2(g)(t)− T (g)(t)

)
.(7)

where the limit:

T (g)(t) = limε→0

∫∫
(0,∞)2

Λϕε (x,y)√
xy g(t, x)g(t, y)dxdy, ϕε(x) = ϕ

(
x
ε

)

is proved to exist for ϕ any non negative convex function, ϕ ∈ C1,1
b [0,∞) such

that ϕ = 1 and limx→∞
√
xϕε(x) = 0.

We denote M+
r ([0,∞)) the space of nonnegative measures on [0,∞) such that

∫

[0,∞)

(1 + xr)G(x)dx <∞.

We first show the following existence result.

Theorem For all initial data G0 ∈ M
+
1 ([0,∞)), there exists a solution

G ∈ C((0,∞);M+
r ([0,∞)), ∀r > 0

of (6), (7) such that G(0) = G0. This solution satisfies also:

N =

∫

[0,∞)

G(t, x)dx, E =

∫

[0,∞)

xG(t, x)dx.

∀ε > 0, ∀t > 0, ∃C(ε, t) > 0; ∀r > 0 :

(i)

∫ t

0

∫

(0,r]

G(s, x)x−
1
2+εdxds ≤ C(ε, t)rε

(ii) lim
ε→0

C(ε, t) = ∞.

The second result is about the term T (g). It is known that if g(x) = x−1/2,
then T (g) = π/6 (cf. [8]), and the same holds if limx→0

√
xg(x) = C > 0 (cf. [10]).

It was observed also that if g(t) ∈ L1(0,∞) and x = 0 is a Lebesgue point of g(t)
then T (g(t)) = 0 (cf. [6]).

Theorem 2. If G is the weak solution obtained in Theorem 1, then

T (g)(t) > 0, ∀t > 0.

The las result is the following property of the function n(t).
Theorem 3. Suppose that the initial data f0 is such that N and E defined in

(3) satisfy:
E

N5/3
> 62/3.
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Then, ∫ ∞

0

n(t)dt <
3N

3
2M2(0)

E(E3/2 − 6N5/2)
.

The quantity E/N5/3 is, up to some constants, the quotient of the temperature
of the data G0 and the critical temperature:

T

Tc
=

(2π)
1
3

3

ζ(3/2)5/3

ζ(5/2)

E

N5/3

(2π)
1
3

3

ζ(3/2)5/3

ζ(5/3)
≈ 2, 27202, and

(2π)
1
3

3

ζ(3/2)5/3

ζ(5/3)
62/3 ≈ 7, 5020.
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The Cauchy problem for a quantum Boltzmann system for bosons at
very low temperature

Ricardo Alonso

(joint work with Irene Gamba, Minh-Binh Tran)

A system that describes the dynamics of a Bose-Einstein condensate and a cloud
of quasi-particles consists of a quantum Boltzmann equation describing the cloud
and the Gross-Pitaevskii equation describing the condensate wave function

∂tf(t, p) = Q(f, nc)(t, p) ,

dnc

dt
(t) = −

∫
dpQ(f, nc)(t, p) .

(1)

Here f(t, p) and nc(t) are the quasi-particle density and the condensate mass
respectively. The equations are posed for all time t > 0 and velocity p ∈ R3. For
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technical reasons we consider only radially symmetric data f0 := f0(|p|) for the
quasi-particles. The initial mass of the Bose-Einstein condensate is necessarily
positive nc(0) > 0 for the validity of the model.
We solve the Cauchy problem for the system (1) in the so-called low temperature
regime. In such regime, the Bogoliubov excitation energy is well approximated by

E(p) :=

√
|p|4
4m2

+
gnc

m
|p|2 ≈

√
gnc

m
|p| =: c |p| ,

and the transition probability kernel is approximated, up to first order, by

|M|2 =
9c

64π2mn2
c

|p||p1||p2| .

In the aforementioned formulas m stands for the mass of the particles and g is
an interaction coupling constant. We develop a local existence, with an explicit
minimal interval for existence, and uniqueness result for general data with finite
energy, that is

∫
dp|p|f0 < ∞, by means of abstract ODE’s theory in Banach

spaces proposed in [3] in the context of kinetic equations. In fact, we generalize
such approach to operators with memory which are needed in the present context.
In addition, we give an explicit threshold in terms of f0 on the minimal value of
the initial mass of the condensate nc(0) for global existence and stability of the
condensate and prove qualitative properties of the quasi-particle density distri-
bution’s tails. In conclusion, our proof shows that all the conditions imposed in
(f, nc) for the validity of the model in its formal derivation are met.
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Kinetic modelling of strongly magnetized tokamak plasmas with mass
disparate particles. The electron Boltzmann relation.

Claudia Negulescu

The subject matter of the present work is the formal obtention of the electron
Boltzmann relation, from the underlying kinetic description of strongly confined
tokamak plasmas with mass disparate particles. At the same time, the ions reach
also an asymptotic limit, namely the gyrokinetic or hydrodynamic models.
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Fusion plasmas are weakly collisional, due to high temperatures and low densi-
ties, such that the kinetic framework is the appropriate approach for their detailed
description. In particular this amounts to solve a coupled system of two Vlasov or
Boltzmann equations for the ion/electron distribution functions fi,e together with
the Poisson equation for the electrostatic potential φ (or Maxwell’s equations in
the electromagnetic case). The difficulty with a fully kinetic treatment is however
the high-dimensionality of the phase-space (6D). Furthermore the presence of mul-
tiple spatio-temporal scales makes the problem even more complicated, rendering
it inaccessible for numerical simulations. In particular, these various scales impose
the use of very small time and space steps in numerical simulations in order to
follow all the microscopic motions. In our particular case, apart the strong mag-
netic field, it is the small mass ratio me/mi ≈ 10−4 of the particles which induces
disparate scales and hence difficulties; for a typical tokamak plasma with similar
electron and ion temperatures the electron dynamics is faster than the ion dynam-

ics, the ratio of the thermal velocities being given by vth,e/vth,i =
√

mi

me
≈ 102.

This fact poses rather restrictive time-step constraints related to the fast electron
motion, when a standard discretization of the bi-kinetic system is used, meaning
that the numerical stability requires a CFL-condition of the type vth,e∆t ≤ ∆x.

The fully-kinetic system contains however too many irrelevant spatio-temporal
scales for the study of many interesting plasma processes. To redress this situation,
a more macroscopic approach has to be adopted, eliminating the unnecessary fast
dynamics and keeping the complete low-frequency physics. Such a macroscopic
or reduced model is obtained via an asymptotic analysis, letting some specific
parameters tend towards zero. In our particular case, we are only interested in fol-
lowing the plasma evolution on the large ion time-scales. At these time-scales the
electrons attain a certain macroscopic thermal equilibrium, namely the electron
Boltzmann-regime. In some words, this Boltzmann relation is obtained by assum-
ing zero electron inertia (me → 0) and zero viscosity in the ”parallel” electron
equation of motion (”parallel” with respect to the strong magnetic field), leading
to the relation

(1) ∇||pe = −q neE|| , E = −∇φ .

This relation indicates that the pressure-gradient and the electrostatic forces act-
ing on the electrons (parallel to the magnetic field) are in balance. Moreover, rapid
parallel thermal conduction assures that ∇||Te ∼ 0, such that with the thermody-
namic equation of state pe = ne kB Te, one obtains

(2) ne(t,x) = c(t,x⊥) exp

(
q φ(t,x)

kB Te(t,x⊥)

)
, x = x⊥ + x|| ∈ R3 , t ∈ R+ .

Equation (2) is the so-called Boltzmann relation or adiabatic response, relating the
electron density to the electric potential. Here c(t,x⊥) and Te(t,x⊥) are functions
to be determined from the remaining transport equations as well as initial and
boundary conditions; they do not depend on the parallel coordinate x||. Once c
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and Te are known, the relation (2) can be inserted into the Poisson equation for the
electrostatic potential, which can then be coupled to a model for the ion dynamics
(kinetic or fluid). Such a procedure is extensively applied in plasma simulations,
with the purpose to study the ITG (ion-temperature-gradient) and TEM (trapped
electron mode) micro-instabilities and associated turbulences, and this because the
adiabatic electron response leads to large reductions in computational costs. Its
practical use is due to the time-scale separation between ion and electron dynamics.

The aim of the here presented work was to understand how to obtain from a
kinetic electron description the Boltzmann relation (2) in the so-called adiabatic
limit. This asymptotic passage from the kinetic to the adiabatic regime can be
very interesting for simulations in regions where the electron adiabatic response is
violated, for example near the edge of the tokamak. There, one has to go back to
the more precise kinetic electron description, where the need to find the way how
to couple these two regimes via a suitable limit procedure.
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On the global dynamics of the inhomogeneous Boltzmann equaiton
without angular cutoff: Hard potentials and Maxwellian molecules

Ling-Bing He

(joint work with Jin-Cheng Jiang)

We consider the global dynamics of the original Boltzmann equation without an-
gular cutoff on the torus for the hard potentials and Maxwellian molecules. The
new idea to solve the problem is the energy-entropy method which characterizes
the propagation of the regularity, H-theorem and the interplay between the energy
and the entropy. Our main results are as follows:

(1). We present a unified framework to prove the well-posedness for the original
Boltzmann equation for both angular cutoff and without cutoff in weighted Sobolev
spaces with polynomial weights. As a consequence, we obtain the propagation of
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the regularity and an explicit formula for the asymptotics of the equation from
angular cutoff to non-cutoff.

(2). We describe the global dynamics of the equation under the almost optimal
assumption on the solution which ensures that the Boltzmann collision operator
behaves like a fractional Laplace operator for the velocity variable. In particular,
we obtain a new mechanism for the convergence of the solution to its equilibrium
with quantitative estimates.

(3). We prove that any global and smooth solution to the equation is stable, i.e.,
any perturbed solution will remain close to the reference solution if initially they
are close to each other. Here we remove the assumption that perturbed solution
and the reference solution should have the same associated equilibrium.

Our approach incorporates almost all the fundamental properties of the equa-
tion: the entropy production inequality, the immediately appearance of pointwise
lower bound of the solution, the smoothing property of the positive part of the
collision operator, averaging lemma for the transport equation, the Povnzer in-
equality for L1 moment and the sharp bounds for the collision operator.
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Quantitative estimates of propagation of chaos for stochastic systems
with W−1,∞ kernels

Pierre-Emmanuel Jabin

(joint work with Zhenfu Wang)

We derive quantitative estimates proving the propagation of chaos for large sto-
chastic systems of interacting particles. We obtain explicit bounds on the relative
entropy between the joint law of the particles and the tensorized law at the limit.
We have to develop for this new laws of large numbers at the exponential scale.
But our result only requires very weak regularity on the interaction kernel in the
negative Sobolev space Ẇ−1,∞, thus including the Biot-Savart law and the point
vortices dynamics for the 2d incompressible Navier-Stokes.

To be more specific we consider large systems of N indistinguishable point-
particles given by the coupled stochastic differential equations (SDEs)

(1) dXi = F (Xi)dt+
1

N

∑

j 6=i

K(Xi −Xj) dt+
√
2σN dW i

t , i = 1, · · · , N

where for simplicity Xi ∈ Πd, the d-dimensional torus, the W i are N independent
standard Wiener Processes (Brownian motions) in Rd and the stochastic term in
(1) should be understood in the Itô sense.
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Our goal is hence to derive explicit, quantitative estimates comparing System
(1) to the mean field limit ρ̄ solving

(2) ∂tρ̄+ divx(ρ̄ [F +K ⋆x ρ̄]) = σ∆ρ̄.

Such estimates in particular imply the propagation of chaos in the limit N → ∞.
But precisely because they are quantitative, they also characterize the reduction
of complexity of System (1) for large and finite N .

A guiding motivation of interaction kernel K in our work is given by the Biot-
Savart law in dimension 2, namely

(3) K(x) = α
x⊥

|x|2 +K0(x),

where x⊥ denotes the rotation of vector x by π/2 and where K0 is a smooth
correction to periodize K on the torus represented by [−1/2, 1/2]d.

If F = 0, the limiting equation (2) becomes

(4) ∂tω +K ⋆x ω · ∇xω = σ∆ω,

where we now write on ω(t, x), using the classical notation for the vorticity of a
fluid. Eq. (4) is invariant by the addition of a constant ω → ω+C. We may hence
assume that

∫
Πd ω = 0 and Eq. (4) is then equivalent to the 2d incompressible

Navier-Stokes system.
Following the basic approach introduced in [1], our main idea is to use relative

entropy methods to compare the coupled law ρN (t, x1, . . . , xN ) of the whole system
(1) to the tensorized law

ρ̄N (t, x1, . . . , xN ) = ρ̄⊗
N

= ΠN
i=1ρ̄(t, xi),

consisting of N independent copies of a process following the law ρ̄, solution to
the limiting equation (2).

As our estimates carry over ρN , we do not consider directly the system of SDEs
(1) but instead work at the level of the Liouville equation

(5) ∂tρN +

N∑

i=1

divxi


ρN


F (xi) +

1

N

N∑

j=1

K(xi − xj)




 =

N∑

i=1

σN ∆xiρN ,

where and hereafter we use the convention thatK(0) = 0. The law ρN encompasses
all the statistical information about the system. Given that it is set in ΠdN

with N >> 1, the observable statistical information is typically contained in the
marginals

(6) ρN,k(t, x1, . . . , xk) =

∫

Πd (N−k)

ρN (t, x1, . . . , xN ) dxk+1 . . . dxN .

Our method revolves around the control of the rescaled relative entropy

(7) HN (ρN | ρ̄N )(t) =
1

N

∫

ΠdN

ρN(t,XN ) log
ρN (t,XN)

ρ̄N (t,XN)
dXN ,

while our main result is the explicit estimate
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Theorem 1. Assume that divF ∈ L∞(Πd), that K ∈ Ẇ−1,∞(Πd) with divK ∈
Ẇ−1,∞. Assume that σN ≥ σ > 0. Assume moreover that ρN is an entropy
solution to Eq. (5). Assume finally that ρ̄ ∈ L∞([0, T ], W 2,p(Πd)) for any p <∞
solves Eq. (2) with inf ρ̄ > 0 and

∫
Πd ρ̄ = 1. Then

HN (ρN | ρ̄N )(t) ≤eM̄ (‖K‖+‖K‖2) t

(
HN (ρ0N | ρ̄0N ) +

1

N

+ M̄(1 + t (1 + ‖K‖2)) |σ − σN |
)
,

where we denote ‖K‖ = ‖K‖Ẇ−1,∞ + ‖divK‖Ẇ−1,∞ and M̄ is a constant which
only depends on

M̄

(
d, σ, inf ρ̄, ‖ρ̄‖W 1,∞ , sup

p≥1

‖∇2ρ̄‖Lp

p
,

1

N

∫

ΠdN

ρ0N log ρ0N , ‖divF‖L∞

)
.

It is then possible to derive from Theorem 1 the strong propagation of chaos as
per

Corollary 1. Under the assumptions of Theorem 1, if HN (ρ0N | ρ̄0N ) → 0 as
N → ∞, then over any fixed time interval [0, T ]

HN (ρN | ρ̄N) −→ 0, as N → ∞.

As a consequence considering any finite marginal at order k, one has the strong
propagation of chaos

‖ρN,k − ρ̄⊗
k‖L∞([0, T ], L1(Πd k)) −→ 0.

Finally in the particular case where supN N HN (ρ0N | ρ̄0N ) = H < ∞, and where
supN N |σN − σ| = S < ∞, then one has that, for some constant C defined in
Theorem 1,

(8) ‖ρN,k − ρ̄⊗
k‖L∞([0, T ], L1(Πd k)) ≤

C√
N
.

This applies in particular to the Biot-Savart law and the vortex dynamics for
2d Navier-Stokes since we can write

K = divV, V =

[ −φ arctanx1

x2
+ ψ1 0

0 φ arctanx2

x1
+ ψ2

]
,

where one can choose φ smooth with compact support in the representative of the
torus (−1/2, 1/2)2, and (ψ1, ψ2) a corresponding smooth correction to periodize
V . Therefore K satisfies the assumptions of Theorem 1.
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On a Boltzmann equation for Haldane statistics

Anne Nouri

(joint work with Leif Arkeryd)

The study of quantum quasi-particles at low temperatures including their statis-
tics, is a frontier area in modern physics. In a seminal paper Haldane [5] proposed
a definition based on a generalization of the Pauli exclusion principle for fractional
quantum statistics.
The talk is devoted to a study of quantum quasi-particles obeying Haldane sta-
tistics in a fully non-linear kinetic Boltzmann equation model with large initial
data on a torus. Strong L1 solutions are obtained for the Cauchy problem. The
main results concern existence, uniqueness and stabililty. Depending on the space
dimension and the collision kernel, the results obtained are local or global in time.
We consider the Cauchy problem associated to the Boltzmann equation in a torus
[0, 1]k, k ∈ {1, 2, 3}, for quantum particles obeying the Haldane statistics,

∂tf(t, x, v) + v̄ · ∇xf(t, x, v) = Q(f)(t, x, v), (t, x, v) ∈ [0,+∞[×[0, 1]k × R
3,(1)

f(0, x, v) = f0(x, v),(2)

where

v̄ = (v1)( resp. v̄ = (v1, v2), resp. v̄ = v) for k = 1( resp. k = 2, resp. k = 3).

The collision operator Q is given by

Q(f)(v) =

∫

R3×S2

B(| v − v∗ |, n)
(
f ′f ′

∗Fα(f)Fα(f∗)− ff∗Fα(f
′)Fα(f

′
∗)
)
dv∗dn,

with the filling factor Fα defined by

Fα(f) = (1 − αf)α(1 + (1− α)f)1−α.

Strong solutions to the space-homogeneous case were obtained in [1]. Global
in time strong solutions to the space-inhomogeneous case were obtained in [2] in
a periodic slab (k= 1) for two-dimensional velocities. There the proof depends
on the two-dimensional velocities setting. In the present paper we prove local in
time well-posedness of the Cauchy problem for k = 1 and collision kernels similar
to those used in [2], and for k ∈ {1, 2, 3} global in time well-posedness under the
supplementary assumption of very soft potential [6]. Extensions to the Fermi-
Dirac equation (for fermions) and Boltzmann Nordheim equation (for bosons) are
discussed.
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1. The main results.

With cosθ = n · v−v∗
|v−v∗| , the kernel B(|v − v∗|, θ) is assumed measurable with

(3) 0 ≤ B ≤ B0,

for some B0 > 0. It is also assumed for some γ, γ′, cB > 0, that

(4) B(|v − v∗|, θ) = 0 for | cos θ| < γ′, for 1− | cos θ| < γ′, and for |v − v∗| < γ,

and that

(5)

∫
B(u, θ)dθ ≥ cB > 0 for u ≥ γ.

The initial datum f0(x, v),

periodic in x, is a measurable function with values in[0,
1

α
],(6)

and such that for some positive constants c0 and c̃0,

(1 + |v|2)f0(x, v) ∈ L1([0, 1]k × R
3),(7)

∫
sup

x∈[0,1]k
f0(x, v)dv = c0,(8)

∫
sup

x∈[0,1]k
|v|2f0(x, v)dv = c̃0,(9)

for any subset X of R3 of positive measure,

∫

X

inf
x∈[0,1]k

f0(x, v)dv > 0.(10)

Denote by
(11)

f ♯(t, x, v) = f(t, x+ tv̄, v), (t, x, v) ∈ [0,+∞[×[0, 1]k × R
3, v̄ = (v1, · · ·, vk) ∈ R

k.

Strong solutions to (1) are considered in the following sense.

Definition 1. f is a strong solution to (1) on the time interval I if

f ∈ C1(I;L1([0, 1]k × R
3)),

and

(12)
d

dt
f ♯ =

(
Q(f)

)♯
, on I × [0, 1]k × R

3.

The main results are given in the following theorems.

Theorem 1.
Under the assumptions (3)-(8) and (10), there is a time T > 0, so that there exists
a unique periodic in x, strong solution f ∈ C1([0, T [;L1([0, 1]× R3)) of (1)-(2).
It depends continuously in C([0, T [;L1([0, 1]× R3)) on the initial L1-datum.
It conserves mass, momentum and energy.
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Theorem 2.
Under the assumptions (3)-(10) and the supplementary assumption of very soft
collision kernels [6],
(13)
B(u, θ) = B1(u)B2(θ) with |B1(u)| ≤ c|u|−3−η for some η > 0, and B2 bounded,

there exists a unique periodic in x, strong solution
f ∈ C1([0,∞[;L1([0, 1]k × R3)) of (1)-(2) for k ∈ {1, 2, 3}. For any T > 0, it
continuously depends in C([0, T ];L1([0, 1]k × R

3)) on the initial L1-datum.
It conserves mass, momentum and energy.

The proofs of both theorems rely on the control of the mass density
∫

sup
x∈[0,1]k×R3

f(t, x, v)dv,

and an introduction of an initial layer where f(t, ·, ·) ≤ 1
α − bt for some positive

constant b.

2. Remark and Extensions.

Theorem 1 is restricted to the slab case, since its proof uses an estimate for the
Bony functional only valid in one space dimension.
Theorems 1 and 2 also hold with the same proofs in the fermion case where α = 1,
in particular giving strong solutions to the Fermi-Dirac equation.
Theorems 1 and 2 also hold with a limit procedure when α→ 0 in the boson case
where α = 0, in particular giving strong solutions to the Boltzmann Nordheim
equation [4].
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Multispecies mixtures close to equilibrium

Marc Briant

(joint work with Esther S. Daus)

1. The Multispecies model

The multispecies Boltzmann equation rules the dynamics of a dilute gas on the
torus T3 composed of N different species of chemically non-reacting mono-atomic
particles, and undergoing solely binary collisions. It reads, stated on R+×T3×R3,

∀ 1 ≤ i ≤ N, ∂tFi(t, x, v) + v · ∇xFi(t, x, v) = Qi(F)(t, x, v).

Note that the distribution function of the system is given by the vector F =
(F1, . . . , FN ), with Fi describing the ith species at time t, position x and velocity
v.
The Boltzmann operatorQ(F) = (Q1(F), . . . , QN (F)) is given for all i by Qi(F) =
N∑
j=1

Qij(Fi, Fj),where Qij describes interactions between particles of either the

same (i = j) or of different (i 6= j) species and are local in time and space.
The core difference with the monospecies case are the laws of elastic collisions
that are no longer symmetric in v and v∗:

miv +mjv∗ = miv
′ +mjv

′
∗,

1

2
mi |v|2 +

1

2
mj |v∗|2 =

1

2
mi |v′|2 +

1

2
mj |v′∗|

2
.

2. Loss of symmetry and perturbative regime

At first sight, it seems that the multispecies Boltzmann system is hardly more
than a vectorial version of the classical monospecies Boltzmann equation (N = 1).
However, if we have been able to recover the latest results known for N = 1 to
general N and masses mi, the extraspecies collisions generate a lot of breaking
of standard symmetries. In particular it implies conservation of the total number
density of each species, but preservation momentum and energy in the whole only:

∀t ≥ 0, c∞,i =

∫

T3×R3

Fi(t, x, v) dxdv (1 ≤ i ≤ N)

u∞ =
1

ρ∞

N∑

i=1

∫

T3×R3

mivFi(t, x, v) dxdv

θ∞ =
1

3ρ∞

N∑

i=1

∫

T3×R3

mi |v − u∞|2 Fi(t, x, v) dxdv,

where ρ∞ =
∑N

i=1mic∞,i. Note that this already shows intricate interactions
between each species and the total mixture itself.
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There exists a multi-species version of the classical H-theorem [3] which implies
that the global equilibrium is the normalized Maxwellian

µ = (µi)1≤i≤N with µi(v) = c∞,i

(mi

2π

)3/2
e−mi

|v|2

2 .

We can now construct a perturbative Cauchy theory and show exponential trend
to equilibrium of solutions of the form Fi(t, x, v) = µi(v) + fi(t, x, v) for all i :

∂tf + v · ∇xf = L(f) +Q(f).

We built a Cauchy theory in L1
vL

∞
x (1 + |v|k) with an explicit threshold k > k0,

thus recovering the latest results for monospecies case [4] when N = 1. However,
new features have to be taken into account.

3. Methodology and differences with monospecies framework

Very little is known about any rigorous Cauchy theory for multi-species gases with
different masses. We want to mention [1], where a linear compactness result was
proved in L2

v(µ
−1/2), and [2] where they proved that the operator L has a spectral

gap in L2
v

(
µ−1/2

)
when mi = mj .

Our strategy can be decomposed into four main steps and we now describe each
of them and their link to existing works.

Step 1: Spectral gap for the linear operator in L2
v

(
µ−1/2

)
. Following [2]

we exhibit and explicit spectral gap by showing that the cross-interactions between
different species do not perturb too much the spectral gap that is known to exist
for the diagonal operator Lii (single-species operators).

Step 2: L2
x,v

(
µ−1/2

)
theory for the full perturbed linear operator. The

next step is to prove that G = L−v ·∇x generates a C0-semigroup in L2
x,v

(
µ−1/2

)

with exponential decay. Unfortunately, a direct use of the spectral gap of L shows

d

dt

∥∥eGtf
∥∥2
L2

x,v(µ−1/2) ≤ −2λL
∥∥eGtf − πL

(
eGtf

)∥∥2
L2

x,v(µ−1/2) ,

where πL is the orthogonal projection in L2
v

(
µ−1/2

)
onto Ker(L). However, G has

hypocoercive properties in the sense [8][6] :∆πL(f) ∼ ∂2π⊥
L f+higher order terms,

which can be combined with elliptic estimates to control the fluid part by the
microscopic part in Sobolev spaces Hs. To avoid going to Sobolev regularity, the
idea [5] is to integrate against test functions that contains a weak version of the
elliptic regularity of πL (f), recovered thanks to the transport part.

Step 3: L∞
x,v

(
〈v〉βµ−1/2

)
theory for the full nonlinear equation. Now

we drag this L2 theory up to a L∞ setting. Indeed, following [7] we control the
L∞-norm by the L2-norm along the characteristics. We have the following implicit
Duhamel representation of its ith component along the characteristics

SG(t)i = e−νi(v)t +

∫ t

0

e−νi(v)(t−s)Ki [SG(s)] ds.

As K is a kernel operator, its L∞-norm can be transformed into a L2 norm of f
as long as we can invert the characteristic trajectories. There are two important
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differences with the monospecies case. First, we compute new Carleman represen-
tation of the collision operator - the lack of symmetry between v′ and v′∗ compared
to v generates new Carleman admissible sets (some become spheres) . Second, the
decay of the exponential weight differs from one species to the other so one must
understand thatKmixes the exponential rate of decay among the cross-interaction
between species.

Step 4: Extension to polynomial weights and L1
vL

∞
x space. To get rid

off the strong exponential weight we develop an analytic and nonlinear version
of the recent [4]. The main strategy is to find a decomposition of the full linear
operator G = G1 +A, with G1 hypodissipative and A “regularizing”. Basically,
we decompose the perturbative equation into a system:

∂tf1 = G1 (f1) +Q(f1 + f2, f1 + f2)

∂tf2 + v · ∇xf2 = L (f2) +A (f1)

The first equation is solved in L∞
x,v(m) or L1

vL
∞
x (m) with the initial data f0 thanks

to the hypodissipativity of G1. The regularity of A (f1) allows us to use Step 3
and thus solve the second equation with null initial data in L∞

x,v

(
〈v〉βµ−1/2)

)
.

Here again recent estimates done for the monospecies case can be recovered with
mixing methods for the multispecies case, including a generalized Povzner-type
inequality (controlling the evolution of moments through a collision).

References
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Moments estimates for the discrete coagulation-fragmentation
equations with diffusion

Maxime Breden

(joint work with Laurent Desvillettes, Klemens Fellner)

Coagulation-fragmentation equations describe the dynamics of clusters coalescing
to build larger clusters and breaking apart into smaller pieces. Coagulation models
were first introduced by Smoluchowski (see [6, 7]) and then complexified to take
into account other effects like fragmentation. These models are used in numer-
ous and diverse applications at very different scales, in physics (smoke, sprays),
chemistry (polymers), or biology (hematology, animal collective behavior).

In this talk, I will consider discrete (in size) models, i.e. we assume that clusters
can be of size i ∈ N∗, and we denote by ci = ci(t, x) the concentration of clusters
of size i at time t and position x. We also assume that the clusters are confined in
a smooth bounded domain Ω of RN . The concentrations ci satisfy the following
set of equations, for all i ∈ N∗,





∂tci − di∆xci = Qi(c) + Fi(c), on [0, T ]× Ω,

∇xci · ν = 0 on [0, T ]× ∂Ω,

ci(0, ·) = cini on Ω.

The coagulation terms Qi(c) and the fragmentation terms Fi(c) respectively write:

Qi(c) = Q+
i (c)−Q−

i (c) =
1

2

i−1∑

j=1

ai−j,jci−jcj −
∞∑

j=1

ai,jcicj,

Fi(c) = F+
i (c)− F−

i (c) =

∞∑

j=1

Bi+jβi+j,ici+j −Bici.

The nonnegative parameters Bi, βi,j and ai,j represent the total rate Bi of frag-
mentation of clusters of size i, the average number βi,j of clusters of size j produced
due to fragmentation of a cluster of size i, and the coagulation rate ai,j of clusters
of size i with clusters of size j. The fragmentation of one cluster into smaller
pieces should conserve mass, clusters of size 1 should not fragment further and the
coagulation rates should be symmetric, so for all i, j ∈ N∗, we impose

i =
i−1∑

j=1

jβi,j , B1 = 0, ai,j = aj,i and ai,j , Bi, βi,j ≥ 0.

Formally, it is easy to see that the total mass of the system should be conserved,
i.e.

(1)

∫

Ω

∞∑

i=1

ici(t, x)dx =

∫

Ω

∞∑

i=1

icini (x)dx, ∀t ≥ 0.

However, in some situations (1) does in fact not hold, as the total mass decreases
strictly in finite time, a phenomenon called gelation (see for instance [5, 4]).
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The usual way to get information about the occurrence or absence of gelation
is to study moments of the solution. However, the presence of diffusion (and more
precisely of diffusion rates di that depend upon the size i) makes it harder to
obtain moment estimates. For instance, the first order moment (i.e. the mass)
satisfies

∂t

( ∞∑

i=1

ici

)
−∆x

( ∞∑

i=1

idici

)
= 0,

which does not give a true equation on
∑∞

i=1 ici if the di are not all equal.
In this talk, I will explain how so-called improved duality lemma (see [3]) can be

used in the context of coagulation-fragmentation equations to obtain new moment
estimates. I will then present two mains consequences of these moment estimates,
namely a new regularity result (obtention of strong solutions), and a proof that
strong enough fragmentation can prevent gelation even for superlinear coagulation,
which extends a know result in the homogeneous case to the inhomogeneous (i.e.
diffusive) model.
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A Kinetic Wave Turbulence Model for Stratified Flows

Irene M. Gamba

(joint work with Leslie Smith and Minh Binh Tran)

While resonant wave interactions, under the assumption of weak nonlinearity, can
be characterized by Zakharov kinetic equations (cf. [3, 4, 9]) the spectral energy
transfer on the resonant manifold, which is a set of wave vectors k, k1, k2 satisfying

(1) k = k1 + k2, and the exact resonance relation ωk = ωk1 + ωk2 ,

where the frequency ω is given by the dispersion relation between the wave fre-
quency ω and the wavenumber k. However, it is known that exact resonances
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do not capture some important physical effects, such as energy transfer to non-
propagating wave modes with zero frequency, a near resonant condition needs
to be assumed, given by the momentum transfer relation k = k1 + k2, and the
θ- broadening relation |ωk − ωk1 − ωk2 | < θ(f, k), accounting for broadening of
resonant surfaces, depending on the wave density f = f(k, t). When such near
resonances are included in the dynamics, numerical studies have demonstrated
the formation of the anisotropic, non-propagating wave modes in dispersive wave
systems relevant to geophysical flows (cf. [5, 6]). Such non-local near-resonance
turbulence kinetic model for internal wave interactions is described by (cf. [3]),

(2) ∂tf(t, k) + 2ν|k|2f(t, k) = Q[f ](t, k), f(0, k) = f0(k),

in which f(t, k) is the nonnegative wave density at wavenumber k ∈ Rd, d ≥ 2.
Following [8], the term 2ν|k|2f corresponds to the viscous damping term, where
ν is the viscosity coefficient. This equation is a three-wave form, in which the
collision operator is of the form

(3) Q[f ](k) =

∫∫

R2d

[
Rk,k1,k2 [f ]−Rk1,k,k2 [f ]−Rk2,k,k1 [f ]

]
dk1dk2

with

(4) Rk,k1,k2 [f ] := |Vk,k1,k2 |2δ(k − k1 − k2)Lf (ωk − ωk1 − ωk2)(f1f2 − ff1 − ff2),

This collisional form has been derived by Wyld in [7] following a the Feynman and
Dyson techniques to obtain a one-loop diagramatic approach to acoustics by the
analysis of forming the hierarchy of equations for the spectral cumulants (correla-
tion functions of the wave amplitudes) of underlying non linear PDE models, such
as Navier Stokes flow type models. The transition probability (or collision kernel)
term Vk,k1,k2 we used is modeled after [3]

(5) Vk,k1,k2 = C (|k||k1||k2|)
1
2 ,

where C is a physical constant. Nest, denoting by, the Coriolis F and buoyancy
(Brunt-Vaisala) frequenciesM , reference vertical wave numberm determined from
data, the gravitational constant g, and reference density ρ0, the dispersion law is

(6) ωk =
√
λ1 + λ2|k|2, for λ1 = F 2 and λ2 =

(
g

ρ0Mm0

)2

.

The broadening effects Lf are modeled by the Cauchy Lorentz distribution

(7) Lf (ζ) =
Γk,k1,k2

ζ2 + Γ2
k,k1,k2

, with lim
Γk,k1,k2

→0
Lf (ζ) = πδ(ζ),

and in the zero limit, the term (4) models exact resonances (cf. [8, 9]) as becomes
Rk,k1,k2 [f ] := |Vk,k1,k2 |2δ(k − k1 − k2)δ(ωk − ωk1 − ωk2)(f1f2 − ff1 − ff2).

Moreover, the resonance broadening frequency is Γk,k1,k2 = γk + γk1 + γk2 , where
γk is computed in [3] using a one-loop diagram approximation, for a normalized
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constant c to unit and M0(t) the non-conserved density mass, to be modeled by

γk ≈ c|k|2
∫

R+

|k|2|f(t, |k|)|d|k| ≈
∫

R3

f(t, k)dk := M0(t) .

Thus, the broadening parameter is mass dependent, given by

(8) Γk,k1,k2 = (|k|2 + |k1|2 + |k2|2)
∫

R3

f(t, k)dk = (|k|2 + |k1|2 + |k2|2)M0(t) .

Inspired by recent work of Alonso with two of the authors [1] on the Quantum
Boltzmann equation for cold bosonic gases, whose equation can also be derived by
diagrammatic techniques, we present the existence and uniqueness solution to a
Cauchy problem for the model (2)-(7), whose complete proof can be found in [2].
The strategy consists in finding a suitable time invariant subspace ST of the Banach
space L1

N(Rd) for which the weak turbulence equation has a unique strong solution,
where this Banach space has norms defined by the nth moment as the expectation
of the nth-power of the dispersion relation, that is for any given density g,

(9) L1
N(Rd) := {g ∈ L1(Rd), s.t. ‖g‖L1

N
:= MN [g] =

∫

Rd

ωN
k g(k)dk <∞}

The invariant subspace ST is convex and positive and it is determined from a priori
estimates of the initial value problem. Indeed, we show that for a given R0, set

C∗ :=
C0(λ1, λ2)

(
1 + e(4νR

2
0+8R0)T

)

‖f0(k)χR0‖L1

, and C∗ := 4νR2
0 + 8R0,

and, for any R∗ > 0, R∗ > 1, and for N, t > 0, define the subset ST

ST :=
{
f ∈ L1

N+3

(
Rd
)

: S1) f ≥ 0; S2) ‖f‖L1
N+3

≤ c0(t) := (2R∗ + 1)eC∗T ;

S3)− ‖f‖L1 ≥ c1(t) :=
R∗e−C∗T

2 .
}

Then the following results follows
Existence and Uniqueness Theorem . Let N > 0, and let f0(k) ∈ S0 ∩
B∗(R∗)\B∗(R∗), where B∗(R∗), B∗(R∗) with radius R∗, R∗ on L1

N+3(R
d). Then

the weak turbulence flow model (2)-(7) has a unique strong solution f(t, k) so that

(10) 0 ≤ f(t, k) ∈ C ([0, T );ST ) ∩ C1
(
(0, T );L1

N(Rd)
)
.

Since T can be chosen arbitrarily large this is a unique global solution in time.

Comments on the proof: The proof uses tools of solving Ordinary Differential
Inequalites (ODIs) in the Banach space L1

N+3

(
Rd) . Thus, estimates need to

be derived for the positive and negative parts of collision or interacting operator
Q[f ](t, k) in (7) as well as compatible initial data f0(k), both in the subspace ST .
The negative contribution from the viscous term nu|k|2f(t, k) plays a crucial role
to obtain estimates in ST for L1

N+3(R
d), as it necessary to show that there are

positive constants C1 = C1(λ1, λ2, N,R0, C
∗, C∗), C2 = C2(ν) and C3 such that it

is the following ordinary differential inequality for Mn[f ](t)

d

dt
MN [f ] ≤ C1MN+1[f ]− C2MN+2[f ],
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that yields d
dtMN [f ] ≤ C3MN [f ], and then a bound for MN [f ] ≤ CeC

′T . These
estimates are sufficient to show that the flow model (2)-(7) is an Ordinary Differen-
tial Equation in L1

N+3(R
d), that satisfies (i) Holder Continuity, (ii) Sub-Tangent,

and (iii) One-Sided Lipschitz conditions in the invariant subset ST . In fact condi-
tions (i) and (ii) are not only sufficient for existence, but also characterize the set
ST , and (iii) yields uniqueness. This strategy to construct solutions was proposed
in a set of unpublished notes by Bressan in 2006 for the classical Boltzmann equa-
tion for hard spheres in 3d, and were used by [1] for solving the problem for the
quantum Boltzmann equation for bosons. The argument and needed estimates do
not make use of the concept of entropy, and exhibit that powerful upper and lower
bounds in terms on statistical moments are sufficient for the existence theory.
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Hypocoercivity without confinement: mode-by-mode analysis and
decay rates in the Euclidean space

Jean Dolbeault

(joint work with Emeric Bouin, Stéphane Mischler, Clément Mouhot, Christian
Schmeiser)

Abstract.– L2 hypocoercivity results for scattering and Fokker-Planck type colli-
sion operators are obtained using decoupled Fourier modes. The rates are measured
in a space with exponential weights and then extended to larger function spaces by
a factorization method. Without confinement, sharp rates of decay are obtained.

Let us consider the evolution equation

(1)
dF

dt
+ TF = LF
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and assume that T and L are respectively anti-Hermitian and Hermitian operators
on a complex Hilbert space (H, 〈·, ·〉) with norm ‖ · ‖. As in the hypocoercivity
method of [4] for real valued operators, we consider the Lyapunov functional

H[F ] := 1
2 ‖F‖

2 + δRe〈AF, F 〉

for some δ > 0, with A :=
(
1+(TΠ)∗TΠ

)−1
(TΠ)∗. Here ∗ denotes the adjoint with

respect to 〈·, ·〉 and Π is the orthogonal projection onto the null space of L. We
assume that positive constants λm, λM , and CM exist, such that, for any F ∈ H,
the following properties hold:
(H1) microscopic coercivity: −〈LF, F 〉 ≥ λm ‖(1− Π)F‖2,
(H2) macroscopic coercivity: ‖TΠF‖2 ≥ λM ‖ΠF‖2,
(H3) parabolic macroscopic dynamics: ΠTΠF = 0,
(H4) bounded auxiliary operators: ‖AT(1− Π)F‖+ ‖ALF‖ ≤ CM ‖(1− Π)F‖.
Then for any t ≥ 0, if F solves (1) with initial datum F0, we have

H[F (t, ·)] ≤ H[F0] e
−λ⋆t

where λ⋆ is characterized as the smallest λ > 0 for which there exists some δ > 0
such that (δ CM )

2−4
(
λm − δ − 2+δ

4 λ
) (

δ λM

1+λM
− 2+δ

4 λ
)
= 0 under the additional

condition that λm − δ − 1
4 (2 + δ)λ > 0.

This abstract hypocoercivity result applies to kinetic equations with various
collision operators L whose null space is spanned by an admissible local equilib-
rium M , that is, a radially symmetric continuous function such that, additionally,
M−1 has a growth faster than any polynomial as |v| → +∞,

∫
Rd M dv = 1.

Here are two important examples:
⊲ Fokker-Planck operators with general equilibria: LF = ∇v ·

[
M ∇v

(
M−1 F

)]

where M is such that v 7→ |∇v

√
M |2 is integrable and a Poincaré inequality holds

with respect to the measure M dv.
⊲ Scattering collision operators: LF =

∫
Rd σ(·, v′)

(
F (v′)M(·) − F (·)M(v′)

)
dv′.

We assume that the symmetry condition
∫

Rd

(
σ(v, v′)− σ(v′, v)

)
M(v′) dv′ = 0

holds and that the scattering rate σ is such that 1 ≤ σ(v, v′) ≤ σ for some positive,
finite σ. The microscopic coercivity property follows from [3].

Next we consider a distribution function f(t, x, v), where x denotes the posi-
tion variable, v ∈ Rd is the velocity variable, and t ≥ 0 is the time. We shall
consider either x ∈ Td ≈ [0, 2 π)d or x ∈ Rd. In order to perform a mode-by-mode
hypocoercivity analysis, we introduce the Fourier representation with respect to x

f(t, x, v) =

∫

Rd

f̂(t, ξ, v) e−i x·ξ dµ(ξ)

where the measure dµ is such that dµ(ξ) = (2π)−d dξ and dξ is the Lesbesgue
measure if x ∈ Rd, and dµ(ξ) = (2π)−d

∑
z∈Zd δ(ξ − z) is discrete for x ∈ Td.
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Since the collision operator L does not depend on x, the kinetic equation

(2) ∂tf + v · ∇xf = Lf

is reduced to (1) applied to F (t, v) = f̂(t, ξ, v) for each mode ξ, where ξ is now
considered as a parameter, and the transport operator v·∇x is, in Fourier variables,
the simple multiplication operator

TF := i (v · ξ)F .
With Θ =

∫
Rd |v · ξ|2M(v) dv, the operator A is now given by

AF =
− i ξ ·

∫
Rd v

′ F (v′) dv′

1 + Θ |ξ|2 M .

Under the above assumptions, for any t ≥ 0, for any fixed ξ, with we have

‖F (t, ·)‖2L2(dγ) ≤ 3 e−µξ t ‖F0‖2L2(dγ)

where dγ =M−1 dv, µξ :=
Λ |ξ|2
1+|ξ|2 , Λ = Θ

3 max{1,Θ} min
{
1, λm Θ

κ2+Θ

}
with κ = 2 σ

√
Θ

for scattering operators and κ = 2 ‖∇v

√
M‖L2(dv)/

√
d for Fokker-Planck opera-

tors. By the factorization result of [5], the same decay rate is obtained if we replace
the measure dγ by

dγk := γk(v) dv where γk(v) = πd/2 Γ((k−d)/2)
Γ(k/2)

(
1 + |v|2

)k/2

for an arbitrary k ∈ (d,+∞). Using Parseval’s identity, we obtain that the
solution f of (2) on Td × Rd with initial datum f0 ∈ L2(dxdγk) such that∫∫

Td×Rd f0 dxdv = 1 satisfies, for any t ≥ 0,

∥∥f(t, ·, ·)− |Td|−1M
∥∥
L2(dxdγk)

≤ Ck ‖f0 − f∞‖L2(dxdγk)
e−Λ t/4

for some positive constant Ck.

On the whole Euclidean space Rd, we consider the Lyapunov functional

f 7→ 1
2 ‖f‖

2
L2(dx dγk)

+ δ 〈Af, f〉L2(dx dγk)

where the operator A :=
(
1 + (TΠ)∗TΠ

)−1
(TΠ)∗ is now defined in the (x, v) vari-

ables using T := v ·∇x. We can use Plancherel’s formula. However, it is clear that
without an external potential of confinement, there is no Poincaré inequality to
be expected. Replacing the macroscopic coercivity condition by Nash’s inequality

‖u‖2L2(dx) ≤ CNash ‖u‖
4

d+2

L1(dx) ‖∇u‖
2 d
d+2

L2(dx)

allows us to prove that there exists a constant Ck > 0 such that, for any t ≥ 0,

‖f(t, ·, ·)‖2L2(dxdγk)
≤ Ck

(
‖f0‖2L2(dxdγk)

+ ‖f0‖2L2(dγk; L1(dx))

)
(1 + t)−

d
2 .

So far we did not assume any sign condition on f . Inspired by the properties of the
solutions of the heat equation, a more detailed analysis shows that the zero average



3398 Oberwolfach Report 56/2017

solutions of (2) have an improved decay rate. Assume that f0 ∈ L1
loc(R

d × R
d)

with
∫∫

Rd×Rd f0(x, v) dxdv = 0 and let

C := ‖f0‖2L2(dγk+2; L1(dx)) + ‖f0‖2L2(dγk; L1(|x| dx)) + ‖f0‖2L2(dxdγk)
<∞ .

Then there exists a constant ck > 0 such that, for any t ≥ 0,

‖f(t, ·, ·)‖2L2(dxdγk)
≤ ck C (1 + t)−(1+ d

2 ) .

For details, see [1]. Further improved estimates will be available in [2].
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Global existence analysis of multi-species cross-diffusion systems in
population dynamics

Esther S. Daus

(joint work with Xiuqing Chen, Ansgar Jüngel)

Introduction. Many applications in physics, chemistry and biology can be mod-
eled by cross-diffusion systems, describing the evolution of the densities or the
concentrations of a multi-component system. Formally, they are strongly coupled
parabolic systems of the type

(1) ∂tui − div

( n∑

j=1

Aij(u)∇uj
)

= fi(u) in Ω, t > 0, i = 1, . . . , n,

with initial conditions and no-flux boundary conditions on a bounded domain
Ω ⊂ R

d (d ≥ 1). The diffusion matrix A(u) is in general non-diagonal and neither
symmetric nor positive definite, and thus the existence analysis of these models is
extremely challenging, see e.g. [3, 12, 13].

The SKT model. Our focus is on the existence analysis of a population
dynamics model for competing species named after Shigesada, Kawasaki and Ter-
amoto [19]. We are particularly interested in a generalized n-species version of
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this SKT model, where the diffusion matrix has the form

(2) Aij(u) = δijpi(u) + ui
∂pi
∂uj

(u), pi(u) = ai0 +

n∑

k=1

aiku
s
k, i, j = 1, . . . , n,

with ai0, aij ≥ 0 and s > 0. The functions pi are the transition rates of the un-
derlying random-walk model [13, 21], and ai0 are called diffusion, aii self-diffusion
and aij cross-diffusion coefficients. The source terms fi are of Lotka-Volterra com-
petition type.

Historical background. The first global existence result for the classical SKT
model (i.e. (2) with s = 1 and n = 2) was achieved by Kim [14] by studying the
equations in one space dimension, neglecting self-diffusion, and assuming equal
coefficients (aij = 1). Significant progress was made by Amann [1], who proved
that a priori estimates in the W 1,p norm with p > d are sufficient for the solutions
to general quasilinear parabolic systems to exist globally in time, moreover, he ap-
plied this result to the triangular case. The first result on global existence without
restricting the diffusion coefficients (except assuming positivity) was achieved in
[11] in one space dimension and in [6, 7] in several space dimensions. In [10], these
results could be extended to the whole space. The existence of global classical
solutions under suitable conditions on the coefficients was proved in, e.g., [15].

As a next step, nonlinear transition rates, but still for two species (i.e. (2)
with s > 0 and n = 2), were analyzed. Desvillettes and co-workers managed
to prove global existence in the sublinear case (0 < s < 1) [8] and later for the
superlinear case (s > 1) under the weak cross-diffusion condition ((s − 1)/(s +
1))2a12a21 ≤ a11a22 [9]. Similar results, but under a slightly stronger weak cross-
diffusion hypothesis, were proved in the general paper on cross-diffusion systems
[12].

Finally, first results for more than two species were considered. The existence
of positive stationary solutions and the stability of the constant equilibrium was
proved in [2, 18]. The existence of global weak solutions in one space dimension
assuming a positive definite diffusion matrix was considered in [20], based on
Amann’s results. Using an entropy approach, the global existence of solutions was
shown in [9] for three species under the condition 0 < s < 1/

√
3.

Our results. In [5] we provide for the first time global-in-time weak solutions
to generalized SKT reaction-cross-diffusion systems for an arbitrary number of
competing population species (2) under very general conditions by refining the
entropy method of [12]. Moreover, we explore a surprising relation between the
monotonicity of the entropy and the detailed balance condition of an associated
Markov chain. In particular, we show that global existence holds for system (2)
under a detailed balance or weak cross-diffusion condition. The detailed balance
condition is related to the symmetry of the mobility matrix, which mirrors On-
sager’s principle in thermodynamics. Under detailed balance (and without reac-
tion), the entropy is nonincreasing in time, but counter-examples show that the
entropy may increase initially if detailed balance does not hold.
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Duality techniques. Certain duality techniques, tracing back for instance to
M. Pierre [17], refined to several variants, for instance in [4] (suggested by F. Otto),
were used in [16] to get rid of the space dependent lower bounds for s in [5].
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Classical and Quantum Mechanical Models of Many-Particle Systems 3401

Hydrodynamics beyond Navier-Stokes

Alexander V. Bobylev

We consider the problem of regularization of classical (ill-posed) Burnett equa-
tions of hydrodynamics and show that this can be done by transformation to
new hydrodynamic variables. It is also shown that the way of truncation of the
Chapman-Enskog expansion is not unique (even at the Navier-Stokes level). We
discuss the meaning of the above transformations. It is important to understand
if there exists the optimal one. This question is studied in detail for the case of
the linearized Boltzmann equation. It is shown that the corresponding Chapman-
Enskog expansion has a special structure which allows to pass to diagonal equa-
tions of hydrodynamics (five independent equations). This is the meaning of the
optimal transformation in the linear case. We also present in the talk the rig-
orous estimates for Navier-Stokes and Burnett level respectively. The diagonal
Navier-Stokes equations are: three heat equations for two viscous and one ther-
mal modes respectively, and also two Burgers (with viscosity) equations for sound
modes. The accuracy of these equations has the order O(Kn) uniformly in time,
where Kn denotes the Knudsen number. The diagonal Burnett equations are:
the same three heat equations for two viscous and one thermal modes, and two
KdV-Burgers equations for sound modes. The solutions of these equations have
the second order of approximation O

[
(Kn)2

]
. Hence in that case we have a real

improvement of results obtained at the Navier-Stokes level. More details can be
found in recent paper[1].

The author gratefully acknowledges the support from Russian Foundation for
Basic Research by grant 17-51-52007, and the Program of the Presidium of RAS
N 01 grant PRAS -18-01.
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Equilibria of diffusing and self-attracting particles

Franca Hoffmann

(joint work with José A. Carrillo, Vincent Calvez)

We investigate a general class of aggregation-diffusion equations describing the
evolution of a continuum density as a result of particle interaction of the form

(1) ∂tρ =
1

N
∆ρm + 2χ∇ · (ρ∇W ∗ ρ)

for a density ρ(t, x) ∈ L1
+

(
RN
)
∩ Lm

(
RN
)
of unit mass defined on R+ × RN .

Here, the parameter χ ≥ 0 measures the interaciton strength and scales with the

mass of ρ. Of recent interest is the attractive interaction potential W (x) = |x|k
k

for k 6= 0 or W (x) = 1
2π log |x| for k = 0, and thus non-linear diffusion enters in
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competition with non-local attractive forces (see [4, 3, 6, 7, 5, 11, 10, 13, 16] and
references therein). This model, although simple, exhibits a deep mathematical
structure and has been intensively studied in various contexts arising in physics
and biology. The three-dimensional configuration (m = 1, k = −1) is the so-called
Smoluchowski-Poisson system arising in gravitational physics [12]. It describes
macroscopically a density of particles subject to a self-sustained gravitational field.
Without non-local particle interaction χ = 0, model (1) reduces to the well-known
porous medium equation (m > 1), heat equation (m = 1), or fast diffusion equation
(0 < m < 1) [15, 14]. The two-dimensional logarithmic case (m = 1, k = 0) is the
so-called Patlak-Keller-Segel (PKS) system in its simplest formulation (see [4] and
references therein), modeling the collective motion of cells which are attracted
by a self-emitted chemical substance due to chemotaxis. This mechanism has
been widely observed in various biological fields (morphogenesis, bacterial self-
organization, inflammatory processes among others), and existence and uniqueness
of stationary states as well as convergence to equilibrium have been extensively
studied (see [5] and references therein). However, much less is known for general
m > 0 and k ∈ (−N,∞). For which choices of χ do stationary states exist? If
they do, are they unique (up to dilation)? Do some or all solutions converge to
them, and if yes, how fast and in which norm? Recent insights have been achieved
by making a link to the functional

F [ρ] =
1

N(m− 1)

∫

RN

ρm(x) dx + χ

∫∫

RN×RN

W (x − y)ρ(x)ρ(y) dxdy

:= H[ρ] + χW [ρ] ,

if m 6= 1 with H[ρ] = 1
N

∫
RN ρ log ρ dx if m = 1. This is the free energy functional

associated to the formal Wasserstein-2 gradient flow formulation of model (1) [2, 1],
and F is non-increasing along the trajectories of the system. The competition of
repulsive (diffusion) and attractive (interaction) forces, can also be observed on
the level of the functional: taking dilations ρλ(x) := λNρ(λx), one obtains

F [ρλ] = λN(m−1)H[ρ] + λ−kχW [ρ] .

In other words, the diffusion and aggregation forces are in balance if and only
if N(m − 1) + k = 0, which we coin as the fair-competition regime. Naturally,
another set of questions arises: Are there minimisers to F? If yes, are they regular
enough to be stationary states of equation (1)? Conversely, are stationary states
of equation (1) necessarily minimisers of F?

We give a near-complete picture of the fair-competition regime in answering these
questions. This talk focuses on the results in [6] and [7], which is joint work with
José A. Carrillo and Vincent Calvez. We will summarise the results and some
interesting open questions below.
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Existence and Regularity in the Fair-Competition Regime

In the Porous Medium Regime k ∈ (−N, 0) and m = 1 − k/N ∈ (1, 2), we show
that stationary states of (1) and minimisers of F only exist for a certain critical
interaction strength χ = χc, an interesting mathematical phenomenon that also
occurs for the classical PKS equation k = 0 and m = 1. In particular, there exist
global minimisers of F and they are radially symmetric non-increasing, compactly
supported and uniformly bounded. Further, we make use of well known func-
tional inequalities (variants of the Hardy-Littlewood-Sobolev inequality) to show
that stationary states and minimisers are equivalent in that case. For subcritical
interaction strengths χ < χc, no stationary states exist as diffusion overcomes self-
attraction. However, we can show existence of global minimisers for the rescaled
functional Due to homogeneity, each global minimiser of F gives rise to a family
of global minimisers for χ = χc by dilation, but it is an open problem to show that
there is a unique global minimiser modulo dilations. This uniqueness was proven
in the Newtonian case in [16]. Further, in self-similar variables, we do not know
if stationary states with second moment bounded are among global minimisers of
the rescaled free energy Fresc for the sub-critical regime 0 < χ < χc, and whether
these minimisers are unique. For N = 1, we fully answered these questions in [7],
but it remains an open problem in higher dimensions.

For the Fast Diffusion Regime k ∈ (0, N) and m = 1 − k/N ∈ (0, 1), we show
in [6] that no radially symmetric non-increasing stationary states and no radially
symmetric non-increasing global minimisers of F exist for all values of the critical
parameter χ, while we show the existence of continuous radially symmetric non-
increasing self-similar profiles under the condition that diffusion is not too fast,
that is for k ∈ (0, 1]. In this sense, we show that there is no criticality for k >
0. Numerical experiments in one dimension corroborate the absence of critical
behaviour for k > 0.
A full proof of non-criticality involves the analysis of the minimisation problem in
self-similar variables as for k < 0 showing that global minimisers exist in the right
functional spaces for all values of χ and that they are indeed stationary states.
We proved this result in one dimension in [7] by optimal transport techniques and
one interesting direction of future investigation would be to generalise this result
to higher dimensions.
In the fast diffusion regime, we show existence of self-similar profiles directly using
a fixed point argument on a compact operator arising from the Euler-Lagrange
equation, but we are lacking a suitable HLS-type inequality to show that self-
similar profiles of (1) are global minimisers of Fresc. It seems natural that Fresc

should be bounded below and achieve its infimum for all values of χ as long as
diffusion is not too fast. These are just some of the many interesting open questions
for the fast diffusion fair-competition regime.
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Convergence to Equilibrium in the One-Dimensional

Fair-Competition Regime

In one dimension, the free energy functional F is the sum of the displacement-
convex functional H and the displacement-concave functional W , the overall con-
vexity properties of F however are not known. In [7], we show uniqueness of
minimisers of F in the porous medium regime k ∈ (−1, 0) in the critical case
χ = χc and for minimisers of Fresc in the sub-critical regime χ < χc. In the fast
diffusion range k ∈ (0, 1) when no critical parameter χ exists, we have uniqueness
of minimisers of the rescaled free energy Fresc – if they exist – for any χ > 0.
This means that F and Fresc behave almost like convex functionals as the bad
functional contribution is absorbed by the convex part. In particular, existence
of a critical point implies uniqueness (up to dilations), and it seems there is an
underlying convexity structure that is not yet well understood.
In [9], authors have proved the uniqueness (up to dilations) of the logarithmic HLS
inequality which corresponds to a bound below for F in the case k = 0, m = 1.
Their strategy is based on the so-called competing-symmetry argument initiated
in [8]. We develop in [7] an alternative argument based on some accurate use of
Jensen’s inequality to get the same result for F with k ∈ (−1, 0) in the critical case
χ = χc. In self-similar variables when homogeneity has been broken, we derive
an inequality similar to Jensen’s to achieve a bound from below in the sub-critical
regime χ < χc: for any stationary state ρ̄ in self-similar variables, we have for any
solution ρ,

(2) Fresc[ρ] ≥ Fresc[ρ̄] ,

with equality if and only if ρ = ρ̄. It turns out that our method is also applicable
to the fast-diffusion range k ∈ (0, 1), and we are able to derive a type of reversed
HLS inequality (2) for any χ > 0.

Figure 1. Regions of blow up
(red) and convergence to self-
similarity (green) in 1D.

As system (1) is the formal gradient flow of a
convex + concave functional, one has to seek
compensations. Such compensations do exist
in our case, and in [7], we prove convergence
in Wasserstein distance towards a unique (up
to dilation) stationary state under suitable as-
sumptions, in some cases with an explicit rate.
It is of course extremely important to under-
stand how the convex and the concave contri-
butions are entangled.
Finally, we use an illuminating way to rewrite
the energy functional F due to the particular
form of the transport map to derive a numerical
scheme for model (1). Our simulations confirm that there is no critical interaction
strength for the fast diffusion regime k > 0, and in the porous medium regime
k < 0 the scheme allows us to compute χc(k) numerically. Figure 1 gives an
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overview of the asymptotic behaviour of solutions: The critical regime is charac-
terised by the black line χc(k), −1 < k ≤ 0, separating the red region (finite-time
blow-up) from the green region (convergence to self-similarity).
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Invariant densities for conservative linear kinetic equations on the
torus without spectral gaps

Mustapha Mokhtar-Kharroubi

This work is the continuation of a general theory, given in [3], on time asymptotics
of conservative linear kinetic equations on the torus exhibiting a spectral gap. Our
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aim here is to provide new functional analytic developments in absence of a spectral
gap. Let us review first some results from [3]. We consider neutron transport-like
equations

∂f

∂t
+ v.

∂f

∂x
+ σ(x, v)f(t, x, v) =

∫

V

k(x, v, v′)f(t, x, v′)µ(dv′)

on L1(T n×V ) (n > 1) where T n := Rn/(Z)n is the n-dimensional torus under the
conservativity assumption σ(x, v) =

∫
V
k(x, v′, v)µ(dv′) where µ(dv) is a velocity

Radon measure on Rn with support V. The collision frequency σ(., .) is assumed
(for simplicity) to be essentially bounded so that the collision operator

K : L1(T n × V ) ∋ ϕ(., .) →
∫

V

k(x, v, v′)ϕ(x, v′)µ(dv′) ∈ L1(T n × V )

is bounded on L1(T n × V ). If K = 0, the ”collisionless” equation on T n × V is
governed by a weighted shift C0-semigroup (U(t))t≥0

L1(T n × V ) ∋ ϕ→ e−
∫

t
0
σ(x−sv,v)dsϕ(x − tv, v) ∈ L1(T n × V ) (t > 0).

We denote by T the generator of (U(t))t≥0. The type (or growth bound) of

(U(t))t≥0 is equal to

ω(U) = − lim
t→+∞

inf
(x,v)∈T n×V

t−1

∫ t

0

σ(x + sv, v)ds,

see [3]. In particular ω(U) < 0 if and only if there exist C1 > 0 and C2 > 0 such
that ∫ C1

0

σ(x + sv, v)ds > C2 a.e. on T n × V,

see [3] (see also [1] for an earlier result in this direction). The full dynamics
on L1(T n × V ) is governed by a C0-semigroup (W (t))t≥0 generated by A :=

T + K. Moreover, due to the conservativity condition, (W (t))t≥0 is a stochastic

(or markov) semigroup, i.e. mass-preserving on the positive cone, in particu-
lar its type is equal to zero, ω(W ) = 0. This perturbed semigroup (W (t))t≥0

is given by a Dyson-Phillips series W (t) =
∑∞

j=0 Uj(t). We recall that any C0-

semigroup (Z(t))t≥0 in a Banach space X admits an essential type ωess(Z) such

that ress(Z(t)) = eωess(Z)t (t > 0) where ress(Z(t)) is the essential spectral ra-
dius of Z(t). We recall also that (U(t))t≥0 and (W (t))t≥0 have the same essential

type if there exists k ∈ N such that Uk(t) is a compact operator for all t > 0,
(see [2] Chapter 2); in this case ωess(W ) ≤ ω(U). In particular, if ω(U) < 0 then
ωess(W ) < 0 = ω(W ) i.e. (W (t))t≥0 exhibits a spectral gap and 0 is an isolated

eigenvalue of T +K with finite algebraic multiplicity. If (W (t))t≥0 is irreducible
then 0 is algebraically simple and is associated to a unique positive normalized
eigenfunction u, i.e. a unique invariant density. In this case, there exist ε > 0
and C > 0 such that ‖W (t)ϕ− u‖ ≤ Ce−εt (t ≥ 0) for any density ϕ. The com-
pactness of some Uk(t) for all t > 0 holds for a general class of velocity measures
µ(dv) (covering the usual Lebesgue measure on Rn or on spheres) and a general
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class of collision operators (see [3] for the details). Our aim here is to deal with
the critical case ω(U) = 0, i.e.

lim
t→+∞

inf
(x,v)∈T n×V

t−1

∫ t

0

σ(x + sv, v)ds = 0.

In this case, the existence of an invariant density for (W (t))t≥0 and the strong
convergence of the latter to its ergodic projection are two key open problems.
(We do not assume a detailled balance condition for which the existence of an
invariant density is given for free.) Our general strategy consists in approximating

(W (t))t≥0 by a sequence of stochastic kinetic semigroups
{(
W j(t)

)
t≥0

}
j
having

a spectral gap and in analyzing the sequence of their invariant densities. First we
characterize the condition ω(U) = 0 by the existence of some (x, v) ∈ T n×V with
v 6= 0 such that σ(x + sv, v) = 0 ∀s ≥ 0 or by the existence of some x ∈ T n such
that σ(x, 0) = 0 (if 0 ∈ V ), and define the set of degeneracy of σ as the set

Ξ := {(x, v) ∈ T n × V ; σ(x+ sv, v) = 0 ∀s ≥ 0} .

We prove that the projection of Ξ on V along T n

Π = {v; ∃x ∈ T n, (x, v) ∈ Ξ }

is never of full measure, i.e. Πc := V/Π has always a positive µ-measure. Our con-
struction consists in approximating k(x, v, v′) by kj(x, v, v′) (j ∈ N) and σ(x, v) by
σj(x, v) :=

∫
V
kj(x, v

′, v)µ(dv′) where kj are suitably chosen (in connection with
the set Π). In particular, since ωj(U) < 0 then (Wj(t))t≥0 has a spectral gap

and there exists ϕj ∈ D+(Tj) such that Tjϕj +Kjϕj = 0,
(
‖ϕj‖L1(Tn×V ) = 1

)
.

One of our main results is: if µ(Π) = 0 and if k(y, v, v′) vanishes (in a suitable
way) on T n × Π × V then (ϕj)j converges in L1(T n × V ) to an invariant den-

sity of (W (t))t≥0. The proof of this result is quite involved and relies on various
mathematical preliminary results of independent interest. We show also the strong
convergence of (W (t))t≥0 as t → +∞ to its ergodic projection by using a func-

tional analytic result relying on a ”0-2” law for C0-semigroups [4]. The assumption
that k(y, v, v′) vanishes on T n × Π × V cannot be relaxed; indeed, we show, for
space-homogeneous cross-sections, that without the assumption above, (W (t))t≥0

has no invariant density and, for any density ϕ, the total mass of W (t)ϕ concen-
trates in the vicinity of the null-set T n × {v;σ(v) = 0} as t → +∞, in particular∫
Tn W (t)ϕdx tends to a measure carried by the set {v;σ(v) = 0}
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Excitation Spectra of Bose Gases

Benjamin Schlein

(joint work with Chiara Boccato, Serena Cenatiempo, Christian Brennecke)

We are interested in the low-energy spectrum of trapped Bose gases, consisting of
N particles interacting through a repulsive short range potential with scattering
length of the order N−1 (the Gross-Pitaevskii regime). To make our analysis
simpler, we assume that the N bosons are confined in the box Λ = [0; 1]×3, with
periodic boundary conditions. The Hamilton operator has the form

(1) HN =

N∑

j=1

−∆xj + κ

N∑

i<j

N2V (N(xi − xj))

where κ > 0 is a coupling constant and V is non-negative, radially symmetric
and compactly supported. The N dependence of the interaction ensures that its
scattering length scales as N−1.

Recall that the scattering length is defined through the zero-energy scattering
equation

(2)
[
−∆+

κ

2
V
]
f = 0

with the boundary condition f(x) → 1 as |x| → ∞. Outside the support of V , f
has the form

f(x) = 1− a0
|x|

for a constant a0 > 0 which is known as the scattering length of κV . By scaling it
is then easy to check that the scattering length of the rescaled potential κN2V (N.)
is given by a0/N .

The ground state properties of (1) have been studied in [8, 7]. In particular, it
follows from [8] that the ground state energy EN of (1) is such that

(3) lim
N→∞

EN

N
= 4πa0

Moreover, in [7] it was shown that the ground state ψN ∈ L2
s(Λ

N ) of (1) exhibits
complete Bose-Einstein condensation; if γN denotes the reduced one-particle den-
sity matrix associated with ψN , then it was proven in [7] that

(4) γN → |ϕ0〉〈ϕ0|
as N → ∞. Here ϕ0 denotes the zero-momentum mode, defined by ϕ0(x) = 1
for all x ∈ Λ. Eq. (4) states that, in the state ψN , all particles, up to a fraction
vanishing as N → ∞, are in the same one-particle state ϕ0.
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Here, we would like to describe the low-energy spectrum of (1), including the
ground state energy and the low-lying excitations. Since typical excitation energies
are of order one, to reach this goal we need a much better resolution compared to
(3), i.e. we need to compute energies up to errors that are small, as N → ∞. The
next theorem is the main result of [2].

Theorem 1. Let V ∈ L3(R3) be pointwise non-negative, radially symmetric and
compactly supported. Let κ > 0 be small enough. Then the ground state energy
EN of (1) is given by
(5)

EN =4πaN (N−1)−1

2

∑

p∈Λ∗
+

[
p2 + 8πa0 −

√
|p|4 + 16πa0p2 −

(8πa0)
2

2p2

]
+O(N−1/4)

where Λ∗
+ = 2πZ3\{0} and

8πaN = κV̂ (0) +

∞∑

k=1

(−1)kκk+1

(2N)k

×
∑

p1,...,pk∈Λ∗
+

V̂ (p1/N)

p21

[
k−1∏

i=1

V̂ ((pi − pi+1)/N)

p2i+1

]
V̂ (pk/N)

(6)

Moreover, the spectrum of HN−EN below a threshold ζ > 0 consists of eigenvalues
given by finite sums of the form

(7)
∑

p∈Λ∗
+

np

√
|p|4 + 16πa0p2 +O(N−1/4(1 + ζ3))

with np ∈ N for all p ∈ Λ∗
+.

It is easy to check that the Born series on the r.h.s. of (6) converges absolutely,
for κ > 0 small enough. In fact, the r.h.s. of (6) can be compared with the Born
series for the scattering length a0 defined through (2), which is given by
(8)

8πa0 = κV̂ (0) +

∞∑

k=1

(1)
kκk+1

2k(2π)3k

∫

R3k

dp1 . . . dpk
V̂ (p1)

p21

[
k−1∏

i=1

V̂ (pi − pi+1)

p2i+1

]
V̂ (pk)

Estimating the difference between the r.h.s. of (6) and of (8), we show that
|aN − a0| ≤ CN−1. Indeed, it seems (by numerical tests with some special choices
of V ) that |aN −a0| ≃ N−1 is of this order of magnitude, not smaller. This means
that, in (5), we cannot replace aN by a0. To the level of precision of (5), the
ground state energy is sensitive to finite volume effects and it cannot be expressed
just as a function of the infinite volume scattering length a0. Notice, however,
that these finite volume effects are expressed as an overall shift of the spectrum;
they are not detected in the excitation energies (7).
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The results of Theorem 1 (excluding the replacement of a0 with aN ) have al-
ready been predicted by Bogoliubov in [3], who used the linear dispersion of the
excitation resulting from (7) to explain the emergence of superfluidity.

first and second Born approximations have to be
Different choices of the N dependence of the interaction lead to mathematically

simpler models, described by Hamilton operators of the form

(9) Hβ
N =

N∑

j=1

−∆xj +
κ

2N

N∑

i<j

N3βV (Nβ(xi − xj))

For β = 1, we recover the Gross-Pitaebvskii Hamilton operator (1). For β = 0,
on the other hand, (9) describes a mean-field Hamiltonian: in contrast with the
Gross-Pitaevskii regime, here collisions are frequent and weak. For β = 0, the
low-energy spectrum of (9) has been determined in [6, 5, 6, 4, 9]. For 0 < β < 1,
it has been recently established in [1].
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Fractional diffusion as macroscopic limit of kinetic models

Christian Schmeiser

(joint work with Pedro Aceves Sanchez, Claude Bardos, Gaspard Jankowiak)

The derivation of diffusion equations from kinetic transport models has a long
history. It is based on local equilibria in the form of directionally unbiased velocity
distributions, where the diffusivity tensor is related to the tensor of second order
moments of the equilibrium. It has been observed that for equilibrium distributions
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with infinite second order moments the macroscopic behavior shows anomalous
diffusion behavior.

In 2010, Antoine Mellet and coworkers have started a systematic study of the
corresponding macroscopic limits [9, 10]. Recently the theory has been expanded
in the PhD theses of Pedro Aceves-Sánchez (Vienna) and of Ludovic Cesbron
(Cambridge). They have considered various kinetic models of the form

εα∂tf + εv · ∇xf = Q0(f) + εα−1Q1(f) ,

where the null space of the leading order collision operator Q0 is spanned by a
fat-tailed equilibrium distribution M(v) ≈ c|v|−d−α as |v| → ∞, with the space
dimension d (i.e. x, v ∈ Rd) and with 0 < α < 2. Whereas P. Aceves-Sánchez
dealt with collision operators of the (scattering) form

Q0(f) =

∫

Rd

σ(v, v′)(M(v)f(v′)−M(v′)f(v))dv′ ,

L. Cesbron considered fractional Fokker-Planck operators:

Q0(f) = −(−∆v)
α/2f +∇v · (vf)

One of the goals was the derivation of fractional diffusion with drift, induced by
the velocity bias modeled in Q1. It has been shown for α ≥ 1 that f(x, v, t) →
ρ(x, t)M(v) as ε→ 0, where the macroscopic density ρ satisfies an equation of the
form

∂tρ+ (−∆x)
α/2ρ+∇x · (ρu) = 0 ,

with a vector field u, when both Q0 and Q1 are scattering operators [3], when Q0

is a scattering operator and Q1(f) = −E · ∇vf is an acceleration term [2], and for
a fractional Fokker-Planck operator Q0 with an acceleration term Q1 [1].

The second goal was to derive the macroscopic limit on bounded position do-
mains Ω ⊂ Rd. The limiting equation in the case of absorbing (i.e. homogeneous
inflow) boundary conditions has the form [4]

∂tρ(x, t) = cd,αP.V.

∫

SΩ(x)

ρ(y, t)− ρ(x, t)

|x− y|d+α
dy − hα(x)ρ(x, t)

where SΩ(x) is the largest star shaped subset of Ω with center in x ∈ Ω and
hα → ∞ as x→ ∂Ω. It models a jump process with killing, where jumps are only
allowed along straight line segments remaining in Ω. The more difficult case of
specular reflection boundary conditions, in the case where Ω is a ball, has been
treated in [6].

In the case of the classical diffusion limit (α = 2), Q0(f) = O(ε) can be shown
by an entropy estimate, which leads to proofs of compactness for the macroscopic
density. This allows the treatment of nonlinearities (see e.g. [8, 11]). For α < 2,
only Q0(f) = O(εα/2) can be proven, which is not sufficient for the compactness
results. Work in progress deals with equations of the form

εα∂tf + εv · ∇xf = ν(ρf ) [γ(ρf , v)− f ] ,



3412 Oberwolfach Report 56/2017

where γ is a fat-tailed equilibrium profile satisfying
∫
γ(ρ, v)dv = ρ and γ(ρ, v) ≈

F (ρ)|v|−d−α as |v| → ∞. Formally, the limit ρ of the macroscopic density satisfies

∂tρ+ cα,dP.V.

∫
ν(ρ(x))ν(ρ(y))

ν̂ρ(x, y)1+α

F (ρ(x)) − F (ρ(y))

|x− y|d+α
dy = 0

with ν̂ρ(x, y) =
∫ 1

0 ν(ρ(sx + (1 − s)y))ds. This shows that there are various rea-
sonable possibilities for the formulation of nonlinear fractional diffusion equations
(see also [5, 7])
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Coupled Self-Organized Hydrodynamics and Stokes models for
suspensions of active particles

Sara Merino-Aceituno

(joint work with Pierre Degond, Fabien Vergnet, Hui Yu)

We present an individual-based model for collective motion in a viscous fluid. The
fluid is represented by the Stokes equation while the collective motion is repre-
sented by the Vicsek model (explained next). Collective motion gives a heuristic
description of hydrodynamic interactions, i.e., interactions between the swimmers
mediated by the fluid. The Stokes equation and the Vicsek model are coupled by
taking into account the influence of the fluid on the swimmers and vice versa. Spe-
cially, the system of equations that we consider is the following, where all the quan-
tities are dimensionless and where the stochastic differential equation (1b) must
be understood in the Stratonovich sense; the unknowns are (Xi(t), ωi(t))i∈{1,...,N}
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(corresponding to the position Xi ∈ R
3 of agent i and its orientation ωi), v(x, t),

p(x, t) (corresponding to the velocity of the fluid and its pressure, respectively):





dXi = uidt = v(Xi, t)dt+ aωidt,(1a)

dωi = Pω⊥
i
◦
[
νωidt+

√
2DdBi

t +
(
λS(v) +A(v)

)
ωidt

]
,(1b)

ω̄i =
Ji
|Ji|

with Ji =
N∑

k=1

K

( |Xi −Xk|
R

)
ωk,(1c)

−∆xv +∇xp = − b

N

N∑

i=1

(
ωi ⊗ ωi −

1

3
Id

)
∇xδXi(t),(1d)

∇x · v = 0.(1e)

In this system a, ν,D, λ,R and b are constants. The symbol ‘⊗’ denotes the ten-
sorial product and ‘Id’ the 3×3 identity matrix. The symbol Pω⊥

i
= Id − ωi ⊗ ωi

gives the orthonormal projection operator onto the sphere S2 at ωi; the ‘◦’ sym-
bol following it indicates that the Stochastic Differential Equation (1b) has to be
understood in the Stratonovich sense. The terms (Bi

t)t≥0, i = 1, . . . , N are inde-
pendent Brownian motions in R3. The terms S,A are matrices that will be defined
later. The operators ∆x, ∇x, ∇x· indicate the Laplacian, the gradient and the
divergence in R3, respectively. The symbol δX is the delta distribution in R3 at
X ∈ R3. Finally, K = K(r) ≥ 0, r ≥ 0, is a given sensing function.

The matrices A and S are the antisymmetric and symmetric parts of the linear
flow ∇xv (which is a matrix with components (∇xv)ij = ∂xivj , i, j = 1, 2, 3),
respectively:

A(v) = 1
2

(
∇xv − (∇xv)

T
)
,(2)

S(v) = 1
2

(
∇xv + (∇xv)

T
)
,(3)

where the exponent ‘T ’ indicates the transpose of the matrix.

The Vicsek model. Eqs. (1a)-(1c) correspond to the Vicsek model. In this
model agent i moves at a constant speed a in the direction ωi while trying to align
its direction motion with the one of its neighbours (given by ω̄i) up to some noise
(given by the term dBi

t). The coupling with the fluid is twofold: firstly, particles
are dragged by the fluid, that is why the v(Xi, t) term appears in the equation
for Xi and, secondly, the fluid changes the orientation of the swimmers following
Jeffery’s equation:

(4)
dωi

dt
= Pω⊥

i
(λS(v) +A(v))ωi = ∇ω

[
λ
1

2
ω · Sω

]
+

1

2
(∇x × v)× ω,

which describes how a fluid changes the orientation of an spheroidal particle with
aspect ration λ.
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The Stokes equation. Eqs. (1d)-(1e) give the evolution for the velocity of the
fluid v, where the right-hand side of Eq. (1d) is the coupling term with the
swimmers. This term comes from what is called a force dipole. More details can
be found in [1].

Results. In this talk we presented the motivation for presenting such a model; its
coarse-grained analysis into continuum equations; stability analysis of the contin-
uum equations; and extensions to consider inertial systems (Navier-Stokes equa-
tion), as well as, repulsion between swimmers. A detailed explanation of this along
with a literature review can be found in Ref. [1].
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On the Mean-Field and Classical Limits of the N-Body Schrödinger
Equation

François Golse

(joint work with Thierry Paul)

We are concerned with the following problem: to derive the Vlasov equation (with
self-consistent potential) from the quantum dynamics of N identical particles in
the large N , small ~ limit. Our approach is based on the definition of a pseudo-
metric measuring the distance between classical and quantum densities that is
analogous to the Monge-Kantorovich-Wasserstein distance with exponent 2 [9].
1. Comparing classical and quantum densities. A classical density P is a
probability density on Rd×Rd, whereas a quantum density is a bounded operator
ρ on H = L2(Rd) such that ρ = ρ∗ ≥ 0 and trace(ρ) = 1. A coupling of P and ρ
is a measurable function Q ≡ Q(x, ξ) defined a.e. on Rd ×Rd with values in the
algebra L(H), such that Q(x, ξ) = Q(x, ξ)∗ ≥ 0 for a.e. (x, ξ) and

∫

Rd×Rd

Q(x, ξ)dxdξ = ρ , trace(Q(x, ξ)) = P (x, ξ) for a.e. (x, ξ) .

The pseudo-metric measuring the distance between P and ρ is

E~(P, ρ) :=

√
inf

Q∈C(P,ρ)

∫

Rd×Rd

trace(Q(x, ξ)1/2C(x, ξ)Q(x, ξ)1/2)dxdξ ∈ [0,+∞] ,

where C(P, ρ) designates the set of couplings of p and ρ, while the transportation
cost C(x, ξ) is the operator in the variable y parametrized by (x, ξ) ∈ Rd × Rd

given by the formula

C(x, ξ) := |x− y|2 + |ξ + i~∇y|2 .
We recall Schrödinger’s coherent state at the point (q, p) ∈ Rd ×Rd:

|q, p〉(x) := (π~)−d/4e−|x−q|2/2~eip·(x−q/2)/~ .
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For each Borel positive measure µ on Rd×Rd, one defines the Töplitz operator of
symbol µ as

OpT~ [µ] :=
1

(2π~)d

∫

Rd×Rd

|q, p〉〈q, p|µ(dqdp) .

For each quantum density ρ on H with integral kernel r, one defines the Wigner
transform of ρ by the formula [8]

W~[ρ](x, ξ) :=
1

(2π)d

∫

Rd

r(x + 1
2~y, x− 1

2~y)e
−iy·ξdy .

(The right-hand side is to be understood as a Fourier-Plancherel transform.) It is
easy to see thatW~[ρ] is real-valued, and that W~[ρ] is in general not nonnegative.
This positivity issue is solved by considering instead the Husimi transform of ρ,
defined by the formula [8]

W̃~[ρ] := e~∆x,ξ/4W~[ρ] ≥ 0 .

Theorem A [4] Let P be a classical density such that

(1)

∫

Rd×Rd

(|x|2 + |ξ|2)P (x, ξ)dxdξ <∞ .

(a) For each quantum density ρ on H

E~(P, ρ)
2 ≥ max(d~, distMK,2(P, W̃~[ρ])

2 − d~) .

(b) For each Borel probability measure µ on Rd ×Rd

E~(P,OpT
~ [(2π~)

dµ])2 ≤ distMK,2(P, µ)
2 + d~ .

The notation distMK,2 designates the Wasserstein, or Monge-Kantorovich distance
of exponent 2 defined in chapter 7 of [9].
2. Application to the mean-field limit. Let V be an even function such that
∇V ∈W 1,∞(Rd). Consider the N -body quantum Hamiltonian

HN :=

N∑

j=1

− 1
2~

2∆xj +
1

N

∑

1≤j<k≤N

V (xj − xk) .

A quantum density ρN on HN = H⊗N ≃ L2(RdN) is said to be symmetric if it
commutes to all the unitary operators Uσ defined on HN by

UσΨ(x1, . . . , xN ) := Ψ(xσ−1(1), . . . , xσ−1(N))

as σ runs through the set of all permutations of {1, . . . , N}. The first marginal
density of a symmetric quantum density ρN on HN with integral kernel rN is the
quantum density on H, denoted by ρN :1, with integral kernel

∫

Rd(N−1)

rN (x, z2, . . . , zN , y, z2, . . . , zN )dz2 . . . dzN .

For each classical density f , denote by Hf the mean-field classical Hamiltonian

Hf (x, ξ) :=
1
2 |ξ|

2 +

∫

Rd×Rd

V (x− y)f(y, η)dydη .
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Theorem B [4] Let f in be a classical density satisfying (1), and let f ≡ f(t, x, ξ)
be the solution of the Cauchy problem for the Vlasov equation

∂tf + {Hf , f} = 0 , f
∣∣∣
t=0

= f in .

On the other hand, let ρinN be a symmetric quantum density on HN , and let

ρN (t) := e−itHN/~ρinN e
itHN/~, which is a symmetric quantum density on HN for

all t ∈ R. Then, setting Γ := 2 + 4max(1,Lip(∇V )2), one has, for each t ≥ 0

E~(f(t), ρN :1(t))
2 ≤ 1

N
E~((f

in)⊗N , ρinN (t))2eΓt +
8‖∇V ‖L∞

N

eΓt − 1

Γ
.

In particular, if ρinN := OpT~ [(2π~)
dN(f in)⊗N ], one has

distMK,2(f(t), W̃~[ρN :1(t)])
2 ≤ d~(eΓt + 1) +

8‖∇V ‖L∞

N

eΓt − 1

Γ
.

3. Extensions. Several remarks on the convergence rate obtained in Theorem B
are in order.
(a) One can define a pseudo-metric between two quantum densities on H by a
similar procedure: see [3]. The pseudo-metric so obtained is used to establish
a uniform as ~ → 0 convergence rate for the mean-field limit of the N -body
quantum dynamics to the Hartree equation (the quantum analogue of the Vlasov
equation). This result can be strengthened, and by an interpolation argument with
the nonuniform in ~ convergence rate obtained from Cauchy-Kowalevski estimates
on the BBGKY hierarchy, one arrives at a uniform in ~ ∈ (0, 1) convergence rate
for the mean-field limit of the N -body quantum dynamics to the Hartree equation.
The missing details and a complete proof can be found in [7].
(b) One can extend Theorem A (a) to generalized Töplitz operators involving
coherent states built on some non Gaussian a ∈ S(Rd): see [5] for the elementary
properties of the pseudo-distance introduced in [3] and its connection with this
class of generalized Töplitz operators.
(c) Another approach of the mean-field limit of the quantum N -body problem
involves a quantum analogue of the notion of N -particle empirical measure used
to establish the mean-field limit of the N -body problem in classical mechanics
[1, 2]. See [6] for a detailed presentation of this notion, and an application to the
problem of finding a uniform in ~ ∈ (0, 1) convergence rate for the mean-field limit.
(d) Finally, it could be interesting to study whether the pseudo-metric introduced
here, or its analogue considered in [3] can be formulated in terms of some quantum
variant of optimal transport — e.g. is there an analogue of the Benamou-Brenier
variational formula (see chapter 8 of [9]) for this pseudo-distance?
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Singular-Regular decomposition of Green’s function and its
application to compressible Navier-Stokes equation

Shih-Hsien Yu

(joint work with Tai-Ping Liu)

In this talk we discuss an initial value problem for the compressible Navier-Stokes
equation in the Lagrangian coordinate,

(1)





vt − ux = 0,

ut + px(v) = µ(ux/v)x,

v(x, 0) = v0(x), u(x, 0) = u0(x).

There are extensive works on this subject, [2, 4, 3, 5, 6]. All those works require
a high order regularity assumption on the initial data so that a priori estimate
works to develop various nonlinear stability theories. The assumption on the
regularities in the initial data (v0, u0) limits on the understanding of the nature of
the mathematical model itself.

The goal the presentation is to show a decomposition of the Green’s function
G(x, t), for the PDE linearized around a constant state (v0, 0):(

∂t −∂x
−c2∂x ∂t − µ∂2x

)
G(x, t) = 0 for t > 0, x ∈ R,

G(x, 0) = δ(x)I3,

into a singular-regular decomposition G(x, t) = G∗(x, t) + G♯(x, t) through an
asymptotic expansion of the semi-group

Ĝ(η, t) = M+(η)e
λ+(η)t +M−(η)e

λ−(η)t

at the Fourier variable η at ∞. (The decomposition was first introduced in [1] for
a 3-D model.) It yields that there exist C,K0,K1 > 0 such that for x ∈ R, t > 0
it is satisfied




∣∣∣∣∣∣
G∗(x, t) −



δ(x)e−t/µ 0

0 χ(1− t)K1
e
− x2

K0t√
t



∣∣∣∣∣∣
≤ O(1)e−(|x|+t)/C ,

∣∣∣G♯(x, t)
∣∣∣ ≤ O(1) e

−
(x+ct)2

C(t+1) +e
−

(x−ct)2

C(t+1)√
t+1

+ e−(|x|+t)/C ,
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where c is the sound speed at rest, χ(x) is the Heaveside function. With this
structure, one proceeds to remove the regularity assumption. One includes the
solution of the nonlinear problem in the dissipation as part of the paramaters in
the construction of the Green’s function as a form of nonlinear Green’s function.
Finally, with the nonlinear Green’s function one can rewrite the quasi-linear PDE
as a system of integral equations of order zero with an integrable kernel in space-
time domain; and kernel is constructed pointwise exponentially sharp in the space-
time domain. The form of the integral equation requires no assumption on the
regularity and the global pointwise structure of the solution is a simple consequence
of the pointwise structure of the kernel functions, the precise informations in the
initial data, and Picard’s iteration to result in the theory:
Theorem. Suppose that the initial data (v0−1, u0) = εe−xχ(x) and c = 1. Then,
there are ε0 > 0, C0, and K0 > 0 such that for any ε ∈ (0, ε0) the solution of (1)
satisfies

(|v − 1|, |u|) ≤ O(1)ε
e−

(x+t)2

t+1 + e−
(x−t)2

t+1

√
1 + t

+O(1)εe−(|x|+t)/C0

+O(1)ε2
(
χ[−(t+1),(t+1)]

(
1

|x+ t|+
√
t+ 1

+
1

|x− t|+
√
t+ 1

))
,

where χ[a,b] stands for characteristic function for the set [a, b].
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Open problems: Uncertainty quantification for kinetic equations

Lorenzo Pareschi

In spite of the vast amount of existing research, both theoretically and numerically,
the study of kinetic equations has mostly remained deterministic and ignored
uncertainty. In reality, many sources of uncertainties can arise in these equations:

• Incomplete knowledge of the interaction mechanism between particles.
• Imprecise measurements of the initial and boundary data.
• Other sources of uncertainty like forcing and geometry, etc.
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Understanding the impact of these uncertainties is critical to the simulations of
the kinetic systems to validate the models and to obtain more reliable predictions.

Uncertainty quantification in kinetic equations represents a computational chal-
lenge for many reasons. Simple tasks such as the estimation of statistical properties
of the solution typically require multiple calls to a deterministic solver. A single
solver call is already very expensive for such complex mathematical models. In
addition, the schemes must deal with the intrinsic structural properties of the
solution. Non-negativity of the distribution function, conservation of invariant
quantities, entropy dissipation and steady states are essential in order to com-
pute qualitatively correct solutions. We will survey some open problems and new
research directions in this field.
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Open problems in collective dynamics

Pierre Degond

Collective dynamics has raised considerable interest in the last decade. It occurs
in systems of self-propelled particles (such as animal groups) when patterns of
motion emerge on scales much large than the inter-individual scales. Collective
dynamics is often understood as a phase transition, as the collective states only
appear for certain ranges of parameters, while the system stays in a disordered
state for other values of these parameters. There has been considerable debate
about the nature of such phase transitions among physicists. In an attempt to
clarify the situation, Vicsek and co-authors have proposed a particle model [1]
with a minimal set of parameters and have shown that phase transitions to order
appear either at low noise or large densities. Recently, a kinetic model derived
from the Vicsek model has been proposed and studied in [2]. It has given exact
critical values of the parameters for these transitions to occur, as well as their
nature (first or second order). It has rigorously proved nonlinear stability or
instability of the equilibria and in the stable case, provided sharp convergence rates
to these equilibria. However, this study is restricted to the spatially homogeneous
case. The techniques relying on a variational structure of the problem can’t be
extended to the spatially inhomogeneous case, because the variational structure of
the problem is lost in this case. Therefore, the mathematical study of equilibria
and phase transitions for the spatially-nonhomogeneous kinetic Vicsek model is
totally open and requires the forgeing of new mathematical tools that can replace
the inapplicable variational techniques.
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Open problems: Different approaches to Quantum particles through
optimal transportation methods

Yann Brenier

There have been several recent attempts to treat systems of quantum particles
through the concept of optimal transportation. I would like to quote, in particular,
the work of Carlen and Mas [2] on one hand and the work of Golse, Mouhot and
Paul [3] on the other hand. It seems reasonable to think that these concepts,
which look quite different, must be related in some way. In addition, there has
been some years ago several concepts of optimal transport in the framework of
free probability theory, in particular by Biane and Voiculescu [1], and in non
commutative geometry (see [4] for a recent reference). So, in my opinion, it would
be very fruitful to compare all these approaches.
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Institut de Mathématiques de Jussieu -
PRG
UMR 7586 du CNRS and Université
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Winterthurerstrasse 190
8057 Zürich
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